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6.1 THE CONCEPT OF STABILITY

When considering the design and analysis of feedback control systems, stability is of
the utmost importance. From a practical point of view, a closed-loop feedback system
that is unstable s of lintle value. As with all such general statements, there are excep-
tions; but for our purposes, we will declare that all our control designs must result in
a closed-loop stable system. Many physical systems are inherently open-loop unsta-
ble. and some systems are even designed to be open:l ble. Most modern
fighter aircraft are open-loop unstable by design, and wuhoul active feedback control

assisting the pilot, they cannot fly. Active control is introduced by engineers to stabi-
lize the ble syst that is, the aircraft that other considerations, such as
per can bc id 4, Using k, we can stabilize unstable

systems and then with a of we can adjust
the ient perl For open-loop stable syslems. we still use feedback to
adjust the closed-loop performance to meet the design specifications These specifi-
cations take the form of steady-state tracking errors, percent overshoot, settling time,
time to peak, and the other indices discussed in Chapters 4 and 5.

We can say that a closed-loop feedback system is either stable or it is not stable,
“This type of stable/not stable characterization is referred to as absolate st 3
tem possessing absolute stability is called a stable system—the label of absolute is
dropped. Given that a closed-loop system is stable, we can further characterize the
degree of stability. This is referred to as relative stability. The pi of aircraft design
were familiar with the nation of relative stability—the more stable an aircraft was, the
more difficult it was to maneuver (that is, to turn), One outcome of the relative insta-
bility of modemn ﬁyun aircraft is high maneuverability. A fighter aircraft is less stable
than a part, hence it can more quickly. In fact, the motions
of a fighter aircraft can be quite violent to the “passengers™ As we will discuss loter in
this section, we can determine that a system is stable (in the absolute sense) by deter-
mining that all transfer function poles lie in the left-half s-plane, or equivalently, that all
the eigenvalues of the system matrix A lie in the lefi-half s-plane. Given that all the
poles (or eigenvalues) are in the lefi-half s-plane, we investigate relative-stability by
examining the relative locations of the poles {or eigenvalues).

A stable system is defined as a system with a bounded (limited) system response.
That is, if the system is subj, d to a bounded input or di and the
is bounded in magnitude, the system is said to be stable,

A stable system is a dynamic system with a bounded response
to a bounded input.

The concept of stability can be illustrated by considering a right circular cone
placed on a plane horizontal surface. If the cone is resting on its base and is tipped
slightly, it returns to its original equilibrium position. This position and response are
said to be stable. If the cone rests on its side and is displaced slightly, it rolls with no ten-
dency to leave the position on its side. This position is designated as the neutral stabili-
1y. On the other hand, if the cone is placed on its tip and released. it falls onto its side.
This position is said to be unstable. These three positions are illustrated in Figure 6.1.
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PREVIEW

Stability of closed-loop feedbacl: systems is central to control syslcm dmsn A sta-
ble system should exhibit a b fed output if the fing input is t

This is known as bounded-input-bounded-output srabuhiy and is one of the main
topics of this chapter. The stability of a feedback system is directly related to the
location of the roots of the characteristic equation of the system transfer function
and to the location of the eigenvalues of the system matrix for a system in state vari-
able format. The Routh-Hurwitz method is introduced as a useful tool for assessing
system stability. The technique allows us to compute the number of roots of the
characteristic equation in the right half plane without actually computing the values
of the roots, This gives us a design method for determining values of certain system
parameters that will lead to closed-loop stability, For stable systems, we will intro-
duce the notion of relative stability, which allows us to characterize the degree of
stability. The chapter concludes with a stabilizing controller design based on
the Routh-Hurwitz method for the Sequential Design Example: Disk Drive Read
System.

DESIRED OUTCOMES

Upon completion of Chapter 6, students should:

2 Understand the concept of stability of dynamic

QO Be aware of the key concepts of absolute and relative stability,

O Be familiar with the notion of bounded-input. bounded-output stability,

O Understand the relationship of the s-plane pole locations (for transfer function models)
and of the eigenvalue locations {for state variable models) to system stability,

O EKnow how to construct a Routh array and be able to employ the Routh-Hurwitz
stability criterton to determine stability.
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The stability of a dynamic system is defined in » similar manner, The response to
displacement, or initial condition, will result in either o decreasing, neutral, or increasing
response. Specifically, it follows from the definition of stability that a linear system is
stable if and un]y il the absolute value of its impulse response g(r), integrated over an
infinite range, is finite. That is, in terms of the convolution integral Equation (5.2) for a
bounded input, fb gt} de must be finite.

‘The location in the s-plane of the poles of a system indicates the resulting tran-
sient response. The poles i the left-hand portion of the s-plane result in a decreasing
response for disturbance inputs. Similarly, poles on the juw-axis and in the right-hand
plane result in a neutral and an increasing response, respectively, for a disturbance
input. This division of the s-plane is shown in Figure 6.2. Clearly, the poles of desir-
able dynamic systems must lie in the I._ﬂ hund pﬂr‘tmn of the s-plane [1-3].

A ple of the I ing effect of feedback is that of
feedback in audio amplifier and <peak-:r systems used lnr public address in auditori-
ums. In this case. a loudspeaker produces an audio signal that is an amplified version
of the sounds picked up by & microphone. In addition to other audio inputs, the
sound coming from the speaker itself may be sensed by the microphone, The strength
of this particular signal depends upon the distance between the loudspeaker and the
microphone. Because of the attenuating propertics of air, a larger distance will cause
u weaker signal to reach the microphone. Due to the finite propagation speed of
sound wives, there will also be o time delay between the signal produced by the loud-
speaker and the signal sensed by the microphone. In this case, the output from the
feedback path is added to the external i input. 'I'!us is an example of positive feedback.

As the distance b the ¥ and the ! decrenses, we
find that if the microphone is placed too close ti the speaker, then the system will be
unstable, The result of this instability is an excessive amplification and distortion of
audio signals and an oscillatory squeal.

Another example of an unstable sysiem is shown in Figure 6.3, The first bridge
ncross the Tacoma Narrows at Puget Sound, Washington, was opened to iraffic on
July 1, 1940, The bridge was found to oscillate whenever the wind blew, After four
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FIGURE 6.4
The M2 robot is
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There are about one million robots in service throughout the world [10]. As the
pability of robots | it Ii to assume that the numbers in service
will inue 1o mise. i teresting are robots with human characleristics,
particularly those that can walk upnghl A class of robots that utilize series-clastic ac-
tuators as mechanical museles emerged in the late 1990s The M2 robot depicted in
Figure 6.4 is more energy-efficient but less stable than many other designs that are
well-balanced but consume much more power [21]. Examining the M2 robot in
Figure 6.4, one can imagine that it is not inherently stable and that active control is
required to keep it upright during the walking motion. In the next sections we pre-
sent the Routh-Hurwitz stability criterion to investigate system stability by analyzing
the characteristic equation without direet computation of the roots.

6.2 THE ROUTH-HURWITZ STABILITY CRITERION

I'ru: discussion and determination uf stability has occupied the interest of many
M 11 and V ii first idered the question of stability of
dmamn. systems. In the late I.Hﬂf.lx A. Hurwitz and E. J. Routh independently
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Further rows of the schedule are then completed as
2 0y M3 g
£ Aoy W3 s
gl Ba-t bu-z Daey
" €=t Cy=3  My-s
I hyey
where
by Baifact = Galamy, "L fay el
Ayt L L L
1 ,
by =— i 4.
A=t [Ag=y -3

and so on. The algorithm for calculating the entries in the array can be followed on
a determinant basis or by using the form of the equation for b,

The Routh-Hurwitz criterion states that the number of roots of g(s) with posi-
tive real parts is equal to the number of changes in sign of the first column of the
Routh array. This criterion requires that there be no changes in sign in the first col-
umn for a stable system. This requirement is both necessary and sufficient.

Four distinct cases or configurations of the first column array must be consid-
ered, and each must be treated separately and requires suitable modifications of
the array calculation procedure: (1) No element in the first column is zero; (2) there
is a zero in the first column, but some other elements of the row containing the zero
in the first column are nonzero; {3) there is a zero in the first column, and the other
elements of the row containing the zero are also zero; and (4) as in the third case,
but with repeated roots on the ju-axis.

“To illustrate this method clearly, several ples will be p i for each case,

Case 1. No element in the first column is zero.

EXAMPLE 6.7 Second-order system

The characteristic polynomial of a second-order system is
qis) = a® + ay + ay

The Routh array is written as
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months, on November 7, 1940, a wind produced an oscillation that grew in ampli-
tude until the bridge broke apart, Figure 6.3(a) shows the condition at the beginning
of oscillation; Figure 6.3(b) shows the catastrophic failure [5].

In terms of linear systems, we recognize that the stability requirement may be
defined in terms of the location of the poles of the closed-loop transfer function. The
closed-loop system transfer function is written as

M
K]ll(s+z)
T(s) = o H : (6.1)

qls) x 5
I+ a1 + 2egs + (o, + wi)]
- m=]
where g(s) = A(s) = 0 is the characteristic equation whose roots are the poles of
the closed-loop system, The output response for an impulse function input {when
N = Q) is then

¥i) = ;A.e"" + Z.ﬂ' ( ) o it + 8., 6.2)

where A; and B,, are constants that depend on oy, 2, @, K, and w,,. To obtain a
bounded response, the poles of the closed-loop system must be in the left-hand por-
tion of the s-plane, Thus, a necessary and sufficient condition for a feedback system
to be stable is that all the poles of the system transfer function have negative real
parts. A system is stable if all the poles of the transfer function are in the left-hand
s-plane. A system is not stable if not all the roots are in the left-hand plane. If the
characteristic equation has simple roots on the imaginary axis (jw-axis) with all
ather roots in the left half-plane, the steady-state output will be sustained oscillations
for a bounded input, unless the input is a sinusoid (which is bounded) whose frequency
is equal to the magnitude of the jw-axis roots For this case, the output becomes
unbounded. Such a system is called marginally stable, since only certain bounded inputs
(sinusoids of the frequency of the poles} will cause the output to become unbounded.
For an unstable system, the ck ion has at least one root in the right half
of the s-plane or repeated fw roots; for this case, the output will become unbounded
for any input.
For ple. if the isti ion of a closed-loop system is

(5 + 10)(# + 16) = 0,

then the system is said to be marginally stable. If this sysiem is excited by a sinusoid
of frequency @ = 4, the output becomes unbounded.

To ascertain the stability of a feedback control system, we could determine the
roots of the ch istic pol ial gis). F we are first interested in deter-
mining the answer to the question, Is the system stable? If we calculate the roots of the
characteristic equation in order to answer this question, we have determined much
maore inf ion than is . Therefore, several methods have been d P
that provide the required yes or no answer to the stability question. The three
approaches to the question of stability are (1) the s-plane approach, (2) the frequency
plane {)m) approach, and (3) the time-domain approach. The real Frequency Um}
approach is outlined in Chapter 9, and the di ion of the time-d; pproach is
considered in Section 6.4
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published a method of investigating the stability of a linear system [6, 7). The
Routh-Hurwitz stability method provides an answer to the question of stability by
considering the characteristic equation of the system, The characteristic equation in
the Laplace variable is written as

ARy =glis) = a8 + @puys ' 4+ - +as oy =0, (6.3)

To ascertain the stability of the system, it is necessary to determine whether any one
of the roots of g(s) lies in the right half of the s-plane. If Equation (6.3) is written in
factored form, we have

a8 =r)(s = ry)- {-\‘ = ’n] =0, (6.4)

where r; = ith root of the ch istic eg Mul g the factors together,
we find that

als) = a" = alry + rp 4 oo+ )
+ag{niry + ryry + s + S L
= alriears e )8
+ a(=1)ryrary s ry = 0. (6.5)
In other words, for an sth-degree equation, we obtain
gis) = a," — a, (sum of all the roots) "~
+ a, (sum of the products of the roots taken 2 at a time) 5"~
— a1, (sum of the products of the roots taken 3 at a time) 7 e
+ <o+ g f=1)" (product of all n roots) = 0. (6.6)
Examining Equation (6.5). we note that all the coefficients of the polynomial
must have the same sign if all the roots are in the lefi-hand plane. Also, it is neces-
sary that all the coefficients for a stable system be nonzero. These requirements are

necessary but not sufficient. That is, we immediately know the system is unstable if
they are not satisfied; yet if they are satisfied, we must pmoc:d rurtlvcr 1o ascertain

the stability of the system. For le. when the ch | is
g =(s+20" s+ 4) = (S + 7 + 2+ 8), (6.7)
the system is ble, and yet the poly ial p all positive coefficients.

The Routh-Hurwitz criterion is a necessary and sufficient criterion for the sta-
bility of linear systems. The method was originally developed in terms of determi-
nants, but we shall use the more convenient array formulation.

The Routh-Hurwitz criterion is based on ing the ficients of the char-
acteristic equation
A o a4 e sty = 0 (6.8)

into an array or schedule as follows [4]:

& Ay Aoy gttt
-l
L fpoy  @py g
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app h zero after leting the array. For 1 ! the fi ing
characteristic polynomial:
gis) =5+ 20 + 27 + 45 + 15 + 10, (6.10)

The Routh array is then

R 12 11

l 2 4 10

5 e 6 0

& o 100

s dp 00

¥ 1w o 0o
where

c.=—k_’2=-—1z and n‘|=—6c'_uk—'6.
€ € £y

There are two sign changes due to the large negative number in the first column,
= =12/e. the system is ble, and two roots lie in the right half of
the plane.

EXAMPLE 6.3 Unstable system
As a final example of the type of Case 2, ider the ch istic polynomial
gy =+ S+ S5+ K (6.11)

where we desire to determine the gain K that results in marginal stability. The Routh
array is then

i 1 1 K
5 1 1 0
ol e K I,
5 o 00
T LU ]
where

e- K -K

o= —_—
€ €

Therefore, for any value of K greater than zero, the system is unstable. Also, because
the last term in the first column is equal to K, a negative value of K will result in an
unstable system. Consequently. the system is unstable for all values of gain K. m

Case 3. There is a zero in the first column, and the other elements of the row con-
taining the zero are also zero, Case 3 occurs when all the elements in one row are
zero or when the mwmnsms ol a single element that is zero. This condition occurs
when the poly larities that are ically located about the
origin of lhc seplane. Therefore. Case 3 occurs when factors such as (v + o)(s — o)
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Consider the system with a characteristic polynomial
A=+ DE+ PN+ Ds-P=+st+28 4284541
The Routh array is

b T T T P S

[ S ST

oo b
N

where ¢ — 0. Note the absence of sign changes, a condition that falsely indicates
that the system is marginally stable. The impulse response of the system increases
with time as ¢ sin{t + ¢). The auxiliary polynomial at the s* line is 5* + 1, and the
auxiliary polynomial at the #* line is 5* + 27 + 1 = (& + 1), indicating the
repeated roots on the jw-axis,

EXAMPLE 6.4  Filth-order system with roots on the jow-axis
Consider the characteristic polynomial

qis) = 55 + 5% + 45 + 245" + 35 + 63, (6.15)
The Routh array is
5 1 4 3
s 1 24 63
s -0 -60 O
£ n 63 0
s o o o

is

Therefore, the auxiliary poly
Uls) = 2157 + 63 = 21" + 3) = 21(s + V3)(s - jV3),  (616)

which indicates that two roots are on the imaginary axis. To ine the
roots, we divide by the auxiliary polynomial to obtain
s
‘#— =f+ 2 +5+2

Establishing a Routh array for this equation, we have

5 11

$ 1 21

s =20 v

& 4 ]
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where

iy — (D)ay -

by = o

Therefore, the requirement for a stable second-order system is simply that all the
coefficients be positive or all the coefficients be negative. m

EXAMPLE 6.2 Third-order system
The characteristic polynomial of a third-order system is
Gls) = ays” + as’ + ays + ap

The Routh array is
5 ay
@ ap
3! b 0
5 g 0
where
) = buay
b= 7 2 and ¢ = ;—I

For the third-order system to be stable, it is necessary and sufficient that the coeffi-
cients be positive and aya;, > @, The condition when aya; = aga; resulls in a mar-
ginal stability case, and one pair of roots lies on the imaginary axis in the s-plane.
“This marginal case is recognized as Case 3 because there is a zero in the first column
when azay = aga;. It will be discussed um:lt:l Case 3,

Asa final ple of char ions that result in no zero elements in
the first row, let us consider the pulynom:al

aR) = (s~ 1+ jVT)s -1 - jVT)s+3) =5 + & + 25+ 24, (69)

The polynomial satisfies all the necessary conditions because all the coefficients
exist and are positive, Therefore, utilizing the Routh array, we have

& L 2
s 1 24
s =22 0
o 24 0

Because two changes in sign appear in the first column, we find that two roots of
() lie in the right-hand plane, and our prior knowledge is confirmed. m

Case 2. There is a zero in the first column, but some other elements of the row
containing the zero in the first column are nonzero. If only one element in the
array is zero, it may be replaced with a small positive number, ¢, that is allowed to
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or (s + jw){s = jw) occur, Tlns problem is circumvented by utilizing the auxiliary
I ial, U{s). which i des the zero entry in the Routh array.
The order of the auxiliary pnlynmmsl is always even and indicates the number of
symmetrical root pairs.
To illusirate this approach, let us consider a third-order system with the charac-
teristic polynomial

qis) =& + 2 4 ds + K, (6.12)
where K is an adjustable loop gain. The Routh array is then

g 1 4
s 1 K
¢ 8- K 3
'—-2 0
& K 0
For a stable system, we require that
0D<K<8

When K = 8, we have two roots on the jw-axis and a marginal stability case. Note
that we obtain a row of zeros {Case 3) when K = 8. The auxiliary polynomial, Us),
is the equation of the row preceding the row of zeros. The equation of the row pre-
ceding the row of zeros is, in this case, obtained from the -row. We recall that this
row contains the coefficients of the even powers of 5, and therefore we have

Us) =22+ K= 22 + 8 =2 + 4) = 2(s + (s — j2).  (6.13)

To show that the auxiliary polynomial, U{s), is indeed a factor of the characteristic
polynomial, we divide g(s) by L{s) to obtain

ls+1
2W+8lP + 27 + 45+ B

5 + 45
2% +8
2 +8

‘When K = B, the factors of the characteristic polynomial are
gls) = (s + 2)(x + ;2)(; -2 (6.14)

The inal case isan P

T

Case 4. Repeated roots of the characteristic equation on the je-axis. [f the
Jjw-axis roots of the characteristic equation are simpll:. the system is neither stable
nor unstable; it is instead called marginally stable, since it has an undamped smu

soidal mode. If the jw-axis roots are rep the system resp will be

with a form ¢ sinfwt + ¢). The Routh-Hurwitz criteria will not reveal this form of
instability [20].
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Table 6.1 The Routh-Hurwitz Stability Criterion

2
3
4
3
6

Characteristic Equation Criterion
FfHbt1=0 h>0
friftes+1=0 be-120

dabfeedads+1=0
£ abdtved

bed = d' - B >0

+df tes+1=0 bed + b= = Be=0

Prbr et +dr vel+ fs+1=0  (bed # bf — o — Pede + ble —bd —bf — 1+ bfe + edf >0

Note: The equations are normalized by ()"

We divide through by w,” and use i= $/w, 1o obtain the normalized form of the
characteristic equation:

b = S SO ()
For example, we normalize
F+Sf+ 2 +8=0
by dividing through by & = w,”. obtaining

or
P H2sP 055+ =0,
where § = s/w,. In this case, b = 2.5 and ¢ = 0.5. Using this normalized form of the

chnrac:ﬂtslw oqualwn we summarize the stability criterion for up to a sixth-order
as provided in Table 6.1. Note that be = 1.25 and the system

is stable.

6.3 THE RELATIVE STABILITY OF FEEDBACK CONTROL SYSTEMS

The verification of stability using the Routh-Hurwitz criterion provides only a par-
tinl answer to the question of stability. The Routh-Hurwitz criterion ascertains the
absolute stability of a system by determining whether any of the roots of the char-
acteristic equation lie in the right halfl of the s-plane. However, if the system satis-
fies the Routh-Hurwitz criterion and is absolutely stable, it is desirable to
determine the relative stability; that is, it is necessary 1o investigate the relative
damping of each root of the characteristic equation. The relative stability of a sys-
tem can be defined as the property that is measured by the relative real part of
each root or pair of roots. Thus, root r; is relatively more stable than the roots ry, Fy,
as shown in Figure 6.6, The relative stability of a system can also be defined in
terms of the relative damping coefficients { of each complex root pair and, there-
fore, in terms of the speed of response and overshoot instead of settling time.
Hence, the investigation of the relative stability of each root is clearly neces-
sary because, as we found in Chapter 5, the location of the closed-loop poles in the
s-plane determines the performance of the system. Thus, it is imperative that we
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6.4 THE STABILITY OF STATE VARIABLE SYSTEMS

The stability of a system modeled by a state variable flow graph model can be read-
ily ascertained. The stability of a system wnh an mput—outpul transfer function T{s)
can be d d by ining the d P ial of T{s). Therefore, it
the transfer function is written as

»s)
T(s) = 5.
(5) o)

where p(s) and g(s) are polynomials in s, then the stability of the system is repre-
sented by the roots of g{x). The polynomial g{s), when set equal to zero, is called the
characteristic equation. The roots of the characteristic equation must lie in the left-
hand s-plane for the system to exhibit a stable time response. Therefore, to ascertain
the stability of a system represented by a transfer function, we investigate the
characteristic equation and utilize the Routh-Hurwitz criterion. If the system we
are mw:sngaung is rcpr:sen:cd by a signal-flow graph state model, we obtain the

t by evaluating the flow graph determinant. If the system is
represented by a block duagmm madel we obtain the characteristic equation using
the block diagram red hods. As an ill ion of these hods, let us

investigale the stability of the system of Example 3.2.

EXAMPLE 6.7 Stability of a system
The transfer function T{s) examined in Example 3.2 is

27 + By + 6
R T o2
The characteristic polynomial for this system is
ls) = 5 + 8 + 165 + 6 (621)

This characteristic polynomial is also readily obtained from either the flow graph
model or block diagram model shown in Figure 3.11 or the ones shown in Figure 3.13,
Using the Routh-Hurwitz criterion, we find that the system is stable and that all the
roots of g{s) lie in the lefi-hand s-plane. =

We often determine the flow graph or block dingram model directly from a set
of state differcntial equations. We can use the flow graph directly to determine the
stability of the system by obtaining the characteristic equation from the flow graph
determinant A(s). Sumrarly we can use block diagram reduction to define the char-
acteristic equation. An of these apy hes will aid in prehending
these methods

EXAMPLE 6.8 Stability of a second-order system
A sccond-order system is described by the two first-order differential equations

Xyp= =3x; 4+ x; and &y = +lxy = Ky + Ku,

FIGURE 6.5
Welding head
position contral.

FIGURE 6.6
the s-plane,

Chapter 5 The Stability of Linear Feedback Systems

The two changes in sign in the first column indicate the presence of two roots in the
right-hand plane, and the system is unstable. The roots in the right-hand plane are
s=+1£j

EXAMPLE 6.5 Welding control

Large welding robots are used in today’s auto plants. The welding head is moved to
different positions on the auto body, and a rapid, accurate response is required, A
block diagram of a welding head positioning system is shown in Figure 6.5. We
desire to determine the range of K and a for which the system is stable. The charac-
teristic equation is

K(s + a)

1HGW =14 v+ )

Therefore, g{s) = s* + 6’ + 1157 + (K + 6)5 + Ka = 0. Establishing the Routh
array, we have

7 1 1 Ka
" o 6 K+6

IS by Ka v
5 I

& Ka

where
_ (K + 6) — 6Ka
--—-——-——-ba 1

The coefficient ¢; sets the acceptable range of K and a, while & requires that K be
less than 60. Requiring ¢ = (), we obtain

(K — G0)(K + 6) + 36Ka = D.

- K
b1=wﬁ and

The required relationship between K and a is then
f60 K)K + &)
36K
when a is positive. Therefore, if K = 40, we require @ = 0.639. »

The general form of the characteristic equation of an nth-order system is

Pra N g b=

Consrolier Head dynamicy
Lt + Xis + @) 1 ¥ish
:‘I':: s rEx FTESTTR ] ?:‘:‘:’
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the ch istic pol ial g s) and consider several methods for the

determination of relative stability.

Because the rclatwe stability of a system is dictated by the location of the roots
of the ch: quation, a first app using an s-plane formulation is 10
extend the Routh-Hurwitz criterion to ascertain relative stability. This can be simply
accomplished by utilizing a change of variable, which shifts the s-plane axis in order
1o utilize the Routh-Hurwitz criterion. Examining Figure 6.6, we notice that a shift of
the vertical axis in the s-plane to —oy will result in the roots ry, 7y appearing on the
shifted axis. The correct magnitude to shift the vertical axis must be obtained on a
trigl-and-error basis. Then, without solving the fifth-order polynomial g(s), we may
determine the real part of the dominant roots r, Fy.

EXAMPLE 6.6 Axis shilt
Consider the simple third-order characteristic equation
gls) =5 + 47 + 65 + 4 (6.17)

As a first try, let 5, = 5 + 1/2 and note that we obtain a Routh array without a zero
occurring in the first column. However, upon setting the shifted variable s, equal to
5+ 1, we obtain

(5, = 1P + 405, ~ 1P + 65, ~ D +d=5"+ 57 +5,+1L  (618)
Then the Routh array is established as

5 11
2111
5 0o
2110

There are roots on the shifted imaginary axis that can be obtained from the aux-
iliary polynomial

Uls)=sl+ 1=l + s, —l=(s+1+Ds+1-j) (619w

The shifting of the s-plane axis to ascertain the relative stability of a system is a

very useful approach, particularly for higher-order systems with several pairs of
closed-loop complex conjugate roots
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or
Ay =(s-1)Ms+3) +K=5 +2s+ (K -3) =0

This the results ined using signal-flow graph ig [

A method of obtaining the cf istic eq directly from the vector dif-
ferential equation is based an the fact that the solution to the unfarced system is an
exponential function. The vector differential equation without input signals is

% = Ax, (6.22)
where x is the state vector. The solution is of exponential form, and we can define a
constant A such that the solution of the system for one state can be of the form
x{t) = k™. The A are called the ch istic roots or eigenvalues of the system,
which are simply the roots of the characteristic equation. If we let x = ke and sub-
stitute into Equation (6.22), we have

Akt = Ake¥, (6.23)
ar
Ax = Ax. (6.24)
Equation (6.24) can be rewritten as
(Al = Ajx =0, (6.25)

where I equals the identity matrix and 0 equals the null matrix. This set of simulta-
neous equations has a nontrivial solution if and only if the determinant vanishes-—
that is, enly if

det{Al - A) = 0. (6.26)
‘The nth-order equation in A resulting from the evaluation of this d i is the
characteristic equation, and the stability of the system can be readily ascertained.
Let us consider again the third-order system described in Example 3.3 to illustrate
this approach.

EXAMPLE 6.9 Closed epidemic system

The vector di ial equation of the epidemic system is given in Equation (3.63)
and repeated here as

@ - 0 10
g -y oks+|o ||:"’].
00

dt - y 0 iy
The characteristic equation is then
A0 0 -« —§ 0
det(Al ~ A)=dets |0 A 0|~ B -y 0
0 0 A a e A

=dctf -8 A+y 0

- -y A
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Trwk lorgue
Right o
Throsle Direction
Power tri
S 3] free e [
Difference fn irack speed
(]
Controfler Power train and.
G, ls) vehicle Gis}
Kish
Diesiseal x s+u L3
directson T+ sis + s+ 5) L
e purnisg =

i

‘We must select K and a so that the system is stable and the steady-state error for a
ramp command is Ie-ss than or equal to 24% ol’the magnitude of the command.
h ion of the feedback system is

1+ G.Gls) =1,
or
K(s + a)
R . v L, 7
T r G (627)
Therefore, we have
$(s + 1)(s + 2)s + 5) + K(s + a) = 0,
ar
A8+ 17+ (K + 10+ Ka =10, (6.28)
“To determine the stable region for K and a, we establish the Routh array as
¢ 1 17 Ka
5 8 K+10 0
& by Ka
5 I3
5 Ka
where
126 - K By K + 10) — BKa
by = and o= .
8 by

For the elements of the first column to be positive, we require that Ka, by, and ¢y be
positive. Therefore, we require that

Chapter 6 The Stability of Linear Fesdback Systems

where the dot notation implies the first derivative and w(f) is the input. The flow
graph model of this set of differential equations is shown in Figure 6.7(a) and the
block diagram model is shown in Figure 6.7(b).

Using Mason’s signal-flow gain formula, we note three loops:

Li=s?, Ly=m-=35" and Ly=-Ks5?,
where L; and L; do not share a common node. Therefore, the determinant is
A=l—(Li+Lli+ L)+ Lily=1-("=3" - K5+ (=37
We multiply by 5 to obtain the characteristic equation
A++(K—3=0

Since all coefficients must be positive, we require K > 3 for stability. A similar
analysis can be undertaken using the block diagram. Closing the two feedback loops
yields the two transfer functions

1 1
Gyls) = P and Gyfs) = T+

as illustrated in Figure 6.7(b). The closed loop transfer function is thus
KGy(5)Gals)
T8 = T kGG
T the ch istic equation is

As) = 1 + KGy(s)Gals) = 0,

Chapter 6 The Stability of Linear Fesdback Systems

= Al(A + a)A + ) + B

= A[A + (a + y)A + (ay + BY] =0,
Thus, we obtain the characteristic equation of the system, and it is similar to that
obtained in Equation (3.65) by flow graph methods. The additional root A =0
results from the definition of x5 as the integral of ax; + yx;, and x; does not affect
the other state variables. Thus, the root A = 0 indicates the integration connected
with x;. The ch di that the system is marginally stable
when a +7>nandu7+jﬁ>n -

As another example, consider again the inverted pendulum descnbed in Exam-
ple 3.4. The system matrix is

o1 1] 1]
0 0 -mgiM 0
A oo 0 10
00D gt 0
The char istic equation can be obtained from the d i of (Al — A) as
follows:
A =1 1] [
(1] A mglM (1 2 8\ 2 _EBY_
detl 0 oy -1 A[A(i T A -7)=0
00 -gil A
The characteristic equation indicates that there are two rools at A = 0: a root at

A= +VgilandarootatA = = J! Hence, the system is unstable, because there is
@ root in the right-hand plane at A = + %/ gil. The two roots at A = 0 will also resultin
an unbounded response.

6.5 DESIGN EXAMPLES

Tn this section we present two i ples. The first ple is a tracked vehi-
cle control problem. In this first example, stability issues are addressed employing the
Routh-Hurwitz stability criterion and the is the selection of two key system

parameters. The second example illustrates the stahulny problem mbm ccmml.led mo-
torcycle and how Routh-Hurwitz can be used in the sel of

the design process. The robot-c lled | ple highli S the desagu
process with special attention to the impact of key contml.ler parameters on stability.

EXAMPLE 6.10 Tracked vehicle turning control

The design of a turning control for a tracked vehicle involves the selection of two
parameters [8]. In Figure 6.8, the system shown in part (a) has the model shown in
part (b). The two tracks are operated at different speeds in order to turn the vehicle,
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The design el hlighted in this le are illustrated in Figure 6.11. Using
the Rowth-Hurwitz slnhnlnl.y criterion will nlhvw us 1o get 1o the heart of the matter,
that is, to develop a sirategy for computing the controller gains while cnsuring
closed-loop stability.

The control goal is

Control Gosl
Control the molorcycle in the vertical position. and maintain the prescribed
position in the presence of disturbances.
The variable to be controlled is
Variuble 1o Be Controlled
The motureyele position from vertical ().
transient h isties, the
ty only: transient pér[nmmnce is an

Since our focus here is on stability rather th
control specifications will be related to stal

issue that we need to address onve we hive investigated all the stability issues. The
control design spevification is
Design Specilication
DS1 The closed-loop system must be stable,
The main I of the robot lled vele are the mol Je and

rubot, the Hler, and the fecdback The main subject of the chap-
ter i not modeling. so we do not concentrate on developing the motorcycle
dynaniics model, We rely instead on the work of others (see [22]). The motorcycle
el ts given by

Gily) =— (6.31)

|r.'

where a; = gih, g = 2.806 mis?, and fi i the height of the motoreyele eenter of

gravity above the ground (see Figure 6.10). The motoreyele is unstable with poles ut
v = + V. The controller is given by

3 * sy
T+l

G (s) = (6.32)
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Control is accomplished by turning the handlebar. The front wheel rotation
about the vertical is not evident in the transfer functions. Also, the transfer functions
assume a constant forward speed v which means that we must have another control
system at work regulating the forward speed. Nominal motoreycle and robot con-
troller panmelers are given in Table 6.2.

A 2 the of the feedback system gives us the system config-
uration shown in Figure 6,12 ination of the ion reveals that the
robot controller block is a function of the phymal system (h,c,and L) lhc operat-
ing nundiums (v), and the robot time- (r). No need
unless we physically change the 1 s andlor speed. In fact, in this
example the parameters we want to adjust are in the feedback loop:

Select Key Tuning Parameters

Feedback gains Kp and Kp.
The key tuning parameters are not always in the forward path; in fact they may exist
in any subsystem in the block diagram.

We want to use the Routh—Hurwitz technique to analyze the closed-loop system
stability. What values of Kp and Kp lead to closed-loop stability? A related question
that we can pose is, given specific values of Kp and Kp, for the nominal system (that
is, nominal values of oy, oy, ay, and 7), how can the parameters themselves vary while
still retaining closed-loop stability?

Table 6.2 Physical Parameters
0zs

9 us

27 1

135 Vs

109 m

20 mis

1.0 m

1.36 m

ArmETR e R

T

o

m+l + f=a s

cantroller

Kp+ Kt

FIGURE 6.9
The

siable region.
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K <126,
Ka =0, and
(K + 10)(126 = K) - 64Ka = 0. (6.29)
The region of stability for K = 0 is shown in Figure 6.9, The steady-stale error 1o a
ramp input () = Ar,t > Dis
e = AlK,.
where
K, = limsGG = Kal0.
Therefore, we have
" Ke'
When e, is equal to 23.8% of A, we require that Ka = 42. This can be satisfied by
the selected point in the stable region when K = Thand @ = 0.6, a5 shown in Figure
6.9, Another acceptable design would be attained when K = 50 and o = (L84, We
cun caleulate a series of possible combinations of K and @ that can satisfy Ka = 42
and that e within the stable region, and all will be acceptable design solutions.

However, not all selected values of K and a will lic within the stable region, Note
that K cannot exceed 126, w

(6.30)

EXAMPLE 611 Robot-controlled motorcyele

Consider the robot-controlled motorcyele shown in Figure 6.10.The motorcycle will
move in a straight line at constant forward speed v, Lei ¢ denote the angle between
the plane of symmetry of the motorcyele and the vertical, The desired angle & is
equal to zero:

dals) = 0.

Chapter 8 The Stability of Linear Feedback Systems

D Toptes cmphasized in this examle

Extahlish the comtrod goals = Comiral the motorcycle o the
vertical positi

Idenaify the vuriables to be comrolled | == Vertical position ()

Diesign specification:
D51 Clused-loop stability

Wile the specifications —

——Sec Fi 6,10 8nd 612

1 1

Estublish he

See Egquations (6.31) and (A32)
andd Table 6.2

Cobtain & model of the pricess, the
actizaor, anil the seesoe

—

Describe & comtmller and select key
parameters 10 be sdjosted

Optimize the parameters and
analyze the performance

dhoes not mesd the ¥ the performance meets ihe specifications,
F the

+—— See Figures .12 Ky wnd Ky,

then finslize the design.

FIGURE 6,11 Elements of the control system design process emphasized in
this robot-controliad motorcycls exampla.

where

ay = eithe)
and

ay = vLi(he).

The forward speed of the motoreyele is denoted by v, and ¢ denotes the wheel-base
(the distance between the wheel centers), The length, L, is the horizontal distance
between the front wheel axle and the motorcyele center of gravity. The time-
constant of the controller is denoted by 7. This term represents the speed of re-
sponse of the controller; smaller values of ¢ indicate an increased speed of response.
Many simplifying assumplions are necessary 10 obtain the simple transfer function
models in Equations (6.31) and (6.32).
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Valid gains for which
f >0, S¢e Equation. (6,33),

For this robot-controlled motorcycle, we do not expect to have to respond to
nonzero command inputs (that is, by # 0) since we want the motorcyle to remain
upright, and we certainly want to remain upright in the presence of external
disturbances.. The transfer function for the disturbance Ti(s) to the output ¢(s)
without feedback is

8(5) = 5=—Tds)
1

‘The characteristic equation is
qls) = % = ay = 0.
The system pales are
5 = —Vajand 5, = +Vay,

Thus we see that the is ble: it p a pole in the right half-
plane. Without feedback control, any 1 disturb will result in the motor-
cycle falling over. Clearly the need for a control system (usually provided by the
human rider) is necessary, With the feedback and robot controller in the loop, the
closed-loop transfer function from the disturbance to the output is

&(s). 75+ 1
TiS) 78+ (1 + Kow)s® + (Ko + Kpas — ran)s + Kpay — oy

412
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Velocity (ms)

6.6 SYSTEM STABILITY USING CONTROL DESIGN SOFTWARE

‘This section begins with a discussion of the Routh-Hurwitz stability method. We
will see how the computer can assist us in the stability analysis by providing an easy
and accurate method for computing the poles of the characteristic equation. For the
case of the characteristic equation as a function of a single parameter, it will be pos-
sible 10 g a plot displaying the of the poles as the parameter
varies. The section concludes with an example.

The function introduced in this section is the function for, which is used 1o
repeat a number of statements a specific number of times.

Routh-Hurwitz Stability. As stated earlier, the Routh-Hurwitz criterion is a neces-

sary and sufficient criterion for stability, Given a characteristic equation with fixed

coefficients, we can use Routh-Hurwitz 1o d:tr.'rmuw the mnnbcr of roots in the
right half-plane. For example, ider the ch q

)=+t + M=

d with the closed-loop control system shown in Figure 6.16. The corre-
sponding Routh-Hurwitz array is shown in Figure 6.17. The two sign changes in the
first column indicate that there are two roots of the characteristic polynomial in
the right half-plane; hence, the closed-loop system is unstable. We can verify the
Routh-Hurwitz result by directly computing the roots of the characteristic equa-
tion, as shown in Figure 6.18, using the pole function. Recall that the pole function
oampules the syslem poles.

stic ion is a function of a single parameter, the
Routh-| Hurwnz metlmd can be utulmd to determine the range of values that the

FIGURE 6.14
Disturbance

response with
Kp = 10 and
Ko = 5.
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The closed-loop transfer function from ¢(s) to d{s) is

bl
T = 25 {;;’
where
Afs) =77 + (1 4 Kpay)s™ + (Knay + Kpay = 7a)s + Kpay — @y
‘The characteristic equation is
Afs) = 0.

The question that we need to answer is for what values of Kp and Kp does the char-
acteristic equation A(s) = 0 have all rools in the left half-plane?
We can set up the following Routh array:

£ T Kpoey + Kpary — 7y
& 1+ Kpas Kpery — ay
s a
1 Kparz =y
where
_ % Kpas)(Kpey + Kpay = 7ey) — rlagKp — @)
1+ Kpasy
By inspecting column 1, we d that for stability we require

7> 0,Kp > —Vay, Kp > ayfay,anda > 0,

Choosing K, = 0 satisfies the second mequa!lly {note that a; > 0). In the event
7 = 0, we would the ch: ion and rework the Routh array.

The computational difficulty arises in delemlnlng the conditions on Kp and K
such that @ > 0. We find that ¢ > 0 implies that the following relationship must be
satisfied:

[ = @Ky’ + (o3 = Tagas + alKp)Kp + (o = rax)Bp > 0. (6.33)
Using the nominal values of the parameters ay, ay, a3, and 7 (see Table 6.2), the sta-
bility region is shown in Figure 6.13. For all Ky > 0 and Kp > 3.33, the function
f =0, hence a = 0. Taking into account all the inequalities. a valid region for
selecting the gains is Kp > 0 and Kp > oyfay = 333,
Selecting any point (Kp. Kp) in the stability region yields a valid (that is. stable)
set of gains for the feedback loop. For p ing
Kp=10and Kp =5
yields a stable closed-loop system. The closed-loop poles are

5 = —35.2477,5, = —2.4674, and 53 = —1.0348,

Since all the poles have negative real parts, we know the sysiem response o any
bounded input will be bounded.

Chapter & The Stabllity of Linear Feedback Systems

.06
[
0.05 v
” /
0oz /
o0l
o 1 3 ] 6
Time ish
The response 1o a step disturbance
Tls) = =
als) = 2.

is shown in Figure 6.14; the response is stable. The control system manages to keep
the motorcycle upright, although it is tilted at about ¢ = 0.055 rad = 3.18 deg.

Itis important to give the robot the ability to control the motorcycle over a wide
range of forward speeds. Is it possible for the robot, with the feedback gains as
selected (Kp = 10 and Kj = 5), to control the motorcyele as the velocity varies?
From experience we know that at slower speeds a bicycle becomes more difficult to
cantrol. We expect 1o see the same characteristics in the stability analysis of our sys-
tem. Whenever possible, we try to relate the engineering problem at hand to real-life
experiences. This helps to develop intuition that can be used as a reasonableness
check on our solution,

A plot of the roots of the characteristic equation as the forward speed v varies
is shown in Figure 6.15, The data in the plot were generated using the nominal val-
ues of the feedback gains, Kp = 10 and K, = 5. We selected these gains for the case
where v = 2 mfs. Figure 6.15 shows that as v increases, the roots of the characteris-
tic equation remain stable (that is, in the left half-plane) with all points negative. But
as the motorcycle forward speed decreases, the roots move toward zero, with one
root becoming positive at v = 1.15 m/s. At the point where one root is positive, the
motorcycle is unstable.
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3

= =

MCRAEAOIOOUK KK KK KKK K

Imaginary axis
o

% This script compules the rocts of the characteristic
% squation gfs) = 5°3 + 282 + 4 5 + K for 0<K<20
%

Ke{0:0.5:20];

for k=1:lengin(K)
q=(12 £ K(I)): Loy for ronts a5
P-ij=raotsial » fonction of K

potireal(p)imag(p),x ), grid
labei Foal axis'), ylabel[imaginary axis')

ib)

The script in Figure 6.20 contains the for function. This function provides a

ism for rep di ing a series of a given number of times.

The for function 1 to an end sets up a repeating calculation loop,

Figure 6.21 describes the for function format and provides an illustrative example of

its usefulness The example sets up a loop that repeats ten times. During the ith iter-

ation, where 1 = i = 10, the ith element of the vector a is set equal to 20, and the
scalar b is recomputed.

The Routh-Hurwitz method allows us to make definitive statements regarding
absolute stability of a linear system. The method does not address the issue of rela-
tive stability, which is directly related to the location of the roots of the characteris-
tic equation, Routh-Hurwitz tells us how many poles lie in the right half-plane, but
not the specific location of the poles With control design software, we can easily cal-
culate the poles explici llowing us to on the relative stability.

EXAMPLE 6.12 Tracked vehicle control
‘The block di of the I for the two-track vehicle is shown in Figure 6.8,

‘The design objective is to find @ and K such that the system is stable and the steady-state
error for a ramp input is less than or equal 10 24% of the command.
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fa=08,K

% The a-K stabiity region lor the two track vehicls

T
a=[0.1:0.01:3.0%; K={20:1:120) Initiali

0K yo0K: itialize plot vecions & zero
I —— _""“"""'"""""""“""“"‘L
for =1

q={1, 8 17, Ki{ij+10, K{ii"afj)]: -
perootsiql; pol; 8
it max(real(p]) > 0, x(i)=K(i); ylij=al-1); break. end

end

For a given valoe of K, determine
first valoe of a for instability.

end
plodix.y), grid, xlabel(K'), ylabel(a')

ik

Given the steady-state specification, e,, < 0,244, we find that the specification is
satisfied when

L4 <o2a,
or
ak > 41,67, (6.34)
Any values of a and K that lie in the stable region in Figure 6.22 and satisfy Equa-
tion (6.34) will lead to an acceptable design. For example, K = 70 and a = 0.6 will
satisfy all the design requirements. The closed-loop transfer function (with a = 0.6
and K = T0) is
Tls + 42
£+ 88 + 177 + 80y + 42
The associated closed-loop poles are
s = =7.0767,
= —0.5781,
5= =01726 + 3.1995, and
5= —0.1726 — 3.1995:.

