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Abstract—The channel assignment problem is an important 
issue in cognitive radio networks because the conventional fixed 
spectrum allocation mechanism leads to significant spectrum 
underutilization. In this paper, the QoS-aware channel 
assignment is formulated as an optimization problem. The 
objective is to maximize the utilization of spectrum opportunities 
and fairness among secondary users (SUs) subject to constraints 
of different SUs demands, spectrum levels of the QoS and 
channel availabilities for each SU. Designing the QoS-Aware 
channel assignment scheme is based on genetic algorithm (GA) 
and quantum genetic algorithm (QGA). Two different objective 
functions are proposed as the network utilization and fairness 
indexes. Simulation results are provided to show the efficiency of 
the proposed method. 
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I. INTRODUCTION 
The use of wireless communications has increased rapidly 
during the past two decades, which has eventually increased 
the demand of bandwidth by transmitters and receivers in a 
communication network. For improving the utilization of the 
spectrum resources, cognitive radio paradigm has been 
proposed. In a cognitive radio network (CRN), the licensed 
primary users (PUs) and opportunistic SUs coexist in utilizing 
the spectrum [1]. In CRNs, PUs should be protected while 
SUs access the spectrum. In the spectrum overlay paradigm, 
SUs are only permitted to access spectrum channels which are 
not being used by PUs. In the spectrum underlay paradigm, it 
is required that an interference threshold be maintained at 
receiving points of the PUs [2].  

One of the main topics in CRNs is dynamic spectrum 
management where efficient channel assignment mechanisms 
are the most important research issue in this topic [3, 4]. A 
channel assignment mechanism determines which channels 
should be allocated to which SUs. This allocation can be done 
via a centralized [5, 6], or distributed [7] approach. In the 
centralized approach, available opportunities, i.e., spectrum 
holes are allocated to secondary users (SUs) by a decision 

maker component through solving an optimization problem 
whereas in a distributed scheme, each SU should explore the 
available spectrum opportunities and make decision for 
exploiting the resources. 

Recently, there have been a lot of works in the literature 
investigating the problem of channel assignment based on 
underlay or overlay access techniques, centralized or 
decentralized architecture and cooperative or non-cooperative 
spectrum allocation [1]. In a non-cooperative overlay CRN 
which is the subject of this paper, the decision for assigning 
SUs to primary channels should be made. A channel 
assignment scheme is proposed in [5], and evolutionary 
algorithms are used to solve the centralized allocation problem. 
Because of existing SUs with heterogeneous QoS requirements 
in CRNs, each channel should be assigned to a set of proper 
SUs according to their QoS requirements [8, 9]. So in this work 
the centralized QoS-Aware channel assignment considered as 
an optimization problem subject to different SUs demands and 
spectrum levels of QoS channel availabilities for each SU. In 
order to solve this optimization problem, we use evolutionary 
algorithms (EAs) as [5]. 

Evolutionary algorithms apply the principles of evolution 
found in nature to the problem of finding an optimal solution. 
Genetic algorithm (GA) and quantum genetic algorithm (QGA) 
are two kinds of evolutionary algorithms that are used for 
channel assignment in this paper. GA is an adaptive heuristic 
search algorithm based on the evolutionary ideas of natural 
selection and genetics. As such they represent an intelligent 
exploitation of a random search used to solve optimization 
problems and exploit historical information to direct the search 
into the region of better fitness within the search space [10]. 
Quantum evolutionary algorithms are based on the concept and 
principles of quantum computing such as a quantum bit and 
superposition of states [11], and in particular, QGA uses a 
qubit for representing the ordinary binary strings as using in 
GA. The proposed channel assignment schemes based on GA 
and QGA are introduced in details in the next sections of this 
paper. 
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The rest of this paper is organized as follows: In section II 
we describe our system  model and utility functions. Section III 
includes our optimization algorithms for QoS-aware channel 
assignment in detail. In section IV simulation results is 
presented, and in section V we conclude this paper and give 
future plan. 

 

II. SYSTEM MODEL AND UTILITY FUNCTIONS 

A. System model 
A simple and general representation model of cognitive 

radio network environment is introduced in [5], established 
based on three matrices consist of availability matrix, channel 
benefit matrix and interference constraint matrix. In [5] the 
output of spectrum allocation scheme is a matrix that shows 
conflict free channel assignment. Our system model in this 
paper has inspired from this representation of communication 
environment, means availability and access constraint matrix 
and two other vectors for appending QoS-Aware properties to 
channel allocation scheme, named demand and resource 
vectors. 

