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"COMPLEX YARIABLES AND APPLICATIONS" (7/e) by Brown and Churchitl
Chapter 1
SECTION 2
1. (@ (2-D-it=-V2)=v2-i-i-2=-2i;

(B) (2,-3)(~2,1)=(-4+3,6+2)=(~L8);

1 1Y) 11 _
2. (a) Re(iz)=Re[i(x+iy)]=Re(-y+ix)=—-y=-Imz;

(b) Im(iz) =Im[i(x +iy)]=Im(~y+ix)=x =Rez.

3. (+2=>1+2)0+2)=1+2)-1+(1+2)z=1-(1+2)+z(1+2)

=l4+z+z+7°=14+2z+72".

4, If z=fl+i then 22-2z+2=(1£i)*=-2(12)+2=%2i-2F2i+2=0.

5. To prove that multiplication is commutative, write

212y = (X, 1,)(%5, ¥,) = (5%, = ¥ Y5, Y%, + X,3,)
= (XX, = YaV12 Yo X0 +2,3) = (X5, ¥, )X, W) = 2,5

6. (a) To verify the associative law for addition, write

(z, +zz)+zs = {0, 30+ (x, y2))I+ (x5, ¥3) = (x, + X Yy ¥a) + (X5, ¥3)
= ((x, + X)) + X5, (0 + ¥2) +33) = O + (6, + %3), »y + (02 +35))
= (X, )+ (6 + x5, ¥, +33) = (2, 3) +[(x3,9,) + (X3, 13)]
=z +(2; + 25).



(b) To verify the distributive law, write

2(z; +2,) = (6, YI(x, 1) + (x5, y,)] = (1, y)(x, + Xy 1 + ;)
= (Xx; + XX, = YY) =YYy, Y& + YX, + Xy, + Xy, )
= (XX, = YY) + XX, = Yy, YX, + Xp, + X, + Xy, )
= (0 = Yy, yx, +xy) + (xy ~ yy,, yx, +xy,)
= 06, y)00, 1) + (X, ¥)(x,, ¥,) = 22 + 22,

10. The problem here is to solve the equation z* +z+1=0 for z = (x,y) by writing

(x, ¥)(x,¥) + (x, )+ (1,0) = (0,0).

Since
(x*=y*+x+1,2xy +y) = (0,0),

it follows that
x*~y*+x+1=0 and 2xy+y=0.

By writing the second of these equations as (2x +1)y =0, we see that either 2x+1=0 or

y=0. If y=0, the first equation becomes x*+x+1=0, which has no real roots
(according to the quadratic formula). Hence 2x+1=0, or x =—1/2. In that case, the first

equation reveals that y*> =3/4, or y = iwfg/Z. Thus

A =(x,y)=[-—-;-, i"?)

SECTION 3

1420 . 2—i  (1+20)(3+4) . (2-1)(-51) =:5+101_+-5-—19: _ 2

3-4i 5i (B-4DB+4) (Gi(-5) 25 25 5’

1. (a)

3i i _=__§_{___l

0-N2-DB3—-1) (A-3)3-1) -10i 2’

(b)

(c) (A= =[A-iX1-Df =(-2i)" =-4.

2. (@ (-Dz=-zsince z+(-Dz=z[1+(-D]=z-0=0;



3. (2122 )(3324) = [7-2 (2324 )] = Zl[(2223)24] = 21[(2322)24)] -~ -7-1[7-3 (2224 )= (2123 )(2224)-

6. %—. e zlzz L o zlz2 ..L i — 1 i z2 ...1_ — .E.l.. .z._2 (z3 ;t 05 24 ;7_‘; O)'
232, 2,2, z; )\ z, Z, Z z3 )\ z,
- HDEOBO R e
2,2 \z, \z Z, ) \z Z, z, Z,

SECTION 4

Wil

1. (@ z,=2 z,==-i

() z,=(-3.1), z,=(/3,0)




(c) z,=(-31), z,=(,4)

(d) zy=x+iy,, z,=x —iy

2. Inequalities (3), Sec. 4, are

Rez<IRezl<lzl and Imz<|Imz <lzl.

These are obvious if we write them as

:cSleS\/Jc2+y2 and ySIyIS\/x2+y2.

3. Inorder to verify the inequality +/21zl >IRe zl+|Im zI, we rewrite it in the following ways:

V24022 +y? 2 1xl + 1y,
2(x* + y*) 21 + 2 xliyl + 1912,
x> = 21 xllyl +1y* = 0,

(xl—1yhH)? 2 0.

This last form of the inequality to be verified is obviously true since the left-hand side is a
perfect square,



4. (a) Rewrite lz—1+il=1as |z—(1—i)|=1 This is the circle centered at 1 —i with radius 1.

It is shown below.
0 r

5. (a) Write |z —4il+lz+4il=10 as |z~ 4il+|lz —(—4i)l=10 to see that this i1s the locus of all
points z such that the sum of the distances from z to 4i and —4i is a constant. Such a
curve is an ellipse with foci +4i.

(b) Write Iz —1i=lz+il as |z~ 1l=lz— (=)l to see that this is the locus of all points z such
that the distance from z to 1 is always the same as the distance to —i. The curve is,
then, the perpendicular bisector of the line segment from 1 to —i.

SECTION 5

1. (a) zZ+3i=7+3i=z-3i;

(b) iz=i7=-iZ,

() Q2+iy=(2+i) =Q-if=4-4i+i"=4-4i-1=3-4i;

(d) 122 +5) W2 -DI=12Z+ 512 —il=127 +5IV2+1 = \B 12z + 5I.

2. (a) Rewrite Re(Z—i)=2 as Re[x+i(-y—1)]=2, or x=2. This is the vertical line
through the point z =2, shown below.




L= 2. This 1s the circle centered at -;— with

(b) Rewrite 12z —il=4 as 2 z.__z_

radius 2, shown below.

l
zZ——|=4, or
2' -

el

Write zy = x, +iy, and z, = x, +iy,. Then

Z — 2, =(x; +iy) — (x, '-"_iyz) =(x; = x,)+i(y, — y,)

= (X, —x;)—i(y —y,) = (x, - i) —(x, —,)=%—Z,
and

2, = (X, +1y)(x, +1y,) = Gox, — yy,) H(E, + X%,3,)
= (XX = Y1 Y,) —i(y,x, + X ¥,) =(x — iy x, —iy,) = 32,

(@) 22,23 =(22;)2;, =52, 23 = (Z1 Zz)zs =424,

b) 2*=7'7"=7"z =EEZ=(?E)(EE)=zzzz=E“.

z | Izl gz
2z | gzl zllz,l

In this problem, we shall use the inequalities (see Sec. 4)
IRezi<lzl and |z +2, + 7| <|g | +|e;| +]24].
Specifically, when [zI< 1,

|Re(2 +Z+ zg)‘ SI24+Z+ 21 <2+1Z +1Z28 =2+l +z* <2 +1+1=4.



10. First write z* — 4z* +3 = (2% - 1)(z* = 3). Then observe that when lzi= 2,

122 = 12127111l = |1z - 1| =14 - 11=3

and

12 =312 |I2%13l|= |1z -3| =14 -3I= 1.
Thus, when Izl=2,

12} —42 + 3=l - 112 =3123.1=3.
Consequently, when z lies on the circle |zl= 2,

1
7zt —~422 +3

=— 1 Sl.
1z -4z +3 3

11. (@) Provethat z isreal & 7 =z.

(<) Suppose that 7 =z, so that x —iy=x+iy. This means that i2y=0, or y=0.
Thus z=x+i0=x, or z isreal.

(=) Suppose that z isreal, sothat z=x+i0. Then Z=x—-i0=x+i0=2z
(b) Prove that z is either real or pure imaginary < 7~ =z".

(<) Suppose that 72 =z, Then (x —iy)’ =(x+iy)’, or i4xy=0. But this can be
only if either x=0 or y=0, or possibly x=y=0. Thus z is either real or pure
imaginary.

(=) Suppose that z is either real or pure imaginary. If z is real, so that z = x, then
72 = x* = 7. If z is pure imaginary, so that z =iy, then z~ = (—iy)’ =(iy)’ = 2"

12. (a) We shall use mathematical induction to show that

{+, 7, =5+, 0+ 7, (n=2,3,...).

This is known when n =2 (Sec. 5). Assuming now that it is tru¢ when n = m, we may
write

H+4+ g, v =Gt bt ) T 2,
=(g +2z,++2,) + Gy
= z1 + Z2"1-'““-}.‘;‘5911) + fm-ﬁ-l

- fi + 52+” '+Em + Em+1*‘



(b) In the same way, we can show that

2122, =4 25" L, (n=2,3,...).

This is true when n=2 (Sec. 5). Assuming that it is true when n = m, we write

212y ZonZmst =223 2 )y = (232477 2) Zpa

— (2'122 o Z, )zm+l = 2'12'2 ‘o

N

m) Z,
mfm-ﬂ. .

Z+2

14. The identities (Sec. 5) zZ =IzI* and Rez = enable us to write 1z —zl=R as

(z-2,)z-%)=R,
Z ~ (22 + 22, ) + 207, = R,
12" — 2Re(zZ, ) + 12, = R”.

15. Since x = Ak and y= E_;.E., the hyperbola x’ —=y* =1 can be written in the following
l
ways:
(5.:&_%_) _(5:_%_) -1
2 2i ’
C+22+7 2 -2a+T
4 4 ’
22" +27 ,
4 2
2P+78=2
SECTION 7
1. (a) Since
arg( " f_ 21_) =argi—arg(-2 - 2i),
{ - 3 57 .. .
one value of arg( 57 ) 1S -2— —(—T), or T Consequently, the principal value is
-2 — 2i



S

(b) Since
arg(+/3 ~i)° = 6arg(v/3 - i),

one value of arg(+/3 —i)° is 6(--2—), or —7z. So the principal valueis —mw+ 27, or «.

The solution 8= 7 of the equation le® —11=2 in the interval 0< 8 <2x is geometrically

“evident if we recall that ¢” lies on the circle 1zl=1 and that 1 —1]| is the distance between

the points € and 1. See the figure below.

We know from de Moivre's formula that

(cos 8 +isin 8)’ = cos36 +isin36,

cos’ 8+ 3cos” B8(isin 8) + 3cos B(isin 8)* + (isin 8)° = cos36 +isin36.
That 1s,
(cos® 8 —3cos 8sin’ 8) +i(3cos® Osin 8 —sin® 8) = cos36 +isin30.

By equating real parts and then imaginary parts here, we arrive at the desired trigonometric
identities:

(a) cos36 =cos’ 8 —3cosBsin®0; (b) sin36 =3cos’ Bsin G —sin’ 6.

Here z=re"” is any nonzero complex number and n a negative integer (n=-1,-2,...).
Also, m=-n=12,.... By writing |

(" )-l = ()"meimg)-l = -..1;.‘..3‘:'('""9]
y
and
(Z"'l )m = [lef(-&')]m —_ (__l_)m e,'(-mﬂ) — _};ei(-ma)’
Y y r |

we see that (z")" =(z™)". Thus the definition z" =(z')" can also be written as
zrl - (zm )-l. .
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9. First of all, given two nonzero complex numbers z and z,, suppose that there are complex
numbers ¢, and ¢, such that z, =¢,c, and z, =¢,C,. Since

lzl=lc)lic,! and Iz,l=l¢llc,l=lcllc,l,

it follows that Iz,|=lz,l.
Suppose, on the other hand, that we know only that Iz1=lz,!. We may write

zy =rexp(if,) and z, =r exp(if,).

If we introduce the numbers

c, =r exp(i b, ; 62) and ¢, = exp(i 6 -9, ),

2
we find that
.6, +6 .6, —
C,C, = 1y exp(z l > 2 )exp(z BLZ 92) =r exp(iBl) =4
and
€,C, =1 exp(i O, Z 0, )exp(—i 91—;%&) =rexpb, =z,.
That is,

Z=¢c, and gz, =¢0,.
10. ¥ S=14z+z +--+z", then

S__ZS:(1+Z+ZZ+_”+ZH)_(Z+ZI+z3+_”+zn+l)=l_zn-l-l.

1__ n+i

Hence S = 1 < , provided z#1 Thatis,
-2z

(z#1).

Putting z =¢" (0 < 6 < 2x) in this identity, we have

1 _ ei(n+l)9

1+ 4+ 204 4™ = —
—-¢




Now the real part of the left-hand side here is evidently
1+cosB@+cos20+--+cosnbf;

and, to find the real part of the right-hand side, we write that side in the form

2

Lﬂ[f(ntl)ﬂl.fxp( N ~
1 —exp(i0) exp(—i -g—) exp(—i -g—) - exp(i —g—)

—i-‘?-) ex (—i—q)—-ex l}(2n+1)e
) P Pl'

which becomes

CO £J’----i'sing—cos(ZJ’H-I)B—z"sin (2n+1)0
2 o 2 2 i

LY

~7i sin — j
isin—

[. 6 . 2n+1)E] . 7, (2n+1)6]
Sin—+sin + [| COS— — COS
2 2 2 21

Zsin—e—
2

The real part of this is clearly

6 2
2sin —
2

and we arrive at Lagrange’s trigonometric identity:

in 2n+1)8

_1 2
1+cos@+cos2B+ --+cosnb = 2+ —g
23111-5

11

(0<68<2m).
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SECTION 9

: . (=
1. (a) Since 2i=2exp I(E + Zlm) (k=0,%£1,£2,...), the desired roots are

(2i)'"? =+[2 exp i(’f- + ,rm)_J (k=0,1).

That 1s,

¢, =V2e™* = ﬁ(cos§+isin-§-) = '\/5( 1

and
e, = (V26" e = ¢y = (1 +i),

¢, being the principal root. These are sketched below.

(b) Observe that 1—+/3i = 2exp i(-—g- + Zk:fr) (k=0,%£1,%+2,...). Hence

vl

(1-V30)" =2 exp i(_g " Im)] (k=0,1).
The principal root is
=B 5 isin ) ) B
0 . isin 6 V2 > "> 75

and the other root is

, =(ﬁe-ix!6)eiz =~ =___£:£.

These roots are shown below.
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2. (a) Since —16=16expli(x +2kn)] (k=0,11,42,...), the needed roots are

: kn)
(-16)* = 2exp 1(£ + —’-—r—) (k=0,1,2,3).
" -

4 2

The principal root is

¢, =2e™* = 2(003-} +isin -3-:-) = 2(:}—? + —J?) =~2(1+1).

The other three roots are

6 = (26)e™ = cyi = V2(1+i)i = ~v2(1-i),

¢, =(2e™)e™ = —c, = =2(1+1),
and
¢y = (26™)e™™? = ¢ (~i) = V2(1 + i) (i) =+/2(1 - ).

The four roots are shown below.

(b) First write -8 — 8+/3i = 16exp i(—% + an') (k=0,%1,%2,...). Then
(-8 —8+/3i)1"* = 2exp i(-—% + %)J (k=0,1,2,3).
The principal root is

c, =2e " = 2(cos§—isin-§-) = 2(—\-?-—-5-) =+/3 ~i.
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The others are

-

¢, = e ™ = ¢ i =1+ /3,
¢, =(2e ™" =—c, =—(+3 1),

c; = (2™ = ¢, (—i) = —(1+/3).

These roots are all shown below.

3. (a) By writing —1= lexp[i'(n' +2kn)] (k=0,£1,%2,...), we see that

(_1)113 = exp i(£+ E’EJ (k — 0’ 1’2)_
3 3
The principal root is
co=€e"’= COS—= +i§in = = L+ 3 :
3 2

The other two roots are

Cl - t —_1
and

c, = ¢33 o i miml3 COSE—iSin—’E _ 1""\/3_'1 ‘

2

All three roots are shown below.,
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(b) Since 8 =8expli(0+2kr)] (k=0,%1,%2,...), the desired roots of § are

km
8¢ = 'erxp[z T) (k=0,12,3,4,5),
the principal one being
¢, =7,
The others are

c, :(ﬁe-wa)em=ﬁ(cos-§-—ism§)(—1)=_ﬁ(l _\Ei)z_l—\@i

C; = ‘\/’2_81?# = _'\[2-:

e =(\/§ei’m)ei’t = ¢ =__1-:-[-2\1§1,

and

¢s = (VI el = ¢, =1—\/§1"

All six roots are shown below.

4. The three cube roots of the number z, = —4+/2 + 44/2j = Bexp(i%{-r-) are evidently

(z,)""° =2exp :(Z + 2’;—’3) (k=0,12).

In particular,

Co = Zexp(i—z-) =~2(1+i).
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S.

With the aid of the number @, =

(a)

(b)

~1+/3i
2

, we obtain the other two roots:

e

V2
2 [~ 1 ~Di |l - ; R L :
C, = Cyld; = (ng3)w3 —|_ (\/§ + 2/'%(\/5 11)1 ( 1‘;\/51 ) — (‘\[g 1)\/5(\/54' 1) .

Let a denote any fixed real number. In order to find the two square roots of a+i in
exponential form, we write

A=la+il=va’+1 and o= Arg(a+1i).

Since
a+i= Aexpli(a+ 2kn)] (k=0,x1%£2,...),

we see that
(a+i)* = =/A exp i((—;— + kn) (k=0,1).

That is, the desired square roots are

\/Zeiaiz and \/—em;z ::r__‘\/zeiuiz-

Since a+1 lies above the real axis, we know that 0 < ¢ < z#. Thus 0< ‘%‘: % and this

tells us that cos(%) >0 and sin(%) > (), Since coso = —j—, it follows that

a_\/1+cosa 1 a _A+a

COS— = —.l1+
2 V"2 VAT VEVA
and
Sing-:Jl—cosa:__l_ l_f_—ﬂ_a
2 2 V2V A A24A7
Consequently,

++/Ae ‘“’Z_i'\/_[cosz-!-lsm——-) i\/_(://éj_a ://é;/"f)

—\[1-='('~JA+a +ifA -a).
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6. The four roots of the equation z*+4 =0 are the four fourth roots of the number —4. To
find those roots, we write —4 = 4expli(z +2k7)] (k=0,+1,%2,...). Then

U4 ‘J_expl: [: kz’r) — ﬁei#!-‘-ieikﬁfl (k - 0,1, 2, 3)

To be specific,

cu=«/§ei"’4=w/_(cos%+zsm£) ‘\/—(N/—-H‘\/—) 1+1i,

¢, =cye™* =(1+Di==1+i,

¢, =ce” =(1+i)(~1)=~1-1i,

¢, =cpe P =(+i)~i)=1—-i.
This enables us to write

2 +d=(z2— Mz Nz =)z —cy)
=[(z ""'Cl)(z "'Cz)]'[(z _cu)(z"ca)]
=[(z+D)—il(z+ 1) +i]-[(z-D)~il[(z -1 +1i]
=[(z+1)* + 1]-[z-1)* +1]
= (2 +2z+2)(z* -2z +2).

7. Let c be any nth root of unity other than unity itself. With the aid of the identity (see
Exercise 10, Sec 7),

14747+ 4z" =% (z#1),
-Z
we find that
1+c+cz+---+c""l=1_c =--"'ﬂ--":O.
l-¢ 1l-c¢

9, Qbserve first that

=—ex
m m &y 0T SRR

@y = [Wrexp AR _ L 1002k i-6)_it-2kn)
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and

(1) = K/I exp GO+ 2km) _ 1
,

=—¢
m %y

where k=0,1,2,...,m—1. Since the set

exp i(=2km)
m
is the same as the set
eXp i(2km)
m
but in reverse order, we find that (z'/") = (z)Vm.

SECTION 10

1.

Xp i(—6) exp i(2km) ’

(k=0,1,2,...,m-1)

(k=0,12,...,m-1),

(a) Write lz—-2+il<1as |z—(2-i)I<1 to see that this is the set of points inside and on the

circle centered at the point 2 —; with radius 1. It is not a domain.

2

* 3 :
(b) Write [2z+3|>4 as |z — (-——)i > 2 to see that the set in question consists of all points

exterior to the circle with center at ~3/2 and radius 2. Itis a domain.
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(c) Write Imz>1 as y>1 to see that this is the half plane consisting of all points lying
above the horizontal line y=1. Itis a domain.

(/) The set |z—4I2Izl can be written in the form (x —4)’ + y* 2 x* + y*, which reduces to

x<2. This set, which is indicated below, is not a domain. The set is also
geometrically evident since it consists of all points z such that the distance between z
and 4 is greater than or equal to the distance between z and the origin.
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4. (a) The closure of the set —m < argz < & (z # 0) is the entire plane.

b) We first write the set |Rezi<lzl as |x|<‘\/x2 +y°, or x*<x*+y*. But this last
inequality is the same as y* >0, or [yI>0. Hence the closure of the set |Re zZl<!zl is the
entire plane.

: zZ _Z _ x-—i | .
(c) Since —1-=—§_-_-=—z-z-— 5 lyz, the set Re L sl can be written as zx TS 1, or
z zZ lzZI° x"+y z) 2 x“+y" 2
(x* -2x)+y* 20.

Finally, by completing the square, we arrive at the inequality

(x —D?+y* 2 1%, which describes the circle, together with its exterior, that is centered
at z =1 with radius 1. The closure of this set is itself.

Skt

)
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(d) Since z° = (x+iy)’ =x* —y* +i2xy, the set Re(z*)>0 can be written as y* < x?, or
lyl<ixl. The closure of this set consists of the lines y =+x together with the shaded
region shown below.

Since every polygonal line joining z, and z, must contain at least one point that is not in S, it
is clear that .S is not connected.

8. We are given that a set S contains each of its accumulation points. The problem here is to
show that S must be closed. We do this by contradiction. We let z, be a boundary point of

S and suppose that it is not a point in S. The fact that z; is a boundary point means that
every neighborhood of z, contains at least one point in §; and, since z, is not in S, we see
that every deleted neighborhood of S must contain at least one point in §. Thus z; is an
accumulation point of §, and it follows that z, is a point in S. But this coniradicts the fact
that z, is notin S. We may conclude, then, that each boundary point z, must be in §. That
is, S is closed.
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Chapter 2

SECTION 11

. | .
1. (a) The function f(z)= e is defined everywhere in the finite plane except at the

points z =i, where z* +1=0,

. 1Y, : : :
(b) The function f(z)= Arg(-z-) 1s defined throughout the entire finite plane except for the
point z=0.
(c) The function f(z)= _*Z___ 1s defined everywhere in the finite plane except for the
z2+Z

imaginary axis. This is because the equation z+ 7z =0 is the same as x ={.

(d) The function f(z)= : II 7 is defined everywhere in the finite plane except on the

circle 1zl=1, where 1-1zI*=0.

& "f)z + 2 "f)z +i(z-2)+i(z+2)—- (z +TE;(Z: 2)
=£+5;+2IZ-£+5_—2- =72 + 2iz
SECTION 17
§. Consider the function 2
ro=(£) =(£22] (2#0)

where z = x +iy. Observe thatif z =(x,0), then

£(2) = (x+i(])2 _1.

x—1i0

and if z=(0,y),

[ O+iy 2_
f(Z)_(O—iyJ -
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Butif z =(x,x),

_[x+ix 2_ 1+ 2__
f(Z)_(x—ix) “(_1-:7) =1

This shows that f(z) has value 1 at all nonzero points on the real and imaginary axes but

value —1 at all nonzero points on the line y=x. Thus the limit of f(z) as z tends to 0
cannot exist.

2
10. (a) To show that lim ( 4Z1)2 = 4, we use statement (2), Sec. 16, and write
2= (7 — |
2
2
. 7 4
Iim 3 = Iim 3 —
B ) I
Z
(b) To establish the himit lmg ( 11)3 = oo, we refer to statement (1), Sec. 16, and write
= Z -
lim ——— = lim (z— 1)’ = 0
z—1 ]/(2—1)3 - PIY Z -
2
(c) To verify that lim z +1 = oo, we apply statement (3), Sec. 16, and wrte
s A Z........
L
lim ~%— = lim ~—= =0

11. In this problem, we consider the function

T(z)=2t5 (ad — be # 0).

cz+d

(@) Suppose that ¢ =0. Statement (3), Sec. 16, tells us that lim T(z) = e since

2—boe

1 . c+dz c
= lim =—=()
=0 T(l/z) =0 a+bz a
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(b) Suppose that ¢ #0. Statement (2), Sec. 16, reveals that lim T(z) = 8 ince

2—es C

lim T(l)= im 2102 _a
=0 e z-0 i o dz C

Also, we know from statement (1), Sec. 16, that lim T(z) = oo since

7—~dfc
Jim == Jim 100
SECTION 19
1. (a) I f(z)=37z"—2z+4, then
f(z) =-£—£"!(z--(3:’:2 ~2z+4)= 35?2 —2—gz~—z+-§l—z—4 =3(2z)-2(1)+0=6z~2.

(b) If f(z)=(1—4z"), then

f(2)=3(1-4z") -(—;iz—(l —47%) =3(1-47*)*(-8z) = —24z(1 - 42*)*.

