MAT2377

Ali Karimnezhad

Version September 21, 2015

Ali Karimnezhad

Comments

- These slides cover material from Chapter 2.
- In class, I may use a blackboard. I recommend reading these slides before you come to the class.
- I am planning to spend 2 lectures on this chapter.
- I am not re-writing the textbook. The reference book contains many interesting and practical examples.
- There may be some typos. The final version of the slides will be posted after the chapter is finished.

Concept of a Random Variable

It is often important to allocate a numerical description to the outcome.

- Remember in the flipping a (fair) coin twice example:

The discrete sample space was $S=\{H H, H T, T H, T T\}$.
Define, $X=$ number of "Heads".

$$
\begin{aligned}
& X(\{T T\})=0 \\
& X(\{T H\})=1, \quad X(\{H T\})=1 \\
& X(\{H H\})=2
\end{aligned}
$$

Sample Space

A random variable is called a discrete random variable if its set of possible outcomes is countable.

When a random variable can take on values on a continuous scale, it is called a continuous random variable.

Examples:

- You flip a (fair) coin repeatedly until you observe one "Heads". Define, $X=$ number of trials until you get one "Heads". Then,

$$
X(\{H\})=1, \quad X(\{T H\})=2, \quad X(\{T T H\})=3, \quad \ldots
$$

- Interest centers around the proportion of people who vote for a specific candidate.
Let Y be that proportion.
Y is a random variable that takes on all values y for which $0 \leq y \leq 1$.

Notation for Random Variables (RVs)

- Capital letters e.g. X, Y are usually used to denote the RVs.
- Corresponding lower case letters e.g. x, y are usually used to denote generic values taken by RV.
- A RV is a way to define events: if X takes values $0,1,2, \ldots$ then we can define events $\{X=0\},\{X=1\},\{X=2\}$, . . etc.
- The probability (mass) function is

$$
f(x)=P(\{X=x\})=P(X=x), \quad x \in S_{X},
$$

where S_{X}, is the support of the random variable X (the set of values that the random variable can take).

Example:

- Flip a fair coin twice.

The discrete sample space is $S=\{H H, H T, T H, T T\}$. Define, $X=$ number of "Heads". $S_{X}=\{0,1,2\}$, is the support of the random variable X. Thus,

$$
\begin{aligned}
& P(X=0)=P(\{T T\})=\frac{1}{4} \\
& P(X=1)=P(\{T H, H T\})=\frac{1}{2} \\
& P(X=2)=P(\{H H\})=\frac{1}{4}
\end{aligned}
$$

The probability (mass) function is | x | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: |
| $P(X=x)$ | $\frac{1}{4}$ | $\frac{1}{2}$ | $\frac{1}{4}$ |

Formal Definition of the Probability (Mass) Function

The function f is said to be a probability (mass) function for the discrete random variable X with the support S_{X}, if

1. For each $x \in S_{X}, f(x) \geq 0$;
2. $\sum_{x \in S_{X}} f(x)=1$.

Example:

- A shipment of 20 similar laptop computers to a retail outlet contains 3 that are defective. If a school makes a random purchase of 2 of these computers, find the probability distribution for the number of defectives. Let X be a random variable whose values x are the possible numbers of defective computers purchased by the school.
Then x can only take the numbers 0,1 , and 2 . Now,

$$
\begin{aligned}
& P(X=0)=\frac{\binom{3}{0}\binom{17}{2}}{\binom{20}{2}}=\frac{68}{95}, \quad P(X=1)=\frac{\binom{3}{1}\binom{17}{1}}{\binom{20}{2}}=\frac{51}{190}, \\
& P(X=2)=?
\end{aligned}
$$

x	0	1	2
$P(X=x)$	$\frac{68}{95}$	$\frac{51}{190}$	$?$

Cumulative Distribution Function for a Discrete RV

The cumulative distribution function $F(x)$ of a discrete random variable X with probability function $f(x)$ is

$$
F(x)=P(X \leq x)=\sum_{t \leq x} P(X=t), \quad x \in \Re
$$

Example:

- Consider the following probability function

x	0	1	2	3	4
$P(X=x)$	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{16}$

Find the cumulative distribution function.

