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Abstract We propose a non-cooperative game theory based algorithm for spec-
trum management problem in cognitive radio networks taking into account the
spectrum handoff effects. The objective is to minimize the spectrum access time
of Secondary Users (SU) which are competing for spectrum opportunities in het-
erogeneous environment. In this paper, the preemptive resume priority (PRP)
M/G/1 queuing model is used to characterize the multiple handoff and data de-
livery time of SUs. Also an explicit solution for channels selection probabilities of
each SU is extracted for PRP M/M/1 model specifically. The effect of handoffs is
considered as the interrupted packets which return to the SUs’ low priority queue
when the high priority Primary User’s (PU) packets are arrived to take service.
The queuing delay of SUs’ and the effect of these returned packets are considered
in order to balance the load of SUs on channels so that the minimum spectrum
access time is sensed by each SU. The non-cooperative Spectrum Load Balancing
with Handoff Management (SLBHM) game is proposed to find a distributed solu-
tion for each SU. It is shown that this game has a unique Nash equilibrium point
which can be achieved by SUs as decision makers. At this equilibrium, each SU
incurs the minimum delay on all channels while the free spectrum holes of channels
are utilized efficiently. Simulation results are provided to evaluate the performance
of the proposed scheme in terms of spectrum access delay, fairness, and channels
spectrum holes utilization.
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1 Introduction

The explosive growth of demands for wireless spectrum access and inefficiency of
traditional licensed spectrum management have made Cognitive Radio (CR) tech-
nology more interesting in recent years. CR methods refer to Dynamic Spectrum
Access (DSA) in which unlicensed users at a particular time and specific location
can intelligently utilize the idle spectrums [1]. That is, CR user or Secondary User
(SU) is a context aware intelligent user who aims to opportunistically utilize the
spectrum holes of licensed or Primary Users (PUs) [2,3]. In the hierarchical access
model [3], the SUs are allowed to utilize these holes provided that the incurred
performance degradation of PUs is tolerable. In this model, two approaches for
spectrum sharing between SUs and PUs are proposed. In the spectrum underlay
approach, the transmissions scheduling and powers of SUs are adjusted such that
the resulted interference on primary receivers is tolerable. In the spectrum overlay,
which is adopted in this paper, SUs should explore the PUs’ channels to sense and
exploit the spectrum holes opportunistically. That is, in the exploration phase,
the SU deploys a sensing module, e.g., an energy detector, to decide about the
existence of PUs on a given channel. The SU can exploit that channel if it is idle.

More specifically, to have a reliable communication in this approach, four im-
portant functionalities are required [4]. The first one is spectrum sensing, i.e.,
exploring channels to find the spectrum holes. The second one is spectrum man-
agement which refers to choosing the best available channel. The third is spectrum
sharing, i.e., sharing the spectrum holes among multiple SUs in order to provide
fairness between them and to achieve the maximum system utilization. The last
one is spectrum mobility for switching to another available channel when it is
necessary. There are several researches on each of these functionalities [4].

This paper focuses on a solution for spectrum management considering the
handoff effects. More specifically, to share the spectrum holes efficiently and fairly,
and to avoid collisions between competing SUs, the channel allocation scheme
should balance the SUs load on the channels’ spectrum holes. Regarding this prob-
lem, centralized and distributed solutions can be used. In a centralized solution,
a central controller allocates the spectrum to SUs while in a distributed scheme,
each SU accesses the spectrum based on its strategy [4].

On the other hand, spectrum mobility refers to the fact that SU must leave the
channel when a PU starts to take service on this channel. Spectrum handoff helps
the SU for returning the channel to the PU and selects another channel to find
spectrum opportunity or wait until the transmission of PU is completed on the
current channel [4]. Clearly, multiple interruption during the transmission of a SU
increases the data delivery time of the SU. An efficient spectrum management
scheme should avoid unnecessary waiting time or channel switching that may
exceed a sustainable threshold for delay sensitive applications.

In this paper, the spectrum management problem with spectrum handoff ef-
fect is considered to find a spectrum management scheme among SUs that leads
to minimum delay for each SU. The objective is to minimize the spectrum access
delay or Overall System Time (OST) [5] of each SU taking into account the spec-
trum handoff effects. The probability based spectrum management is adopted for
analysis in which SUs select channels according to predetermined probability and
adjust them to achieve the spectrum management aims. By assuming the spectrum
handoff effect, an algorithm is developed to minimize the OST of each SU.
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The main contributions of this work are:

– By adopting the PRP M/G/1 queuing model for each channel, the effect of
multiple handoffs on OST is considered in the cost function of each SU.

– The rate of handoff occurrence is computed based on the arrival rate of low
priority SU’s queue and the probability of handoff occurrence. Then, the effect
of these returned packets are considered in computing the delay of each SU.

– For the special case of PRP M/M/1 queueing model, we derive an explicit solu-
tion for spectrum management and load balancing problem. A non-cooperative
game is designed to adjust the channels selection probabilities as the best re-
sponse solution for each SU. It is shown that this game has a unique Nash
equilibrium which leads to the load balanced spectrum management.

– A simple algorithm based on nonlinear optimization is proposed for each SU
to minimize the OST to reach the Nash equilibrium.

To evaluate the performance of the proposed scheme, an event based simula-
tion environment is developed using C++ programming language to simulate the
behavior of SUs and PUs at the MAC layer. The packet delay of SUs is com-
puted using this simulation environment and compared with analytical results for
different load balancing schemes.

The rest of this paper is organized as follows. In section 2 some recent related
works on spectrum management and spectrum handoff are reviewed. The system
model and problem statement are presented in section 3. Assuming a queuing
model for each channel, the cost function is estimated in section 4. In section 5,
a centralized solution for spectrum management with spectrum handoff effects is
presented and then a non-cooperative game is analyzed to derive a distributed
solution to find the best strategy of each SU for channel selection. The developed
simulation environment, simulation results, performance evaluations and discus-
sions are provided in section 6 before concluding the paper in section 7.

2 Related work

There are different studies on spectrum load balancing and spectrum handoff man-
agement that are reviewed in the two following subsections.

