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MAT2377 Probability and Statistics for Engineers Chapter 2

Comments

• These slides cover material from Chapter 2.

• In class, I may use a blackboard. I recommend reading these slides before
you come to the class.

• I am planning to spend 2 lectures on this chapter.

• I am not re-writing the textbook. The reference book contains many
interesting and practical examples.

• There may be some typos. The final version of the slides will be posted
after the chapter is finished.
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Concept of a Random Variable

It is often important to allocate a numerical description to the outcome.

• Remember in the flipping a (fair) coin twice example:
The discrete sample space was S = {HH,HT, TH, TT}.
Define, X = number of “Heads”.

X({TT}) = 0

X({TH}) = 1, X({HT}) = 1,

X({HH}) = 2.
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A random variable is called a discrete random variable if its set of possible
outcomes is countable.

When a random variable can take on values on a continuous scale, it is
called a continuous random variable.

Examples:

• You flip a (fair) coin repeatedly until you observe one “Heads”.
Define, X = number of trials until you get one “Heads”. Then,

X({H}) = 1, X({TH}) = 2, X({TTH}) = 3, . . .

• Interest centers around the proportion of people who vote for a specific
candidate.
Let Y be that proportion.
Y is a random variable that takes on all values y for which 0 ≤ y ≤ 1.
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Notation for Random Variables (RVs)

• Capital letters e.g. X, Y are usually used to denote the RVs.

• Corresponding lower case letters e.g. x, y are usually used to denote
generic values taken by RV.

• A RV is a way to define events: if X takes values 0, 1, 2, . . . then we can
define events {X = 0}, {X = 1}, {X = 2},. . . etc.

• The probability (mass) function is

f(x) = P ({X = x}) = P (X = x), x ∈ SX,

where SX, is the support of the random variable X (the set of values
that the random variable can take).
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Example:

• Flip a fair coin twice.
The discrete sample space is S = {HH,HT, TH, TT}.
Define, X = number of “Heads”.
SX = {0, 1, 2}, is the support of the random variable X. Thus,

P (X = 0) = P ({TT}) = 1

4

P (X = 1) = P ({TH,HT}) = 1

2
,

P (X = 2) = P ({HH}) = 1

4
.

The probability (mass) function is
x 0 1 2

P (X = x) 1
4

1
2

1
4
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Formal Definition of the Probability (Mass) Function

The function f is said to be a probability (mass) function for the discrete
random variable X with the support SX, if

1. For each x ∈ SX, f(x) ≥ 0;

2.
∑

x∈SX
f(x) = 1.
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Example:

• A shipment of 20 similar laptop computers to a retail outlet contains 3
that are defective. If a school makes a random purchase of 2 of these
computers, find the probability distribution for the number of defectives.
Let X be a random variable whose values x are the possible numbers of
defective computers purchased by the school.
Then x can only take the numbers 0, 1, and 2. Now,

P (X = 0) =

(
3
0

)(
17
2

)(
20
2

) =
68

95
, P (X = 1) =

(
3
1

)(
17
1

)(
20
2

) =
51

190
,

P (X = 2) =?

x 0 1 2
P (X = x) 68

95
51
190 ?
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Cumulative Distribution Function for a Discrete RV

The cumulative distribution function F (x) of a discrete random variable X
with probability function f(x) is

F (x) = P (X ≤ x) =
∑
t≤x

P (X = t), x ∈ <.
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Example:

• Consider the following probability function

x 0 1 2 3 4
P (X = x) 1

16
1
4

3
8

1
4

1
16

Find the cumulative distribution function.

F (0) = P (X ≤ 0) = P (X = 0) =
1

16
,

F (
1

2
) = P (X ≤ 1

2
) = P (X = 0) =

1

16
,

F (1) = P (X ≤ 1) = P (X = 0) + P (X = 1) =
1

16
+

1

4
=

5

16
,

...

F (4) = P (X ≤ 4) = P (X = 0) + . . .+ P (X = 4) = 1.
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Example (Continued): The cumulative distribution function is

F (x) =



0 x < 0
1
16 0 ≤ x < 1
1
4 1 ≤ x < 2
3
8 2 ≤ x < 3
1
4 3 ≤ x < 4

1 x ≥ 4
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Formal Definition of the Probability Density Function

The function f is said to be a probability density function (or density
function) for the continuous random variable X, if

1. For each x ∈ <, f(x) ≥ 0;

2.
∫∞
−∞ f(x) = 1.

P (a ≤ X ≤ b) = P (a < X ≤ b)
= P (a ≤ X < b)

= P (a < X < b) =

∫ b

a

f(t)dt
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Example:

• Determine the value of c such that the following function can serve as a
probability density function.

f(x) =

{
cx2 for − 1 < x < 2

0 elsewhere

Find P (0 ≤ X < 1).
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Cumulative Distribution Function for a Continuous RV

The cumulative distribution function F (x) of a continuous random variable
X with probability density function f(x) is

F (x) = P (X ≤ x) =
∫ x

−∞
f(t)dt, x ∈ <.