_z—1 1
(c) Iff(z)--—-2Z+1 (z# 2),thcn

d d
Cet Dz D-&-Da @2+ ripm-@-n2_ 3

@)=

(2z+1y Qz+1)*  (z+DF
2.4
(d) I f(z)=(l+zf) (z # 0), then
2 d 24 4 d
fl@)= ZL?‘E(HZ U+ ngi: 2°4(1+2°)’(22) - (1 +27)"2z

(z*)? (2*)’

_2z(1+2°)[42° = (1+27)] _ 2(1+2%)°(32° - 1)
= : ,

4
< <
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3. I f(z)=Yz (z#0), then

1 ___1_= ~Az
Z+Az 7 _(z+Az)z'

Aw= f(z+Az)— f(2) =

Hence

F@)=lim 2 = fim —— =1

Az—0 Az Az—0 (Z+AZ)Z - Zg .

4. We are given that f(z))=g(z,) =0 and that f’(z,) and g"(z,) exist, where g'(z)) #0.

1.

According to the definition of derivative,

S R T
Similarly,
g'(z,) = lim 8D 78&) _ ;p, £C)
’ 22 L= 2, =2 T =2, '
- Thus |
llmf—(9= im f(Z)_/(‘Z-zn) _ -'.llizg f(Z)/(Z—Zg)___._ f’(zo)
-2 g(Z) A g g(Z)/(Z""ZO) 3_.1_21 S(Z)/(Z"z{,) g’(zo)

SECTION 22

(a) f(z)=z=x—iy. So u=x, v=-~y. |
Inasmuch as u, =v, = 1=-1, the Cauchy-Riemann equations are not satisfied
anywhere.

() f@=z-Z=x+iy)—(x—-iy)=0+i2y. So u=0, v=2y,

Since u, =v, = 0 =2, the Cauchy-Riemann equations are not satisfied anywhere.

(c) f(z)=2x+ixy3. Here u = 2x, v=xy3.
u,=v,=>2=2xy=>xy=1
uy=—v,=>0=—y2=>y=0.

Substituting y =0 into xy =1, we have 0 =1. Thus the Cauchy-Riemann equations do
not hold anywhere.

(d) f(z)=¢e"¢” =¢"(cosy—isiny)=e*cosy—ie*siny. So u=e*cosy, v=—e"siny.
u, =v,=> e cosy=—e cosy=>2e"cosy=0=ycosy=0. Thus
4

)’=-£-+mr (n=0,£1,+£2,...).
u,=-v,=—e'siny=e¢ siny = 2¢"siny =0 = siny = 0. Hence
y=nx (n=0,x1,£2,...).

Since these are two different sets of values of y, the Cauchy-Riemann equations cannot
be satisfied anywhere.



1 17 zZ X ~y
3. (a )= = — = +1 . So
@ 7@ z z Z 1z x*+y*  x* 4y

X =Yy

U= and Y = .

X4y 2+
Since
2 2
y =X —2xy
0, = =y and u = =
x (x2+y2)2 y y (xl_l_yl)l b 4

f’(z) exists when z# 0. Moreover, when z # 0,

2 2
, y —x 2xy X —i2xy—y
Ff@)=u,+iv, = — =
(x2 +y2)2 (xz_l_yz)z (x2+y2)2
x-i _ @ @ _ 1

E+¥Y (@) @) 2

(b) f(z)=x"+iy’. Hence u=x*and v=y*. Now
u,=v, =2x=2y=>y=x and u,=-v,=0=0.
So f’(z) exists only when y = x, and we find that

fl(x+ix)=u,(x,x)+iv, (x,x)=2x+i0 = 2x.

(x* +y* 20,

(c) f(z)=zImz=(x+iy)y=xy+iy’. Here u=xyandv=y". We observe that

u,=v,=y=2y=y=0 and u,=-v,=x=0.

Hence f’(z) exists only when z=0. In fact,

f'(0)=1,0,0)+v,(0,0)= 0+i0=0.

4. (@) f(@D)= -—17 = (-—11-005 49) + i(-—ésin 49) (z#0). Since
Z r r
4 4
ru, =——-cos48=v, and u,=-—sin4f=-ry,

' r



f1s analytic 1n its domain of definition. Furthermore,

7 —f . —i 4 . 4 .
f(Z)=¢e 9(u,+w,)=e 9(—7cos49+1—551n49)

r r
= —-i—e"m (cos40—isind8) = —j;e""ﬂe'w
v T
-4 4 4
rSeESG (refﬂ )5 ZS *

(b) f(z)=w/7659’2=w/;cos-g-+iw/;sin-g (r>0,0<0<a+2r). Since

fis analytic in its domain of definition. Moreover, |

F@=" +in)=(Speosd sizrsing)

= —-—1 e~*® (Ct:)s2 +isin 2) = ——1 e e’
24r 2 2] 247

I T |
- 2:/,,3:'&:2 2 f(z)

(c) f(z)= g"e cos(In r)+ if'e sin(h} rz (r>0,0<0<2r). Since

H ¥

ru,=—e ’sin(Inr)=v, and u, =—e ’cos(Inr) = —rv,,

f1is analytic in its domain of definition. Also,

¢’ sin(Inr) ; e~® cos(Inr) |
r r

-f(Z)_

= —%g-[e'g cos(Inr) +ie™" sin(In r)] =j—=
re 4

F@=e"Ww +iv)= e“fgl:—

5. When f(z)=x’+i(l-y)’, wehave u=x" and v =(1—y)’. Observe that

u,=v, =3 =-3(1-y’ =%’ +(1-yy’ =0 and u, =-v, = 0=0.

27
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Ev1dcnt1y, then, the Cauchy-Riemann equations are satisfied only when x=0 and y=1.
That is, they hold only when z = i. Hence the expression

F(@D=u, +iv, =3x* +i0 =3x>

is valid only when z = i, in which case we see that f'()) = 0.

6. Here u and v denote the real and imaginary components of the function f defined by means
of the equations

'

Z
— wh

fD)=1" when z # 0,

0 when z =0,
Now
f(z)-—x -3x32z i y 3xy

X“+y x +y

/4 l-'

when z # (), and the following calculations show that
u_(0,0) = v,(0,0) and w, (0,0)=-v,(0,0):

u(0 + Ax,0) — u(0, 0) Ax

u_(0,0) = lim ——— lim — =,
Ax~30 Ax A0 Ax
4,(0,0) = u(0,0+ Ay) -~ u(0,0) = lim O 0 -0,
Ay—0 Ay Ay=>( Ay
v(0+Ax 0) -v(0,0) 0 _
v (0,0) = lim Ax =AY
v,(0,0) = lim Y09+ —v0.0) _ . Ay
Ay-—)ﬂ Ay Ay—+0 Ay

7. Equations (2), Sec. 22, are

u,cos+u sinf=u,

—u,r8in 6 +u,rcos @ = u,.



9.

Solving these simultaneous linear equations for u, and ,, we find that

sin @ : cos @
u, = u cost—u, and u, =u,sin8@+u,
r r
Likewise,
sin 8 . cos @
v, =v,c0o80 —v, and v, =v sinf+yv,
r r

Assume now that the Cauchy-Riemann equations in polar form,

rur = v&* u& ~ —rvr’

are satisfied at z,. It follows that

sin@ cos @ : : cos@
u, =u,cosd—u, = v, +v,8in@ =v _sin @ +v, =v,,
r r r
: cos @ sin 6 sin @
u,=u, Sin0 +u, =V, —v,c0880=—| v cos@~-v, =-y
> 7 r r ' ’ r

(a) Write f(z)=u(r,0)+iv(r,8). Then recall the polar form

rur = Vg u& = _rvr

x'
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of the Cauchy-Riemann equations, which enables us to rewrite the expression (Sec. 22)

f’(zﬂ) = e-fﬁ' (ur + in)
for the derivative of fat a point z, =(r,,8,) in the following way:

, —i 1 l ""'"l . _i .
f(z)=e 9(-—1»9 —-—uﬂ) =—(U, +ivy)=—(uy +iv,).
r r re Z,
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(b) Consider now the function

1 1 1 _, 1 . '
f@)=—=—Fp=—¢ 6=—(cosB—zsm6)=Cose—isme.
z re r r r r
With
u(r,9)=cose and v(r,9)=-sme,
r r

the final expression for f’(z,) in part (a) tells us that

£(0) = —1( sin @ iy cosB)= 1 (cgsﬁ:isin B)

Y ¥ Z r

when z # (.

10. (a) We consider a function F(x,y), where

Z+Z zZ—2Z
X =-—and T e
3 APy

Formal application of the chain rule for multivariable functions yields

IF _OFdx IF 3y _ aF( )+i“f(__1_].. aF oF
7 3x5'z' dy 07 ox gy \ 2i c?x c?y

(b) Now define the operator

i — .]'. ...f;'_ +1i ...Q.
gz 2\dx )
suggested by part (a), and formally apply it to a function f(z) = u(x, y)+iv(x,y):

I _ (3f 8f)____§’j_ i of
7% 20 Iy) 29 2

=5 i)+ 3o, 2 =, i, 4]

If the Cauchy-Riemann equations u, =v,, u, =—v, are satisfied, this tells us that

5 3% = 0.
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SECTION 24
1. (@) f(2)=3x+y+i(3y—x) isentire since
R
u,=3=v, and u =l=-v,.

(b) f(z)=sinxcoshy+icosxsinhy is entire since
P T s \ - v,

H v

u, =cosxcoshy=v, and u, =sinxsinhy=-v,_.

(c) f(z)=e’sinx—ie’cosx=e”’ iinxj+ ig-e"” COS x) 1S entire since

o

“ v

w,=e’cosx=v, and u,=-e’sinx=-v

x'

@d f(2)=(z - 2)e "¢ is entire since it is the product of the entire functions

g(z)= 722-2 and h(z)=e¢*e? =¢ *(cos y—isiny)= 53"‘ Cosy -+ i(:—e" sin )j).

- . - - - - » u . . :
The function g 18 entire since it 1§ a polynomial, and A is entire since
P -x — i -x - T —
u,=—e Cosy=v, and u =-e  siny=-v,.

b 4

2. (@ f(2)= Xy +i y is nowhere analytic since

u,=v,=y=1 and u =-v, =x=0,

which means that the Cauchy-Riemann Equations hold only at the point z = (0,1) = 1.

— 2V = 5 ;@ — oY io07 o : t ol
= = C + 181N ==
(c) f(@)=€¢e¢ =¢&’(cosx+isinx)=¢’ cosx+ie sinx is nowhere analytic since

u L4

u, =v, = —e’sinx =¢’sinx => 2¢"sinx =0 = sinx =0

and
U, =—v, = e Cosx =—¢’ cosx = 2e’ cosx =0 = cosx =0.

More precisely, the roots of the equation sinx=0 are n7x (n=0,+1,%2,...), and

cosnz =(—1)" #0. Consequently, the Cauchy-Riemann equations are not satisfied
anywhere.

7. (a) Suppose that a function f(z)=u(x,y)+iv(x,y) is analytic and real-valued in a domain
D. Since f(z) is real-valued, it has the form f(z) = u(x,y)+10. The Cauchy-Riemann
equations u, =v,, u, =—v, thus become u, =0, u, = 0; and this means that u(x,y)=a,
where a is a (real) constant. (See the proof of the theorem in Sec. 23.) Evidently, then,
f(z)=a. Thatis, f is constantin D.
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(b)

Suppose that a function f is analytic in a domain D and that its modulus |f(z)] is
constant there. Write |f(z)|=c, where ¢ is a (real) constant. If ¢ =0, we see that

f(z) =0 throughout D. If, on the other hand, c # 0, write f(z) f(z)=c?, or
2
f(z)=

C

f(@)

Since f(z) is analytic and never zero in D, the conjugate f(z) must be analytic in D.
Example 3 in Sec. 24 then tells us that f(z) must be constant in D.

ra .
/ %

SECTION?25 . Y |

1. (a) It is straightforward to show that u, +u, =0 when u(x,y)=2x(1-y). To find a

(b)

(c)

harmonic conjugate v(x,y), we start with ux(x, y)=2-2y. Now
U, =v,=>v, =2-2y= v(x,y) =2y - y* + ¢(x).

Then

u,=-v, = =2x=~¢"(x)= ¢’(x) =2x = ¢p(x) = x* +c.

Consequently,
v(x,y)=2y—~y +(x"+c)=x"—-y" +2y+c,

It is straightforward to show that u,, +u, =0 when u(x,y)=2x - x* +3xy*. Tofinda
harmonic conjugate v(x,y), we start with u_(x,y) =2 -3x> +3y>. Now

U=V, SV, = 2-3x* +3y" = v(x,y) =2y =3x2y + ¥ + p(x).

Then
u, =-v, =2 6xy=6xy~¢’(x) = ¢’'(x) =0 = ¢(x) =c.

Consequently,
vix,y)=2y-3x’y+y +c.

It 1s straightfoi‘ward to show that u_ +u,, =0 when u(x,y)=sinhxsiny. To find a
harmonic conjugate v(x,y), we start with u_(x,y) =coshxsiny. Now "

u, =v, = v, =coshxsiny = v(x,y)=—coshxcosy + ¢(x).

Then
u, =—v, = sinhxcosy=sinhxcosy— ¢ (x) = ¢'(x) =0= ¢(x) =c.

Consequently,
v(x,y)=—coshxcosy +c.
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(d) It is straightforward to show that u, +u, =0 when u(x,y)=— y =. 1o find a

x‘+y
harmonic conjugate v(x,y), we start with u_(x,y) = — 22xy2 =. Now
(x“+y°)
U, =y, vy, =— 2%y = V(x,y) = - + ¢(x)
x = Vy y x> +y°) 34 X+ :
Then
Xt~ y? X -y
U =-v_ = = -¢(xX)=2¢'(x)=0= ¢(x)=c.
y (x2+y2)2 (xZ +y2)2
Consequently,
vix,y) = X +c
34 Ly

Suppose that v and V are harmonic conjugates of  in a domain D. This means that

and u, =V, u,=-V,.

-V,=-~u,+u,=0 and w,=v -V =u, —u =0.

Hence w(x,y)=c, where c is a (real) constant (compare the proof of the theorem in Sec.
23). Thatis, v(x,y)~V(x,y)=c.

Suppose that 1 and v are harmonic conjugates of each other in a domain D. Then

=v, u,=-v, and v, =u, v, =-u,.

It follows readily from these equations that

u, =0, uy=0 and v, =0, vy=0.

Consequently, u(x,y) and v(x,y) must be constant throughout D (compare the proof of the
theorem in Sec. 23).

The Cauchy-Riemann equations in polar coordinates are

ru

.=V, and u, =-rv,.

Now

ru, =vy=>ru, +u =v,
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and
Uy =—TV, => Uyg =—TV,,.
Thus
ru_ 4 ru, +ug, =1v, — 1V,

r

and, since v, =v,4, we have

ru_+ru +ug =0,

which is the polar form of Laplace's equation. To show that v satisfies the same equation,
we observe that

1 ] 1
Ug =TV, - V, =—-;_-ua — v =;i-u9 —;—uar

and
FU, =V, = Vgg = TlL,,.

Since u, = u,,, then,

2 L —
rV_+rv, 4 Ve = Uy — T, — Uy +r1U,, = 0.

If u(r,8)=Inr, then

ru +ru, U, = rz(—iz)+ r(l)+0 = (.
r r

This tells us that the function ¥ =Inr is harmonic in the domain r>0,0< 8 <2xn. Now it

[ L [ ] [ ] 1 .
follows from the Cauchy-Riemann equation ru, =v, and the derivative u, =— that v, =1;
r

thus v(r,8) =8+ ¢(r), where ¢(r) is at present an arbitrary differentiable function of r.
The other Cauchy-Riemann equation u, =—rv_then becomes 0=-r¢’(r). That is,
¢’(r)=0; and we see that ¢(r)=c, where c is an arbitrary (real) constant. Hence
v(r,8) = 8 + ¢ is a harmonic conjugate of u(r,8) =Inr.



Chapter 3

SECTION 28

1.

(@) exp(2+37i)=e’exp(x3mi)=—¢’, since exp(x3mi)=—1.

(b) exp 2 :m = (exp —;—)(exp-’f—) =+/e (cos-;—t- +isin -j—:—)

=1/E(—4%-+i:}_2—)=\/§(1+f)-

(c) exp(z+ mi)=(expz)(expni)=—expz, since expsmi=—1.

First write
exp(Z) = exp(x —iy) =e"e¢™ = ¢ cosy —ie*siny,

where z = x+iy. This tells us that exp(Z) = u(x,y) + iv(x, y); where

u(x,y)=e cosy and v(x,y)=-e"siny.

35

Suppose that the Cauchy-Riemann equations u, =v, and u, =—v, are satisfied at some

point z =x +iy. It is easy to see that, for the functions u and v here, these equations become

cos y =0 and sin y = 0. But there is no value of y satisfying this pair of equations. We may
conclude that, since the Cauchy-Riemann equations fail to be satisfied anywhere, the

function exp(Z) is not analytic anywhere.

The function exp(zz) is entire since it is a composition of the entire functions z* and expz;

and the chain rule for derivatives tells us that

d d
—&Zexp(zz) =exp(z2)2;z2 = 2zexp(z?).

Alternatively, one can show that exp(zz) is entire by writing

exp(zz) = exp[(x + iy)Z] = e::q::(,lc2 — yz)exp(iizxy)

= exp(x® — y* )cos(2xy) +iexp(x’ - y*}sin(2xy)
N ’ —n

i v

and using the Cauchy-Riemann equations. To be specific,

u, =2xexp(x’ = y*)cos(2xy) ~ 2y exp(x’ ~ y*Jsin(2xy) = v,

and

u, =—2y exp(x2 - yz)cos(ny) -2x u:::l:[:)()n:2 - y? )sin(ny) =-V_,

e/
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Furthermore,
gz-exp(zz) =u, +iv, =2(x + z'y)[emp(.lluc2 — yz)cos(l.xy) +1 e:'cp(ac2 — yz]sin(lxy)]
=2z exp(z2 )
We first write
[exp(Zz + i)‘ = ]exp[2x +i(2y+ 1)]| = ¢**
and
Imcp(iz2 )l = |exp[-—-2xy +i(x* —y* )]‘ =¢7,
Then, since
lexp(2z + i) + exp(iz®)| < fexp(2z + i) + |exp(iz?)|,
it follows that
‘exp(Zz + i) + exp(iz* )I e +e7.
First write

Iexp(z2 )I = Iexp[(x + iy)z]l = IeJi:];:o(.Jvc2 - y2)+i2xyl = exp(xz — yz)

and
exp(lzl’ ) = exp(x* + y?).

Since x* —y* <x® +y’, it is clear that exp(x® — y*) < exp(x® + y*). Hence it follows from
the above that

Iexp(z2 )I < exp(lz).

To prove that |exp(—2z)| < 1 & Rez >0, write
lexp(—2z)| = [exp(—2x — i2y)| = exp(—2x).

It is then clear that the statement to be proved is the same as exp(—2x) <1 &> x> 0, which is
obvious from the graph of the exponential function in calculus.



8. (a) Write ¢°=-2 as e*¢” =2¢". This tells us that

e =2 and y=7m+2nn
That is,

x=In2 and y=(Q2n+#n

Hence

2=In2+2n+Dm

(b) Write e? =1++/3i as e*e® =2, from which we see that
e’ =2 and y=-—3’£+2n7r
That s,
x=In2 and y=(2n+%)n:
Consequently,

z=ln2+(2n+-§-)m'

(c) Write exp(2z—1)=1 as ¢**'¢'” =1¢" and note how it follows that

e’ =1 and 2y=0+2nn

Evidently, then,

x=-— and y=nn

and this means that

z=—+nm

9. This problem is actually to find all roots of the equation

exp(iz) = exp(i7).

(n=0,£1,£2,...).

(n=0,%£1,%2,...

(n=0,£1,%2,...).

(n=0,£1,%£2,...).

(n=0,£1,%+2,..)

(n=0,t1,£2,...).

(n=0,t1,%£2,...).

(n=0,x1,%2,...

(n=0,x1,£2,...).

37
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10.

12.

13.

To do this, set z =x + iy and rewrite the equation as

—ix

- ix
e’e " =¢’e",

Now, according to the statement in italics at the beginning of Sec.8 in the text,
e’ =¢ and -x=x+2nnm,
where n may have any one of the values n=0,*1,+2,.... Thus
y=0 and x=nm (n=0,£1%2,...).
The roots of the original equation are, therefore,

I=hw (n=0,t1,%2,...).

(a) Suppose that e is real. Since e®=e"cosy+ie*siny, this means that ¢*siny=0.
Moreover, since e is never zero, siny =(. Consequently, y=nx (n=0,t1,%2,...);
thatis, Imz=nr (n=0,%£1,%£2,...).

(b} On the other hand, suppose that ¢° is pure imaginary. It follows that cosy =0, or that
y= % +nn(n=0,t1,%+2,...). Thatis, Imz m—g-+mr (n=0,x1,%£2,...).

We start by writing

z 2zl F+y P4y x4y

Because Re(e®)=e" cosy, it follows that

Re(e'*)=e X lcos| —2—=|=¢ x LA,
(¢™) XP(x2+y2} (,1;:2+y2 *P xt +9 cos x* +y?

Since €'/ is analytic in every domain that does not contain the origin, Theorem 1 in Sec. 25
ensures that Re(e'’?) is harmonic in such a domain.

If f(z)=u(x,y)+iv(x,y) is analytic in some domain D, then
e’ P =" cosv(x, y) +ie“ ™ sinv(x, y).

Since ¢’*? is a composition of functions that are analytic in D, it follows from Theorem 1 in
Sec. 25 that its component functions

)

Ulx,y)= " cosv(x, y), V(x,y)= " sinv(x, y)
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are harmonic in D. Moreover, by Theorem 2 in Sec. 25, V(x,y) is a harmonic conjugate of
U(x,y).

14. The problem here is to establish the identity
(expz)” =exp(nz) (n=0,x1,%2,..).

(@) To show that it is true when n=0,12,..., we use mathematical induction. It is

obviously true when n={0. Suppose that it is true when n=m, where m is any
nonnegative integer. Then

m+1

(expz)™* = (expz)™ (expz) = exp(mz)expz = exp(mz + z) = exp[(m +1)z].

(b) Suppose now thatn is a negative integer (n=—1-2,...), and write m=-n=12,.... In
view of part (a),

(ex )n=( 1 ’"= S 1 = exp(nz)
| Pz expz (expz)™ exp(mz) exp(—nz) p '

SECTION 30
- : . . T, T,
1. (a) Log(—ei)=Inl—eil+iArg(-ei)=1Ine —-5-: =1- EL

(b) Log(1—i)=1Inll1-il+iArg(1—i)= mﬁ-i’-i =—;—ln2—;i.

2. (a) loge=Ilne+i(0+2nm)=1+2nm (n=0,11,12,...).

(b) logi= ln1+i(—;-c- + Znn) = (Zn +-;—)m (n=0,£1,%2,...).

(c) log(—1+\/§i)=1n2+i(-2-;—r-+2nn)=ln2+2(n+%—)m’ (n=0,x1,%2,...).

3. (a) Observe that

Log(1+i)* = Log(2i) = In2 + -’25;'
and
; T .
2Log(l+i) = 2(1m/§+1z) = ln2+-i-t. |
Thus

Log(l+i)* = 2Log(l +i).
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(0)

(a)

(b)

(a)

On the other hand,
“w? . .
Log(—~1+i)° =Log(-2i)=1n2- EJ
and
2Log(—1+1i) = 2(lnﬁ+ :3—5) = ln2+3—21£i.
Hence
Log(-1+i)” # 2Log(-1+1).
Consider the branch
logz=Inr+i6 [r>0,£<9<9—n).
4 4
Since
log(i*)=log(~)=Inl+iz=m and 2logi = Z(ml + zg—) = 7Ti,
we find that log(i*) = 2logi when this branch of logz is taken.
Now consider the branch
logz=Inr+i6 (r>0,-§;<9<1{Tn).
Here
log(i®*) =log(~)=Inl+izr=m and 2logi = Z(lnl + z52_zz.') =35,
Hence, for this particular branch, log(i®) # 2logi.
The two values of i"/? are ¢™* and ¢**™*. Observe that
ir/d S A/ 1 1 .
log(e )=ln1+t(z+2nnJ=[2n+Z)m (n=0,£1,%2,...)
and
iS/a {357 1]
log(e”™ " )=Inl+ I(T + Znn:) = [(Zn +1)+ Z]m (n=0,x1,£2,...).

Combining these two sets of values, we find that

log(i'?) = (n + i—)m (n=0,£1,%2,...).
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On the other hand,
-21-logi = %_lnl + z[g + Zmz')} = (n + %)m (n=0,x1%2,..).
Thus the set of values of log(i'?) is the same as the set of values of %hgi, and we
may write
log(i'*) = —%logi.
(b) Note that
log(i*) =log(~1)=Inl+(n +2nn)i=2n+1)7i (n=0,£1,12,...)
but that

2logi = 2[ln1+ i(-g-+ Znn) =(4n+1)7i (n=0,£1,+2,...). -
| |

Evidently, then, the set of values of log(i*) is not the same as the set of values of
2logi. That s,

log(i®) # 2logi.

3,4 .
S =

7. To solve the equation logz =ix/2, write exp(logz)=exp(in/2),or z=¢

10. Since In(x? + y?) is the real component of any (analytic) branch of 2logz, it is harmonic in
every domain that does not contain the origin. This can be verified directly by writing

u(x,y) = In(x? + y*) and showing that u_(x,y) + u,(x,y)=0.