2.1 Spectrum Load balancing

In a class of spectrum management schemes, SUs select the best available channel
taking into account the channels’ traffic loads or their expected throughput on each
channel and then compete with each other to exploit this channel [6, 7, 8]. These
methods lead to collision on this channel and do not exploit less available chan-
nels efficiently. Spectrum load balancing schemes are another class of solutions for
spectrum sharing. Prior researches such as [9] suggests an algorithm to smooth the
traffic load of each SU on channels periodically which is not fair. In [10], Spectrum
Load Balancing based on Dynamic feedback theory and Hash Table (SLBDH) is
proposed for load balancing in CR networks. The load of SUs is divided into small
portions or cells then each cell is allocated to a free space according to hash ta-
ble information. Game theoretic based solutions are suggested in [11, 12, 13, 14].
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In [11], the number of SUs on each channel is balanced. Specifically, a cost func-
tion based on the number of SUs on each channel is introduced and two algorithms
are developed in order to minimize this cost for each SU. Specifically, SUs select
the channel that has the minimum number of competing SUs and minimum cost
in each step of the algorithm. In [12], a randomized protocol based on local in-
formation for each SU is proposed. The authors have considered a cost function
based on delay and throughput. This algorithm reaches a steady state in which
SUs sustain a certain threshold of cost function. The SUs decide to change the
channel by comparing this cost function with a given threshold. In [13], the prior-
ity of PUs to SUs is considered. The M/G/1 queuing system is used to compute
the delay and throughput of each SU as utility function. Then, Dynamic Strategy
Learning (DSL) algorithm as a better response algorithm is proposed to derive the
channel selection probability. The effect of handoff is considered as a function of
the difference between the selected probability value and its previous value. The
convergence of DSL algorithm is not guaranteed in delay sensitive applications
and for these applications DSL does not achieve a steady state. In [14], Spectrum
Load Balancing (SLB) algorithm is proposed to find the optimal spectrum man-
agement probability. Using the M/M/1 queuing delay as cost function for each
SU, a game is designed to minimize this cost for each SU. This algorithm that
is executed by each SU selfishly, is a best reply scheme which converges to the
Nash equilibrium. The SLB algorithm has good results in terms of spectrum load
balancing and convergence time.

Although the main objective of spectrum load balancing in SLB and other
similar schemes is to minimize the spectrum access delay for SUs, they have not
considered the effect of multiple handoffs. Spectrum handoff delay incurs an addi-
tional delay for SUs which should be considered jointly in spectrum load balancing
schemes.

2.2 Spectrum handoff management

Spectrum handoff occurs when a PU returns to take service on a channel which
is currently exploited by SUs. This channel must be released by SUs and they
should explore other channels or wait until the PU’s transmissions on this channel
is finished. Therefore, most of the studies and analysis on handoff management
is based on the effect of multiple handoffs on data transmission time of SUs.
Spectrum handoff strategies can be categorized to proactive-sensing and reactive-
sensing [15]. In proactive-sensing spectrum handoff, the SUs make decision about
the target channel in a probability-based scheme taking into account the channel
long term observations. That is, the SUs predict the likely time instant where a
handoff will be required and trigger the handoff befor that to avoid interference
to the PU. While in reactive-sensing spectrum handoff, SUs determine the target
channel in an on demand manner using the instantaneous outcomes from wideband
sensing. Therefore, the SUs should sense all of the candidate channels to select the
target channel. The advantage of proactive-sensing is reducing the handoff de-
lay because the time consuming wideband sensing is not required. However, SUs
should periodically explore all channels to obtain the required channels statistics
for prediction. The level of PUs protection depends on the accuracy of the predic-
tion. On the other hand, the reactive sensing scheme avoid such precomputation
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while incurs more delay when a handoff is required. In [16], a Markov transition
model for PUs’ traffic and the PRP M/G/1 model for SUs channel access are used
to characterize the reactive-sensing handoff delay. Also, the admission region for
delay and transmission probability for different channels’ are computed based on
the SUs’ and PUs’ arrival rates. There are some researches on modeling spectrum
handoff probability in CR networks in order to study the effect of handoff occur-
rence in transmission delay of SUs. In [17], the reactive-sensing spectrum handoff
in space and time domains is analyzed to minimize the hidden terminal problem in
CR ad hoc networks. Assuming a two states Markov chain for PU’s traffic model,
the competition between SUs is investigated. Channels are assumed to have the
same and fixed busy-idle model and all channels become unavailable to SUs when
one or more PUs are active. In [18], the proactive-sensing spectrum handoff and
M/G/1 queuing model are assumed and the total service time is evaluated. The
SU makes decision about stay or change the channel. In stay situation, each SU
waits on the current channel until the transmission of PU is finished. On the other
hand, in change state, SU selects another channel. In addition, a greedy algo-
rithm is proposed to select the best channel in each situation. However, the greedy
solution leads to inefficiency in channel utilization. In [19, 20], proactive-sensing
spectrum handoff protocols are proposed where SU changes the channel before
the PU starts to take service on this channel. In [19], SUs predict the probabilities
of idle periods on PUs’ channels. In [20], SUs analyze channel history to predict
the probability of future spectrum availability. Assuming that the idle periods
are fixed and the busy periods are exponentially distributed, the SU estimates
the probabilities of idle periods. The efficient usage of idle spaces and balancing
issue are not considered in [19, 20] and the SUs select the channel with highest
idle probability simultaneously. Modeling the spectrum holes by Poisson distribu-
tion, the spectrum handoff probability is also discussed in [21]. In [22,23] the QoS
performance of spectrum management is discussed and an analytical framework
based on PRP M/G/1 is studied to characterize the multiple handoffs effect on
the channel selection scheme. The probability of handoff occurrence and different
rates of returned packets to SUs’ queues are investigated in [23] and the delay
model for each stay and change situation is analyzed based on PUs’ interruptions
on the channels and handoff rate.

In [24], a proactive-sensing spectrum scheme with different priority queue is
considered for SU’s packets. That is, the packets which are interrupted by PUs’
arrivals and returned to SU’s queue have higher priority compared to the non
backlogged packets. Also, a delay model based on the rate of the returned packets
is analyzed and a scheduler which compute the channel selection probability for a
single SU scenario is designed.

In this paper, we adopt a more accurate model for the interaction of PUs and
SUs while jointly considering the spectrum utilization and load balancing issues.

2.3 Spectrum load balancing with handoff management

The objective of this paper is characterizing the SUs spectrum load balancing tak-
ing into account the PUs’ interruptions. We use PRP M/G/1 queuing model to
analyze the priority of the PUs to the SUs. We compute the rate of interruptions
during the transmission of SUs and the arrival rate of interrupted packets which
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are returned to the SUs’ queue. We consider a scheduler to compute the channels
selection probabilities for each SU which make the minimum delay for different SUs
on different channels. Also, the closed form solution for the handoff and queueing
delays using the PRP M/M/1 model is derived. Then, a non-cooperative game
which considers both queuing and handoff delays, is used to find a distributed
solution for channels selection probabilities of SUs. The proposed Spectrum Load
Balancing and Handoff Management (SLBHM) game is analyzed and the conver-
gence of SUs’ decisions to the Nash equilibrium of SLBHM is discussed. Based
on this game, an algorithm is presented in order to balance the load of SUs on
primary channels.