$$
\begin{aligned}
& F(0)=P(X \leq 0)=P(X=0)=\frac{1}{16} \\
& F\left(\frac{1}{2}\right)=P\left(X \leq \frac{1}{2}\right)=P(X=0)=\frac{1}{16} \\
& F(1)=P(X \leq 1)=P(X=0)+P(X=1)=\frac{1}{16}+\frac{1}{4}=\frac{5}{16} \\
& \vdots \\
& F(4)=P(X \leq 4)=P(X=0)+\ldots+P(X=4)=1
\end{aligned}
$$

Example (Continued): The cumulative distribution function is

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{1}{16} & 0 \leq x<1 \\ \frac{1}{4} & 1 \leq x<2 \\ \frac{3}{8} & 2 \leq x<3 \\ \frac{1}{4} & 3 \leq x<4 \\ 1 & x \geq 4\end{cases}
$$

Formal Definition of the Probability Density Function

The function f is said to be a probability density function (or density function) for the continuous random variable X, if

1. For each $x \in \Re, f(x) \geq 0$;
2. $\int_{-\infty}^{\infty} f(x)=1$.

$$
\begin{aligned}
P(a \leq X \leq b) & =P(a<X \leq b) \\
& =P(a \leq X<b) \\
& =P(a<X<b)=\int_{a}^{b} f(t) d t
\end{aligned}
$$

Example:

- Determine the value of c such that the following function can serve as a probability density function.

$$
f(x)= \begin{cases}c x^{2} & \text { for }-1<x<2 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $P(0 \leq X<1)$.

Cumulative Distribution Function for a Continuous RV

The cumulative distribution function $F(x)$ of a continuous random variable X with probability density function $f(x)$ is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t, \quad x \in \Re
$$

Two interesting results:

- $P(a<X<b)=F(b)-F(a)$;
- $f(x)=\frac{\partial}{\partial x} F(x)$, if the derivative exists.

Example:

- In the former example, derive the cumulative distribution function.

Expectation

Example-Motivation:

- An electric device is regularly sold for $\$ 1000$ but now, it is on an online non-refundable sale for $\$ 600$.
Suppose based on a valid reference, $\% 42$ of products of the company that are sold online do not function very well and customers are not satisfed with their purchase.
Will you buy it?

Formal Definition of Expectation

Let X be a random variable with probability distribution $f(x)$.
The expected value or mean of X, or simply $\mathrm{E}(X)$ is defined as below:

- If X is discrete

$$
\mu=\mathrm{E}(X)=\sum_{x} x f(x)
$$

- If X is continuous,

$$
\mu=\mathrm{E}(X)=\int_{x} x f(x) d x
$$

Statisticians refer to $\mathrm{E}(X)$ as the population mean of the random variable X or the mean of the probability distribution of X. The expectation is just a property of a probability distribution, but we can interpret it as a long-run average.

Example:

- Flip a fair coin twice. Define, $X=$ number of "Heads".

Remember that

x	0	1	2
$f(x)$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

These probabilities are just the relative frequencies for the given events in the long run.
Therefore,

$$
\mu=\mathrm{E}(X)=\sum_{x=0}^{2} x f(x)=(0) \frac{1}{4}+(1) \frac{1}{2}+(2) \frac{1}{4}=1
$$

This means that a person who tosses two fair coins over and over again will, on the average, get 1 head per two tosses.

Example:

- A lot containing 7 components is sampled by a quality inspector. The lot contains 4 good components and 3 defective components. A sample of 3 is taken by the inspector. Find the expected value of the number of good components in this sample.

Let X represent the number of good components in the sample. The probability distribution of X is

$$
f(x)=\frac{\binom{4}{x}\binom{3}{3-x}}{\binom{7}{3}}, \quad x=0,1,2,3
$$

Thus,

$$
\mu=\mathrm{E}(X)=\sum_{x=0}^{3} x f(x)=\ldots=1.7
$$

Example:

- The length of time, in minutes, for an airplane to obtain clearance for takeoff at a certain airport has the density function

$$
f(y)= \begin{cases}\frac{1}{2} e^{-\frac{1}{2} y} & \text { for } y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Compute $\mathrm{E}(Y)$.