SECTION 31

1. Suppose that Rez, > 0 and Rez, > 0. Then

gz, =rexpi®, and gz, =rexpi0,,

where
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The fact that -7 < ©, +©, < 7 enables us to write

Log(z,z,) = Log((r,r,)exp i(0, +6,)] =In(r,r,) +i(©, +6,)
=(Inr,+i0,)+ (Inr, +i0©,) = Log(r,exp i®,) + Log(r, exp iO,)

=Logz + Logz,.

3. We are asked to show in two different ways that

log(-z—‘) =logz, —logz, (z; #0,2, #0).
2

(a) One way is to refer to the relation arg(z—l] = arg z, — argz, in Sec. 7 and write
22

log(-f:i—] = ln':—1 + iarg(%-} = (Inlz|+iargz ) — (Inlz,|+iargz,) =logz —logz,.
2 2

e

(b) Another way is to first show that lo g(l) =—logz (z# 0). To do this, we write z=re’
| Z

and then

log( : ) = log(}-e““’) = ln(-l-) +i(—-8+2nn)=—[Inr+i(8-2nr)]=-logz,
r

Z r

where n=0,%1,+2,.... This enables us to use the relation

log(z,z,) =logz +1logz,

and write

log(-i’-} = Ic*g(zl i) =logz + log(-}—-) =logz, ~logz,.
23 %) e
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§. The problem here is to verify that

zlfﬂ — GXP(% Iogz) (n=-1, —2,_”),

given that it is valid when n=1,2,.... To do this, we put m =—n, where n is a negative

integer. Then, since m 1s a positive integer, we may use the relations z'=1/z and
1/e* =¢ " townte

-1
ZLM'I — (zlfm)-l - [exp(.l.logz]]
m

1 ; 1 1
=1/ exp| —logz || =exp| ——logz |=exp| —logz |.
m i m n

SECTION 32

1. Ineach part below, n=0,%1,%2,....

(@ 1+i) =explilog(l+i)]= GXp{i [ln-\/f + 1(% + 2nn')]}

= exp[%lnz - (-:Tr + 2nn:) = exP(-—g- - Znn)exp(%ln 2).
N

Since n takes on all integral values, the term —2n7 here can be replaced by +2n7.
Thus

(1+i) = exp(—§+ 2rm) exp(-;-hﬂ].

(b) (=1)'" = exp[% lo g(—l)] == exp{%[ln I+i(m+ 2nn]} =exp[(2Zn + 1)i].

2. (a) P.V.i =exp(iLogi)= exp[i (lnl +i -g) = exp(---g-).

(b) P.V. [g(—l — @i)]sﬁ = exp{i}m'[.og[%(—l - ﬁz)]} ___-eXp-BEi(ln e—1 %EJ:

= exp(27°)exp(i3 1) = —exp(272).



(c) P.V.(1-i)* = exp[4iLog(l-i)] = exp 4f(1nﬁ -fg.] _ gRgitinE

=e"[cos(41n A2 )+i sin(4-1n \2 )= e"[cos-(Z In2)+isin(21n2)].

Since —1+4/3i = 2¢*™?, we may write

(-1+ ‘\Ei)m = cXp[g log(—1+ ‘\Ei)] = exp{-i—[an + 1(2?1: + Zmz:) >
A

= exp(In(2*?) + (3n + 1) 7] = 2+/2 exp[(3n + D7i],

where n=0,£1,£2,.... Observe that if n is even, then 3n+1 is odd; and so
exp[(3n+1)mi]=-1. On the other hand, if »n is odd, 3n+1 is even; and this means that

exp[(3n+1)7i]=1. So only two distinct values of (—1++/3i)*? arise. Specifically,

(-1+43i)** = +242.

We consider here any nonzero complex number z, in the exponential form z, =r,exp i©,,

where —7 < @, £ 7. According to Sec. 8, the principal value of z''" is 4fr, exp(z‘ -c:)-?-), and,
n

according to Sec. 32, that value is

exp(l Logz] = exp[-l-(ln r, +i0, )] = exp(ln Ty )exp[i 9&) =4/r, exp(i &)
n n n n

These two expressions are evidently the same.

Observe that when ¢ =a+bi is any fixed complex number, where ¢ # 0,x1,%2,..., the
power i° can be written as

vy ™

)
i =exp(clogi) =expi(a+ bi)[lnl + 1(-—2’2 + Zrm:) >

\

-t

= eXp —b(g + 2n:n:)+ ia(-g- + Zn:n:) (n=0,%1,%£2,...).

li°l= exp[—b(éj- + Zrm) ' (n=0,1£1,%2,...),

and it is clear that [i°] 1s multiple-valued unless b = 0, or c is real. Note that the restriction
c#0,%£1,+2,... ensures that i° is multiple-valued even when b = 0.



SECTION 33

1. The desired derivatives can be found by writing

4 sinz = -g—[eiz —e) ] (-é-ei" —ie"‘"")
dz

dz 20 2i\ dz dz
1,.. . _\ &e+e"
=-i-l:(ze"'+:e u)"' =COSZ
and
9 cosz=2 et 1( d ey 2 e““’*)
dz dz 2 2\ dz dz
1,.. ._\iI €%—egX .
=.._(Zel1__le IZ)-_.:—- - =—San
2 i 21
2. From the expressions
: et —e " e +e "
sinz = : and cosz= :
21
we see that
. el e ™ Rt
cosSz+isinz = > + 5 = e",

3. Equation (4), Sec. 33 is
2sinz, cosz, =sin(z, + z,) +sin(z, ~ z,).
Interchanging z; and z; here and using the fact that sin z is an odd function, we have
2cosz,sinz, =sin(z, + z,) —sin(z, — z,).

Addition of corresponding sides of these two equations now yields

2(sinz, cosz, +cosz sinz,) = 2sin(z, +z,),

sin(z, +z,) =singz,cosz, +cosz sinz,.

4. Differentiating each side of equatton (5), Sec. 33, with respect to z,, we have

cos(z, +2,) =08z, C0osz, —Sinz sinz,.

45
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10.

(a) From the identity sin®z + cos?z =1, we have

« 3 2

SIN"Z COS 2 )|
— + — = =—, Of 1+tan2z=seczz.

COS°Z COS°Z CO8°Z

(b) Also,

c 2 2

SIN“Z COS™ Z 1

——+———=——, or l+cot’z=csc’z
sin“z sin“z sin“z

From the expression

sinz =sinxcoshy +icosxsinhy,

we find that
Isin zI* = sin® xcosh® y + cos” xsinh? y
= sin’ x(1 + sinh® y) + (1 - sin® x)sinh? y
= sin’ x +sinh?y.
The expression

C0sz =cosxcosh y +isinxsinhy,
on the other hand, tells us that
IcoszI” = cos® xcosh® y + sin® xsinh? y

= 08 x(1+ sinh> y)+ (1 — cos” x)sinh> y

=cos’ x +sinh” y.

Since sinh®y is never negative, it follows from Exercise 9 that
(a) Isinzl*>sin*x, or Isinzl >Isinx]

and that

(b) lcoszI’>cos’x, or lcosz >lcosxl.

11. In this problem we shall use the identities

Isinzl” =sin’ x +sinh’ y, Icoszl® = cos® x +sinh? y.
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(a) Observe that
sinh® y =Isin zi* ~sin® x < Isin zI*
and
sinzl* = sin® x + (cosh? y ~ 1) = cosh® y — (1 — sin’ x)

= cosh® y — cos” x < cosh? y.

. . 2 . .
sinh® y <lsinzl*< cosh’y, or Isinhyi<lsinzI< coshy.

(b) On the other hand,

sinh® y =lcos zI* —cos® x <lcos zI’
and
Icos zI* = cos® x + (cosh? y - 1) = cosh® y — (1 — cos” x)

= cosh?y —sin®*x < cosh?y.
Hence

sinh? y <lcoszl> < cosh®y, or Isinhyl<lcoszl< coshy.

13. By writing f(z) =sinZ =sin(x —iy) =sinxcosh y —icosxsinh y, we have

- f(@)=ulx,y) +iv(x,y),
where

u(x,y)=sinxcoshy and v(x,y)=-cosxsinhy.
If the Cauchy-Riemann equations u, =v,, u, = —v, are to hold, it is easy to see that
cosxcoshy=0 and sinxsinhy=0.

Since coshy is never zero, it follows from the first of these equations that cosx = 0; that 1s,
X =—72£+nn' (n=0x1,%2,...). Furthermore, since sinx is nonzero for each of these values

of x, the second equation tells us that sinhy=0, or y=0. Thus the Cauchy-Riemann
equations hold only at the points

z=-’2-’-+nn (n=0£1,+2,..).

Evidently, then, there is no neighborhood of any point throughout which f is analytic, and
we may conclude that sinZ is not analytic anywhere.
The function f(z)=cosZ =cos(x —iy) = cosxcoshy+isinxsinh y can be written as

f(2) = ulx,y) +iv(x,y),
where
u(x,y)=cosxcoshy and v(x,y)=sinxsinhy.
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If the Cauchy-Riemann equations «, =v,, u, =—v, hold, then
sinxcoshy=0 and cosxsinhy=0.

The first of these equations tells us that sinx =0, or x=nx(n=0,£1,%£2,...). Since
cosnr#0, it follows that sinhy=0, or y=0. Consequently, the Cauchy-Riemann
equations hold only when

Z=nw (n=0x1=%2,..).

So there is no neighborhood throughout which f is analytic, and this means that cosZ is
nowhere analytic.

16. (a) Use expression (12), Sec. 33, to write

cos(iz) = cos(—=y +ix) =cos ycoshx —isin ysinh x
and

cos(iZ) = cos(y +ix) = cos ycosh x —isin ysinh x.

This shows that cos(iz) =cos(iZ) for all z.

(b) Use expression (11), Sec. 33, to write

sin(iz) = sin(—y + ix) = —sin y cosh x ~ i cos ysinh x
and
sin(iz) = sin(y + ix) = sin ycosh x + i cos ysinh x.

Evidently, then, the equation sin(iz) = sin(iZ) is equivalent to the pair of equations

sinycoshx =0, cosysinhx =0,

Since coshx is never zero, the first of these equations tells us that siny=0.
Consequently, y=n7r (n=0,%x1,%£2,...). Since cosnzm=(-1)"#0, the second
equation tells us that sinhx=0, or that x=0. So we may conclude that
sin(iz) = sin(iZ) if and only if z=0+inzw =nmi (n=0,+1,+2,...).

17. Rewriting the equation sinz =cosh4 as sinxcoshy+icosxsinhy = cosh4, we see that we

need to solve the pair of equations

sinxcoshy=cosh4, cosxsinhy=0
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forx and y. If y=0, the first equation becomes sinx = cosh 4, which cannot be satisfied by
any x since sinx<1 and cosh4>1. So y#0, and the second equation requires that

cosx =0. Thus
x=-;£+mr (n=0+1,%2,..).

Since

sin(-z’f + n:n.') = (-1)",

the first equation then becomes (—1)" cosh y = cosh4, which cannot hold when 7 is odd. If
is even, it follows that y = £4. Finally, then, the roots of sinz = cosh4 are

z=(-’2£+ 2mr):!:4i (n=0+1%2,...).

18. The problem here is to find all roots of the equation cosz=2. We start by writing that
equation as cosxcoshy—isinxsinhy =2. Thus we need to solve the pair of equations

cosxcoshy=2, sinxsinhy=0

forx and y. We note that y# 0 since cosx =2 if y=0, and that is impossible. So the
second in the pair of equations to be solved tells us that sinx =0, or that x=nnxn

(n=0x112,..). The first equation then tells us that (-1)" coshy = 2; and, since coshy is
always positive, n must be even. Thatis, x=2nr (n=0x1,%£2,...). But this means that

coshy =2, or y=cosh™2. Consequently, the roots of the given equation are
z=2nmw+icosh™2 (n=0%1,%2,...).

To express cosh™2, which has two values, in a different way, we begin with
y =cosh™ 2, or coshy =2. This tells us that e’ +e™ = 4; and, rewriting this as

(e”) —4(e”)+1=0,

we may apply the quadratic formula to obtain €’ =2 +4/3, or y =In(2++/3). Finally, with
the observation that

In(2 —3) = 1n| 2=¥3)2+43) =1n( L )=—1n(2+w/§),
2+4/3

‘we arrive at this alternative form of the roots:

z=2nn+iln(2 +/3) (n=0£1,%2,...).
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SECTION 34

1. To find the derivatives of sinhz and coshz, we write

d . de —e™ 1 d ‘4e7?
-d—zsmhz=-zz-(-e- - ]=———(e"‘-—e")=e -;E =coshz

2 2 dz
and
d dfet+et 1d . gt
coshz ( > ) 5 (e*+e %) sinh z.

3. Identity (7), Sec. 33, is sin®z+cos’z=1. Replacing z by iz here and using the identities

sin(iz) =isinhz and cos(iz) =coshz,

we find that i*sinh® z +cosh®z =1, or
cosh® z—sinh®z = 1.

Identity (6), Sec. 33, is cos(z, +z,) = cosz cosz, ~sinz, sinz,. Replacing z, by iz, and
z; by iz, here, we have cosli(z +z,)]= cos(iz;)cos(iz,) — sin(iz,)sin(iz,). The same
identities that were used just above then lead to

cosh(z, +2,) = coshz, coshz, +sinhz sinhz,.

6. We wish to show that

|sinh xI<lcosh zI< cosh x

in two different ways.

(a) Identity (12), Sec. 34, is lcoshz” =sinh’ x+cos’ y. Thus lcoshzl*—sinh’x>0; and
this tells us that sinh®x <Icoshzl, orlsinhxI<Icoshzl. On the other hand, since
Icoshzl* = (cosh® x — 1)+ cos’ y = cosh?x — (1 — cos® y) = cosh® x —sin® y, we know that
Icoshzl” —cosh® x £ 0. Consequently, lcoshz>< cosh?® x, or lcoshzI< coshx.

(b) Exercise 11(b), Sec. 33, tells us that Isinh yl<IcoszI< cosh y. Replacing z by iz here and
recalling that cosiz =coshz and iz = —y+ix, we obtain the desired inequalities.

7. (a) Observe that
ez+r.'.'r' ___e-(z+m']

: . ee™ —e7 " _ptqe " et —e
sinh(z + 7)) = —

= — = = — = —sinhz.

2 2 2 2
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(b) Also,

cosh(z+ mi) = — = B =—coshz.

(¢) From parts (a) and (b), we find that

sinh(z+ @) ~ —sinhz _ sinhz

—

= = tanh z.
cosh(z+ mi) -—coshz coshz ¢

tanh(z + mi) =

9, The zeros of the hyperbolic tangent function

are the same as the zeros of sinhz, which are z =nni (n=0,£1,£2,...). The singularities of

tanhz are the zeros of coshz, or z=(—-2’-r-+nn)i (n=0,=1,12,...).

15. (a) Observe that, since sinhz =i can be written as sinhxcosy+icoshxsiny =i, we need
to solve the pair of equations

sinhxcosy=0, coshxsiny=1.

If x=0, the second of these equations becomes siny=1; and so y =-’2£+2mr

(n=0,%1,%2,...). Hence
1Y .
z=(2n+5)m (n=0,£1,%2,...).

: . . T
If x#0, the first equation requires that cosy=0, or y=-2-+n:n'

(n=0,%£1,£2,...). The second then becomes (—1)"coshx =1. But there is no nonzero
value of x satisfying this equation, and we have no additional roots of sinhz=1.

(b) Rewriting coshz = % as coshxcosy+isinhxsiny = —l—, we see that x and y must satisfy

2
the pair of equations

coshxcosy = % , sinhxsiny=0.
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It x=0, the second equation is satisfied and the first equation becomes
COSy = l Thus y=cos™ 1 -+Z, 2nre (n=0,%£1,%£2,...), and this means that
2 2 3

Z= (Zn + é—)m’ (n=0,%1,%£2,..).

If x+#0, the second equation tells us that y= nzw (n=0,%1,22,...). The first then

n 1 . . .
becomes (—1)" coshx = 5" But this equation in x has no solution since coshx 21 for

all x. Thus no additional roots of coshz = % are obtained.

16. Let us rewrite coshz=-2 as coshxcosy+isinhxsiny =-2. The problem is evidently to
solve the pair of equations

coshxcosy =-2, sinhxsiny=0.

If x =0, the second equation is satisfied and the first reduces to cosy =—2. Since there
1s no y satisfying this equation, no roots of coshz =-2 arise.
If x#0, we find from the second equation that siny=0, or y=nw (n=0,t1,1£2,...).

Since cosnzm =(—1)", it follows from the first equation that (—1)"coshx =-2. But this
equation can hold only when » is odd, in which case x =cosh™ 2. Consequently,

z=cosh™ 2+ 2n+Dnmi (n=0,%1,%2,...).

Recalling from the solution of Exercise 18, Sec 33, that cosh™ 2 = +1n(2 ++/3), we note that
these roots can also be written as

z=+In2+V3)+Cr+ )7 (n=0,£1,£2,...).



Chapter 4

SECTION 37

2 2 2 2
1 . 1 rdt 1 1
2. (a) (—-:) dt = (-2-~1)dt—2: —=——=2iln2=—=~jInd;

'l[t -! t "t 2 2

w8 [e“‘_m 1[ T s ] V3

(b) J‘ emdt= - COS-'3-+fSil'l*§'—1 =
0

]
2 j, 2 4 4

(c) Since le ®!l= e **, we find that

- b - t=b _
Ie""dt =1im | e *'dt = lim [E ] = —1- ]jm(l — e'bz) = L when Re z > 0.
¢

b—poe b=y
0

3. The problem here is to verify that

Teme'i"g Jg = {O when m#n,
. 2w when m=n.

To do this, we write

2n 2n

I= je*“"“e"""”de = j e’ "9 4
0 ¢

and observe that when m # n,

im=-m)8 127
[e'(’" 9 1 1

] =
i(m-n)j, i(m—n) i(m—n)

When m =n, I becomes

and the verification 1s complete.

4. First of all,

1 n . 9
Ie(“"" dx = Ie" cosxdx + iJ.e‘ sin x dx.
0 0 0

But also,

n (1+i)x I® x_in - . u' n
: e ee" -1 —e"—1 1-—i I+e” .1+e
Jeﬂ“"'dx‘= _ + ,

A 14

0
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Equating the real parts and then the imaginary parts of these two expressions, we find that

T 1+ " f "
je COSX dx = — € and Ie"sinxdx=l+e .
0 2 0 2

5. Consider the function w(¢)=¢" and observe that

2n ¢ X | - l':"lzﬂ-' 1 1
Iw(t)dt=Je"dt= -E-_- =——=-=),
0 0 Lt o

Since jw(c)(2m— O)l =|e“" |2.ﬂ: = 27 for every real number c, it is clear that there is no number
¢ in the interval 0 <t < 27 such that

1x
j w(t)dt =w(c)(27 - 0).

6. (a) Suppose that w(?) 1s even. It is straightforward to show that #(¢) and v(#) must be even.

Thus
[w(tar =Ju(t)dr +i jv(t)dr =2 J' w(t)ds + 2:'} v(t)dt
-a -a -a 0 0
P ] 1«
=2 j w(t)de +i j v(t)dt | =2[w(t)dt.
0 ¢ ] 0

(b) Suppose, on the other hand, that w(r) is odd. It follows that u(¢) and W(¢) are odd, and so

jw(t)dt = j;u(t)dt + 1 jiv(t)dt =0+i0=0.

7. Consider the functions

n

P,(x)=-,];-f(x+i\/1—x"" cos a) do (n=0,1,2,...),
0

where =1 £ x < 1. Since

|+ iV1- " cosB| = + (1= x")cos” 0 < ¥ +(1-2) =1,

it follows that

P,.(x)|5--l—j X+ iVl - x coserdﬁs ljd@ = 1.
’rﬂ ﬂ'-E'!



SECTION 38

L (a) Start by writing

I= _fw(—t)dt =Tu(-—t)dt + iTv(—t)dt.
-b -b

-b

The substitution 7 =~¢ in each of these two integrals on the right then yields

a a b b b
1=-[u(t)dr—i[w()dr = [u(r)dr+i[ W(T)dT = [w()dr
- b b a a a
That 1s,
-a b
Iw(—t)dt = j' w(1T)dT.
-b a _
(b) Start with

I = j"w(t)dt = iu(t)dt + ij:v(r)dt

35

:_a.nd then make the substitution ¢ = ¢(7) in each of the integrals on the right. The result

1S
B A B
1= [u[¢(D)¢'(D)dT+i[V$(D)]¢'(2)dT = [wlo(ne'(n)dx.

That 1s,
b A
Jwandr =[ wlg (D¢’ ().

3. The slope of the line through the points (o,a) and (8,b) in the 7t plane is

b-a
m= ..

T
R

So the equation of that line is
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4.

Solving this equation for £, one can rewrite it as .

If Z(1)=2z[¢(7)], where z(t)=x(t) +iy(¢) and ¢t = ¢(7), then

Z(7) = x{ ()] + Hle(D)].

Hence

Z'(1) = %xw(r)] +1 d%y[q)('r)] =X [¢(D)]¢'(7) +iy’[o(7)]9'(7)

= {xX’[@(D]+ iy [o(D)N}¢'(7) = [ P( )¢’ (7).

If w(t)= flz()] and f(z)=u(x,y)+iv(x,y), z(¢) = x(t) +iy(t), we have

w(t) = ulx(2), y()]+ iv[x(2), y(2)].
The chain rule tells us that

du dv
—=ux'+uy and —=vx'+vy,

dt dt

and so
wi(t) = (ux" +uy ) +i(vx +v,y’).

In view of the Cauchy-Riemann equations #, =v, and u, =-v,, then,
w(t) =@ x v y)+i(vx +u y) = (u, +iv ) (x"+iy’).
That 1s,

w'(t) = {u, [x(2), y(Ol + iv, [x (), y(OOIHx'(€) + iy’ ()] = f{z(D]Z'(8)

when t=1,.



" SECTION 40

1. (a) Let Cbe the semicircle z=2¢" (0 < 8 < ), shown below.

Then

J'Cz+2 J (

P

=2i

— |dz = I — |2ie*d0 = sz(e'9+l)d9
2¢"

i@ 1 ks

—+0| =2i(i+n+i)=-4+27.

-0

(b)) Now let C be the semicircle z =2¢"” (< 0 <2x) just below.

(¢) Finally, let C denote the entire circle z=2¢" (0< 0 <2x). In this case,

the value here being the sum of the values of the integrals in parts (a) and (b).

¢ z

2. (a) Thearcis C:z=1+¢® (£ <0<2x). Then

2z 26 27
-1 dZ 1+ rﬂ__l lﬂde_ ilﬂde__ €
f (z-1) f( )ie ;;[ t[ o ],.-

— l(€£4x

2

llu’) __(1 1) 0.

57
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(b) Here C:z=x(0<x<2). Then

fc(z-*l)dz=j’(x—1)dt= x| =0
¢

The function to be integrated around the closed path C is f(z) = me™. We observe that

C=G+C +C+C, and find the values of the integrals along the individual legs of the
square C.

(i) Since C;is z=x(0<x<1),

1
. e dz = nje”’dx =e" —~1,
|
4]

(ii) Since G is z=1+iy(0<y<1),

1 1
L e dz = 1 j g™ )idy =e" i J. e~ dy=2e".
2
0

0

(iii) Since Gy is z=(1-x)+i(0<x <)),
J.C_3 me™dz = nj‘e"m"')'”(—l)dx = m”j e dx=e" - 1.
0 0
(iv) Since C,is z=i(1-y) (0L y <)),
1 1
T dz=1 [V —iydy = mi [e™dy =-2.
0 0

Finally, then, since

I e dy = I we™dz+ | me™dr + I e dz + I me™idz,
c G C, Cs Ce

we find that
JC me™dz = 4(e” - 1).
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4. The path C is the sum of the paths

Ciz=x+ix’(-1€x<0) and C,z=x+ix’(0<x<))

Using

f(m)=1lonC, and f(z)=4y=4x"onC,,

we have
0 1
JC f(2)dz =.[gl f(z)dz +_[Cz f(2)dz =:[1(1 +i3x%)dx + ;!'4x3(1 +i3x”)dx

= }dx + SiTxde + 4_1[x3dx + lZi’jx’dx
-1 -1 0

0

=[x]’, +i[x3]1 +[.wc‘l 0 +2i[x6]:] =1+i+1+4+2i=2+3i.

5. The contour C has some parametric representation z=z(t) (a<t<b), where z(a) = z, and
z(b) = z,. Then

b
| dz=[20dt=[200], = 2(0)- 2a) = 2, ~ 2.

6. To integrate the branch

~1+i (-1+i}logz

z T=e (zI>0,0<argz<27)

around the circle C:z=¢" (0< 0 < 27x), write

2 2r 2x
J’C z—1+i dz = IC e(-1+i)logz dz = Ie(-l-i-i)(lnl-i-iﬂ) iefadG — iIe-fa-e eiadﬁ _ i_[e'edﬁ — i(l _e-u.-)_
- 0 0

0

Let C be the positively oriented circle lzZl=1, with parametric representation
z=€" (0£0<2n), and let m and » be integers. Then

i 2
IC "7 "dz = I( eiﬂ)m (e-fﬁ )n .if.fa d0 = i I pim+1)8 =ind d6.
0

0
But we know from Exercise 3, Sec. 37, that
2x

mé —inb
i d6 = «
-!e ¢ ..2” when m=n.