We also solve the load balancing and handoff management problem as an op-
timization problem numerically in a centralized manner to discuss about the effi-
ciency of the SLBHM game equilibrium. On the other hand, we compare SLBHM
solution with SLB scheme [14] as a distributed solution to show the gains of joint
spectrum load balancing and handoff management in CR networks. In fact, SLB
can be considered as a special case of SLBHM while the QoS of SUs in CR net-
works is better satisfied by SLBHM scheme. The result of each scheme is evaluated
using a developed event based simulator which accurately simulate the behavior
of SUs and PUs at the MAC layer.

3 System model and problem statement

We consider a wireless network environment with M heterogeneous frequency
channels which are exploited by licensed PUs. The set of channels and PUs are
denoted by F = {F1, F2, . . . , FM} and PU = {PU1, PU2, . . . , PUM}, respectively.
Channel Fi is dedicated to PUi and is modeled by an PRP M/G/1 queuing sys-
tem. That is, the packet arrival process of PUi on Fi is Poisson process which is

denoted by A
(PU)
i (t) with average λ

(PU)
i (pkt/sec) and the average packet service

time of PU on channel Fi is E[X
(PU)
i ].

There are N SUs which share the available spectrum holes of primary network
and their set is denoted by SU = {SU1, SU2, . . . , SUN}. It is assumed that the

packet arrival process of SUj is also Poisson process which is denoted by A
(SU)
j (t)

with average arrival rate λ
(SU)
j (pkt/sec). The system is assumed to be time slotted

and each SU is equipped with a sensor to explore the primary channels for possible
exploitation of primaries protection. That is, the SUs sense the channels at the
beginning of each time slot and are allowed to exploit a channel white spaces if
find it idle [20]. The sensing is assumed to be perfect. The transmission of SUs are
interrupted by the PU if it returns to take service on this channel. The interrupted
SU has to wait until the PU’s transmission is finished.

Let sji be the load fraction of SUj on channel Fi. That is, SUj selects channel
Fi with probability sji. Hence, the packet arrival process of SUj on channel Fi is

a Poisson process which is denoted by stochastic process A
(SU)
ji (t) with average

λ
(SU)
ji = sjiλ

(SU)
j . Also, the average service time of SUj on channel Fi is E[X

(SU)
ji ].

The SU will attempt to transmit the interrupted or backlogged packets when
the channel becomes idle again. In fact, there is another packet arrival to the
low priority SU’s queue which is denoted by stochastic process Af

ji with average
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rate λ
(f)
ji (t) for SUj on channel Fi due to these returned packets. The average

service time of these packets is E[X
(f)
ji ]. Table 1 summarizes the definition of the

main system model parameters. The objective is to balance the SUs’ loads on M
channels by designing an appropriate scheduler. The scheduler should adjust the
channels selection probabilities of each SU and lead to the minimum incurred SU’s
transmission delay. The queuing system model is depicted in Fig. 1.

In order to balance the load on the channels, SUj should adjust its channel
selection probability profile which is denoted by sj = [sj1, sj2, . . . , sjM ] where
0 ≤ sji ≤ 1 is the probability of selecting channel Fi, and

PM
i=1 sji = 1. Let

S =
h
sT
1 , sT

2 , . . . , sT
N

iT
denotes the SUs’ channel selection probabilities. That is, S

is a two dimensional matrix which its rows and columns corresponds to the SUs
and channels, respectively. When SUj chooses a channel, it perceives queuing and
handoff delays on that channel which affects its QoS. Since these delays depend on
the load on the selected channel, the QoS of SUj is influenced by the strategies of
other SUs in channel selection. The sum of perceived delays or overall system time
of SUj is shown by cost function cj(sj , s−j); where sj is the probability profile
of SUj and s−j is the probability profiles of other SUs in channel selection. Any
decrease in cj leads to an increase in the QoS of SUj . In a probability based model,
this cost function is given by (1).

cj(sj , s−j) =
MX

i=1

sjiE(sj ,s−j)[OSTji] (1)

where E(sj ,s−j)[OSTji] is the expected OST based on channel selection proba-
bility profiles (sj , s−j) that is incurred by SUj on channel Fi. The objective of SUj

is to selfishly minimize cj by adjusting sj taking into account other SUs’ profiles,
i.e., s−j .

In Fig. 2, the details of the OST of a SU which takes service on a channel is
depicted. Following the arrival of SU, it waits until the channel becomes idle. The
SU starts to exploit the first spectrum hole when it may be interrupted several
times by the PU which exploits this channel. Each handoff incur a delay on the
cost function of SU. According to Fig. 2, the OST of SUj on channel Fi is given
by:

E[OSTji] = E[Wji] + E[SDji] (2)

where E[Wji] and E[SDji] are the expected waiting time and service duration
of SUj on channel Fi, respectively. The service duration starts from the time that
SUj takes service on channel Fi until its departure and includes the average service
time and handoff delay as given by (3) [5].

E[SDji] = E[X
(SU)
ji ] + E[Nji]E[HDji] (3)

where E[Nji] is the average number of spectrum handoffs that occur during
the service time of SUj on channel Fi and E[HDji] is the average delay per each
handoff. Therefore, the cost function in (1) can be written as:
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cj(sj , s−j) =
MX

i=1

sji

�
E(sj ,s−j)[Wji] + E(sj ,s−j)[X

SU
ji ]

+ E(sj ,s−j)[Nji]E(sj ,s−j)[HDji]
�

(4)

where E(sj ,s−j) [Wji], E(sj ,s−j)[X
(SU)
ji ], E(sj ,s−j) [Nji], E(sj ,s−j) [HDji] are,

respectively, the average waiting time, service time, number of interruption, and
handoff delay of SUj on channel Fi according to channel selection probabilities
S = (sj , s−j). In the next section, we estimate this cost function for future analysis.

4 Spectrum Access Delay Analysis Based on Queuing Model

In this section, queuing analysis is used to estimate the cost function cj(sj , s−j)
for SUj . First by adopting PRP M/G/1 queuing model, we follow the spectrum
access delay of each low priority SU analytically and characterize the effect of
high priority PU interruption on the spectrum usage of SU [25,26]. Based on this
model, the data delivery time of each SU is derived.

Considering Fig. 1, in order to compute the rate of packets which are returned
back to the SU’s queue, we can use the PASTA, i.e., Poisson Arrivals See Time
Average, property of the Poisson process. Let the probability of spectrum handoff
for SUj on channel Fi is denoted by P h

ji. Therefore, the probability that packets

of SUj will see this channel on handoff state is P h
ji. On the other hand, packets of

SUj arrive to channel Fi with average rate λ
(SU)
ji . Therefore, the rate of handoff

occurrence on channel Fi for SUj which is equal to the arrival rate of interrupted
packets to SU’s queue is given by:

λ
(f)
ji = P h

jiλ
(SU)
ji = P h

jisjiλ
(SU)
j (5)

Based on [23], P h
ji =

λ
(P U)
i

λ
(P U)
i +µs

ji

where µs
ji is the average service rate of SUj on

channel Fi.