Two interesting results:

• P (a < X < b) = F (b)− F (a);

• f(x) = ∂
∂xF (x), if the derivative exists.
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Example:

• In the former example, derive the cumulative distribution function.

Ali Karimnezhad 14



MAT2377 Probability and Statistics for Engineers Chapter 2

Expectation

Example-Motivation:

• An electric device is regularly sold for $1000 but now, it is on an online
non-refundable sale for $600.
Suppose based on a valid reference, %42 of products of the company
that are sold online do not function very well and customers are not
satisfed with their purchase.
Will you buy it?
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Formal Definition of Expectation
Let X be a random variable with probability distribution f(x).
The expected value or mean of X, or simply E(X) is defined as below:

• If X is discrete
µ = E(X) =

∑
x

xf(x),

• If X is continuous,

µ = E(X) =

∫
x

xf(x)dx.

Statisticians refer to E(X) as the population mean of the random variable
X or the mean of the probability distribution of X. The expectation is just
a property of a probability distribution, but we can interpret it as a long-run
average.
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Example:

• Flip a fair coin twice. Define, X = number of “Heads”.
Remember that

x 0 1 2
f(x) 1

4
1
2

1
4

These probabilities are just the relative frequencies for the given events
in the long run.
Therefore,

µ = E(X) =

2∑
x=0

xf(x) = (0)
1

4
+ (1)

1

2
+ (2)

1

4
= 1

This means that a person who tosses two fair coins over and over
again will, on the average, get 1 head per two tosses.
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Example:

• A lot containing 7 components is sampled by a quality inspector. The
lot contains 4 good components and 3 defective components.
A sample of 3 is taken by the inspector. Find the expected value of the
number of good components in this sample.

Let X represent the number of good components in the sample. The
probability distribution of X is

f(x) =

(
4
x

)(
3

3−x
)(

7
3

) , x = 0, 1, 2, 3.

Thus,

µ = E(X) =

3∑
x=0

xf(x) = . . . = 1.7.
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Example:

• The length of time, in minutes, for an airplane to obtain clearance for
takeoff at a certain airport has the density function

f(y) =

{
1
2e
−1

2y for y > 0

0 elsewhere

Compute E(Y ).
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Mean of a Function of a RV

Let X be a random variable with probability distribution f(x).
The expected value of a function of X, say h(X), is defined as below:

• If X is discrete

E[h(X)] =
∑
x

h(x)P (X = x) =
∑
x

h(x)f(x),

• If X is continuous,

E[h(X)] =

∫ ∞
−∞

h(x)f(x)dx.
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Example:

• Toss a balanced six-sided die. If Z is the number that shows on the top
face, find E(Z2) and E

[
(Z − 3.5)2

]
.

E
[
Z2
]

=

6∑
z=0

z2P (Z = z) = 12 × 1

6
+ 22 × 1

6
+ . . .+ 62 × 1

6

=
1

6
(12 + 22 + · · ·+ 62) =

91

6
= 15

1

6
.

E
[
(Z − 3.5)2

]
=

∑
z

(z − 3.5)2P (Z = z)

= (1− 3.5)2 × 1

6
+ . . .+ (6− 3.5)2

1

6
= . . . = 2

5

6
.
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Example:

• The length of time, in minutes, for an airplane to obtain clearance for
takeoff at a certain airport has the density function

f(y) =

{
1
2e
−1

2y for y > 0

0 elsewhere

Compute E[Y 2] and E[(Y − 2)2].
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Properties of Expectation

By definition, we can verify that

• E[cX] = cE(X), c ∈ <,

• E[X ± d] = E(X)± d, d ∈ <,

• E[cX ± d] = cE(X)± d, c, d ∈ <,

• E[ch(X)± d] = cE[h(X)]± d, c, d ∈ <,

• E[c1h(X)± c2g(X)] = c1E[h(X)]± c2E[g(X)], c1, c2 ∈ <.
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Variance and Standard Deviation of a RV

Let X be a random variable with probability distribution f(x).

• Variance of X is defined as the expected squared difference from the
expectation:

Var(X) = E
[
(X − E(X))2

]
• Standard Deviation (SD) of X is defined as

SD(X) =
√
Var(X) .

Variance and SD allow us to compare probability distributions: those with
higher variance/SD are more spread out about the expectation.
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Examples:

• Take a look at Slide No. 21.

• Take a look at Slide No. 22.

• Let X and Y be RVs with the following probability functions:

x -2 -1 0 1 2 y -4 -1 0 1 4
P (X = x) 1

5
1
5

1
5

1
5

1
5 P (Y = y) 1

5
1
5

1
5

1
5

1
5

Calculate expected values.
Compare variances.

Solution: We have E(X) = E(Y ) = 0 and Var(X) < Var(Y ),
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Properties of Variance

By definition, we can verify that

• Var[cX] = c2Var(X), c ∈ <,

• Var[X ± d] = Var(X), d ∈ <,

• Var[cX ± d] = c2Var(X), c, d ∈ <,

• Var(X) = E[X2]− E2(X),

• SD[cX] = |c|SD(X), c ∈ <.
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