T(s) =

414

FIGURE 6.16
Closed-loop control
system with Tis) =
Yisi/is) = 11187 +
84+ 25 + 24)

FIGURE 8.17
Routh array for the
closad-lap control
sysiem with -
YisiiAts) = 1/ +
&+ 25 + 24).

FIGURE 6.18
Using the pole
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parameter may take while maintaining stability, Consider the closed-loop feedback
system in Figure 6.19. The characteristic equation is

gls) = & + 2% +ds + K = 0,

Using a Routh-Hurwitz approach, we find that we require 0 < K < 8 for stability
(see Equation 6.12). We can verify this result graphically. As shown in Figure
6.20{b}, we establish a vector of values for K at which we wish to compute the roots
of the characteristic equation. Then using the roots function, we calculate and plot
the roots of the characteristic equation, as shown in Figure 6.20{a). It can be seen
that as K increases, the roots of the characteristic equation move toward the right
half-plane as the gain tends toward K = B, and eventually into the right half-plane
when K > 8,

ssnumg={1]; deng=[1 1 2 23]; sysg=thnumg, deng):
sasys=lasdback(sysg (1))
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General format

=+ for variablesexpression

stalpment
.
statement
=4 ol

omrto o o ]

The end statement

must be incladed to

imdicate the end of
the loop.

We can use the Routh-Hurwitz method to aid in the search for appropriate values
of @ and K. The closed-loop ¢h isth ion is

gls) = s + 8 + 178 + (K + 10)s + aK = 0.
Using the Routh array, we find that, for stability, we require that

126 - K
8

For positive K, it follows that we can restrict our search to 0 < K < 126 anda > 0.
Our approach will be to use the computer to help find a parameterized a versus K
region in which stability is assured. Then we can find a set of (a, K) belonging to the
stable region such that the steady-state error specification is met. This procedure,
shown in Figure 6.22, involves selecting a range of values for a and K and computing
the roots of the characteristic polynomial for specific values of a and K. For each
value of K, we find the first value of a that results in at least one root of the charac-
teristic equation in the right half-plane. The process is repeated until the entire
selected range of a and K is exhausted. The plot of the (@, K) pairs defines the sepa-
ration between the stable and unstable regions, The region to the left of the plot of &
wversus K in Figure 6.22 is the stable region.
1f we assume that r(r) = At, ¢ = 0, then the steady-state error is

e s(s+ 1)(s +2)(s + 5) A_104
e R Gt NG+ 25+ Ke+a) 2 K’

K < 126,

(K+10) - 8aK >0, and aK > 0.

where we have used the fact that
s{s + 1)(s + 2)(s + 5)
s(s + 1)(s + 2)(s + 5) + K{s + a)

Efs) = 5 Ris) = Ris).

1
1+ G.G(s
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s=f=[-8 16 -6;1 0 0:0 1 O

>>pepoly(A) Charseseristic palymomial

p=
1.0000 B.0000 180000 6.0000

the Routh-Hurwitz method to detect any unstable roots, Unfortunately, the manual
computations can become lengthy, especially if the dimension of A is large. We
would like to avoid this manual computation if possible. As it turns out, the comput-
er can assist in this endeavor.

The poly function described in Section 2.9 can be used to compute the charac-
teristic equation associated with A. Recall that poly is used to form a polynomial
from & vector of roots, It can also be used to pute the ch istic equation of
A, as illustrated in Figure 6.24. The input matrix A is

-8 -16 -6
A= 1 o 0f
o 1 o
and the associated ch istic polynomial is
fr 8t 165+ B=0

If A is an » X »n matrix, poly(A) is an n + | element row vector whose ele-

ments are the coefficients of the characteristic equation det(sl — A) = 0.

EXAMPLE 6.13  Stability region for an unstable process

A jump-jet aircraft has a control system as shown in Figure 6.25 [16]. Assume that
z > 0and p > 0. The system is open-loop le (without feedback), since the
characteristic equation of the process and controller is

sx—=1)s+ p)y=s[s* + (p— 1 - p]=0.

P Controller Aircralt
¥isi
Aincralt ¥ Kis +2) 1
—— pmgp] Actuad
desired rp - 1) Wiem
orkentation - arentaion
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&
Stabilily region exists

6.7 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

In Section 5.11, we examined the design of the head reader system with an adjustable
gain K. In this section, we will examine the stability of the system as K, is adjusted
and then reconfigure the system.

Let us consider the system as shown in Figure 6.28. This is the same system with
a model of the motor and load as considered in Chapter 5, except that the velocity

i)
Pusition

418

FIGURE 6.26
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stabillty region.
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wn

Time (s)

(s}

%% Two-irack vehicle uming control ramp response

% with a=0.6 and K=70.
%
1=[0:0.01:16]; ust; a—[ _

numge={1 0,6}: dange=1 1}; mqﬁhnmvmdlnﬂﬂ}

numg={70}; deng={1 7 10 0f; sysg=t{numg.deng);

y=lsimieys,ut); Linear simulation a=06amd k=70

s | e
("Tima ()}, ylabel{'y(l))

[}

The corresponding unit ramp input response is shown in Figure 6.23. The steady-
state error is less than 0.24, as desired. =

The Stability of State Sy Now let us turn to determining the stabil-
ity of systems described in state variable form. Suppose we have a system in state-
space form as in Equation (6.22). The stability of the system can be evaluated with
the characleristic equation associated with the system matrix A. The characieristic
equation is

det(sl — A) = 0. (6.35)
The left-hand side of the ck istic equation is a pol ial in s. If all of the
roots of the isti ion have ive real parts (ie., Re(s;) < 0), then

the system is stable. 3
When the system model is given in stale variable form, we must calculate the

poly d with the A matrix. In this regard, we have sev-
eral options. We can calculate the ch istic equation directly from Equation
(6.35) by 1l puting the d of s1 = A. Then, we can compute

the roots using the roots function to check for stability, or alternatively, we can use
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Note that since one term within the bracket has a negative coefficient, the charac-
teristic equation has at least one root in the right-hand s-plane. The characteristic
equation of the closed-loop system is

SH(p-1DF+ (K- p)s+ Kz=0.

The goal is to determine the region of stability for K, p, and z. The Routh
array is

o 1 K-p
£ p—1 Kz

s by *
s Kz

where
_lp— 10K - p) - K2
p-1 X
From the Routh~Hurwitz criterion, we find that we require Kz > Oand p > 1. Set-
ting by > 0, we have

(p—INK - p) -~ Kz=K[(p=1) = 2] = p(p = 1} > 0.
Consider two cases:
Lz = p— Lithereisno0 < K < o0 that leads to stability.

by

plp = 1)

K>%-D-t

(6.36)

The stability ditions can be depicted graphically. The m-file script used to
generate a three-dimensional stability surface is shown in Figure 6.26. This script
uses mesh to create the three-dimensional surface and meshgrid to generate arrays
for use with the mesh surface.

The three-dimensional plot of the stability region for K, p. and z is shown in
Figure 6.27. One acceptable stability pointisz = 1, p = 10,and K = 15. m

% Jump-jot contral system 3-D stablify region,

%

Tranaform dosmains for
[p,zl=meshgrig{1.2:0.2:10,0.1:2:10); ._[—_|
K=p. (1) 12 ot 7 o s plt
mesh(k)
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Tiin

The characteristic equation is then

14 [KGUIGA)L + Kis) = 0,

s{s + 20)(s + 1000) + S000K(1 + Ki5) = 0.
Therefore, we have
5+ 10205 + [20000 + SDO0K,K s + S000K, = 0.
Then the Routh array is

T 1 20000 + S000K,K,
T 1020 S000K,

r by

& | S000K,

where

1020 (20000 + S000K,K;) ~ S000K,

b,
4 1020

To guarantee stability, it is necessary to select the pair (K, K;) such that & > 0,
where K, > 0. When K= 005 and K, = 100, we can determine the system
response using the script shown in Figure 6.30. The settling time (with a 2% criterion)
is approximately 260 ms, and the percent overshoot is zero. The system performance
is summarized in Table 6.3, The performance specifications are nearly satisfied, and
same iteration of K, is necessary to obtain the desired 250 ms settling time.

Table 6.3 Performance of the Disk Drive System Compared to the
Specifications

Performance Measure Desired Value Actusl Response
Percent overshoot Less than 5% 0%
Settling lime Less than 250 ms 260 ms
Maximum response
10 a unit di Less than § % 107 2x 107
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SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Muliple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure 6.31
as specified In the various problem statements

Coomoller | | Process

+ l—_ '_
Rish Gi s G ¥is)

FIGURE 6.31 Block diagram for the Skills Chock,

In the following True or False and Mubtiple Choice problems, circle the correct answer.
L. A stable sysiem is & dynamic system with a bounded output response

for any input. True or False
2. A marginally stable system has poles on the ju-axis. True or False
3. A system is stable if all pobes lie in the right half-plane. True or False
4. The Routh-Hurwitz criterion is & necessary and sufficient criterion for

determining the stability of linear systems. True or False
5. Relative stability characterizes the degree of stability. True or Falte

6. A system has the characteristic equation
gl =S +4KF + (5 + K+ 10=0,

The range of K for a stable system is:
& K> 046
b K < 046
e 0=K <046
d. Unsable for all K
7. Utilizing the Routh-Hurwitz criterion, determine whether the following polynomials are
stable or unstable:
Pls) =2+ 105 +5=0,
pafz) = o'+ £ S5 20+ 10 = 0L

a pyls) is stable, psls) is stable
b py(s) is unstable, py(s) is stable
€ (1) is stable, ps(s) is unstable
d. (5] is unstable, py(s) is unstable
8. Consider the feedback control system block diagram in Figure 6.31. Investigate closed-
loop stability for G.(5) = K(s + 1) and G(1) =
K=land K =3
o Unstable for K = 1 and stable for K = 3

1
TETES s for the two cases where

424
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feedback sensor was added, as shown in Figure 6.28. Initially, we consider the case
where the switch is open, Then the closed-loop transfer function is

YO __KG(5)G(s)

Ris) 1+ KGi(s)Gals) (6:37)

where

5000
@) = 737000
and

!
Gafs) = e 20
The characteristic equation is
sis + 20)(s + 1000) + 000K, = 0, (6.38)
or

£+ 102052 + 200005 + 5000K, = 0.

We use the Routh array

b 1 20000
£ 1020 SO00K,
s by !
& | so00k,
where
. = (20000)1020 — SO00K,
e

1020

The case by, = 0 results in marginal stability when K, = 4080. Using the auxiliary
equation, we have

102057 + 5000(4080) = 0,

or the roots of the jw-axis are 5 = £j141.4. In order for the system to be stable.
K, = 4080,

Now let us add the velocity feedback by closing the switch in the system of
Figure 6.28, The closed-loop transfer function for the system is then

Y KGy()Gals)
RG) " TH [KGOGWIN + Kis)'

since the feedback factor is equal to 1 + K5, as shown in Figure 6.29.

(6.39)
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Ka=100; K1sD 05, #———————————""1  Sulsct ihe velocity
ng1={5000]; dgi={1 1000]. sys1=li{ng1.da1). | feedback gain &, snd
ng2={1}: dg2={1 20 Of, sys2=(ng2 dg2); amsplifier gain K,
ne={K1 1]; de=[0 1]; de);

syso=series(Ka'sys1 sys2);

140:0.001:05]; :
y=stap(sys.J: plotiLy)
yeaneiCy(1)) xisbeN Time (s)), grid

(a1

0%
08 s 4 -
0 |==de——f—— et =

06 —f-- !

D5 -

b

04|  Af
o3
azf |

gipfd——1 i x | —_—

L] L L |
O 008 01 045 02 025 03 035 04 045 05
Time (s}

(b}

In this chapter, we have considered the concept of the stability of a feedback control
system. A definition of a stable system in terms of a bounded system response was
outlined and related to the location of the poles of the system transfer function in
the s-plane.

The Routh-Hurwitz stability criterion was introduced, and several examples
were considered. The relative stability of a feedback control system was also consid-
ered in terms of the location of the poles and zeros of the system transfer function in
the s-plane. The stability of state variable systems was considered.



Skilts Check

In Problems 13 and 14, consider the system represented in a state-space form

[ LI o
= 0 0 1@+ 0
-5 =10 -5 n

y=[1 0 1=

13, The characteristic equation is:
aogs) =5+ 55 - 105 -6
bogis) =5+ 57 + 105+ 5
e gis) =9 -5 +10s -5
dogls) =+ -5s+ 10

14, Using the Routh-Hurwitz criterion, determine whether the system is stable, unstable, or

marginally stable,

. Stable

b. Unstable

e Marginaily stable
d. None of the above

15. A system has the block diagram representation as shown in Figure 6.31, where

Gis) 'mmﬁe{ﬂ
for a stable system is:

& 0 < K < 28875

b 0< K <2075

e 0 < K < 25050

d. Stable for all KX =0

_K
Y80

where K is always positive. The limiting gain

in the following Word Match problems, match the term with the definition by writing the

correct letter in the space provided.
#. Routh-Hurwitz
criterion

A performance measure of a system.

b. Auxiliary polynomial A dynamic system with a bounded system
response to & bounded input.
‘e Marginally stable The property that is measured by the relative
real part of each root or pair of roots of the
characteristic equalion. _

. Stable system

A criterion for determining the stability of a

system by examining the characteristic equation
of the transfer function.
e Siability The equation that immediately precedes the zero
«eniry in the Routh array. P

L Relative stability A

description that reveals whether a system

is stable or not stable without consideration of other

system attributes such as degree of stability,
B Absolute stability A system possesses this type of stability if the zero
input response remiins bounded as § —= oo, =
Exercises 429
FIGURE E6.13 | Comroller | Process
Closed-loop + 4
system with & Lo L e s e
plus derivative j
controlier
Gifs) = Ko + Kps.

where a and b are constant parameters. Determine the
necessary and sufficient conditions for the system to
be slnbk. 13 it passible to determine stability of a sec-

ond-order sysiem just by inspecting the coefficients of

the characteristic equation?

E613. Consider the feedback system in Figure E&.13.
Determine the range of Kp and Ky for stability of
the closed-boop system.

E6l4 By usuu me;nﬂi: bearings, a rotor & supported

of support for

Totors bf.cnama moge important in light and Mary

(a) Determine the characteristic equation. (b) Deter-
mine whether the sysiem is stable. {c) Determine the
roots of the characteristic equation.
Answer: (a) gis) = £ + 737 + 365 + 24 = 0
E&I8 A system has o characteristic equation
qls) = &' + 205 + 55 + 100 = 0,
{a) Determine whether the system is stable, using the
Routh-Hurwitz eriterion. (b) Determine the roots of
the characteristic equation.
I‘.G.I.! D:l:rmmc whelberlheml:m with the following
are stable or unsiable:

industrinl applications [14]. The matrix
equation for a magnetic bearing system is.

o1 0
iw|=-3 -1 O
-2 -1 =2

where &7 = [y, dyldt, i]. y = bearing gap. and i s
the electromagnetic current. Determine whether the
system is stable.

Answer: The system is stable.

E615 A system has a characteristic equation
qls) = 5* + 95 + 31.255* = 61.255"

+ 67755 + 14755 + 15 = 0.

{a) Determine whether the system is stable, using the
Routh-Hurwitz criterion. (b) Determine the roots aof
the characteristic equation.
Angwer: (a) The system is maorginally stable
(b)s = =3, -4, -1 £ 2/, 205)

E6.16 A system has a characteristic equation

gls) = 5% + 05" + 4557 4 BT5 + S0 = 0,

{a) Determine whether the system is stable, using the
Routh-Hurwitz criterion, (b) Determine the roots of
the characteristic equation.

E6.17 The matrix differential equation of a state variable
model of a system has

o I =1
A=|-8 -12 8|
-8 -12 5

(a) & uﬂu.nmo-n
(b} 5465+ 1087 + 175 + 6 = O.and
(c) #+6s+3=0
E6.20 Find the roots of the following polynomials:
(a) a’+sa’+sn4-omd
(b) £+ 987 + 275 + 2T = 0.
E621 A system has the characteristic equation
gls) ="+ 107 + 295 + K =0,
Shift the vertical axis to the right by 2 by using
5 = 5, — I, and determine the value of gain X so that
the complex rootsare s = —2 & |,

E622 A system has a transfer function ¥(s)}/R(s) =
T(s) = 1is. (a) Is this system stable? (b) 1f (1) &5 & unit
step input, determine the response w(f).

E623 A system is represented by Equation (6.22) where

L] I [
A= a o 1
-8 -k -4
Find the range of k where the system is stable

E624 Consider the sysiem represented in state variable
form

%= Ax + Bua
¥ = Cx + Du,

[ o
A= 0 0 1|B=}0
-k =k =k 1

C={1 0 0.D=0]

FIGURE E6.8 e
Aircralt heading
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b. Unstable for K = 1 and unstable for K = 3
¢ Stable for K = 1 and unstable for K = 3
d. Stable for K = 1 and stable for K = 3
9. Consider a unity negative feedback system in Figure 6.31 with loop transfer function
where

K
Lis) = Gla)Gls) = {1+ 055)(1 + 055 + um’]
Determine the value of X for which the closed-lnap is stable.
K =10
b K=3

e The system is unstabie for all K

d. The system is stable for all K

18, A system is represented by X = Ax, where

The values of X for a siable system are

a K<12
b K =172
e K=172
d. The system is stable for all K

1L Use the Routh array to assist in

the roats of the pot

gis) =27 + 2 + s+ 1 =0,

L= =ln= 1%}'

hy=Ln= i—.sti

Vi
o= —I:su“i:T;

dog= =lisp=1

12. Consider the following unity feedback control system in Figure 631 where

1 Kis +03)
- and G, = e
Gla) = o+ 1o T ) 4 O 3
‘The range of K for stability is
8. K < 26068
b 5006 < K < 12398
e 10012 < K < 26068
d. The system is unstable for all K > 0
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EXERCISES
E61 A system has a characteristic equation s* + Ki* +  EGS i have d d small, fast, vertical-tak,

{1 + K}s + & = U, Determine the range of K for a
stable system.
Answer: K = 2

E62 A system hos a characteristic equation 5° + 1057 +
25 + 30 = 0. Using the Routh-Hurwitz criterion,
show that the system is unstable.

E&3 A system has the characteristic  equation
7t + 100 + 326 + 375 + 20 = 0. Using the Routh-
Hurwitz criterion, determine if the system is stable.

E64 A control system has the structure shown in
Figure E6.4, Determine the gain at which the system
will become unstable.

Angwer: K = 207
E65 A unity feedback system has a loop transfer function
K
M= e e v o
where K = 20. Find the roots of the closed-loop sys-
tem's characteristic equation.

E6.6  For the feedback system of Exercise ES.S, find the
value of K when two roots lie on the imaginary axis.
Determine the value of the three roots.

Answerss = —10), £/5.2

E6T A negative feedback system has a loop transfer

function

Kis +2)
s(s—1)"

Liz) =

{a) Find the value of the gain when the { of the closed-
loop roots is equal to 0.707. (b) Find the value of the
gain when the closed-loop system has two roots on the
BmAgINATY AXFS.

FIGURE E6.4
Feedlorward

off r-mez siceraft that are invisible 1o radar (stealth
aireraft). This aircrall concept uses quickly turning jet
nozzles to steer the airplane [16]. The control sys-
tem for the heading or direction control is shown in
Figure E6.8. Determine the maximom gain of the sys-
tem for stable operation.
E&9 A system has a characteristic equation
2 H K+ g+ BwD,
Find the range of K for a stable system.
Answer: K > 3
E6.10 We all use our eyes and ears 1o achieve balance.
Our orientation system allows us to sit or stand in a de-
sired position even while in motion. This oricntation
system is primarily run by the information received in
the inner ear, where the semicircular canals sense an-
gular scceleration and the otoliths measure linear ac-
But these need
1o be supplemented by visual signals Try the following
experiment: (a) Stand with one oot in front of anoth-
er, with your hands resting on your hips and your
clbom mr! outward. (b I:‘[ow your eyes. Did you
that grew until
you lost Inlanoe‘r s this. oricntation position stable
with and without the usc of your eyes?
E611 A system with a transfer function Y{sVR(s) is
Y{:l s+ 1)
Ro) " Frer et esed
Determine the steady-state error (o @ unit step input.
Is the system stable?

Ef12 A system has the sccond-order characterstic
equation

Fras+b=0,

+
Ris) L

Adrcrall dyrasnics
(s +20) s
s+ 100 Heading

control.




Problems

P62 An antenna control system was analyzed in Problem
P4.5, and it was determined that, 1o reduce the effect of
wind disturbances, the gain of the magnetic amplifier,
k.. should be as large as possible. (a) Determine the
limiting value of gain for maintaining a stable syssem.
() Wee want to have a system settling time equal to 1.5
seconds. Using a shifted axis and the Routh-Hurwitz
criterion. determine the value of the gain that satisfies
this requirement. Assume that the complex roots of the
closed-loop system dominate the transient response. (1s
this a valid approximation in this case?)

P63 Arc welding is one of the most important areas of
application for industrial rebots [11]. In most manu-
facturing welding situations, uncertainties in dimen-
sions of the part, geometry of the joint, and the
welding process itsell require the use of sensors for
maintaining weld quafity. Several systems use a vision
system to measure the geometry of the puddle of
melted metal, as shown in Figure P6.3. This system
irses & constant rate of leeding the wire 10 be melted.
() Calculate the maximum value for K for the sys-
tem that will result in a stable system. (b) For hall
of the maximum value of K found in part {a), determine
the roots of the characteristic equation. (c) Estimate
the overshoot of the system of part (b) when it ks sub-
jected to a step imput.

431
P&4 A feedback control system is shown in Figure P6.4. The
controller and process transler functions are given by

1+ 40

Gls) = K and G(s) = _J_‘i'm

and the feedback transfer function is H(s) = 1/(s + 20).

{a) Determine the limiting value of gain K for a stable
system. (b) For the gain that results in marginal suability,
determine the magnitude of the imaginary roots. (c) Re-
duce the gain 1o half the magnitude of the marginal
value and determine the relative stability of the system
(1) by shifting the nxis and using the Routh-Hurwitz
criterion and (2) by determining the root locations.
Show the roots are between —1 and 2.

P65 Determine the relative stability of the systems with
the following characteristic equations (1) by shifting
the axis in the s-planc and using the Routh-Hurwitz
criterion, and (2) by determining the location of the
complex rooils in the s-plane:

(a) #+38 + 4542 =0,
(b) 5* + 957 + 305" + 425 + 20 = 0.
(¢) 5"+ 1957 + 1105 + 200 = 0.

P66 A unity-feedback control system is shown in

Figure PA.6. Determine the relative stability of the

Controller Arc Wire-melting process
Desired K current | Pulile
diameter i+2 05+ s + 1} iamwter

Messoed WVision system

FIGURE P&.3 . -
Weider conirol. Lo hd)
Controller Process
)
Ry Ol G o e
Sensor
Nonunity o His)
system.
Centroller Process
]
ﬂnp-—;oi. Gis) el Gl Yy
FIGURE PE.6
Unity teadback
system.

Problems

{a) Determine the limiting gain for a stable system,
(b) Determine a suitable gain so that the overshoot
#0 a step command is approximately 5%.

P6.10  Robots can be used in manulacturing and assembly
operations that require accurale, fast, and versatile
mmpuhlmn [10, 11]. The open-| Imp transfer function
of a direct-drive arm may be app by

K(s + 10)

s+ 3)(s7 + 45+ 8)

(2} Determine the value of gain K when the system
oseillates. (b) Caleulate the roots of the closed-loop
system for the K determined in part (a).

P&.11 A leedback control system has a characteristic

equation

S+ {1+ K)F + 108 + (5 + 15K) =0
The K itive. What is the
value K can wssume before the system becomes unsta-
Ide? When K is equal to the maximum value. the system
oscillates. Daemme!lwl‘nqnn:yeéosm]hlm

Gis)H(s) =

433

P6.15  The stability of a motoreycle and rider is an im-
portant area for study because many motorcycle de-
igns tesult in vehicles that are difficult to control
112, 13). The handling characteristics of a motorcycle
must include a model of the rider as well as one of
the vehicle, The dynamics of one motorcycle and
rider can be represented by a loop transfer function
(Figure Pf.4)

£ K(r + 305 + 1125)

) 0 + 105+ 125)(F + 607 + 3400)

(a) As an approximation, calculnte the acceptable
range of K for a stable system when the sumerator
polynomial (zeros) and the denominutor polynomial
(5% + 603 + 3400) arc neglected. (b) Colculate the
actual range of acceptable K, sccount for all zeros and
poles.

P66 A system has a closed-loop transfer function

1
Tm-r‘+5r'+2m+a'
(a) Dy ine whether the system is stable. (b) Deter-

P6.12 A system has the third-order 1
Frar +bsve=0,

where @, b and ¢ are constant parameters, Determine
the necessary and sufficient conditions for the system
1o be stable, s it possible to determine stability of the
system by just inspecting the coefficients of the char-
acteristic equation?

P6.13.  Consider the system in Figure P6.13. Determine
the conditions on K. p. and £ that must be satisfied for
closed-loop stability, Assume that K > @, { > 0, and
wy > L

P64 A feedback control system has a characteristic
‘equation

P2t 12 +ad 2F 2+ 10 =0
Determine whether the system is stable, and deter-

mine the roois of the characteristic equation, (¢) Plot
the response of the system to a unit step input.

P&IT The clevator in Yokohama's Mestory Landmark
Tower operates ot & peak speed of 45 kmthr. To reach
stich a speed without inducing discomfort in passengers,
the elevator accelerates for longer periods, rather llml

Groing wp. it reaches full speed
the 27th Noor; it begins decelerating 15 floors later. Tl|e
result is a peak accelerntion simitar to that of other sky-
seraper elevators—a bit less than a tenth of the foree of
gravity. Admirable ingenuity has gone into making this
safe and comfortable, Special ceramic brakes had to
be developed; iron ones would melt, Computer-con-
trofled systems damp out vibrations. The lift has been
streamlined to reduce the wind noise as it speeds up
and down [19], One proposed control system for the
elevator’s vertical position is shown in Figure P6.17.

mine the values of the roots Determine the range of K for a stable system,
Conmoller Procest
FIGUREPB.A3 g — pite] ol P
S ] e L
K.p ondz.
Ris) Dot | Blevaior dymunicy | W
Desi + 5)
1': K41 — T i Venical
- e 4 ds 4 3) position

FIGURE P6.17 pasition -
Elevator control
system.
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() What is the system transfer function? (b} For what
values of k is the system stable?

E625 A closed-loop feedback system is shown in
Figure E6.25. For what range of values of the para-
meters K and p is the system stable?

FIGURE E6.25 Closed-loop sysiem with parameters K
and p.

E626 Consider the closed-loop system in Figure E6.26,
Te

10 1
Gir) = P and Gels) = e
(a) Dy ine the stic equation i
with the chosed-loop system.,
(b} Determine the values of K rar which the closed-
loop system is stable.
Tdn

(a)
TAn
Controller Process
+
. Eil5) ! 10
A nk [ F 10 f
FIGURE E6.26 * Mk
feedback control
system wilh
parameter K. it
PROBLEMS

Pl Unilizing the Routh-Hurwitz eriterion, determine
the stability of the following polynomials
() £ +55+2
(b) s +de & 8By + 4
fe) #*+ 268 — bs+ 20
W o'+ 2+ 27+ 125+ 10

s+ +3T e K

N f+sf+2745+6
g+t e2l e e K

Determine the number of roots, if any, in the right-
band plane. If it is adjustable, determine the range of
K that resulls in o stable system,
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system with the following transfer functions by
Bocating the complex roots in the s-plane:

() G)G(s) = 3"(1:—:2

)

&) GGl s(s" + 10 + 385 + 50)

{5+ 2+ 3)

(e} Gls)G(s) = Y]

PAT The linear model of a phase detector (phase-lock
loop) can be represented by Figure PA.7 [9]. The phase-
lock systems are designed 10 maintain zero difference
in phase between the input carrier signal and a local
voltage-controlled oscillator. Phase-lock boops find
application in color television, missile tracking, and
space telemetry, The filter for o particular application is
chosen as

10{s + 10}

P = e+ 100

‘We want 1o minimize the steady-state error of the

ramp signal of 100 rad/s. For that value of gain K,
determine the location of the roots of the system.
P68 A very interesting and wseful velocity control system
has been designed lor & wheelchair control system, We
want to enable people paralyzed from the neck down
to drive themselves in motorized wheelchairs A pro-
posed system utilizing velocity sensors mounted in a
‘headgear is shown in Figure P6.8. The headgear sensor
provides an outpul preportional to the magnitude of
the head movement. There is a sensor mounted a1 90°
intervals 50 that forward, left, right, or reverse can be
d. Typical values for the time constants are
n=05sn=lIsandr, =35
(a) Determine the limiting gain K = K,K:K; for a
stable system
(b} When the gain K is set equal 10 one-third of the
limiting value, determine whether the settling
time (to within 2% of the final value of the sys-
tem) is less than 45
(¢} Determine the value of gain that results in & sys-
tem with a settling time of 4 5 Also, obtain the
value of the roots of the characteristic equation
when the sentling time is equal to 4
P69 A casselie tape storage device has been designed for
1] 0k

system lor & ramp change in the phase
signal, {a) Determine the limiting value of the gain
KK = K, in order to maintain a stable system, (b) A
steady-state error equal to 1° is scceptable for a

B ¥ to control the velocity
of the 1ape accurately. The speed control of the tape
drive is represented by the system shown in Figure
P69,

Volupe-controlled
o | [ || R
+

e b - % W
FIGURE P&.7 =
Phase-lock loop

Sensor Wheelchair
Amplifier
Head in bt dymamics

Desired * oy nod L] L} .

velosity i B i Viheeity
FIGURE P6.8 o
Whaeichair control
system.

Power Motor and
amplifier drive mechanism
* K (] Hixn

i " PEST rar Specd
FIGURE P6.9
Tapa drive control,




Advanced Problems

where

o 0
AlL'h B =]y Land C=[1 —1].
and where k) # &; aod both &, and k; are real

numbers.
ADVANCED PROBLEMS
APGL A telcopernied I system botha
person (operator) and & remote machine. The pormal

I3 system is hased on ¥ link to the
machine and limited feedback 1o the opestor. How-
ever, wo-way coupling using bilateral information cx-
change enables better operation [L&]. In the case of
remute control of a robot, force feedback plus position
feedback is wseful The churncteristic equation for a
teleoperated system, as shown in Figure APG.] is

R T S TR P 8

where K, and K; are feedback gain [actors. Detenmine
onsd plot the region of stabifity for this system for K
nd K,

AP&2  Comsider the case of a navy pilot landing wn sir-
craft on an wircraft carrier, The pilot has three hasic
Losks The firat task b guiding the airerafl's approach
o the ship along the extended conterling of the rup-
way. The second task Is maintsining the sircraft on the
correct glideslope. The third sk is maintuining the
correet speed. A model of a Imeral pasition control
systern is shown in Figure APR.2 Delermine 1he rangs
of stability for K = 0,
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(a) Compuie the site mnsition matrix de(e, 0).
ih) Compute the cigenvalues of the system mabrix A.
{e) Compute the roots of the characterisiic polyno-
mial. (d) Discuss the results of parts {3)-(c) in terms of
stability of the system,

Cperator
comnmds
Human Hemens
upevatar machine
Fredback

FIGURE APB.1 Mode! of a teleoparated maching.

APGI A control system is shown in Figure APS3. We

wand e system to be stable and the steady-state error
Tow w umit siep inpel 1o be less than or equal o 0,05
{5%). (a) Determine the range of o that satisfies the
ermor requiremend. () Determine the mnge of o that
sutisfies the stability requirement. (c) Sclect an o that
meets both requirements.

AP6A4 A bottle-filling line uses o feeder screw mechanism,

s ahown in Figure AP A The tachaneler feedback b
used Nt speed control. Iy and
phot the range of & and p thar permits siable operation.

A

Ablérans and

1 ireralt
8 | ¥i)
- - I 1
FIGURE APS.2 - 1+ v [ m’.‘if:“
control for lnnding ——
on an grcraft
carrigr. — .y
437
L]
(L1
aandtill]

b}

FIGURE APE.5  Multiloop fasdback control system. () Signal flow graph. (b) Block diagram.
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Po.B  Consider the case of rabbits and foxes in Australia,

The mumber of mbbits is 1 and,if lelt alone, it would
grow indefinitely (until the food supply was

Chapter 8 The Stability of Linear Feedback Systems

Aight [16]. An aircealt taking off in a form similar 10 5
missile (on end) is inherently unstable (see Exumple 3.4
for a dis ion of the inverted pendulum). A control

&0 that
1y = ki)
Huwever, with foxes present on the continenl, we have

X o= kyy — axs,

system using adjustable jets con control the vehicle, 45
shown in Figure P6.19, (a) Determine the range of gain
Tor which the system is stable. (b) Determine the gain K
for which 1he system is marginally stable and the roots
of the characteristic equntion for this value of K.

where v is the number of foxes Now. if the foxes must P620 A personal vertical tuke-off and banding (VIOL)

have rabbits to exist, we have
iy = —hay + by,

Determine whether ihis system b stable and thus
decays 1o the condition xy{t) = xx{i) = O at ¢ = o

aircrafl B shown in Figure P6.20a), A possible con-
trol system for sircrafl allilode ® shown in Figure
P.2b). (a) For K = 6, determine whether the sys-
1em is stable. (b) Determine a range of stability if any,
for K =0

What are the requirements ona. b fiand & forastable a1 Consider the system described in state varinble

system? What is the result when & is greater than 47 fosrm by
P6.19 The goal of vertical takeolf and bading (VTOL) L
alrcralt is to achieve operation from relatively small () = Axtn) + Balr)
airports and yei operate as a normal aireralt in level wlr) = Cxir}
o Conemiler Abreraft dynamics o
Desired __ % Kis+ 2 | Actuil
venn T =1} verticad
FIGURE P&.19 - path
Contrel of & jump-
jet aireratt.
FIGURE P&.20 ” =
i2)Persorul iy — Mty e Vo
af Mirror Image =
W, .com)
) Control aystam 7
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Diiresdion
of travel
Coatnilles
2
Comraller
i : L3 "
FIGURE APB.4 - ! i
Spood control of &
bottie-filing
2} System layoul.
5 Block diagram. I

Ten)
Crimrolier Phasit
* o~ El) |
Rin) Kot Kpa " PR TrreT L)
FIGURE APB.6 E.
with a carmara.
L)
control system. 1By

AP6S  Contider the closed-loop system in Figure AP6.S,

Suppose that all gaing are posilive, that is K, = 0,

K= 0Ky > 0K = 0and Ky > 0.

(a) Determine the closed-loop  transfer furnction
Tis) = ¥(sWR(5).

(b) Obtain the conditions ou sclecting the gains
Ky, Ky, Ky, Kyand Ko so that the dosed-loop
system i« guaranteed to be stable.

fe) Using the results of part (b), select valnes of the
five gains 5o thut the closed-loop sysiom s stahle,
and plot the SlEp respotise.

AP A spaccerall with a comera is shown in Figure

APRG{a). The comera slews about 167 in a canted plane
redative to the bise. Reaction jets stabilize (he base
against the reaction torques fram the slewing motors.
Suppose that the rolationsl speed control for the cim-
era shewing has a plant transfer function

1

G0 = = 2 - )

A homal plus d ) isused ina
systen ms shown in Figure APA6(D). where

Gls) = K, 4 Kpn
and where K, > 0 and Kq > 0. Obtain and plot the

relationship between K, and K, that results i a s1a-
il chosed-loop system,

AP&T. A human’s ability to perform physical tasks s Hmit-

ed not by intellect but by physical strengih. I in sn ap-
propriate environment, & machine's mechanical power
is closely ntegrated with o human orm’s mechanical
strength under the comtral of the iemun inlellect, the re-
sulting system will be superior 1o 4 loosely integrated
combination of a human and @ fully sulomated robol.

Extenders are defined as 2 claws of robot manipuls-
Ao that extend the strengih of the human srm while
manintatning humen conirol of the task (23], The defining
characteristic of un extender is the transmission of hoth
power and information signals. The extender is worm by
the human; the physical cuntuct hetween the extender



Design Problems

The parameter p is equal to 2 for many autos but can
equal zero for those with high performance. Select a
gain K that will result in a stable system for both values
ofp.

DP62  Anautomatically guided vehicle on Mars is repre-
sented by the system in Figure DP6.2. The system has
a steerable wheel in both the front and back of the ve-
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the range of gain K and parameter m so that the
system is stable, and plot the region of stability, (b)
Select the gain ond parameter values so that the
steady-state error to n ramp input is less than or
equal to 10% of the input magnitude. (c) Determine
the percent overshoot for a step input for the design
selected in part (b},

hicle, and the design requires that H(s) = Ks + L. pPe5 A traftic control system is designed to control the

Determine (a) the valee of K required for stability,
() the value of X when one root of the characteristic
equation is equal 1o 5 = -5, and (¢) the value of the
two remaining roots for the gain selected in part
(b). {d) Find the response of the system fo a step
command for the gain selected in part (b).
DP&3 A unity negative leedback system with
Kis+2)
GG = i+ 20
has two parameters 1o be selected. (a) Determine and
plod the regions of stability for this system. (b) Select ¢
and K so that the steady-state error to & ramp input is
less than or equal to 25% of the input magnitude.
(&) Determine the percent overshoot for a step input
for the design selected in part (b).
DPé4 The attitude contral system ol a space shuitle
rocket is shown in Figure DP6.4 [17]. (a) Determine

distance between vehicles, a8 shown in Figure DP6.5
[15). {a) Determine the range of gain K for which the
system is stable. (b) If K, is the maximum value of K
0 that the characteristic roots are on the fw-axis, then
1K = K /N where 6 < N < 7.We want the peak
time to be less than 2 seconds and the percent over-
shoot to be less than 18%. Determine an appropriate
walue for N.

DP66  Consider the single-input, single-output system a5
deseribed by

3(t) = Ax{r} + Bu(t)
¥th = Cxfr)

Rls) sk

Scering p——t Dhrzition

comman of iravel
FIGURE DP6.2
Mars guided vehicle
control.

Contraller Space shunle
* + + 2 L3 Il

R ¢ M:" i #=) llll‘l:ﬂc
FIGURE DP6.4 T
Shutthe attifude

Thirottle, engine,
Comtrller and ssipmobile
Koy o) x 1 0]

Diesired & ] s, Actual

detnce - ol £ 1020 ditince
FIGURE DP8.5
Traffic distance
control. Sensoe

Computer Probloms. an

Develop an m-file to determine the closed-loop trans-
fer function and show that the roots of the characteristic
equation arc 5, = =280 and s5;; = =055 + {187,
CPeA  Consider the closed-loop transder function
T ey
P+ raf a2
(a) Using the Routh-Hurwitz method, determine
whether the system is stable. If it is not stable, how
many poles are in the right half-plane? (b} Com-
pute the poles of T(s) and verify the result in part (a).
() Plot the unit step response, and discuss the results
CP6S A “paper-pilot” medel i sometimes utilized in alr-
croft control design and analysis to represent the pilot
in the loop. A block diagram of an aircraft with a pilor
“in the loop™ is shown in Figure CP6.5. The variable 7
represents the pilot's time delay, We can represent a

T =

to compute the closed-loop transfer function poles for
0= K =5 and plot the results denoting the poles
with the =" symbol. Determine the maximum range
of K for stability with the Routh-Hurwitz method.
Compute the roots of the characteristic equation
when K is the minimum value allowed for stabilinye

CP6T Consider n system in state variable form:

SERENE

y=[1 1 0
(a) Compute the characteristic equation using the poly
Tunction. (b} Compute the roots of the characteristic
equation. and determine whether the system is stable.
() Obtain the response plot of y(r) when u(r) is a unit
step and when the system has zero mitial conditions.

slower pilot with = 0.6 and a faster pilot with PGS Consider the feedback control system in Figure

v = (0.1, The renaining variables in the pilol model are
assumed lobe K = 1.7y = 2, and 1; = 0.5, Develop
an m-file to compute the closed-loop system poles for
the fast and slow pilots. Comment on the results What
i the maximurm pilot time delay allowable for stability?

CPA.E, (a) Using the Routh-Hurwitz method, deter-
mine the range of K, resulting in closed-loop stability.
(b} Develop an m-file 1o plod the pole locations as &
function of 0 < K; < 30 and comment on the results.

CP66  Cansider the feedback contral system in Figre Cvo0  Considera presented | iable
CP&.6, Using the for function, develop an m-file script %= Ax + Bu
y= Cx+ Du,
Filot Elevator Alreraft
model servo madel
* =Kirs + 1)mm =2} —10 ~{s + B} -
% s + WRrs + 3) uiT | 8
FIGURE CP6.5 =z
An aireraft with &
pilct in the loop.
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FIGURE AP&.7
Extendor oot

FIGURE DP&.1
Autometiles
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FIGURECPES :
singie-ioop

A ;3+51!&-{"359X
feedtack control
systom with
[parmmeter .

Process

5
Rixy A rrEST Mg

FIGURE CP8.8 Cotmlle
Honunity fesdback X
system with i+
parameter K.

il the human allows the direct transder of mechanical
power and information signals Because of this unique
interlsce, control of the extender Injectory can be ac-
complished without any 1ype of joystick, keyboard, or
masteralave system. The human provides o controd sys-
tem for the extender, while the extender actuators pro-
vide most of the strength necessary for the task, The
human becomes  part of the extender and “feck™ a
scaled-down version nllll: load that the extender um
i, The extorider b d hed

Chapter 6 The Stabliity of Linear Feedback Systems

‘operilor is either 0t a remole bocathon or chose 1o the
sove manipulitor, bat i not in direct physical contact
with the slave in the sense of mansder of power. An ex-
tender is shown in Figure APA.7(0) [23). The block dia-
gram of the system is shown in r|um J\N?:I-)
Consider the plus int

K;
Gla) = Kp+ =

masteralave system: in that type of system, the lmnum

the range of values of the contraller gaing
.l,n and Ky such that the closed-loop system is stable

L] Wi

S0+ j00Es 4 1) | ¥ Ourpui

‘conirol,

DESIGN PROBLEMS

CDP&]  The capstan drive sysem ol problem CDPS.|
gy uses the amplifier as the controller. Determine the
O, maximum value of the gain K, before the system be-

counes unstithle.

DPR1 The control of the spark ignition of an autemeotive

engine requires oonstant performance over o wide
range of parameters [15]. The control system is shown
in Figure DPA.L, with a controller gain K to be selected.

enging

p— Jish

Assume that the input is a lincar combination of the
states, that is,
ufr) = —Kxit) + rir).

where #(f) is the reference input. The matrix
K = [K; K;| is known as the gain matrix. I you
substitute w(f) into the state variable equation you will
obtain the closed-loop system

(1) = [A = BK]x(1) + Br(r)

yit) = Cxle)
For what values of K is the closed-loop system stable?
Determine the region of the left half-piane where the
desired closed-loop eigenvalues should be placed so
that the percent overshoot to a unit step input,
Ris) = U5, is bess than P.0. < 5% end the scttling
time is less than T, < 4s_ Select a gain matrix, K, so
that the system step response meets the specifications.
PO. < 5%and T, < 4s.