0 when m#n,




60
Consequently,

0 when m+1l#n,
LZm' when m+1=n.

8. Note that C is the right-hand half of the circle x*+ y* =4, So,on C, x= \[4-— yz. This

suggests the parametric representation C:z= \{ 4 - y2 +iy(-2<y<2), to be used here.
With that representation, we have

= 4i[sin™ (1) = sin” (-1)] = 4i Z_ (-—--—’-’-) = 4.

10. Let C, be thecircle z=z,+ Re” (-2 <8< n).

dz _# 1 T __.x _ .
(a) vl Rie de_zide-Zm.

. 3

(b) When n=%L%2,...,

J;n (z2—z)" 'dz = :f()‘?.«z"“)""']l Rie"®de = iR Tef"“de

_K int _~ing — i ZRH
= L (o) = 28

sinnr=(.

11. In this case, where a 1s any real number other than zero, the same steps as in Exercise 10(b),
with a instead of n, yield the result

.[c (z-2)""'dz=1i =iy

sin(an).
a
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12. (a) The function f(z) is continuous on a smooth arc C, which has a parametric
representation z =z(t) (a £t < b). Exercise 1(b), Sec. 38, enables us to write

b A
[ flz®le ds =[ AZ(DN PN (2)de,

where

Z(7)=z[¢(7)] , - (x<T<P).
But expression (14), Sec 38, tells us that

[P’ (7) = Z'(7);
and so

b 8
[ flz @t =[ flz(oz (2)dr.

(b) Suppose that C is any contour and that f(z) is piecewisé continuous on C. Since C can
be broken up into a finite chain of smooth arcs on which f£(z) is continuous, the
identity obtained in part (a) remains valid.

SECTION 41

1. Let C be the arc of the circle 1zl=2 shown below.

| & l To do this, we
Cz —1

Without evaluating the integral, let us find an upper bound for

note that if z is a pointon C,
|2 =12 |11~1] =iz -1 = 14 ~11=3.

Thus
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N |
Also, the length of C 15 1(471.') = ;. S0, taking M =% and L= 7, we find that

2. The path Cis as shown in the figure below. The midpoint of C is clearly the closest point on

C to the origin. The distance of that midpoint from the origin is clearly _\%_2_’ the length of C

being V2.

3

Hence if z 1S any point on C, |zl 2 5 This means that, for such a point

l =f-—$4.

4

Consequently, by taking M =4 and L =+/2, we have

ji‘-f- < ML=4+2.
€z

3. The contour C is the closed triangular path shown below.

To find an upper bound for Uc( et — E)dz\, we let z be a point on C and observe that

le* —ZI<Ie®|+1Z1=e" +/x* + y*.
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But ¢* <1 since x <0, and the distance \/xz +y* of the point z from the origin is always

less than or equal to 4. Thus le* —Z1< 5 when zis on C. The length of C is evidently 12.
Hence, by writing M = 5 and L = 12, we have

Uc(.«f - E)dzl < ML = 60.

4. Note thatif zI= R (R>2), then

1277 —11 <212 +1=2R* +1

and

2" +52" + 41 =12" +111z> + 41 2 |1z -1 |1z 4| = (R* —~ 1)(R* - 4).

Thus

272 -1 .
7t +577+4

1278 -1 < 2R* +1
R Ju :
12" +5z° + 41~ (R* =1)}(R* - 4)

when IzI= R (R> 2). Since the length of C, is zR, then,

2 +5z2°+4

Lrrsera®s

_7_r_2+___1
TR2R*+1) _ R R? _
T (RP=D(R*-4) [, _1 4’
RN E

and it is clear that the value of the integral tends to zero as R tends to infinity.

5. Here C, is the positively oriented circle lzl= R (R >1). If zis a point on C,, then

Logz

22

llnR+i@lSlnR+I9|<_7£+lnR

RZ ""Rz = R’

since ~7 <© < 7. The length of C; is, of course, 27zR. Consequently, by taking

+InR
M=ER;1 and L=2zR,
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we see that
L
J' qu dz|...ML=2 (7:+1nRJ
Ch Z
Since
im ZXOR i VR L,
R—30e R Roe |
it follows that
lim Lozg < dz =0
Ro-yoe CR z

Let C, be the positively oriented circle |zl=p (0 < p <1), shown in the figure below, and
suppose that f(z) is analytic in the disk [zI<1.

We let z~"? represent any particular branch

6

77V = exp[—alog z) = exp[—%(ln r+ iﬁ)] = %exp(—-iz) (r>0,<0<ax+2n)

1

of the power function here; and we note that, since f(z) is continuous on the closed
bounded disk 1zl £1, there is a nonnegative constant M such that | f(z)|< M for each point z

J‘C 7712 f(z)dz

. To do this, we

in that disk. We are asked to find an upper bound for

observe that if z is a point on Cp ,

|z"”2f(z)|=|z'”2Hf(z)\ﬂ%.

Since the length of the path C_ is 27p, we may conclude that

M
<S—2r =2:rM1/ :
" g

J-C z—lflf(z)dz
Note that, inasmuch as M is independent of p, it follows that

in " 0=0.
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SECTION 43

1.

The function z" (n = 0,1,2,...) has the antiderivative z"*' / (n+1) everywhere in the finite
plane. Consequently, for any contour C from a point z; to a point z,,

n+l %2 +1 +1
z n n 1 .

z"dz: z"dz: =£.2_____§_l___= n+l  _n+l )
'[C ;_[ n+l], n+l n+l J'z+1(z2 “ )
i1/2 w2 }i/2 in/d i
—~ +1 1+
(ﬂ) Jlu‘l#de:—* =e ¢ =1——-=—-..._£
1 - I 7: 7: ,r
+2i ~ 42 f(—E-H) —i(%ﬂ')
Z . | Z . (T e — e . :
b cos| = |dz = 281!1(-—-) = 23111(-— + ;') =72 - = —j{™2p™) = =72,
0 Joltem2an( )] w i Far)2 S oy
(I .) 1
==t —tie |=—+e=e+—.
e e €
3 -2 1 1
-2)dz= == ==,
(c) !(z )" dz e M

Note the function (z - z, Y tn= t1,12,...) always has an antiderivative in any domain that
does not contain the point z=2z,. So, by the theorem in Sec. 42,

J. @=2)"dz=0

for any closed contour C; that does not pass through z,.

Let C denote any contour from z =-1to z =1 that, except for its end points, lies above the
real axis. This exercise asks us to evaluate the integral

1
I= _[zfdz,
-1
where z' denotes the principal branch

z' = exp(iLogz) (Iz1>0,— 7 < Argz < 7=).
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An antiderivative of this branch cannot be used since the branch is not even defined at
z =—1. But the integrand can be replaced by the branch

7' = exp(ilogz) [Izl > (), —g— <argz < gg—)

since it agrees with the integrand along C. Using an antiderivative of this new branch, we
can now write

i+1 !

Z | i+1 i+1 1 (i+1)logl (1+1)log(~1)
I = =—(1)" = (-1 =—1le 85— ¢
i+1]_ i+1[() =1 ] i+1[ ¢ ]

—
p—

1 - : - : 1 o 1+ 1-i
[ PUH(B1Hi0) _ (i+1)(ln 1+ur)] — (l e em’) _ _

i+1 i+l 1+i 1—i

l+e 7
= 1-1).
> (1-1)

SECTION 46

2. The contours C, and C, are as shown in the figure below.

In each of the cases below, the singularities of the integrand lie outside C, or inside C,; and
so the integrand is analytic on the contours and between them. Consequendy,

|, f@dz=] f2)dz.
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1 . .
(a) When f(z)= 3 1 the singularities are the points z = i%i.
z+2 .. .
(b)) When f(z) = ————-, the singularities are at z=2n7z (n=0,11,%2....).
sin(z/2)’

(c) When f(z)= ze the singularities are at z = 2n7i (n=0,£1,%+2,...).

2

(a) In order to derive the integration formula in question, we mtegrate the function ¢™*

around the closed rectangular path shown below.

Since the lower horizontal leg is represented by z=x (-a<x<a), the integfal of
e along that leg is

J'e"zdx = Zji e dx
0

Since the opposite direction of the upper horizontal leg has parametric representation
z=x+bi (—a S x< a), the integral of e™% along the upper leg is

a 4

—je"“”’“:dr = - Ie"' e 28 gy = gt Ie"' cos2bx dx +ie* _[ - sin 2bx dx,
or simply

a

—2¢% Ie"z cos2bx dx.

0

Since the right-hand vertical leg is represented by z =a+iy (0 < y <b), the integral of
e along it is

b b

- 2 2 .
J. (a+iy) ld}’ =je" jey e |2aydy-
0 0
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Finally, since the opposite direction of the left-hand vertical leg has the representation
z=—-a+iy (0 < y<b), the integral of ™ along that vertical leg is

b b
(=gt - R r B
—Ie Y idy = ~je° je’ e 7 dy.
0 0

According to the Cauchy-Goursat theorem, then,

ZIe"'zdx_ —2¢" I e cos2bxdx +ie™ Ie" 1 e ?dy — je™® Ie”z e'*?dy = 0;
0 0 0 0

and this reduces to

a a - b
J.e""1 cos2bxdx =e™ j e dx + e "’bz’je" " sin 2aydy.
0 0 0

(b} We now let a — o in the final equation in part (a), keeping in mind the known
integration formula

and the fact that

b b
Y z tn2 2 2
e~ )je’ sin2aydy|< e ** )Ie’ dy — 0 as a — e,
0 0

The result 1s

je"‘z cos2bxdx = {Ee"bz (b>0).
0

6. We let C denote the entire boundary of the semicircular region appearing below. It is made
up of the leg C, from the origin to the point z =1, the semicircular arc C, that is shown, and

the leg C, from z =-1to the origin. Thus C=C, +C, +C,.
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We also let f(z) be a continuous function that is defined on this closed semicircular region
by writing f(0) =0 and using the branch

f(2) =+re®” (r > 0,—-;5 << 12’5)

of the multiple-valued function z'>. The problem here is to evaluate the integral of f(z)

around C by evaluating the integrals along the individual paths G, C,,and C, and then
adding the results. In each case, we write a parametric representation for the path (or a

related one) and then use it to evaluate the integral along the particular path.
(i) C:z=re’ (0<r<1). Then

1

i 2 2
IC, f(Z)dz=.£‘\/;-1dr=[—3-r3’2] =-§-.

0

(ii) C,:z=1¢°(0<60<7). Then

— i - I8 — -z i3@/ = 2 i § 2 . 2 ]

.[c, f(Z)dZ—Je “2.ie dG—z!‘eS 2e:;la—x[--,j—i-e 39"2]0 =-§(-—x-—l)=——3-(1+z).
(iii) —C,: z=re”" (0<r<1). Then

= ‘ 2 1 2

L} f(@)dz= _I-c, f(2)dz=~ ! Vre™*(=1)dr = i‘!\/;dr = ;[_3- razz] =3 i

0

The desired result is

fcf(z)dz = J‘CI f(z)dZ+J‘Cz ﬂz”“L, f(2)dz =%—-§-(l +i)+%z' =0.

The Cauchy-Goursat theorem does not apply since f(z) is not analytic at the origin, or even
defined on the negative imaginary axis. |

SECTION 48

1.

In this problem, we let C denote the square contour shown in the figure below.
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e dz
(@) Iv:z.—(zrm)

=2mile]| _ =2mi(-i)=2nm

COSZ (cosz)/ (2 +8) [ COSZ } (1) (1]
_=- = 22y =1 - =2
(%) Cz(22+8)dz ‘[C z—0 d=2m z* +8],- om 8 4

zdz z/2 [z] ( 1) i

=| —————dz=27i| = = 27| —— |= ——.

(c) c2z+1 “‘¢z—(-1/2) 24 i t 4 9
coshz ,  coshz _2mi d° I W,
@ [Ftde= [ Tgpmd | meoshz| =T@=0

(e) —tan >

(z—-x,) c(z—x,)'"" 1! | dz

Ltan(z/Z)dzz tanz/2) , _27i[ d (z)

= 27ri(-2-sec -—) = izrse,cz(—;i) when -2 <x, <2.

Let C denote the positively oriented circle Iz —il=2, shown below.

(a) The Cauchy integral formula enables us to write

dZ = dZ — _1__{_(z_4;212 — '( 1 ) =
-[Cz2+4 If(z-Zi)(Z+2i') ‘L z—2 =i T+21/ =i

(b) Applying the extended form of the Cauchy integral formula, we have

1

.‘" dz =I _dz _ 1/(z+2£)2dz__2_7ri d
c(2+4)° Jc(z-201(z+2i)* o (z-20" T 1

-2 —4mi -4 /(1

@r2iy ), @Y —(6)@)i 16

dz (z+2i)’ ] Y
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3. Let C be the positively oriented circle {zi= 3, and consider the function

gwy=[ =224 (Iwl3),

We observe that

27 ~z7-2 : '
82)=|_ o dz=2m[2" 22| =27i(4) =87,

On the other hand, when |wl> 3, the Cauchy-Goursat theorem tells us that g(w) = 0.

S. Suppose that a function fis analytic inside and on a simple closed contour C and that z, is
noton C. If z, is inside C, then

Dz _, g4 [f@dz _¢ f)dz _2mi ,
g =2 (%) an j'c(z_zo)z ey 11 @

[L@d [ f@d
¢ z-z C(z—z)

The Cauchy-Goursat theorem tells us that this last equation is also valid when z, is exterior
to C, each side of the equation being 0.

7. Let C be the unit circle z=¢° (-x<0<7), and let a denote any real constant. The
Cauchy integral formula reveals that

Jo—de= | = 2:»::'[4:"*]}:_7_0 =27i.
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8.

On the other hand, the stated parametric representation for C gives us

I dz J cXp (ae )ze'edG =i Ie;xp[a(cos 6 +isin 8)]d6
4

-

X

=i je““"’”ef“’i“ °d0 =i | e*“*°[cos(asin 6) + isin(asin 6)]d6

-% -

1

= ~ j 29039 sin(asin 8)d6 +i I *¢%8 cos(asin 8)d6.

-7

Equating these two different expressions for the integral ICLdz, we have
<

- Ie““ ?sin(asin 6)d8 +i I e***® cos(asin 8)dO =2 7.

Then, by equating the imaginary parts on each side of this last equation, we se¢ that

Ie““’” cos(asin 8)d6 =2,

and, since the integrand here 1s even,

je"mﬁ cos(asin@)d8 ==
0 .

(a) The binomial formula enables us to write

- _"_ld"”nzn-zk_k
= & (-1) nl2” dz"z[k)z =0

k=0

We note that the highest power of z appearing under the derivative is z*", and
differentiating it n times brings itdown to z". So P,(z) is a polynomial of degree ».

(b)) We let C denote any positively oriented simple closed contour surrounding a fized point
z. The Cauchy integral formula for derivatives tells us that

d" — n— (s” _1) =0,L2,..
dzn Z J‘C(S Z)n+1 (n LA ')'

Hence the polynomials P (z) in part (a) can be written

_ 1 (s” -1 _
PH(Z)“ 2n+1 C(S' Z)n+1 (n-—-O,l,Z,...).



(c) Note that

(s 1)

(S _ 1)n+1
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_G-D"6+1D)"  (s+D)”
(S _1)n+1

s—1

Referring to the final result in part (b), then, we have

_ (s* --1)
P = o Jerg=pes
Also, since
(s*-1)"
(.';;+1)"l+l
we have
P~ = [ S g,

9. We are asked to show that

2n+l C(S"‘ 1)n+1

f"(z)---- |

(s+ 1"

2"2m¢s 1

ds--—-2"-1 (n=0,12,...).

(s 1)"(s +1)” (s -1)"

(s + D™ s+1

I(S 1)
2" 2rmi‘c s+1

f (-f)ds
L(s-2)°

(a) In view of the expression for f'(z) in the lemma,

fz+A)—f(2) _ 1

Az

Then

fz+AD)=f'() 1 pfe)ds _ 1 [

. 3 . 11
7. (s—2z) it (s—z—

Az

2mi

1

27

cL

__2s—-2z)-Az
(s—z— Az)? (s . z)’

»

" ds =2—1,.(-2)" =(-1)" (n=0,12,...).

7 (s)ds.

S:Z)—Az : 2

__1 1 ¢3(s-2z
2mis (s—z—

ds
Az (s-2)" (s-2)° ]f(s)

)Az - 2(Az)’
—£(5)ds.
Az) (s - 2)° /()
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(b) We must show that

(3DIAZl + 21Az)* )M
f ds|< - L
) (d-1Azly*d’ '

J 3(s —2)Az - 2(Az)*
C(s—z—Az)’(s-2)°

Now D, d, M, and L are as in the statement of the exercise in the text. The triangle
inequality tells us that

13(s — 2)Az — 2(Az)* 1< 3ls — zl |1Azl + 21 Azl* < 3DIAZl + 21 Az,

Also, we know from the verification of the expression for f'(z) in the lemma that
|s — z — Azl 2 d —| Azl> 0; and this means that

I(s =z = A2)* (s~ 2)*1 2 (d ~1AzZI)*d° > 0.

This gives the desired inequality.

(c) If welet Az tend to O in the inequality obtained in part (b) we find that

This, together with the result in part (a), yields the desided expression for f"(z).
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Chapter 5

SECTION 52

1. We are asked to show in two ways that the sequence

(=D"
Z =-—2+z(n2) (n=12,...)

converges to —2. One way is to note that the two sequences

X,=—2 and y = (;?n (n=12,...)

of real numbers converge to —2 and 0, respectively, and then to apply the theorem in Sec.

z, —(—2)| = ;—1-2- Thus for each £ >0,

51. Another way is to observe that

2, —(-2)<& whenever n>n,

. e 1
where n, is any positive integer such that n, > —.

Ve

2. Observethatif z, = —2+i("? (n=12,..)), then
n

r,=lz I= J4+—14- — 2.
n

But, since
0, =Argz,, >n and O,  =Argz, , —>-7 (n=1,2,...),

the sequence ©, (n=1,2,...) does not converge.

3. Suppose that imz, =z. That is, for each &> 0, there is a positive integer n, such that

1> ve

|z, — zZi< € whenever n > n;. In view of the inequality (see Sec. 4)

lz, —zl 2z |-z,

it follows that llz,1-zll< € whenever n >n,. Thatis, limiz |=lz.

Ao



The summation formula found in the example in Sec. 52 can be written
ol . Z
Zz =-—— when Ilzi<l.
n=1 1'_22

If we put z =re”, where 0 <r <1, the left-hand side becomes

i(re‘? ) = 'ir"ei"g = ir" cosn9+iir" sin 6

n=] A=} n=1 n=1

and the right-hand side takes the form

ig e

re 1-re™ _ re” —r* ~ rcos@—r” +irsin6
1—re® 1-re™® 1—r(® +e®)+1? 1-2rcos8 +#*

Thus

rcos @ —r? i rsin @
1-2rcos@+r* 1-2rcos@+rt

Er" cosné + in" sinnf =
n=1

n=1

Equating the real parts on each side here and then the imaginary parts, we arrive at the
summation formulas

s y o .
rcos9—r . rsin 6
Zr” cosnf = — > and Zr" sinn@ = =
1-2rcos@+r p—r 1-2rcos8+r

n=1

where 0 < r <1 These formulas clearly hold when r =0 too.

Suppose that Ezn =3. To show that Efn =S, we write z =x_ +iy, S=X+iY and

n=1 n=]

appeal to the theorem in Sec. 52. First of all, we note that

ixn:'X and iyn=Y.

n=1 n=|

Then, since 2(—y,,) = —Y, it follows that

n=1

ifu =i(x,, —iy,,)=2[x,, +i(-y )]=X—-iY =S8.
n=] n=1

n=1
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8. Suppose that zz,, =3 and Zw,, =T. In order to use the theorem in Sec. 52, we write
n=] n=]

z,=x,+iy,, S=X+iY and w, =u +iv, T=U+iV.

Now

ix,,:X, iy,,=Y and iun=U, ivn=V.
n=1 n=1

n=1 n=|1
Since
D(x, +u)=X+U and Y (y,+v,)=Y+V,
n=l

n=|

it follows that

i[(xu +u,)+i(y, +v,)=X+U+i(Y + V).

n=]

That is,
D I(x, +iy,) +(u, +iv,)] = X +i¥ + (U +iV),
n=|
or
Z(_Zn +w )=S+T.
n=1
SECTION 54

1. Replace zby z° in the known series

a0 in
Z
coshz= lzl< oo
; (2n)! ( ‘
to get
euts 4n
osh(z) =Y = |21< o).
cosh(z?) Z_:; o (I2< =)
Then, multiplying through this last equation by z, we have the desired result:
.o z4n+l
zcosh(z’) = 2 (lzl< o2).

n=0_ (27’1)!
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2. (b) Replacing z by z—1 in the known expansion

gi- (Izl< ),
we have
-Z(Z o (1< )
. o
el =g le = e; 2 ;!Dn (Izl< o).

3. We want to find the Maclaurin series for the function

_Z 1
S =7 +9"9 1+(z*/9)

To do this, we first replace z by —(z* /9) in the known expansion
MR, Iz< 1
-7 & (Izl<1),

as well as its condition of validity, to get

1+(z TS Za (z1< /3).

Then, if we multiply through this last equation by g, we have the desired expansion:

ORDY=t B (<43

6. Replacing z by z’ in the representation

. PR .
smz—;( 1) T (Izl< =),
we have
o 4n+2
sin(z?) = ¥ (-1)" — (Izi< ).
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Since the coefficient of z" in the Maclaurin series for a function f(z) is £™(0)/ n!, this

shows that

F°0=0 and F*0(0)=0 (n=0,12,...).

: 1 : .
7. The function —— has a singularity at z =1. So the Taylor series about z =1 is valid when

9

1-z
lz—il < /2, as indicated in the figure below.

To find the senes, we start by writing

1 1 1 1

— —
———— e —— i S e

e A —

l-z (A-i)—(z-i) 1-i '1:(z—'-”i)/(1—i)'

This suggests that we replace zby (z—1i)/ (1 —i)in the known expansion

I N .»
-2 = Zz (zl<1)
n=0
: 1
and then multiply through by 17 The desired Taylor series is then obtained:
1 oo Y
——=Z (Z_ .z) (z—1i < 2).

The identity sinh(z + 77) = —sinh z and the periodicity of sinhz, with period 2 ni, tell us that
sinhz = —sinh(z + i) = —sinh(z — 7).

So, if we replace z by z — i in the known representation

oo 2n+l

R -
Slnhz—g(2n+l)! (l1zl< o)
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and then multiply through by —1, we find that

2+l

sinhz = —i E-_ )

)2 (2n+1)1- (12— 7l < o0).

13. Suppose that 0 <zl <4. Then 0 <lz/ 4l <1, and we can use the known expansion

=Yz (Izl< ).

re=(}

1
1-2

To be specific, when 0 <lzl < 4,

SECTION 56

1. We may use the expansion

sinz = Z(—l)" (zl< o0)

2 . (1 ) -~ (=D 1 =~ D" 1
z°sin| — | = — =]+ —
( 2 z'(2n+1)1 z* ;(2n+1)! 7'
3. Suppose that 1<lzl< o and recall the Maclaurin series representation

—1——=iz" (Izi< D).

L Ll 1L ey (1 <lel< ).

Replacing n by n—1 in this last series and then noting that

)" =-D"TED = EDT,
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we arrive at the desired expansion:

1 5 oo (_l)rﬂd

Tea 2‘; > (1<lzl< o).

4. The singularities of the function f(z)= (11 ) are at the points z=0 and z=1 Hence
Z Z

there are Laurent series in powers of z for the domains 0<lzi<1 and 1<lzl< o (see the
figure below).

To find the series when 0 < Izi< 1, recall that -1-—1—- = Zz (Izl< 1) and write

4 n=()
1 1 _ I 1 & = 1 1
f(z)='"'"-—=—— =) T m 4+ ) =Y I —
2 1-z 7 Z& ,,Zg‘ A E | Z‘ z z

As for the domain 1< lzl< oo, note that 1/ zl <1 and write

___1 1 I
f(Z)—' 23 1- (1/2) 2() z n+3"_2z_u‘

Z n=(} n=_ < n=3

5. (a) The Maclaurin series for the function _z_-_l_-_% is valid when Izl< 1. To find it, we recall
z —
the Maclaurin series representation
1 <.,
1-2 = EZ (Izi<1)
n=0
for L and write
-z

2+l =—(z+ 1)-—-—(—z-—-1)Zz —iz"”—iz"

<= 1 n=0 n= () n=0

=-Zz"—22"=—1—22zn (Izl< 1)

nu| n=0 n=1
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(b) To find the Laurent series for the same function when 1<lzl< e, we recall the

‘. . 1 .
Maclaurin series for —— that was used in part (a). Since |—|< 1 here, we may write

l1-2z Z
1
S-S 55
z—1 1_1 z/1_1 Tha\Z) D7 =™
4 Z
-1 <1 = 1 1
=) =+ > —=1+2% — (1 <lzl< o).
n=0%  pel n=1
. 1 . : ..
7. The function f(z)= 1+ 25 has isolated singularities at z=0 and z =41, as indicated in
z(l+z

the figure below. Hence there is a Laurent series representation for the domain 0 <lzi<1

and also one for the domain 1 <lzl< oo, which is exterior to the circle |zl=1.

o

s e, o T o g o b Py rr)
e (= % G ' e
¢ o . % ; -. :I 4 R . : %j}ﬁ

B iz" (Izl< 1).