While the stochastic process A
(f)
ji (t) is a Poisson process, it should be noted

that the Poisson process A
(f)
ji (t) is weakly dependent on two Poisson processes

A
(SU)
ji (t) and A

(PU)
i (t). However, as it will be justified by simulation, when λ

(SU)
j is

small enough, there is a weak dependency between stochastic processes A
(f)
ji (t) and

A
(SU)
ji (t). On the other hand, the dependency of two Poisson processes A

(PU)
i (t)

and A
(f)
ji (t), relates to the amount of available opportunities on channel Fi. The

independent assumption is reasonable if the channel is not heavily utilized by the
PU as it is shown in simulation results. Therefore, to be able to follow the problem

analytically we assume that stochastic processes A
(SU)
ji (t) and A

(f)
ji (t), as well as

A
(f)
ji (t) and A

(PU)
i (t) are independent. Using this assumption and noting that the

merging of two independent Poisson processes is a Poisson process, the total arrival
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E(sj ,s−j)[Wji] =
E[Ri]

(1− E[XPU
i ]λ

(PU)
i )(1− E[XPU

i ]λ
(PU)
i −PN

j=1 sjiλ
(SU)
j (E[Xf

ji]P
h
ji + E[XSU

ji ]))

(8)
where E[Ri] is the average remaining service time on channel Fi:

E[Ri] =
1

2
(E[(XPU

i )2]λ
(PU)
i +

NX

j=1

(E[(Xf
ji)

2]P h
jisjiλ

(SU)
j + E[(XSU

ji )2]sjiλ
(SU)
j ))

(9)
and

cj(sj , s−j) =
MX

i=1

sji

�
E(sj ,s−j)[Wji] + E[XSU

ji ] + λ
(PU)
i E[X

(SU)
ji ]

E[X
(PU)
i ]

1− λ
(PU)
i E[X

(PU)
i ]

�
(10)

rate of the packets on channel Fi is a Poisson process with rate λi which is given
by:

λi = λ
(PU)
i +

NX

j=1

sji(λ
(SU)
j + P h

jiλ
(SU)
j ) (6)

and the traffic load of channel Fi is:

ρi = ρ
(PU)
i +

NX

j=1

ρ
(SU)
ji (7)

where ρ
(PU)
i = λ

(PU)
i E[X

(PU)
i ] and ρ

(SU)
ji = sjiλ

(SU)
j E[X

(SU)
ji ]+P h

jisjiλ
(SU)
j E[X

(f)
ji ].

Using the PRP M/G/1 queuing analysis [25, 26], the average waiting time is

computed by (8). Since the A
(PU)
i (t) is a Poisson process, the number of inter-

ruption incurred by SUj on this channel is E[Nji] = λ
(PU)
i E[X

(SU)
ji ]. Also, the

delay after each interruption is equal to the queuing delay of PUs’ packets which
are arrived to take service on channel Fi. Therefore, the handoff delay without

changing channel after each interruption is E[HDji] =
E[X

(P U)
i ]

1−λ
(P U)
i E[X

(P U)
i ]

. The final

cost function in (4) can then be written as (10).
In the next section, we propose a game theoretic scheme to find the best so-

lution for spectrum load balancing which minimizes the spectrum access delay of
each SU.

5 SLBHM: Centralized and Distributed Solutions

In order to solve the spectrum load balancing and handoff management problem
we follow two approaches and compare the results. In the first approach, the
problem is formulated as an optimization problem and the optimum channels
selection probabilities are computed in a centralized manner. This solution is useful
if there is a central controller that balances the load of SUs on primary channels.
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In addition, it can be used to compare the efficiency of distributed schemes as
a reference. The second solution approach is a distributed one based on non-
cooperative game theory in which each user decides about its load distribution
selfishly. In this scheme, the SUs interchange their strategy profiles by messages
passing. Each SU then minimizes its cost function taking into account the received
messages.

5.1 SLBHM as an optimization problem

The Global Optimum Scheme (GoS) for load balancing is introduced in [27] where
the objective is to minimize the weighted sum of job completion time in a com-
puter system. We adopt this static load balancing scheme as a centralized solution
when the objective is to minimize the spectrum access time of all SUs which are
processed in the system. The probability profiles of users are obtained by solving
the nonlinear optimization problem in (11-14).

min
s

1
PN

j=1 λ
(SU)
j

NX

j=1

λ
(SU)
j cj(sj , s−j) (11)

s.t.

0 ≤ sji ≤ 1 i = 1, . . . ,M and j = 1, . . . ,N (12)

MX

i=1

sji = 1 j = 1, . . . ,N (13)

E[XPU
i ]λ

(PU)
i +

NX

j=1

sjiλ
(SU)
j (E[Xf

ji]P
h
ji + E[XSU

ji ]) < 1 i = 1, . . . ,M (14)

The objective function in (11) is the weighted sum of all SUs spectrum access
delay. Regarding the fairness criterion between SUs, the weight of each SU is
considered as the ratio of its load to the sum of all SUs’ loads. Constraint (14)
indicates the stability requirement on channel Fi, i.e., the sum of PU’s and SU’s
rates on each channel must be less than the channel service rate.

The solution of this problem can be used by a central controller for joint
spectrum load balancing and handoff management regrading the channels residual
capacities and SUs’ loads. Furthermore, it can be used as a reference to compare
the results of distributed schemes. We use MATLAB optimization toolbox to solve
this problem in the evaluation section.

5.2 SLBHM as a Non-cooperative Game Problem

In this section, we consider a distributed solution in which each SU aims to self-
ishly minimize its cost function using the non-cooperative SLBHM game. A non-
cooperative strategic game has three main components: a finite set of N decision
makers or players, the strategy space S for each player, and a utility function for
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8
>>>>>><
>>>>>>:

s∗j = arg minsj

PM
i=1 sji

 
E(sj ,s−j)[Wji] + E[XSU

ji ] + λ
(PU)
i E[X

(SU)
ji ]

E[X
(P U)
i ]

1−λ
(P U)
i E[X

(P U)
i ]

!

subject to

8
><
>:

0 ≤ sji ≤ 1 for i = 1, . . . ,MPM
i=1 sji = 1

E[XPU
i ]λ

(PU)
i +

PN
j=1 sjiλ

(SU)
j (E[Xf

ji]P
h
ji + E[XSU

ji ]) < 1 i = 1, . . . ,M

(20)

players per each strategy, which are shown by the triple G =< N, S, U >. Each in-
dividual player makes decisions independently to maximize its utility or minimize
its cost function selfishly [28,29].

In SLBHM game, players are the SUs which make decisions on distributing
their traffic load on the primary system channels. The objective of each SU is
to minimize its spectrum access delay selfishly. Therefore, the strategy space of
SUj is its probability profile for channel selection sj = [sj1, sj2, . . . , sjM ]. The
cost function of SUj , cj(sj , s−j), reflects its perceived delay as a function of its
strategy, sj , and the other SUs’ strategies, s−j . The SLBHM game is formally
given by (15-18).