Consider a network with N SUs indexed from 1 to N 
competing for taking M spectrum channels indexed from 1 to 
M which are independent from orthogonality point of view. 
The four key components of this system model are as follows: 

Demand Vector: ܦ ൌ ሼ݀௡ሽଵൈே is a 1 by N vector representing 
the demands of SUs in the network, where ݀௡ indicates the 
QoS demand of the nth SU. 

Resource Vector: ܴ ൌ ሼݎ௠ሽଵൈெ is a 1 by M vector representing 
the resources of channels in this scenario, where ݎ௠indicates 
the QoS level of the ݉th channel while it can be any type of 
QoS such as idle time or bandwidth. 

Availability Matrix: ܮ ൌ ቄ݈௡,௠ቚ݈௡,௠ א ሼ0,1ሽቅ
ேൈெ

 is an N by M 

binary matrix which represents the channel availability, where 
݈௡,௠ ൌ 1 if and only if channel ݉ is available for user ݊. 
Unavailability of a channel for a user caused by two reasons, 
the first is the environmental conditions and the other one 
caused when ݀௡ ൐  ௠ , i.e., the demand of ݊th SU is greaterݎ
than resource of ݉th channel.  

Access Constraint Matrix: as two or more SUs may try to 
access the same channel simultaneously, they may have 
limitation on using resources of that channel. ܥ ൌ
ቄܿ௡,௞,௠ቚܿ௡,௞,௠ א ሼ0,1ሽቅ

ேൈேൈெ
 is an ܰ by ܰ by ܯ binary 

matrix for representing the interference constraint among the 
SUs. If  ܥ௡,௞,௠ ൌ 1 , users ݊ and ݇ would be access limited for 
accessing to channel m if they use it in the same time. Two 

SUs n and k are in access limitation on channel ݉ if and only 
if ݀௡ ൅ ݀ െ ݇ ൐  ௠ , i.e., the summation of nth and ݇th user’sݎ
demand is greater than resource of ݉th channel. 
Particularlyܿ௡.௞,௠ ൌ 1 െ ݈௡,௠  if  ݊ ൌ ݇. 

Conflict Free Channel Assignment: 

ܣ ൌ ቄܽ௡,௠ቚܽ௡,௠ א ሼ0,1ሽቅ
ேൈெ

 is an ܰ by ܯ binary matrix 

representing the channel assignment and ܽ௡,௠ ൌ 1 if channel 
݉ is assigned to secondary user ݊. The allocation matrix ܣ 
needs to satisfy all the constraints determined by ܥ, that 
is, ܽ௡,௠ ൅ ܽ௞,௠ ൑ 1 , if ܿ௡,௞,௠ ൌ 1׊   ,1 ൑ ݊, ݇ ൑ ܰ, 1 ൑ ݉ ൑
 ܯ
B. Utility Functions 

Given a conflict free channel assignment ܣ, the assign flag 
vector is defined as ܤ ൌ ሼܾ௡ሽଵൈே where ܾ௡ is an integer 
variable such  ܾ௡ ൌ ∑ ௡,௠ெܣ

௠ୀଵ , i.e., ܾ௡ is the number of 
channels have been  assigned to ݊th SU. Assume ߉௅,஼ is the set 
of  all conflict free channel assignment for a given ܮ and ܥ. 
The channel allocation problem can be written as following 
optimization problem: 

כܣ ൌ argmax஺א௸ಽ,಴ ܷሺܴ, ,ܦ  ሻ  (1)ܣ

where כܣ is an optimal conflict free channel assignment matrix 
and ܷሺ. ሻ is a utility function of the spectrum resources and 
SUs demands in the network. 

Now we further consider two different objective functions: 

1) Channel-Utilization-Index (CUI): The objective is to 
maximize the total spectrum utilization in the network 
regardless of fairness. When the SUs occupy all spectrum 
opportunities and there is no white space, CUI approaches 1. 
CUI defined as: 

ܷ஼௎ூሺܴ, ,ܦ ሻܣ ൌ
∑ ௗ೙ڄ௕೙ಿ
೙సభ
∑ ௥೘ಾ
೘సభ

   (2) 

2) Network-Fairness-Index (NFI): This index is defined based 
on Jain’s fairness index [14] and depends on  ݔ௡ ൌ

௕೙
ௗ೙

, where 

ܾ௡ is the number of channels have been assigned to ݊th SU 
and ݀௡ is the QoS demand of it. Thus a fair Qos-Aware 
channel assignment, allocates channels in proportion of each 
SU demand. When NFI approaches 1, it means that the 
fairness among SUs increases. NFI defined as: 

ܷேிூሺܴ, ,ܦ ሻܣ ൌ
∑ ሺ௫೙ሻమಿ
೙సభ
௡ڄ∑ ௫೙మಿ

೙సభ
௡ݔ   , ൌ

௕೙
ௗ೙

    (3) 