For the domain 0 <lzi<1, we have

1 I
f(Z)_ — 2( ) Z(_l)n 2n-1 ___I_z(_l)n 2n-1 _Z( 1)n+l 2n+1

4 1 +Z 4 n=0 n=ﬂ Z

On the other hand, when 1 <|zl< oo,

1 1 o (_l)u oo (_l)ﬂ-i'l
f(2)=—= == (— --—) = .
z3 1+ _la- ZS s E zZn+3 — z2M+l
Z

In this second expansion, we have used the fact that (=1)*"! = (~1)""'(-1)? = (-D**".




8. (a)

(b)

10. (a)
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Let a denote a real number, where —1 < a <1. Recalling that

1 n
E_zz (Iz<1)

enables us to write

a__ 22‘_ (lal<izl< oo).

€ —a L
But
a_ _ a __{cos@—a)—isin@ acosf-a’ * —iasin 6
e®—a (cos@-a)+isin® (cos@—a)—isin@  1-2acosl+d>

and |

i a"e" = ia" cosn@ - ii a” sinn@.

n=1 n=] n=]
Consequently,

asin @
1-- 2acos@+a’

ia" cosng = 200862
1-2acos@+a?

and Za sinn@ =

n=]

when -1 <a<].

Let z be any fixed complex number and C the unit circle w=¢" (~7< ¢ £ 7) in the w
plane, The function

F(w)=exp -Z-[w - -1-)-

2 W

has the one singularity w =0 in the w plane. That singularity is, of course, interior to
C, as shown In the figure below.
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AN
w plane

Now the function f(w) has a Laurent series representation in the domain 0 <lwi< oo,
According to expression (5), Sec. 55, then,

exp _Zz_(w_%) B iJ}(z)W" (O<lwi< =),

J S vt

where the coefficients J (z) are

J,(2) = ——| - —— P2 g (n=0,%1,%2,...).
| W

2m ¢

Using the parametric representation w =" (-7 < ¢ < 7) for C, let us rewrite
this expression for J_(z) as follows:

x eXp[—z—(ei' —e

1 2
Jo(2) =
2mi ¢

~i¢ )] _
dietd = E}E [ explizsin gle™dg

) it

That 1s,

J(2)= E%LEXP[_i(mb - zsin@)1d¢ (n=0,£1,£2,..)).

(b) The last expression for J (z)in part (@) can be written as

J (2)= -2-!-’-:- I[cos(ngb —zsin @) —isin(n¢g —zsin @)} d¢o
= ﬁ_jﬁcos(ngﬂ — zsin ¢)d¢ —?i’-r-:[xsin(ngb —zsin ¢)d¢

=517;2_!cos(n¢—zsin¢)d¢—-2-%0 (n=0,x1,%2,...).



That is,
J(z)= %!cos(mp — zsin ¢)d¢
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(n=0,x1,%£2,...).

11. (a) The function f(z) is analytic in some annular domain centered at the origin; and the
unit circle C:z=e¢" (-7 < ¢ £ ) is contained in that domain, as shown below.

Y

For each point z in the annular domain, there is a Laurent series representation

f(Z)=ia,.Z" +i£;—‘-,

na() n=1 <

where

dZ ? i ¢ £ - if1
=5 [ LI mfffff.ﬂz ie*dp = — [ fe)e*dg

and

(D)dz _ 1 ¢ fle?) ., .1 t i in
" zmjcfi')“ E_I ¢(<e~+3>’e'd¢=§;jf(e')e ‘do

ﬂ.'

Substituting these values of a, and b, into the series, we then have

n=0 "’r n=1 —

| | - R " Y
f(z)=E_J;f(e')d¢ +-2-;§_J;f(e') ('E;) +(E—] }dﬂb-

(n=0,12,...)

(n=12,...).
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(b) Put z=¢" in the final result in part (a) to get

ig 1 f [ 1 = T i n(8- -in( 8-
fle")=5= _Lf(e')d¢+5;§_1mf(8')[-‘f( P+ dg,

iy _ i ¢ ip I r ip
fle®)=5- .f,f(e )dg + ;21 _L F(e*)cosn(@ - ¢)]do.
If u(8) =Re f(¢”), then, equating the real parts on each side of this last equation yields

u(6) == j u(@)d¢ + —Z j u(¢)cos[n(8 - ¢)1d¢.

ﬂ=1..ﬂ_'

SECTION 60

1. Differentiating each side of the representation

_1-:_1_;=izn (zl< 1),
we find that "
Ez —Z-—z =Y 1 = ¥ (4 1) (zl< ).
(1 Z) u-—l} u=0 n=1 n=0

Another differentiation gives

(1 - 2 %i(" +1e' =3 (n+ D""'«'f = Z"(ﬂ +1)7" = Z(n +)(n+2)7"  (d<),

2. Replace z by 1/(1-z) on each side of the Maclaurin series representation (Exercise 1)

1 o
=Y (n+1)z" (Izl< 1),
(1-2)° ;o )
as well as in its condition of validity. This yields the Laurent series representation
Loyl  (I<lz=1i< ).

Zz n=2 (Z - l)n
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3. Since the function f(z)=1/z has a singular point at z =0, its Taylor series about z, =2 is
valid in the open disk [z —2l< 2, as indicated in the figure below.

To find that series, write

11 1

1
z 24(z=2) 2 14+(z-2)/2

to see that it can be obtained by replacing z by —(z—2)/2 in the known expansion

1
—-—-:Zz" (|Z|< 1)
1"" Z n=0
Specifically,
115] =]
- 220,[ > (Iz—21<2),
or
1 N (""'1)1'l . n
;=u=0 2“_1 (2"2) ('Z—2|< 2).

Differentiating this series term by term, we have

- oa ¢ axn+]
2{(2"9* n(z-2)""‘=25( 22,2 (n+1D(z-2) (Iz-2l<2).
Thus
1 z~2
=7;Z(-1) (n+ 1)( ) (z~21<2).
Z n=0

4. Consider the function defined by the equations

e’ -1
f()={ z

L when z = (.

when z (),
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When z#0, f(z) has the power series representation

1 z ¢ 2 | ..z 2
f(z)—-;[(l+-i—!-+2!+3!+-~)—l_-1+—2--i-+—5i-+-~.

Since this representation clearly holds when z =0 too, it is actually valid for all z. Hence f
1§ entire.

Let C be a contour lying in the open disk {w—1l<1 in the w plane that extends from the
point w =1 to a point w = z, as shown in the figure below.,

0 ﬁ
w plane

According to Theorem 1 in Sec. 59, we can integrate the Taylor series representation

-i-}-:i(—l)“(w— )” (lw—1l<1)

n=0

term by term along the contour C. Thus

C_‘iwﬁ = Lg(—l)"(w ~1)'dw = g(—l)" L(w —1)"dw.

But
2
_di=J..dl-_—[Logw]§=L()gZ“—LOgl:I..C'gZ
CW lw
and
. — a+l T2 4l
. nag | (w=1) _(z-1)
L(W D "-!.(w b dw“_ n+1"_1_ n+l
Hence
> (=1)" e ()T "
& ;}'1+1(z ) ,.21' n 2= (Z‘ )

and, since (=1)"" = (-1 (~1)* = (~1)"*', this result becomes

D™
Logz=) ~—(z-1) (z-1<1).

n=l
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SECTION 61
1. The singularities of the function f(z)=

4

zZ(zZ* +1)
find the Laurent series for fthat is valid in the punctured disk 0 <izl<1, shown below.

are at ‘z=0,xi. The probiem here 1is to

We begin by recalling the Maclaurin series representations

z = 2

2 e —d e e hn e e 00
A TR TRETM (1z1< o)
and
—-l-=l+z+zz+z3+-" | (lzl<1),
1-2
which enable us to write
e’ =1+z+-1—.-.r2 +-—1—z3-|~-- (lzl< o0)
2 6
and
21 =1-z2+z* - 2%+ Qzl< D).
z°+1

Multiplying these last two series term by term, we have the Maclaurin series representation

e’ 1 9 1 3
=l+z+—=2°+—=2"+--
2 +1 2" 6
z* 4
1, 5,
=l+z—-=2"—-=Z"+-,
2 6

which is valid when [zl< 1. The desired Laurent series is then obtained by multiplying each

side of the above representation by l:
Z
et 1 1 5 2
=_+1—--.-z-—_ N 0<IZI<1-
2 +1) z 2°7%° ( )



We know the Laurent series representation

1 __1____1,1+ ! Z 4o (O<lzd< )

zzsinhzmz3 6 z 360

from Example 2, Sec. 61. Expression (3), Sec. 33, for the coefficients b, in a Laurent series

tells us that the coefficient b, of 1 in this series can be written
Z
b = 1 dz

2i /¢ 22 sinhz’

where C is the circle 1zI=1, taken counterclockwise. Since b, = — _tli-’ then,

The problem here is to use mathematical induction to verify the differentiation formula

n (n
[f(2)g(2)]" = 2( k) f¥2)g" ¥ (2) n=12,..)
k=0
The formula is clearly true when n =1 since in that case it becomes

[f(2g@)] = f(2)g'(2) + f'(2)g(2).

We now assume that the formula is true when n = m and show how, as a consequence, it is
true when n = m+ 1. We start by writing

£ ={{f@)8@])™ =[f(2)8'(D) + f (28]

=[f(2)g" (D™ +Lf (2)g()]™

= i(?)f O (g () + i(’:) F**N2)g"  (2)
k=0

k=0

o ™ (k) (m—k+1) & m k) (m=k+1)
X, |Fo@e @ X @@
= k=1

k=0

- F g™ () + Y ('")+(k'" ) £ (g™ B (2) + 7 (2)g(2).
k=1] i .
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But

(mJ+(m )= m! m! ___(m+D!  (m+l)
k) \k=1) kim=k)! (k=-Dim—k+1)! kim+1-k) | k )

and so

m

1
[f(2)8(D)]"™ = f(2)g" () + Z(m; )f V(@™ (@) + 0 (2)g(2),

k=1

m+1

i
[f(2)g()]™" = Z(m : )f D(2g™" P (2).

k=0

The desired verification is now complete.

We are given that f(z) is an entire function represented by a series of the form
f@)=z+az’ +a,z’+ - (Izl< o).

(a) Write g(z) = fIf(z)] and observe that

AN =g+ ED 4 £ 2, & sy (d<o)

It is straightforward to show that

8'(2) = ff()]f (@)

g (@)= fILf@QUf @V + f L Df"(2),

and

' g7 @) = f I @I @Y +2f @ F"@Qf"Lf @1+ fLf @I @ f (@) + f L @If (2).
Thus _
g0)=0, g0)=1, g"(0)=4a,, and g™(0)=12(a, +a,),

and so
fIf@D]=z+2a,7 +2(@2 +a,)7’ +-- (Izl< o0).
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(b) Proceeding formally, we have

fIF(D1= F@) +alf@F +a[f(2)F +-
=(z+ a7’ + a2+ ) +a,(z+at +a i+ ) +ay(z+ art + a g ) e

=+ @ +a, 2+ )+ (@2 + 247 ) + (a2 +)

=z+2a,2" +2(a +a;)z’+ .
(c) Since
z’ 1
sinz=z--—-+-~=z+0z2+(-— —)zs+--- (lzl< e0),
3! 6
the result in part (a), with @, =0 and a, = —-é—, tells us that
L 1 ,
sin(sinz) =z ---gz + - (Izl< o).

We need to find the first four nonzero coefficients in the Maclaurin series representation

1 —~FE T
=) =27 |zl < — .
coshz i n! 2

This representation is valid in the stated disk since the zeros of coshz are the numbers

Z =(-§-+nﬂ)i (n=10,%1,12,...), the ones nearest to the origin being z = i-g-i. The series

contains only even powers of z since coshz is an even function; that is, E, =0
(n=0,1,2,...). To find the series, we divide the series

2 4 1

AR 1., 1 4, 1 5
coshz=14 -+t toi= 1422+ —z* + —— 7"+ lzl< e
SZ=AT5 T T 6 2% T4t Tt (izl< =)

into 1. The result is

{ 1, 5 . 61 , ( ’7)
PR B S I S | S d<Z)
coshz 2% " 24% T720° 2



Since

this tells us that

LS5 e 6l
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Chapter 6
SECTION 64
1. (a) Letus write
1 1 1 1 s 3 1
=i =1z 4+ =+ === l4 7= - 0 <zl ]).
z+2° z 14z z( )Z ¢T e (0 dzl<)
The residue at z = 0, which is the coefficient of -1—, is clearly 1.
Z
(b) We may use the expansion
2 4 6
2° Z Z
cosz—1—2!+4!—-6—!+m (Izl< oo)

to write

NONEEREEEIS RN
‘ Z 2! Z2 4! z* 6! z° -6 2t 7z 4! 7> 6l 7z

(0 <lzl< o0)
The residue at z =0, or coefficient of l, is now seen to be -—%.
Z
(c) Observe that
z—=sinz 1 . 1[ 2 | 2 z
=—(z-sinz)=—|z-|z——+—— ||=Z———+" 0 <zl< o0),
& (Z 31 5! ) 31 5! ( )

Since the coefficient of — in this Laurent series is 0, the restdue at z =0 1s 0.

Z
(d) Wrnite
cotz _ 1 cosz
z* z' sinz
and recall that
2 4 2 4
C()Sz=1—-z—-+£—_...=1_£_+.£__... (|z|<oo)
21 41 2 24
and
3 5 3 5
Sinz—_-z_i__*.f___,..:z__z_._*_z__,,. (Iz|<oo)_
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Dividing the series for sinz into the one for cosz, we find that

cosz 1 z ¢

—_— e TR e e —— de e
sinz z 3 45 (0 <lzl< 7).

3
cotz=1(l A +] 1 11 11

) T R Tl ke R (IEY (0 «zl< 7).

Note that the condition of validity for this series is due to the fact that sinz =0 when

z=nmw(n=0,x1,22, ). Itis now evident that E—-?-;E has residue —-Zl-g. at z=0.
Z
(¢) Recall that
3 5

Slnhz—z+3!+5!+ (Izl< oo)

and
1 2
——=l+z+7"+ (Izl< o),

1-z

There is a Laurent series for the function

=z+%23+--- | (0 <izl«1).
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We then see that
sinh z 1 7 1
R T 0 <lzi< 1).
z‘(l-—zz) 2 6 z (O<lzd<h
sinh z 7

This shows that the residue of at z=0is —.
z*(1-27) 6

2. Ineach part, C denotes the positively oriented circle Izi=3.

(@) To evaluate Jc eXP(E_Z) dz, we need the residue of the integrand at z = 0. From
Z
the Laurent series
exp(—z) 1 z ¢ 2 1 11 1 ¢z
=l b e [E = e 0 <lzl< o0),
z zz[ 1! 2! 3t ZZ 1l z 21 3 (O <ld<=)

we see that the required residue is —1. Thus

| X2 yr = 27i(~1) = 27
c z

(¢) Likewise, to ¢valuate the integral fc z eXp(l)dz, we must find the residue of the

Z
integrand at z =0. The Laurent series

zzexp(l)_zz(l_*_l‘l_*_l_1+1_1+1 1+____)
z 11z 2172 317 4z

, oz 1 11 11
b e,
1121 31 z 4 7

which is valid for 0 <lzl< oo, tells us that the needed residue is -:5- Hence

J.C z? exp(-i—-)dz = Zm(é) = -’-;l—
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+1
(d) As for the integral I < dz, we need the two residues of

Z—'Z

z+1 z41

22 =2z z2(z=2)

one at z=0 and one at z=2. The residue at z =0 can be found by writing

S
z(z—2) Z z=2) \ 2 Z 1*(z/2f

which is valid when 0<lzi<2, and observing that the coefficient of 1 in this last
Z

.1 . . .
product s 5 To obtain the residue at z =2, we write

z+l _(@=D+3 1 1(1 ___g___) 1
2(z-2)  z-2 2+(z-2) 2 14+(z—-2)/2

- 1+—-—- _——— et t—e— ot 8 4

. - oz .
l( 3 )1 Z 2+(z 2) |
2 z—2

which is valid when 0 <lz—2l< 2, and note that the coefficient of

is % Finally, then, by the residue theorem,

z+1 {1 3
= 27| ——+4—{=2mi.
sz_—szz ( 2 2) &

in this product
z—2

In each part of this problem, C is the positively oriented circle izl=2.

5

@ I f(z)=——, then
-z

when 0 <izl<1. This tells us that

Lf(z)dz =2miRes ——f( ) 27i(—=1) = ~2 7

z=0 4
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1
(b) When f(z)= =, we have
14z
Tt 1 a4
Thus
J.Cf(z)dz=2ml}_~?os-—f( ) 27i(0)=0,

(c) If f(z)—-, it follows that -—-f( )—-1- Evidently, then,
Z
1 (1 : :

J.f(Z)dZ=2?FIRes— -—-)=2?R(1)=2m
¢ =0 z°"\z

4. Let C denote the circle lzl=1, taken counterclockwise.

n

(a) The Maclaurin series ¢° = Z—-—- (Izl< =) enables us to write
n=0 n

jcxp(z+ )dz Ie*e"‘dz I ”";n—dz 2 Iz eXp(l)dz

(b) Referring to the Maclaurin series for e* once again, let us write

" 1) ~1 1 &1 ..,
zexpl—|=z ——= " n=012,...).
p(z 27 27 ( )
Now the H in this series occurs when n—k=-1, or k=n+1. So, by the residue

Z
theorem,
1

|z exp( ]dz-—- n=0,12,...).

(n+1)!

The final result in part (a) thus reduces to

J exp(z + — Z)dz ZmZ

n=0 n '(H + 1)'
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5. We are given two polynomials

PZ)=gy+az+a,2" +-+a,7" (a, #0)
and

X)=by+bz+b,z" +--+b 7" (b, #0),

where m2n+2.
It is straightforward to show that

1 ' P(1/ 2) — EDZM:-Z +1alzm-3 +azzm-—4 +-__-|._ anzm-n-—z
ZZ Q(IIZ) bnzm +blzm—l +b2Zm-2 +“'+bm

(z#0).

Observe that the numerator here is, in fact, a polynomial since m—n—220. Also, since
b, #0, the quotient of these polynomials is represented by a series of the form

d, +d,z+d,z* +---. Thatis,

P(1/2)

1 ,
—. =d, +dz+d,7* + - | 0 <lzl< R));
1 P(1/2) .
and we see that -;2- 00/ ) has residue ) z=0.

Suppose now that all of the zeros of @(z) lie inside a simple closed contour C, and
assume that C is positively oriented. Since P(z)/ Q(z) is analytic everywhere in the finite

plane except at the zeros of Q(z), it follows from the theorem in Sec. 64 and the residue just
obtained that

P(2) . 1 P(/z7) .
D) = 2miRes| = L2 | om0 =0.
jf:Q(z) M= [zz 07z~ 470=0

If C is negatively oriented, this result is still true since then

P(z) P(z)
—<Ldz=—] —=4dz=0.
‘L’ Xz) ‘['C Q(z)
SECTION 65
1. (a) From the expansion
2 3
L _4:5_ Z_ E_ oo
e —1+1!+2!+3!+ (17 < o0),

we see that

zexp(l)=z+1+-l—»l+ L + - (0 <izl< 00),

Z 21 z 31 7
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(b)

(c)

(d)

(e)

The principal part of zexp(—l-) at the isolated singular point z =0 is, then,
Z

1 1 1 1
- + . 2+...;
2 z 3! z

and z =0 is an essential singular point of that function.

2

The isolated singular point of is at z=-1 Since the principal part at z=-1

1+z2
involves powers of z+ 1, we begin by observing that

=@+’ -2z-1=C+1)* -2(z+1)+L
This enables us to write

2 2 2(z+ D +1
Z ___(Z+l) Z(Z 1) =(Z+1)—2+ 1 '
1+z2 z+1 z+1

Since the principal part is --}_—1-, the point z=-11is a (simple) pole.
Z

| L ] ] L . Sin &
The point z =0 is the i1solated singular point of 2—=, and we can write
4

p 3 5 2 4
EEP_F..:}_(Z_Z +Z _...)=1_Z + .. (0 <lzl< o).

The principal part here is evidently 0, and so z =0 is a removable singular point of the

function _s._m_z-
Z
The isolated singular point of ——< is z=0. Since
Z
2 4 3 |
E?....S..E.=.]; l—z .|..Z - =1—Z +E__... (O('ZI-(oo),
Z Z 21 4] z 2! 41

the principal part is -1- This means that z =0 is a (simple) pole of Ll
Z F4

1 - : |
2-2) =-(-;£ _12)3 , we find that the principal part of -2 at its

isolated singular point z =2 is simply the function itself. That point is evidently a pole
(of order 3).

Upon writing



(a)

(b)

(c)

The singular pointis z=10. Since

_ 2 4 6 7 3
1—9-259-5——1; 0 PRI S SRS | LI S A A
z 2’| 2174161 )| 21z 41 6
1 1
when O <1zl< o, we have m =1 and B=-—ET=—-.2__

Here the singular point 1s also z=0. Since

_ y ) 3.3 4_4 5.5
1-exp(2z) _ 1 1_(1+22+22 L2z 2z + 22 +]]

z* z* It 20 31 41 5t

21 221 221 20 ¥
112 2027 31z 41 s

3
when 0 <izl< e, we have m=3 and B= —%T=—-§-.
: : exp(2z) .
The singular point of 1s z=1. The Taylor series

(z—-1)°

a0 ,2 _ 2 g4 2@ D) 2%(z—1)° +_gj(z; 1)? . .
1! 2! 3!

exp(2z)=e

enables us to write the Laurent series

expz) _ o[ 1 2 1 2% 2
=g"| ——+ = —— - —— (7~ D
(z—1)° e[(z—l)z 071121 T3
2

Thus m =2 and B=€2F=2€2.

3. Since fis analytic at z,, it has a Taylor series representation

f(zl}) ) f”(ZO)(Z Zo) + ..

J(2) = flz)) +——(z~ %

Let g be defined by means of the equation

f(z) |

g(z) =
Z—2Z4

101

(lzl< o0)
(0 <lz = 1lic o),
(Iz-z,I< Ry).
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(a) Suppose that f(z,) s 0. Then

1 | d ’”
3(2)_2_20 _f(zn)'l'f{?)(z Z) fz("ZO)(Z"Zg)2+--'-
=;-(-Z;: ¥ i!zn)-kfz(:z{})(z—zﬂ)""" . (0<iz~-2z)l< Ry).

This shows that g has a simple pole at z,, with residue f(z,).

(b) Suppose, on the other hand, that f (z{,') = (). Then

— 1 [ f(z) f”( )
8(2) 2z L 1l (z—z,)+ (z2~2,)" +- |
=f:f°)+f§!zn)(z—zo)+'-- (0<lz—20|<R0).

Since the principal part of g at z, is just 0, the point z=0 is a removable singular
point of g.

4. Write the function

3 2
(D)= (Zfi Z = (a>0)
as
32
Q=29 Ghere ¢(z)=-39% _

(z — ai)

Since the only sin_gularity of ¢(z) isat z=—ai, ¢(z) has a Taylor series representation

P(z) = ¢(ai) +- ¢( )(Z ¢”(a )(z——m) + (lz—ail< 2a)

about z=ai. Thus

f(2)= 1. ¢(al)+¢(m)( ¢”(az)(z ai)’ + - - (0<lz—ail<2a).

(z—ai)’ | ! i

Now straightforward differentiation reveals that

, 16a’iz - 8a’7* 1 -
¥ (2) = .c‘:z and  ¢”(2) = 6a’(z* - 4aiz - a)

(z + ai) (z +ai)’
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Consequently,

0(ai) = —a%, ¢'(ai)= --%, and  ¢”(ai) = —i.
This enables us to write

1
(z —ai)’

f(z)= ['--4:121"—g-(z--c:u')----;:--(z---m')2 +] (0<lz —ail<2a).

The principal part of fat the point z = gi is, then,

- 1/2 ___5_1/2 B a’i
_z-—az' (Z""l’llf)2 (z-—ai)a:

SECTION 67
, z°+2 : ?(z)
1. (a) The function f(z)= -1 has an isolated singular point at z =1. Writing f(z) = 1
— 7 —
where ¢(z) =z’ +2, and observing that ¢(z) is analytic and nonzero at z =1, we see
that z=11isa pole of order m =1 and that the residue there is B=¢(1)=3.