SLBHM Game : min
sj

cj(sj , s−j) (15)

s.t.

0 ≤ sji ≤ 1 i = 1, . . . ,M (16)

MX

i=1

sji = 1 (17)

E[XPU
i ]λ

(PU)
i +

NX

j=1

sjiλ
(SU)
j (E[Xf

ji]P
h
ji + E[XSU

ji ]) < 1 i = 1, . . . ,M (18)

where (16-18) are the local constraints of SUj in its decision making.
In the following we argue that the best response of each SU to solve the problem

in (15-18) converges to a unique Nash equilibrium point. The best response of SUj

in SLBHM game is a strategy profile s∗j for which we have:

s∗j = arg min
sj

cj(sj , s−j) (19)

Using the constraints in (16-18) and the cost function in (10), SUj makes its
decision by solving the optimization problem in (20).

Proposition 1 The SLBHM non-cooperative game with cost function (10) and
constraints (16-18) for each player has a unique Nash equilibrium solution.

Proof Please see Appendix A.
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cm
j (sj , s−j) =

MX

i=1

sji

� sjiλ
(SU)
j (1 + P h

ji) + Rji

(µi − λ
(PU)
i )(µji − sjiλ

(SU)
j (1 + P h

ji))
+

1

µi
+

λ
(PU)
i

µi
(

1

µi − λ
(PU)
i

)
�

(21)
where, P h

ji for SUj on channel Fi is:

P h
ji =

λ
(PU)
i

λ
(PU)
i + µi

(22)

and, Rji and µji are:

Rji = λ
(PU)
i +

NX

k=1,k 6=j

skiλ
(SU)
k (1 + P h

ki) (23)

µji = µi −Rji (24)

The proposed game is applicable for general M/G/1 queueing system if we can

derive E[X
(PU)
i ], E[X

(SU)
ji ], E[Xf

ji], E[(X
(PU)
i )2], E[(X

(SU)
ji )2], and E[(Xf

ji)
2]. In

the next section, the explicit solution of the SLBHM game when the service time
of SU’s packets are exponential and deterministic are derived, i.e., for M/M/1 and
M/D/1 queueing systems. In addition, we use M/G/1 model assuming hyperex-
ponential service time to verify the analytical and simulation results for M/G/1
queuing system.

6 SLBHM Game Analysis in Special Cases

6.1 SLBHM Game for M/M/1

As a special case when the average service time of the packets in each class of
priority is exponentially distributed, i.e., for M/M/1 queueing model, closed form
solution can be derived for spectrum access delay of SUs. Let the average service
time on channel Fi is equal for high and low priority queues and is given by

E[X
(PU)
i ] = E[X

(SU)
ji ] = 1

µi
and E[(X

(PU)
i )2] = E[(X

(SU)
ji )2] = 2

µi
2 . Due to

memoryless property of exponential distribution the service time of interrupted

packets is also exponential. Therefore, E[X
(f)
ji ] = 1

µi
and E[(X

(f)
ji )2] = 2

µi
2 . Based

on these assumptions the cost function in (10) can be written as in (21) where cm
j

denotes the cost function for M/M/1 model and the optimization problem (20)
can be written as (25).

Proposition 2 The best strategy of SUj using the SLBHM game in (25) is given
by:

s∗ji =
µji(1 + Q) +

q
µ2

ji(1 + Q)2 − (1 + Q)(Qµji −Rjiµji)

1 + Q
for i = 1...M

(26)
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8
>>>>>><
>>>>>>:

s∗j = arg minsj

PM
i=1 sji

 
sjiλ

(SU)
j (1+P h

ji)+Rji

(µi−λ
(P U)
i )(µji−sjiλ

(SU)
j (1+P h

ji))
+ 1

µi
+

λ
(P U)
i

µi
( 1

µi−λ
(P U)
i

)

!

subject to

8
><
>:

0 ≤ sji ≤ 1 i = 1, . . . ,MPM
i=1 sji = 1

λ
(PU)
i +

PN
j=1 sjiλ

(SU)
j (1 + P h

ji) < µi i = 1, . . . ,M

(25)

where Q = (−αj − 1
µi
− λ

(P U)
i

µi
( 1

µi−λ
(P U)
i

))(µi − λ
(PU)
i ) and αj is the Lagrange

multiplier for constraint (17).

Proof Please see Appendix B.

In (26), each SU requires other SUs’ strategies to make its decision. In a prac-
tical scenario, each SU can broadcast its strategy to other SUs. Also, an iterative
solution is required to gradually improve each SU decision upon receiving new
messages of other SU until its convergence to the Nash equilibrium. Therefore, af-
ter receiving a new message from other SU, SUj will updates its channels selection
probabilities by:

sl+1
ji = sl

ji + κ(
−Gji

Hji
− αj

Hji
) (27)

where l is the step of Newton method, κ < 1 is an appropriate step size which
ensures the convergence, Gji and Hji are derivation and hessian of cost function
(21) respectively.

Algorithm. 1 summarizes the main steps that each SU should do in order to
reach its best response decision by solving (25). Since Gji and Hji for SUj on
channel Fi are existed and Hji is positive, this algorithm converges to a unique
Nash equilibrium [30]. In each step, each SU solves the optimization problem (25)
by updating its strategy based on (27) until

PN
j=1 ∆cm

j (sj , s−j), which is the
difference between utility function in current step and previous step is less than a
termination criterion. In each step, SUj uses the value of s−j from the previous
step.

6.2 SLBHM Game for M/D/1 queuing model

As another special case, we investigate the M/D/1 queuing model, when the service
time of the SUs and PUs are deterministic and is equal to D where D is a constant.

In this case, we consider X
(PU)
i = D and X

(SU)
ji = D. We should compute the

service time of interrupted packets, E[X
(f)
ji ].

A returned SU’s packet on a channel means that a PU packet arrival is hap-
pened in [0, D]. That is a Poisson event is happened during this interval. It is
known that the distribution of the time at which this event occurred is uniform
over [0, D] [33]. When an event of Poisson process A

(PU)
i (t) occurs during ser-

vice time [0, D] of a SU’s packet on channel Fi, X
(f)
ji is the remanning time of

this interrupted packet and we have E[X
(f)
ji ] = D

2 . Also, E[(X
(PU)
i )2] = D2,

13



Algorithm 1 The iterative algorithm to find the best response of SLBHM game

Initialization Step:
for all j ⊆ N do

Choose a feasible starting point s
(0)
j for SUj .

Broadcasts the initial strategy profile to other SUs.
end for
Iteration Phase:
loop

if s(l) satisfies a suitable termination criterion,
PN

j=1 ∆cm
j (sj , s−j) < ε then

STOP.
end if
l ← l + 1
for all j ⊆ N do

SUj receives a message of other SUs’ strategies profiles.