III. OPTIMIZATION ALGORITHMS FOR                     
QOS-AWARE CHANNEL ASSIGNMENT 

A. Genetic Algorithm Based QoS-Aware Channel Assignment 
Scheme 
Genetic algorithm is a class of adaptive stochastic 

optimization algorithms involving search and optimization. A 
solution of an optimization problem is encoded in the form of a 
string consist of ‘genes’ called ‘chromosome’. As introduced in 
[4], in the proposed channel allocation scheme based on 
genetic algorithm, each chromosome in the population 
specifies a possible conflict free channel assignment. Therefore 
ܽ௡,௠ ൌ 0 when ݈௡,௠ ൌ 0 and in order to reduce the 
chromosome redundancy, we encode only those elements 
which may take the value 1, i.e., ܽ௡,௠ ൌ 1 . The length of a 
chromosome is equal to the number of elements in ܮ that are 
equal to 1 and the search space is significantly limited. The 
structure of an example solution (chromosome) for a network 
with 7 SUs and 4 channels is illustrated in Fig. 1. In this 
example, the solution has only 10 bits instead of encoding all 
28 bits. In order to assessment of the chromosome fitness, we 
need to transform the chromosome to the channel assignment 
matrix as shown in Fig 2. 

The GA-based channel assignment scheme (GA-QACAS) 
executes the following steps as shown in Fig. 3: 

Step 1: Considering ܮ as an availability matrix, set the 
length of the chromosome as ∑ ∑ ݈௡,௠ெ

௠ୀଵ
ே
௡ୀଵ . 

Step 2: Set an initial binary population randomly. 

Step 3: As shown in Fig. 2, map all the chromosomes to an 
assignment matrix (A) with this condition that, the ݆th bit of 
chromosome shows the value of an element in ܣ with the same 
position of ݆th non-zero element in ܮ. 

Step 4: Conflict checking: for all ݉, find all ሺ݊, ݇ሻ that 
satisfies ܥ௡,௞,௠ ൌ 1, ifܽ௡,௠ ڄ ܽ௞,௠ ൌ 1, then randomly set one 
of them to 0. Also if the sum of demands of SUs which attempt 
to occupy a specific channel ሺ݉ሻ, is greater than channel QoS 
level, then choose a random SU (݊th SU) and set ܽ௡,௠ ൌ 0 and 
repeat it until to clear all the conflicts. 

Step 5: Assess the fitness of each chromosome in the 
population. 

Step 6: Apply roulette wheel selection, two-point crossover 
and mutation operation. 

 

 
 

 Step 7: If the termination condition meets the maximum 
generation, stop; otherwise, go to step 3. 

 

 
Fig. 1. An example of spectrum sharing in a network with 4 channels and 7 
SUs; D=[5, 9, 7, 4, 6, 9, 2],  R=[15, 20, 10, 12]. The white space in each 
channel is indicated by shaded region. 

 

B. Quantum Genetic Algorithm Based QoS-Aware Channel 
Assignment Scheme 
In quantum computing, the smallest unit of information 

storage is the quantum bit (qubit) [3]. A qubit can be in the 
state 1, in the state 0 or in a superposition of both. The ݅th 
chromosome with ݈-qubit at the ݃th generation is represented 
as [4]: 

௜ݍ
௚ ൌ ቈ

௜ଵߙ
௚

௜ଵߚ
௚ ቤ
௜ଶߙ
௚

௜ଶߚ
௚ ቤ
…

…
ቤ
௜௟ߙ
௚

௜௟ߚ
௚቉      (4) 

where ߙ௜௝
௚and ߚ௜௝

௚ must guarantee หߙ௜௝
௚หଶ ൅ หߚ௜௝

௚หଶ ൌ 1, ݅ ൌ
1, 2,… , ܲ, ݆ ൌ 1, 2, … , ݈, where ܲ is the size of population. 
The population of QGA can be denoted as ܳሺ݃ሻ ൌ
ሼݍଵ

௚, ଶݍ
௚, … , ௣ݍ

௚ሽ. Also all ߙ௜௝
௚and ߚ௜௝

௚ in initial population (i.e. 

݃ ൌ 0) are set to  ଵ
√ଶ

. 

 

 

Fig. 2. An example solution (chromosome) structure

 



 

 

 

The binary strings observed in GA as chromosomes and 
the qubits in the QGA play the same role and in both 
algorithms the utility functions ܷሺܴ, ,ܦ  ሻ are used as theܣ
fitness functions directly. 

The QGA-based channel assignment scheme (QGA-
QACAS) executes the following steps as shown in Fig. 4: 

Step 1) Similar to GA, given availability matrix ܮ, set the 
length of the chromosome as ∑ ∑ ݈௡,௠ଶ

௠ୀଵ
ே
௡ୀଵ . 