P67 Consider the leedback control system in Figure

Chapter 8 The Stability of Linear Feedback Systems

The inner loop must be stable and have a quick spesd
of response. (a) Consider the inner loop first. Deter-
mine the range of K, resulting in a stable inner

That is. the transfer function ¥(s)/Ls) must be stable.
(b) Select the value of K, in the stable range leading to
the fastest step response. () For the value of K, select-
ed in (b), determine the range of K; such that the
closed-loop system T'(s) = ¥(1)/R(s) is stable.

DP6B  Consider the feedback system shown in Figure

DP&.A. The process transfer function is marginally sta-
ble The is the prop ive (PD)

Gs) = Kp + Kpz
Determine if it is possible 1o find values of Kpand Kp
such that the closed-loop system is stable. If so, obtain
values of the controller parameters such that the
stendy-state tracking error E(s) = R{s) - ¥{5) w0
a unit step input Rz} = Vs is e, = lim efe) = 0.1
and the damping of the closed- =

DP6.7. The system has an inner loop and an outer loop. loop system is § =
Process
e (Bed SEES
sl # 10} Yir)
Controller
FIGURE DP6.7 -5
Feodback systom
with inner and outer
loop.
Controller Process
P N
FIGUREDPG.S M fetfe = n
A marginally stable w
‘plant with a PO
controllar in the
loop.

E COMPUTER PROBLEMS
€Pa1  Determine the roots of the following, characteristic

equations:

fa) gle) = & + 3¢ + 105 + 14 = 0.

() gls) = o' = 8" + 2457 + 3254 16 =0
) gy =s'+28 +1 =0

CP&2 Consider a unity negative feedback system with

F-s+2

Gds) = Kand Gs) = 5————.

Develop an m-file to compute the roots of the closed-
loop transfer function characteristic polynomial for
K = 1. 2.and 5, For which values of K is the closed-
loop system stable?

CP63 A umily negative feedback system has the loop
function

transfer

s+1

R T
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PREVIEW

‘The performance of a feedback system can be described in terms of the location of the
roots of the characteristic equation in the s-plane, A graph showing how the roots of
the characteristic equation move around the s-plane as a single parameter varies is
known as a root locus plot, The root locus is 2 powerful Iool for d’mgmng and analy:
ing feedback control systems. We will discuss practi for Ea
sketch of a root locus plot by hand. We also wnsuder compu!er\-genemed root locus
plots and illustrate their effectiveness in the design process. We will show that it is pos-
sible to use root locus methods for controller design when more than one pnmmele

varies This is important because we know that the resp wa losed-loop feedback

system can be adjusted to achieve the desired per ich ion of
one or more controller parameters, The popular PID mntru!ll:r is introduced as a
practical controller structure. We will also define a measure of sensitivity of a spec-
ified root to a small incremental change in a system parameter. The chapter con-
cludes with a controller design based on root locus methods for the Sequential
Design Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 7, students should:

Understand the powerful concept of the root locus and its role in control system design.
Know how to obtain a root locus plot by sketching or using computers.

Be familiar with the PID controller as a key element of many feedback systems,
Recognize the role of root locus plots in parameler design and system sensitivity analysis.
Be able 1o design controllers to meet desired specifications using root locus methods.

oLooo
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and therefore it is necessary that

and
/KG(s) = 180° + k360°, (7.4)
where k = 0, £1, £2, £3,....

The root locus is the path of the roots of the characteristic equation traced out
in the s-plane as a system parameter varies from zero to infinity.

‘The simple second-order system idered in the p hapters is shown in
Figure 7.2. The characteristic equation representing this system is

= = K _
A(s) = 14 KG(s) = 1+ s =0,

or, alternatively,
AE) =8 + 25+ K =5 + Wws + ol =0, (7.5)
‘The locus of the roots as the gain K is varied is found by requiring that

K
|KG(s)| = _s'ﬁj| =1 (7.6)
and
/KG(s) = £180°, £540° an

The gain K may be varied from zero to an infinitely large positive value, For a
second-order system, the roots are

S5 = —fu, 2w, V-1, (7.8)

and for { < 1, we know that # = cos™' {. Graphically, for two open-loop poles as
shown in Figure 7.3, the locus of roots is a vertical line for { = 1 in order to satisfy
the angle requi Equation (7.7). For ple, as shown in Figure 7.4, at a root

51, the angles are

fK
s(s +2)

==/5 - /s +2)=-[(180° — 8) + 8] = -180°.  (7.9)

sy

a
paramater K.,

where

S =1 <
A=l2 0 1 |B=|w0 | by
-k =3 =2 1
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{8} For what values of k ks the system stable?
(b) Develop an m-file to plot the pole locations as &
function of 0 < & < 10 and comment on the

Cc=[1 2 0D =[0]

ANSWERS TO SKILLS CHECK
True or False: (1) False; (2) True; (3) False; (4) True:  Word Mateh (in order, top to bottom): ¢, d, La, b,
5) True €

Multiple Choice: (6) a: (7) o (8) u; (9) b; (10) by

(1) ac

12y (13) b (1) a: (15) b

TERMS AND CONCEPTS

Absolute stability A system description that reveals  Rooth-Hurwitz criterion a\crllenw\fﬁrdelwmm!ng the

whether a system

sideration of other system attributes such as degree of

stability,

Auxiliary polynomial
precedes the zero

Marginally stable A system is marginally stable if and

only if the zero @
1—+00,

Relative stability The property that is measured by the

relative real part

characteristic equation,
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is stable or not stable without con- stability of a system by examining the characteristic
equation of the transfer function. The criterion states
that the number of roots of the characteristic equation
with positive real parts is equal 10 the number of
changes of sign of the coefficients in the first calumn
of the Routh array.

espomse P Srabil A performance measure of a system. A system
Bk L eEilaxis bounded i k':(l'blc if all the poles of the transfer function have
negative real paris.

of each root or pair of roots of the Stable system A dynamic system with a bounded system
response to a bounded input.

The equation that immediately
entry in the Routh array.

Chapter 7 The Root Locus Method

7.1 INTRODUCTION

‘The relative stability and the ient per of a closed-loop control system
are directly related to the location of the closed-loop roots of the ch
equation in the s-plane. [t is frequently necessary to ad]ust one or more system
paramelers in order to obtain suitable root locations. Tt it is hile 10
determine how the roots of the characteristic equation of a given system migrate
about the s-plane as the parameters are varied; that is, it is useful to determine the
locus of roots in the s-plane as a parameter is varied. The root locus method was
introduced by Evans in 1948 and has been developed and utilized extensively in con-
trol engineering practice [1 3] The root locus technique is a graphical method for
sketching the locus ul‘ roots in the s-plane as a parameter is varied. In fact, the root
locus method p the engi with a of the of the roots of
the system to a variation in the | being considered. The root locus technigue
may be used (o great udvamsse in CUII]I.II‘CIIBII \mh the Routh-Hurwitz criterion.
The roat locus method p ¥ fon, and An approx-
imate sketch can be used Io obtain qualitative infi i the stability
and performance of the system. Furthermore, the locus of roots of the characteristic
equation of a multiloop system may be investigated as readily as for a single-loop
system. If the root locations are not satisfactory. the necessary parameter adjust-
ments often can be readily ascertained from the root locus [4].

7.2 THE ROOT LOCUS CONCEPT

FIGURE 7.1

Closad-loop
control system with
variable

The dynamic performance of a closed-loop control system is described by the
closed-loop transfer function
¥(s) _ pls)
Ts)=——=—"" 7.1

(s) RGs) a1
where p(s) and g{s) are polynomials in 5. The roots of the characteristic equation
q(5) determine the modes of response of the system. In the case of the simple single-
Ioop system shown in Figure 7.1, we have the characteristic equation

where K is a variable parameter and 0 = K < 00, The characteristic roots of the
system must satisfy Equation (7.2), where the roots lie in the s-plane. Because s isa
complex variable, Equation (7.2) may be rewritten in polar form as

|KG(s) f KG(s) = =1 + f0, (7.3)
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where L, equals the value of the nth self-loop transmittance. Hence, we have a char-
acteristic equation, which may be written as

g(s) = A(s) = 1 + F(s). (7.13)
To find the roots of the ch istic equation, we set Equation (7.13) equal to zero
and obtain
1+ F(s) =0, (7.14)
Equation (7.14) may be rewritten as
F(s) = =1 + jo, (7.15)

and the roots of the characteristic equation must also satisfy this relation.
In general, the function F{s) may be written as

Kis+ q)ls + 2005 + 23) -+ (s + 2}

Fis) = :
@ (s + pi)ls + pa)ls + pa) (s + pu)
‘Then the magnitude and angle requi for the root locus are
Kls + glls + 2] -~
Fls)l = ————1+—= 16
el Is + pylls + pyl -+ (216)
and

LE(E) = S+ ot Tyd o
= (/54 p+ S5+ pp+ o) = 1B0° + k360°,  (T.17)
where k is an integer. The itud i E ion (7.16), enables us 1o

determine the value of K for a given root location 5,. A test point in the s-plane, 5.
is verified as a root location when Equation (7.17) is satisfied. All angles are mea-
sured in a lockwise di from a hori | line.

To further illustrate the root locus procedure, let us consider again the

second-order system of Figure 7.5(a). The effect of varying the parameter a can

FIGURE 7.5
() Single-loop
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7.3 THE ROOT LOCUS PROCEDURE

The roots of the characteristic equation of a system provide a valuable insight con-

cemning the response of the system. To locate the roots of the characteristic equation

in a graphical manner on the s-plane, we will develop an orderly procedure of seven
steps that facilitates the rapid sketching of the locus.

Step 1: Prepare the root locus sketch, Begin by writing the characteristic equa-
tion as

14 Fis) = 0. (7.22)

Rearrange the equation, if necessary, so that the parameter of interest, K, appears as
the multiplying factor in the form,

1+ KPi{s) = 0. (7.23)
‘We are usually interested in determining the locus of roots as K varies as
0=K =0
In Section 7.7, we consider the case when K varies as —o0 < K = 0. Factor P(s),

and write the polynomial in the form of poles and zeros as follows:

M

q(s +1z)

1+ K5 ——=0, (7.24)
rl;“' +py)
=
Locate the poles —p, and zeros —z; on the s-plane with selected symbols. By con-

vention, we use ‘x’ to denote poles and ‘0’ to denote zeros,
Rewriting Equation (7.24), we have

at M
IIts+ pp + KT+ 2) = 0. (725)
1L =

Note that Equation (7.25) is another way to write the characteristic equation, When
K = 0, the roots of the characteristic equation are the poles of P{s). To see this, con-
sider Equation (7.25) with K = 0. Then, we have

ﬁ(.‘ +p)=0

When solved, this yields the values of 5 that coincide with the poles of P(s). Con-
versely, as K — oo, the roots of the characteristic equation are the zeros of P(s). To
see this, first divide Equation (7.25) by K. Then, we have

14 " Li 3
E,u[" +p) + ;[l(: +z) =0,
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o

% = palesaf the |
L opeedoop_ | ph | T
| sysem | )

This angle requirement is satisfied at any point on the vertical line that is a perpen-
dicular bisector of the line 0 to =2, Furthermore, the gain K at the particular points
is found by using Equation (7.6) as

K K
bt -—— =], 710
|m+nm.mm+m 10
and thus
K = Inlls + 21, (7.11)

where |5 is the magnitude of the vector from the origin to 5;, and s, + 2| s the
magnitude of the vector from -2 1o 5.

For a multiloop closed-loop system, we found in Section 2.7 that by using
Mason's signal-flow gain formula, we had

N
Als)=1- E‘L,., + 3 Lin- T Llnlyt s, (112)
"= T i,

noatouching nonicaching
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be effectively p yed by iting the ch istic equation for the root
locus form with @ as the multiplying factor in the numerator, Then the character-
istic equation is

K
1+ K63 =14+——=0,
) sz + a)
or, alternatively,
Shas+ K=0
Dividing by the factor 5* + K, we obtain
as
l4sg——= 7.18]
P+ K 2

Then the magnitude criterion is satisfied when

alnl  _
Isf + K1

(7.19)

at the root 5,. The angle criterion is

/0= (s + JVE + g5 = [VK) = £180°, £590°,....

In principle, we could construct the root locus by determining the points in the
s-plane that satisfy the angle criterion. In the next section, we will develop a multi-
step procedure to sketch the root locus. The root locus for the characteristic equa-
tion in Equation (7.18) is shown in Figure 7.5(b). Specifically at the root 5, the
magnitude of the parameter a is found from Equation (7.19) as

= lss = iVKlls, + J'\/E|

]

(7.20)

The roots of the system merge on the real axis at the point 5; and provide a critically
damped response to a step input. The p a has a magnitude at the criti
damped roots, 5; = a3, equal to

. Joz = iVEle2 + VK] _

o1

1
;i(vf + K) =2VK, (7.21)

where o, is evaluated from the s-plane vector lengths as o; = VK. As a increases
beyond the critical value, the roots are both real and distinct; one root is larger than
5, and one is smaller.

In general, we desire an orderly process for locating the locus of roots as a para-
meter varies. In the next section, we will develop such an orderly approach to
sketching a root locus diagram.
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Ster 2: The angle criterion is satisfied on the real axis between the points 0 and ~2,
because the angle from pole py at the origin is 1807, and the angle from the zero and
pole p; at 5 = —4is zero degrees. The locus begins at the pole and ends at the zeres,
and therefore the locus of roots appears as shown in Figure 7.6(b), where the direc-
tion of the locus as K is increasing (K 1) is shown by an arrow. We note that because
the system has two poles and one real zero, the second locus segment ends at a
zero at negative infinity. To evaluate the gain K at a specific root location on the
locus, we use the magnitude criterion, Equation (7.16), For example, the gain K at
the root 5 = 5 = —1is found from (7.16) as

(2K)s; + 2]
Isyllsy + 4]
or
_I-tli-1+ 4l 3
K= 2-1+72] 5 (7.28)
“This magnitude can also be eval d hically, as shown in Figure 7.6(c). For the

gain of K = 2, one other root exists, located an the locus to the left of the pole at
—4. The location of the second root is found graphically to be located at s = =6, as
shown in Figure 7.6(c).

Now, we determine the number of separate loci, SL. Because the loci begin at
the poles and end at the zeros, the number of separate loci is equal to the nomber of
poles since the number of poles is greater than or equal to the number of zeros,
Therefore, as we found in Figure 7.6, the number of separate loci is equai to two
‘because there are two poles and one zero,

Mote that the root loci must be symmetrical with respect to the horizontal real
axis because the complex roots must appear as pairs of complex conjugate roots. m

We now return to developing a general list of root locus steps.

Step 3 The loci proceed to the zeros at infinity along asymptotes centered at oy
and with angles ¢ 4. When the number of finite zeros of P{s), M. is less than the num-
ber of poles n by the aumber N = n — M, then N sections of loci must end at zeros
al infinity. These sections of loci proceed to the zeros at infinity along asymptotes as
K approaches infinity. These linear asymptotes are centered at a point on the real
axis given by

" L
E poles of P(s) - E zeros of P(s) E("Pﬂ E J-Ei{-z{}
= = .

n-M n=M L
The angle of the asymptotes with respect to the real axis is
k=012..., (n=M-1) (7.30)
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The first two terms of
S
(s = a"¥

1+ L}
are
K

T (= Mgt O

T+

uating the term for #°~*!, we obtain
Eq
oy = by = =0 = May,

or
n i
E}(-p.) - 22
7= n= .ﬂ:!"
which is Equation (7.29).

For example, reexamine the system shown in Figure 7.2 and discussed in
Section 7.2, The characteristic equation is written as
K
1+———=0
(s +2)

Because n = M = 2, we expect two loci to end at zeros at infinity. The asymptotes
of the loci are located at a center

and at angles of
¢ =N (fork=0) and &, =270°(fork = 1).

The root locus is readily sketched, and the locus shown in Figure 7.3 is obtained. An
example will further illustrate the process of using the asympiotes,

EXAMPLE 7.2 Fourth-order system
A single-loop feedback control system has a characteristic equation as follows:
Kis+1)

1+ GH(s) =1+ ’———-—-«-————-—-—v':a TG+

(731)
We wish to sketch the root locus in order to determine the effect of the gain K. The
poles and zeros are located in the s-plane, as shown in Figure 7.7(a). The root loci on
the real axis must be located to the left of an odd number of poles and zeros; they
are shown as heavy lines in Figure 7.7(a). The intersection of the asymptotes is

CD+A-4)-(-1) -9
gy T a =

A T = =3 (7.32)
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which, as K — o0, reduces to

M
II{: +z) =0
2

When solved, this yields the values of s that coincide with the zeros of P(s). There-
fore, we note that the locus of the roots of the characteristic equation
1 + KP(s) = 0 begins at the poles of P(s) and ends at the zeros of Ps) as K
increases from zero to infinity. For most functions P(s) that we will encounter, sev-
eral of the zeros of P{s) lie at infinity in the s-plane. This is because most of our fune-
tions have more poles than zeros. With n poles and M zeros and n > M, we have
n = M branches of the root locus approaching the n — M zeros at infinity.

Step 2: Locate the segments of the real axis that are root loci. The root locus on
the real axis always lies in a section of the real axis to the left of an odd number of poles
and zeros. This fact is ascertained by examining the angle criterion of Equation (7.17).
These two useful steps in plotting a root locus will be illustrated by a suitable example.

EXAMPLE 7.1 Second-order system
A single-loop feedback control system the char istic eq)
K(ls+1) 5

1
F+s

1+ GHis) =1+ (7.26)
$tEP 1 The characteristic equation can be wrilten as
As+2)

L o

where

s + 2)

&y

The transfer function, P(s), is rewritten in terms of poles and zeros as
2(s +2)
5(s + 4)
and the multiplicative gain [ is K. To d ine the locus of roots for the

Pis) =

+K =0, (727

gain 0 = K = oo, we locate the poles and zeros on the real axis as shown in
Figure 7.6(a).

b+ Il
Rusots,
o4 =2 %0
[ |

(5]
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where k is an integer index [3], The usefulness of this rule is obvious for skeiching
the approximate form of a root locus. Equation (7.30) can be readily derived by con-
sidering 2 point on a root locus segment al a remote distance from the finite poles
and zeros in the s-plane. The net phase angle at this remote point is 180°, because it
is a point on a root locus segment, The finite poles and zeros of P(x) are a great dis-
tance from the remote point, and so the angles from each pole and zero, ¢, are
essentially equal, and therefore the net angle is simply (n — M), where n and M
are the number of finite poles and zeros, respectively. Thus, we have

(n — M) = 180°,
or, alternatively,
1807

n-M"
Accounting for all possible root locus segments at remote locations in the s-plane,
we obtain Equation (7.30),

The center of the linear asymptotes, often called the asymptote centroid, is

ined ideri istic ion in Equation (7.24). For large

&=

g the 3!
values of 5, only the higher-order terms need be idered, so that the ch stic
equation reduces lo

M
145 1y,
5

However, this relation, which is an approximation, indi that the id of
n — M asymptotes is at the origin, 5 = . A better approximation is obtained if we
consider a characteristic equation of the form

K

0

with a centroid at ay.
The centroid is determined by considering the first two terms of Equation
(7.24), which may be found from the relation

Mot by e+ by
[ -1 : "
l'.{fﬂwl Y ]
3

5
KTIts + 2}
L) 7

From Chapter 6, especially Equation (6.5), we note that

by = g:r and a,.; = gp‘._

Considering only the first two terms of this expansion, we have
K

s m——— Sl —
M (e — By

= .
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= = 0
FIGURE 7.8 : T E
Mustration of the
breakaway
{a) for a simpla
-ordes
system and [b) for a
fourth-order
system, {al (LT}
the rearranging of the characteristic equation to isolate the multiplying factor K.
Then the characteristic equation is written as
pls) = K. (7.33)
For example, consider a unity feedback closed-loop system with an open-loop trans-
fer function
K
Gfs) = ——,
O =G a9
which has the characteristic equation
|+c(.;}=1+4"‘-=u (7.34)
(5 + 2)(s + 4)
Alternatively, the equation may be written as
K = pls) = —(5s + 2)}(s + 4). (7.35)
The root loci for this system are shown in Figure 7.8(a). We expect the breakaway
pointtobe nears = o = —3 and plot p(s)|,.,, near that point, as shown in Figure 7.9.
In this case, p(s) equals zero at the poles s = =2 and s = —4. The plot of p(s) versus
5 — o is symmetrical, and the maximum point oceurs at s = o = —3, the breakaway
point.
pis
FIGURE 7.9
A graphical
ol the
breakaway point.
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Now, considering again the specific case where
Gis) = Cre A
we obtain
pls) = K =—(s +2)(s +4) = —(s* + 65 + 8). (7.43)
Then, when we differentiate, we have
dp(s)
——= (25 +6) =0, 744
T ! ) (7.44)
or the breakaway point occurs at 5 = =3, A more complicated example will illus-
trate the approach and demonstrate the use of the graphical technique to determine
the breakaway point.
EXAMPLE 7.3 Third-order system
A feedback control system is shown in Figure 7,10. The characteristic equation is
1+ GEHE) =1+ —8t D) __, 7.45
R =1+ e+ (745
‘The number of poles i minus the number of zeros M s equal to 2, and so we have
two asymptotes al £%0° with a center at oy = —2. The asymptotes and the sec-
tions of loci on the real axis are shown in Figure 7.11(a). A breakaway point occurs
between s = =2 and 5 = -3, To evaluate the breakaway point, we rewrite the
h istic equation so that K is sef d: thus,
Hs+2 s+ 3N+ K(s+1) =0,
or
—s(s + 2)s +3)
pls) = T =K (7.46)
Then, evaluating p(s) at various values of s between s = —2 and 5 = =3, we obtain
the results of Table 7.1, as shown in Figure 7.11(b). Alternatively, we differentiate
Gis)
. Kis+ 1) .
e W b
His)
FIGURE 7.10 ]
Glosed-Ioop s
systam.

FIGURE 7.7
A fourth-oeder

system with (a} 8
zero and ([b] oot
locus.
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i /
4 -2-1 |0 —a
|

4

The angles of the asymptotes are

da = +60° (k =0).
¢y = 180° (k = 1), and
e = 3007 (k=2),

where there are three asymptotes, since n — M = 3. Also, we note that the root loci
must begin at the poles; therefore, two loci must leave the double pole at 5 = —4.
Then with the asymptotes sketched in Figure 7.7(b), we may sketch the form of the
root locus as shown in Figure 7.7(b). The actual shape of the locus in the area near
ey would be graphically evaluated, if necessary. m

We now proceed to develop more steps for the process of determining the root loci.

Step 4: Determine where the locus crosses the imaginary axis (if it does so),
using the Routh-Hurwitz criterion. The actual point at which the root locus crosses
the imaginary axis is readily evaluated by using the criteri

Step 5: Determine the breakaway point on the real axis (if any). The root
locus in Example 7.2 left the real axis at a breakaway point. The locus breakaway
from the real axis occurs where the net change in angle caused by a small dis-
placement is zero. The locus leaves the real axis where there is a multiplicity of
roots (typically, two). The breakaway point for a simple second-order system is
shown in Figure 7.8(a) and, for a special case of a fourth-order system, is shown in
Figure 7.8(b). In general, due to the phase criterion, the tangents to the loci at the
breakaway point are equally spaced over 360°. Therefore, in Figure 7.8(a), we find
that the two loci at the breakaway point are spaced 180° apart, whereas in Figure
7.8(b), the four loci are spaced 90° apart.

The breakaway point on the real axis can be evaluated graphically or analyti-
cally. The most straightforward method of evaluating the breakaway point involves
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Analytically, the very same result may be obtained by determining the maxi-
mum of K = p(s). To find the maximum analytically, we differentiate, set the differ-
entiated polynomial equal to zero, and determine the roots of the polynomial.
Therefore, we may evaluate

aK _dpts) _
ds ds 9 {136)
in order to find the b point, E ion (7.36) is an analytical expression of

the graphical procedure outlined in Figl.r‘re 7.9 and will result in an equation of only
one degree less than the total number of poles and zeros n + M — 1.

The proof of Equation (7.36) is obtained from a consideration of the ch
istic equation
_ KY(s) _
1+Fls)=1+ X0 =

which may be written as
X(s) + KY(s) =0, (7.37)
For a small increment in K, we have
X(s) + (K + AK)Y(5) = 0.
Dividing by X(s) + K¥(s) yields

AKY(s)
_—— =, 7.38,
"X kv e
B the dk is the original ch istic equation, a iplicity m of
rools exists al a breakaway point, and
¥is) Ci Ci
e = e 7
X6+ KV G- 79
Then we may write Equation (7.38) as
AKC,
= 740
14 A 0, (7.40)
or, alternatively,
AK _ —=(Ag)"!
o= ¢ (7.41)
Therefore, as we let As approach zero, we obtain
Lo (7.42)

ds

at the breakaway points.
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meel the angle criterion, Therefore, since #; = 90°, we have
8+ By 4 By = 8 + 907 4 By = +180°,
or the angle of departure at pole p; is
G = 90F = 8y,
as shown in Figure 7.12(b). The departure at pole = p, is the negative of that at —p,
because —p, and —p; are complex conjug; Another le of a d

angle is shown in Figure 7.13. In this case, the departure angle is found from
— (8, + 8y + 90°) = 180° + k360°,
Since #; — 8, = v in the diagram, we find that the departure angle is §; = 90° + y.

Step T: The final step in the root locus sketchi fure is to T the
sketch. This entails sketching in all sections of the Incus not covered in the previous
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EXAMPLE 7.4 Fourth-order system

L (a) We desire to plot the root locus for the characteristic equation of a system as K
varies for K = Dwhen
K
|4 ———— =0
R T T
(b) Determining the poles, we have
e P
sz + 4)s+ 4+ )5 +4-j4)
s K varies from zero 1o infinity. This system has no finite zeros.
{c) The poles are located on the s-plane as shown in Figure 7.14{a).
(d) Because the number of poles n is equal to 4, we have four separate loci.
{e) The root loci are symmetrical with respect to the real axis.
L. A segment of the root locus exisis on the real axis beiween s = Dand s = -4,
3. The angles of the asymplotes arc
2k + 1
3

=0 (7.49)

k=0123

dha = +45°, 135°, 225", 315°.
The center of the asymplotes is
=4S
e
“Then the asymptotes are drawn as shown in Figure 7.14{a).

+fu
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Table 7.1
pls) ] 0.411 0.419 0.417 +0.390 o
5 —2.00 —240 —146 —250 —160 —30

Equation (7.46) and set it equal to zero to obtain

d [ =sls + 2)(s + 3) _[:‘fsf»((u)-(“n(a.c’nmw):u
ds (s + 1) B (s + 1)
W AHEF LI+ 6=0, (747)

Now to locate the maximum of p(s), we locate the roots of Equation (7.47) to obtain
§ = =246, —0.77 £ 0.7%j. The only value of 5 on the real axis in the interval s = -2
tos = —3iss = —2.46; hence this st be the breakaway point. It is cv:d.cnl from
this one ple that the n of p(s) near the exg ¥
point provides an effective method of eval g the break point. m

Step 6: Determine the angle of departure of the locus from a pole and the angle
of arrival of the locus at a zero, using the phase angle criterion, The angle of locus
departure [rom a pole is the difference between the net angle due to all other poles
and zeros and the criterion angle of +180° (2k + 1), and similarly for the locus
angle of arrival at a zero, The angle of d:purtnre (ow arrival) is particularly of m!er-
est for complex poles (and zeros) because the i ion is helpful in completing
the root locus. For example, consider the third-order open-loop transfer function

K
(s + ps)(s® + 2wy + of)

The pole locations and the vector angles at one complex pole —p; are shown in
Figure 7.12(a). The angles at a test point 5y, an infinitesimal distance from — py, must

Fls) = G(s)H(s) = (7.48)

Asyeplote pis)
050
0419
015
I -1 0 ey 0

FIGURE 7.11

Evaluation of the

(a} asympiotes and

point. fa) bl
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six steps. If a more detailed root locus is required, we {using a
alded tool. (See Section 7.8.)

In some situation, we may want to determine a root location s, and the value of
the parameter K, at that root location, Determine the root locations that satisfy the
phase criterion at the root 5, x = 1,2,..., m, using the phase criterion. The phase
criterion, given in Equation (7.17),is

FP(s) = 180° + k360°, and k=0, £1, £2,....

To determme the parameter value K, ata spocll'lc root s, we use the magnitude
(Equation 7.16). The 1 at s, is

f{]s + pl

M

IIls+ =l

=1 1=y,

1t is worthwhile at this point to summarize the seven steps utilized in the root
locus method (Table 7.2) and then illustrate their use in a complete example.

P

K. =

-t

Table 7.2 Seven Steps for Sketching a Root Locus

Step

Related Equation or Rule
1. Prepare the root locus sketch,
{a) Write the characteristic equation so that the 1+ KP(s)=10.
parameter of interest, K, appears as a multiplier.

q{: + z.l
{b) Factor P{s) in terms of n poles and M zeros. 14 Kr——

H{: + )

=

(e} Locate the open-loop poles and zeros of P(s)
in the s-plane with selected symbols.
{d) Determine the number of separate loci, SL.

{e} The root loci are symmetrical with respect to the
horizontal real axis.

2. Locate the segments of the real axis that are root loci.

3, The loci proceed to the zeros al Infinity along
usymptotes centered at 74 and with angles ¢,

4. Determine the points at which the locus erosses the
imaginary axis (il it does so),

5. Determine the breakaway point on the real axis (if any).

6. Determine the angle of locus departure from complex

poles and the angle of locus arrival at complex zeros,
using the phase criterion.
7. Complete the root locus sketch,

* = poles, © = z¢ros

Locus begins at a pole and ends a1 a zero.

SL = nwhenn = M;n = number of finite poles,
M = number of finite zeros,

Lucus lies to the left of an odd number of poles and
2( e = Zh=z)
i
64-2*+“:180°k=012 A= M= 1),
Use Routh-Hurwitz eriterion (see Section 6.2).

a) Set K = pis).

b} Determine roots of dp(s)/ds = O or use
graphical method 10 find maximum of p(s).
L P(s) = 180° + K360*ats = —p or -z,
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Using the information derived from the seven steps of the root locus method,
the complete root locus sketch is obtained by filling in the sketch as well as possible
by visual inspection. The root locus for this system is shown in Figure 7.14(b). When
the complex roots near the origin have a damping ratio of { = 0.707, the gain K can
be determined graphically as shown in Figure 7.14(b). The vector lengths to the root
location 5, from the open-loop poles are evaluated and result in a gain at 5, of

K= 1Islls + alls; = pillsy = pul = (19){29)(38)(6.0) = 126.  (7.52)

The remaining pair of complex roots occurs at 5, and 5, when K = 126. The effect
of the complex roots at 5 and 5, on the i T will be negligible com-

pared to the roots 5, and i,.Th'n fact can be ined by idering the d;
of the response due to each pair of roots. The damping due to 5, and §, is

erbn = ey

and the damping factor duc to 5, and Fais
eV = g0

where e, is approximately five times as large as e T1 the transient resp
term due to 5; will decay much more rapidly than the transient response term due to
5. Thus, the response to a unit step input may be writien as

i) =1+ epe™ sinfay + 8;) + e sinfwyr + )
=1+ g sinfeyr + 8;). (7.53)

The complex conjugate roots near the origin of the s-plane relative to the other roots
of the clostd-loup system are labeled the dominant roots of the system because they

p or i the P The relali\-e domi f the compl
roots, in a third-order system with a pair of P roots, is ined
b)' the rnlm ul the real root to the real pan‘. of the complex roots and will result in

for ratios 2 5.

Thc dominance of the second term of Equahon (7.53) also depends upon the rel-
ative magnitudes of the coefficients ¢, and ¢; These coefficients, which are the
residues evaluated at the complex roots, in turn depend upon the location of the
#eros in the s-plane. Therefore, the concept of dominant roots is useful for estimating
the response of a system, but must be used with caution and with a comprehension of
the underlying assumptions. =

EXAMPLE 7.5 Automatic sell-balancing scale

The analysis and design of a control system can be accomplished by using the
Laplace transform, a signal-flow diagram or block diagram, the s-plane, and the root
Iocus method. At this point, it will be worthwhile to examine a control system and
select suitable parameter valucs based on the root locus method.

Figure 7.15 shows an automatic self-balancing scale in which the weighing oper-
ation is controlled by the physical balance function through an electrical feedback
loop [5]. The balance is shown in the cqulllhnum oon,dtuon and x is the travel of the
counterweight W, from an unloaded eq i The weight W 1o be
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Table 7.5 Specifications

Steady-state error K, = o9, e, = Ofor a step input
Underdamped response =05
Seutling time (2% criterion) Less than 2 seconds

2 seconds in order to provide a rapid weight-measuring device. The settling time
must be within 2% of the final value of the balance following the introduction of a
weight to be measured. The specifications are summarized in Table 7.5,

The derivation of a model of the electromechanical system may be accom-
plished by obtaining the equations of motion of the balance. For small deviations
from balance, the deviation angle is

= Il (7.54)

The motion of the beam about the pivot is rep i by the torque eq

‘9
d' T ¥, torques.
‘Therefore. in terms of the deviation angle, the motion is represented by
d'e 3, 8
.‘;F-!W xW,—!,bm. (7.55)
The input voltage to the motor is

valt) = Ky - Kpx. (7.56)

The lead screw motion and transfer function of the motor are described by

Bl ¥) Ko

X(s) = K;8,,(s) aund Vi) = FrereTy

(7.57)
where ¢ will be negligible with respect to the time constants of the overall system,
and 6, is the output shaft rotation. A signal-flow graph and block diagram repre-
senting Equations (7.54) through (7.57) is shown in F;urt 7.16, Examining the for-
wurd pa|h from W to X(s). we find that the system is a typc one due Lo the
g Yis). Therefore, the steady-state error of the system is zero.
“The :Inscd—loop ‘transfer function of the system is obtained by utilizing Mason's
signal-flow gain formula and is found to be

Xis) _ i KK U5)
W) 1+ 12b/Us) + (KKK fs) + LKK K WIS + 17K, KK (15)
(7.58)

where the numerator is the path factor from W to X\ the second term in the denom-
inator is the loop Ly, the third term is the loop factor L. the fourth term is the loop
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4, The characteristic equation is rewritien as
s+ AS M + 3 + K =5+ 127 + 648 4 128+ K =0, (7.50)
Therefore, the Routh array is

E 1 64 K
o 12 128
& b K
5! &
2 K
where
12(64) - 128 53.33(128) - 12K
m:ﬁ._.sjjjmcl._m_..{.__.

12 533

Hence, the fimiting value of gain for stability is K = 368.89, and the roots of the auxil-
iary equation are
533357 + S6B.89 = 533 + I067) = S333(s + jI266)(s — j3266). (7.51)

The points where the locus crosses the imaginary axis arc shown in Figure 7.14(a).
Therefore, when K = 568.89, the root locus crosses the je-axis at s = 43266,

5. The break ¥ point is esti 4 by eval

K = pls) = =sls + 4)s + 4 + )z + 4 - j4)

between s = —4 and s = 0. We expect the breakawny point 10 lie between s = =3 and
5 = -1, 50 we scarch for a maximum value of p(s) in that region. The resulting values
n(p[s}hrscvcml values of 5 are given in Table 7.3. The maximum of p(s) is found to lie
ly 5 = —1.577, as indi in the table. A more accurate estimate of the
bneakawuy point is normally not necessary. The breakaway point is then indicated on
Figure 7.14(a).
6. The angle of departure at the complex pole py can be estimated by utilizing the angle
criterion as follows:

)+ 907+ WP+ 8y = 180° + k360%.

Here, 8 is the angle subtended by the vector from pole py. The angles from the pole at
5= —4and 5 = —4 — j4 are each equal to Y07, Since #; = 135°, we find that

B = =135 = 42257,

as shown in Figure 7.14(a).
7. Complete the sketch as shown in Figure 7.14({b),

Table 7.3
o 0 5.0 6844 800 8357 750 0
¥ —4.0 =30 =25 =20 -1.577 -1.0 [

Chapter 7 The Root Locus Method

e

sty

Viscous
damper

measured is applied 5 cm from the pivot, and the length /) of the beam to the viscous
damper is 20 cm. We desire to accomplish the following:

1. Sebect the p and the specificath 1 the feedback system.
2. Obtain a model representing the system.

3. Select the gain K based on a root locus diagram,

4, Determine the dominant mode of response.

An Inertia of the beam equal to 0,05 kg m? will be chosen. We must select a battery
voltage that is large enough to provide a reasonable position sensor gain, so we will
choose £, = 24 volts. We will use a lead serew of 20 turms/em Il'ld a potentiometer
for x equal to 6 em in length, A are required: an input
potentiometer 0.5 cm in length for y will be chosen. A reasonable viscous damper will
e chosen with a damping constant b = II:I\/?i N(m/s). Finally, a counterweight W,
is chosen so that the expected range of weights Wean be balunced. The purameters
of the system are selected as listed in Table 7.4,

Specifications. A rapid and Iting in o small dy-s
weight measurement error is desired, Ihcrvlun., we will rcqum. Umt Ihc syslem I>c
at least a type one so thal a zero error is

response lo a step change in the measured weight W is s:lllslm:ml“y. s & dominant
response with ¢ = (L5 will be specified. We want the settling time to be less than

Table 7.4 Self-Balancing Scale Parameters

5 m/ il

W, =2N Lead screw gain K, = 0000

1= 008 kg m?

Iy = Sem Input potentiometer gain K; = 4500 V/m.

4 = 20em

b= VIR mfs Feedbick i goin K, = 400 V/m.
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= —a8 41T -
¢= 0707 =83 !
s i
|
—— M
i
¢ — o
=4 =12 -in -8 =& -4 -2 o
Then, rewriting Equation (7.62) in root locus form, we have
PO Ko /0m)s(s + 8V3) + 96] Y
+ ) =1 ————
31(: + SVGJ
1+ Kall10m)s + 695 + j6.93)s + 693 - _16.93}' P

#(s + 8V3)

The root locus as K, varies is shown in Figure 7.17. The dominant roots can be
placed at £ = 0.5 when K = 253 = K/10wr.To achieve this gain,
radfs M

= 795—— = 7600 ¥
K volt volt

(7.64)
an amplifier would be required to provide a portion of the required gain. The rcal
part of the dominant roots is less than —4; therefore, the settling time, 4/er, is less than
1 second, and the settling time requirement is satisfied. The third root of the charac-
teristic equation is a real root at 5 = —30.2, and the underdamped roots clearly dom-
inate the response. Therefore, the system has been analyzed by the root locus method
and 4 suitable design for the parameter K, has been achieved. The efficiency of the
s-plane and root locus methods is clearly ds d by this ple. m

7.4 PARAMETER DESIGN BY THE ROOT LOCUS METHOD

FIGURE 7.18

Originally, the root locus method was developed to determine the locus of roots of
the characteristic equation as the system gain, K, is varied from zero to infinity.
However, as we have seen, the effect of other system parameters may be readily
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locus equation
Bs
14+ ——=1 .
f + 51 + a n {7 74}

We note that the d of Equation (7.74) is the ch istic equation of
the system with § = (. Therefore, we must first evaluate the effect of varying o from
zero o infinity by using the equation

Sedta=0,

rewritlen as

o

|+ T 0, (7.75)
where 8 has been set equal to zero in Equation (7.73). Then, upon evaluating the
effect of @, a value of e is selected and used with Equation (7.74) t I the effect
of 3. This two-step method of evaluating the effect of & and then 8 may be carried
out as two root locus procedures. First, we obtain a locus of roots as a varies, and we
select a suitable value of a; the results are satisfactory root locations. Then, we obtain
the oot locus for B by noting that the poles of Equation (7.74) are the roots evalu-
ated by the root locus of ion (7.75). A limitation of this a is that we
will not always be able to obtain a characteristic equation that is linear in the para-
meter under consideration (for example, a).

To illustrate this approach effectively, let us obtain the root locus for o and then
B for Equation (7.73). A sketch of the root locus as e varies for Equation (7.75) is
shown in Figure 7.18(a), where the roots for two values of gain a are shown. If the
gain a is selected as oy, then the resultant roots of Equation (7.75) become the poles
of Equation (7.74). The root locus of Equation (7.74) as 8 varies is shown in Figure
7.18(b), and a suitable 8 can be selected on the basis of the desired root locations.

Using the root locus method, we will further illustrate this parameter design
approach by a specific design example.

g

ay
a S~a

A
@ L ~ :| 8 o
Duchle | >
&
pole ¥
fa) b
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Wiy ¥
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'::im [

Tnpust
potentiometer
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Xisp
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by

Ly, and the fifth term is the two
transfer function is

hing loops L, L;. Therefore, the closed-loop

X(s) _ LK K oK, a5
Wis)  s(ls + Pb)(s + K KK/ + WK, KKl
The steady-state gain of the system is then
Iim& = Iimﬂ e 25cm/kg (7.60)

ARTwl TS WE) T W,

when W(s) = |W|/s. To obtain the root locus as a function of the motor constant

K we substitute the selected p into the ch istic ion, which is
the i of Equation (7.59). Therefore, we obtain the following ct is-
tic equation:
K.\ 96K,
+ +== )4 . .
s svﬁ)(s m”) Tt (7.61)

Rewriting the characteristic equation in root locus form, we first isolate K, as
follows:

V6K
10

s+ 8V3) + sfs + 8VE) 52 + = < g, (7:62)
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investigated by using the root locus method. Fundamentally, the root locus method
[ ned with a ch isth ion (Equation 7.22), which may be written as

1+ Fs) =0 (7.65)

Then the standard root locus method we have studied may be applied. The question
arises: How do we investigate the effect of two parameters, o and 7 It appears that
the root locus method is a single-parameter method; fortunately, it can be readily
extended to the investigation of two or more parameters. This method of parameter
design uses the root locus approach to select the values of the parameters.

The ch st ion of a d ic system may be writlen as

A+ g e ray =0, (7.66)
Hence, the effect of the coefficient a, may be ascertained from the root locus equation

e =0
s 4 ANt o

1+ (7.67)

If the parameter of interest, &, does not appear solely as a coefficient, the parameter
may be isolated as
Bt g e gy el T e o s g =0 (T68)
For example, a third-order equation of interest might be

SHE+a) +I+6=0 (7.69)

To ascertain the effect of the parameter a, we isolate the parameter and rewrite the
equation in root locus form, as shown in the following steps:
S+38+at+ B +6=0; (7.70)

1_'.4‘“2_.:
PHif+h+6

Then, to determine the effect of two parameters, we must repeat the root locus
approach twice. Thus, for a characteristic equation with two variable parameters, a
and B, we have

. (7.71)

A" F Gy (g — @) AT
ey =PI+ BT e as =0 (772)
The two variable parameters have been isolated, and the effect of a will be deter-

mined. Then, the effect of B will be determined. For example, for a certain third-
order characteristic equation with & and 8 as parameters, we obtain

f+d+fsta=0 (7.73)

In this particular case, the parameters appear as the coefficients of the characieristic
equation, The effect of varying B from zero to infinity is determined from the root
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The locus of roots as a = K| varies (set § = (1) is determined from the equation
o

I"J{.{TZ]“”

(7.80)

as shown in Figure 7.21(a). For a gain of K, = a = 20, the roots are indicated on the
locus. Then the effect of varyving B = 20K, is determined from the locus equation

1+ = 2 i, (7.81)

F+2ita

where the poles of this root locus are the roots of the locus of Figure 7.21(a). The root
locus for Equation (7.81) is shown in Figure 7.21{b), and roots with { = 0.707 arc
obtained when g = 4.3 = 20K, or when K3 = (L.215. The real part of these roots is

1
!J'i | a8 436
4 I
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7.5 SENSITIVITY AND THE ROOT LOCUS

One of the prime reasons for the use of negative feedback in control systems is the re-
duction of the effect of parameter variations, The effect of parameter variations, as we
found in Section 4.3, can be described by a measure of the sensitivity of the system
p to specific p changes In Section 4.3, we defined the logarithmic
sensitivity originally suggested by Bode as

. almT _ oTT
5= L
alnK  aK/K

(7.85)

where the system transfer function is T(s) and the parameter of interest is K.