SUj updates its strategy at this stage, s
(l)
j , using (27).

SUj broadcasts the updated strategy profile to other SUs.
end for

end loop

E[(X
(SU)
ji )2] = D2, and E[(X

(f)
ji )2] = D2

3 . Using these values we can derive the
cost function in (10) for M/D/1 queueing system. Hence the SLBHM game can be
analyzed in a similar manner using this cost function as in the previous subsection.

6.3 SLBHM Game for M/G/1 queuing model

In order to investigate the M/G/1 model, we use a hyperexponential distribution
for service time of packets. In this model, it is assumed that the service time
of 20%, 30%, and 50% of arriving packets of SUj on channel Fi follow different
exponential distributions with means 1

µ
(1)
ji

, 1

µ
(2)
ji

, and 1

µ
(3)
ji

respectively. It is also

assumed that PUs’ packets have exponential service time with average E[X
(PU)
i ] =

1
µi

and E[(X
(PU)
i )2] = 2

(µi)2
. By conditioning, the average service time of SUs is

given by E[X
(SU)
ji ] = 0.2 1

µ
(1)
ji

+ 0.3 1

µ
(2)
ji

+ 0.5 1

µ
(3)
ji

and E[(X
(SU)
ji )2] = 0.2 2

(µ
(1)
ji )2

+

0.3 2

(µ
(2)
ji )2

+0.5 2

(µ
(3)
ji )2

. Due to memoryless property of exponential distribution the

service time of interrupted packets is also E[X
(f)
ji ] = 0.2 1

µ
(1)
ji

+ 0.3 1

µ
(2)
ji

+ 0.5 1

µ
(3)
ji

and E[(X
(f)
ji )2] = 0.2 2

(µ
(1)
ji )2

+ 0.3 2

(µ
(2)
ji )2

+ 0.5 2

(µ
(3)
ji )2

. Using these values we can

derive the cost function in (10) for this queueing system and SLBHM game can
be analyzed for this cost function.

7 Simulation environment and results

In order to simulate the CR networks we develop an advanced event based simula-
tor using programming language C++. This simulator has been developed taking
advantage of extensible modular structure and class diagram for improved scala-
bility. The benefit of our simulator is its flexibility in choosing the parameters of
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interest, including number of SUs, number of channels, different traffic models and
arrival rates for SUs and PUs, different service time model on each channel and
different schedulers for channel selection probability of each SU. In this simulation
environment, we use event-driven programming where different events such as ar-
rival events, departure events, and handoff events on all channels are processed
in a time slotted manner. Each event is processed by the event handler based on
the event occurrence time. Also, each component in this simulator is modeled as
a class with different processing functions which are able to evaluate various pa-
rameters of the system. For example, each channel is modeled by a class in C++
environment with different properties such as service rate, idle period, and busy
period. Also, there are two C++ classes for two types of priorities, i.e., SUs which
are low-priority users and PUs which are high-priority users. Each of these classes
has different properties such as traffic model, arrival rate, number of packets, wait-
ing time, service duration and different methods in order to set or compute these
properties. For SUs, the number of handoff, interrupted packets, and the rate of
interruptions are considered too. When a high priority packet arrives, the hand-
off event occurs and is processed. Then, the interrupted SU’s packet returns to
the low priority queue of the current channel and the PU’s packet starts to take
service. When the PU’s transmission is finished, the channel state becomes idle.
Then, the low priority interrupted packet starts to take service on this channel.
After each transmission of packets, the departure event is generated and channels
state becomes idle. Finally, sorted results are saved into a file that is delivered
to a MATLAB parser for the purposes of visualization. In Fig. 3, the simplified
structure of the simulator is captured.

In the next subsections, the proposed delay model and SLBHM game is eval-
uated and compared with other schemes using the developed simulator.

7.1 Overall system time evaluation

The simulation results in this section are provided to show the gain of joint load
balancing and handoff management compared to the centralized solution and
SLB [14] which just takes into account the load balancing using the algorithm
which is introduced in [32], regardless of the priority of PUs to SUs and handoff
effect. In [14] all of SUs and PUs have the same the priority and simple M/M/1
queueing model is used to balance the load of SUs on the channels. In addition the
efficiency of the distributed solution is discussed by comparing the results with the
optimal scheme. In all simulations, the reported results are the average of 50 times
run where in each run we use 10000 packets per SU and 50000 packets per PU.
In addition, to the average of each reported result the corresponding confidence
intervals are depicted on figures to show their reliabilities.

First, we justify the cost function in (10) for the special cases of M/M/1,
M/D/1, and M/G/1 queueing systems using the developed simulator. For this
simulation we consider a simple scenario in which one SU is going to deploy the
spectrum opportunities of one PU channel. The results of simulations and the
analytical results are shown in Fig. 4 and Fig. 5. In Fig. 4 the SU’s rate, λ(SU), is
increased from 0.01 ∼ 0.07 in the system and the PU’s rate is λ(PU) = 0.05 and
in Fig. 5 the PU’s rate, λ(PU) is increased from 0.01 ∼ 0.1 in the system and the
SU’s rate is λ(SU) = 0.02 . In M/M/1 and M/D/1 model the average service time
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for PUs and SUs packets is considered 1
µi

= 1
µji

= 0.15 and for M/G/1 model

for SUs we suppose 20%, 30%, and 50% of packets follow different exponential
distributions with means 1

µ
(1)
ji

= 1
0.15 , 1

µ
(2)
ji

= 1
0.25 , and 1

µ
(3)
ji

= 1
0.35 respectively.

It is also assumed that PUs’ packets have exponential service time with average
1
µi

= 1
0.15 . As it is shown in Fig. 4 and Fig. 5, analytical results predict the system

behavior well.

In the next simulation, we investigate the convergence behavior of SLBHM
game for the M/M/1 queueing system and compare the results with SLB game [14].
In order to investigate the convergence of the algorithm, the difference between
the sum of all SUs utility functions in current iteration and previous one is com-
puted as the error. In this simulation, it is assumed that ε = 0.0001, and whenPN

j=1 ∆cm
j (sj , s−j) < 0.0001 the suitable termination criterion is satisfied. This

error for SLBHM in consecutive iterations is shown in Fig. 6. In this scenario, we
consider a network with N = 4 SUs and M = 4 primary channels. Also, the arrival

rates of PUs and SUs are: λ
(PU)
1 = 0.1, λ

(PU)
2 = 0.02, λ

(PU)
3 = 0.04, λ

(PU)
4 = 0.05

and the arrival rates of SUs are:λ
(SU)
1 = 0.05, λ

(SU)
2 = 0.06, λ

(SU)
3 = 0.07, λ

(SU)
4 =

0.08. The service rates of all channels are the same, i.e., µi = 0.15, i = 1, 2, 3, 4. In
this figure, the average of error and the corresponding 95% confidence interval for
50 runs with different random initial values of strategies is shown for SLBHM. Also
the initial starting point of SLB is set to zero according to [32]. From this figure,
we find that both algorithms converge after about 10 iterations. In Algorithm 1,
we use logarithmic barrier method for each SU to solve (23) which is one of the
fast method in solving non-linear optimization problems [31].