(b) I we write
3

f(Z)=( : )=——¢(Z)* where ¢(z)=5§-, |

27 +1 [ ( 1)”3’
| -2
2/

1, : : , ,
we see that z = B 1s a singular point of f. Since ¢(z) is analytic and nonzero at that

point, f has a pole of order m =3 there. The residue is

g $7(-1/2) 3

_—_

21 16

(¢) The function

expz__ expz
2+ 1t (z-m)(z+m)

has poles of order m =1 at the two points z =+m. The residue at z = 7i is

and the one at z = - is
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174
<

z+1

2. (a) Write the function f(z)= (zI>0,0<argz<2x) as

0(z)

-1o
L where ¢(z)=z"* =¢* g (1zI>0,0 <argz<2m).

f(@)=

The function ¢(z) 1s analytic throughout its domain of definition, indicated in the
figure below.

Also,

1 .
2 os-h S (nt+im) inld T .. 7w 1+

p(-D)=(-D" =e

This shows that the function fhas a pole of order m =1 at z = -1, the residue there

being
1+
B=¢(-1)=—.
p=h V2
: : lLogz
(b) Write the function f(z)=-——"= as
(z°+1)

Logz
(z+i)*

f(z)= #(2) where ¢(z) =

(z-1i)’

From this, it 1s clear that f(z) has a pole of order m=2 at z=i. Straightforward

differentiation then reveals that




(¢} Write the function

__z
as
0(z) 7%
Z)= where = -
f(2) Z-i) ?(z) e
Since
i)z = g
¢ (@) 2(z+i)
and
_ ¢ 1 i : 1 i
i 1!2=e m’4=_______, I1{2= in/4 $ e
N ¢ TRV
1/2 1—i
Res— =0'(i) = ———
ef (Zz N 1)2 ¢ (I) 8‘\/5
(a) We wish to evaluate the integral
I ) 37° + 2 de
C(z=10z*+9)

105

(IzZl> 0,0 <argz <27x)

where C is the circle |z — 21 = 2, taken in the counterclockwise direction. That circle and
the singularities z =1, £3; of the integrand are shown in the figure just below.

Observe that the point z =1, which is the only singularity inside C, is a simple pole of

the integrand and that

3 3
Res 3z +5_2 =3z2 +2 =_1_'
= (z-I)2"+9) z°+9],_, 2
According to the residue theorem, then,
32’ +2 ( 1)
— —dz = 27| — | = .
'[C' (z—1)(z" +9) 2
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(b) Let us redo part (a)when C is changed to be the positively oriented circle |zl = 4, shown
in the figure below.

In this case, all three singularities z=1, £3i of the integrand are interior to C. We
already know from part (a) that

3
Res 32 +22 =-—1-.
=1 (z=Iz"+9) 2

It is, moreover, straightforward to show that

s 32+2 32+2 _15+49i
=3 (2~ +9) (@Z-D(z+3i) .y 12
and
3z7° +2 322 +2 15 —-49;
Res S = : = :
==3i(z=I)z2"+9) (z—-D(z-3i)],_,, 12
The residue theorem now tells us that
J 37° +2 .(1 15+ 49i 15—49;') .
s———dZ = —_ + = 6 71i.
C(z=1Xz"+9) 2 12 12

4. (a) Let C denote the positively oriented circle 1zl =2, and note that the integrand of the

integral 3 az has singularities at z =0 and z =—4. (See the figure below.)
Cz'(z+4)




To find the residue of the integrand at z =0, we recall the expansion

n=0
and write
1 1[____1 ‘=1E()2(1)"
(z+4) T A7 1+(z/4)} 47’ < el
. 1
Now the coefficient of — here occurs when n =2, and we see that
Z
Res 3 ! = —1--
=0 z°(z+4) 64
Consequently,

107

(Izd<1)

(O <lzi< 4),

(b) Let us replace the path C in part (a) by the positively oriented circle 1z + 2l =3, centered

at —2 and with radius 3. It is shown below.

We already know from part (a) that

1 1
Res =-—,
=0 7 (z+4) 64

To find the residue at —4, we write

_ 1 @) _1
Pt z-(-a) e @)=

This tells us that z =—4 is a simple pole of the integrand and that the residue there is

¢(—4) =—1/64. Consequently,
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cosh n'z_dz

5. Let us evaluate the integral I

where C is the positively oriented circle [zl=2.

¢ z(z"+1)°
All three isolated singularities z=0,%i of the integrand are interior to C. The desired
residues are
coshmz cosh Jrz]
Res > =1,
=0 z(z° +1) z°+1 1,
coshmz _ cosh nz 1
ReS —_ =—,
= (22 +1) Z(z+i) ], 2
and
cosh 7z _ cosh 7z 1
Res— : = —
=i 7(z' +1) z(z—z)_z_;_l 2
Consequently,
f coshrmedz 2m(1+l+1)=4m.
¢ z(z* +1) 2 2

(a) It is straightforward to show that

(3z+2)

if f(z)=

2z - D2z +5)"

In each part of this problem, C denotes the positively oriented circle |zl= 3.

(3+2z7)°
zZ(1-2)(2+5z2)

)-

.___.,f(l
Z

This function -—12— f(-l-) has a simple pole at z =0, and
4

<

(3z+2) L (1)’= .(_9_)= .
L - 1)(22+5)dz 2 7i Izlgos[z f <) 27 ; Ormi.
(b) Likewise,
3
” __z(1-32) | 1 (_1_)= z—3 |
it 7(2) (1+z2)(1+2z%) zzf z) zZ(z+1)z'+2)
1

1
The function —- f (—

Z 4
I

2°(1-32)
(1+z)(1+ 224

dz =2mi Res —-li-f(—l-)

) has a simple pole at z =0, and we find here that

—3mi.
z=0

o4




109
(c) Finally,

3
z el}z

] _ —1_ l B ez :
1ff(z)—1+ 7» then 2f( )_z2(1+z3)‘

Z < Z

The point z =0 is a pole of order 2 of --1-2— f (—1-) The residue is ¢'(0), where
2" \z _

2

p(z) =

1+z3 .

Since
(1+z3)ea‘! _83322

¢'(2) = Q127

the value of ¢'(0) is 1. So

z’e!’? o [1 (1 . :
c1+2° dz =27 ISEUS ?f(';):l = ZM(].)"—'- 2mi.

SECTION 69
1. (a) Write
I 1 _ p(z) .
sCz = =s~~—, wh =1 and = :
CSCZ e where p(z)=1 and g(z) =sinz
Since

p0)=1£0, ¢g0)=sin0=0, and ¢’(0)=cosO0=1x0,

z =0 must be a simple pole of cscz, with residue

pO) _1_,
q'(0) 1

(b) From Exercise 2, Sec. 61, we know that

p— vy

1 1 1 1|,
CSCZ=—F—7 4| ——— e |77 4... 0 <lzl< 7).
z 3 |3y 51 (O<ddl<m)..

Since the coefficient of 1 here is 1, it follows that z=0 is a simple pole of cscz, the
Z

residue being 1.



110
2. (a) Write

zmﬁinhz _ p(z)
z’sinhz  g(z)

, where p(z)=z-sinhz and ¢(z) = z*sinhz.
Since
p(ri)=rwi#0, q(xi)=0, and gq'(7i)=nx*=0,

it follows that

zZ —sinh V(1) i
RC_S > £ - F:( ) = L
=z z°sinhz q'(mi) n° =

(b) Write

exp(zt) _ p(z)
sinhz  g(z)

» Where p(z)=exp(zt) and g(z) =sinhz.

It 1s easy to see that

Res exp(z!) =2 () =—exp(int) and Res exp(z?) =2 (=) = —exp(—int).

=#i ginhz  q'(7mi) ==z sinhz  q'(—mi)

Evidently, then,

Res XD | pes SXPEN) _ _, explim)+exp(oint) _ o 0o

z=ri sinhz z=-# g§inhz 2

3. (a) Write
f(z)= M, where p(z) =z and g(z) = cosz.
q(z)
Observe that
(4
q(z + nn') =0 (n = O,il,ﬂ,...).

Also, for the stated values of n,

p(—’zf + mr) = -;E +nr#0 and q’(-;-r- + mr) = —sin(% + mr) = (=)™ #0,
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So the function f(z)= — has poles of order m =1 at each of the points
COSZ

z, = -2’5+m (n=0,£1,2,. ).

The corresponding residues are

B = p’(zn) =(_1)H+IZ".
q'(z,)

(b) Write

tanh z = 5((—%) where p(z) =sinhz and g(z) = coshz.
Z

Both p and g are entire, and the zeros of q are (Sec. 34)
(4 .
z=(5+ mr)z (n=0,%1,12,...)

In addition to the fact that q((g— +n:r)i) =0, we see that

n

p((? + nﬂ')ij = Sinh(gi + HMJ et icos N = i(___l)n ” 0

and
Q'((-;E + mz:) i) = sinh[-’zzi + nm’) =i(-1)" #0.

So the points z ==(-g-+mr)i (n=0,%1,12,...) are poles of order m =1 of tanhz, the
residue in each case being
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4. Let C be the positively oriented circle [zl= 2, shown just below.

(a) To evaluate the integral Ltanz:iz , we write the integrand as

tanz=-‘}—-;)-, where p(z)=sinz and g(z)=cosz,

and recall that the zeros of cosz are z= %+mr (n =0,%1,12,...). Only two of those

zeros, namely z=%x/2, are interior to C, and they are the isolated singularities of
tan z interior to C. Observe that

Restanz = %(E/%Q—:-l and Restanz= p(=7/2) =-1L

=2 q (7/2) == A2 q'(—7(2)
Hence

[ tanzdz =27i(-1-1) = -4z
(b) The problem here is to evaluate the integral - 'dlfz . To do this, we write the
sinh2z
integrand as
1 _ p(z)

£==, where p(z)=1 and g(z)=sinh2z.
sinh2z  g(2) where p(z)=1 and g(z)=sinh2z

Now sinh2z =0 when 2z=nzi(n=0,£1,42,...), or when

7 = = (n=0,x1,+2,...).

Three of these zeros of sinh2z, namely 0 and i%, are inside C and are the isolated

singularities of the integrand that need to be considered here. It is straightforward to
show that

Res ;1 ___p(0)=__ 1
z=0 gsinh2z ¢q'(0) 2cosh0

1
2!
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pee L P _ 11 1
=nmf2sinh2z q'(mif2) 2cosh(mi) 2cosm 2’
and
je L ECED 111
=-m/28inh2z q'(-mif2) 2cosh(-mi) 2cos(—m) 2
Thus

5.

: 1
Within C,, the function ——
Z°sinz

has isolated singularities at

z=0 and z=Xnmwr (n=12,...,N).

To find the residue at z =0, we recall the Laurent series for cscz that was found in Exercise
2, Sec. 61, and write

1 1

Tl (0 <lzl< ).




114

1
This tells us that ———— has a pole of order 3 at z=0 and that

Z S1nzg

Res 1 =l.
z=0 z sinz 6

As for the points z=*nzx (n=12,...,N), write

1 _p(2)

, wh =1 and = z7’sinz.
Zsnz 9@ where p(z)=1 and g(z)=2z"sinz

Since

p(tnm)=1%0, qEnn)=0, and gq'(Enn)=n’n’cosnn=(-1)"n*n*=0,

it follows that

1 1 1" (-1
ges _1y1,,2 2 n = 2 .27
=taw 7% 5in z ( D'n°r” (-1Y) n'r

So, by the residue theorem,

-

j d,z dz = Zm ZE (_1)

Cx z° sinz “n'r

Rewriting this equation in the form

n 12  4iJcv z%sinz

i(_l)n+l _ EZ T dz

and recalling from Exercise 7, Sec. 41, that the value of the integral here tends to zero as N
tends to infinity, we arrive at the desired summation formula:

2

2 (___ 1)n+1 T

n=]

6. The path C here is the positively oriented boundary of the rectangle with vertices at the
points £2 and +£2+i. The problem is to evaluate the integral

J‘_ dz
c(Z2 -1 +3
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The isolated singularities of the integrand are the zeros of the polynomial

9(2) =" -1)* +3.

Setting this polynomial equal to zero and solving for z°, we find that any zero z of g(z) has
the property z° = 1++/3i. It is straightforward to find the two square roots of 1+4/3i and

also the two square roots of 1—+/3i. These are the four zeros of g(z). Only two of those
Zeros,

~3 +i
ol

% = V2™ = V3 +i and —Z, =—+2e" =

-, y C 2+

To find the residues at z, and —Z,, we write the integrand of the integral to be evaluated as

1 2
7' +3 = ZE—S, where p(z)=1 and q(z) =(z" —1)* +3.

This polynomial g(z) is, of course, the same ¢q(z) as above; hence g(z,) =0. Note, too, that
p and g are analytic at z, and that p(z,)# 0. Finally, it is straightforward to show that

q(z)= 'flz(z2 - 1) and hence that
7' (%) = 42,z —1) = 26 +6+/2i # 0.
We may conclude, then, that z, is a simple pole of the integrand, with residue

p(z,) — 1
7'(z) 26 +6v2i

Similar results are to be found at the singular point —z,. To be specific, it is easy to se¢ that

9'(-Z,) =—q' (%) = —q'(2,) = 246 + 6~2i %0,
the residue of the integrand at —z, being

P (“‘fu ) 1

g'(-%,) 26 +642i
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Finally, by the residue theorem,

J‘ dZ -_-27171( I 4+ —= I J:—’E—
c(z> =1)* +3 246 +682i 26+ 62i) 242

7. We are given that f(z)=1/[g(z))°, where g is analytic at Z» 9(Z,)=0, and ¢’(z,) #0.
These conditions on g tell us that ¢ has a zero of order m=1 at Z,- Hence

q(z) = (z— z,)g(z), where g is a function that is analytic and nonzero at Z,; and this enables
us to write

¢(z) h _ 1
@-z)7 ) [g(2)]

f(z)=

S0 f has a pole of order 2 at z,, and

28°(z,) _
[5(z, )]3

Res f(2) = ¢'(z) = -
But, since g(z) =(z—z,)g(z), we know that

9'(2)=(2-2z)8'(2)+8(z) and ¢"(2)=(z~2,)8"(2) +28 (2).

Then, by setting z = z, in these last two equations, we find that

q(z,) =g(z,) and q"(z,)=2g"(z,).

Consequently, our expression for the residue of fat z, can be put in the desired form:

IO~ aF

8. (a) To find the residue of the function csc’z at z =0, we write

1
[q(2)]°

csc’z = where g(z) = sinz.

Since g is entire, g(0) =0, and ¢"(0) =10, the result in Exercise 7 tells us that

Res csclz = — 2 ©) =0

[0
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1 L ] L [ ]
(b) The residue of the function (—-—? at z =0 can be obtained by writing
Z+2z

1 1

(z + 2:2)f [q(2)F"

where ¢(z)=z+ z2.

Inasmuch asq is entire, g(0)=0, and g’(0) =1# 0, we know from Exercise 7 that

Res 1 -4 ©) =

=0 (z47?)  [QOF
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Chapter 7

SECTION 72

1. To evaluate the integral j , we integrate the function f(z)= fl around the simple

0 .xz +1 z +1
closed contour shown below, where R> 1.

We see that
R
dx
+ =2mB,
_;Lx2+l '[CRZZ+
where
B=Res 21 = Res .1 =—'1_:l =_1_'
=ioz" 41l = (z—i)z+i) z4il 20
Thus
"f dx e dz
x:+1 Caz”+1

Now if zis a point on C,,

122+ U2z =1I= R? ~1;

and so
(8
dz | R R
st = > oo
'[CRZ2+1 Rz"“’"l 1__];- 0 aS Rﬁ
RZ
Finally, then
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1
(z*+1)

The integral I (xzd: - can be evaluated using the function f(z)= - and the same
0

12

simple closed contour as in Exercise 1. Here

R
dx
j (x* +1)* d IC. (2% +1)*

-R

1 :
where B=Res . Since

=i (7% + 1)2

1 ¢(z) 1

@ @i e T

we readily find that B = ¢°(i) = %, and so
l

2+1)? 2 Ja+F

t dx T dz
|

If z is a point on Cg, we know from Exercise 1 that

122 +112 R* =1;

thus
i1
dz 7R R}
< = —3——f -0 R = oo,
IC’. 2+ (R*=1)? 1 -
s
The desired result is, then,
[ A . S
L+ 2 J P 1P 4
We begin the evaluation of I f:—l by finding the zeros of the polynomial z* +1, which are
X
0

the fourth roots of =1, and noting that two of them are below the real axis. In fact, if we
consider the simple closed contour shown below, where R > 1, that contour encloses only
the two roots

1=e‘ﬁ’4=—1—-+_}_—.
2 2
and
3xI4 _ iml4 ixf2 1 ] ) 1 i
=¢ =¢ ¢ X e R e
= (ﬁ V2 2 42
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Now

£ dx dz

_Lx‘ +1 +-L'. 2t +1 =2m(B +B,),
where

1 1
=R and B,=R :
5 =0 7° +1 2T ez 41
The method of Theorem 2 in Sec. 69 tells us that z, and z, are simple poles of 41+1 and
Z
that
=_1._§__4'Z_1=-_Z_1_ and B2=_.l.§_..z_2=_..z_2.’
4z, z, 4 4z, z, 4

since z; =~1and z; = —1. Furthermore,

_1 BRGNS TR A
BB =—gla+z) 4_(ﬁ+ﬁ)*( ﬁ*ﬁl N2

Hence

B

__Rx4+1 \[5 Caz® +1
Since

dz TR

< ~—> (0 as R-— oo,
L‘:z‘+1| R 1 -

we have
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xtdx

We wish to evaluate the integral I-——

: (x* +1(x* +4)

shown below, where R> 2.

W t find the residues of the function = £ at its simple poles
e must fi f(z) ErDE+4) ple p

z=i and z=2i. They are

z 1
B, =Res f(z) =—— ] =——

2+ +4) ., 6
and
> 1
R - £ .y
B, = =%.Sf (2) = = ) +20)), 3
Thus
( x* dx 7> dz Ca
..'[t(xz + 1)(-;;:-2 + 4) * 'L'n (ZZ + 1)(32 + 4) - zm(Bl + BZ)s
or
f_ xz dx _ 1T —j szz
R HDE ) 3 A+ +4)

If z is a point on C,, then

22 +1iz2llzP-1I=R*—1 and Iz*+4I2liz? -4I=R*-4.

Consequently,
T
=3 L I R R >0 as R— oo,
& (22 +1)(z* + 4)| (RT~1)(R* - 4) (1 _ ____)(1 _____)
and we may conclude that
Tt T t x*dx T

g

_J(x +1)(x ¥4) 3 O AN +d) 6
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x*dx
) (X +9)(x” +4)?

f(z)=

5. The integral j

2
<

(22 +9)(2* + 4)*

can be evaluated with the aid of the function

and the simple closed contour shown below, where R > 3.

We start by writing
R 2
x" dx z’ dz
+ 2mi(B, +
_-L(xz +9)(x? + 4)° JC: (22 +9)(z* + 4) ( 5
where
2 2
= Re § —mmmm——rr B, =Res R
A= (2" +9)(* +4)* T (29N + )
Now
—_— ZZL — _E_
(z+3i)2+4) | _,, S0P
To find B,, we write
2 2
Z ¢(z) z
- = ~, where = .
(2 +NE+4)*  (z—-20) P2) (22 +9)(z + 2i)*
Then
13
2y =—=
B, =¢'(2i) = 2001
This tells us that
f xtdx e T "‘I _ z2 dz
L+ +4) 100 Yo (2 +9) (2 +4)
Finally, since
2 3
z dz 7R
< o0
Ic. (2" +9)z* + 4| (R*-9)(R - >0 as R e,
we find that
[xd or [ _ T
L9 +4y 100 ) (x? +9)(x +4) 200




7. In order to show that

xdx

ij'

we introduce the function

f(z)=

(D +2x+ 2)

Z

and the simple closed contour shown below.

(z* +1)(2* + 224 2)

v/

5!
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Observe that the singularities of f(z) are at 'i, Zo =—1+i and their conjugates —i,
Z, =—1—i in the lower half plane. Also, if R> /2, we see that

| fydx+ [ f(z)de=27i(B, +B)),
~R .

where
B, =Res f(z) = :
=%

and
Z

B, =Res f(z) =

Evidently, then,

ji x dx T

-R
Since

]

(zz +1)(Z_'z_o)_ 2=24

(z+i)(z* +2z+2) ;

zdz

1,3,
10 10
1 1.

===
10 5

I zdz
(22 + 1) +2z2+2)

as R — o, this means that
R
x dx

lim | —

R « (x +1)(x* + 2x + 2)

This is the desired result

'L'R(Z +1)(z—z,)(z-%,)

(x* + D(x? +2x+2_5—_-§—-[0n (z* +1)(z +2z+2)'

R’

RV
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27 using the simple
"33

8. The problem here is to establish the integration formula j

x> +1
closed contour shown below, where R> 1.

1

, namely z, =¢"™", that is interior

There is only one singularity of the function f(z)=— 1
Z

to the closed contour when R>1. According to the residue theorem,

L; dz N dz . dz ~ 27i Res 1 |

ZS+1 sz3+1 sz3+1 =% 7 +1

where the legs of the closed contour are as indicated in the figure. Since C, has parametric
representation z=r (0<r<R),

and, since —C, can be represented by z = re'*™ (0<r<R),

j _J‘ =_T e dr =__eimsf dr .
¢: z° +1 G212 ey 41 r’+1

Furthermore, |

RGS 1 1 71.!::!3

=2 1 320 38
Consequently,

R X
: dr 2 7T dz
1__ ellﬂ.‘f?r — : _ .
( )-! ?'3 + 1 3e£2#13 ICI Z?' +1

But

—> 0 as R— oo,

J‘ dz I< 1 2#R
a2 +1{ R -1

This gives us the desired result, with the variable of integration r instead of x:

f dr 27 27 B T _ 27
r F 1 3(81211'13 _ el4#f3 8—16513) 3(ef2;':f3 _ e—f2#13) 3Sin(2ﬂ l 3) 345 ’
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9. Letm and n be integers, where 0<m<n. The problem here is to derive the integration
formula

d 2m
[—dx = iesc(zm +1 n).
X 2n

(a) The zeros of the polynomial z*” +1 occur when z?" = —1. Since

(2k+ D)
2n

(-)Ve" = exp[i

(k=0,12,....,2n-1),

it is clear that the zeros of z*” +1 in the upper half plane are

.@Eﬁﬁ] (k=0,1,2,...,n—1)

C, =¢€ l
k XP[ .

and that there are none on the real axis.

(b) With the aid of Theorem 2 in Sec. 69, we find that

Res " = 74 =-Lc2(’"‘”)“ (k=0,1,2,....n-1).
e 2 +1 2nc 2n
: 2m+1 :
Putting « = > 7L, W€ can write
n

C:(m-n)ﬂ — exp[i (Zk + 1) ﬁ(;::l -2n+ 1)_]

_ exp[z' Ck+D2m+ D
2n

Joizt sy e

im

Res—— = _ L giaksve (k=0,1,2,...,n-1).
z=c¢ 777 +1] 2n

In view of the identity (see Exercise 10, Sec. 7)

sz = ll—z | (z#1),
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then,
n-1 Am n~1 iZan —~ice
. Fré ) l-¢ e
273 Res =Ty oyt = el e T
ko % 20 +1 k=0 n 1-¢f 4
_ m T g g
n e“—e™ n % -2 peino

(c) Consider the path shown below, where R>1.

The residue theorem tells us that

R xlm | 2 lm
I - dx+ dz ZMERES
_Rx +1 k=0 I=Cy z +1
or
R Zm Zm
X JT
J 2n dx: : I er.l dZ.
X +1 nsing G z°" +1

Observe that if z is a point on C,, then

12"l =R™ and 17" +112 R* -1.

Consequently,

1

Zm Zm -2n

Z R R I(n-m)-1

dz| < IR - =1 R - —0;
IJCR " +1 R¥» -1 R 11

RZu

and the desired integration formula follows.

10. The problem here is to evaluate the integral

'3"—-.8

[(x :-a) +11°

where a is any real number. We do this by following the steps below.




(a)

(D)
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Let us first find the four zeros of the polynomial

g(z) =(z* —a)* +1.
Solving the equation g(z) =0 for z*, we obtain zZ =a+i. Thus two of the zeros are

the square roots of a+i, and the other two are the square roots of a—i. By Exercise
5, Sec. 9, the two square roots of a +i are the numbers

2 =—j—§-(JA+a +NA—a) and -z,,

where A=va® +1. Since(£7,)* =z =a+i=a—i, the two square roots of a—i, are

evidently
Z, and -—3,.

The four zeros of g(z) just obtained are located in the plane in the figure below, which
tells us that z, and —Z; lie above the real axis and that the other two zeros lie below it.