In recent years, there has been an increased use of the pole-zero (s-plane)
approach. Therefore, it has become useful to define a sensitivity measure in terms ol
the positions of the roots of the characteristic equation [7-9], Because these roots

P the domi; modes of i p the effect of p i
tions on the position of the roots is an imp and useful of the
ity. The root sensitivity of a system 7(s) can be defined as

g an
alnK  aK/K

Si=

where r, equals the ith root of the system, so that

L
x.J]'[‘r, +z)

T = (7.87)
IIts +
i1
and K is a parameter affecting the roots. The root sensitivity relates the changes in

the location of the root in the s-plane to the change in the parameter. The root sen-
sitivity is related to the logarithmic sensitivity by the relation

aln Ky i 1
S TImK  ZamK vi7 7.88)

when the zeros of T(s) are independent of the parameter K, so that
iz
iln K

0,
This logarithmic sensitivity can be readily obtained by determining the derivative of

T(s), Equation (7.87), with respect to K. For this particular case, when the gain of the
system is independent of the parameter K, we have

] 1
o
& .E.;S;‘ pE (7.89)

and the two sensitivity measures are directly related,
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EXAMPLE 7.6  Welding head control

A welding head for an auto body requires an accurate control system for positioning
the welding head [4]. The feedback control system is to be designed to satisfy the
following specifications:

1. Steady-state error for a ramp input =35% of input slope

2 Damping ratio of dominant roots =0.707

3, Settling time to within 2% of the final value =3 seconds
The structure of the feedback control system is shown in Figure 7.19, where the
amplifier gain K; and the derivative feedback gain K; are to be selected. The steady-
state error specification can be written as

ey = lime() = lim sE(s) = !im-’-(-l-'x-i—li"-l-]— (7.76)

=01 + Gyfs)
where Ga(s) = G(s)/(1 + G{s)H (x)). Therefore, the steady-state error require-
ment is

b 2+ KK,

one ST D2 035 (7.77)

Rl Ky

Thus, we will select a small value of K; to achieve a low value of steady-state

error, The damping ratio specification requires that the roots of the closed-loop sys-
tem be below the line at 45° in the left-hand s-plane. The settling time specification
can be rewritten in terms of the real part of the dominant roots as

T,= ; =3s. (7.78)

Therefore, it is necessary that o = 44; this area in the lefi-hand s-plane is indicated
along with the {-requirement in Figure 7.20. Note that & = ¥/} implies that we want
the dominant roots to lie to the left of the line defined by o = — ;. To satisfy the
specifications, all the roots must lie within the shaded area of the left-hand plane.
The parameters to be selected are & = K, and g = K;K;. The characteristic
equation is
1+GH(s) =5 +2+Bs+a=0 (1.79)

Gin)

+ + K
o —_— -
Rinh Tt ¥is

Hyls)

Kys
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@ = —3.15; therefore, the time to setile (to within 2% of the final value) is equal to
1.27 seconds, which is considerably less than the specification of 3 seconds =

We can extend the root locus method to more than two parameters by extend-
ing the number of steps in the method outlined in this section. Furthermaore, a fami-
ly of root loci can be generated for two parameters in order to determine the total

effect of varying two For ple, let us d the effect of varying
a and @ of the following characteristic equation:
P+ 4+ Bs+a=0 (7.82)
The root locus equation as a function of a is (set B = 0)
a
I+s{s+1)(3+2)_0' (753)
The root locus as a function of 8 is
: Bs g
17:’+33‘+2:+n d a9

The root locus for Equation (7.83) as a function of « is shown in Figure 7.22 (unbro-
ken lines). The roots of this locus, indicated by slashes, become the poles for the locus
of Equation (7.84). Then the locus of Equation (7.84) is continued on Figure 7.22
(dotted lines), where the locus for @ is shown for several selected values of &. This
family of loci, often called root contours, illustrates the effect of & and 2 on the roots
of the characteristic equation of a system [3].

a=20 a=6
-4 -3 -1

# Roats for  varying
O Roats for 8 varying




FIGURE 7.24
The root locus
for K.
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n
K= it
“AL K =03] 08
k=01

SR =508

gain a = 0.4 and a = 0.6 are readily determined by root locus methods, and the
root Jocations for Aa = +0.1 are shown in Figure 7.24. When o = K = (L6, the root
in the second quadrant of the s-plane is

(=r)) + &y = =05 + [0.59.

and the change in the root is Ary = +/0.09. When o = K = 0.4, the root in the sec-
ond quadrant is

={ry) + &ry = =0.5 + j0.387,
and the change in the root is —Ar; = —j0.11. Thus, the root sensitivity for r, is

o __Ar 008 B
5= TR 5 045 = 0.45/+90° (7.94)
for positive changes of gain. For negative i of gain, the itivity is
wAn L T ks w0550
Si- AK/K © 402 Al =033

For infinitesimally small changes in the parameter K, the sensitivity will be equal for
negative or positive increments in K. The angle of the root sensitivily indicates the
direction the root moves as the parameter varies. The angle of movement for +Aeais
always 180° from the angle of movement for —Aa at the point a = ag

The pole 8 varies due to environmental changes, and it may be represented by
8 = By + AB.where 8, = 1. Then the effect of variation of the poles is represented
by the characteristic cquation

FHs+ABs+ K=,
of, in root locus form,

A
1+ ?ﬁix =0 (7.95)
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where k is an integer. The locus of roots follows a zero-degree locus in contrast with
the 1807 locus considered previously. However, the root locus rules of Section 7.3
may be altered to account for the zero-degree phase angle requirement, and then
the root locus may be obtained as in the p ding sections. Therefore, to obtain the
effect of reducing &, we d ine the degree locus in contrast to the 180°
locus, as shown by a dotted locus in Figure 7.25. To find the effect of a 20% change
of the parameter B, we evaluate the new roots for Ag = £0.20, as shown in Figure

7.25. The root itivity is readily ly and, for a positive change
in f.is
4. 0.6/ -128°
Spo = ot L2 080/ 128",

-
aglg =~ o
The root sensitivity for a negative change in 8 is

, _ An 0125739
Sh-=Rplp = om - SBLA

Asthe perce niage l:hange aﬁfﬂ di the S5\ and 5. will
equality in mag; and a diffy in angl: of 180°, Thus. for small
:hunges when A8/8 = 0.10, the sensitivity measures are related as

1830 = 155

and
£Si = 180 + /S

Often, the desired root sensitivity measure is desired for small changes in the
parameter. When the relative change in the parameter is of the order AB/8 = 0.10,
we can estimate the increment in the root change by appﬂmmnlmg the root locus
with the line at the angle of dep ;. This app is shown in Figure 7.25
and is accurate for only relatively small clwnges in Af. However, the use of this
approximation allows the analyst to avoid sketching the p
Therefore, for Figure 7.25, the root sensitivity may be evaluated for ﬂﬂfﬂ = ﬂ m
along the departure line, and we obtain

0.075/-1
5= 0‘:?"' =0.75/-132 (7.96)

‘The root sensitivity measure for a parameter variation is useful for comparing
the sensitivity for various design parameters and at different root locations. Com-
paring Equation (7.96) for 8 with Equation (7.94) for e, we find (a) that the sensi-
tivity for B is greater in magnitude by approximately 50% and (b) that the angle
for 8 indicates that the approach of the root toward the jw-axis is more sensitive for
changes in 8. Therefore, tIIE tolerance n-.qulrcm:nu. for @ would be more stringent
than for a. This inf ides the designer with a p of
the required tol fnr:ach. [
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The evaluation of the root sensitivity for a control system can be readily accom-
phsllad by utilizing the root locus methods ol lhe preceding section. The root sensitiv-
ity Sg may be evaluated at root =r; by 2 the root for the p
K. We can change K by a small finite amount nx and determine the modiﬁed rool
={r; + Ar) at K + AK. Then, using Equation (7.86), we have

Ar
AKIK

Equation (7.90) is an approximation that approaches the actual value of the sensitivity
as AK — 0. An example will illustrate the process of evaluating the root sensitivity,

Sk = (7.90)

EXAMPLE 7.7 Rool sensitivity of a conirol system
The cf istic equation of the feedback control system shown in Figure 7.23 is
K
+——=
s(s + B)

or, alternatively,
fHps+K=0 (7.91)

“The gain K will be considered to be the parameter o Then the effect of a change in
each parameter can be determined by utilizing the relations

a=oyt Ao and B = B, ¢ AB,

where ay and 8, are the nominal or desired values for the parameters o and S,
respectively. We shall consider the case when the nominal pole value is 8, = 1 and
the desired gain is oy = K = 0.5, Then the root locus can be oliained as a function
of @ = K by utilizing the root locus equation

X 1+ K 0, (7.92)

14—
S5+ po) SO
as shown in Figure 7.24. The nominal value of gain K = ay = 0.5 results in two com-
plex roots. —ry = —0.5 + j0.5 and —r; = —ry, as shown in Figure 7.24, To evaluate
the effect of unavoidable changes in the gain. the characteristic equation with
o = ay £ Aa becomes

4 staytba=s+5+05+ Aa (7.93)

Therefore, the effect of changes in the gain can be evaluated from the root locus of
Figure 7.24. For a 20% change in a, we have Aa = +0.1. The root locations for a

FIGURE 7.23
A feedback control
system,
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‘The denominator of the second term is the unchanged characteristic equation when
Af = 0. The root locus for the unchanged system (A8 = () is shown in Figure 7.24
as a function of K. For 4 design specification requiring { = 0.707, the complex roots
lie at
—r =05+ 05 and -r;=-F = -05- j0.5.
Then, because the roots are compl j the root y for ry is the con-
jugate of the root sensitivity for #; = ry. Using the roat locus technig)
discussed in the preceding section, we obtain the root locus for AS as shown in
Figure 7.25. We are normally interested in the effect of a variation for the parameter
so that 8 = B, + AJ. for which the locus as 8 decreases is obtained from the root
locus equation
—(AB)s
i Frs+K
We note that the equation is of the form
1= ABP(s) = 0.
Comparing this equation with Eq (7.23) in Section 7.3, we find that the sign
preceding the gain A2 is negative in this case. In a manner similar to the develop-
ment of the root locus method in Section 7.3, we require that the root locus satisfy
the equations
|ABP(s)| = 1 and /P(s) = (F + k360°,
JoTs
jose
028
0
-j02s
~j0.s0
FIGURE 7.25
The root locus for
B. -jo.7s
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Therefore, the sensitivity at ry is

fo Bn _02/-80° ..
3~ hgls = daws " ~ I8

which indicates that the root is quite sensitive to this 6% change in the parameter 8.
For comparison, it is worthwhile to determine the sensitivity of the rool —r; to a
change in the zero s = <3.Then the characteristic equation is

S5+ 2)(s + 8) + 207(s + 3+ Ay) = D

20.7 Ay
R e n, 798

L A S PR PR ) 7%
The pole-zero diagram for Equation (7.98) is shown in Figure 7.27. The angle of
departure at root —ry is 180° = —(#, + 90° + 40°), or

= +50°.
For a change of Ary = 0.2/ +50°, the Ay is positive. Obtaining the vector lengths,
we find that
5.22(4.18)(0.2)

|ayl = 7 - 0.21.

Therefore, the sensitivity at r; for +Ayis

_ An _ D2/450° L
S = Ay oz ML

‘Thus, we find that the magnitude of the root sensitivity for the pole 8 and the zero y
is approximately equal. However, the sensitivity of the system to the pole can be con-
sidered to be less than the sensitivity to the zero because the angle of the sensitivity,
83, is equal to +50° and the direction of the root change is toward the jw-axis.

;f i
Bh 5
i
-n
o
-5 -4 -3 -2 -
=it
-7 L
FIGURE 7.27 x
Pole-zern diagram =53
for th r
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If we set Kp = 0, then we have the proportional plus integral (PI) controller

When K; = 0, we have

Gs) = K, + Kps,

which is called a proportional plus derivative (PD) 1l
The PID controller can also be viewed as a cascade of the PI and the PD con-
trollers. Consider the PI controller

Gpls) = Kp + E‘{

and the PD controller
Gipls) = Kp + Ky,

where Kpand K, are the PI controller gains and Ky and K, are the PD controller
gains. Cascading the two controllers (that is, placing them in series) yields

GAs) = Gu(s)Gpols)

S =
= (xf + 7’){1@ + Kos)
& 7?
= (Rpkp + KKp) + RpRps + =22
K,
=Kp+ Kps + T'r

where we have the following relationships between the P and PD controller gains
and the PID controller gains

Kp = Bpkp + KK

Ky = k,ﬁp

K = KRy
Consider the PID controller

Gm_xﬂiw M

= Kpls® + as + b) = Kpl(s + a.)(s + z3)

¥ El ‘
where @ = Ku/Kp and b = K,/ Kp. Therefore, a PID i a trans-
fer function with one pole at the origin and two zeros that can be located anywhere
in the s-plane,
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EXAMPLE 7.8 Root sensitivity to 2 parameter
A unity feedback control system has a forward transfer function
20.7(s + 3)
s(s + 2)(s + B)'
where 8 = B, + AB and B, = B.The characteristic equation, as a function of A8, is
s+ 2)(s+ 8+ AB) + 207(s + 3) =0,

Gix) =

or
sy + 2)(s + 8) + ABs(s + 2) + 20.7(s + 3) = 0,
‘When Ag = 0, the roots are
—r = =236+ j248, -rp=r, and —ry =527,
The root locus for Af is determined by using the root locus equation
+

i e rzﬁ“: F.)ﬁ rem il (7.97)
The roots and zeros of Equation (7.97) are shown in Figure 7.26. The angle of
departure at ry is evaluated from the angles as follows:

180° = —(fy + 90° + 8,) + (6, + 0.)
= = {fy + 907 + 40°) + (133° + 98°),

Therefore, i, = —80° and the locus is approximated near —ry by the line at an angle

of 8. For a change of &r, = 0.2/ -80° along the departure line, the + A8 is evalu-

ated by determining the vector lengths from the poles and zeros Then we have
4.8(3.75)(0.2)

B =nonam T

—ry

-ji

FIGURE 7.26 " i

Paole and 2o pid

iagram lor the ] —|-i3
8
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Evaluating the root sensitivity in the rnanner of the preceding paragraphs, we
find that the sensitivity for the pole s = —&, = -2is

= L1/+27%

Thus, for the 8, the itude of the is less than for the other
parameters, but the direction of the change of the root is more important than for 8
andy. =

To utilize the root sensitivity measure for the analysis and design of control sys-
tems, a series of caleulations must be performed; they will determine the various
selections of possible root configurations and the zeros and pales of the open- 1oop

transfer function. Therefore, the root as a design
somewhat limited by two tllmgs the relatively ]nrgc number of calculations r:quucd
and the lack of an obvious di for adj gthep in order to provide

a minimized or reduced y. However, the molsensiliv!ly measure can be uti-
lized as an analysis measure, which permits the designer to compare the sensitivity
for several system designs based on a suitable method of design, The raot sensitivity
measure is a useful index of the system’s itivity to p

in the s-plane. The weakness of the sensitivity measure is that it relies on l.hc ability
of the root Jocations to l:p‘ﬂ:sﬂ'il the performance of the system, As we have seen in

the f ding chap the root locati the | quite adeqy
for many systems, but due consideration must be given m the location of the zeros of
the closed-loop transfer function and the domi of the pertinent roots. The root

sensitivily measure is a suitable measure of system performance sensitivity and can
be used reliably for system analysis and design,

7.6 PID CONTROLLERS

One form of controller widely used in industrial process control is the three-term,
PID ller [4, 10]. This ller has a transfer function

K
Gls) = K, + — + Kps.

The equation for the output in the time domain is

ulr) = Kyelt) + K, f ety di + Ky i’

The three-term controller is called a PID controller because it contains & propor-
tional. an integral, and a derivative term represented by K. K and Kp, respectively.
The transfer function of the derivative term is actua!]y

Guls) = T8+ I
but 7 is usually much smaller than the time constants of the process itself, so it is
neglected.
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Table 7.6 Effect of Increasing the PID Gains K, Ko, and K; on the Step Response

Percent Steady-State
PID Gain Overshoot Settling Time Error
Increasing Ky Increases Minimal impact Decreases
Increasing K, Increases Increases Zero sieady-state error
Increasing K Decreases Decreases No impact

FIGURE 7.30
Unily feedback
contral systern with
PiD) controlisr.

FIGURE 7.32

FIGURE 7.33

Kp = 370,
K; = 0, and
0= Kp < =0,

engineers to operate them in a simple, slralghtfu!ward manner, To |mp|cr.ncnl
the PID ller, three p must be d ined, the p | gain,
denoted by Kp, mlcgrnlgam,d:notcd by K, and derivative gain denoted by K10

There are many methods available to determine acceptable values of the PID
gains The process of determining the gains is often called PID tuning. A common
approach to tuning is to use manual PID tuning methods, whereby the PID control
gains are obtained by trial-and-error with minimal analytic analysis using step re-
sponses obtained via simulation, or in some cases, actual testing on the system and
deciding on the gains based on observations and experience. A more analytic
method is known as the Ziegler-Nichols tuning method, The Ziegler-Nichols wning
method actually has several variations. We discuss in this section a Ziegler-Nichols
tuning method based on open-loop responses Lo a step input and a related a Ziegler-
Nichols tuning method based on closed-loop response 1o a step input.

One approach to manual tuning is to first set K; = 0 and Kp = 0. This is fol-
lowed by slowly increasing the gain Kp until the output of the closed-loop system
oscillates just on the edge of instability. This can be done either in simulation or on
the actual system if it cannot be taken off-line. Once the value of Kp (with K; = 0
and Kp = 0) is found that brings the closed-loop system to the edge of stability, you
reduce the value of gain Kp to achieve what is known as the quarter amleMe
decay. That is, the amplitude of the closed-loop resp is reduced app
to one-fourth of the maximum value in one oscillatory period. A rule-of-thumb is to
start by reducing the proportional gain Kp by one-half. The next step of the design
process is 1o increase Ky and Ky manually to achieve a desired step response. Table
7.6 describes in general terms the effect of increasing K; and Kp.

EXAMPLE 7.9 Manual PID tuning
Consider the closed-loop system in Figure 7.30 with
1
Gls) sls + Bi(s + 2w
where b = 10,{ = 0.707,and @, = 4.

T

‘Controller ! Process
* K, |
s —L — ¥
i ? Kot -+ Kot P aly + Bijs + ) 9
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effects of varying K p are consistent with information provided in Table 7.6. As Kp
increases (when Ky = 75). the real root begins to dominant the response and the
trends described in Table 7.6 become less accurate. The percent overshoot and set-
tling time as a function of K, are shown in Figure 7.34.

The root locus for Kp =370, Kp =0, and 0 = K, < oo is shown in Figure
7.35. The characteristic equation is

1+ K, !

.‘(s(; + 10)(s + 5.66) + x,)

We see in Figure 7.35 that as K increases, the root locus bhuws |hal the closed-loop
complex pair poles move right. This d the ing ratio and
therchy increasing the percent overshool. In fact, when K, = 778.2, the system is

lly stable with closed-loop poles at s = +4.86). The movement of the

FIGURE 7.20
oot locus for plant
with a PID
controllar with
COmplax; Zeros.

FIGURE 7.31

(a) St8p responae

wilh Kp = 885.5,

Ko =0,and K, = 0,
Aoot locus

5= 275

Recall that a root locus begins at the poles and ends at the zeros. If we have a
system, as shown in Figure 7.28, with
Ao
(s +2)s +3)
and we use a PID controller with complex zeros —z; and —z3, where —zy = =3 + j1
and —z; = =3, we can plol the root locus as shown in Figure 7.29. As the gain, Ky, of
the ller is d, the complex roots h the zeros. The closed-loop
transfer function is

G(s) =

G(5)Gels)
1+ G(s)G(s)
_ Kpls+ s+ %)
Tt r)s s+ R

The respanse of this system will be attractive. The percent overshoot to a step will be
less than 2%, and the steady-state error for a step input will be zero. The settling
time will be approximately 1 second. If a shorter settling time is desired. then we
select z; and z; to lie further left in the left-hand s-plane and set Kp to drive the
rools near the complex zeros

Many industrial processes are © using PID The popularity
of PID controllers can be attributed partly to their good performance in a wide
range of operating conditions and partly to their functional simplicity that allows

T(s) =

i
Frd
=r, &
-5 Tl
—t—+
-4
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To begin the manual tuning process, set K; = 0 and Kpp = 0 and increase Kp
until the closed-loop system has sustained oscillations. As can be seen in Figure
7.31a, when K = 885.5, we have a sustained oscillation of magnitude A = 1.9 and
period P = (.83 s The root locus shown in Figure 7.31b corresponds to the charac-
teristic equation

1
L+ K"L{s Y06 56w

The root locus shown in Figure 7.31b illustrates that when Kp = 8855, we have
closed-loop poles at s = +7.5] leading to the osci v behavior in the step
in Figure 7.31a.

Redu:,c Kp = 885.5 by hal[as a first step to achieving a step response with ap-
p ly a quarter decay. You may have to ilerate on the value
Kp = 442.75. The step response is shown in Figure 7.32 where we note that the peak
amplitude is reduced to one-fourth of the maximum value in one period, as desired.
To accomplish this reduction, we refined the value of K by slowly reducing the
value from Kp = 442.75 to Kp = 370,

The root locus for Kp = 370, K; = O,and 0 = Kp < o0 isshown in Figure 7.33.
In this case, the characteristic equation is

5 -
(s + 10)(s + 5.66) + x..] =0

We see in Figure 7.33 that as Kp mcreases.tha root locus shows. Ihal Ihe closed-loop
complex pnles move left, and in doing so, the i ping ratio and
thereby di the percent The of the pl pDIts to the
left also increases the associated {w,,. thereby reducing the settling time. These
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and settling time
with final
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FIGURE 7.38
Time response for
the

FIGURE 7.39
Disturbance
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‘Two important PID ller gain tuning methods were published in 1942 by

John G. Ziegler and Nathaniel B. Nichols intended to achieve a ‘fast closed- -loop step
response without excessive oscillations and excellent disturbance rejection. The two
approaches are class‘lf'ed under the gemml heading of Ziegler-Nichols tuning meth-
ods, The first app 1 is based on cl reqm.m\g the

of the ultimate gain and ultimate period, “The second approach is based on open-

loop concepts relying on reaction curves. The Ziegler-Nichols tuning methods are
based on assumed forms of the models of the process, but the models do not have to
be precisely known. This makes the tuning approach very practical in process
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Ziegler-Nichols tuning is designed 1o provide the best disturbance rejection perfor-
‘mance rather than the best input response performance.

In Figure 7.39, we see that the step disturbance performance of the Ziegler-
Nichols PID controller is indeed better than Ihc manually tuned controller. While
Ziegler-Nichols approach provides a fure for obtaining the PID
controller gsm& the appropriateness of the ngltr Nichols tuning d:pcnds on the

under

of the probl

q

The open-loop Ziegler-Nichols tuning method utilizes a reaction curve ob-
tained by taking the controller off-line (that is, out of the loop) and introducing a
step input (or step disturbance). This approach is very commonly used in process
control applications. The measured output is the reaction curve and is assumed to
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Foot locus for =10
Kp = 370, Kp = 0, =M =15 =10 =5 3 n
and 0 = K < oo, Resl Axis
complex poles to the right also d the 1 {w,, thereby i ing the
settling time. The percent overshoot and settling time as a function of K, arc shnwn
in Figure 7.36. The trends in Figure 7.36 are consistent with Table 7.6.
To meet the percent overshoot and settling time specifications, we can select
Kp =370, Kp = 60, and K; = 100. The step response shown in Figure 7.37 indi-
catesad, = 24sand P.O. = 128% meeting the specifications. m
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Table 7.7 Ziegler-Nichols PID Tuning Using Ultimate Gain, K, and Oscillation Period, Py,

Ziegler-Nichols PID G Gain Tuning Using Closed-loop G
G Type Ke K Ko
Propertional (P)
Gifs) = Kp 05Ky - .=
Proportional-plus-integral (PI)

i 054K,
Gds) = Kp+ =L 045K, = -

u
Proporti ,' integral-plus-derivative (PID)
* 06K, T,

c-‘[s}=x,+§-.+x,,; 06K, 28y e

5 Ty 8

control applications. Our suggestion is to consider the Ziegler- Nn:hols rules to ob-
tain initial ller designs foll i by design i and Remem-
ber that the Ziegler-Nichols rules will not work with all plants or processes.

The closed-loop Ziegler-Nichols tuning method considers the closed-loop sys-
tem response Lo a step input {or step disturbance) with the PID controller in the
loop. Initially the derivative and integral gains, Kp and K, respectively, are set to
zero. The proportional gain K p is increased (in simulation or on the actual system)
until the closed-loop system reaches the boundary of instability. The gain on the bor-
der of instability, denoted by Ky, is called the ultimate gain. The period of the sus-
tained oscillations, denoted by Py, is called the ultimate period. Once Ky and Py,
are determined, the PID gains are using the relationships in Table 7.7
according to the Ziegler-Nichols tuning method.

EXAMPLE 7.10  Closed-loop Ziegler-Nichols PID tuning
Re-consider the system in Example 7.9. The plant is

1
G = 5 b)ts + Zwny

where b = 10,{ = 0.707.and &, = 4. The controller is a PID controller

Guds) = Kp + 5;1 + Kops
where the gains K p, Ky, and K, are computed using the formulas in Table 7.7, We
found in Example 7.9 that Ky = 885.5and Ty = 0.83 s By using the Zicgler-Nichols

formulas we obtain

= 55.1.

12K, 0.6K,T,
Kp= 06K, = 5313, K;= t X 5 %

Comparing the step response in Figures 7.37 and 7.38 we note that the scttling
time is approximately the same for the manually tuned and the Ziegler-Nichols
tuned PID controllers. However, the percent overshoot of the manually tuned con-
troller is less than that of the Ziegler-Nichols tuning. This is due to the fact that the
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where M is the magnitude of the response at steady-state, T; is the transport delay,
and p is related to the slope of the reaction curve. The parameters M, 7, and T, can
be estimated from the open-loop step response and then utilized to compute
R = M/7. Once that is accomplished, the PID gains are computed as shown in
Table 7.1 H You can also usc the ng]er N:cholsopen lmp lumng method to design a

prop or a proportional-plus-integr

EXAMPLE 7.11  Open-loop Ziegler-Nichols PL controller tuning

Consider the reaction curve shown in Figure 7.41. We cstimate the transport lag to
be T, = 0.1 s and the reaction rate R = 0.8
Using the Ziegler-Nichols tuning for the PI controller gains we have

09 0.27
p = —= ] =—= 3375
Ky T 1125 and K, 'Y
The closed-loop system step resp ing unity feedback) is shown in
Figure 7.42. The Mltlmg time is T, = 1. 28 s and the percent overshoot is P.O, =
T4%. Since we are using a PI the steady-state is zero, as exg L]

The manual tuning method and the two Ziegler-Nichols tuning approaches pre-
sented here will not always lead to the desired closed-loop performance. The three
methods do provide structured design steps leading to candidate PID gains and
should be viewed as first steps in the design iteration. Since the PID (and the related
PD and PI) controllers are in wide use today in a variety of applications, it is
important to become familiar with various design approaches. We will use the PD
controller later in this chapter to control the hard disk drive sequential design prob-
lem (see Section 7,10).

K=0F

Amplinade

n [ 2 3 4 5 [
Tieme (51
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that the phase condition in Equation (7.100) is different from the phase condition in
Equation (7.4). As we will show, the new phase condition leads to several key modi-
fications in the rool locus sketching steps from those summarized in Table 7.2,

EXAMPLE 7.12 Negative gain root locus
Consider the system shown in Figure 7.43, The loop transfer function is

5 =20

o) = KGO = K5

and the characteristic equation is

s=20
=
£+ 55— 50

Sketching the root locus yields the plot shown in Figure 7.44a where it can be seen
that the closed-loop system is not stable for any 0 = K < 0o, The negative gain root
locus is shown in Figure 7.44b. Using the negative gain root locus in Figure 7.44b we
find that the stability is —5.0 < K < —2.5.The system in Figure 7.43 can thus be sta-
bilized with only negative gain, K. m

T
Controller Process
+
- E,lx) =20
M \ K + g Yo

Mab

by
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FIGURE 7.40
Reaction curve
Bustrating
parametors A and
T, requined for the
Ziegler-Nichols
opan-loop tuning '
mathod, o
have the general shape shown in Figure 7.40, The response in Figure 7.40 implies
that the process is a first-order system with a transport delay. If the actual system
does not match the assumed form, then another approach to PID tuning should be
considered. However, if the underlying system is linear and lethargic (or sluggish
and characterized by delay), the assumed model may suffice to obtain a reasonable
PID gain selection using the open-loop Ziegler-Nichols tuning method.

‘The reaction curve is characterized by the transport delay, T, and the reaction
rate, K. Generally, the reaction curve is recorded and numerical analysis is per-
formed to obtain estimates of the parameters T; and R. A system possessing the
reaction curve shown in Figure 7.40 can be approximated by a first-order system
with a transport delay as

Gls) = r-"ax_
Table 7.8 Ziegler-Nichols PID Tuning Using Curve Ct by Time Delay,

T, and Reaction Rate, R

Ziegler-Nichols PID Ci Gain Tuning Using Open-loop Concepts
Controlfler Type Ke K Kp
Pmpurlwnal (P) 1

Sulm 7 - -
Proponlonn[ plus—lmcgral {PI} L

09 027
G ls) = K,. e R ﬁ -
Proy gral-pl (PID) " o
. K: 12 [ .

Gils) = Kp + ==+ Kps o A s

FIGURE T.42
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7.7 NEGATIVE GAIN ROOT LOCUS

As discussed in Section 7.2, the dy of a closed-loop control sys-
tem is described by the closed-loop transfer function, that is, by the poles and zeros
of the closed-loop system. Tl!c root locus is a graphical ill ion of the variati

of the roots of the ch;
know that the roats of the ck ]
in the same. In the case of the single-loop negative unity f
Figure 7.1. the characteristic equation is

I + KG(s) =0, (7.99)

where K is the parameter of interest. The orderly seven-step procedure for sketch-
ing the root locus described in Section 7.3 and summarized in Table 7.2 is valid for
the case where 0 = K < co, Sometimes the situation arises where we are interest-
ed in the root locus for negative values of the parameter of interest where
—o0 = K = (. We refer to this as the negative gain root locus. Our objective here is
to develop an orderly procedure for sketching the negative gain root locus using
familiar concepts from root locus sketching as described in Section 7.2.

quation asa s:ngle of interest varies. We
st ion and the closed-loop poles are one
dback system shown in

Rearranging Equation (7.99) yields
Gls) = —%.
Since K is negative, it follows that

|KG(s)l = 1 and (7.100)

where k =0, £1, £2, £3,.... The itude and phase itions in Eqi
(7.100) must both be samﬁcd for all points on the negative gain root Iocus. Note
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Step 3: When n > M, we have n — M branches heading to the zeros at infinity
as K—+ —oo along asymptotes centered at ¢, and with angles ¢,. The linear
asymptotes are centered at a point on the real axis given by

) M
3 poles of P(s) — 3 zeros of P(s) E(_M - E(_“')
n-M - n-M :
The angle of the asymplotes with respect to the real axis is

&= (7.102)

k=0,1,2....(n0=M-1), (7.103)

where k is an integer index.

Step 4 Determine where the locus crosses the imaginary axis (if it does so),
using the Routh-Hurwitz criterion.

Step 5: Determine the breakaway point on the real axis (if any). In general, due
to the phase criterion, the tangents to the loci at the breakaway point are equally
spam:d overr 360' The breakaway point on the real axis can be evaluated graphu:ally

or ly. The breakaway point can be computed by ging the ct
istic equal.iou
nls)
1+ K () =0
as
pls) =K,

where p(s) = —d(s)/n(s) and finding the values of s that maximize p{s). This is
accomplished by solving the equation

d[d(ﬂ] —ds IM(SJ] (7.109)

)=
Equation (7.104) yields a pot)'nnmial cqualinrn in s of degree n + M — 1, where
# is the number of poles and M is the number of zeros. Hence the number of solu-
tions is # + M = 1, The solutions that exist on the root locus are the breakaway
points.

Step 6: D ine the angle of depa of the locus from a pole and the angle
of arrival of the locus at a zero using the phase angle criterion. The angle of locus
departure from a pole or angle of arrival at a zero is the difference between the net
angle due to all other poles and zeros and the eriterion angle of 43607,

Step T: The final step is to complete the sketch by drawing in all sections of the
locus not covered in the previous six steps.

The seven steps for sketching a negative gain root locus are summarized in
Table 7.9.
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automatic control of the velocily of an ile is dered. In this b

the root locus method is led from one 1o three as the
three gains of a PID controller are determined. T‘h: dc.augn pmcr.ss is emphasized,
including considering the control goals and t abe lled. the

design specifications, and the PID controller design using root :Iocm methods.

EXAMPLE 7.1 Wind turbine speed control

Wind energy conversion to elecinic power is achieved by wind energy turbines con-
nected o electric generators OF particular interest are wind turhines, as shown in
Figure 7.45, that are located offshore [33], The new concepl is 1o allow the wind tur-
bine to float rather than positioning the structure on a tower tied deep into the ocean
floor. This allows the wind turbine structure to be placed in dm:pcr waters up to 100
miles offshore far enough not 10 burden the landseape with 134]
Moreover, the wind is generally stronger on the open ocean potentially leading 10 the
production of 5 MW versus the more typical 1.5 MW for wind turbines onshore.
However, the irregular character of wind direction and power results in the need for
relinble, steady electric energy by using control systems for the wind turbines The
goal of these control devices is 1o reduce the effects of wind intermittency and of
wind direction change. The rotor and generator speed control can be achieved by ad-
justing the pitch angle of the blades

A basic model of the generator speed control system s shown i Figure 746
[35]. A linearized model from the collective pitch to the generator speed is given by

A2158(s — BT1)(F — 54895 + 194.4)
(5 = (LI95)(& + 01005 + 482.6)

Gli) = (7.105)

The maodel corresponds 1o o 600 KW tarbine with hub height = 366 m, rotor
diameter = 40 m. rated rotor speed = 41,7 rpm, mted generator speed = 1800 rpm,

! Prowided by D Lucy Pag and Jason Laks in pirivate correspondince
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To locate the roots of the istic eq in a graphical manner on the
s-plane for negative values of the parameter of interest, we will re-visit the seven
steps summarized in Table 7.2 to obtain a similar orderly procedure to facilitate the
rapid sketching of the locus.

Step 1: Prepare the root locus sketch. As before, you begin by writing the char-
acteristic equation and rearranging, if necessary, so that the parameter of interest, K,
appears as the multiplying factor in the form,

1+ KPis)=0. (7.101)

For the negative gain root locus, we are interested in determining the locus of raots
of the ch ion in E ion (7.101) for —co < K = 0. As in Equa-
tmu (7.24), factor .P(s] in Equation (7. 101) in the form of poles and zeros and locate

he poles and zeros on the s-plane with *x” to denote poles and "o’ to denote zeros.

When K = 0, the roats of the characteristic equation are the poles of P(s),
and when K — —o0 the roots of the characteristic equation are the zeros of P(s).
‘Therefore, the locus of the roots of the characteristic equation begins at the poles of
P(s) when K = 0 and ends at the zeros of P(s) as K — —oc. If P(s) has n poles and
M zeros and n > M, we have n — M branches of the root locus approaching the
zeros at infinity and the number of separate loci is equal to the number of poles. The
root loci are symmetrical with respect to the horizontal real axis because the com-
plex rools must appear as pairs of complex conjugate roots.

Step 2: Locate the segments of the real axis that are root loci. The root locus on
the real axis always lies in a section of the real axis to the left of an even number of
poles and zeros. This follows from the angle criterion of Equation (7.100).
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Table 7.9 Seven Steps for Sketching a Negative Gain Root Locus (color text denotes
changes from root locus steps in Table 7.2)

Step Related Ed or Rule
1. Prepare the root locus sketch.
{a} Write the characteristic cquation so that the {a) 1+ KP(s)=0
parameter of interest, K, appears as a multiplier. i
e+
(b) Factor P(s)in terms of n poles and M zeros b1+ k——=0
]I{: )
i
(¢) Locate the open-loop poles and zeros of Pls) {€) x = poles, O = zeros
in the s-plane with selected symbols.
(d) Determine the number of separate loci, SL. {d) Locus begins at a pole and ends at a zero,

SL = nwhenn = M.n = number of finite
poles, M = number of finitc zeros.
(&) The root loci are symmetrical with respect to
the horizontal real axis.

2. Locate the segmenis of the real axis that are root loci, Locus lies to the left of an ¢ven number of poles
and zeros
3, The loci proceed to the zeros at infinity along ‘S"‘( #il = E‘ <)
asymptoles centered at @4 and with anghes &y, L T T oa=M
hy = i't_ ": ok = L2 =M= 1)
4, Determine the points a1 which the locus crosses the Use Routh-Hurwitz crilerion (see Section 6.2).

imaginary axis (if it does so).

5. Determine the breakaway point on the real axis (if any). a)Set K = pis)
b) Determine roats of dps)/ds = Dor use
graphical method to find maximum of pis).

6. Determine the angle of locus departure from complex SP(x) = 2h360" nt g = < proor =2

at or poles and the angle of locus arrival at complex

#eros using the phase eriterion.
7. Complete the negative gain root locus sketch.

7.8 DESIGN EXAMPLES
In this section we present four ill i ples The first is a wind tur-
bine control system, The feedback control system uses a PI controller to achieve a
fast settling time and rise time while lrrnllmg the percent overshool to a step input.
The second ple ks a laser pul control system. Here the root locus
method is used to show how the closed-loop system poles move in the s-plane as the
proportional controller amplifier gain varies The second example considers a sim-
plified robotic replication facility, In the example, the system is represented by a
fifth-order transfer function model. The feedback control strategy employs a
velocity feedback coupled with a controller in the forward loop. Root locus design
methods are used to select the two feedback controller gains. In the final example, the




FIGURE 7.47
Wind turbine

generator speed
control root locus
wilh a P cofrolier.

FIGURE 7.51
Laser manipulator
cartrol system.
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‘The step response is shown in Figure 7.48 using the simplified first-order model in
Eguation (7.106). The step response has T, = 1.8 seconds, T, = (.34 seconds, and
£ = 0.707 which translates to P.0. = 19%. The PI controller is able 10 meet all the

control specifications. The step response using the third-order model in Equation FIGURE 7.46
(7.105) is shown in Figure 7.49 where we see the effect of the neglected components Wind turbina
in the design as small oscillations in the speed response. The closed-loop impulse ,.m! trol system.
disturbance response in Figure 7.50 shows fast and accurate rejection of the distur-
bance in less than 3 seconds due 1o 2 17 pitch angle change. m
£
H
4| O Closed-loop pokes |
5| when Ky = 00025 I
4
)
-3 1 i
— = |
“3 Performance region 1 I
1 |
i = 3 1 -1 0 i
Real Anis
A
£
%
a
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Thse {3}
FIGURE 7.48 Step responsa of the wind furbine genaraior spesd control system using the
first-oeder model i Equation (7.106) with tha designed Pl controller showing a8 specifications
oo satishod with P.O. = 19'%, 7, = .88, and T, - 0.34 8.
500
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To obtain the steady-state error required and a good response, we select a
motor with a field time constant 7y = 0.1's and a motor-plus-load time constant
72 = 0.2 5. We then have

o) - KGO _ K
O = T TKGE s s Dw D+ K
B K SOK

T0027 4037 45+ K8+ 159 + 305 + 50K
The steady-state error for a ramp, R(s) = A/«’, from Equation (5.29),is

(7.107)

aadtg il
[ %K
Since we desire e, = 0.1 mm (or less) and A = I mm, we require & = 10 (or
greater).

To ensure a stable system, we obtain the cf istic equation from
(7.107) as

5+ 157 + 505 + 50K = 0.
Establishing the Routh array, we have

5 1 50
rd 15 50K
e by [
S S0K
where
750 — 50K
b, %
TS
Therefore, the system is stable for
0=K=15
The characteristic equation can be written as
50
1+ K——"———=0.
£+ 157 + 305

The root locus for K = 0 is shown in Figure 7.52. Using K = 10 results in a stable
system that also satisfies the steady-state tracking error specification. The roots at
K = W0are —r; = —1398, —r) = —0.51 + j5.96, and —F;. The { of the complex
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and maximum pitch rate = 18.7 deg/sec. Note that the lincarized model in Equation
(7.105) has zeros in the right half-plane at 5, = B27.1 and s, =0.0274 + 0.1367f
making this 8 nonminimum phase system (see Chapter 8 for more information on
nonminimum phase systems).

A simplified version of the model in Equation (7.105) is given by the transfer
function

G(x) = (7.106)

K
s+ 1"
where 7+ = 5 seconds and K = —=7200, We will design a Pl controller to control the
speed of the wrbine generator using the simplified first-order model in Equation
(7.106) and confirm that the design specifications are satisfied for both the first-
order model and the third-order model in Equation (7.105). The PI controller,
denoted by G (s), is given by

K 5+ T,

Gils) = Kp+ 2= "’[‘T“]'
where 7, = K;/Kpand the gains K p and K are to be determined. A stability analy-
sis indicates that negative gains K; < 0 and Kp < 0 will stabilize the system. The
main design specification is to have a settling time T, < 4 seconds to a unit step
input, We also desire a limited percent overshoot (P.0. < 25%) and a short rise
time (T, < 1 &) while meeting the settling time specification. To this end, we will tar-
get the damping ratio of the dominant roots to be £ > 0.4 and the natural frequency
@, > 2.5 rad/s.

The root locus is shown in Figure 7.47 for the characteristic equation

s+ 7. T200
F S5+

1+fc,.[ ]nn,

where 7, = 2 and Kp = —K, > 0. The placement of the controller zero at s =
=7, = =2 is a design parameter. We select the value of K such that the damping
ratio of the closed-loop complex poles is £ = 0,707, Selecting Kp = 0.0025 yields
Kp = =0.0025 and K; = =0.005. The Pl controller is

Gls) = Kp + -'E—‘ = ~o,wzs[¥]_

Chapter 7 The Root Locus Method

1 (K] 2 5
Time (s}

FIGURE 7.49 Siep respanse of the third-crder medel in Equation (7.105) with the PI controller
showing that all specilications are satisfied with P.O. = 25%, T, = 1.7 5. and T, = 0.3 5.

First-order model !
i Exuation (7.105) L

FIGURE 7.50 Disturbance msponss of the wind turbine genarator speed control system with a Pl
controlier shows excellent disturbance refection characterstics.

EXAMPLE 7.14 Laser manipulator control system

Lasers can be used to drill the hip socket for the appropriate insertion of an artificial
‘hip joint. The use of lasers for surgery requires high accuracy for position and veloc-
ity response. Let us consider the system shown in Figure 7.51, which uses a DC
motor manipulator for the laser. The amplifier gain & must be adjusted so that the
steady-state error for a ramp input, r(t) = At (where A = 1 mm/s). is less than or
equal to 0.1 mm, while a stable response is maintained.



FIGURE 7.53
Tha response o a
ramp input for a
laser control

Bysbom.

FIGURE 7.54
A b0l reaphication
Tacaty.