The convergence of the SUs’ decisions to the Nash equilibrium is also shown in
Fig. 7 in which the channels selection probabilities of each SU for a random initial
feasible solution is depicted.

In the simulation we compare the results of SLBHM game with GOS and
SLB schemes in terms of OST and channel utilization. The final strategy S =h
sT
1 , sT

2 , . . . , sT
N

iT
is consistent with (26) for all SUs.

Fig. 8 shows the convergence behavior of SLBHM algorithm in different sce-
narios when the other SU’s strategies, s−j receives at SUj with error or delay. In
Fig. 8 (a) it is assumed that the strategies of other SU, s−j , are received with error.
In this scenario, the strategies of SU−j are affected by a random error which is
selected according to a uniform distribution in the range of ±0.05s−j or ±0.1s−j .
That is when the received strategies of other SUs in SUj have 5% or 10% error. In
another scenario, the strategies of other SU, s−j , are received with different time
units of delay and results are shown in Fig. 8(b). Note that the step size of the
iterative optimization algorithm should be decreased to guarantee the convergence
in these scenarios.

Fig. 9 shows the OST of the SLHB, SLB, and GOS when the load of the PUs
is increased. The same simulation setup with N = 4 SUs and M = 4 is used as
in the previous simulation. The arrival rate of PU3 is increased from 0.05 to 0.1
and the spectrum access delay is shown in Fig. 9. This figure shows that SLBHM
result outperforms SLB specially when the traffic load of PUs are heavy and also
is close to the global optimal scheme.

The OST for SLBHM is compared with GOS and SLB as the number of SUs
is increased in Fig. 10. We consider a network with N = 10 ∼ 15 SUs and M = 4
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primary channels. In order to investigate the effect of number of SUs, we consider

that a new SUj which comes to take service has the rate λ
(SU)
j = 0.02. This

figure shows that the OST of SUs in SLBHM is decreased compared to SLB when
the number of SUs is increased which means the load of the system is increased.
Therefore, the SLBHM is more efficient in heavy loaded conditions. In addition,
the results of SLBHM as a distributed solution are close to GOS scheme especially
when the number of SUs is increased.

In order to compare the fairness of the proposed scheme, the Jain’s fairness
index on the spectrum access delay of the SUs is computed using (28) [34] for
different schemes. This index for SLB and SLBH is 0.99 and for GOS is 0.89 which
shows that the results of SLBHM is fair enough. This result is also reasonable since
the GOS considers the fairness roughly for channel selection.

I(C) =
(
PN

j=1 cj(sj , s−j))
2

N
PN

j=1 cj(sj , s−j)2
(28)

7.2 Exploitation of channels

The simulations in this section investigate how the discussed schemes exploit the
idle spaces of channels. That is we look at load balancing from the primary system
point of view. This may be important if the primary network channels statistics
are varying in time.

In Fig. 11, using the same simulation setup as in the previous simulation with
N = 4 SUs and M = 4, the ratio of total arrival rate to the total service rate of
the system is shown. The results of this figure are at the system utilization 78%.

Note that the available spectrum opportunities on channel 2 is higher than
other channels, from Fig. 11 we find that this channel is mostly exploited by
GOS which does not consider fairness criterion strictly. Also, this channel is more
exploited by SLBHM compared to SLB. The consistent results are also derived for
channel 1 which is less available for SUs. These results are also reasonable because
the least and most number of handoffs and hence incurred delays will be on channel
2 and 1 respectively. This means that from the primary network point of view,
GOS and SLBHM exploit the idle spaces of channels more efficiently compared to
SLB but GOS does not balance the SUs’ loads on primary channels as good as
SLB and SLBHM.

In the last simulation we investigate how SLBHM behaves when a new SU
join or remove from the secondary system. We consider the system when the first
three SUs are active and their load is balanced with each algorithm, see Fig. 12(a).
Then SU4 join the system with an initial load distribution on channels as shown
in Fig. 12(b). In Fig. 12(c) the channels load is shown when the load of SU4 is
balanced is shown. The results are the same as Fig. 12(b) as expected.

8 Conclusion

In this paper, we characterize data delivery time of SUs in CR networks by devel-
oping PRP M/G/1 queuing model and considering the handoff effects. We propose
an algorithm for spectrum load balancing with handoff management in cognitive
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radio networks based on exponential service time. The problem is formulated as
a non-cooperative game in which each SU decides on the channel selection proba-
bilities taking into account the received messages from other SUs. The uniqueness
of the Nash equilibrium point of the proposed game is analyzed and its efficiency
is discussed by comparing with the optimal centralized solution. We develop an
event based simulator to investigate the CR networks behavior and simulation
results are provided to show the performance of the proposed scheme in terms of
spectrum access delay, load balancing, and exploitation of channels’ idle spaces.

A Proof of proposition 1

If the strategy set of players is compact then a nonempty set of Nash equilibrium solution
will exist [30]. In addition, the sufficient condition for the uniqueness of Nash equilibrium is
that the cost function of each player is a strongly convex function in the strategy space. The
domain of the problem which is given by (16) and (17) is a convex set. Using (28) and (29)
we find that the derivation of the cost function in (10), exists and taking into account (18) its
hessian is positive definite. Therefore, the cost function is strongly convex. In (29) and (30),
we have:

Iji = E[(Xf
ji)

2]P h
jiλ

(SU)
j + E[(XSU

ji )2]λ
(SU)
j

Bji = E[(XPU
i )2]λ

(PU)
i +

NX

k=1,k 6=j

(E[(Xf
ki)

2]P h
kiskiλ

(SU)
k + E[(XSU

ki )2]skiλ
(SU)
k )

Cji = E[Xf
ji]P

h
jiλ

(SU)
j + E[XSU

ji ]λ
(SU)
j

Dji = E[XPU
i ]λ

(PU)
i +

NX

k=1,k 6=j

(E[Xf
ki]P

h
kiskiλ

(SU)
k + E[XSU

ki ]skiλ
(SU)
k )
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∂cj

∂sji
=

1

2(1− E[X
(PU)
i ]λ

(PU)
i )

� Ijisji + Bji

1− Cjisji −Dji
+

(Iji(1−Dji) + CjiBji)sji

(1− Cjisji −Dji)2

�

+ E[X
(SU)
ji ] + λ

(PU)
i E[X

(SU)
ji ]

E[X
(PU)
i ]

1− λ
(PU)
i E[X

(PU)
i ]

(29)

H =

0
BBBBBBB@

∂2cj

∂s2
j1

0 . . . 0

0
∂2cj

∂s2
j2

. . . 0

...
...