Step 2) Initialize ܳሺ݃ሻand make binary population ܲሺݐሻ by 
observing ܳሺ݃ሻ. 

Step 3) As shown in Fig. 2, map all the chromosomes to an 
assignment matrix ሺܣሻ with the condition that the ݆th bit of 
chromosome shows the value of an element in ܣ with the same 
position of ݆th element in ܮ.  

Step 4) Conflict checking: for all ݉, find all ሺ݊, ݇ሻ that 
satisfies ܿ௡,௞,௠ ൌ 1, if ܽ௡,௠ ڄ ܽ௞,௠ ൌ 1 then randomly set one 
of them to 0 and if the sum of demands of SUs that attempt to 
access a specific channel ሺ݉ሻ is greater than channel QoS 
level, then choose a random SU (݊th SU) while set  ܽ௡,௠ ൌ
0 and repeat it until to clear all the conflicts. 

Step 5) Assess the fitness of each individual in the ܲሺݐሻ and 
store the best solution. 

Step 6) if the termination condition meets the maximum 
generation, stop; otherwise, go to step 7. 

Step 7) Increase g and making ܲሺݐሻ by observing       
ܳሺ݃ െ 1ሻ. 

Step 8) Repeat processes in step 3, evaluate ܲሺݐሻ, store the 
best solution and update ܳሺݐሻ using quantum rotation gate. Go 
to step 6. 
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Fig. 4. Flowchart of QGA-QACAS

Fig. 3. Flowchart of GA-QACAS 



IV. SIMULATION RESULTS 

A. GA and QGA parameter setting 
The two proposed algorithms based on GA and QGA are 

configured with some parameters such that the total time of 
evolution is the same. For GA, the population size is set to 20, 
and the crossover probability and the mutation probability are 
set to 0.8 and 0.01, respectively. The GA is configured to 
replace 85% of its population in each generation, 17 of every 
20 population members. As for QGA, the population size is 20 
and the increment of rotation angle of quantum gates is 
decreased linearly from 0.1ߨ at the first generation to 
 at the last generation. Both of algorithms will be ߨ0.005
terminated after 200 iterations. 
 
 

TABLE I.  AVERAGE UTILITY 

Generation Algorithm 

Average Utility  

 

CUI NFI 

10 
GA-QACAS 0.8647 0.6808 

QGA-QACAS 0.7919 0.5105 

50 
GA-QACAS 0.9554 0.7652 

QGA-QACAS 0.7880 0.5094 

100 
GA-QACAS 0.9605 0.7699 

QGA-QACAS 0.7832 0.5010 

150 
GA-QACAS 0.9604 0.7701 

QGA-QACAS 0.7762 0.5005 

200 
GA-QACAS 0.9631 0.7703 

QGA-QACAS 0.7824 0.4975 

B. Results and discussions 
Table I shows the average rewards over 50 experiments 

where ܰ ൌ ܯ ,7  ൌ ܦ ,4  ൌ ሾ5, 7, 3, 5, 4, 10, 8ሿ and ܴ ൌ
ሾ10, 9, 6, 15ሿ. In the all experiments and for a particular 
objective, all of the environmental characteristics; ܰ, ܮ ,ܯ, ܴ,  
 are kept the same. The average utilities of CUI andܥ and ܦ
NFI attained in each generation by GA-QACAS and QGA-
QACAS are plotted in Fig. 5 and Fig. 6, respectively. We can 
see that the average CUI obtained by GA-QACAS after about 
8 generations are better than QGA-QACAS and the average 
NFI. The final CUI obtained from GA-QACAS and QGA-
QACAS are 96.31 % and 78.24 % respectively. It means that 
as a result of GA-based scheme, only about 3.69 % of 
spectrum left unused and it confirms the efficiency of the 
proposed scheme. Similar results have been achieved with 
NFI, so that the final NFI obtained from GA-QACAS and 
QGA-QACAS are 77.03% and 49.75 % in that order. It shows 
the better performance of GA-QACAS in fair channel 
assignment. 

 
 
 

 
Fig. 5. Average channel utilization index: GA-QACAS vs. QGA-QACAS 

 
Fig. 6. Average network fairness index: GA-QACAS vs. QGA-QACAS 

 

V. CONCLUSION 

This paper formulated the QoS-aware channel assignment 
in CRN as an optimization problem and proposed two EA-
based schemes to solve it.The performances of two spectrum 
allocation schemes are compared and the results show that 
GA-based method greatly outperform QGA-based one under 
all experiments. An extension of this work is to include the 
trade-off between spectrum utilization and fairness among 
SUs. In this case an intelligent algorithm could be proposed to 
solve this multiobjective optimization problem. 
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