FIGURE 7.55

confliguration for

FIGURE 7.57
Fioot locus for the

& zero inserted at
5= =02 wilh
Gils) = Ki.
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the use of a controller G (5). The transfer function of the arm is

}’(; 11
U~ 20

where
(5 + 45 + 10004)(5" + 129 + 0U36)

Gl = (1008 + 25 + 2007 + 65 + 22509)
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One possible selection of a controller is
Kls + 2)
Gls) = "";'4_—‘;"
If we select z = 1 and p = 5, then, when K, = 5, we obtain a step response
with an overshoot of 8% and a settling time of 1.6 seconds. m

EXAMPLE 7.16  Automobile velocity control

The ive el ics market is expected to reach $243 billion by 2015. It is
predicted that there will be growth of about 6.4% up to the year 2015 in electron-
ic braking, ing, and driver i ion. Much of the additional computing
power will be used for new technology for smart cars and smart roads, such as
IVHS (intelligent vehicle/highway systems) (14,30, 31]. New systems on-board the

bile will support biles, safety
ion, and other fe inel intelligent cruise control, and
brake by wire systems eliminating the b lics [32].
ThcmleHSr\:Emwavuncd of el ics that provides real-
time i on gestion, and roadside services to drivers and traffic
« llers. IVHS also devices that make vehicles more autonomous:

collision-avoidance systems and lane-tracking technology that alent drivers to im-
pending disasters and allow a car to drive itsell

An example of an automated highway system is shown in Figure 7.58. A velocity
control system for maintaining the velocity t wvehicles is shown in Figure
7.59. The output ¥(s) is the relative velocity of the two automobiles; the input R(s)
is the desired relative velocity between the two vehicles. Our design goal is to develop

a that can the p d velocity b the vehicles and
maneuver the active vehicle (in this case the i il fed
The elements of the design process L d in this ple are depicted in

Figure 7.60.

FIGURE 7.52
Aot locus for o
laser control
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roots is 0.085 and {w, = 0.51. Thus, assuming that the complex roots are domi-
nant, we expect {using Equation 5.16 and 5.13) a step input to have an overshoot of
76% and a settling time (1o within 2% of the final value) of

4
T, o = o5t 51 =78s.
Plotting the actual system response, we find that the mrshool ls T{l% and the set-
tling time is 7.5 seconds. Thus, the plex roots are The sys-
tem response to & step input is highly oscillatory and cannot be tolerated for laser
surgery. The command signal must be limited to a low-velocity ramp signal. The
Tesponse 1o a ramp signal is shown in Figure 7.53. =

EXAMPLE 7.15  Robot control system

“The concept of robot repllcamn is relatively easy to grasp. The central idea is that
robots repli b and develop a factory that automatically produces
robols An example of a robot replication fac:]:ly is shown in Figure 7.54. To achieve
the rapid and accurate control of a robot, it is important to keep the robotic arm stiff
and yet lightweight [6].

The specifications for controlling the motion of the arm are (1) a settling time to
within 2% of the final value of less than 2 seconds, (2) a percent overshoot of less
than 10% for a step input, and (3) a steady-state error of zero for a step input.

The block diagram of the proposed system with a controller is shown in
Figure 7.55. The configuration proposes the use of velocity feedback as well as

Chapter 7 The Root Locus Method

The complex zeros are located at

y==2% j100 and s= =6+ 300,
The complex poles are located at

s= =14 /50 and &= =3+ jISO0,

A sketch of the root locus when K = 0 and the controller is an adjustable gain,
G.(s) = K, is shown in Figure 7.56, The system is unstable since two roots of the
characteristic equation appear in the right-hand s-plane for Ky > 0.

It is clear that we need to introduce the use of velocity feedback by setting K to
a positive magnitude. Then we have H(s) = 1 + Ky therefore, the loop transfer
funetion is

K Kg(s + -){F + 45 + 10004)(s7 + 125 + 90036)

1
AOIGEH) = e O+ 25 + 2500 + 6 + 22509)

where K is the gain of G (s). We now have available two parameters, K, and K;,
that we may adjust. We select 5 < K; < 10 in order to place the adjustable zero
near the origin.

When K; = 5and K, is varied, we obtain the root locus sketched in Figure 7.57.
When K; = 0.8 and K; = 5, we obtain a siep response with a percent overshoot of
12% and a settling time of 1.8 seconds. This is the optimum achievable response. If
we try Ky = 7 or Ky = 4, the overshoot will be larger than desired. Therefore, we
have achieved the best performance with this system. If we desired to continue the
design process, we would use a controller G.(s) with a pole and zero in addition to
retaining the velocity feedback with K; = 5.

40
Ti00

r 100

5o

+ =100

+ =jam

L jaon
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DS4: Sﬂﬂlq::!‘ 155 S Sy
Eostabdi rgirati #—— See Figures 7,58 and 7.89,
sl
= Sec Euyusiian (7 109) Comtroller 1 Automaobile sysiem
- r 1
Rt G,nh - e i
Descrite a contralber and sedect key £ =
1 be st — Scc Eqaation {7,110}, K and K; FIGURE 7.50
Vahicls velocity
control system,
The control goal is
:rm— Mmmdnu\ oA meed e Hibe meets the i l.‘onlml (juul
then Merate the configurati thest finalize the design. the ibed velocity | the two vehicles, and muneuver the ac-
tive vehicle i commanded.
FIGURE 7.60 Elarnaris of dasign ™ The variable to be controlled is the relative velocity between the two vehicles:
Varjable to Be Controlled
The relmtive velocity between vehicles, denoted by y(i).
needs to increase the system type by at least 1. A type 1 controller (that is, a con- ThEdesign spbialions are
troller with one integrator) satisfies DS1.To meet D52 we need to have the velooity Diesin Specificutions
errar constant (see Equatian (5.29)) D51 Zero steady-state Lrror 10 a step inpul.
2 i .
K, = limsG(0)Gls) = - il (7.108) D52 Swady-stale error due 10§ rmp urpumlllfﬁlhan..j% of the npul magnitude.
peail 025 D53 Percent overshoot less thun 5% 1o a step inpur,
where D54 Seltling time less than 1.5 seconds 10 8 step input (using a 2% critenion to establish
sotlling time).
G(s) = — = pary (7109} From the design sp i and k ledge of the open-loop system, we find that
3+ 2)(s + 8) we need a type 1 system to guarantee a zero steady-state error o a step input. The
und G, () is the controller (yet to be specified). open-loop system transfer function is @ type () system: therefore. the controller
The percent overshoot specification D83 allows us o define a target damping
ratio (see Figure 5.8):
P.=5% implies { = 0.69.
508 Chapter 7 The Root Locus Method
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Similarly from the seitling time specification DS4 we have (see Equation (5.13))
From the first column, third row, we have the inequality
K =2 s1s
Kp > 15— 16. (7.112) Ly
Solving for {w, yields {a, = 2.6,
Tt follows from D52 that ‘The desired region for the poles of the clpsed-loop transfer function is shown in

K Figure 7.61. Using a proportional controller G, (s) = Ky, is not reasonable, because
Kpl 5+ E; i K D52 cannot be satisfied, We need at least one pole at the origin to track a ramp
T

= |i = lim§————t —— = L input. Consider the PI controller
Ko = lim sGL)G0) =l ——— G+ 8 16 ik
$4—
Therefore, the integral gain must satisfy G.is) = K,-:;— L Kn '{r_' (7.10)
X, = 6. (7.113)
P Lol Eee L The yuestion is where to pluce the zeroat s = =K/ K.
1f we select K; > 64, then the i in (7.103) is The valid ]
reRion To K i then given by Eqmlm (7.112), where K; > 64. - W n:l;l:w what values of Ky and K; is the system stable, The closed-loop trans
‘We need to consider D54, Here we want to have the dominant poles to the left
of the 5 = —2.6 line, We know from our experience sketching the root locus that T(s) = Ka-! + K
since we have three poles (at 5 = 0, =2, and —8) and one zero (at 5 = — K/ Kp), we £+ 1055 4 (16 + Ka)s + K
expect two branches of the loci to go to infinity along two asymptotes at
& = =907 and +90° centered at The corresponding Routh array is
_Sem-Sew
o ny—n, ¥ g 1 16 + Kp
where i, = 3and i, = 1. In our case . i &
. I + 16) — K, 0
a_g- (_{&) 10
i Kp P, ik K, 1 Ky
" 2 2K The first requirement for stability (from column one, row four) is
We want to have & < —2.6 50 that the two branches will bend into the desired regions. K>0 {7.111)
Therefore,
K,
_s+%-ﬁ<—m o a2
Desimed region for %, |
or placement of P Sde ke G
% e NN S
— < 4T (7.114) (A
Kp I g
So as a first design, we can select K p and K such that E X
X FIGURE 7.61 155
.'c,:ﬂx,}—um and =L <47 Diesired region in At
10 Ke the aunphmlmn X
for locating the - !
Suppose we choase K;/Kp = 2.5.Then the closed-loop ch istic equation is ::nl‘nuunlm /

5+ 25

L e TP The



FIGURE 7.63
control using the P
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Enuation (7.107).
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embedded in the manual steps, and it is essential to

i root

The section begins with a ducusmn on 2 Is il
locus plot. This is followed by a d ion of the ions b the partial
fraction expansion, dominant poles, and the closed-loop system response. Root sen-
sitivily is covered in the final paragraphs.

The functions covered in this section are riocus, docfind, and residue. The func-
tions rlocus and rlocfind are used to obtain root locus plots, and the residue function
is utilized for partial fraction expansions of rational i

Obtaining a Root Locus Plot. Consider the closed-loop control system in
Figure 7.10. The closed-loop transfer function is

¥la) _ Kis + 1)z + 3)

T =R " G+ D+ N+ KRG+ 1)

The characteristic equation can be written as

£+1
1+ Km = 0. (7.116)

The form of the ch isti ion in Equation (7.116) is y to use the
riocus function for generating mol locus plots. The general form of the characteris-

tic equation necessary for appl of the rlocus function is
Ps)
1+KGs)=1+K—=—=0, 117,
© ) o
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the rlocfind function to do this, but only after a root locus has been obtained with
the riocus function. Executing the rlocfind function will result in a cross-hair mark-
er appearing on the root locus plot. We move the cross-hair marker to the location
on the locus of interest and hit the enter key. The value of the parameter K and the
value of the selected point will then be displayed in the command display. The use of

the rlocfind function is illustrated in Figure 7.66.

Control design software packages may respond differently when interacting with
plots, such as with the riocfind function on the root locus. The response of rlocfind
in Figure 7.66 corresponds to MATLAB. Refer to the companion website for more

information on other control design software applications.

Continuing our third-order root locus example, we find that when K = 205775,

the closed-loop transfer function has three poles and two zeros. at
—2.0505 + j4.3227 5
poles:s = | —2.0505 — j4.3227 |, zerosis = (_3).
—-0.8989

Considering the closed-loop pole locations only, we would expect that the real pole
at § = —.8989 would be the dominant pole. To verify this, we can study the closed-

loop system responsé 1o a step input, R(s) = 1/s. For a step input, we have
205775(s + 1)(s + 3) 1

) TG+ N ITBE D 5

Generally, the first step in computing y(¢) is to expand Equation (7.118) in a partial
fraction expansion. The residue function can be used to expand Equation (7.118), as

shown in Figure 7.67, The residue function is described in Figure 7.68,

[—2050 + a2 1 T

O i = :

-

3 at selected gain.,

§ o — -

E_l [ Ouher rwo-pole locations.
e ks for the same gain.
. I 1 | |
Eé -4 -1 o 2 4 L}

Real Axis

>>p={1 1}; g={1 5 & 0}. sys=t(p.q}; docus(sys)

'-' shocfind fallows the rlocus functia.

Salect & poinl in the graphics windaw
selected_point =

-2.0508 + 4.3228|
ang =

pr, Vabae of K at selecied paint

(7.118)
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The root locus i shown in Figure 7.62. To meet the { = 0.69 (which evolved
from D53), we need 1o select Kp < 30, We selected the value at the boundary of the
performance region (see Figure 7.62) as carefully as possible.

Selecting Kp = 26, we have K;/Kp = 2.5 which implies K = 65. This satisfies
the steady-state tracking error specification {DS2) since K, = 65 > 64,

The resulting PI controller is

Gy =26+ 2, (7.115)

The step response is shown in Figure 7.63.

The percent overshool is PO, = 8%, and the settling time is T, = 1.45 s.The per-
cent overshoot specification is nol precisely satisfied, but 1 controller in Equation
(7.115) represents a very good fiest design. We can ileratively refine it Even though the

closed-loop poles lie in the d:!m:d t\.pom the mspm does not m'l.lj' m:c‘l. the spw—

ifications because the i The c i syst
a third-order system and does not have the ;n:l[mmnnﬂ: of n 'smmdﬂrd.cr system, \\'\.
might consider moving the zero to x = =2 (by choosing K,/ Kp = 2) so that the pole at

= -2is Iledd and the resulting system is a second-order system. &

7.9 THE ROOT LOCUS USING CONTROL DESIGN SOFTWARE

An approvimate root locus sketch cin be ubtained by applying the orderly procedurc

ized in Table 7.2. Al ively, we can use control design sofiware to obtain an
accurate roof locus plot. However, we should not be templed (o rely salely on the com-
puter for obtaining root locus plots while neglecting the manual steps in developing an
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r = complex root locations
i I+ KGis) =0
K = gain vectar ]
g-GURE?'-@‘ I—‘
"ﬂﬂﬂl [r.Kl=rlocus{isys)
where K is the parameter of interest to be varied from 0 < K < oo, The rlocus
function is shown in Figure 7.64, where we define the transfer function object
sys = ((s). The steps to obtaining the root locus plot associated with Equation (7.116),
along with the associated root locus plot, are shown in Figure 765 Invokmg the
riocus function without left-hand results in an of
the root locus plot. When invoked with left-hand arguments, the rlocus function
returns a matrix of root locations and the associated gain vector,
The steps to obtain a computer-generated root locus plot are as follows:
1. Obtain the characteristic equation in the form given in Equation (7.117), where K is
the parameter of interest.
2. Use the riocus function to generate the plots.
Referring to Figure 7.65, we can see that as K increases, two branches of the
rool locus break away from the real axis This means that, for some values of K,
losed-loop system ch juation will have two plex roots. Supy
wewa.m:oﬁndthevaluenfxm ponding Lo a pair of lex roots. We can use
& i
4 - -
s Lrwnre 1]
g 0 —
“al- - i’]
= A ; Polesats = 0, =2, =3
- | l
-5 2 4 [
>>p={1 1) a={1 5 & Of: sys=tfip.a) (sys)
FIGURE 7.65 11q={1560 :
R e >>p=[1 1) qel1 5 6 O, ays=tiip,q); [r.K}=rocus(sys);
the { Obtaini lecarions ¢ associssed
equation, with various values of the gain K.
Equation (7,116}



FIGURE 7.68
The residue

FIGURE 7.71

calculations for the
root locus for a 5%

changa in
K = 20.5775.

FIGURE 7.72
Disk drive control
systom with a PD
contraller.
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‘When using the step function, we can right-click on the figure to access the pull-
down menu, which allows us to determine the step response settling time and peak
response, as illustrated in Figure 7.69. On the pull-down menu select “Characteris-
tics” and select "Settling Time.” A dot will appear on the figure at the settling point.
Place the cursor over the dot to determine the seltling time.

In thi le, the role of th zeros on the isill A
The proximity of the zero at s = —1 to the pole aty = —~0.8989 reduces I|IL‘ impact of
that pole on the transient response, The main contributors to the transient response
aré the complex-conjugate poles at § = ~2.0505 = j4.3228 and the zero al 5 = -3,

There is one final point regn.rdmg the msldua function: We can convert the par-
tinl Iraction expansion back to the p I fden, given the residues r, the
pole locations p, and the direct terms &, with the command shown in Figure 7.70.

21|
I
/—l—‘ |
- ' | |
== | |
- 7 PR At
T \\ = =
Right elick on figure 10 Select peak response
open pull-diwn menu ‘_n;d setibing 1k,
[ »K-N.mh’[] 4 3]; den=[1 5 B+K K|, sys=thnum.den),
>>Elep{sys) 4
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% Computa the system sensilvity 1o a parameler
% variation

%
K=20.5775, den=(1 5 B+K K], rl=rools{den);
%

di=1.0288; 5% change in K
%

denm={15 1
S e—
Swd[gK); Semsitivity formla

We use the root locus to select the controller gains. The PID controller intro-
duced in this chapter is

Gds) = Kp + —'?- + Kps.
Since the process model Gy(s) already possesses an integration, we set K; = (. Then
we have the PD controller
Ge(s) = Kp + Kps.

and our goal is to select K and Kpin order to meet the specifications. The system is
shown in Figure 7.72. The closed-loop transfer function of the system is

Yis) =T() = G(5)Gi(8)Gals)

R(s) 1+ Gls)Gi(s)Gals)H (5)'
where H(s) = 1.

In order to obtain the root locus as a function of a parameter, we write

Gl5)G(5)Gsls)H(s) as

GUIGU)GAIH(s) = SO00{Kp + Kps) SOO0K p(s + z)

(s + 20)(s + 1000)  s(s + 20)(s + 1000)"

where z = Kp/Kp We use Kpto select the location of the zero z and then sketch the
locus as a function of K. Based on the insight developed in Section 6.7, we select
z = 150 that

S000K (s + 1)

GAs)Gi(5)Gals)H (5) = T + 20)(s + 1000)°

Disturbanc
Tan
PD coatroller Motor coil Load
g Fiet
X SO0 1
Kl G..(.u]--'(,.+lc»:-¢c.m-”|m s 6;111-”+m HWI

B | pnitiven
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FIGURE 7.67

axpanslon
Equation (7.118).
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FIGURE 7.70
a
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>>K=20 5775; numeK'[1 4 3] don={1 5 B+K K O

>>{t,pkj=resicue(num,den) —I
=

nEm
-1,3786 + 1.7010i = g
-1.3786 - 1.70101
02420 —l
30000
N -rtl) TR T ()
- bl o0 T =g

-2.0505 - 432280 |

-2.0505 + 4.32280
-0.8989 r = residues
o P = poles
& = darect term
k=

‘The partial fraction expansion of Equation (7.118) is

% ~13786 + /17010 13786 - jL7010 02429 3

) = 7520505 + j43228 | 5 + 20505 — 43228 | 5 + 08989 5
Comparing the residues, we see that the coefficient of the term corresponding to the
pole ats = —0.8089 is ooasnderably smaller than the coefficient of the terms corre-
g to the pl poles at s = —2.0505 + f4.3227, From this, we
crpect that the influence of tlle pole at 5 = ~0.8989 on the output response (1) is
not dnmmsnl The s:tljing tlme (to within 2% of the final value) is then predicted by
g the poles. The poles at 5 = —2.0505 + j4.3227 cor-
respond toa dampm,g of { = 04286 and a natural frequency of w, = 4.7844. Thus,

the settling time is predicted to be

4
T, =— =195
= o, &

Using the step function, as shown in Figure 7.69, we find that T, = 1.6 5. Hence, our
approximation of settling time T, = 1.95is a fairly good approximation. The percent
overshoot can be predicted using Figure 5.13 since the zero of T(s) at s = =3 will
impact the system response. Using Figure 5.13, we predict an overshoot of 60%. As
can be seen in Figure 7.48, the actual overshoot is 50%.
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¥is) = Tz = % P = pale locasioms.

& = digect term

Iraction expansion
back to a rational
function,

‘ r = residues

[rum.den]=residuairp.k)

Sensitivity and the Root Locus. The roots of the charactenistic equation play an
important role in defining the closed-loop system | uanswnl response, The effect of
parameter variations on the roots of the cf Juation is a useful

of sensitivity. The root sensitivity is defined 1o be

ary

ek 1.119
KK W)
We can use Equation (T.119) to i igate the of the roots of the charac-

teristic equation to variations in the parameter K. If we change K by a small finite
amount AK, and evaluate the modified root r, + Ar,, it follows that

3 Ar
Si= AK/K (7.120)
The g .5‘ isa lex number. Referring back to the third-order example of

Fgure 710 (Eqnamn 7.116), if we change K by a factor of 5%, we find that the
dominant complex-conjugate pole at s = —2.0505 + j4.3228 changes by

Ar = —0.0025 — j0.1168

when K changes from K = 20,5775 to K = 21.6064. From Equation (7.120), it fol-
lows that

—-0.0025 — j0.1168

Sk = Soasojmsrs T 00N 25
The sensitivity 5§ can also be written in the form
5§ = 234/268.79°,
The magnitude and directi ul'si, ides a of the root sensitivity. The

script used to perform these is shown in Figure 7.71.
The root scnsluvlly mtaslme may he useful for comparing the sensitivity for var-
ous system p at d root |

7.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

=

In Chapter 6, we introduced a new configuration for the control system using veloci-
ty feedback. In this chapter, we will use the PID controller to obtain a desirable re-
sponse. Wc mll proceed with our model and then select a controller. Finally, we will

and analyze the perf In this chapter, we will use the
motlocusmethodinlh: Jection of the i
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Table 7.11 Root Locus Plots for Typical Transfer Functions
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Asympiots

3o = —S09.52 + 46468

5= —09
1F
7] = %
ay = -S095
FIGURE 7.73 &= s hon
Skatch of the root Kp =93
focus.
Table 7.10 Disk Drive Control System Specifications
and Actual Design Performance
Performance Actual
M Desired Value
Percent overshoot Less than 5% 0%
Settling time Less than 250 ms 20 ms
Maximum resj Less than 5 x 107 %10
1o a unit disturbance
The number of poles minus the number of zeros is 2, and we expect asymptotes at
dy = 907 with a centroid
—1020 + 1
o= "—'T—— = —509.5,
as shown in Figure 7.73. We can quickly sketch the root locus, as shown in Figure 7.73.
‘We use the computer-generated root locus to determine the root values for various
values of Kp. When Kjp = 91.3, we obtain the roots shown in Figure 7.73. Then,
obtaining the system response, we achieve the actual response measures as listed in
Table 7.10. As designed, the system meets all the specifications, It takes the system a
settling time of 20 ms to “practically” reach the final value. In reality, the system drifts
very slowly toward the final value after quickly achieving 97% of the final value,
7.11 SUMMARY
‘The relative stability and the 1 of a closed-loop |
system are di:u'tiy related lo the location of the closed- -loop roots of the characteris-
tic d the of the ch. istic roots on the s-plane
as key system pnmmelers (such asmmml]er g,ams] are varied. The root locus and the
negative gain root locus are graphi of the of the system
closed-loop poles as one parameter varies, The plots can be sketched by hand using a
given set of rules in order to analyze the initial design of a system and determine suit-
able ions of the system and the p values A comp is then
commaonly used to obtain the accurate root locus for use in the final design and analy-
sis. A summary of fifteen typical root locus diagrams is shown in Table 7.11.
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Root Locus

Gls)

o !i(.w. + 1}
Flem + 1)
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Table 7.11 (continued)
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In Problems 7 and B, consider the unity feedback system in Figure 7,74 with
Kis+1)

P+ 55+ 1733

7. The approximate angles of departure of the root locus from the complex poles are
B dy = £180°
b dy = £115°
© dy = 2057
d. None of the abave

B The root bocus of this system is given by which of the following

Lis) = Gla)G(s) =

Imaginary
a =
Imagieary Axks
b =

vl

-4 L -4
-8 -4 -2 [ F - =4 -2 o
Real Asis Real Axis
18 )
4 4

Imaginary Axis
=
Imaginay Axis
o

= -2
=T e EbE nEmne e
Resl Axis Real Axix
© @

9. A unity feedback system has the closed-loop transfer function given by
K
T{s) »
) [s+45P + K
Using the root locus method, determine the value of the gain K so that the closed-loop
system has 0 damping ratio { = A
nK=25
b K = 1250
e K =205
d K = 10500
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14, Which of the following is the associated root locus?

4 2 .
= |
2
gn.... [
=2 i
-1 =1 0 1
Real Axis
(b
0

8

Imaginary Axis
>

4 =3 -2 -1 0 | -5 -m -5 -0 =5 0

Real Axis Real Axis
(e} ]

15, The departure angles from the complex poles and the arrival angles at the complex
rerod are:

& by = 21800, = OF
b dip = £1166% ¢,y = £1984°
€ dip = 2458% &, = £1166°
d. None of the above
In the following Word Match problems, match the term with the definition by writing the
correct letier in the space provided.
n Parameter design “The amplitude of the closed-loop response is reduced
approximately to one-fourth of the maximum value in
one oscillatory period. E—

b, Root sensitivity The path the roat locus follows as the paramster
becomes very large and approaches oo,
c. Root locus “The center of the linear asymptotes, oy,
d. Root locus segments  The peocess of determining the P1D controller gains
on the real axis using one of several analytic methods based on

open-loop and closed-loop responses to step inputs.
. Root locus method A method of selecting one or two parameters using
the root locus method, -

Chapter 7 The Root Locus Method

Furthermore, we extended the root locus method for the design of several para-
meters fur a closed-loop control system. “Then the sensuwlly of the characteristic
rools was i igated for ired parameter vari by defining a rool sensi-
tivity measure. It is clear that the root locus method is a powerful and useful approach
for the analysis and design of modern control systems and will continue to be one of
the most imp P di of control

SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: Trise or False, Multiple
Choice, and Word Match, To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapier problems. Use the block diagram in Figure
7.74 as specified in the various problem statements.

Controller | | Process

Rish Gls) b Gla) Wil

FIGURE 7.74 Biock diagram for the Skils Check.

Tn the following True or False and Multiple Cheice problems, circle the correct answer,

1. The root kocus is the path the roots of the characteristic equation (given
by 1 + KGis) = 0) trace out on the s-plane as the system parameter

0= K < covanes. True or False
2 On the root locus plot, the number of separate loci is equal to the number
of poles of Gis). True or False

3, The root locus always starts at the zeros and ends at the poles of Gis). True or False

4. The root locus provides the control system designer with a measure of
the sensitivity of the poles of the system to variations of a parameter af

interest. True or False
5. The root locus provides valuable insight into the response of a sysiem o
various test inpats. True or False
6. Consider the control system in Figure 7.74, where the loop transfer function is
Kis* + 55+ 9)

Lisy = G(5)Gls) = P

Using the root locus method, determine the value of K such that the dominant roots have
a damping ratio { = (L5,

a K=12

b K =45

o K=97

d K =374

Chapter 7 The Root Locus Method

10. Consider the unity feedback control system in Figure 7.74 where

10(s + z)
3P +ds+8)
Using the root locus method, determine that maximum value of £ for closed-loop
#ahility.
® =72
b, z =128
& Unstable forall z > 0
d. Stable forall z > 0
In Plnthm 11 and 12, consider the control system in Figure 7.74 where the model of the
process is

Lis) = G(s)G(s) =

7500
Gls) = {5+ 1){z + 10)(s + 50)°

11. Suppose that the controller is
K(1 +025)
Gde) = T+ ouzss -

Using the root locus method, determine the maximum valoe of the gain K for

dlosed-loop stability.

& K=213

b K =388

e K =1449

d. Stable forall K =0
1z S\nppmt that a simple proportional controller is wtilized, that is, G{s) = K. Using

the root locus method, determine the maximum controller gain K for closed-loop
stability.
s K =050
K=140

o K =449

d. Unstable for K > 0
13, Consider the unity feedback system in Figure 7.74 where

K
HO = GG = S s s ey

Dietermine the breakaway point on the real axis and the respective gain, K.
& 5=-18 K =5875
bog= -25 K =459
€ 5= 14K = 5875
d. None of the above
In Problems 14 and 15, consider the feedback system in Figure 7.74, where
Kis+1+){s+1—]j)

Lis) = GAs)G(s) = FTEETITEET]



Exarciges

() Find the angle of depanuse of the root locus from
the complex poles (b} Find the entry paint for the
oot Iocus s it enters the real nxis.
Answers: 125 =14

E75  Comsider o wnity feedbick system with a loop trans:
fier function

- r + 35 = 10
GdnIGl) = T SR+ os - W
{a} Find the breakawny points on the real axis (b} Find
the ssymplole centrodd. (c) Find the values of K al the
breaknomy poante.

E76 One version of n space statbon is shown in Figure ET6
[28]. Tt &s critical to keep this station in the proper
orientption toward the Sun and the Earth for generat-
g power and communications. The orientation con-
trolier may be represented by o wnity feedback system
with an actustor and contraller, such oy

15K
HE & 158+ T5)

Gisyils) =

Sketch the root locus of the system o8 K fscrenses,
Find the valne of X that results in an unstable sysiem.

Answere K« 75

Adjustey
mckets

Spuce shatile
FIGURE E7.6 Space station.

ETT  The chevator in a modern office building travels at o
top speed ol 25 feel per second and i siill able io siop
within tme-cighth of an inch of the Aoor outside, The
loop transfer function of the unity feedhack elevalor
position control is

" A Kis + 5]

s ) Aa)Ea(s) PR TE
Dietermine the gain & when the complex roots have
¢ equal 1o (0.5,

Exercises

E722 A high missile for launching a satel-
fite hos o unity feedback system with o loop transfer
function

K(# + 18)s + 2)

(= 2)(s + 12)
Sketch the root locus os K varies from 0 < K < o0,

E123 A unity feedback system has a loop transfer func-
Hemn

GAnGs) =

i+ 1)
Lis) = G(s)G(s) = ey

Sketch the roo! locus for 0 = o < 00,
E7.24 Consider the system represented in state variable
Torm

= Ax+ Bu
y=Cx+ Du,

e[ 2

C=[1 0 and D=0}

where
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E78  Sketch the rool locus for a unily feedback sysiem with
Kiz+ 1)
Lls) = Ga)G{s) = =

{n) Find the gnin when all three roots are real and
equal. (b) Find the roots when all the reots nre équal
s in part (a),
Anrwers K =25 = =3

EY9  The world's largest telescope is located in Hawaii,
The primary mirror has a dismeter of 10m and con.
sists of & mosaic of 36 hexagonal segments with the
orientation of esch segment actively controlled.
This unity feedback syslem for the mirror segments.
has the loop iransfer function

K
- Par— e R
Lix) = GinG(x) FEFE )
(1) Find the asymptotes and draw them in the s-plone.
{t) Find the angle of departure from the complex poles.
() Determine the gain when two rools lic on the
imaginary axis.
[} Sketeh the root locus.
ETA0 A unity feedback system hat the loop fransler
fumetion
Kis +2)

L) = KG(s) = o

(4) Find the breakiway and entry points on the real

anis.

b} Find the gain and the roots when the real part of
the complex roots is located a1 -2,

(e] Skatch the locus

Anmwers: (2] ~0.59, ~341: (b) K = 3,0 = 2 4 (V2

ET11 A robat force control system with unity fecdbock
s o loog (ransfer Tunction 6]
Kis +25)
Liz} = K IR F
" 1) = i+ 25 + 2 + Y {)
in} rnu the gain K that results in dominant roots with
dnmping ratio of 0.707. Sketch the root locus.
(L] rnd the actual percent overshoot and peak fime
for the gain K of part (a),
ETIZ A unity lecdback system has o loop transfer function
Kiz + 1)
et b+ 18)
(a) Sketch the root locus for K = 0. (b) Find the
roots when K = 10 and 20. (¢) Compute the rise time.
percent overshool, and settling fime (with a 2% crite-
rion) of the sysiem for & wndt stop input when & = 10
and 0.

Lin) = KGin

Determine the characieristic equation and then
sketch the root locus as 0 < k < 20,

E7.25 A closed-loop feedback system is shown in
Figure E7.25. For what range of values of the para-
meters K is the system stable? Sketch the root locus
asl =< K < oo,

E7.26 Consider the signle-input, single-output system ks
described by

(1) = Ax(r) + Buir)
wir) = Cxir)
where

A= [3 g A, x],n - [‘I'].c-{l -1l.

Compute the characteristic polynomial and plot the
root lpcus as () = K < oo, For what values of K s the
system stable?

E727T Consider the unity feedback system in Figure
[E7.27. Sketch the root locus as 0 = p < oo,

E7.28. Consider the feedback system in Figure E7.28.
Cibtain the negative gain root bocus as —o0 < K s 0.
For what values of X is the system stable?

Contraller Process
m—sOEA] & 19 o
2 v
Sensor
FIGURE E7.25 —-——|
Nonunity leedback 1
systam with T
paramatar .
Contraller Process
+ - Edr)
R s+ 10 4 i
& . s . el T e 7 ¥l
Unity feedback
system with
parameter p.
Controller Process
& =1
:lamEE?.'es M " Ll e e e i

for negative gain
oot locus.
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L Asymptote centroid  The root locus lying in & section of the real axis to
the left of an odd number of poles and zeros. _—
g Breakaway point The root locus for negative values of the parameter

of interest where —o0 < K = 0.

b Locus The angle at which a locus leaves a complex pole in
the s-plane, —_—

i Angle of departure A path or trajectory that is traced out as a parnmeter
is changed,

J§- Number of separate  The locus or path of the roots traced out on the
loci

s-plane &s a parameter is changed.
k. Asymptote The sensitivity of the roots as a parameter changes
from its normal value.
L Negative gain root “The method for determining the bocus of roots of
locus the characteristic equation 1 + KG(s) = Oas
0= K < oo
m. PID tuning “The process of determining the PID controller gains.
n. Quarter amplitede  The paint on the real axis where the locus departs
decay from the real axis of the s-plane.
0. Ziegler-Nichols PID  Equal to the number of poles of the transfer
tuming method function, assuming that the number of

poles is
greater than or equal 10 the number of zeros of the

transfer function.

ET.1  Let us consider a device that consists of a ball rolling
on the inside rim of a boop [11). This model is similar
t0 the problem of liquid fuc] sloshing in a rocket, The
hoop is free to rotate sbout its horizontal principal
axis a3 shown in Figure E7.1, The angular position of
the hoop may be controlied via the torque T applied
10 the hoop from a terque motor attached to the boop
drive shaft. If negative fcedback is used, the system
characteristic equation is

Kils + 4)
L Se24l %
{a) Sketch the root locus. (b) Find the gain when the
roots are both equal. (¢} Find these two equal roots.

Torgque
i

FIGURE E7.1 Hoop rotated by moter.

{d) Find the settling time of the system when the roots
are equal.

E72 A tape recorder has a speed control system so that
H{s) = 1 with negative feedback and

—_—

sis + 205 + 45+ 5)

(n) Sketch a root locus for K, and show that the domi-
nant rootsare s = —0.35 £ 80 when K = 6.5,

(b) For the dominant roots of part (a), calculate the
setitling time and overshoot for a step input.

E73 A control system for an automobile suspension
tester has negative unity feedback and a process [12]

Kis 4 45 4+ 8)
Fls+4)
We desire the dominant roots to have a { equal 1o 0.5,

Using the root Jocus, show that & = 7.35 is required
and the dominant roots are s = —1.3 £ 2.2,

E74 Consider a unity feedback sysiem with
Kz + 1)
FHa+5

Lis) = GA5)G(s) =

Lis) = GAs)G{s) =

Lis) = Gs)G(s) =
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ET.13 A unity feedback system has a boop transfer function
4s + 2)

sis + Lils + 3)

(a) Draw the root locus as 7 varies fram 0 to 100,
{b) Using the root Iocus. estimate the percent overshoot
and settling time (with a 2% criterion) of the system
atz =06,  and 4 for a step inpet. {c} Determine
the actual overshoot and setiling time al ¢ = 0.6, 2,
and 4.

E7.14 A unity feedback system has the loop transfer
Tunction

Lis) = Ga)G(s) =

Lis) = GG = ————.

(a) Determine the breakaway and entry points of the

rool locus and sketch the root locus for K > 00

{b) Dietermine the gain K when the two characteristic
roots have o { of 1/V/2. (c) Cakculate the roots.

ET.15 (a) Plot the root locus for a unity feedback system

with loop transfer function

K{s + 100z + 2
Lis) = GA5GIs) = ‘{—;‘1—)

{b} Calculate the range of K for which the system is
stable. (¢} Predict the steady-state error of the system
for a ramp input.
Angwers: (a) K > 167;(b)e,, = 0

ET16 A negative unity feedback sysiem has a loop trans-
fer function

Lis) =

where T = 0.1 & Show that an approximation for the
time deluy is

S
obtain the rood locus for the system for £ > 0. Deter-
mine the range of K for which the system is stable.

ET.17 A conirol system, as shown in Figure ET.17.hasa
process

Gis) = =

FIGURE ET.17 Feedback system.

{a) When G (5) = K. show that the system is always
unstahle by sketching the root locus. {b) When
K[s +12)
FEETN
sketch the root bocus and determine the range of K for
which the system is stable, Determine the value of K
and the complex roots when two roots lie on the
fu-axis
ET18 A closed-loop negative unity feedback system is
used to control the yaw of the A-6 Intruder attack jet.
When the loop transfer function i
. —
e+ N+ 2+ 2)

Gls) =

Lis) = GAs)Gls) =

determine (a) the root locus breakaway point and
{b) the value of the roots on the jw-axis and the gain
required for those roats. Sketch the root locus.
Answers: (a) Breakaway: s = =220 (b) fw-axis
= %j109, K =8

E7.19 A unity feedback system has a loop transfer funclion

K
Lix) = GAs)G(s) P T Ty
{a) Determine the angle of departure of the root
locus at the complex poles. (b) Sketch the root Jocus.
{e) Determine the gain K when the roots are on the
Jur-nxis and determine the location of these roots.
ET.20 A unity feedback system has a loop transfer fune-
tion
Kix+ 1)
Lis) = GL)Gls) = e TPy
{n) Dietermine the range of K for stability. (b) Sketch
the root Jocus (c) Determine the maximum { of the
stable complex roots.
Answers: (a) K > 16 (b) { = 025

ET21 A unity feedback system has a loop transfer function
Ks
Lish = G{=)Gi(s) = TriET 0
Sketch the root locus. Determine the gain K when the

complex roots of the characteristic equation have a £
approximately equal ro D.66.
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Satellite
Controfler ynamics
Bylsh
Desired — G —o ow o
FIGURE P7.6 . =
Satsllite attilude
control.
and PE  Consider again the power control system of Prob-
ol lem P17 when the steam lurbine is replaced by a
G =2 ANE L2 AN hydroturbine. For hydroturbines. the large incrtia of

3+ 40

{2} Draw the root locus of the system as K varies from
o oo (b) Determine the gain K that results in & sys-
tem with a settling time (with a 2% criterion} less than
12 seconds and a damping ratio for the complex roots
greater than 0.50.

PLT Thespeed il i power sysicm
i shown in Figure P7.7. The valve controls the steam
flow input to the turhing i order to account for load
changes A L(s) within the power distributhon network.
The equilibrium speed desired resulls in & generator fre-
quency equal to 60 cps The effective rotary inertia J is
equal to $000 and the friction constant b is equal to 0,75,
The steady-siate speed regulation factor R b repre-
sented by the equation & = (ay — w,)f 8L, where o,
equals the speed at rated load and wy equals the speed
a1 no boad. We want to obtain a very small &, usually less
than 1110 (a} Using root locus techniques. determine the
regulation R attainable when the damping ratio of the
roods of the system must be greater than 0,60, (b) Verify
that the steady-state speed deviation for a load 10rque
change &L{s) = &L/ris in foct, approximately cqual
to RALwhen & = 0.1,

the water used as a source of encrgy couses a consid-
erably larger linse constant. The tramsder function of a
hydroturbine may be approximated by

-7+ 1

2+ 1"

where t = | second. With the rest of the system
remaining as given in Problem P7.7, repeat parts (a)
ond (b) of Problem P7.7.

Gils) =

P79 The achievement of safe, efficient control of the

spacing of sutomatically controlled guided vehicles is
an important part of the future use of the vehicles ina
manufacturing plant [14, 15]. It is imporiant thar the
system eliminate the effects of disturbances {such as
oil on the Mloor) as well s mainlain accurate spacing
between vehicles on a guideway. The system can be
represented by the block diagram of Figure P7.Y. The
vehicle dynamics can be represented by
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PROBLEMS

P21 Sketch the root locus for the following loop transfer
functions of the system shown in Figure P71 when
0<K < o0;

0 < k, < oo. Determine the maximum allowable
gain of the amplifier for a stable system.

P1S 1of

P12 The linear model of a ph

becase,
(2) GUGE) = unlike fixed-wing aircraft which possess a fair degree of
s + 10)(s + B) inberent stability, the helicopter i quite unstable. A heli-
X copter control system that utilizes an automatic contrd
b) G(s)G(s) = s loop plus a pilat stick control is shown in Figure P75,
F+u+2u+2) When the pilot is not sing the control slick, the swilch
K(s + 5) may be considered to be open. The dynamics of the
{e) Gds)Gis) = ST helicopter are represenied by the transfer function
Kif +ds+8 Gis) = Dir+.0.4)
(@) GG = 2=t 22 8) 0 = s Baye? - 03es + 0.08)°
s+ 1)
H S (a) With the pilot control loop open (hands-off con-

Problem P.7. Sketch the root locus as a function of the
guin K, = K,K. Determine the value of K, attained
if the complex roots have a damping ratio equal to
0.60[13].

P13 A unity feedback system has the loop transfer
function

K
GdnGes) = a5 + 2)(s + 5)

Find (a) the breakaway point on the real axis and the
gain K for this point, (b) the gain and the roots when
two roots lie on the imaginary axis, and (c) the roots
when K = 6. (d) Sketch the root locus.