. . .
...

0 0 . . .
∂2cj

∂s2
jM

1
CCCCCCCA

(30)

=

0
BBB@

1

1−E[X
(P U)
1 ]λ

(P U)
1

(Ij1−Ij1Dj1+Cj1Bj1)(1−Dj1)
(1−Cj1sj1−Dj1)3

0 . . . 0

...
...

. . .
...

0 0 . . . 1

1−E[X
(P U)
M ]λ

(P U)
M

(IjM−IjM DjM+CjM BjM )(1−DjM )
(1−CjM sjM−DjM )3

1
CCCA

B Proof of proposition 2

In order to compute an explicit solution for (25), we use the logarithmic barrier method by
applying KKT conditions [30,31]. In optimization problem (25), there is one equality condition

and three inequality conditions. Since
PM

i=1 sji = 1 we can ignore the condition sji ≤ 1. Let

αj , βji, and ηji denote the Lagrange multipliers for constraints
PM

i=1 sji = 1, sji ≥ 0, and
the last constraint in (25). The Lagrangian of (25) is given by:

Lj = cm
j (sj , s−j) + αj

MX

i=1

(sji − 1) +
MX

i=1

βji(−sji)

+
MX

i=1

ηji

�
sjiλ

(SU)
j (1 + P h

ji) +
NX

k=1,k 6=j

(skiλ
(SU)
k (1 + P h

ki)) + λ
(PU)
i − µi

�
(31)

In (37), βji(−sji) = 0 and ηji

�
sjiλ

(SU)
j (1+P h

ji)+
PN

k=1,k 6=j(skiλ
(SU)
k (1+P h

ki))+λ
(PU)
i −

µi

�
= 0, i = 1, . . . , M . In order to find the optimum solution of this Lagrangian, we use Log-

arithmic barrier method which approximates the cost function without inequality conditions.
In Logarithmic barrier method the cost function cm

j (sj , s−j) can be written as:

cm
j (sj , s−j) ≈ cm

j (sj , s−j) +
MX

i=1

(−1

r
) log(sji)

+
MX

i=1

(−1

r
) log(µi − (λ

(PU)
i + sjiλ

(SU)
j (1 + P h

ji) +
NX

k=1,k 6=j

(skiλ
(SU)
k (1 + P h

ki)))) (32)

and the Lagrangian is:
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Lj ≈ cm
j (sj , s−j) +

MX

i=1

(−1

r
) log(sji)

+
MX

i=1

(−1

r
) log(µi − (λ

(PU)
i + sjiλ

(SU)
j (1 + P h

ji) +
NX

k=1,k 6=j

(skiλ
(SU)
k (1 + P h

ki))))

+ αj

MX

i=1

(sji − 1) (33)

If r is large enough, βji(−sji) = 1
r

and ηji

�
sjiλ

(SU)
j (1 + P h

ji) +
PN

k=1,k 6=j(skiλ
(SU)
k (1 +

P h
ki)) + λ

(PU)
i − µi

�
= 1

r
. The derivation and hessian of this Lagrangian can be computed by

(33) and (34):

Gji =
∂cm

j (sj , s−j)

∂sji
− 1

r sji

− 1

r(µi − (λ
(PU)
i + sjiλ

(SU)
j (1 + P h

ji) +
PN

k=1,k 6=j(skiλ
(SU)
k (1 + P h

ki))))
(34)

Hji =
∂2cm

j (sj , s−j)

∂s2
ji

+
1

r (sji)2

+
(λ

(SU)
j (1 + P h

ji))
2

r(µi − (λ
(PU)
i + sjiλ

(SU)
j (1 + P h

ji) +
PN

k=1,k 6=j(skiλ
(SU)
k (1 + P h

ki))))
2

(35)

By applying Newton step in logarithmic barrier method, we can compute the explicit
solution for αj and sji. The Newton step in logarithmic barrier method is given by [31]:

rHji∆sji + αj = −rGji (36)

By considering the condition(17),
PM

i=1 ∆sji = 0 and by this condition the value of αj in
each step can be computed by:

MX

i=1

∆sji +
MX

i=1

αj

rHji
=

MX

i=1

−rGji

Hji
(37)

αj = r

PM
i=1

−Gji

HjiPM
i=1

1
Hji

(38)

By computing the derivation, hessian and Lagrange multiplier we can reach to optimum
solution of (25) iteratively by:

sl+1
ji = sl

ji + κ(
−Gji

Hji
− αj

Hji
) (39)

In optimum solution, which is denoted by s∗ji, we have −αj = Gji. We can compute the

explicit solution for s∗ji in M/M/1 queuing model. For M/M/1, the value of Gji is:

Gji =
2sjiµjiλ

(SU)
j (1 + P h

ji)− (sjiλ
(SU)
j (1 + P h

ji))
2 + Rjiµji

(µi − λ
(PU)
i )(µji − sjiλ

(SU)
j (1 + P h

ji))
2

+
1

µi
+

λ
(PU)
i

µi
(

1

µi − λ
(PU)
i

)

(40)
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By solving the −αj = Gji, we have:

(sjiλ
(SU)
j (1 + P h

ji))
2(1 + Q)− 2(sjiµjiλ

(SU)
j (1 + P h

ji))(1 + Q) + (Qµ2
ji −Rjiµji) = 0 (41)

where Q = (−αj − 1
µi
− λ

(P U)
i
µi

( 1

µi−λ
(P U)
i

))(µi − λ
(PU)
i ).

Therefor if there exists a feasible solution for the system the best strategy of SUj for
selecting channel Fi at the Nash equilibrium, s∗ji, is given by:

s∗ji =
µji(1 + Q) +

q
µ2

ji(1 + Q)2 − (1 + Q)(Qµji −Rjiµji)

1 + Q
(42)
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Table 1 System parameters

Symbols Meaning

A
(PU)
i (t) Stochastic process of PUi’s packet arrival

λ
(PU)
i Average arrival rate of PUi’s packets

E[X
(PU)
i ] Average service time for PUi

A
(SU)
j (t) Stochastic process of SUj ’s packet arrival

λ
(SU)
j Average arrival rate of SUj ’s packets

sji Load fraction of SUj on channel Fi

A
(SU)
ji (t) Stochastic process of SUj ’s packet arrival

on channel Fi

λ
(SU)
ji = sjiλ

(SU)
j Average arrival rate of

SUj ’s packets on channel Fi

E[X
(SU)
ji ] Average service time for

SUj on channel Fi

A
(f)
ji (t) Stochastic process of interrupted packets arrival

of SUj ’on channel Fi

λ
(f)
ji Average arrival rate of interrupted packets

of SUj on channel Fi

E[X
(f)
ji ] Average service time for

interrupted packets of
SUj on channel Fi

λi Average total packets arrival rate
on channel Fi
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