MAT2377

Ali Karimnezhad

Version December 15, 2015

Ali Karimnezhad

Comments

- These slides cover material from Chapter 7.
- In class, I may use a blackboard. I recommend reading these slides before you come to the class.
- I am planning to spend 2 lectures on this chapter.
- I am not re-writing the textbook. The reference book contains many interesting and practical examples.
- There may be some typos. The final version of the slides will be posted *after* the chapter is finished.

Bivariate data and scatterplot

Data: Hydrocarbon level (x) and Oxygen level (y):

x: 0.99, 1.02, 1.15, 1.29, 1.46, 1.36, 0.87,

1.23, 1.55, 1.40, 1.19, 1.15, 0.98, 1.01,

1.11, 1.20, 1.26, 1.32, 1.43, 0.95

y: 90.01, 89.05, 91.43, 93.74, 96.73, 94.45,

87.59, 91.77, 99.42, 93.65, 93.54, 92.52, 90.56, 89.54,

89.85, 90.39, 93.25, 93.41, 94.98, 87.33

We want to describe the relationship between these two variables. We will use regression analysis. We will assume that our model is given by

$$Y = \beta_0 + \beta_1 x + \epsilon,$$

where ϵ is a random error and β_0, β_1 are regression coefficients. The variable x is called regressor (predictor) variable and Y is called a dependent or response variable.

It is assumed that $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$. In particular,

 $\mathcal{E}(Y|x) = \beta_0 + \beta_1 x.$

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \dots, n.$$

Our aim is to find $\hat{\beta}_0, \hat{\beta}_1$, estimator of the unknown parameters β_0, β_1 . consequently, we will find the estimated (fitted) regression line or the line of the best fit:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x.$$

This line is obtained using the method of least squares. Having the observations y_i , i = 1, ..., n, their deviation e_i from the line $\beta_0 + \beta_1 x$ are

$$e_i = (y_i - \beta_0 - \beta_1 x_i), \quad i = 1, \dots, n.$$

So,

$$L(\beta_0, \beta_1) := \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

Consequently,

$$\frac{dL}{d\beta_0} = -2\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)$$

and

$$\frac{dL}{d\beta_1} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i.$$

Solving $\frac{dL}{d\beta_0}=0$ and $\frac{dL}{d\beta_1}=0$ we obtain the least squares estimators of β_0 and β_1 :

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x},$$

where

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$
$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

Equivalently,

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)$$

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2$$

$$S_{yy} = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} (\sum_{i=1}^{n} y_i)^2$$

Example

For hydrocarbon data we find $\sum x_i = 23.92$, $\sum y_i = 1843.21$, $\sum x_i^2 = 29.2892$, $\sum y_i^2 = 170044.5$, $\sum x_i y_i = 2214.657$, so that $S_{xy} = 10.17744$, $S_{xx} = 0.68088$, $S_{yy} = 173.3769$. Therefore, $\hat{\beta}_0 = 74.28$, $\hat{\beta}_1 = 14.95$. Consequently, the fitted regression line is $\hat{y} = 74.28 + 14.95x$.

Sample Correlation Coefficient.

For data (x_i, y_i) we define the sample correlation coefficient as

$$R = \frac{S_{xy}}{\sqrt{S_{xx} S_{yy}}} \tag{1}$$

(R is defined only if S_{xx} and S_{yy} are positive).

Example: For the hydrocarbon data the sample correlation coefficient is R = 0.93.

Properties of R

- R is unaffected by change of scale or origin. Adding constants to x does not change $x \bar{x}$ and multiplying x and y by constants changes numerator and denominator equally.
- R is symmetric in x and y.
- $-1 \le R \le 1$.
- If R = 1 (R = -1) then the observations (x_i, y_i) all lie on a straight line with a positive (negative) slope.
- The sign of r reflects the trend of the points.

• Note x and y can have a very strong non-linear relationship and $R \approx 0$.

The graph shows plots of a vector x against $y = (x - \bar{x})^2$ and $z = (x - \bar{x})^3$.

Correlation for the above data is -0.12 and 0.93, respectively.

Estimating σ^2

Recall that $Var(\epsilon) = \sigma^2$. To estimate it we use sum of squares of residuals:

$$SS_E = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

The estimator $\hat{\sigma}^2$ of σ^2 is given by

$$\hat{\sigma}^2 = \frac{SS_E}{n-2} = \frac{S_{yy} - \hat{\beta}_1 S_{xy}}{n-2}.$$
(2)

For the oxygen data we have $\hat{\sigma}^2 = 1.18$.