Let g(z) denote the polynomial in part (a); and define the function

1
6

which becomes the integrand in the integral to be evaluated when z = x. The method
developed in Exercise 7, Sec. 69, reveals that z, is a pole of order 2 of f. To be

specific, we note that ¢ is entire and recall from part (a) that g(z,) = 0. Furthermore,
q"(z)=-*-’fz(z2 -a) and z§ =a+i, as pointed out above in part (a). Consequently,
q'(z,) = 4z,(z5 — a) = 4iz, # 0. The exercise just mentioned, together with the relations
22 =a+iand 1+a® = A?, also enables us to write the residue B, of fat z,:

- f(2)=

Q_f;(zg_)____l_%_:_cg -_4a__3z§-a _3a+i)—a a-i _ a—j(2§2+3)

AT @ @iy 16z, 16ia+ie a—i 164

As for the point —Zz,, we observe that

q'(-2)=-q(z) and ¢"(-2)=q Q).
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Since g(—z,) =0 and ¢'(-%,) =—q’(z,) = 4iZ, # 0, the point —Z,is also a pole of order
2 of f. Moreover, if B, denotes the residue there,

2

__ 4R 4G ={ q"(zg)_}rf’
@2 [¢'(z) (g ()P v

B +B =B ~-B =2ilmB =

— ' 2 ]
| Im[ a+i(2a® +3) |

A%i Z,

(c) We now integrate f(z) around the simple closed path in the figure below, where
R >z} and C, denotes the semicircular portion of the path. The residue theorem tells

us that
R .
Jfde+ [ f(z)dz = 27i(B + B)
- ~R
R . 7 a
I _ dxz_ = 1:2 Im[—a+z(_2a +3) _I dz _
Llx"=a)" +1]" 4A Z x [q(z)]

In order to show that

. dx
1 =
ol jc, [q(z)P 0,

we start with the observation that the polynomial g(z) can be factored into the form

9(2)=(2-z N2+ 2 )(z- % )z +2).

Recall now that R>1z,l. If z is apointon C,, so that |zl= R, then

lzx z,|2lzl=lzll=R—-lz,) and |z ZI2l1Z-IZ|1= R -zl



129
This enables us to see that 1g(z)l = (R—-lz,1)* when zis on C,. Thus

1 S-——l

[gDF ] (R-z,))

for such points, and we arrive at the inequality

i1
1 7R R7
; dz| € — S | S
L—. [9()Y (R-lz,l)’ (1_ !_5_(_,1)
R
which tells us that the value of this integral does, indeed, tend to O as R tends to .
Consequently,
T dx 7 |[-a+i(2a®+3)
V.o =g m —ax2a 49
2" =a) +11° 44" | Z, )

But the integrand here is even, and

ol zati@a’+3) | o[ o —a+i@2a’+3) JA+a-iVA-a
i Z, - VA+a+ivA-a VA+a-iNA-a|

So, the desired result is

i@ -?W= ST (20 + VA ra +aVA=a],

where A =va? +1.

SECTION 74
1. The problem here is to evaluate the integral I _?_c_crs_x_gi_x_____’ where a>b>0. To do
2 +ad)(x +bY)
1
this, we introduce the function = wh ingularities ai and bi lic
S f(2) Z e+ whose singularitie

inside the simple closed contour shown below, where R > a. The other singularitics are, of
course, in the lower half plane.
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According to the residue theorem,

( ehdx iz ]
-f[e(xz +a’)(x? +b7) ¥ &[f(z)e dz =2ni(B + B,),
where
B =Res(f@e =y | =
e (z+ai)Z*+b%) |, 2a®-a)i
and
— 2y — ei:: ] - e'b
Bl z_____ebi.s[f(Z)e ] (ZZ +a2)(Z+bi)_z=bl— Zb(al _bz)i.
That 18,
T e” dx T (e'b e"‘] If( et ds
- = —= - z)e dz,
R+ Y +B) a'-\b a )
or
R cos x dx o (et e .
-J;(x2+az)(x2+b2) T2t - b (T_ a )“Reé[f(z)e dz.

Now, if zis a point on Cj,

| f(DI< M, where M, = !

(R'.’, _al)(RZ _bZ)
and le“l=e¢”” £1. Hence

R

(Rzl—dz)(Rz—bz)_)o as R — oo,

< | Jc. f(z)e"‘dz, < M, 7R =

Rejc f(2)e*dz

So it follows that

- -

J cosxdx T e_‘b_-_e-a @5 b0
(2 +a )2+ -\ b a '

-}

L -

2. This problem is to evaluate the integral j
0

cOSax

2

dx, where a2 0. The function
x‘+1

1
12)= 72 +1

contour shown below, where R>1.

has the singularities *i; and so we may integrate around the simple closed
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We start with
R jax
€ .
dx + “dg =2
_J;x’+l &[f(z)e z=2mB,
where
_ einz e-a
B=Res| f(D)e“ |=—]| =—.
z=i [f( ) z+i:|z=: 21
Hence
R eiax
e Gt EC
or
f CRL b= me™* —Re [ f(2)edz
2. X +1 c ¢ ’
Since
FIS M, where M =——
R* -1
we know that
Re | f(2)e™dZ < e'“dz| < :
if() 4r' CJ;f(z) T
and so
t cosax a
_j T dx = me
That is,
Tcosax , W _,
Ixz+1dx—2e (@2 0)

dx, we first introduce the function

To evaluate the integral jxszl nZx
y X +3

< - <
243 (z-7)z-3)

f(z)=

where z, =+/3i. The point z, lies above the x axis, and Z, lies below it. If we write

P(z) where MZ):__zexp(iZz),
Z—Z Z2—7Z

f(z)e™ =
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we see that z, is a simple pole of the function f(z)e™* and that the corresponding residue is

_ oy N3iexp(=2+3) _ exp(—2+/3)
‘Bl - ¢(zl) — 2-\/51,. - "2 .

Now consider the simple closed contour shown in the figure below, where R > +/3.

i2z

Integrating f(z)e " around the closed contour, we have
i2x

] |
Xé€ .
dx =27B — | f(2)e'* dz.
_'L x*+3 1 J‘Cn

dx = Im(27iB) - Im L_l F(2)e™ dz.

R .
J-:csmx
2
S X +3

Now, when z is a point on C,,

| f(Z)= M,, where M, = 3—)0 as R — oo;
and so, by limit (1), Sec. 74,
: ilz —
}tl_t& jc, f(2)e*dz =0.

Consequently, since

lhnjc, f(2)e™ dz, <

J'CR f(z)e&z dz

?

we arrive at the result

J‘ xsinx
x2+3

—~o0 0

dr=mexp(-2v3), or | "‘j‘: dx:%exp(—?.-\/?).
X
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o 3 s
6. The integral to be evaluated is jxxfl_l:?—dx where a>0. We define the function

3
f(z)= - f+ 4; and, by computing the fourth roots of —4, we find that the singularities

zl =ﬁeiﬁf4 - l+i and Zz — ﬁeﬂm’dﬂ; — ﬁemueim’z — (1+l)i= _1+l

both lie inside the simple closed contour shown below, where R>4f2. The other two
singularities lic below the real axis.

The residue theorem and the method of Theorem 2 in Sec. 69 for finding residues at simple
poles tell us that

R xSeia: |
dx + 2)e“dz =2mi(B + B,),
2 o
where
3 iaz 3 iaz, iaz, ia(l+) -3 _ia
e e
B=Rcsz4 _ g 3__.«3 _¢ _¢’e
=2 7 4+ 4 421 4 4 4
and
ZSemz z;eiﬂ.zg eiaz; eia(—lh‘} e-ae-ia
= Res " = == =
=5 7" +4 422 4 4 4
Since

2W(B +B,) = m‘e’“(f- Ze ]-—- ime “cosa,

we are now able to write

R 13 .
J‘.I S1n ax
-R

4 dx = me™* cosa -----Im‘L:jlr f(2)e“dz.
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Furthermore, if z 1s a point on C,, then

| | f(DN<M, where M, =
and this means that

R —2 >0 as R —» oo

— 0 as R— oo,

lim [, frede] <[ peareas

according to limit (1), Sec. 74. Finally, then,

txXsinax | _,
j S ra dx = e *cosa (a>0).
8. In order to evaluate the integral I x”sinx dx , we introduce here the function
o (x* +1)(x* +9)
3
Z . e
f(2) = (zi-l:l)(z2+9)' Its singularities in the upper half plane are i and 3i, and we

consider the simple closed contour shown below, where R>3.

Since

R iz ze _——
=S‘S[f(z)e ] (z+:)(z +9) . 16¢

and

Res| f(2)e* | =— ze” ] =2

2=3i (Z°+1)(z+30)j _,,

the residue theorem tells us that

f x’e”™ dx

. 1 9
LD +9) Ic.f(z)ed“ 2’“( T )

16 166

R

xssinxdr w{9 i
J X+ D(x% +9) 's_e(?"l}lquf (2)e”dz.

R
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Now if z is a point on C,, then

F(ISM, whete M,=—— 2 2 Ry oo

(R* =1)(R*-9)

So, in view of limit (1), Sec. 74,

llmj‘cn f(2)e"dz S“c‘ f(2)e®dz{— 0 as R — oe;

and this means that

I x* sinx dx n'( ) T x” sin x dx L(E—IJ
LOPHDOP+9)  8e PP+ D +9) 16e\e )
The Cauchy principal value of the 1ntegral J Sinx dx can be found with the aid of the
X +4x+5

1

Z2+4z+5

Using the quadratic formula to solve the equation z’+4z+5=0, we find that f has
singularities at the points zy =~2+iand 7, =—-2~i, Thus f(z)= ! —, where z
(z=z5)(z~-Z)

function f(z)= and the simple closed contour shown below, where R >+/5.

is interior to the closed contour and Z, is below the real axis.

The residue theorem tells us that

£ e dx
—_—4 Tty — ]
_";xz+4x+5 ICnf(Z)e dz =2miB,
where
iz T iz
B=Res[—-—-- d — | = € :
=u | (2-zXz2~7) ]| (z,-%)
and so
R . - -
sin x dx Arie™ .
__..._.__....__=I _ i2
_'Lx2+4x+5 m_(zl—El)] Im‘fcnf(z)e az,
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Now, if zis a point on C,, then le®l=¢™ <1 and

1

(<M, where M, = (R-lz,1)}(R- Izll) (R- W/-)z

Hence

SMynR=

llmjck f(2)e dz s“c‘, f(2)e"dz

TR
R=—5) >0 as R— oo,

and we may conclude that

sin x dx T
P.V. = ——sin2
_;[_xz+4x+5 e
10. To find the Cauchy pnnmpal value of the improper integral J. (x+ QCQS; dx, we shall use
x + X+

z+1 z41

Z +4Z+5 (Z—z;)(z—fl)
same simple closed contour as in Exercise 9. In this case,

the function f(z) =

, where 7, = -2 +i, and 7, =-2—1, and the

(x+1)e“dx i _ .
Jx +4x+5 J‘Cgf(z)e dz = 2miB,
where
B=Res| —@*De"|_@+De" _ (-1+i)e™
=u [(z-z N z—-3)| (z2~%) 2ei
Thus
(x+1)cnsx . .
dx =Re(2niB) - iz
JJc +4x+5 e(2mB) Ic,f(z)e ’
or

f(ii-l)cnsx

7w, . .
— e 2_ —_— [ &+ .
e x*+dx+5 , (Sin2-cos2) ch flz)e"az

Finally, we observe that if z is a point on C,, then

R+1 R+1
| f(Rl< My, where M,= (R—lgll)(R—lfll) (R=+5)? >0 as R—» o,
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Limit (1), Sec. 74, then tells us that

"‘dzl—>0 as R — oo,

lReI f(z)e*dz| <

and so

(x+1cosx

e-V. j X ‘+4x+5

dx = -f—(sinZ —C082).

12. (a) Since the function f(z)= exp(izz) i1s entire, the Cauchy-Goursat theorem tells us that its

integral around the positively oriented boundary of the sector 0<r<R, 0<568<7/4
has value zero. The closed path is shown below.

A parametric representation of the horizontal line segment from the origin to the point
Ris z=x (0 < x £ R), and a representation for the segment from the origin to the point

Re™*is z=re™* (0<r<R). Thus

R R

. 2 .2 . _p2
Ieu: dx + ) e” dz__e:x/-lje rdr_:_o’
R
0

0

Ca

R R

. 2 _ . 2
J'e“ dx = ”‘”J “dr-1 % dz.
1) 0

By equating real parts and then imaginary parts on each side of this last equation, we
sce that

R
‘[cns(xz)dx=—-1— ~dr -Re . e dz
0 R

«/5{"’

and

R R
: y -— 1 —rz izz
‘{[sm(x )dx—v._z—!e dr—Im Cle dz.
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(b) A parametric representation for the arc C, is z= Re”® (0<0< 7w/ 4). Hence

x/4 x4

.2 p2 128 . . — Rt in2 :
] ¢% dv = Ieme Rle'&d9=lR je R stBe;R mme'edﬁ.
R
0 0

Since |«3"‘Rz °“’”l =1 and |eml =1, it follows that

7t/ 4

J.C.e dzl<RI —R%mlﬂda

Then, by making the substitution ¢ =20 in this last integral and referring to the form
(3), Sec. 74, of Jordan's inecquality, we find that

I e dzl Rxﬂ_ﬂzsm'd¢ R w — (4 )Oas R—)Oﬂ
Ce _2 2R 4R '

(c) In view of the result in part (b) and the integration formula

Ie“zdr=i_£,
2

0

it follows from the last two equations in part (a) that
]:cos(xz)dx = -l-‘j—;— and Tsin(xz)dx = l\/E
- 2V2 ﬂ 2V2

1. The main problem here is to denve the integration formula

SECTION 77

.I

f T cos{ax) — cns(bx) dx = __( b—-a) (@a20,b20),
0

using the indented contour shown below,




Applying the Cauchy-Goursat theorem to the function

iaz __ ibz
floy =2,

<

we have

| f@dz+ | f@de+ |, f@)de+ |, f)dz=0,

J f@dz+ [ f@dz=~] f@)d-] f@d

Since L, and —L, have parametric representations
Liz=re"=r(p<r<R) and -L:z=re*=-r(p<r<R),

we can see that

R iar _ ibr R -iar _ -
[, f@dz+ [, f@de=[ f@dz-[, fzydz= f =L r Ll
=j;(eiur+8-iar);;(efb"+e_fb’)dr=2?9_9_S_I£_ar)—2'008(br)dr'
P ) r

r

) ‘!: cos(arl:_;_‘ﬂ‘_'_{'_)_ dr=-— L' f(z)dz~ J.C'u f(2)dz.

\

In order to find the limit of the first integral on the right here as p — 0, we write

___l_F iaz  (iaz)*  (iaz)’ ) (,,ibz , (ibz)*  (ibz)’
f(z)—zzﬂ(l+ 1!+ TR TR ) (1+—1!—+ TRETI J

ila—-b)
Z

4+ (0<lzl < o).

From this we see that z =0 1s a simple pole of f(z), with residue B, =i(a~b). Thus

lim L f(z)dz =—B,7i = —i(a - b)7i = m(a - b).

p—0

139
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As for the limit of the value of the second integral as R — oo, we note that if z is a point on

C,, then
lelHe™] e®+e™ 141 2
Z) S — = S—=—
f( ) IZIZ R2 2 RZ
Consequently,
2 2r
< — = — oo
_[le(z)dz|_R2 7R = —0 as R—

It is now clear that letting p — 0 and R — o yields

n(b—a).

) J cos(ar) —2 cos(br) Jr =
0 r

This is the desired integration formula, with the variable of integration r instead of x.

Observe that when a =0 and b = 2, that result becomes

_1;0;2(21‘) dx = 1.

Q

But cos(2x) =1-2sin’x, and we arrive at

2. Let us derive the integration formula

T ox (l-a)x
- ~dx = — : -1<a<3),
-! (x* +1)° 4cos(an/2) (ml<a<d)
where x° =exp(alnx) when x> 0. We shall integrate the function
f@)=—*— = SxB(alog2) (x >0, — = <ar z<-§£)
(2 +1° (P +1) arhmp Rt )

whose branch cut is the origin and the negative imaginary axis, around the simple closed
path shown below.
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Branch cut

By Cauchy's residue theorem,

|, f@dz+ [, f@dz+ [ f@de+ [, f2)dz=2miRes f(2)
That is,

_L f(z)dz + L f(z)dz = 2miRes f(z2) - Lﬂ f(2)dz - J‘C. f(2)dz.
Since

L:z=re’=r(p<r<R) and ~L:z=re"=-r(p<r<R),

the left-hand side of this last equation can be written

u (Inr+:i0) a(ln r+ir)

) (751 "j(r +1)'emdr

[ f@dz=[, f)dz= j

R 4.

!"( +l)“ dr+8m’-’.

dr = (1 + ¢%) j — dr.

(r + ) (r +1)

Also,

ﬂ‘.

Resf(z)=¢'(i) where ¢(z)=

z=i (z+i)*

the point z =1 being a pole of order 2 of the function f(z). Straightforward differentiation
reveals that

’ — pla=l)logz a(z + l) - 2Z-
Pz)=e [ (z+10)°
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and from this it follows that

Res f(z) = ~ie"™ z(u].
=i 4

We now have

ﬂ(l a) mﬂ'ﬂ

(1+e‘“)J [ = -] f@dz= [ f2)dz.

Once we show that

i [ £z =0 and Jim [ r)de=0,
we arrive at the desired result;

-dr = Al-a) em:z .e-mm w(l~a) 2 __(Q-a)m
) (r? +1)° 2 1+€ T 4 gy e Yeos(an]2)

Sy, §

The first of the above limits is shown by writing

a

P n.pa+l
(1-p*) (1-p*)*

and noting that the last term tends to O as p — 0 since a+1>0. As for the second limit,

Jo (D)< > =

1 1
Ra a+] A w —a
r iR = ’ZR 2"R4 S & 7
Cy ~ 1) (R*-1)* 1 1
R \"®

and the last term here tends to 0 as R — ~ since 3—-a>0.

3. The problem here is to derive the integration formulas

~— and I, =

] = -":V_Inx 71'2 I ;V; =T

by integrating the function

/3 (1/3)logz
_z''logz e logz T 37
f(2) Z+1 . 241 (Izl>0 ; <argz< ; )



around the contour shown in Exercise 2. As was the case in that exercise,
J, f@dz+ [, f@de=2niRes f@)- | f@de- [, flo)dk.

Since
o(1/3)logz logz

f(z)—-"’(? where (z) = & o 10BZ

—1 Z+1

the point z =i is a simple pole of f(z), with residue
-~ _ T ins6
Resf(z)=¢@) = 7¢ -

The parametric representations
l1:z=rem =r(p<sr<R) and -L.Z:z.—.re"":-.,-(ps:_,-g}a)
can be used to write

R
dr and J.Lz f(z)dz =eix13-"v_lﬂrr_5ﬂ£dr
p

R
[, fode=
p

R 4 R 2 '
Ierdr+e,,,3j_________‘\/_lnr+znV_ ’; ie""ﬁ—jc f(z)dz-JC f(2)dz.

r’+1 rl+1

.

By equating real parts on each side of this equation, we have

R R 2
[ Vz;lmdr+cos(:rt/3)Jv_lnrdr-:rrsin(:rt/3)j V=™ inn/ 6)
, r+l o7 +1 2
—Re Jc, f(2)dz --Rejc‘t f(z)dz;
and equating imaginary parts yields
] 2
sin(mw/ S)J V— AL =%cos(7r/ 6)

"Imjc, f(2)dz -Imjc, f(2)dz.

V3
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. 1 .
Now s1n(7r/3)=—2—,', cos(:r/3)=-é—, sm(:n:/6)=—2!-, cos(:*r!ﬁ)=—22 and it is routine to

show that
lim [ f(z)dz=0 and lim L. f(2)dz=0.

p0 4C,



Thus

3¢4rin T :
J—J.SE r—dr+EJ‘ :/;dr=ﬂ 3
2 5 r+l 2 +1 4
That is,

3. nvV3 n

-] ——1 =——

2 2 747

2
_@II_I_?:I::::@
2 4

Solving these simultaneous equations for 7, and 1, we arrive at the desired integration
formulas.

Let us use the function

(1ng) [ T 3n
f(2)= Ea lzl> 0, 2<argz<-—2—)

and the contour in Exercise 2 to show that

| _
j(“") and  [—Xde =0,
x°+1 o X +1

Integrating f(z) around the closed path shown in Exercise 2, we have
J, f@dz+ [, fydz=2miRes f@)- [ f@)de~ ] fa)de

Since

J(2) --9-(-—?- where ¢(z) = —28Z) (logz)

Z+i

the point z = is a simple pole of f(z) and the residue is

(logz) (ln 1+im/2)? "
“ P _—
esf(z) P1)= 2i 2i 8i

Also, the parametric representations

L:z=re=r(p<r<R) and —-L:z=re"=-r(p<r<R)



enable us to write

_[f(z)dz j(lm) dr and _[f(z)dz IMdr

+ 1
Since
R
e
[, f@dz+ |, fa)de= 27 ! 5 dr,
then,
J(lnr) dr — J‘ J‘ Inr dr=---—?—jcp _}"'(z)dz—'[:_'I f(2)dz.

pr +1

Equating real parts on each side of this equation, we have

R 3
j(lnr) : rzdj-l =—%—-—-Rejc f(z)dz—Rc_[C f(2)dz;
p g "

and equating imaginary parts yields

27 !rl“: dr=Im | f(z)dz=Im | f(z)de.

It is straightforward to show that
lim jc’ f@dz=0 and lim jc_ f(z)dz=0.

Hence

J~(lnr) dr—=m Irid:

and

Finally, inasmuch as (se¢ Exercise 1, Sec. 72),

jdr

ki
0r2+1 2

»

we arrive at the desired integration formulas.
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T Ax

5. Here we evaluate the integral J. dx, where a>b>0. We consider the
*(x+a)(x+b)

: I
z1;3 _ exp(;; ngj
(z+a)z+b) (z+a)z+Db)

function

f(z)=

(IzI>0,0<argz<2m)

and the simple closed contour shown below, which is similar to the one used in Sec. 77. The
numbers p and R are small and large enough, respectively, so that the points z=-a and

z =—b are between the circles.

Branch cut

X

A parametric representation for the upper edge of the branch cut from p to R is z=reé"
(p <r<R), and so the value of the integral of f along that edge is

j3 expl;él-(hlr+i0)]dr =f \r

> (r+a)(r+b) » (r+a)(r+b) '

A representation for the lower edge from p tois R is z=re*” (p <r<R). Hence the
value of the integral of f along that edge from R to p is

» exp[ (Inr+i2 :n:)]
_I (r+a)(r+b)

R
dr=—¢""| LA
p (r+a)(r+b)

According to the residue theorem, then,

dr + J.f(z.')dz—4&"'2"”3

Cr

dr+ [ f(2)dz = 27i(B, + B,),

Co

R R
-!(r+a)(r+b) !(r+a)( + b)
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where
1 | .
exp[é-log(—a)} exp[§ (lna+m')] 13 37
I
and
—l-l —-b) —1-(1 b+i
B, = Res f(2) = eXp| 3 08( _ exp| 5 Un in) =e,-m b
z==b -b+a -b+a a-b
Consequently,
R . inf3
o213 __ZMEE(VE‘VFX* _
-[ (r+a)(r+b) B a—b &[ f@)az é[ f(@)dz.
Now
273p p
dz1< VB 27D = y () ~3 ()
L S| e =3 ™= e piopy %P

and

VYR 2zR: 1
J.C'xf() l (R--a)(R b)ZER (R—a)(R b) W—-}O%R—)m

Hence

V; g 27518“,3({[— V—) e-m'IS _ 271'1(%—3\[5)

_!(r+ a)(r+b) (1 e:z:rIB)( _ b) e—ms (eim':i _ e-iﬂ‘j)(a _ b)

nNa-3b) _n¥a-3b) 27 VYa-b

" sin(z/3)(a—b) E( 5 B a-b
2

Replacing the variable of integration r here by x, we have the desired result:

I 27:_;1/5—%
0(x+a)(x+b) '\/5 a—b

(a>b>0).
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6. (a) Letus first use the branch

1
-1/2 exp(-—-ilog z)

L
‘l—

Z
2 +1 22 +1

f(2)= (lzl> 0,—§<argz<§§£]

and the indented path shown below to evaluate the improper integral

I dx
s Vx(x+1)

y

~R P 0 P R x
Branch cut

Cauchy's residue theorem tells us that

J, f@dz+ [, f@yde+ [, f@de+ [, f@)de=2miRes fo)

I=!

Jf@dz+] f@dz=27iResf()- [ f@)dz- [ f(2)dz.
Since

L:z=re®=r(p<r<R) and —-L:z=re"=-r(p<r<R),
we may write

""'__i_f_ dr =(1_i)j5 dr
+1) 2 Vr(r? +1) S Nr(r? +1)

r

R
d
Jll1 Sf(2)dz +-[Lz f(z)dz = !\[;(rz

Thus

g d .
(1 -1)!-—\/—;-(]_:_'_ D = 2mI§gsf(z)—-Lp f(::)dz--"'cll f(2)dz.
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Now the point z =i is evidently a simple pole of f(z), with residue

1, . 1 ¥ AY
Res £(2) = z-uzjl =EKP[—-£IOgI] _ exp_ 2(1111+z—2-)“ _ R ____1_(1-1')
o= z+i ], 2i 2i 2i 2i\2)
Furthermore,
np _ZAp
f(2)dz|S == —0as p—0
Icp Jp-p?) 1-p? P
and
“C f(Z)dz‘S gz\ml—=—u z 1-—>0 as R ce,
T ED VR (r-)

Finally, then, we have
f dr (1 -1i)

1-0)|—+ -= —=,

( I);J[ Jr(* +1) V2

which is the same as

/(1

[ s
PaAlx(x*+1) 427

(b) To evaluate the improper integral .[7;-—9—_-'-_—1— , we now use the branch
(x

_1;1 cxp(-—-;—logz)
= — - 0,0< <2
f()= = T 11 (> argz< 27m)

and the simple closed contour shown in the figure below, which is similar to Fig. 99 in
Sec. 77. We stipulate that p<1 and R>1, so that the singularities z=%i are between

C, and C,.