(s + 01N + 25 + 289)

P74 The analysis of a large antenna was presented in
sls — 04)(s + DE)(5 + 1455 + 361)

P4.5. Sketch the root locus of the system as

Gs) =

trol), sketch the root locus for the sutomatic stabiliza-
thon loop. Determine the gain Ky that results in a
damping for the complex roods equal to { = 0.707.
(b) For the gain K; oblained in part (a). determine the
steady-state error due 10 s wind gust TAs) = /s
() With the pilot loop added. draw the root bocus as
K, waries from zero to o6 when Ky is set at the value
caleulnted in part (2). (d) Recalculate the steady-state
error of pant (b) when K, is equal to a sulizble value
‘based on the root locus

P76  An attitude control system for a satellite vehicke

within the earth's atmosphere is shown in Figure P76,
The transfer functions of the system are
Kis + 0.20)

Gls) = 509030 — 0.60)(s — 0.10)

Lo

Ejis)
ALisi 4]
Speed Stoam 5 ‘I‘o\m o) — Gay) f—sl Gy ¥
Reference  + | Valve | | Swls)
e ¥ G = e ) —— Speci
speed o 025+ | 3 [FIPEN Jish deviation FIGURE PT.1
FIGURE P7.7 1 |
Power systom % I Tytn
control. R = regulation foctor i
Yiah
- | Camitier | | Bagion eride | | Viehiche | i Gls) T Pach
Kis + 0.5 &, anmioade:
Desined -ﬁ —_— = Gin Spacing hetween m
apaing wehicles Ausomatic stabilization
Semsor Kylx + 1)
+9
FIGURE P7.9 FIGURE P7.5
Guided vehicle ' Halicopter control.
control.
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() Sketch the rood focus of the systcm. (b) Derermine £ = ILT07. The characteristics of the aircenfl are
all the roats when the loop gain K = KK s equal to wy = 25,0 = UL and £ = 0.1, The gain luctor K,
A0, huwever, will vary over the range 002 at mediom-
5 e 2 ight erurse conditions 1o 020 at lightweight descent
PLIO New concepts in passenger airfiner design will have Bt o H
the range 1o cross the Pacific i a single fight and the SN (o) ke Yhe vl oot B e fiiction ol
efficiency to make it economical [16, 29). These pew the Joop guin K; £z, (b} Determice the gain K neces-
desigas will requie the use of tomperatircTosistant, sary 10 yield roots with £ = 0.707 when Ihe sircraft is
lightweight materials and ndvanced control systenrs. in the nufdmm-crllllc md!:mn. (&) With the gain K;
Noise control is an important issue in modern afrcralt ';:““d;‘" m:drh’i *“"“I'"‘ (he ol "‘F m; .
designs sinee most airports have striet noise level the gain K results from the condition of light descent.
requirements. One interesting concept is the Bocing  PRIL A computer system requires o high-performance
Sonic Cruiser depicted in Figure PTI0(). It would mugnetic tape transport system [17] The environmen-
seat 200 1o 250 passengers and cruise at just below the al itions imposed on the 5y It in  severe
speed of sound. test of control enpineering design. A direct-drive DC
The Might contral system must provide good han- maotor system for the magnefic tape reel system is
o diing characieristics and comfortable Mying condi- shown in Figure P7.11. where r equals the reel radin,
tions. An automatic control system can be designed ond J equals the reel and rotor ineriia. A complete
for the next generation passenger akrcraft reversal of the tape reel direction is required in 6 ms,
" 2 r The desired characteristics of the dominant roots and the tape reel most follow a step command in 3 ms
A Amplifier Mator Redl of the control system shown in Figure F7,1(b) have a or less. The tape b normally operating at o speed of
R Fiai
0 T
psitintn penition
FIGURE PT.11
(2] Tape control
system. (b} Biock
diagram. L

100 infs. Thie motor and componanis selecled Tor this
sysbem possess the Tollowing charetoristhe:

K, = 040 r=102
Kp=1 Ky = 2.0
e, = lms Ky i adjustabile

KpfiLd) =20

The ineriin of the reel and motor rotor i 2.5 % 107"
when the real is empty, snd 5.0 % 10°" when the reel
Il A series of photocells is used as an ermor-
sensi 2, The time constant of the motor is
L/t = 0.5 ms. () Sketeh the root locus for the system
when Ky= Woand J = S00% W0 < K, < o,
(b) Peterming the gain £, thal results ia a well-damped
sysbem 5o that the £ of all the roots is greater than o
equal to U6 () With the K, determined from pari
(b sketch a root locus for () < K < oo,

PTIZ A precision speed control sysiend (Figure FT.12) s
regquired for o pintlonm weed in gyroscope and inertial
system festing where o varety i cdosely controlled

speeds b necessary. A direct-diive T torque motor
sytem was utilized to provide (1) a speed range of
TRV s tay GO S5, aimad (2 10.1'%, stendy-staie ervor maxi-
mum for o step input. The dircct-drive DC worque
stortar wewids the use of & gear trsin with it atiendant
Backlash and friction. Also, the diroct-drive motor his
a high-torgue capability, high efficiency, and kow motoe
time constants. The mustor gain comstant i nominally
K = L4, but is subject 1o varintions up to 50%, The

wmplifier gain K, is normally greater thin 10 and sub- Actustor Alrcralt dynamics.
et o a variatiog of 10%. (a) Delenmine the minimum & ¥ Klrs 4 1) i)
loop grin nocessary (o satisfy the steady-state crror ] AL T e | Pitch
;\!q\u’mnnnl {b) Determine the limiting value of gain R it e il rane
lor stability. (¢} Sketch the root kocus as K, varles from
0 to =, (d) Determine the roots when K, = 40, oo muwnz P”c:u | R jyvo |
estimate the response 1o step inpul. swrcratt of tha
PO A unity feodback system has the loop transfer Tuture. ("™ and & |
Tuncthon Bowing, Used under
icena ) (i) Control
K systom hi

Fl3) = Gaiwia 7 P
= G = S v 7R



Problems

position is compared with o reference voltage und inte-
wrated where it is sssuned that a change in Jooper posi

ton is proportional to a change in the stes! mlp
tension, The time comtant + of the filier is neghigible
relative to the other thme constants in the sysem.
(n) Sketch the root bocus of the control system for
0= K, = =0, (b) Determine the yain K, that results
in a system whose roots have & damping ratio of
¢ = 0,707 or grester. (c) Determine the effect of ¢ as
*increnses from a sogligible quantity,

P77 Consider again the vibration absorber discussed in
Problems 2.2 and 2.10 as a design problem, Using the
root locus method, determine the effect of the para-
meters My and & 3, Determine the specific values of
the parameters My and &y 5o that the mass My does
not vibrate when Fir) = asinfay), Asume thal
My= 1 k=1, and b= ). Alo nssume that
Kyz < | mndd that the term &, mny be nsglevted

PLIE A feedback control system bs ahown in Figure
P78 The filer G{5) is ofica called 4 compensator,
and the design problem Involves selecting the parsme-
ters o and 5. Using the root locus method. determine
the elfeat of varying the parnmeters. Seleet a suitable
filter so thal the time 1o seiile {10 within 2% of the
linal value) s less than 4 seconds and the damping
ratho of the dominant roots i greater than 0,60

535
Filier Proces
t el 4
W= Al T b

FIGURE PT.18 Fier design.

P9 In recont years many aulomatic contrul systems
for guided wehicles in factories have been installed.
One system uses # magnetic ape applied (o the Moor
o guide the vehicle along the desired Lane [10, 15].
Llsing transponder tags on the Door. the aulomatically
guided vehicles can be tasked (for example, to speed
up ar slow down) at key locations. An exnmple of a
guilded vehicle in a factory ix shown In Figure P7.19(a).
W have

5+ 404 10
G = T+ 6
and K, s the amplifier gain, Sketch a root locus and
determine o suitable gain K, 0 hat the damping ratio
of the compley roats ks 707

Aciuator
Copaaller s

FIGURE P7.18 R b B ; o
{0} An automaficaly  Duection K, —_ (=11 s

refenenge - of fravel

of

tha Jarvis B. Wabb
1b) Block dingram. i

Problems 537

recxamine this problem after studying Chapter 8.) An
interesting case arises when the distributed RC net-
work occurs in a series-to-shunt feedback path of o
transistor amplifier. Then the loop transler funclion
may be written as

Kis = 1)(x + 3)'7

Lis) = G=)G(s) TETTY

(&) Using the root locus method. determine the locus
of roats as K varies from zero to infinity. () Calculate
af

current limit of 20 grams per mile 1o 10 gram per mile,
these technigques alone were no longer sulficient.
Althnush many schemes are under investigation
for meeting the emissions standards for all three emis-
sions, one of the most promising employs a three-way
cntalyst—for HC, €0, and NO, emissions—in con-
junction with a closed-loop engine-control system,
The approach is 1o use a closed-loop engine control. as
shown in Figure F7.28 [19, 23]. The exhaust-gas seisor
gives an indication of a rich or lean exhaust and com-
pares it to a reference. The difference signal is

the gain at borderline stability and the
ascillation for this gain.

P26 A single-loop negative feedback system has o loop
transfer function

Kix+ 2

Liz) = GA5IG(x} FEReTR
{a) Sketch the root locus for 0 = K = o0 to indicate
the significant features of the locus (b) Determine the
range of the gain K for which the system is stahle.
(g} For what value of K in the range K = 0 do purcly
imaginary roots exist? What are the values of these

roos? (d) Would the use of the dominant rools approx-

imation for an estimate of senling time be justified in
this case for a larnge magnitude of gain (K > 50)7

PL2T A umlr negtive leedback system has a loop trans-
fer funct

K +0.0)
st +2)
 Kis + 031623 — mlﬁ!)
as + 1)
Sketch the root locus as a function of K. Carefully cal-

culnte where the segments of the locus enter and leave
the real axis

PT2R  To meet current US emissions standards for auto-
maobiles, hydrocarbon (HC) and carbon monoxide
{C0) emissions are usually controlled by a catalytic

Liz) = G (s)G{s) =

converter in th ile exhaust. Federal
for lmmgc: Wdﬂ (NO‘)ennmulm met mainly by
(EGR) i However,

as NO, enissions standards were tightened from the

T the ler, and the output of the con-
troller modulaies the vacuum level in the earburctor
1o achieve the best air-fuel ratio for proper uperulm

of the catalytic The baap fer
represented by
“’}_Kl + I.bv!ll
5+ 108 + 25

Calculate the root locus as a function of K. Carclully
calculate where the segments of the locus enter and
leave the real axis. Determine the roots when K = 2.
Predict the step response of the system when K = 2.

P729 A unity feedback control system has a transler
function

+ 10 + 30}
Al + 10

We desire the dominant roots to have a damping
ratio equal to U707, Find the gain K when this con-
dition s satished. Show that the complex roots are
3= =336 & ;3.56 at this gain.

P1.30 An RLC network is shown in Figure P7.30. The
nominal values (normalized) of the network clements.
are L = € = 1 and B = 2.5. Show that the ot sen-
sitivity of the two roots of the input impedance Z(5] 1o
achange in R is dillerent by a factor of 4.

Lis) = Gs)G{s) =

FIGURE P7.30 ALC network.

FIGURE P7.28
Auto engine coniral,
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Risy 1
Refererce

L
Speed

FIGURE P7.12 |
Spoed control.

fa) Find the breakaway point on (e real axis and the
gain for this point. (b) Find the gain to provide two
complex roots neasest (he juo-axis with o damping
ratio of (.07, (e} Are the two roots of pant (b) domi-
mnnt’ {d) Determine the scithng time (with a 2% cri-
tericon) of the system when itie gain of part (b) is used
PTI4 The loop fer funciion of s single-looy
feedhack system is

K(x + 25)s + 32)

Lis) = G is)Gls) = PN )5 + 1tz = 30)

This system is colled conditionally seable bocaise it s
siable wnly for o range of the gamn K such that
k= K < ks Using the Roath-Hurwitz critena and
he rood locus method. detenmine the range of the gain
Tor which the system is stable. Sketeh the root locus
forh < K < m

P7IS  Let us again consider the stability and ride of a
yider and high perlormance molorcycle as outlined
in Problem P6.J3. The dynamics of the motorcycle
and rider can be represented by the loop transfer
Tunction

GLx)Gis) = = ALt i—ﬂ-:"]—

1:-111}“’ + 2 + 200)(s° +ﬂ.lw+ HDﬁl

Sketch the root locus for the xystem. Dl!lvnngsz the §
of the dominani rools when K = 3 %

P16 Control systems for maimaining comsan tension
on sirip steel in a hot €rp finishing mill are called
“loopers™ A typieal system is shown in Figure 7,16,
The looper is an arm 2 103 feer long with a rodler on the
end: it is rsed nnd pressed agains the strip by & motor
[15]. The typical speed of the strip passing the kooper
% 2000 fiimin, A voltage proportional 1o the looper

Filter Amplalyne Generaten [[Motor | [ Ruits |
+ i *=1 K. L X

Rix) = g M ol o i _ m n — Vi)
FIGURE PT.16
Stool mill control
syniem. (L)
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Pr20 v ine the rool ivity for the & The root loci of four different feedback systems of

roots of the design for Problem P7.18 for the gain
K = 4a/B and the pale s = =2,

P721 D ine the root iivity of the d
roots of the power system of Problem PT.7. Evaluate
the sensitivity for variations of (a) the poles at
5 = —4, and (b) the fecdback gain, 1/R.

P2 Dy ine the root it of the d
roots of Problem P70(a) when K is set 5o that the
damping ratio ol the unperfurbed roots is 0.707. Eval-
uate and compare the sensitivity as a lunction of the
poles and zeros of G, (540G (1),

P7.23 Repeat Problem P7.22 for the loop transfer func-
tion G ()G s) of Problem P7.1(c).

P724 For systems of relatively high degree, the form of
the roat kocus can often assume an unexpected pattern.

FIGURE P7.24
Reot loch of four
sysbems.

third order or higher are shown in Figure PT24. The
open-loop poles and zeros of KG(s) are shown, and the
form of the root loci as K varies from zero to infinity is
presented. Verily the diagrams of Figure P7.24 by con-
structing the root loci.

P1.28  Solid-state integrated elecironic circuits are com-
posed of distributed R and C elements. Therefore,
feedback electronic circuits in integrated circuit form
musi be investigated by obtaining the transfer func-
tion of the distributed RC networks. 1 has been shown
that the slope of the ion curve of a distrib
RC network is 10n dB/decade, where n is the order of
the RC filter [13]. This attenuation is in contrast with
the normal 2n dBidecade for the lumped parameter
circuits. (The concept of the slope of an atlenuation
curve is considered in Chapter 8, If it is unfamiliar,




Advanced Problems

P135 A powerful electrobydraulic forklift can be used 1o

lift pallets weighing several tons on top of 35-foot
scaffolds at a construction site. The negative unity
leedback system has a loop transfer function

Kis+ 1)
st 1)

{n) Sketch the root locus for K > 0. {b) Find the gain
K when two complex roots have a { of 1,707, and cal-
culate all three roots. (c) Find the entry point of the
rool kecus at the real axis (d) Estimate the expecied
overshool Lo u step input, and compare it with the
achial overshout determined from a computer program,

Liz) = G,(n)Gls) =

PL36 A mi with & high manipu-

tator has been designed for testing very small parti-
ches. such as simple living cells [6]. The single-loop
unity negotive fcedback system has a loop transfer
function
Kz + 1){x + 2){x + 3|
Lis) = GAs)Gis) = w_l
s =1)

(@) Sketch the root bocus for X = (. (b) Find the gain
and roots when the characteristic equation has two
aginary roots. (o) Dy ine the i
roots when K = 20 and K = 100, {d) For K = 20,
estimate the percent avershool 1o & step input, and
compare the estimate o the actual overshoot deter-

mined from a compuler program.

P7.37  Identify the parameters K. o, and b of the system

shown i Figure P737. The system is subject to a unit
step input. and the ou e has an overshoot
but ultimately atnins the final value of 1. When the
closed-loop system i subjected 1o a amp input. the out-
put response follows the ramp input with a finite steady-
state error. When the gain is doubled to 2K, the output
response 1o an impulsc input is 4 pure sinusobd with a
period of (1314 second, Determine K, a.and b,

FIGURE P7.37 Feecback system.

P738 A unily [eedback sysiem has the loop transfer
funetion

Kis + 1)
s -3)"

Thiss system is open-loop unstable. (a) Determine the
runge of K so that the closed-loop system is stahle.
(b} Sketch the root locus. (e} Determine the roots for
K = 1. (d) For K = 10, predict the percent over-
shoot for s slep input using Figure 5.13, (c) Determine
the actual overshoot by plotting the response.

P13 High-speed irains for LLS. railroad tracks must tra.
verse twists and turns. In conventional trains, the axles
are fixed in steel frames ealled trucks The trucks pivot
as the train goes into a curve, bul the fixed axles stay
parallel 1o each other. even though the front axle tends
1o go in a dilferent direction from the rear axle [24]. 11
the train is going fast. it may jump the tracks. One so-
lution uses axles that pivol independently. To counter-
hatance the strong centrifugal forces in a curve, the
train olso has o computerized hydraulic system that
tilts each car as it rounds a turn. On-board sensors cals
culate the train’s speed and the sharpness of the curve
and feed this information to hydraulic pumps under
the floor of each car. The pumps tilt the car up 1o cight
degrees, causing it 1o lean into the curve like o race car
on o hanked track.

The tilt control system is shown in Figure P7.30,
Sketch the root locus, and determine the value of K
when the complex roots have maximum damping. Pre-
dact the response of this system 1o a step input Ris).

Lis) = GAx)Cis) =

Drynamics.
Prlowilf > A2 P
FIGURE P7.39 il g K22 I
Tit cantral for 8
high-spoad train.
ADVANCED PROBLEMS

APT1  The top view of a high-performance jet nireraft is

shown in Figure AP7.1{a) [20], Skeich the root locus
and determine the gain K so that the { of the complex
poles near the jweaxis is the masimum achievable.

Advanced Problems

APL3 A compact disc player for portable use requires a

good rejection of disturbances and an accurate position
of the optical reader sensor. The position control sys-
tem uses unity feedback and a loop transfer function

{1
Lis) = G s)Gi(s) = m

The parameter p can be chosen by selecting the
appropriate DiC mator, Sketch the root locus as & fune-
tion of p. Select p so that the { of the complex roots of

the ch Blic eq is 1/

APT4 A remote manipulator control system has unity
feedback and a loop transfer function
G (s)G(s) = Cad)

Prlraf +fa-lp+l-a

Wi want the steady-state position crrar for a slep inpat
1o be Jess than or equal to 10% of the magnitude of the
input. Sketch the root locus as a function of the parame-
ter o, Dietermine the range of o required for the desired
steady-state error, Locate the roots for the allowahie
walue of o 10 achieve the required steady-state error,
and estimate the step response of the system.

APTS A unity feedback system has a loop transfer

function

K

Lis) = G5)G{s) TR

{a) Sketch the root ocws and determine K for nd:]}(y
system with complex roots with { equal 1o 1/ V2.

(b) Determine the root sensitivity of the complex
rools of part (a).

{c) Determing the pereent change in K (increase or
decrease) so that the roots lic on the fw-nxis,

+ 120

Evaluate the roots at this K and predict the response
1 a step inpul. Determine the actual response and
compare it to the predicted response.

541

APT6 A unity feedback system has a loop transfer function
Kl + 30 4+ 6)
EEETR TS
Sketch the root locus for K > 0, and select a value for

K that will provide a closed step response with settling
time less than | second.

APLT A feedback system with positive feedback is
shown in Figure AP7.7. The root locus for K >0
must meet the condition

KG(s) = 1/ 2k360°
fork =0.1.2,...
Sketch the root bocus for ) < K < o0,

Lis) = G (s)Gls) =

Gig)
4 1

sy s+ als+ B)

s

FIGURE AP7.7T A closed-loop system with positive
teactack.

APTE A positicn control system for a DO motor is shown
in Figure AP7.8 Obtain the root bocus for the velocity
feedback constant K, and sclect K so that all the roots
aof the characterisiic equation are real (1wo are equal
and real). Estimate the step response of the system for
the K selected. Compare the estimate with the actual
response,

APTS A control system is shown in Figure AP7.9. Sketch
the roat loci for the following transfer functions G (5):
{a) Gls) = K
(b} Gils) = K{s + 3)

n ”

Rizh

I{y+2:|u+ﬂ}|

G

FIGURE APT.B

A position control

systemn with

valncity feedback.

Contralier
¥ 1
Ris) Gl M T e

FIGURE AP7.9 -

A unity feedback

TTAL  The development of high-specd aineraft and missles
about o

Kin o =~ E s}
FIGURE APT.2 Ll :
m) Magriticaly

requires infy {

prevalling a1 very high speeds Wind timnels are used 10
test these paramelers. These wind wnpels are cop-
siructed by compressing alr to very bigh presiures and
relensing it through & valve 1o create o wind. Since the
adr pressure drops as the air cscapes. it is pecessary m
open ihe valve wider 1o maintain 4 constant wined
speed- Thus, a control system is needed 1o adjust the
valve to mainiain a constant wind speed. The loop
tramster function For a unily [eedback systom is

o Ky
)= Gealots) = TR 6N + s — B

where p o= 7.3 4 WTERI . Sketch the rool locus and
show the location of the roots for & = 326 and
K = 1350,

P33 A mobile robot suitable for nighttine guard duty is

available. This guard never sleeps and can tinelessly
patrol large warehouses and outdoor yords. The steer-
ing comtrod sysiem for the mobile robot hos o unity
feedbiack with the loap trmusfer function

o Kirt ixxS)

Lig)y = G {s)itx) = S ETES )

() Find K for all breakaway and eniry paints on the
real axis (b) Find K when the damping ratio of the
complex roats s 0707, (<) Find the minimum valie of
the damping ratio for the complex roots and the ssso-
cinted gain & (d) Find the ivershool and the time 1o
setile (1o within 2% of the: final value) for a unit step
input for the gain. K. determined in parts (b) and (e).

Chapter 7 The Root Locus Method

PI33 The Bell-Bocing V-22 Oxpacy Tilirotor s both an

wirplane and o helicopter. Its advantage is the ability to
rotate its engines 1o 90 from o vertical position for
takeolfs and landings us shiwn in Figure PT.33(a), and
then 1o switeh the engines to a horizontal position for
cruising ms an airplanc [20]. The ahitude control system
in the helicopter mode w shown in Figure P7.33(h).
(a) Determine the root locus as K varies and deter-
minc the range of K for & stable system. (b} For
K = 281 lind the actual y(i} for & unit sep input )
and ihe percentage overshoot and seitling tme (with a
2% criterion), () When K = 280 and r(r) = 0, find
vl tor o step disturbance, Ty(s) = 1 /s.(d) Add a
prefiler between Rix) and the sunming node so thal

and repeat par (b),

P73 The fuel control for an automobile uses & diesel

pump that i subject (o parameter varintions. A unity
negative feedback has a loop transfer function

Ki 2)
(1 + 0)(s + 25)s + 4)x + 1)

G labals) =

() Skeich the root locus as K vanes [rom 0 1o 2000,
(b} Find the roods for K equal to 400, 300, and 600,
(€} Predict how the percent overshoot to a step will
vary for the gain K, issuming dominant roots {d) Find
the actual time response for a step input for all three
gains and compare the actunl overshoot with the pre-
dicled overshoot

* 1
(3 + 1)1 = 1jass & 1)

Comtroller
i) —» Kid o 1504 08)
FIGURE PT.33 - '
(a} Cspeay Titralor
ancraht. () M
‘contred system.
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FIGURE APT.1
{a} High- performance

APL2Z A magnetically bevitated hgh-speed train ~flies”

o an air gap above its ril system. a3 shown in Figure
AP73{a) [24]. The air gap control sysieny has & undty
feedback sysiem with a loop transter function

e B L
GGt ~ S = Al < 8

¥ish
Pisch

arcraft, (b) Pitch control system.

The feedback control system is {llustrated in Figure
APT2{b). The goal bs to select K so that the response
for a unit step input is reasonably domped and the
seithing time is less than 3 seconds. Sketch the root
Bocus. and select K so that all of the complex roots
have & ¢ greater than (LA, Determine the actual re-
sponae for the welected K and the percent overshool.

I

Plant
144 ¥iny
L= 15+ 5pla = 1y Air gup




Design Problems
AP A unity feedback control systemn shown in Figure
APT 4 has the process
(1]

O = T 0N = e

543

Design o PID controller using Ziegler-Nichols meth-
ode Determine the unit step response and the uni dis-
tarhance response. What is the maximum porcent
owershoot and settling time for the unit stop mput

T4

—-Cg—. _—
0
+ o + 10Hs = 7.5) i

Contuller
¥ X,
Ry e T )
FIGURE AP7.14 T
ity fesdiback loop
unlh PID controller
DESIGN PROBLEMS

CDFL1 The drive motor and slide system uscs the outpul
7 oy ol o tachometer mounted on the shalt of the motor as
".J shown in Figure CDP4.| (switch-closed aption). The
outpat voliage of the tachomeler is vy = K. Use the
velocity [eedback with the adjustable gain Ky, Select
the hest vahises for the gain & snd the amplificr gain
K, 5o that the transicnt response 10 a step input has an
overshool lees than 5% wnd o seitling time (o within

2% ol the fnal value) less than W0 ms.

DPTL A high-performance aircraft, shown in Figure
D7 (a), uses the allerons, rudder, and elevatar 10
steer through a three-dimensivnal {ight path {20]
The piteh rate control system for a lighter aircraft ar
10,000 my pnd Mach 0.9 can be represented by the sys-
tem in Figere DPT.1{b), where

= 15[y + 0.015)(x 4 0.45)

() Sketch the root bocus when the controller is a gain,
w0 that G (v) = &, and determine K when { for the
roats with w, > 2 s barger than 005 (seek o mast-
mien £}, (b) Plot the respouse qi0) for u step inpat i)
with K as i (a). (c) A designer suggests an anticipatory
controller  with  Glls) = Ky + Kye = Kis + 2)
Sketeh the root locus for this system as K varies and
determine u K so that the £ of ull the dlosed-loop roots
s =0.8. (d) Mot the response gii) for a siep input #(7)
with K a%in (c)

DP12 A lige helicopler uses two tandem rolors rolating
in opposite directions. as shown in Figure PT.33{a)
Thee controller ndjists the till angle of the mais rotor
and thus the forward motion as shewn in Figure
D72 The helicopter dynamics are reprosenied by

1)

G e ey - ——— .
)= {1 + 122+ 12)(# + 0015 + 0.0025) G P ET
Albernns
i
ful
Rixt
Pk rac fCobtnalier | (LI | gy
cenEmand 4 = Pitch raze
G} il
FIGURE DP7.1 *
ta} High-
performanca
mircrndt, (b} Piteh
rats control systam. (L1
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Amivgiifor Alrcraft dynamics
1
R v = IR & 101+ 41 L
FIGURE DP7.5 =
High-parforrmance
T { ke i
Lig Kis + 2 = | Azl
promsltion [+ 1M = 1) leg
FIGURE DPT7.6 (Ut it
Automatic control
of walking motion.

DFTE A systam o aid wnd control the walk of o partially
disabled person eould use nwlomatic control of the
walking mation [25]. One model of o system that is
open-loop anstable i shown in Figure DP7.6, Using
the root locus, scleet K for the maximum achicvable {
of the complex roate Predict the step response of the
system, and compare it with the actual siep response.

DPLT A mobile robot using 8 vision system as the mea
suremenl dovice is shown in Figare DIT.7(u) [ 36] The
gontral system is shawn in Figure DP7,7{b) where

and Glr) is sebected as a P controlier so thot the
steady-stale error for a step input is cqual 1o zero. We
then have
K
Gn) = K+ =L

Design the P contraller o that (a) the pereent aver-
shool for o step input is PO = 5% () the senling
time (with a 2% eriterion) is T, = 6 seconds: (c) the
system velocity ermor constant K, > 05 and (d) the
peak |nn:.T,-.fora atep iinpul i minimized

i) e DIFTE Most commercial samps are designed 1o be
(v Lj{0ss + unily-gain stable [26] Thal is. they are stable when
Miann subsyden
Recognition
" subwysiem
s J Compasier
e o
g
fah
Comrubier Plant
to B0 g ek [
Rix} : - L e+ TN = 11 iy
FIGURE DP7.7 ¥
1) A robot and
vigion system
{b) Foodback
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+ 1)

20
K(: + 15 + &)

£+ 10

(€] Gels) = —— ===

(d) Gls) =

APLI0 A feedback system is shown in Figure APT.I0.
Sketch the root locus ns K varies when K & 0. Deter-
mine a value for K that will provide a s1ep response
with an overshoot less than 5% and a settling time
(with 8 2% criterion) less than 2.5 scconds.

FIGURE APT.10 A nonunity feedback control system.

APLI1 A control system is shown in Figure APT.IL.
Sketch the root locus, and select a gain K so that the
ncprapmolmc sysiem has mo«mhmlurlm
than 10°% and th 18 hal% Vi
less than 4 seconds.

APLIZ A control system with PI control is shown in
Figure APT.I2. (a) Let Ky/Kp = 0.2 and determine
K pso that the complex roots have maximum damping
ratio. (b) Predict the step response of the system with
Kpset 10 the value determined in part (a),

APLI3 The feedback system shown in Figure AFT.13 has
two unknown parameters K, and K;. The process
transfer function is unstable. Sketch the root locus for
0 = K\, K; < 2o, What is the fastest settling time
that you would expect of the closed-loop system in
Tesponse 1o A unit step knput R{s) = 1/57 Explain.

Comiroller Process
+ 1 1
Kix = 2)
R T+ 1o + ) W 3438 L
FIGURE APT.11
A control system
with parameter K.
* £ 1
Rish Kpt o r e sl
FIGURE APT7.12 =
A conlrol system
with a PI controller,
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Helicopter
Comtroller
il e imsmvaid]
Ris) —t (5} a2 Gish Wsl
FIGURE DPT7.2 -
Two-rotor helicopter
wvalpeity control,
and the controller is selocted ns be represented by the system shown in Figure DP7.3.
() Sketch the root locus for K and identify the roots
G i K; Kix+1) for K = 4.1 and 41. (b}Dﬂﬂmlulhcmelhlm
ARl s e sults in an 10 a step of %,

() Skeach the root locus of the system and determine
K when { of the complex roots is equal 10 0.6. (b) Plot
the response of the system 1o a step input r(r) and find
the settling time (with a 2% eriterion) and mnﬁno
for the system of part (3). What is the stead

() Determine the gain that minimizes the senling
time (with a 2% eriterion) while maintaining an over-
shoot of less than 1%,

DP74 A welding torch is lcmoidy controlled to achicve
Mg.h accuracy while opernrmg in changing and haz-

error for n step input? (c) Repeat parts (a) and (b]
when the { of the complex roats is (141, Compare the
results with those oblained in parts (a) and (b}

DPT3  The vehicle Rover has been designed for maneu-
vering at 025 mph over Martian terrain. Because
Mars is 189 million miles from Earth and it would
take up to 40 minutes each way 1o communicate with
Earth [22,27]. Rover must act independently and reli-
ably. Resembling a cross between a small flatbed
fruck and an elevated jecp. Rover is constructed of
three articulated sections, each with its own two inde-
pendent. axle-hearing. one-meter conical wheels A
pair of sampling arms—one for chipping and drilling.
the other for manipulating fine objecis—extend from

21]. A model of the weldi
position control is shown in Figure DPT.4, with the dis-
turhance representing the environmental changes.
(a) With Ty(s) = 0. select K| and K 1o provide
high-quality performance of the position control sys-
tem. Select a set of performance criteria, and examine
the results of your design. (h) For the system in part
(), bet R{z} = 0 and determine the effect of a unit
step Ty{s) = 1 /sby obtaining v{r).

DPTS A high-performance jel aircraft with an autopilot
«control system hos m unily feedbock and control sys-
tem, as shown in Figure DP7.5. Sketch the root locus
and sebect o gain K that leads 1o dominant poles. With
this gain K, predict the step response of the system,
Determine the acwual response of the system, and

its front end like pincers The control of the arms can compare {1 1o the predicted response.
Controller ip
b Kt s+ 02 | O | 1
Ak T i+ Dis+2) e
FIGURE DP7.3 o
Mars vehiche robot
control system.
Controller
*
Rix) K1+ 0008 Fis)
FIGURE DP7.4
Remately controlied
waldar.




Design Problems
The system cnabbes he driver to make sharp, smooth
line transitions 11 also prevents yaw, which is the
swaying of the rear end during sudden movemeiis
Furthermore, the four-wheelsteeting system gives o
car increased maneuverability. This enabiles the driver
1o park thee car in extremely tight quarters With addi.
tional closed-loop compuler operating sysems, b car
could be prevented from sliding our of control in
abnormal iey of wel road conditions.

The system works by moving the rear wheels
relative to the front-wheel-sicering angle. The cantrol
system tkes information about the fion wheeh' steer-
ing angle and passes it Lo the actuator in the ack. This
actuntos then moves the rear wheels approprintely.

‘When the rear wheels arc given a steering angle
relative 1o the fronl ones, the vehicle can vary it
Lateral ncceleration response according 1o the oop
transfer function

LA (1 AT+ {1
A1+ (2 wg)e + (1]

where 4 = 2g/(1 = q). and 4 i the ratio of rear
wheel angle to front wheel stecring anghe [14], We will
asmsume that Ty = Ty = lwecond and w, = 4, Design

a unity feedback system, sclecting an appropriate set

of purameters (A, K. ) w Ihe stoering control
rnpuuw |5 “'P‘d and vet will yvield modes) overshaot

T andbditicn. q st be b Dand ).

PPLIL A pllor crone control [s shown in Figure
DPT11{a), The trolley i moved by wi input F{1) in
wrder (o contrl £(r) and &(r) |13]. The model of the

GAs)Gla) = K
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pilot crane control ks shown in Figure DEL1(b),
Design 0 controller that will achieve control of the
desired variables when G.(x) = &,

DP7.12 A rover vehicle designed for use on other plan-
ets and moons is shown in Figare DP7.12(a) [21].
The bock diagram of the steering control i shown
n Figure DPT, 12(b). where

i) =

¥ 15
{5+ 10(x + 23 + 4){s + 10)

fa)

Xix)
=+ Trotley
ot
FIGURE DP7.11
fa) Piiot crane
control system.
i) Block dingeam. ihi
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{e) Plot the root Jocus for 0 = K < oo when e} Design the PD controller to meet the following.
=6 specifications:
(d) Whit & the effect on the root locus when (i} PO, < 5%
0= < V07 i) T=<1s
Controlber Process
Ris) — B ko & 10 n
FIGURE DP7.14 g Ko = v Ll
plant with a PO

@ computer PrOBLEMS

CP7.1 Using the rlocus function, abtain the root locus for
the following transfer functions of the system shown
in Figure CP7.] when [} < K < o0
]
Glr) = ———————
e e L T
5+ 20
S+ 20
farr2
s + bs + 10}

b s B 4107+ s+ 4
frafsad e ST e 0541

(b) Gis) =

(e) Gis) =

1) Gis) =

Rixy

FIGURE CP7.1 A singl-icop feedhack systam with
paramater K.

CP7.2 A unity negative feedback system has the loop

transfer function
=242
KG[:)-K!["‘M+2}.

Develop an m-file to plat the root locus and show with
the rlocfind function that the maximum value of K for
astable system is K = 0.79,

CP13  Compute the partial fraction expansion of
+6

s(5 + 55+ 4)

and verily the result using the residue function.

CPT4 A enity negative feedback system has the loop
transfer function

Y=

tes-—p

GaGts) = G L,

Develop an m-file 1o obtabn the root bocus as p varles,
0 < p < 0o, For what values of p is the closed-loop
stabile?

CP75 Consider the feedback system shown in Fipure
CP71, where

Giny = 2

For what value of K is { = 0.707 for the dominant
closed-loop poles?

CP7.6 A lasge antenna, as shown in Figure CPT.6{a). is
used (o receive satellite signals and must accurately
track the satellite as it moves across the sky. The con-
trol system uses an armature-controlled motor and a
controller 1o be selected, as shown in Figure CPT.6(b),
The system specifications require a stesdy-state error
for o ramp input rir) = Bu. less than or equal to (W01 B,
where 8 is a constant, We also seck n percent over-
hoot to a step input of PO, = 5% with a setiling
time (with a 2% critcrion) of T, = 2 seconds (a) Using
root locus methods, create an m-file to assist in design-
ing the controller. {b) Plot the resulting unit step

and compute the percent overshoot and the
settling time and label the plot accordingly. (¢) Deter-
mine the effect of the disturbance T 1) = Qfx
(where ' is & constant) on the output ¥{s).

CP7.7 Consider the feedback control system in Figure
CP7.7. We have three potential controllers for our
system:

L G(5) = K (proportional controller)
2, G {x) = K[x (integral controller)
3 G,{J K(1 + 1/s} {proportional. integral (P
controller)
The design specifications are ¥, = 10 seconds and
P.0. = 10% for a unit step input.
(a) For the proportional controller, develop an m-file
1o sketch the root Jocus for @ < K < oo, and

used in @ unity-gain configuration, To achieve higher
bandwilth, some ap-umps relax the requitement to be
unity-gain stable. One such amplifice has a DC gain
of 10" and o bandwidih of 10 kFz. The amplificr, G{r).
s connected in the feedback circuit shown in Figure
DPT&{n). The smplifier s represented by the model
shown in Figure DPTS8(b), where K, = 107, Sketch
the root locus of the system for K. Determine the
minimum value of the DC gain of the clmed-lnop
amplifier for stability, Select a DC gain and 1he rests-
tors ) and R

DPTY A robotic arm actuated st the elbow joant B shown
in Figure DP7%al, and the control system for the

Chapter 7 The Root Locus Mathod

wetuator i shown in Figure DPT %(b). Plot the root
bocus for K = 0. Select G0 50 that the soady-state
error for o step input is eyual 10 zero. Lising the Gy(1)
slected, plot y(i) for K equal to 1, 1.5, and 285
Record the rise time. setthng time (with a 2% criteri-
on), and pereent overshoot for the three gains We
wish (o Hmit the overshoot 1o Jess than 6% while
achizving the shortest rise lime possible. Sclect the
hest system for | = K = 283,

DFTI0 The four-wheelsteering automobile hes several
benefits The system gives the driver a greater degree
of control over the automobile, The driver gets a more
Torgiving vehicle over i wide varicty of conditiom.

¥in)

Actual
e

FIGURE DPT.9

) A robotic amm

actuated ot the joint

efow. (b Its.

contol systam.
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(&) When €05} = K, skeich the root locus a5 K
varies from 0 to W0, Find the roots for K equal 1o
100, 300, and 600 (b) Predict the overshoot, sefiling
time (with a 2% criterion), and steady-suate error for a
step input, assuntng dominant ools (c) Determine
the actual time response for @ slep imput lor the three
values of the gain K, and compare the actunl results
with the predicted results.

DPLI3  The automatic contral of an airplanc s one
exumple that sequires multiple-variable feedback
methods. In this system, the attiode of sn sireralt
controlled by three scts of surfaces: clevators, a rud-
der, and uilerons, as shown o Figure DP7.13(a). By
manipulating these surinces. s piol can set 1he alreraft
on & destred Night path [20].

An autopilot, which will be considered here, is
nn automatic control system that controls :be il
unghe & by adjusting aileron suriaces The d

desired rodl naghe ¢ and the actual angle ¢ will drive
the hydraubic actuator, which in turm adjusts the deflee-
tiom of the aileron surface.

A simplified model where the rolling motion
can be considered independent of other motions &
assumied, and its block diagram is shown in Figure
DPT.13(h). Assume that K, = | and that the roll mte
i is fed back osing a rate gyro, The step response
desired hns an overshoot less than 10% and a setiling
time (with & 2% criterion) less than 9 seconds. Select
the parameters K, nid K.

DPTI4  Consider the feedback system shown in Figure
DPTIA The process transfer function i mnrymlly
stuble. The ler s the
(PD)) controlier

Gla) = Kp + Ky,

of the sileron surfaces by an angle

torgue due to afr pressure on these surfaces Thu
cnuses n rolling motion of the airerafl. The nileron
wuriaces are by hydraulic with 4
transler function L.

“The actual roll angle & i measured and com-
pared with the input. The difference between the

(0] the equation of the
Tomedd

(b) Letr = NﬂrKﬂ Write the charactetistic equation
in the Form

ate)
Al =1+ KEJF:I-

Rl gl
W




Terms and Concepts

an mefile using root locus methods find the values of
K/ and K,/ so that the settling time 7, is less than or
equal 1o 4 seconds, and the peak overshoot PO is less
than of equal to 10% for a unit step input, Use a 2% cri-
terion in determining the setling time.

CP7.9 Consider the feedbhack control system in Figure
CP74. Develop an m-file to plot the root locus for
< K < oo, Find the valuc of X resulting in a damp-
ing ratio of the closed-loop poles equal to 0.707,

CP7.10  Consider the system represented in state varioble
form

%= Ax + Bu
¥ = Cx+ Du,

Rixd

FIGURE CPT.9
inity teedback

ANSWERS TO SKILLS CHECK

(5) True

where

SRS

C=1 =9 12}, snd D = [0].
{a) Determine the characteristic equation. (b) Using
the Routh-Hurwilz criterion, determing the values of
& for which the system is stable. (¢) Develop an m-file
o plat the root locus and compare the results to those
alMained in (b},

True or False: (1) True; (2) True: (3) False: (4) True:  Word Match (in order, top 1o bottem): k. £ a,d. i h,

cheg)

Multiple Cheice: (6) bs (7) e (8) a: (9) & (10) &

(Myb:{12) s {13) a: {14} ez {15} b

TERMS AND CONCEPTS

Angle of deparfure  The angle s which a locus leaves a
complex pole in the s-plane.

Angle of ihe asympiotes  The angle &, that the asymp-
tote makes with respeet (o the real axis

Asymptote  The path the rool locus follows as the para-
meter becomes very large and approaches infinity. The
number of asymptotes is equal to the number of poles
minus the number of zeros.

Logarithmde sensitivity A measure of the sensitivity of

the system performance o specific parnmeter changes.
ﬂTtr],{I"(x]

given by Skix) = where Tis) is the system

teansfer function und N is the parameter of interest.

Manual PID tunk thods  The p of
the PID controller gains by trlul and-crror with mini-
mal analytic analysis
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syutem wilh
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determine the value of K so that the design spec-
ifications are satisfied.

(b) Repeal part (a) for the integral contraller,

{c) Repent part {#) For the Pl controllcr.

{d} Co-plot the unit step respanses for the closed-
loop systems with each coniroller designed in

(2) Compare and contrast the three contrallers
obtained in parts {(a)-{c), concentrating on the
steady-stule crrors and transient performance.

CPTB  Consider the spacecralt single-aeis attinude control

swstem shivwn in hp.u:t Li’? M. The controfler s known

Asymplote centroid  The center i, of the linear 05ymp-  Negative gain rool locus  The root locus for negative
totes.

Breakaway point  The point on the real axis where the
locus departs lmom the real axis of the s-planc.

Dominant roots  The roots of the characteristic equation

that represent or

Locus A path or trajectory that is traced oul as a para-

values of the parameter of interess, where
o< K =il

Number of separaic loci  Equal o the number of poles of
the transfer functicn. assuming that the number of

dominate the dosed-loop transient peles is greater than or equal to the number of zeros
of the transfer function.

Parameter design A method of selecting one or two
parameters using the rooat Iocus method.

meter is changed.
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PREVIEW

In previous chapters, we examined the use of test signals such as a step and a ramp
signal. In this chapter, we ider the steady-stat of a system 1o a sinu-
soidal input test signal. We will see that the respcmse of a linear constant coefficient
system 10 a sinusoidal input signal is an output sinusoidal signal at the same fre-
quency as the input. However, the magnitude and phase of the output signal differ
from those of the input sinusoidal signal, and the amount of difference is a function
of the input frequency. Thus, we will be investigating the steady-state response of the
syslem Lo a i idal input as the freg varies.

We will examine the transfer function G(s) when 5 = jw and develop methods
for graphically dnsplaymg the complex number Gijuw) as w varies. The Bode plot is
one of the most p hical tools for analyzing and designing control sys-
tems, and we w||| cover that suh;e:l in this chapter. We will also conssder polar plots
and log magnitude and phase diagrams. We will develop several time-domain per-
formance measures in terms of the l'reqnency response of the system, as well as
introduce the conceplt of system handwidth. The chapter udes with a fi
response analysis of the Sequential Design Example: Disk Drive Read Syslem

DESIRED OUTCOMES
Upon completion of Chapter 8, students should:

0 Understand the powerful concept of frequency response and its role in control system
design.

O Know how to skeich a Bode plot and also how to obtain a computer-gencrated Bode plot.

Q Be familiar with log magnitude and phaso diagrams.

ot in the
based on gain and phase mnrgms

T Be capable of designing n controller to meet desired specifications using frequency
response methods.

domain and relative stability
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PID controller A widely used controller used in industry
of the form G () = K, + "'! + Kpr. where K, i
the proportional gain, &', is the integral gnin, and Ky
i the derivative gain.

PID tuning  The process of determining the PID con-
trodler gains.

Proportional plus deriviative (PID) i, A i
term controller o the form G(x) = K, + Kps,
where K, is the proportional gain and K, is the deri-

vative gain.
Proportional plus integral (PI) controller A iwo-term
controller of the form G (5) = K, + —, where K,

is the proportional gain and Kj s ||l¢ ||||eg|1| gain

Quarter amplitude decay  The amplitude of the closed-
loop response is reduced approximately o onc-fourth
of the maxi walue in one period.

Renction eurve  The response obtained by toking the
controller alf-line and introducing a siep input. The
underlying process is assumed to be a first-order sys-
tern with a transport delny.,

Root contours  The [amily of boci that depict the effect of
varying two parameters on the roots of the character-
istic equation.

Root locus  The locus or path of the roots traced out on
the s-planc as & parameter is changed.

Rood locus method  The method for determining the locus
of roats of the characteristic equation 1 + KP{s) = 0
a5 K varies from 0 1o infinity.

Root locus segments on the real axis  The root locus lying
in a section of the real axis to the lefi of an odd num-
ber of poles and zeros,

Root senshtivity  The sensitivity of the roots as a parame-
ter changes from ils normal value, The root sensitivity
is given by 5§ = "‘ T -, the incremental change in the
root divided by the proporiional change of the para-
meter.