Properties of the LSE

Recall that we consider the model $Y = \beta_0 + \beta_1 x + \epsilon$, where $E(\epsilon) = 0$, $Var(\epsilon) = \sigma^2$. Thus, given x, Y is a random variable with mean $\beta_0 + \beta_1 x$ and variance σ^2 . Note that $\hat{\beta}_0$ and $\hat{\beta}_1$ depend on the observed y's, which are realizations of the random variable Y. Consequently, the estimators are random variables. We have

$$\mathbf{E}(\hat{\beta}_1) = \beta_1, \ \operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \ \ \mathbf{E}(\hat{\beta}_0) = \beta_0, \ \operatorname{Var}(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]$$

 $(\hat{\beta}_0 \text{ and } \hat{\beta}_1 \text{ are the unbiased estimator of } \beta_0 \text{ and } \beta_1, \text{ respectively}).$ Consequently, the estimated standard errors are

$$\operatorname{se}(\hat{\beta}_1) = \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}, \ \operatorname{se}(\hat{\beta}_0) = \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right]}$$

Hypothesis tests in linear regression We want to test that the slope equals $\beta_{1,0}$, i.e.

$$H_0: \beta_1 = \beta_{1,0}, \ H_1: \beta_1 \neq \beta_{1,0}.$$

Since $\hat{\beta}_1$ is approximately normal $\mathcal{N}(\beta_1, \frac{\sigma^2}{S_{xx}})$, we may use statistics:

$$\frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\sigma^2 / S_{xx}}} \sim \mathcal{N}(0,1).$$

However, σ^2 is not known, thus we plug-in its estimator $\hat{\sigma}^2$ given in (2):

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\hat{\sigma}^2 / S_{xx}}} \sim t_{n-2}.$$

If now t_0 is the observed value, we reject H_0 if $|t_0| > t_{\alpha/2,n-2}$.

Chapter 7

Significance of regression

For each bivariate data set we may fit a regression line, which aims to describe a linear relationship between x and Y. However, does it always make sense?

Of course, we may fit the regression line, $\hat{y} = -0.01 - 0.04x$, but this line does not describe at all the bivariate data set.

Having computed the regression line, we want to test whether this line is *significant*. The test for significance of regression is given by

$$H_0: \beta_1 = 0, \ H_1: \beta_1 \neq 0.$$

If we reject H_0 , then there is a linear relationship between x and Y.

Example: Hydrocarbon data - $\hat{\beta}_1 = 14.95$, n = 20, $S_{xx} = 0.68$, $\hat{\sigma}^2 = 1.18$. Consequently,

$$t_0 = \frac{\hat{\beta}_1 - 0}{\sqrt{\hat{\sigma}^2 / S_{xx}}} = 11.35 > 2.88 = t_{0.005,18}.$$

We reject H_0 - there is a linear relationship between x and Y.

Confidence intervals - slope and intercept

The $100(1-\alpha)\%$ confidence intervals for β_1 and β_0 are:

$$\hat{\beta}_{1} - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^{2}}{S_{xx}}} \leq \beta_{1} \leq \hat{\beta}_{1} + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^{2}}{S_{xx}}}$$
$$\hat{\beta}_{0} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}\right]} \leq \beta_{0} \leq \hat{\beta}_{0} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[\frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}}\right]}$$

Example: Hydrocarbon data - $12.181 \le \beta_1 \le 17.713$.

Confidence intervals - mean response

We want to estimate $\mu_{Y|x_0} = E(Y|x_0)$ - the mean response at x_0 (typically at the observed x_0). Of course, it can be read exactly from the regression line

$$\hat{\mu}_{Y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

The distance (at x_0) between the estimated and the true regression line is

$$\hat{\mu}_{Y|x_0} - \mu_{Y|x_0} = \left(\hat{\beta}_0 - \beta_0\right) + \left(\hat{\beta}_1 - \beta_1\right)x_0.$$

Now, $\mathrm{E}(\hat{\mu}_{Y|x_0}) = \mu_{Y|x_0}$ and

$$\operatorname{Var}(\hat{\mu}_{Y|x_0}) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]$$

Ali Karimnezhad

Note that

$$\operatorname{Var}(\hat{\mu}_{Y|x_0}) = \operatorname{Var}(\hat{\beta}_0 + \hat{\beta}_1 x_0) \neq \operatorname{Var}(\hat{\beta}_0) + \operatorname{Var}(\hat{\beta}_1 x_0)$$

since $\hat{\beta}_0$ and $\hat{\beta}_1$ are dependent.

The confidence interval for $\mu_{Y|x_0}$ (the mean response (regression line)) is

$$\hat{\mu}_{Y|x_0} \pm t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]}.$$

Example: Hydrocarbon data -

$$\hat{\mu}_{Y|x_0} \pm 2.101 \sqrt{1.18 \left[\frac{1}{20} + \frac{(x_0 - 1.196)^2}{0.68}\right]}$$

A lot of observations are outside the confidence interval (small sample (???)).