Mean of a Function of a RV

Let X be a random variable with probability distribution $f(x)$. The expected value of a function of X, say $h(X)$, is defined as below:

- If X is discrete

$$
\mathrm{E}[h(X)]=\sum_{x} h(x) P(X=x)=\sum_{x} h(x) f(x)
$$

- If X is continuous,

$$
\mathrm{E}[h(X)]=\int_{-\infty}^{\infty} h(x) f(x) d x
$$

Example:

- Toss a balanced six-sided die. If Z is the number that shows on the top face, find $\mathrm{E}\left(Z^{2}\right)$ and $\mathrm{E}\left[(Z-3.5)^{2}\right]$.

$$
\begin{aligned}
\mathrm{E}\left[Z^{2}\right] & =\sum_{z=0}^{6} z^{2} P(Z=z)=1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+\ldots+6^{2} \times \frac{1}{6} \\
& =\frac{1}{6}\left(1^{2}+2^{2}+\cdots+6^{2}\right)=\frac{91}{6}=15 \frac{1}{6} . \\
\mathrm{E}\left[(Z-3.5)^{2}\right] & =\sum_{z}(z-3.5)^{2} P(Z=z) \\
& =(1-3.5)^{2} \times \frac{1}{6}+\ldots+(6-3.5)^{2} \frac{1}{6}=\ldots=2 \frac{5}{6} .
\end{aligned}
$$

Example:

- The length of time, in minutes, for an airplane to obtain clearance for takeoff at a certain airport has the density function

$$
f(y)= \begin{cases}\frac{1}{2} e^{-\frac{1}{2} y} & \text { for } y>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Compute $\mathrm{E}\left[Y^{2}\right]$ and $\mathrm{E}\left[(Y-2)^{2}\right]$.

Properties of Expectation

By definition, we can verify that

- $\mathrm{E}[c X]=c \mathrm{E}(X), \quad c \in \Re$,
- $\mathrm{E}[X \pm d]=\mathrm{E}(X) \pm d, \quad d \in \Re$,
- $\mathrm{E}[c X \pm d]=c \mathrm{E}(X) \pm d, \quad c, d \in \Re$,
- $\mathrm{E}[c h(X) \pm d]=c \mathrm{E}[h(X)] \pm d, \quad c, d \in \Re$,
- $\mathrm{E}\left[c_{1} h(X) \pm c_{2} g(X)\right]=c_{1} \mathrm{E}[h(X)] \pm c_{2} \mathrm{E}[g(X)], \quad c_{1}, c_{2} \in \Re$.

Variance and Standard Deviation of a RV

Let X be a random variable with probability distribution $f(x)$.

- Variance of X is defined as the expected squared difference from the expectation:

$$
\operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}(X))^{2}\right]
$$

- Standard Deviation (SD) of X is defined as

$$
S D(X)=\sqrt{\operatorname{Var}(X)}
$$

Variance and SD allow us to compare probability distributions: those with higher variance/SD are more spread out about the expectation.

Examples:

- Take a look at Slide No. 21.
- Take a look at Slide No. 22.
- Let X and Y be RVs with the following probability functions:

x	-2	-1	0	1	2
$P(X=x)$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

y	-4	-1	0	1	4
$P(Y=y)$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

Calculate expected values.
Compare variances.
Solution: We have $\mathrm{E}(X)=\mathrm{E}(Y)=0$ and $\operatorname{Var}(X)<\operatorname{Var}(Y)$,

Properties of Variance

By definition, we can verify that

- $\operatorname{Var}[c X]=c^{2} \operatorname{Var}(X), \quad c \in \Re$,
- $\operatorname{Var}[X \pm d]=\operatorname{Var}(X), \quad d \in \Re$,
- $\operatorname{Var}[c X \pm d]=c^{2} \operatorname{Var}(X), \quad c, d \in \Re$,
- $\operatorname{Var}(X)=\mathrm{E}\left[X^{2}\right]-\mathrm{E}^{2}(X)$,
- $\mathrm{SD}[c X]=|c| \mathrm{SD}(X), \quad c \in \Re$.