Uliimate gain  The PD controller proporiicnal gain, K.
on the border of instability when K, =0 and K; =10,

Ultimate perfod  The period of the sustained oscillations
when Kpis the ultimate gain and Kp = 0 and K; =0,

Ziegler-Nichols PID tuning method  The process of
determining the PID controller gains using one of
several analytic methods based on open-loop and
closed-loop responses to step inputs.



FIGURE 8.1
The polar piana.

©

FIGURE 8.2
An RC filter,
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Thus, the steady-state output signal depends only on the magnitude and phase
of T(jw) at a specific fn:qucncy w. Notice that the steady-state response, as
described in Equation (8.1), is true only for stable systems, 7{s).

One ad ge of the i method is the ready availability of
sinusoid test signals for various ranges of frequencies and amplitudes. Thus, the
experimental determination of the system’s frequency response is easily accom-
plished; it is the most reliable and unmmpfhcaled method for the experimental
analysis of a system. Often, as we shall find in Sccl:on 8.4 Ihe unknnvm transfer
function of a system can be deduced from the exp
response of a system [1, 2]. Furthermore, the design of a system in the qun:llcy
domain provides the designer with control of the bandwidth of a system, as well as
some measure of the response of the system to undesired noise and disturk

A second advantage of the freq ¥ method is that the transfer func-
tion describing the sinusoidal sleady-sta!c behavior of a system can be obtained by
replacing s with jw in the system transfer function T(s). The transfer function repre-
senting the si idal steady-state behavior of a system is then a function of the
complex variable jo and is itself a complex function T'(jw) that possesses a magni-
tude and phase angle. The magnitude and phase angle of T{jw) are readily repre-
sented by graphical plots that provide significant insight into the analysis and design

of control systems.

The basic disad: ge of the fi method for analysis and
design is the indirect link hr.tmen the frequcncy and the umc domain. Dnrm corre-
lations b the fi P and the cor

characteristics are somewhat tenuous, and in practice the frequency response . char-
acteristic is adjusted by using various design criteria that will normally result in a
satisfactory transient response.

‘The Laplace transform pair was given in Section 2.4; it is written as

Fis) = 2{f()} = fﬂlk" d (8.2)
and
&P . f' " Feera 83
fin) {F(a)} 27 S (s)e™ ds, (83)
where the complex variable 5 = o + jw. Similarly, the Fourier i pair is
writlen as
Flw) = F{f(n)} = /:)‘[lk_"‘ dt (8.4)
and
¥ 1~
f) = 5 Fla)} = 5 | Flw)e™ do. (8:5)
Section 82 Frequency Respanse Plots 557
MG} = X{w)
Re(G) = Ria)

See the MCS website for a review of complex numbers.

Alternatively, the transfer function can be rep dbya itude |G juw)|
and a phase d(juw) as
Gljw) = |Glja)le®™™ = |G(jw) /dlw), (8.9)
where
M) = mﬂ{% and (GG = (R + (K@)
The graphi ion of the f ¥ of the system G(jw) can uti-
lize either Eqnuuun (B8) or E.qual.\oru (8 9). The pnln plot representation of the fre-
quency resy is ob d by using E ion (8.8). The di of the polar

plot are the real and imaginary parts of GUwL as shown in Figure 8.1. An example
of a polar plot will illustrate this approach.

EXAMPLE 8.1  Frequency response of an RC filter

A simple RC filter is shown in Figure 8.2, The transfer function of this filter is

Vals) 1
Gis) = V_(;_j- RCs 10

and the si idal steady-state transfer function is

(8.10)

1

P T | SRS e
Glie) = JREY T 1 ™ ) ¥ 1

(8.11)

where

Viin — Vil

Chapter 8 Frequency Response Methods

8.1 INTRODUCTION

Ingp ding chag the and perfs of a system have been described
in terms of the complex frequency variable s and the location of the poles and zeros
on the s-plane. A very praclical and important alternative approach to the analysis
and design of a system is the requency response method.

The frequency response of a system is defined as the steady-state response of
the system {0 a sinusoidal input signal. The sinusoid is a unique input signal,
ndlheumllh;nnlpﬂupalf linear system, as well as signals

the system, is sis in the steady state; it differs
hm&ebﬂmﬁnmnﬂthﬂdsﬂpmm

For example, consider the system ¥(s) = T(JJR(J} with r{f) = A sin e, We have
R = 7%

and

me) __mis)

T(s) = = :
%) s +p)
i=1

where —p, are assumed to be distinct poles. Then, in partial fraction form, we have
A k, + “+ .E_
5 + P s+ py P4

¥is) =

Taking the inverse Laplace transform yields

as+ 8
Fraif

where o and @ are which are problem dependent. If the system is stable,
then all g have positive real parts and

5 S e -
Mty ling {W}

since each exponential term ke decays to zero as § — 0o,
In the limit for y(t), it can be shown, for f — oo (the steady state),

e il
- el5d]

= -:-.[Am?'{jw}

YiE) = ke e ke P 4 fi"{

sinfat + ¢)

= AlT{jw)| sin(ar + @), (8.1)
where ¢ = /T(ju).
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The Fourier transform exists for f{r) when

f I1f(0)) dt < oo,

‘The Fourier and Laplace transforms are closely related, as we can see by exam-
ining Equations (8.2) and (8.4). When the function f{t} is defined only for ¢ = 0, as
is often the case, the lower limits on the integrals are the same. Then we note that the
two equations differ only in the complex variable. Thus, if the Laplace transform of
a function fy(t) is known to be F,(s), we can obtain the Fourier transform of this
same time function by setting s = jw in Fy{s)[3).

Again we might ask, Since the Fourier and Laplace transiorms are so closely
related, why can’t we always use the Laplace transform? Why use the Fourier trans-
form at all? The Laplace transform permits us to inwstigal: the s-plane location of
the poles and zeros of a transfer function T1s), as in Chapter 7. However, the fre-
quency response method allows us to consider Ihe transfer function T(je) and to
concern Ives with the ampli and phase ct istics of the system. This
ability to i igate and rep the cf of a system by amplitude, phase
equations, and curves is an advantage for the analysis and design of control systems.

1f we consider the frequency response of the closed-loop system, we might have
an input r(¢) that has a Fourier transform in the frequency domain as follows:

Rijw) = f_mr(rje""a‘.h

Then the output frequency response of a single-loop control system can be obtained
by substituting 5 = jw in the closed-loop system relationship, ¥(s) = T{s)R(s). so
that we have

Y(jo) = TR o) = T goosiis RGo) ®6)
Using the inverse Fourier fi the output i p would be
1
) = FHYGu)} = 5 | Yljw)e™ du. (87)

However, it is usually quite difficult to evaluate this inverse transform integral for
all but the simplest systems, and 2 graphical integration may be used. Alternatively,
as we will note in succeeding sections, several measures of the transient response
can be related to the frequency characteristics and utilized for design purposes.

8.2 FREQUENCY RESPONSE PLOTS

The transfer function of a system (i(s) can be described in the frequency domain by
the relation

Gljw) = Gs),mj = Rlw) + [ X(w), (8.8)
where
R{w) = Re[Gljw)] and X(w) = Im[G{juw)].
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Table 8.1
] o 1/2r 1z o
|Gjaa)] oo aKr/V5 Kr/\2 0
o) —o0* -ur ~135* —180°
Im[ G|
e
RelG]
Incressing &
Gl | 135

Ly

Pussitive w

Then the magnitude and phase angle are written as

- K i 1
|Gljw)l = W and  @{w) = —tan 'm,
The phase angle and the magnitude are readily calculated at the

w=0,w = 1/7,and w = +00, The values of |G{w)| and ¢(w) are given in Table 8.1,
and the polar plot of G(juw) is shown in Figure 8.4,

An alternative solution uses the real and imaginary parts of G(jw) as
K ___Ktiw— o'
- w'r o + a'r?
where  R(w) = —Ko'r/M(w) and X(w) = —wK/M(w), and where M(w) =
@’ + w'r Thenwhenw = 00, we have R{a) = Oand X{w) = 0. Whenw = 0, we have
Rlw) = =Kt and X(w) = —00. When w = 1fr, we have R(w) = —Kr/2 and
X(w) = —K7/2, as shown in Figure 8.4,

Another method of obtaining the polar plot is to evaluate the vector G{jw) graph-
ically at specific frequencies, w, along the 5 = jw axis on the s-plane. We consider

Giljur) = - = R{w) + jX(w) (8.15)
S

Gis) =

Kjr
s+ 1/n)
with the two poles shown on the s-plane in Figure 8.5,
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#u, degrees

where the units are decibels (dB). A decibel conversion table is given on the MCS
website, The logarithmic gain in dB and the angle ¢{w) can be plotted versus the fre-
quency @ by utilizing several different arrangements. For a Bode diagram, the plot
of logarithmic gain in dB versus w is normally plotted on one set of axes, and the
phase ¢{w) versus @ on another set of axes, as shown in Figure 8.6. For example, the
Bode diagram of the transfer function of Example 8.1 can be readily obtained, as we
will find in the following example.

EXAMPLE 8.3 Bode diagram of an RC filter

The transfer function of Example 8.1 is

1
JHRO) + 1 Jar #1° (@18)

Glju) =
where

™= RC,
the time constant of the network. The logarithmic gain is

12
20log!Gjw)| = Zﬂicg(l—‘_ﬁ) = —10log(l + (wr)).  (8.19)

For small frequencies—that is, w << 1/r—the logarithmic gain is

20 loglG(jw)l = —101og(1) = 0dB, w << l/n. (8.20)

FIGURE 8.3
Potar plot for AC
Tilter,

FIGURE 8.5

Twa vectors on the
2-plana 1o ovaluate
Gllesy).
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Then the polar plot is obtained from the relation
Gjw) = R{w) + jX{w)

= 1= Jlofn)

[
e )
L4 (wfon) 1+ {wfan)”
The first step is to determine R{w) and X (w) at the two frequencies, w = 0 and
w = 00 Alw = 0, we have R{w) = 1and X(w) = 0. At w = oo, we have R(w) = 0
de(wJ = 0. These two points are shown in Figure 8.3. The locus of the real and
imaginary is also shown in Figure 83 and is easily shown to be a circle with the cen-
ter at {2. 0). When w = ay, the real and imaginary parts are equal in magnitude, and the
angle di{w) = —45" The polar plot can also be readily obtained from Equation (8.9) as

(8.12)

Gljw) = [Gljw)l / dla), (8.13)
where
; 1 =
|Gljw)| = TRy and lw) = —tan{wfw).

Hence, when w = w;, the magnitude is |G(jay)l = 1/V2 and the phase lu) =
~45°, Also, when w approaches + 20, we have |G(jw)| — 0 and ¢{w) = —~90°. Similarly,
when @ = 0, we have |G(jw)| = 1 and ${w) =

EXAMPLE 8.2 Polar plot of a transfer function

The polar plot of a transfer function is useful for i igating system stability and
will be utilized in Chapter 9. Therefore, it is worthwhile to complete another exam-
ple at this point. Consider a transfer function

G(5),mju = Gljw) =

X

K
Juljor + 1) jur — afr @14)
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i

YT
e

When 5 = jay, we have
Kjr
jwljeo + p)Y'
where p = 1/, The magnitude and phase of G{jw) can be evaluated at a specific fre-

quency, w;, on the jw-axis, as shown in Figure 8.5. The magnitude and the phase are,
respectively,

Gljw) =

Kir

GG = e 7 71

dlw) = =/ljay) = /oy + p) = =90° = tan”w/p). m

There are several possibilities for coordinates of a graph portraying the fre-
quency response of a system. As we have seen, we may use a polar plot to represent
the frequency response (Equation 8.8) of a system. However, the limitations of
polar plots are readily apparent. The addition of poles nrmms 10 an c)uslms system
requires the recalculation of the frequency resp us 81
and 8.2. (See Table 8.1.) Furthermore, calculating the freq) p . in this
manner is tedious and does not indicate the e[lecr of the mdi\dﬁuxl poles or zeros.

The introduction of Iogukhmlc plnls. often called Bode plots, simplifies the

ination of the gr 1 of the P “The logarith-
mic plots are called Bodr. plots i ||1 honor of H.W. Bod:. who used them extensively
in his studies of feedback amplifiers [4, 5], The transfer function in the frequency
domain is

Gljw) = |Gljw)le*=. (8.16)

‘The logarithm of the magnitude is normally expressed in terms of the logarithm 1o
the base 10, so we use

Logarithmic gain = 20 log| G(jw)l. (817)




FIGURE 8.8
Bode diagram for

(™™,
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The frequency interval w; = 2w, is often used and is called an octave of frequen-
cies. The difference between the logarithmic gains for w == 1/7, for an octave, is

20 loglGjun) ~ 20 loglG(juy)| = -20 Ies'f'”z*-"IT

- -Ztllugi = 602 dB. (8.25)
‘Therefore, the slope of the asymptotic lu'le is =6 dBloctave,
The primary ad: of the logarithmic plot is the ion of multipli

factors, such as (juwr + l} into additive factors, 20 log(jwr + 1), by virtue of the
definition of logarithmic gain. This can be readily ascertained by considering the gen-

eralized transfer function
K"ﬁ“ + fur)
Gljw) = ] e . (B.26)
G TT( + jorm TTU + Qifwadior + Gafuns))

‘This transfer function Aru:ludes (2 zeros, N poles at the origin, M poles on the real axis,
and R pairs of pl poles. Obtaining the polar plot of such a function
would be a formidable task :ndced However, the 1oganlhmlc magnitude of Gijw) is

20 loglGjw)| = 20 log Kj + 20 f‘,loslt + jur|
=
M
~20 logl(ju)™| - mzlogll + jury|

|+-2-§'i,fu+("")

ek

! (827

[
=207 log
[

and the Bode diagram can be obtained by adding the plot due to each individual
factor. Furthermore, the separate phase angle plot is obtained as

M
d{aw) = +‘§;|an"(ma - N(90%) = 3 tan Newr,)
=

_;im.l 2“"‘"‘“’ (8.28)

which is simply the summation of the phise angles due to each individual factor of
the transfer function,
‘Therefore, the four different kinds of factors that may occur in a transfer func-

tion are as follows:

1. Constant gain K

2. Poles (or zeros) at the origin (ju)

3. Poles (or zeros) on the real axis (for + 1)

4. Complex conjugate poles (or zeros) [1 + (28w, )i + (oo, )]
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1
20log| 7 pees e —10 log(1 + a’rY). (8.32)

‘The asymptotic curve for w <5< 1/7 is 20 log 1 = 0 dB, and the asymptotic curve for
w == 1/7 is =20 log(wr), which has a slope of =20 dB/decade. The intersection of
the two asymptotes occurs when

2log1 = 0dB = =20 log(wr),
or when w = 1/7, the break fre The actual ic gain whenw = 1/ris
—3 dB for this factor. The phase angle is ¢{w) = —tan™'(wr) for the denominator
factor. The Bode diagram of a pole factor (1 + jwr)™' is shown in Figure 8.9.

FIGURE 8.7

Asymptotic curve
for (her + 117,
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For large frequencies—that is, w == 1/r—the logarithmic gain is

W logGlfu) = —20logler) = 1/7, (8.21)
and al w = 1/r, we have

20 loglGljw)l = —10log2 = —3.01 dB,

The magnitude plot for this network is shown in Figure 8.6{a), The phase angle of
the network is

o) = ~tan~ (wr). (822)

The phase plot is shown in Figure 8.6(b). The frequency @ = 1/7 is often called the
break frequency or corner frequency. ®

A linear scale of frequency is not the most convenient or judicious choice, and we

consider the use of a logarithmic scale of freq The i of a logarithmic

scale of frequency can be seen by considering Equation (8.21) for large frequencies
w == 1/, as follows:

20 log|Gjw)] = =20 log(er) = =20 log 7 — 20 log w. {8.23)

Then, on a set of axes where the horizontal axis is log w, the asymptotic curve for
w == 1/7 is a straight line, as shown in Figure 8.7. The slope of the straight line can
be ascertained from Equation (8.21). An interval of two frequencies with a ratio
equal to 10 is called a decade, so that the range of frequencies from wy to w;, where
wy = 10wy, is called a decade. The difference between the logarithmic gains, for
w == 1/, over a decade of frequency is

20 log|Gijen )| — 2010g|Gljws)| = ~20 log(an) — (=20 log(wn7))

= ~20l0g wyT
w,f

= -zomgﬁ = +20dB;

(8.24)

that is, the slope of the asymptotic line for this first-order transfer function is
—20 dB/decade, and the slope is shown for this transfer function in Figure 8.7. Instead
of using a horizontal axis of log @ and linear rectangular coordinates, it is casier to use
semilog paper with a linear dinate for dB and a logarith

for w. Alternatively, we could usea logarithmic coordinate for the masmludc as well as
for frequency and avoid the necessity of calculating the logarithm of the magnitude.

0 7
)
=
=
§ -1o}- <
a
-20 | |
b L L]
e v v
-
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We can ine the logarithmi de plot and phase angle for these four fac-
tors and then use them to obtain a Bode diagram for any general form of a transfer
function. Typically, the curves for each factor are obtained and then added together
graphically to obtain the curves for the lete transfer fi this
procedure can be simplified by using the asymptotic approximations to these curves
and obtaining the actual curves only at specific important frequencies.

Constant Gain Ky. The | ithmic gain for the Kyis

The gain curve is a horizontal line on the Bode diagram.

1f the gain is a negative value, — K, the logarithmic gain remains 20 log K. The
negative sign is accounted for by the phase angle, —180°.

Poles (or Zeros) ar the Origin, (jw). A pole at the origin has a logarithmic
magnitude

and the phase angle is

(8.29)

and a phase angle

The slope of the magnitude curve is ~20 dB/decade for a pole. Similarly, for a multi-
ple pole at the origin, we have

1
e ~20N log @, (8.30)

In this case, the slope due to the multiple pole is =20 dB/decade. For a zero at the
origin, we have a logarithmic magnitude

20 logljw| = +20 log w, (8.31)

where the slope is +20 dB/decade and the phase angle is

‘The Bode diagram of the magnitude and phase angle of (fu)*" is shown in Figure 8.8
for N =1land N =2.

Poles or Zeros on the Real Axis. The pole factor (1 + jwr)™ has been consid-
ered previously, and we found that, for a pole on the real axis,

0 ]osl

and the phase is
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pair of complex conjugate poles is shown in Figure 8.10. The maximum value M,
of the frequency response occurs at the resonant frequency w,. When the damping
ratio approaches zero, then w, approaches w,, the natural requency. The resonant
frequency is determined by taking the derivative of the magnitude of Equation
(8.33) with respect to the normalized frequency, u, and setting it equal to zero. The
resonant frequency is given by the relation

V1=-2%| ¢ <0707, (8.36)
0 =T 11 1 T T T T
= 005
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The poles for varying { lie on a circle of radius w, and are shown for a particular { in
Figure 8,12(a), The transfer function evaluated for real frequency s = fuw is written as

-~ wi
(5= 55 = 3)|jup G = s1)(j0 — 1)’

Glju) = (8.39)

where 5; and s; are the complex conjugate poles The vectors jw — 5, and jo — §
are the vectors from the poles to the frequency jo, as shown in Figure 8.12(a). Then
the magnitude and phase may be evaluated for various specific frequencies. The

magnitude is
wy
|Gl = To—sllie=ar (8.40)
and the phase is

$lw) = —/(jw — ) — /{jw = §).
The magnitude and phase may be evaluated for three specific frequencies, namely,
w=0 w=uw, and w=ay

as shown in ﬁgure 8.12 in pants (b), (c) and (d), respectively. The magnitude and
phase 1g to these freg are shown in Figure §,13.

Chapter 8 Frequency Response Methods

The Bode diagram of a zero factor 1 + jwr is obtained in the same manver as
that of the pole. However, the slope is positive at +20 dB/decade, and the phase
angle is dplw) = +tan™'(wr).

A piecewise linear approximation to the phase angle curve can be obtained as
shown in Figure 8.9. This linear approximation, which passes through the correct
phase at the break frequency, is within 6° of the actual phase curve for all frequen-
cies. This approximation will provide a useful means for readily determining the
form of the phase angle curves of a transfer function G(s). However, often the accu-
rate phase angle curves are required, and the actual phase curve for the first-order
factor must be obtained via a P gram. The exact values of the frequency
response for the pole (1 + jwr)™, as wcil as the values obtained by using the
approximation for comparison, are given in Table 82,

Complex Conjugate Poles or Zeros [1 + (2 /w,)jw + (ju/w,)]. The quadratic
factor for a pair of complex conjugate poles can be written in normalized form as

1+ 20 = o], (83%)

where 4 = w/w,, Then the logarithmic magnitude for a pair of complex conjugate

poles is

| 20 log|Gjw)| = —10 log((1 — 1#)? + 4;1.'1;.| (834)
and the phase angle is

L, M

d{w) = —tan (8.35)

When t <= 1, the magnitude is
20loglGljw)| = ~10log1 = 0.dB,
and the phase angle approaches 0°, When u == 1, the logarithmic magnitude
approaches
20 log|Gjw)l = =10 log u* = —40 log u,

which results in a curve with a slope of =40 dB/decade. The phase angle, when
# == 1, approaches —180°. The magnitude asymptotes meet at the 0 dB line when
o= o, = l Hnwever. Ihc dm‘erence between the actual magnitude curve and
the function of the damping ratio and must be
aomnnlcd for wh:n £ < 0.707. Th: Bode diagram of a quadrau: factor due toa

Table 8.2
wr 010 0.50 0.76 1 131 2 5 10
20logl(1 + jur)'l.dB  —0.04 -10 -20 -0 -43 -70 -142 -0
Asymplotic
approximation, dB ] 0 0 0 -23 -60 -0 -200
o), degrees =57 =266 =374 —450 -52.7 —63.4 —78.7 —B4.3
Linear approximation,
rees =31.50 =305 =450 =50.3 —585 =765 =90.0
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and the maxi value of the magnitude |G(jw)] is
e = |G| = (20V1 = 2 | ¢ < 0707, (837)
for a pair of complex poles. The maximum value of the frequency response, M.
and the resonant frequency e, are shown as a function of the damping ratio { fora
pair of complex poles in Figure 8.11. Assuming the dominance of a pair of complex
conjugate closed-loop poles, we find that these curves are useful for estimating the
damping ratio of a system from an exg
‘The frequency response curves can be evaluated on the s- plme by d:(:n-n:nmg
the vmor lengths and angles at various frequencies w along m (s = +jew)-axis. For
g the d-order factor with compl 1 poles, we have
1 iy
Gis) = = 5 838
) (sfwe) + 2sfw, + 1 5 + Yws + of (836
L
FIGURE 8.11
The maximum
of the frequancy
rasponse and tha
resonant
ay versus { fora
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FIGURE 8.15
Twin-T network.
{a) Pole—zero pattenn.
{b) Frequency
0]
shown that the net phase shift over the frequency range from zero to infinity is less
for the system with all its zeros in the left-hand s-plane. Thus, the transfer function
Gy}, with all its zeros in the left-hand s-plane, is called a minimum phase transfer
function. The transfer function G(s), with |Gs(jw)| = |G,(jw)| and all the zeros of
Gy(s) reflected about the jw-axis into the right-hand s-plane, is called a nonmini-
mum phase transfer function. Reflection of any zero or pair of zeros into the right
half-plane results in a nonminimum phase transfer function.
A transfer function is called a minimum phase transfer function if all its
zeros lie in the Jeft-hand s-plane. It is called a nonminimum phase
transfer function if it has zeros in the right-hand s-plane,
The two pole-zero patterns shown in Figures 8,16(a) and (b) have the same
ics as can be deduced from the vector lengths. However, the
phan: characteristics are different for F‘s,urr.s &l&(a] and (b} The m:n:mum phase
characteristic of Figure 8.16{a) and the phase istic of Figure
8.16(b) are shown in Figure 8.17. Clearly, the phase shift of
Gyls) = P p
ranges over less than 807, whereas the phase shift of
_i§=7
Gals) = Fre
ranges over 180°, The ing of the term mini phase is ill d by Figure 8.17.
The range of phase shift of a minimum phase transfer function is the least possible
or minimum corresponding to a given amplitude curve, whereas the range of the
nonminimum phase curve is the greatest possible for the given amplitude curve.
Section 8.2 Frequency Response Plots
FIGURE 8.16
Pole-zera pattems
giving the sama
amplituda response
&nd different phase
characteristics. 3]
FIGURE 8.17
The phasa
chamcteristics for
he minirmum phase
and
phasa transfer
A i i i phase network is the all-pass network,
which can be realized with a srmmelrml lattice network [8). A symmetrical pattern
of poles and zeros is obtained as shown in Figure 8.13(a). Again, the magnitude
|G{jew)| remains constant; in this case, it is equal to unity. However, the angle varies
FIGURE 8.18
The all-pass
retwork {a)
pole-zero pattern,
response, and (c} &

lattice natwork.
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15

FIGURE 8.13
Bode for
complex conjugate
w
EXAMPLE 8.4 Bode diagram of a twin-T network
Asan ple of the determination of the f n,g
diagram and the vectors to ju, consider the win-T nelwork shown in Figun 8.14 [6].
The transfer function of this network is
Vols) (57 +1
G T T TR 841
)= V) TPt a1 &)
where 7 = RC. The zeros are at +j1, and the poles are at —2 +V/3 in the sr-plane,
as shown in Figure 8.15(a). At @ = 0, we have |G(jw)| = | and ${w) = 0°. At
w = 17, |G{jw)| = 0 and the phase angle of the vector from the zero at st = jI
passes through a transition of 180°. When w approaches oo, |G(jw)l = 1 and
@{w) = 0 again. Evaluating several i di ies, we can readily obtain
the frequency response, as shown in Figure 5.15(b). =
A summary of the asymptotic curves for basic terms of a transfer function is
provided in Table 8.3
In the previous examples, the poles and zeros of Gis) have been restricted to
the left-hand plane, However, a system may have zeros located in the right-hand s-
plane and may still be stable. Transfer functions with zeros in the right-hand s-plane
are classified as nonminimum phase transfer functions. If the zeros of a fransfer
function are all reflected about the juw-axis, there is no change in the magnitude of
the transfer function, and the only difference is in the phase-shift characteristics. If
the phase characteristics of the two system functions are compared, it can be readily
FIGURE B.14
Twin-T network.
572 Chapter 8 Frequency Response Mathods
Table 8.3 Asymptotic Gurves for Basic Terms of a Transfer Function
Term > 20 bog|G| Phase d{e)
1. Gain, 40 T T o
Gljw) = K
20| - — - |-
Al & T |
B T dlay 07 T
-20}—— | -4 |
40 ] ] L] —or 1 ud
w o
2. Zero,
Glju) =
I+ fufo
3. Pole, = | ¥ | |
Giljw) = 0 — = a5 i
{1+ joafan)™ I |
48 0 e e dley 07 -
-0 - e -4l {235
—40 | I I o | !
Ol an 10, by e 100y
w w
4. Pole a1 the origin, T T wr

Gjw) = Vfw

20
@@ of— = — s ol —
-20— e e = a5 z

5. Two complex poles, 40
01 <{ <1, G(ju) =
(1 + 2pu - o)

= o,
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from 0F to —360°, Because f, = 180° — @, and #; = 180° — #, the phase is given by
5. The magnitude for the complex poles is de,!dccade The break frequency s i - nh = iy ¥
w = w, = 50, as shown in Figure 819, This app ion must be to the Hw) = ~2(B, + 6,). The and-phiss of the all-pass net-

actual magnitude because the damping ratio is £ = 0.3, and the magnitude differs
y from the ion, as shown in Figure 820,

the total P 2 can be plotted by adding the asymp-
totes due to each factor, as shown by the solid line in Figure .20, Examining the as-
ymptotic curve of Figure 820, we note that the curve can be obtained dircctly by
plotting each asymptote in order as frequency increases. Thus, the slope is
~20 dB/decade due to K{jw)™ intersecting 14 dB at @ = 1. Then, at w = 2, the
slope becomes —40 dB/decade due to the pole at w = 2. The slope changes to
=20 dB/decade due to the zero a1 w = 10. Finally, the slope becomes

work is shown in Figure 8.18(b). A nonminimum phase lattice network is shown in

Figure 8.18(c).

EXAMPLE 8.5 Sketching a Bode plot

The Bode diagram of a transfer function G{s), which contains several zeros and
poles, is obtained by adding the plot due to each individual pole and zero, The sim-
plicity of this method will be ill d by idering a transfer function that pos-
sesses all the factors considered in the preceding section, The transfer function of
interest is

=60 dB/decade at @ = 50 due to the pair of complex poles at a, = 50, Gljw) 5(1 + j0.1ew) (8.42)
‘The exact magnitude curve is then obtained by using Table 8.2, which provides W el 1 : 5 :

the difference between the actual and asymptotic curves for a single pole or zero. FL & A3+ 0800750 + Le/30Y)

The exact magnitude curve for the pair of complex poles is obtained by utilizing The factors, in order of their as freqs i are as follows:

Figure 8.10(a) for the quadratic factor, The exact magnitude curve for Gijw) is
shown by a dashed line in Figure 8.20,

The phase characteristic can be obtained by adding the phase due to each indi-
vidual factor, Usually, the linear approximation of the phase charecteristic for a sin-
gle pole or zero is suitable for the initial analysis or design attempt. Thus, the
individual phase characteristics for the poles and zeros are shown in Figure 8.21 and
are as follows:

L A constant gain K = 5

2. A pole at the origin

I Apoleaa =2

4 Azeroato = 10

5. A pair of complex poles al w = w, = 50

First, we plot the i h istic for each indivi pole and zero fac-

1. The phase of the constant gain is 0°, tor and the constant gain:
2. The phase of the pole at the origin is & constant —90°, 1. The constant gain is 20 log 5 = 14 dB, as shown in Figure 819,
3. The linear approximation of the phase istic for the pole at w = 2 is shown in 2, The magnitude of the pole at the origin extends from zero frequency to infinite fre-
Figure 8.21, where the phase shift is —45% atw = 2. quencics and has a slope of —20 dB//decade intersecting the 0-dB line at w = 1, as
4. The linear app of the phase ch wtic for the zero at w = 10 is also shown in Figure 8.19.
shown in Figure 821, where the phase shift is +45% atw = 10, 3. The ploti imation of the ituds od'lhepolnl»=2huaﬂop=oi‘
—mdsjdeudebeymdllwbmk quency at o = 2. The p i

below the break frequency is 0 dB. as shown in Figure §.19.

program. The Bode plot for the example in this section (Equation 8.42) can be read-
ily obtained, as shown in Figure 8.22. The plot is generated for four decades, and the
0-dB line is indicated, as well as the —180° line, The data above the plot indicate that
the magnitude is 34 dB and that the phase is —92.36° at @ = 0.1. Similarly, the data
indicate that the magnitude is —43 dB and that the phase is —243° at w = 100.
Using the tabular data provided, we find that the magnitude is 0 dB at w = 3.0, and
the phase is —180° at w = 50. m

8.3 FREQUENCY RESPONSE MEASUREMENTS

A sine wave can be used to the p of a control
system. In practice, a plot of amplitude versus f:equ:ncy and phase versus frequency
will be obtained [1, 3, 6]. From these two plots, the open-loop transfer function
GH(jw) can be deduced. Similarly, the closed-loop frequency response of a control
system, T(jw), may be obtained and the actual transfer function deduced.

A device called a wave analyzer can be used to measure the amplitude and
phase variations as the frequency of the input sine wave is altered. Also, a device
called a transfer function analyzer can be used to measure the open-loop and
closed-loop transfer functions [6].

A typical signal analyzer instrument can perform frequency response measure-
ments from DC to 100 kHz. Hull -in analysis and modeling capabilities can derive
poles and zeros from or phase and magni-
tude responses from user-supplied models This device can also synthesize the fre-
quency response of a model of a system, allowing a comparison with an actual
response.

As an example of determining the transfer function from the Bode plot, let us
consider the plot shown in Figure 8.23. The system is a stable circuit consisting of
resistors and capacitors Because the magnitude declines at about —20 dB/decade as
w increases between 100 and 1000, and because the phase is —45° and the magnitude
is =3 dB at 300 rad/s, we can deduce that one factor is a pole at p; = 300. Next, we
deduce that a pair of quadratic zeros exist at w, = 2450. This is inferred by noting

» | 4. The asymptotic magnitude for the zero at w = +10 has a slope of +20 dB/decade
i beyond the break frequency at w = 10, as shown in Figure 8.19.
|
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Equation (8.42).
exact magnitude and phase shift can be readily evaluated by using the exact equa-
tions, such as Equation (8.43).
The frequency response of G(jw) can be calculated and plotted using a2 computer

5. The actual phase characteristic for the pair of complex poles is obtained from Figure
£.10 and is shown in Figure 8.21.

‘Therefore, the total phase characteristic, ¢{w), is obtained by adding the phase due
to each factor as shown in Figure 8.21. While this curve is an approximation, its useful-
ness merits consideration as a first attempt to determine the phase characteristic. Thus,
a frequency of interest, as we shall note in the following section, is the frequency for
which ¢(w) = =180°. The approximate curve indicates that a phase shift of —180°
occurs at w = 46, The actual phase shift at « = 46 can be readily calculated as

L

$laws) = =907 — tan~ wry + tan” wry - hm"I g (8.43)
where
=05 7=01 =06 and = wfe, =50
Then we find that

$(46) = —90° — tan™ 23 + tan™ 46 — tan ' 355 = —175%,  (8.44)

and the approximate curve has an error of 5° at @ = 46. However, once the
approximate frequency of interest is ined from the approxi phase
curve, the accurate phase shift for the neighboring frequencies is readily deter-
mined by using the exact phase shift relation {Equation 8.43), This approach is usu-
ally preferable to the calculation of the exact phase shift for all frequencies over
several decades. In summary, we may obtain approximate curves for the magnitude
and phase shift of a transfer function G{jw) in order to determine the important
frequency ranges. Then, within the relatively small important frequency ranges, the
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The difference I!'I magnitude from the corner frequency (w, = 2450) of the

to the is 10 dB, which, from Equation (8.37). indicates

that { = 0.16. (Compare the pIDI of the quadratic zeros to the plot of the quadratic

poles in Figure 8.10, Note that the plots need to be turned “upside down™ for the qua-

dratic zeros and that the phase goes from 0° to +180° instead of —180°,) Therefore,
the transfer function is

(5/2450)° + (0.32/2450)s5 + 1
(5/300 + 1)(3/20000 + 1) °

This f is actually obtained from a bridged-T network (see Prob-
lems P2, 8 and P8, 3 and Figure 8.14).

T(s) =

8.4 PERFORMANCE SPECIFICATIONS IN THE FREQUENCY DOMAIN

FIGURE 8.25

Magnitude

chamcteristic of the
-ordar

We must continually ask the question: how does the frequency response of a system
relate to the expened tra:nswnl response of the system? In other words, given a set

of time-d { specifications, how do we specify the fre-
quency response? For a sample second-order system, we have already answered this
ion by idering the time-domain per in terms of h set-

tling time, and other performance criteria, such as integral squared error. For the
second-order system shown in Figure 8.24, the closed-loop transfer function is

o

Tis) = o ng:s + ol

(8.46)
The frequency response of this feedback system will appear as shown in Figure 8.25.
Because this is a second-order system, the damping ratio of the system is related to the
maximum magnitude M, which occurs at the frequency w, as shown in Figure 8.25.

At the ¥ 0o, 8 value M,,, of the frequency
response is attained.
— Hi)
g | N\
= 1
3 \
L b
w
-, “p
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The I of these freq specifications and their relation to

the actual transient performance depend upon the npprnxbmal-lﬂn of the syslem bya

der pair of plex poles. This was di in Section
7.3, and the secondﬁder poles of T{s) are ca]leci the dominant roots. If the fre-
quency resp isd d by a pair of ' poles. the relationships between
the freq P and the time resp d in this section will be valid.
Fortunately, a large proportion of control systems satisfy this dominant second-
order approximation in practice.

The steady-state error specification can also be related to the frequency
response of a closed-loop system. As we found in Section 5.6, the steady-state error
for a specific test input signal can be related to the gain and number of integrations
{poles at the origin) of the loop transfer function. Therefore, for the system shown in
Figure 8.24, the steady-state error for a ramp input is specified in terms of K the
velocity constant, The steady-state error for the system is

;. A
Emed =y

where A = magnitude of the ramp input. The velocity constant for the system of
Figure 8.24 without feedback is

wy ay
P z;m.)) sz e

In Bode diagram form (in terms of time constants), the transfer function is wrilten as
w) K
s(5(28ew,) + 1) s(rs + 1)
and the gain constant is K, for this type-one system. For example, reexamining

Example 8.5, we had a type-one system with a loop transfer function
’ S+ jwrs)
G e e 8.50,
) = S+ om0 + 08— ) e

where u = w/w,. Therefore, in this case, we have K, = 5. In general, if the loop
transfer function of a feedback system is wrilten as

KT + juws)
Gljw) = ——n-——— (851)
UNJ”H“ + jury)

K, = lim sG(s) = Ei_r_:;s(

Gls) = {8.49)

then the system is type N and the gain K is the gain constant for the steady-state
error. Thus, for a type-zero system that has two poles, we have
ol
(14 joor)(1 + jurs)’

In this equation, K = K, (the position error } that
frequency gain on the Bode diagram.

Gljw) = (852)

as the low-

FIGURE 8.26
Normalizod
‘bandwidth, wg s,

versus { for a
second-order
sysiem (Equation
8.46). The linear

iy =
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accurate for
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that the phase changes abruptly by nearly +180°, passing through 0 at w, = 2450,
Also, the slope of the magnitude changes from —20 dB/decade to +20 dB/decade at
w, = 2450, Because the slope of the magnitude returns to 0 dB/decade as w exceeds
50,000, we determine that there is a second pole as well as two zeros. This second pole
isat py = 20,000, because the magnitude is —3 dB from the asymptote and the phase
is +45° at this point (—90° for the first pole, +180° for the pair of quadratic zeros and
~457 for the second pole), We sketch the asymptotes for the poles and the numerator
of the proposed transfer function T(s) of Equation (8.45), as shown in Figure 8.23(a).
The equation is

(5w, + (2fwads + 1

—_ = 8.4,
(slen + Dislp + 1) 8

T(s) =

Chapter 8 Frequency Response Methods

The bandwidth, wpg, is a measure of a ability of the system to faithfully repro-
duce an input signal.

The bandwidih is the frequency w.dmmm:ywhs
declined 3 dB from its low-fi 31
hnll’mncl!u.nrlbonll\.l’ ollhelww-l‘mqumq\nlu

The resonant frequency w, and the —3-dB bandwidth can be related to the
speed of the transient response. Thus. as the bmdw-mlth wy increases, the rise time of

the step response of the system will d the 1 10 a step
input can be related to M,_, thrwgh l.he d-ampmg ratio {. The curves of Figure 8.11
relate the an o l.hc ping ratio of the second-

order system. Then the step resy ay be from Figure 5.8
or may be calculated by utilizing Equation (5.15). Thus. we find as the resonant peak
M, increases in magnitude, the overshoot to a step inpul increases. In general, the
magnitude M,,, indicates the relative stability of a system.

The bandw:dl.h of a system wpg, as indicated on the frequency response, can be
approximately related to the natural frequency of the system. Figure 8.26 shows the
normalized bandwidth wg/w, versus ¢ for the d-order system of Eq
(8.46). The response of the second-order system to a unit step inpul is of the form
(see Equation (5.9))

¥} =1 + Be ™™ cos{ayt + 8). (84T)

The greater the magnitude of w, when £ is constant, the more rapndly the res;nnse
approaches the desired steady-state value. Thus, desi | speci-
fications are as follows:

1. Relatively small resonant magni M. < 15 for example.
2. Relatively large bandwidths so that th time constant + = 1/{{a,) is sufficiently
small.

Linear approsimation |

L] -
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for Galjw).

8.6 DESIGN EXAMPLES

In this section, we present three il using f
methods to design controllers. The first example deseribes the control of a phom—
voltaic generator to achieve maximum power delivery as the sunlight varies over
time. The second example illustrates the use of log-magnitude-phase plots, as well as
open- and closed-loop Bode plots.'[‘he specific problem is Lo design a proportional
ller gain for an engr control feedback control system. The sec-
ond example considers the conlml of one leg of a six-legged robotic device. In this
c!arnpl:. the specifications that must be satisfied include » mix of time-domain
ions (percent b and settling time) and frequency-domain spec-
ifications (bandwidth). The design process leads to a viable PID controller meeting
all the specifications,

EXAMPLE 8.6 Maximum power pointing g for ph ltaic g
As discussed in Chapler 1, the goal of green cn;mecnns is 1o design products that
will minimize poll and imp the Using solar energy is one
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settling time is 7, = 0.11 5 and the percent overshoot is P.O. = 19.4%, both very
ucceptable for the control of the photovoltaic generator voltage. w

EXAMPLE 8.7 Engraving machine control system

The engraving machine shown in Figure 8.32(a) uses two drive motors and associat-
ed lead screws to position the engraving scribe in the x direction [7). A separate
motor is used for both the y- and z-axes, as shown. The block diagram model for the

Chapter 8 Frequency Response Methods

Furll::rmnr:. the gain constant K = K, for the lype-one system appears as the
gain of the | section of the dering only
the pole and gain o[ the type-one system of Equation (8.50), we hame

K,
Gfw) = —5' = Tt w< 17, (8.53)

and the K, is equal to the magmiude when this portion of the magnitude character-
istic intersects the 0-dB line. For ple, the | quency jon of Ky/fu
in Figure 8.20 is equal to w = 5, as we expect.

Therefore, the f isti the per of
a system quite ndequa{ely, and with some experience, (hcy are quite useful for the
analysis and design of feedback control systems.

8.5 LOG MAGNITUDE AND PHASE DIAGRAMS

genarator feedback
contral system to a

track reference

Input voltage.

There are several is for p ',l.he' q P of a
function G(ju). We have seen that suitable graphical p i ol lhe quency
response are (1) the polar plot and (2) the Bode d gram. An I
to portraying the frequency response gruplur.u!]y is to plot the iussndlmln magm-
tude in dB versus the phase angle for a range of frequencies. Because this informa-
tion is equivalent to that portrayed by the Bode diagram, it is normally easier to
obtain the Bode diagram and transfer the information to the coordinates of the log
magnitude versus phase diagram.

An illustration will best portray the use of the log-magnitude-phase diagram.
‘This diagram for a transfer function

¢ 5
Giljw) = Jw(05jw + 1)(ju/6 + 1) 8:34)

is shown in Figure 8.27. The numbers indicated along the curve are for values of fre-
quency a.
‘The log-magnitude-phase curve for the transfer function
301w + 1)
Jol0.5fw + 1)1 + j0.6(w/S0) + (a/S0)?)

Gylju) = (8.55)
considered in Section 8.2 is shown in Figure 8.28. This curve is obtained most readily by
utilizing the Bode diagrams of Figures 8.20 and 8.21 1o transfer the frequency response
lnl‘mnat!ou to the log magnitude and phase coordinates The shap: of the locus of the

on a log- i phase diagram is particul: as the

phase appmndms —180° and the magnitude approaches 0 dB, The locus of Equation
(8.54) and Figure 827 differs substantially from the locus of Equation (8.55) and Figure
8.28. Therefore, as the correlation between the shape of the locus and the transient
response of a system is established, we will obtain another useful portrayal of the fre-
quency response of a system. In Chapter 9, we will establish a stability criterion in the
frequency domain for which it will be useful to utilize the log-magnitude-phase dia-
gram lo investigate the relative stability of closed-loop feedback control systems.