Branch cut

R X
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Since a parametric representation for the upper edge of the branch cut from p to R is

z=re" (p<r<R), the value of the integral of falong that edge is

R exp[ 1 —(Inr + tO)jl R
J dr=j ——dr
p 7+ ) Vr (7 +1)

A representation for the lower edge from p tois R is z=re"** (p <r<R), and so the
value of the integral of f along that edge from R to p is

exp‘ ~=(Inr +i2x) '
dr=—=¢"

r+1 I-\[_(r +1) —I\f_(r +1)

Hence, by the residue theorem,

R g t 1 .
J' ~ dr+if(z)dz+lﬁ(r2+1)dr+if(z)dz=2m(Bl+Bz),

NI +1)
where
1 -] 7Y
_1;2 - BXP[—'“Z' logl] CXp _E(IH 1+1 E) e—iﬂ:M
RCS = = = — L - o
Bl z=i f(Z) t-z=i 28 21 2i
and
1 | 1 371}
127 exp[—a-log(—z )] 3"?[—"2“(111 1+ 1"'5‘) ,-i3%14
=R = — = —-—— = — .
B=fesf@="73] 2i -2i 2i
That 1s,
___dr — E(e-fﬁﬂl _ e—i3#}'4) . f(z,)dz ___ f(Z)dZ.
'[ \f_ (r* + CJ; é[
Since
2z J_
f (z)dzl —>0as p—0
k. ( ) 1o iy P
and

27k 2w
J.r:,tf(z)ﬂtz‘S VR(R*-1) H\/—(R__l_) o0 ko
R

R
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we now find that

g4 _ midnl4 g -IFEIA L midn/4 i

]: 1 dr = - =7 —
* N (r? +1) | 2 2

e:‘n:H _l_e-:'znl p T
=% —— = COS| = | = -

2 A2

When x, instead of r, is used as the vanable of integration here, we have the desired
result:

/{4

S
»Ax(xP+1) 2

SECTION 78

1. Write

dz

T de 1 dz _
f il Ty =y

) 5+4sin@ "-[054_4(2—2'1) iz
21

where C is the positively oriented unit circle izl=1. The quadratic formula tells us that the

singular points of the integrand on the far right here are z=-i/2 and z=-2i. The point

z=-—i/2 is a simple pole interior to C; and the point z ==2j is exterior to C. Thus

ix |
__-_dB' =27 Res [-—-—i——-}———-—--]=2ml: 1 ] =27L‘i(—1-_-)=-2-—x.
- 3+4sin@ 2==il2[ 27° +5iz — 2 4z +5i | auina 3i) 3

2. To evaluate the definite integral in question, write

jf do 1 dz=J diz dz

cz' -6z +1

2 1+sin’ @ ='[‘31+(z-z'1)2 iz
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Solving the equation (2:2 )2 - 6(22) +1=0 for z* with the aid of the quadratic formula, we
find that the zeros of the polynomial z* —6z* +1 are the numbers z such that z? = 3+2+2.

Those zeros are, then, z = +43+2v2 and z= i\/3 —24/2. The first two of these zeros are
exterior to the circle, and the second two are inside of it. So the singularities of the

integrand in our contour integral are

=43-2V2 and z,=-z,

indicated in the figure. This means that

¢t de
- - =27i(B, +
_-[=1+sin29 (B +B),
where
4iz 4iz i i {
B RE‘-S—"“" : = = - —_——
=4 z* —62° +1 4z13-12z1 Z2-3 (B3-2v2)-3 242
and
B, = Res 4iz —4iz, _ [ =____i_.
z—-zlz - 62" +1 ----r411+122:1 -3 242
Since
27 2
27i(B, + )=2m( —-'-J:-—---—= I,
5 3) 2 2 VT
the desired result 1s
¢ do
=427,
I1+sm29 Vam

7. Let C be the positively oriented unit circle Izi=1. In view of the binomial formula (Sec. 3)

T T _ -1 2n ~i\2n
[sin® 046 == [sin" 96 = | (Z z J 1 -z ),
0 27 20 2§ ' ]

22n+1( e I‘[ 2( ) 2n- k -I)kZ_le

k=0

22n+l( l)nl Z ( )(_l)k chzn_Zk—l dZ.
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Now each of these last integrals has value zero except when &k =n:

[ idz=12mi.
Consequently,
T 1 Qr)!(-D"2m  2n)!
sin®" 8d@ = : = _
’! 22n+1 (_l)ni (n !)2 225 (n !)2 (2
SECTION 80

5. We are given a function f that is analytic inside and on a positively oriented simple closed
contour C, and we assume that f has no zeros on C. Also, fhas n zeros z, (k=12,...,n)

inside C, where each z, is of multiplicity m,. (See the figure below.)

The object here is to show that

zf'(z) X
=2 ]
_[C o) dz mgl’mkz,,

To do this, we consider the kth zero and start with the fact that

f(@)=(z—2,)™ g(2),

where g(z) is analytic and nonzero at z,. From this, it is straightforward to show that

2f'@))_ mz 28D _mGE-z)+mz 28 _ . 280 mz
fla) z-z, g(2) L= g(z) y glz) z-z

zf'(z)

Since the term zg((;) here has a Taylor series representation at z,, it follows that - 70
g(z £

has a simple pole at z, and that

zf'(z) _
E;ezts Z) - mkzk .

An application of the residue theorem now yields the desired result.
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6. (a) To determine the number of zeros of the polynomial z® —5z* +2z° — 2z inside the circle
|zl=1, we write

f(2)=-5z" and g(&)=z%+7"-2;.

We then observe that when z is on the circle,
lf(@)l=5 and lgI <12+ +21z71=4.

Since | f(z)l >1g(z)l on the circle and since f(z) has 4 zeros, counting multiplicities,
inside it, the theorem in Sec. 80 tells is that the sum

f(D+8@)=2°~-5z"+7 -2z

- also has four zeros, counting multiplicities, inside the circle.
(b) Letus write the polynomial 2z* —2z° +27* ~2z+9 as the sum f(2) + g(2), where
f(2)=9 and g(z)=2z"'-27+27"-22.
Observe that when z is on the circle Izi=1,

lf(l=9 and lg(2)l<2iz*+ 21z +21z1* + 21zl = 8.

Since |1f(2)I>1g(z)l on the circle and since f(z) has no zeros inside it, the sum
f(2)+g(2)=2z* -2z +2z* — 2z +9 has no zeros there either.

7. Let C denote the circle 1z1=2.

(a) The polynomial z* +3z> + 6 can be written as the sum of the polynomials

f(z)=3z" and g(z)=z"+6.
On C,

lf(2=3lzP=24 and lg(@)l=I1z*+6I<IA*+6=22.

Since | f(2)I>1g(2)l on C and f(z) has 3 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 3 zeros, counting multiplicities, inside C.

(6) The polynomial z* —2z° +92z% + z—1 can be written as the sum of the polynomials

f(2)=92" and g(2)=z*-27'+z-1.
On C,

If()=91z°=36 and lg(z)l=lz* =22 +z-1<lz* +2z° +1d+] = 35.
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Since | f(z)l>1g(z)l on C and f(z) has 2 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 2 zeros, counting multiplicities, inside C.

(c) The polynomial z° +3z” +2z* +1 can be written as the sum of the polynomials

f(o)=7" and g(2)=32"+7*+1.
On C,

1 f(DI=1zP =32 and lg(2) =132 +22 +11< 318+ 12 +1=29.

Since | f(2)l>1g(z)l on C and f(z) has 5 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 5 zeros, counting multiplicities, inside C.

10. The problem here is to give an alternative proof of the fact that any polynomial
P(z)=a,+az+ +a_ 7" +az" (a, #0),

where n 21, has precisely n zeros, counting multiplicities. . Without loss of generality, we
may take a =1 since

P(Z)=a"(ao + 4 z+....|.f!.'.‘.‘_1..zﬂ"1 +Z").
a, a, a,

Let

f(2)=2" and g(z)=a,+az+--+a,_z7"".

Then let R be so large that

R>1+lgl+lal+---Ha, _l.
If z is a point on the circle C:lzI= R, we find that

8@ Slagl+layllzl + - +la, "™ =gl +g|R + - +1a, | R"
<la, R™! +IallR""1 + .. +|t1m__1|1i"""'1 = (Iao|+'a1|+“‘ _|_|an_1|)Rn—l
<RR"'=R"=17"=|f(2).

‘Since f(z) has precisely n zeros, counting multiplicities, inside C and since R can be made
arbitrarily large, the desired result follows.
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SECTION 82

1.

The singularities of the function

2s°
st ~4

are the fourth roots of 4. They are readily found to be

F(s)=

s =~/2 "

\E, \ffz', -2, and —2i.

See the figure below, where ¥ >+/2 and R>+/2 + Y.

The function

has simple poles at the points

Su = ‘\[5: Sl ~ ﬁl‘! Sg = _ﬁ: a-nd S3 — ""‘\[51-;

and

3 3 2336’" 3 . PN 3 1
Y Res[e“F(s)] =Y Res - =y 252" _y L.
n=0 im0 5 S —4 (3 4s, =g 2

=leﬁ: +__1_eiﬁ:+ 1 —Jf:_l_ le-nff:

2 2 2
A Tas N eV 4 g iV
2 2

= cosh/2t + cos/2¢.

(k=0,1,2,3),
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Suppose now that s is a point on C,, and observe that

Isi=Iy+Re”I<y+R=R+y and Isl=ly+Re® 21y~RI=R-y>2.

It follows that
125 =215 S 2(R+ y)°

and

Is* =4 21ls1* =412 (R-y)* —4>0.
Consequently,

2(R+7)
|F(s)l < - 0 as R— o,
Ry g 7O R

This ensures that

F()= cosh2t + cos/2t.

The polynomials in the denominator of

25—2_

F(s) = —
(%) (s +1)(s? + 25 +5)

have zeros at s =—1 and 5 = ~112i. Let us, then, write

¢ F(s) = — e"(25-2)
(s+D(s—s5)(s-5)

where s, ==1+2i. The points -1, 5, and 5 are evidently simple poles of " F(s) with the
following residues:

4(23 "2) -f
(s—=5)(s—-5)

B, =Res|e”F (.s')] =

=-1

adg=—]

o e (2s, —2) | S 2 N
B. =Re F -~ 1 S e ' 12t
2 ,=f[e ®)} (s, + (s, —5) (2 z)e ¢

St = 34 - .
—Res[e"F(s)]=—625=2) _|_€"(25-2) |_5 =(1 _:__) o it
B, I}%S[e (.S')] G+DG-5) |G+ —F) B, St jee
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It is easy to see that

2 -i2e il -ide
_ e —e e +e —r/ s
=—¢ ‘+e’( + J=e‘(sm2t+0052t—l).

2i 2

Now let s be any point on the semicircle shown below, where ¥ >0 and R> /5 + 7.

Since
sl=ly+Re®IS Y+ R=R+7y and Isi=ly+ Re”|2ly—Ri=R-y>+5,

we find that

125 —21< 2lsl +2 S2(R+ ¥) +2,

Is+U2llsl-lI2(R~y)-1>0,
and

57 + 25+ 5l=ls — s lls =51 2 (sl-Is,)* 2 [(R- ) 5 | >0.

Fen=— 22 2(R+7)+2

|.5'+1|-|S2 + 25 + 5l [(R__,y)_l][(R_y)z _\/5]2

»(J as R~ oo,

and we may conclude that

f()=e"*(sin2¢ +cos2t —-1).
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4. The function

2
.s'z—a

F(s)= & +a°)

(a>0)

has singularities at s =tai. So we consider the simple closed contour shown below, where
Yy>0and R>a+v.

Upon writing

___9(s) _ st —a’
Fis) (s — ai)’ where  ¢(s) (s+ai)*’

we see that ¢(s) is analytic and nonzero at s, =ai. Hence s, is a pole of order m =2 of
F(s). Furthermore, F(s)= F(¥) at points where F(s) is analytic. Consequently, 5, 18 also
a pole of order 2 of F(s); and we know from expression (2), Sec. 82, that

Res [e* F(s)] + Res [e" F(s)] = 2Re[e™ (b, +b,1)],

3--30 3=-$0

where b, and b, are the coefficients in the principal part

b . _ b

s—ai (s—ai)’

of F(s) at ai. These coefficients are readily found with the aid of the first two terms in the

Taylor series for ¢(s) about s, = ai:

i

F(S)-‘-‘—1 > ¢(s) = ! [¢(ai)+¢§?i)(s—ai)+--

(s — ai) (s —ai)’
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__9@) _ ¢'(ai)

= 4 .o i
(s—ai)* s—ai (0 <ls — ail< 2a).

It is straightforward to show that ¢(ai)=1/2 and ¢'(ai)=0, and we find that b =0 and
b, =1/2. Hence

Res [e”F(s)]+ Res[e*F(s)] = 2Re rei‘"(—;—t)] =tcosat.

-f=1fu J=30

We can, then, conclude that

f(t)=tcosat (a>0),
provided that F(s) satisfies the desired boundedness condition. As for that condition, when

zis apointon C,

|Zd=lY+Re®°l<y+R=R+Y¥ and lzZl=ly+ Re®I2ly ~Rl= R— ¥ > a;

and this means that

12—l IS +a> S (R+ 9y +a* and 122+ 212 -a2 > (R-yY —a*>0.

Hence
(R+ 7)Y +a°

| F(z)l <
D R =T

—> (0 as R — co,

6. We are given

sinh(xs)
F(s)=
(%) s*coshs (O<x<D),
which has isolated singularities at the points
2n—-1nm -
5o =0, s, =M1, and 5 =—-—Mi (n=L2,..).
2 2
This function has the property F(s) = F(5), and so
f(r)= E_ES [e“F (s)] + Z{Res [e“F (.s')] + Res [e"F (s)]}.
° =] L0 =5
To find the residue at s, =0, we write
sinh(xs) _ xs+(xs)’ /314 x+x’5°/6+-- 7r
- == ; —_— = —— 3 O<lsl<—|.
s-coshs (1+s /2!+--*) S+ /24 2)
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Division of series then reveals that s, is a simple pole of F(s), with residue x; and,

according to expression (3), Sec. 82,

Res[e“F(s)|=Res F(s) = x.

F=3g =5,

As for the residues of F(s) at the singular points s, (n=1,2,...), we write

F(s)= g((:; where  p(s) =sinh(xs) and g(s) = s*cosh .

We note that

(2n=-1Dnx

p(s. ) =isin- #0 and g(s, )=0;

furthermore, since

q'(s) = 2scoshs + s° sinh s,

we find that
, _____(21'1—1)2 (2n - l)n' .(21'1--1)2:%2 : 7T
q(s,)= 4 £sin 5 2 sm(mr—-é-)
(2n-1)*7 |
= z( L 4) T (smmrcos-;—r-—cosmrsmz) @n 41) (—1)"i#0.

In view of Theorem 2 in Sec. 69, then, s, is a simple pole of F(s), and

» = §iN

i (-1)" 2n—1nmx
=iy g'(s,) =©° (2n-1) '

Expression (4), Sec. 82, now gives us

E_?S [ e F( .s')] + 1}3“3 [ 3t F(S)] 2 Rc{ 4 (2(’:1):) (21'1 -; 1)7ex exp[ (2n - 2 1) 7t ];

8 (- )" (Zn—l)mc (2n-1)ym
7 2n— 1) -—————2 COS 5 :
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Summing all of the above residues, we arrive at the final result:

Flt)=x+—> Z )" o @n-Dmx  Qn-hm

Sin
A=l (2’2 1)2 2 cos 2

7. The function

F(s)=- !
scosh(s

1!’2) *

1/2

where it is agreed that the branch cut of s does not lie along the negative real axis, has

(2n-1)*n?
4

isolated singularities at 5, =0 and when cosh(s"*)=0, or at the points s, = —

(n=12,...). The point s, is a simple pole of F(s), as is seen by writing

1 | 1

.s'cosh(sm) s[14(82Y 1214 (s")* 1 41+ ] S+5° 12+ /24 +---

and dividing this last denominator into 1. In fact, the residue is found to be 1: and

expression (3), Sec. 82, tells us that

Res [¢“F(s)]=Res F(s)=1.

As for the other singularities, we write

F(s)= —E-(-Q where  p(s) =1 and g(s) = scosh(s"?).
q(s)

Now
p(s,)=1#0 and g(s)=0;

also, since

g'(s) = -;-s” *sinh(s"?) + cosh(s"?),

it is straightforward to show that

qg(s)=- (2n ; D7 sin(mr -~ izz—) = (2n 1) i ——(=1)" #
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So each point s, is a simple pole of F(s), and

ResF(S)'-'-'“"'"'“p:,(S") -2
55y q’(s,) ® 2n-1

Consequently, according to expression (3), Sec. 82,

p; r 4. [ en-117%
R F — e Re S F — - = renje

Finally, then,

f(t)=Res [e“F (s)] + 2 Res [e"F (s)]

=g =3
° n=l| A

or
f(t) ]_+-—-z ( exp __.(.gf___;'.-_)ii]
n-l "

Here we are given the function

coth(ms/2) _ cosh(7s / 2) )
st +1 (s* + Dsinh(zs/2)’

F(s)=

which has the property F(s)= F(5). We consider first the singularities at s =*i. Upon

writing

Fi)=285) yhere g(s) = —SOMmS/2)
§=1 (s +1i)sinh(ms / 2)

we find that, since ¢(i) =0, the point i is a removable singularity of F(s) [see Exercise
3(b), Sec. 65]; and the same is true of the point —i. At each of these points, it follows that
the residue of e"F(s) is 0. The other singularities occur when ms/2=nmi

(n=0,1£1,%2,...), orat the points s=2ni (n= O,il,iz,...). To find the residues, we write

F(s)= A () where p(s) = cosh(E-) and g(s) = (,3;'2 + 1)sinh(_ﬂ_‘f.)
q(s) | 2 | 2
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and note that

p(2ni) = cosh(nzi) = cos(nm) =(-1)" #0 and q(2ni) =0.
Furthermore, since

g'(s)=("+ l)gcosh(—’g{) + 25 sinh(—j;i),

we have

q/Q2ni) = (=4n’ + 1) cosh(umi) = (~dn’ + 1) costum) = - HE D e

Res F(s) = p(2ni) 2 1

: =(,+1+2,...).
s=2ni (an) T 4]12 —1 (n )

Expressions (3) and (4) in Sec. 82 now tell us that

o[ 2
Efos [e F(s)] = PIfnS F(s)= -

and

- y) 1 1 4 cos2nt
Resle“F(s)|+ Res|e”F(s)| =2Re '2’"(—-— - ) = ——— =1,2,...).
s—2n§ € ( )] s==2 nl[ ( )] _e T 4}‘!2 _1 (n )

The desired function of ¢ is, then,

£(1) = %__ 42c052nt

T m&4n*-1

9. The function

sinh(xs'/?)
s sinh(s"?) O<x<h,

F(s)=

where it is agreed that the branch cut of 52 does not lie along the negative real axis, has

isolated singularities at s=0 and when sinh(s"?)=0, or at the points s=-n’n>

(n=12,...). The point s =0 is a pole of order 2 of F (s), as is seen by first writing

sinh(xs')  xs'? + (x5'%)’ 131+ (s?)0 /50 - x+xs/6+x552/120+
s sinh(s'"?) 52[_9“2+(_g”2)3/3!+(3“2)5/5g+..] S+ /6+s /120 +---
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and dividing the series in the denominator into the series in the numerator. The result is

sinh(xs'®) _ 1 1 1
Tonh) 5 T e T (Osl<m

In view of expression (1), Sec. 82, then,
s=(

1
Res e“F(s)] = -.E’-(,'vc3 —-X)+xt= é—m:(;u:2 — 1)+ xt.

As for the singularities s=—-n’z* (n=1,2,...), we write

F(s)= 5 g; where  p(s) —smh(xs'”z) and g(s) = s*sinh(s'"?).

Observe that p(-n’#m*)#0 and g(-n’m*)=0. Also, since

g’(s) = 2s sinh(s"*) + %-ss” 2 cosh(.s'“ 2),

it is easy to see that g’(—n*z) # 0. So the points s =—n?z> (n=12,...), are simple poles

of F(s), and
p(s) | _ 2sinh(xs”2) ) 2 (-1
B PO G0 e TSR ORGTY |y TS 7120

Thus, in view of expression (3), Sec. 82,

o 2 __1 n+i ., '
,Efzs;;z[e F(S)]=-;ZT( n) e "' sinnmx (n=12,..).

Finally, since

f()= Res [ “F (.s')] + Z Res [e"'F (s)]

r"—n #

we arrive at the expression

F©) =20 =D w45 3 0 e sinn

=]

10. The functon

1 1
F(s)=—~
(5) s*  ssinhg

has isolated singularities at the points

=0 and Sn =nm: E,, =_nm (n=1!2!”')'
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Now

Ss.in]u'=s(.si'+é--s3+---)=S2 +-(1;s4+--' (0 <lsi< o0),

and division of this series into 1 reveals that
1 1 1 1
F(s)=-?—(?+—g+---)=~—6-+-- (0 <lsl< ).

This shows that F(s) has a removable singularity at 5,. Evidently, then, e” F(s) must also

have a removable singularity there; and so

Res[e” F(s)]=0.

$=5q

To find the residue of F(s) at s, =nmi(n=1,2,...), we write

F(s)= P where p(s)=sinhs—s and g(s) = s*sinhs

g(s)
and observe that
pinmiy=—-nni#0, q(nmi)=0, and g¢'(nmi)=n’m>(-1)"" 20.

Consequently, F(s) has a simple pole at s, and

Res F(s)=20M) ___—nm O, 15
s=5, q (nﬂ'l) nn (—1) ni

Since F(s)= F(§), the points 3, are also simple poles of F(s); and we may write

Res [e“F (s)] + 1}33 [e“ F(,g)] — ZRE[(_DH ie™ | =9 Re (-1

(icosnmt —sinnnt)

$=S8y nw i i niw

(_l)rn+l
ni

= 2 sinnt.

Hence the desired result is

f(t)=Res [e"F(s)] + i{

5=8q

Res " F(s)]+ Res [e"F (-5')]},

_2- oo (_1)n+1 .
£(1) = EZ‘; -—sinnt
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11. We consider here the function

sinh(xs)

s(s* + @*)coshs O<x<l),

F(s)=

2n-1)x
where @ >0 and @ # @, =~£— n?) - (n=1,2,...). The singularities of F(s) are at

s=0, s=2@i, and s=xai (n=12,...).
Because the first term in the Maclaurin series for sinh(xs) is xs, it is easy to see that s =0 is

a removable singularity of ¢* F(s) and that

Res [e"‘ F (s)] = ().

3=39

To find the residue of F(s) at s = @i, we write

inh
Fa) = s‘ﬂ—(it))i where  ¢(s)= s(sj-l ax()?sls'ﬁ? ’

from which it follows that s = @i is simple pole and

sinh(xad) isinax
wi2@icosh(wi) -2a*cos@

Res F(s) = p(ax) =

Since F(s) = F(F), then,

Res[e“F(s)]+ Res [e*F(s)] =2 Re[ e “-1"—-—153‘“] =2 SR Gin gy = SLOXSND
 a=ai $=2- 0 ~2M° cos @ 200°cos@ a”° cosw
As for the residues at s= @i (n=1,2,...), we put F(s) in the form

_ p(s) — .3 2
F(s)= -(3 where p(s)=sinh(xs) and g(s)=(s" + @°s)coshs.
q(s

Now p(@ i) =sinh(xw,i) =isih@,x # 0 and g(@,i)=0. Also, since

g’(s) = (s° + @*s)sinh s + (3s* + ®@*)coshs,

we find that
¢’ (@ i) = (—ai+ @ i)sinh(@ i) = -0, (0* - @*)sinw, = 0.

Hence we have a simple pole at s = @_i, with residue

Res F(s) = [i(wﬂz_) — _%'
s=a,f g(@r) -0(e -o)sne,
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Consequently,
] Isin@ x o sin @, xsin @ t
Res|e”F(s)|+ Res |e*F(s)|=2Re| — — ' =2 e o -
-==g,.f[ ol 3=- i [«*F ) o, (@ -a))sine, | " o/(e-o0)sino,

But sinw_ = sin(mr - g) = (=1)**, and this means that

Res [e"‘F (s)]+ Res [e“F(s)] =2 (=D SIn @, xsin @, t |

s=a, s2=, ] @, o’ — @?

Finally,

f(H)=Res|e™F (s)] + {Res [e”F (s)] + Res [e"F (s)]} + i{Res [e‘“F (s)] + Res [e"‘ F (s)]}.
n=l

s=0 S=au 5= ON s=0,! S=—~02,1

That is,

)= sin axsin ot | zi (-1)"" sin@ xsin @, ¢
@’cosw = o' -}
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