Prediction of new observations

If x_0 is the value of the regressor variable of interest, then the estimated value of the response variable Y is

$$\hat{y} = \hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0.$$

If Y_0 is the true future observation at $x = x_0$ (so, $Y_0 = \beta_0 + \beta_1 x_0 + \epsilon$) and \hat{Y}_0 is the predicted value, given by the above equation, then the prediction error

$$e_{\hat{p}} = Y_0 - \hat{Y}_0 = \beta_0 + \beta_1 x_0 + \epsilon - (\hat{\beta}_0 + \hat{\beta}_1 x_0) = (\beta_0 - \hat{\beta}_0) + (\beta_1 - \hat{\beta}_1) x_0 + \epsilon$$

Ali Karimnezhad

is normally distributed

$$\mathcal{N}\left(0,\sigma^2\left[1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{S_{xx}}\right]\right)$$

٠

Now, we plug-in the estimator of σ to get the following confidence interval for Y_0 :

$$\hat{y}_0 \pm t_{\alpha/2,n-2} \sqrt{\hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]},$$

where $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$

Residuals

$$e_i = y_i - \hat{y}_i,$$

where y_i , i = 1, ..., n are the observed value and \hat{y}_i , i = 1, ..., n are the values obtained from the regression line, i.e. $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$.

Regression Analysis - summary

- 1. Draw scatterplot
- 2. Find the regression line
- 3. Check the appropriateness of a linear fit (correlation coefficient, significance of regression test)
- 4. Check *goodness-of-fit* (confidence interval for the regression line)
- 5. Check model assumptions (residuals)
- 6. Do prediction, if appropriate

Set #1

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each of the 50 US states in 1973.

1. *x*-number of murders, y - number of assaults

2.

$$\begin{split} \sum_{i=1}^n x_i &= 389.4, \ \sum_{i=1}^n y_i = 8538\\ \sum_{i=1}^n x_i^2 &= 3962.2, \ \sum_{i=1}^n y_i^2 = 1798262, \ \sum_{i=1}^n x_i y_i = 80756\\ \text{Thus, } \hat{y} &= 51.27 + 15.34x \end{split}$$

3. Correlation: R = 0.802.

Significance of regression: $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$. Test statistics $T_0 = \frac{\hat{\beta}_1 - 0}{\sqrt{\hat{\sigma}^2 / S_{xx}}} \sim t_{n-2}$. We have $\hat{\sigma}^2 = 2531.73$, $S_{xx} = 929.55$.

The observed value: $t_0 = 9.30$, $t_{0.05/2,48} \approx 2.01$ - reject H_0 - there is a linear relationship between x and y.

4. Confidence interval for the regression line

6. Predict number of assaults if number of murders is $x_0 = 20$:

$$\hat{y}_0 = 51.27 + 15.34 \times 20 = 358.07,$$

Equivalent statement:

• Give a point estimate of number of assaults if number of murders is ...

$$\hat{y}_{0} \pm t_{\alpha/2,n-2} \sqrt{\hat{\sigma}^{2} \left[1 + \frac{1}{n} + \frac{(x_{0} - \bar{x})^{2}}{S_{xx}} \right]}$$

$$358.07 \pm 2.01 \sqrt{2531.73 \left[1 + \frac{1}{48} + \frac{(20 - 7.78)^{2}}{929.55} \right]}$$

$$358.07 \pm 40.64.$$

What change in mean number of assaults would be expected for a change of 1 in the number of assaults? - compute slope

Set #2

The classic airline data. Monthly totals of international airline passengers, 1949 to 1960.

1. *x*-time, $x = (1, 2, \dots, 144)$.

2.

$$\sum_{i=1}^{n} x_i = 10440, \ \sum_{i=1}^{n} y_i = 40363$$
$$\sum_{i=1}^{n} x_i^2 = 1005720, \ \sum_{i=1}^{n} y_i^2 = 13371737, \ \sum_{i=1}^{n} x_i y_i = 3587478$$
Thus, $\hat{y} = 87.653 + 2.657x$

3. Correlation: R = 0.924.

Significance of regression: $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$. Test statistics $T_0 = \frac{\hat{\beta}_1 - 0}{\sqrt{\hat{\sigma}^2/S_{xx}}} \sim t_{n-2}$. We have $\hat{\sigma}^2 = 2121.261$, $S_{xx} = 248820$.

The observed value: $t_0 = 28.77644$, $t_{0.05/2,142} \approx 1.97$ - reject H_0 - there is a linear relationship between x and y.

Chapter 7

4. Confidence interval for the reg. line
$$\hat{\mu}_{Y|x_0} \pm t_{\alpha/2,n-2} \sqrt{\hat{\sigma}^2 \left[\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right]}$$
.