Chapter 8 Fraguency Response Methods

way to provide clean energy using p g sunlight 10
e.le:lmty directly. However, the output of a phawvnllalc generator is variable and
ds on the available sunlight, the temp and hed Joads, In this
examp]ewepmudea ion on regulating the voltage provided by a photo-
voltaic g system using feedback control [24]. In Chapter 2, we discussed the
mndeling of the plant and closed-loop system. In this example, we design a con-
troller to achieve the desired specifications.
Consider the feedback control system in Figure 829, The plant transfer function is

K
Gls) = ——
s(s + p)
where K = 300,000 and g = 360. This model is consistent with a photovoltaic gen-
erator with 182 cells generating over 1100 W [24]. Assume a controller of the form

s s+ 1

G{s) K‘[r,s e l]' (8.56)
where K., 7y, and 73 are to be d i. The ller in Equation (£.56) is a lead
or lag compensator depending on 7y and r; and is discussed in more detail in Chap-
ter 10.The ler should minimize the effects of disturk and plant changes
by providing a high gain at low freg) ies while mini

the
noise by providing a low gain at high frequencies [24]. To acmmph!h these goals, the
design specifications are:
1. |Gd{jw)Giljew)| = 20dB atw = 10 radfs
2 |G ljw)Gljw)| = ~20dB at w = 1000 rad/s
3. Phase margin P.M. = 607

The phase margin of the uncompensated system is P.M. = 363" implying that the
compensated system needs to add approximately P .M. = 25° hence the use of the
to add the required phase lead. Also, the magnitude of the uncompen-
sated frequency response at w = 1000 rad/s is —11 dB indicating that the gain needs
to be further reduced at high frequencies to meet the specifications.
One possible controller is

0,045 + I]
1005 + 1]
The compensated phase margin is P.M., = 60.4°. As can be seen in Figure 8.30, the
low-frequency, high-gain specification is satisfied, as well as the high-frequency,
low-gain specification. The closed-loop step response is shown in Figure 8.31. The

Gds) = zsc[

Power circuit,
photoveliaic generatoe,
Conaroler & carrent taesducer
¥l 5 K. A —" L it
et " et PTET) #




FIGURE 8.33
Gj).

Therefore, we lel s = jo, oblain

T(fum) (8.58)

2
2 - 30 + jol2 — w?)’
The Bode diagram of the closed-loop system is shown in Figure 834, where
20 log|T(jw)|l = 5 dB at w, = 0.8. Hence,

0logMp =5 or My, =178

o [}
o — . -
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specifications
DS1: s> Fite.
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Use control design
IF the perf & 1 the performance mects the specificarions.

Aen itevate the then finalize the design.

The inpul is a voltage commaond to the actuator, snd the output is the leg posi-
tion {vertical position only). A block diagram of the control system is shown in
Figure 8.37. The control poal is

Control Goal
Control the robot leg position and maintain the position in the presence of un-
wanled measurement noise.

The variable to be controlled is

Variuble to Be Controlled

Leg position, ¥(s).
We wani the leg to move to the commanded position as fast as possible but with
minimal overshoot As a practical first step, the design goal will be 10 produce a sys-
tem that moves. albeit slowly. In other words. the control system bandwidth will ini-
tinlly be low.

FIGURE 8.32
)
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Motar, screw, and
Contrallen scribe holder
i 7 o
= £ [ aveve s

(LH

x-axis position control system is shown in Figure 8.32(b). The goal is to select an

appropriate gain K, using freq sa that the time resp o
step commands is acceptable.
the of th we will first obtain the apen-

loop and closed-loop Bode disgrams. Then we will use the closed-loop Bode dia-
gram to predict the time response of the system and check the predicted results with
the nctual results,

To plot the frequency response, we arbitrarily select K = 2 and proceed with

biaining the Bode diags If the Iting system is not acceptable, we will luter
adjust the gain.
The frequency response of Gijw) is partially listed in Table 8.4 and is plotted in
Figure 8.33. We need the freq P of the closed-loop transfer functi
T(e) = : @57

BEE TRy

Table 8.4 Frequency Response for G{jw)

w 02 0.4 [ 10 14 18
20 bog! G " 7 -1 -4 -0 -13
L3 =107 -123* -150.5* -162° -179.5° ~193*

Chapter 8 Frequency Aesponse Mathods

1 we assume that the system has dominant second-order roots, we can approximate
the system with a juency Tesp of the form shown in Figure
810, Sinee M.« 178, we use Figure 811 to estimate { to be 0.29. Using this { and
w, = (L8, we can use Figure 8.11 to estimate w,/w, = .91, Therefore.

&
LT TR .85,

Since we are now apy Tis)asa J-order system, we have
wy - 0.774

P+ LYang+ ol 5+ 0505 + 0774

We nse Figure 5.8 to predict the overshoot to a step input as 37% for { = 0,29, The

settling time (1o within 2% of the final value) is estimated as

Tis) = {859)

4 4
L= T = Tozopss -~ BT
The actual overshoot for a step input is 34%, and the actual settling time is 17 sec-
onds. We see that the second-order approximation is reasonable in this case and can
be used 1o determine suitable parameters on a system, Il we require a system with
lower overshoot, we would reduce K 1o 1 and repeat the procedure. m

EXAMPLE 8.8 Control of one leg of a six-legged robot

The Ambler is a six-legged walking machine being developed at Carnegie-Mellon
University [23]. An artist’s conception of the Ambler is shown in Figure 835,

In this example we consider the control system design for position control of
one leg. The elements of the design process emphasized in this example are high-
lighted in Figure 836, The mathematical model of the actustor and leg is provided,
The transfer function is

T L
el e 10)’ @50
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The bandwidth wp is approximately related to the natural frequency w, by

:%: = -11961¢ + 1.8508 (03 = £ = 08). (8.63)

This approximation applies to second-order systems Per specification DS1, we want

wg = 1Hz = 628 rad/s. (8.64)

From the percent overshoot specification, we can determine the minimum value of §.
Thus for P.O. = 15%, we require

¢ =052 (8.65)
where we have used Equation (5.16) {valid for second-order systems) that
P.O. = 100e7"/VIE,

Another useful design formula (Equation (8.37)) relates M, = |T{w,)| to the
damping ratio:

1
Mpy = [T{w)| = ———= 0.707). 8.66
e = [ T{w,)] Vi €= ) {8.66)
The relationship b the freq w,, the natural frequency o, and
the damping ratio { is given by (Equation (8.36))
@ = w,V1 -4 (f <0707 (8.67)

We require { = 0.52; therefore, we will design with { = 0.52. Even though settling
time is not a design specification for this problem, we usually attempt to make the
system response as fast as possible while still meeting all the design specifications.
From Equations (8.63) and (8.64) it follows that

g

4 = “TTo6ig 1+ TasE - S11mdss. (8.68)

Then with w, = 5.11 rad/s and { = 0.52 and using Equation (8.67) we compute
w, = 3,46 rad/s. (8.69)
S0 if we had a second-order system, we would want to determine values of the con-
trol gains such that
w, =511 radfs and [ =052,
which give
Mp, = 1125 and o, = 346radfs.

Our closed-loop system is a fourth-order sysiem and not a second-order system.
30. 2 valid design approach would be to select K, a, b, and ¢ so that two poles are

and located approp to meet the design specifications. This will be
the approach followed hcrc
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Choosing dy = o*{*w,” is not required, but this seems to be a reasonable choice
since we would like the contribution of the nondominant roots to the overall re-
sponse to be quickly fading and nonoscillatory.

The desired characteristic polynomial is then

4 (2wl + )] + Jwd + all(a + 4)))F (8.72)

+ [2agw,(1 + Pa))s + o¥ %, = 0.
Equating the coefficients of Equations (8.70) and (8.71) yields four relationships
involving K, a, b, ¢, and a:

2wl +a)=2 +¢,
w1 + al’{4 + a)) = 10 + 2c + K,
Zafw, (1 + {a) = 10c + Ka,
o', = Kb.
In our case { = 0.52, w, = 5.11, and & = 12. Thus we obtain
c=6713
K = 12392
a=517
b =2148
and the resulting controller is

£+ 5175 + 2148

Ods) = 19—

{8.73)

The step response of the closed-loop system using the controller in Equation
(8.73) is shown in Figure 8.38. The percent overshoot is F.O. = 14%, and the set-
tling time is T, = 0.96 second.

The itude plot of the closed-loop system is shown in Figure 8.39. The band-
width is n!g = 272 radfs = 4.33 Hz. This satisfies DS1 but is larger than the
wy = 1 Hz used in the design (due to the fact that our system is not a second-order
system). The higher bandwidth leads us to expect a faster settling time, The peak
magnitude is M, = 1.21.We were expecting M, = 1.125,

‘What is the steady-state response of the closed-loop system if the input is a sinu-
soidal input? From our previous discussions we expect that as the input frequency
increases, the magnitude of the output will decrease. Two cases are presented here, In
Figure 8.40 the input frequency is w = 1 rad/s. The output magnitude is approximate-
Iy equal to 1 in the steady-state. In Figure 8.41 the input frequency is e = 500 rad/s.
The output magnitude is Ieaa than 0.005 in the madynslale.'nns venﬂes our intuition
that the system resp as the input si idal fi

Using simple analytic methods, we obtained an initial sel of controller parame-
ters for the mobile robot. The controller thus designed proved to satisfy the design
requirements. Some fine-tuning would be necessary to meet the design specifica-
tions exactly. m

Kb
Disired leg
peratisn

Chapter 8 Frequency Response Methods

Tan
Controler Process
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FIGURE 8.37 Centrol systern for one leg.

The control design specifications are

Control Design Specifications

D51 Closed-loop bandwidth greater than | Hz,

DS2  Percent overshoot less than 15% to a step input.

D53 Zerosteady-state tracking error 1o a step input.
Specifications DS1 and DS2 are intended to ensure ptable tracking perf
Design specification D53 is actually a nonissue in our design: the actuator/leg transfer
function is a type-one system so a 2ero steady-state tracking error (o a step inpul is guar-
anteed. We simply need to ensure that G,{s)G(s) remains at least a type-one system.

Consider the controller

K(s +as + b)
G = —— 8.61
oAs) r (8:61)
As ¢ — 0, a PID controller is obtained with Kp = K. K, = K, and K; = Kb. We
can let ¢ be a parameter at this point and see if the additional freedom in selecting
¢ # 0 is useful. It may be that we can simply set ¢ = 0 and use the PID form. The
key tuning parameters are

Select Key Tuning Parameters
K, a b and c.

The controller in Equation (8.61} is not the only controller that we can consider. For
example, we might consider

i 1

s+p
where K, z,and p are the key tuning parameters. The design of the type of controller
given in Equation (8.62) will be left as a design problem at the end of the chapter.

The response of a closed-loop control system is determined predominantly by

the location of the dominant poles. Our approach to the design is to determine
appropriate locations for the dominant poles of the closed-loop system. We can
determine the ]ncaunns from the performance specifications by using second-order
system app e las. Once the 11 are obtained so
that the closed-loop sysiem has the desired dominant po]cs.lh: remaining poles are
located so that their contribution to the overall response is negligible.

Gils) = K

(8.62)
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Another valid approach is o develop a second-order approximation of the
fourth-order system. In the approximate transfer function, the parameters X, a, b,
and ¢ are left as variables. Following the approach di d in Chapter 5, we can
obtain an approximate transfer function T, () in such a way that the frequency
response of Ty (5} s very close to that of the original system.

The loop transfer function is

K(s* + as + b)

GG = T T s o

and the closed-loop transfer function is

Ge5)G(s)

TG = TY 0050 (8.70)
" K(s* + as + b)
£+ (2 + ) + (10 + 2¢ + K)s* + (l0c + Ka)s + Kb
The iated ch isti ion is

PR+t +(10+ 2+ KP4+ (10c + Ka)s + Kb=0, (871)

The desired characteristic polynomial must also be fourth-order, but we want it to
be composed of multiple factors, as follows:

Pals) = (s* + 2{a,s + w2)(s® + dis + dy),

where { and w, are selected to meet the design specifications, and the roots of
£+ Yo + a}. = 0 are the dominant roots. Conversely we want the roots of
& + dys + dy = 010 be the nondomi roots The dominant roots should lie on a
wvertical line in the complex plane defined by the distance s = —{w, away from the
imaginary axis. Let

= Zafw,
Then the roots of 5* + dys + dy = 0, when complex, lie on a vertical line in the
complex plane defined by 5 = —afu,, By choosing a > 1, we effectively move the
roots to the left of the dominant roots. The larger we select o, the further the non-
dominant roots lie to the left of the dominant roots. A reasonable value of & is
a=12
Also, if we select
= o',
then we obtain two real roots

S+ dis + dg = (5 + afw,) = 0.
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FIGURE 8.43 1
The bode function, [mag,phass, wisbode(sys,w)
given Gis).
Il w is not specified, the bode function will i choose the freq y val-
ues by placing more points in regions where the frequency response is changing
quickly. If the frequencies are specified explicitly, it is desi tog the vec-

tor @ using the logspace function. The logspace function is shown in Figure 8.44.

The Bode diagram in Figure 8.42 is generated using the script shown in Figure
#.45. The bode function automatically selected the frequency range. This range is
user selectable using the function. The bode f can be used with a
state variable model, as shown in Figure 8.46. The use of the bode function is exactly
the same as with transfer functions, except that the input is a state-space object
instead of a transfer function object.

Keep in mind that our goal is to design control systems that satisfy certain per-
formance specifications given in the time domain. Thus, we must establish a connec-

tion between Ih: 1 P and the ient time resp ofa syslcm
The relationst pecifications given in the time domain o those given in
the freq domain d is upon ion of the system by a second-

order system with the poles being lhc syst:m dominant roots.
Consider the second-order system shown in Figure 8.24. The closed-loop rans-
fer function is

2
Gy

T(s) = 5———5. 8.74

&) s+ 2w, + o] 874

The Bode di itude ch isti fated with the closed-loop

transfer function in Equation (8.73) is shown in Figure 8.25. The relationship

FIGURE 8.38
Step responsa
using the controler
In Equation (B.73}.

FIGURE 8.39
Magnitude plot of

et i
Equation {8.73).
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8.7 FREQUENCY RESPONSE METHODS USING CONTROL DESIGN SOFTWARE

This section bcsms with an i to the Bode diagram and then di the
the freq and perfi specal'camns in the

time domain. The section ludes with an ill i p igning a con-
trol system in the frequency domain,

We will cover the functions bode and Incepaue The bode l'um:tmn is used to
generate a Bode diagram, and the h
spaced vector of frequencies utilized by the bode function.

Bode Diagram. Consider the transfer function
(1 + 0.15)
51+ 0.55)(1 + (0.6/50)5 + (1/50%57)

The Bode diagram corresponding to Equation (8.74) is shown in Figure 8.42. The
diagram consists of the logarithmic gain in dB versus w in one plot and the phase
dies) versus w in a second plot. As with the root locus plots, it will be tempting to
rely exclusively on control design software to obtain the Bode diagrams. The soft-
ware should be treated as one tool in a tool kit that can be used to design and ana-
lyze control systems. It is essential to develop the capability to obtain approximate
Bode di lly. There is no i for a clear und ding of the
underlying theory.

A Bode diagram is obtained with the bode function, shown in Figure 843, The
Bode diagram is automatically generated if the bode function is invoked without
left-hand arguments. Otherwise, the magnitude and phase cl istics are placed
in the workspace through the variables mag and phase. A Bode diagram is obtained
with the plot or semilogx function using mag, phase, and w. The vector & contains
the values of the frequency in radis at which the Bode diagram will be calculated.

Gis) = (8.74)

Giain 48

Phase deg
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bode(sys)
Transfer function model
sys = Uflnum,den)
State-space model
FIGURE 8.46 -
i sy = ss(A. B,C. D)
with a state variable bodaisys)
T s
fa)
zeta={0.15:0.01:0.7); g o, "‘luﬂ.mi
wi_gver_wn=sqri|1-2"zata *2);
Mp={2*z0ta .* sqei1-zeta A2)A-1)
%
8.47 subplol(211),plol{zeta, Mp),grid
(8) The relationship | xiabal(\zeta'), ylabsl('M_{plomegay)
between (Mo, o subplol{212),plot{zeta,wr_over_wn.grid
and {{, w) for a dabel(\zeta’), ylabal{\omega_r\omega_n’)
file
il (L]
EXAMPLE 89 Engraving machine system
Consider the block diagram model in Figure 8.32. Our objective is to select K so that
the closed-loop system has an acceptable time resp 1o astep 1. A func-
tional block diagram describing the frequency-domain design process is shown in
Figure 8.48. First, we choose K = 2 and then iterate K if the performance is unac-
ceptable. The seript shown in Figure 8.49 is used in the design. The value of K is
defined at the command level. Then the script is executed and the closed-loop Bode
diagram is generated. The values of M, and w, are determined by inspection from
the Bode diagram. Those values are used in conjunction with Figure 847 1o deter-
mine the corresponding values of { and w,.
Given the damping ratio, {, and the natural frequency, w,, the settling time and
percent overshoot are estimated using the formulas
T, = i P.O. = 100 exp——a—
b dwy - = \/_
If the time-domain specifications are not satisfied, then we adjust K and iterate.
Section 8.7 Frequency Response Methods Using Control Design Software 601
engrave.m
num=[K]; Wl 2K 4—‘ Closed-Joop transfer function. i
sys=t{rum,den]
wa=logspaca(-1, ! 400}
m e bodad Closod-loap Bode plot.
[mpj=max{mag)wr=w(l
Zeta=sgr(0.5%(1-sgrt{1-1mp 2))k Solving Egs. (£.36) and
rif1-2"zatang); {8.37) for {and w,.
ts=d/zetatwn
po=100"exp{-zeia"plisqri| 1-zewe"2})
> K=2; engrave
a=
FIGURE B.48 15.7962 Check mecl
wpecificalions.
Seript for the po=
design of an 384570 i ¥ -
0
(]
e, nun::tmltl: den={1 3 2 K]; sys=tljnum, dan};
1=[0-0.01
FIGURE 8.50 y=step(sys,1); platity): grid
(] Enom:: xlabal{Time (8]}, yiabed{v{t))
response for K= 2.
) m-file script. by

FIGURE 8.44
The logspace
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n po 107 and 10°

Magnitude (4B}

Phase (deg)
|

% Bode plot script for Fiqure B.42
%

nums5T0.1 1);
=1 0); 1240.5 1), f3={1/2500 /50 1); Compute
gon-oonI ORI +———1 1 ¢ 051 + 285+ L)
ays=t{num,den),
bode(sys)

b the fi w,, the i of the f

M. and the damping ratlm {. and the natural frequency, wy, is shown in Fsurv
847 (and in Figure 8.11), The information in Figure 8.47 will be quite helpful in
designing control systems in the frequency domain while satisfying time-domain
specifications,
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Compute closed-loop
Ulpsdsse transfer fumction
K L S
T T Th

Check g
imedn-\l'luvec: =
7= ?
. ‘ﬂk. =
M=+ T 'g

1T satisfied, then exit

E and
comibnue analysis.
Determiine M, and o,

! J

Establish relationship between frequency damain
specs and time domain specs.
Mo = (3 T= 0 p=0mm

o fa, =1 =207, (<0707

s 1
3 ! — 08 |-
My 1: k afy :: 1
L5 | 0zf-
1 — 0
02 04 06 08
(4
Determine w, and {.

The values for { and w, corresponding to K = 2 are { = 0.29 and w, = 0.88.
This leads to a prediction of P.0. = 37% and T, = 15.7 seconds, The step response,
shown in Figure 8.50, is a verification that the performance predictions are quite
accurate and that the closed-loop system performs adcquatuiy

In this ple, the d-ord syslem ppr i !s ble and leads
10 an accef design. H the may not always
lead directly 1o a good design. Fortunately, the cuul.ml desqg-n software allows us to
construct an interactive design facility to assist in the design process by reducing the
manual computational loads while providing easy access to a host of classical and
modern control tools. =
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FIGURE 8.53 Sketch of the Bode diagram magnitude for the system of Figure 852,

Plots of the magnitude of the open-loop Bode diagram and the closed-loop
Bode diagram are shown in Figure 8,54, The bandwidth of the closed-loop system is
wy = 2000 rad/’s, We can estimate the settling time (with a 2% criterion) of this sys-
tem using

4

oy

.

where { = 0.8 and w, = wy = 2000 rad/s, Therefore, we expect T, = 2.5 ms for the
system of Figure 8.52. As long as K = 400, the resonance is outside the bandwidth
of the system,

In this chapt:r. we have idered the f of a feedback control sys-
tem by its freq h istics. The fi ¥ resp of a system
was defined as the stcady -state Tespanse of the syslcm to a sinusoidal input signal.
Several al ive forms of freq P plots were idered. They

included the polar plot of the frequency response of a system G(jw) and logarith-
mnc plu\s. often called Bode plots. The value of the logarithmic measure was also

d. The ease of ob ¢ a Bode plot for the various factors of G{jw) was
noted, and an example was considered in detail. The asymptotic approximation for

Kigr, + 1)
A et 1)
40 Rider
u
b ey L o -
i+ U ¢ [T og
I
e P -
Tors + Hms + Tm + 1) FAmoen)
S

dmuung  § vonoeg

602

Chapter 8 Frequency Response Methods

8.8 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

—

The disk drive uses a flexure suspension to hold the reader head mount, as shown in
Figure 2.75. As noted in Section 3.10, this flexure may be modeled by a spring and
mass, as shown in Figure 3.40. In this chapter, we will include the effect of the flex-
ure within the model of the motor-load system [22].

We model the flexure with the mounted head as a mass M, a spring &, and a slid-
ing friction b, as shown in Figure 8.51. Here, we assume that the force u(r) is exerted
on the flexure by the arm. The transfer function of a spring-mass-damper was devel-
oped in Chapter 2, where

Y(s) o, - 1
U6 ™ O " T s v el T v sl G

A typical flexure and head has { = 0.3 and a natural resonance at f,, = 3000 Hz.
Therefore, w, = 1885 % 10° as shown in the model of the system (see
Figure 8.52).

First, we sketch the magnitude characteristics for the open-loop Bode diagram,
‘The Bode diagram sketch is shown in Figure 8.53. Note that the actual plot has a 10-dB
gain (over the ic plot) at the e =y, 45 shown in the sketch. The
sketch is a plot of

20log| K(jw + 1)Gy{jw)Galjw)Galjw),

for the system of Figure 8.52 when K = 400. Note the resonance at a,. Clearly, we
wish to avoid exciting this resonance.

+ == rini
Art force ST"‘ !
Mass M
FIGURE 8.51
Spring, mass,
friction modal of
flexire and hoad,
PD coniral Monor coil Arm Flexure and hesd
R+ Tl

3 [ |
Git) = Kis + 1) —a] Gy} = —— || Gyts) = —oe Ll G} =
idmbuial e L) S T

=107 =120 £ =03, w, = 1885 % 10

FIGURE 8.52 Disk drive head position control, including efiect of flexure head maount.
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sketching the Bode diagram simplifies the computation considerably. A summary
of fifieen typical Bode plots is shown in Table 8.5, Several performance specifica-
tions in the frequency domain were discussed; among them were the maximum

magnitude M, and the w,. The b the
Bode diagram plot and the system :rror constants (K, and K,) was noted Finally,
the log-magnitude versus phase diagram was Jered for grag P

ing the frequency response of a system,

Magrinade (d8)

Magnitude (dE)

wy
Frequency (rad/s)
(L]

FIGURE 8.54 The magnituds Bade plot for (a) the open-loop
tranafer function and {bj the closed-icop system.
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FIGURE 8.56 Bode plot selections.

In Problems 9 and 16, consider the feedback system in Figure £55 with the loop transfer
function
50
Lig) = GUIGLs) = 5o
9. The break frequencies on the Bode plot are
® w=1landw =12 radis
b w = 2andw = 10 radis
o w=20andw = 1 rads
d w=12and w = 20 radis
10, The slope of the asymptotic plot at very low (o <= 1) and high (e > 10) frequencies
are, respectively:
a. Atlow slope = 20 and at high freqy fope =20
b Atlow slope = 0 dB/decade and at high fr ls =20 dBldecade
¢ Atlow frequency: sope = 0 dBidecade and at high frequency: slope = =40 dB/decade
. Atlow 20 and at high frequency: slope = ~20 dB/
decade

Tablo 8.5 feontinuved)
+
o
Kis, + 1)
e
o fr et
0 (3 T g
10 e
L3
g _iE nk
Hawy + 1)
0 dlider
M
- i, + 1)
3 — o 13 .
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. SKILLS CHECK

In 1his section, we provide three sets of problems to test your knowledge: True or False, Multiple
Chobee, and Word Match. To obtain direct feedback, check your answers with the answer key
provided ot the conclusion of the end-of-chapter problems Use the block diagram in Figure 855
a1 specified in the various problem statements.

Cootroller | | Process

Rl Ginl f—w Gin ns

FIGURE 8.55 Block diagram for the Skills Checic.

In the following True or False and Multiple Cholce problems, circle the correct answer.
L. The frequency response represents the steady-state response of a stable

system 1o a sinusoidal input signal at various frequencies. Tree or False
2. A plot of the real part of Giju) versus the imaginary

part of Gijuw) is called a Bode plot. True or False
3, A trangler function is termed minimum phase if all its zeros Lie in the

right-hand s-plane. Trute or False
4. The resomant frequency and bandwidih can be related to the speed of

the transient response. Triee or Falve
5. One advantage of ncy response mothods is the ready availability

of sinusoldal test signals for various ranges of frequencies and amplitudes.  Trise or False
6 Consider the stable P d by the dil equation

ey + 3x(r) = wir),

where u(r} = sin 3¢. Determine the phase lag for this system.

s p=0

b, 4= —45"

€ = -6

d ¢ = -150°

In Problems 7 and 8, consider the feedback system in Figure 855 with the loop transfer
function

8z + 1)
82+ £)(2 + 3a)

7. The Bode diagram of this system corresponds to which plot in Figure 8567
B. Determine the frequency at which the gain has unit magnitude and compute the phase
angle at that frequency:
& o= | radis, ¢ = —82°
b w = 126 radis ¢ = —133°
€ w=126radké = 133"
d w =42 rds, ¢ = —160°

L) = GG ls) =
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“The resonant [ e, and the b
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iy = 1.59 radls, ey = 186 radls
be or, = 326 cadls, ay, = 1664 radls
€ o, = 12.52 radis, wy, = 3.25 radis
A w, = 540 radls, an, = 11.6 radis

For Problems 14 and 15, consider the frequency response of a process G{jw) depicted in

Figure 858,

5

B 8

Magnitude (d8)
é =

;!
==

=

FIGURE 8.58 Bode plot for G{jul.

ES
S

14, Determine the system type (that is, the number of integrators, N

a N=0
b N =1
& N=2
d N>2

15. The transfer function corresponding to the Bode plot in Figure 858 iz

100(s + 10)(s + 5000)

e P TP )
100

hGl:}”m

e Gis) = 10

{5 + 1)z + S0)(s + 200)

100(s + 20)(s + 5000)

d Gis) =

Exercises

EXERCISES

ER1 Increased track densitics for computer disk drives
necessitate careful design of the head positioning con-
trol [1]. The boop transfer function is

K
L8} = GAs)Ts) = m
ise for this when K = 4.
Cakulane the plm and magnitude at w = 0.5,1,2.4,

and ca.

Amiwer: |L{j0.5)] = 0.94 and /L{j0.5) = ~28.1°
E82 A tendon-operated mhw: hmiun& implemented

using a «can be rep-

resented by

A

G = G T0s + o0

Plot the frequency response of G{jw). Show that the
magnitude of Gljw) is ~17dB at w =10 and
=271 4B ot w = 2. Show also that the phase i
=138.7% pt o = 700,

EB3 A robotic arm has a joint-contral loop transfer
function
300(s + 100)

Lis) = GAs)G(s) = o + 1005 + 40)°

Show that the frequency equals 28.3 radls when the
phase angle of L{jw) is = 150° Find the magnitude of
Lifur) at that frequency.
Answer: |L(j283)] = -254B

EB4  The frequency response for a process of the form

Ki

o= (5 + a)ts® + 205 + 100)

(x + 1)(s + 50)(s + 200)

613

is shown in Figure ER 4. Determine & and a by exam-
ining the frequency response curves,
E85  The magnitude plot of a transfer function

K(1 + 0.55)(1 + a5)

31+ /811 + b1 + 5/36)
is shown in Figure EBS. Determine K. a. and & from
the plot,
Amswer: K = B.a = 1/4.b = 1/24

EBR6 Several studies have proposed an extravehicular
robot that could move around in 8 NASA space sta-
tion and perform physical rasks at various worksites
[¥]. The arm is controlled by a wnily feedback control
with Joop transfer function

Gls) =

L) = GAIGU) = S Tytsrio0 + 1)
Draw the Bode diagram for K = 20, and determine
the frequency when 20 log| L{ju)lis 0 dB.

E&T Consider asystem with a closed-loop transfer function

Y 4
RiE) (P ts+ I+ 045+ 4)
This system will have no steady-state error for a step
imput. (a) Plot the frequency response, noting the twa
peaks in the magnitude response. (b) Predict the time
response 1o 0 step input. noting that the system has
four poles and cannot be represented as a dominant
second-order system, (¢} Plot the siep response.
ES8 A feedback system has a loop transfer function
100(s — 1)
£+ 25+ 100

Ts) =

Lix) = Gla)Gi{s) =

20MoglGidB)

FIGURE E8.4
Bode diagram.
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1L Consider the Bode plot in Figure B.57.

i

Magnitede (dB)

‘Which loop transfer function Lis) = G(£)G(s) corresponds to the Bode plot in Figure 8.577

& Lis) = Gs)G(s) =

1040
3ls + 8)(s = 6)

b L) = GG = T T

e L5} = GA=)Gis) =

4 Lz} = GAs)G(s) =

.
(s + 6)

10
£ 4055+ 10

12. Suppose that one design specification for a feedback control system requires that the
percent overshoot to a step input be less than 10%. The corresponding specification in
the frequency domain is

n Mo =055
b M= 059
& M= 105
4 Mo.=127

13. Consider the feedback control system in Figure 855 with

G60) = i

612 Chapter 8 Frequency Response Methods

In the following Werd Muich problems, mateh the term with the definition by writing the
provided,

correct better in the space

Laplace
transform pair
b. Decibel (dB)
e Fourier transform
d. Bode plot

e Transfer function
in the frequency
domain

L Decade
& Dominant roots

b All-pass network

i. Logarithmic
magnitude
J- Natural freqy

The logarithm of the magnitude of the transfer function

and the phase are plotted versus the logarithm of w,

the frequency.

Tha:lowhhm of the magnitude of the transler function,
20 bogyl Gljw)].

A plot of the real part of Gijw) versus the imaginary part

of Gjuw).

The steady-state response of 2 system to a sinusoidal

input signal.

All the zeros of a transfer function lie in the left-hand

side of the s-plane.

The frequency at which the frequency response has
declined 3 dB from its low frequency value.

The frequency at which the maximum value of the
frequency response of 8 complex pair of poles is
attained.

The frequency of natural oscillation that would

wocur for two complex poles if the damping were
equal to zero.

“Transfer functions with zeros in the right-hand s-plane.

k. Fourier transform
pair
1. Minimum phase

m. Bandwidih
. Frequency
response

0. Resonant
[frequency

p- Break frequency

. Polar plot

& Maximum value
of the frequency
response

5. Nonminimum
phase

The
of the ﬁnqumcymlpom: fora pule{nrz:w}r.hnwl
shope-

mmuﬂmmoh function of time into the
frequency doma

The ratlo of the mlputtoﬂwiqmi signal where the
input is a sinusoid.

The units of the logarithmic gain.

A pair of complex poles will resuli in a maximum vahse
for the frequency response occurring at the resonant
frequency.

A nonminimum phase system that passes all frequencies
with equal gain.

A factor of ten in frequency.

The roats of the characteristic equation that represent
or dominate the closed-loop transient response.

A pair of functions, one in the time domain, and the
other in the frequency domain, and both related by
the Fourier transform.

A pair of functions, one in the time domain, and the
other in the frequency domain, and both related by
the Laplace transform.
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FIGURE EB.11 =
Unity feedback
system.
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respanse. (b) Compare the frequency response of the
twin-T and bridged-T networks when @ = 10,

PEA A control system for controlling the pressure in a
closed chamber is shown in Figure P8.4. The transfer
Tunction for the measuring element is

150

i e
and the transfer function for the valve is

1
(005 + 1a/20 4 1)

“The controller transfer function is

Gish=2e+ 1.

Gyfs) =

Oibtain the frequency respanse choracteristics for the
boop transfer function

Gs)G (D H () [1/5].

P85 The robot industry in the United States is growing at
a rate of 30% a year [8]. A typical industrial robot has
degrees of freedom. A unity feedback position control
system for a force-sensing joint has a loop teansler

K

GdNGU) = 5T )0+ 300 + o)
where K = 10, Sketch the Bode diagram of this
system.

PRS "H\e asymptotic Bog-mammde curves for two transfer

Figure P86, Sketch thy

lngasympwmpimuhm curves for each sysiem. Dew
mine the transfer function for each system. Assume that
the systems have minimum phase transfer lunctions.

PRT  Driverless vehicles con be used in warehouses, air:
ports, and many other applications These vehicles fol-
low a wire embedded in the floor and adjust the
steerable front wheels in order to maintain proper
direction, as shown in Figure P3.7(a) [10]. The sensing
coils, mounted on the front wheel assembly. deteet an
error in the direction of travel and ndjust the steering.
The overall control system is shown in Figure PE7(b).
The loop wransfer function is

K.

K
= e T gy
We want the bandwidth of the closed-loop system to
exceed 2o radfs. (a) Set K, = 2r and skeich the
Bode diagram. (b) Using the Bode diagram, obtain
the logarithmic-magnitude versus phase angle curve.

chamber —

—

function
Desanad
pressune
Infimite Pressure
pressure
source Py
{a}
Byiny
FIGURE P8.4
Pressum
controliar. () Block
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(8) Determine the corner frequencies (break lrequen-

cies) for the Bode plod. (b) Determine the slope of the

asympumc plot at very low frequencics lud at high
{c) Sketch the Bode itude plot.

EBS The Bode dingram of a system is shown in Figure
ERS, Determine the transfer function Gis).

E8.10 The dynamic analyzer shown in Figure ES.10(a)
can be used to display the frequency response of a
system. Also shown is the signal analyzer used to mea-
sure the mechanical vibration in the cockpit of an au-
tomobile, Figure E&.1I(b) shows the actual frequency
response of a system. Estimate the poles and zeros of
the device. Note X' = 1.37 kHz at the first cursor, and
AX = 1257 kHz to the second cursor.

E#.11 Consider the feedback control system in Figure
EB.11. Sketch the Bode plot of Gis) and determine

the cromover frequency, that s, the frequency when
20 logylGjw)| = 0dB.

ER&12 Consider the system represented in stote variable

form
5 o 1 0
=[5 Sk
y=[1 =1jx+ [0}
{a} Determine the transfer function representation of
the system. (b) Sketch the Bode plot.
ER13 Determine the bandwidth of the feedback control
system in Figure ES.13.

E814 Consider the nonunity feedback sysiem in Figure
EB.14, where the controller pain is K = 2. Sketch the
Bode plot of the loop transfer function. Determine the
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Controlles Proseds
+ 100 1
o i+l Erarrarl B
FIGURE E8.13 =
Third-ordar
Teedback system.
Coanroller, G4} FProcess, (la}
- A =
R . K = Tish
FIGURE EB.14 Siver; W)
Horunity isedback [}
system with i+
controller gain K.

phase of the loop transfer function when the magnitude
20 loglLijm)| = 0 dB.Recall that the loop tramsfer
function s L{s) = G (s)G{s)H(s).
ER1S Consider the single-input, single-output system
described by
w{f) = Ax(r) + Bu(r)
) = Cxlt)

PROBLEMS

PRI Sketch the polar plot of the frequency response for
the follawing boop transfer lunctions:

1

(o} GAnIG(s) = T 028001 + 39)
S 4 145 + 1)

s =1y
s 5
Ffrea+8

2005 + &)

35+ INs + 4)
P82 Skeich the Bode diagram representation of the fre-

quency response for the transfer functions given in
Problem PA.1,

PR3 A rejection network that can be used instead of the
iwin-T network of Example 84 s the bridged-T net-
work shown in Figure P8.3. The transfer function of
this network is

() G(s)Gls) =
(&) Gels)Gls) =

(d) Gls)ls) =

where

Lt oo »

Compute the bandwidth of the system for K = 1.2,
and 10. As K increnses. does the bandwidih increase of
decrease?

FIGURE P8.3 Bridged-T netwaork.

£+ wl
4 e Qs + wnf

(can you show this?), where w,’ = 2/LC, Q = w,L/R;,
and Ry is adjusted so that Ry = (w,L)/4R, (3]
{) Determine the poke-zero patiern and, using the vec-
tor approach, evaluate the approximate frequency

ifs) =
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Comtrolber Process
FIGURE P8.8 ; ——
Second-grder unily . T = B
fedback system 7 ails 4+ 100
FIGURE P8.10
Linear actuator
conttol.

i Ly = U2 H. The mass of the load B 0.0 kg and the  PRIZ The block diagram of o leedback coniral system is

friction is 0.2 N ¥/m. The spring constant & equal o
04 Wi, (a) Determine the gain K pecessary bo mnintain
A steady-stste error for 3 step inpul less than 1% That is.
K, must be greater than 95, (b} Sketeh the Bode dia-
gram of the loop wansfer function, L{s) = G{s)H(1).

curve for Ljw). {d) Sketch the Bode dingram for the
closed-loop ranafer function. ¥'{jw)/ R jw). Determing
M . o9, and the handwidth.

PRIl Awomatic steering of a ship would be a particularly
wseful application of feedback control theory [20]. Tn
the case of heavily traveled seas. it is important to
mabntain the motion of the ship aleng an scourate
track. An mutomatic system would be more likely o
maintain & smaller error from ihe desired heading
Hain 4 hel wha al nh et
vals A ical model of the T s
Iseen developed for i ship moving at a constant veloc-
ity and for small deviations from the desired 1eack. For
a lnrpe lanker. the transfer Function of the ship i

Elx) _ Dibd{s + 02)( -5 + 032)

) A+ D2SN — o)

where E(s) is the Laplace transform of the devation
of the ship from the desired heading and 5{x) is the
Laplace transform of the angle of deflection of the
steering rudder. Verify that the frequency response ol
the ship, E{jw)/8(jw). i that shown o Fyure PS11L

Gls) =

shown in Figure PS.12{a). The transfer functions of the
blocks are represented by the frequency response
curves shown in Figure PRA2(b), (s) When Gy is dis-
connected from the system, determine the damping
ratio ¢ of the system, (b) Connect Gy and detenmine
the daniping ratio £ Assume that the systems have
minimm phnse transfer functions.

PRI} A position control systcm may be constructed by

using un AC motor and AC components. as shown in
Figure PH.13 The syncro and controd transformer may
be conssdercd! (o0 be a traosformer with @ rolating
winding. The syncro position detector rotor turms with
the Ioad through an angle o, The syncro modor is
encegieed with an AC reference voltage, for example,
115 volis, 60 He The input signal or command is
Ris) = (5} and is applied by turming the mtorof the
control transformer. The AC two-phase molor oper-
nles as n resubt of the amplified crror signal. The
ndvantages of an AC control system are (1) freedom
ron DC drift effects and (2) the simplicity and accu-
racy of AC components To measure the open-loop
frequency response, we simply disconnect X from ¥
and X from ¥' and then apply a sinusoidal modula-
tion signal generator 10 the ¥ — ¥* terminals and
measure the respanse at X — X (The error (B — &)
will be adjusted 10 2ere before applying the AC gener-
mor.) The resulting frequency response of the loop
wransfer  function  Lijw) = O falGmH{jw) s
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Load

Symore praerin

Problems.
Conirol tramsformer
{a)
40
— 20 dBAes
g a
= i '
§ 5 e
g -n
8 | =0 dBed
FIGURE P8.13 1 ] [
{8) AG metor control o fradhs)
(b Frequency

ih)

shown in Figure PA.13(h). Determine the transler

Tunction L{fu). Assume that the system has a mini. o, ot il 3

mum phase iransfer function.
PE14 A bandpass amplifier may be represemed by the
circuit model shown in Figure P8.14 [3). When & =
Ry = 1KILCy = WO pF, Cy = 1 uF, and & = 100,
shaw that
10"
() = e
Ha) (o 4 1000K s + 10°)
{n) Skewch the Bode diagram of Gijw), (b) Find the
midband gain (in dB), (¢) Find the high and low fre.
quency —3 dB points.
PRIS To determine the transfer function of o process
(). the [requency response may be messured uing
& sinusoidal input, One sysiem yields the datu in the
following table:

ol 50 =
I 502 ~524
2 57 “96.2
4 136 =100
5 117 =14
63 L3 -110
5 097 =120
1m0 097 =143
125 074 -168
20 013 -245
3 0026 —58

Determing the tramler function Gla).

PR16  The space thuttle has been used to repuer satelliies
snd the Hubble telescope. Figure P 16 ilhustraics how
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FIGURE P8.6
Log-magnitude

0 1a TN
=40 dB/dec

B

20 Tog|t] (d8)
=

—* log e

Energized guidepath wire.

ia)
: + | : | l o| Vehicke I Dircxtivn
Referno: Controller Motor wheels [ ofumel

FIGURE P&.7
Stearable wheal
control,

A feedback control system is shown in Figure PS8, The
ifscation for the closed-loop quires that the
tor o step input be less than 15%. (a) Deter-
mine the specification M, in the fre-
quency domain for the closed-Joop transfer function

¥ijur)
Riju)

(b} Determine the resonant frequency w,. (c) Deter-
mine the bandwidth of the closed-loop system.

Tijw).

P89 Sketch the lognrithmic-magnitude versus phase

angle curves for the transfer functions (a) and (b} of
Problem P2.1.

PEI0 A linear actuator is used in the system shown in

Figure PA10 to position a mass M. The actual position
of the mass is measured by a shide wire resistor, and
thus H(s) = 1.0. The amplifier gain is selected so that
the steady-state error of the system is less than 1%
of the magnitude of the position reference R(s). The
actuator has a feld coll with & resistance 8, = 0.1 {1

620
g
=
FIGURE P8.11
regponse of ship
control system. i {radfs)
{a)
im
Folar phot
Gyl
o Re D
a8
M T Logasithmic magsitode
incressing v, phese: ploa
we i 9,54 Gyljon)
+ - —¢
=30 -2 -8 -0
FIGURE P8.12 |
Feedback system. (L]
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FIGURE P8.19 ol
{m) Matar controlier,
b} Measured plol. i

FEI0  For the successful development of space projects,
robotics and automation will be a key technology.
Autonomous and dexterous space rubols can reduce
the worklond of auronaus and incrense operational
effickency in many missions. Figure P82 shows n con-
cept called a free-Aying robot [9, 13]. A major charsc-
teristic of space robots, which clearly distinguishes
them from robots operated on carth, is (he lack of &
fixesd base. Any motion of the manipulator arm will
induce reaction forees and moments in the base, which
isturh its position and anitude.

FIGURE P8.20 A space robot wilhy throa arms, shown
capturing a satelite.

g
3
E
o
-
50 I |
! w o
Frequency wiradih

FIGURE P8.24 Bode plot of a closed-film transport system.

20 log k|G jus)] ) {elBy

The control of one of the joints of the robot cun
e represented by the loop transfer function
; 823(s + 98)
Lix) = Gle)Gls) = s
{n) Sketch the Bode dingram of L{jw]. (b) Deiermine
the maximum value of L{jw), the frequency at which
it ocours, and the phase at thal frequency.

PR21  Low-altitude wind shear is a major case of air carmier

accidents in the United Stwles. Most of these acadents
have been caused by sither microbursts (small-scale,
low-aliitude, miense thunderdorm downdrafts that im-
pact the surface and cause stroag divergent outllows of
wind) or by the gust front a1 the leading edge of expand-
tng thunderstarm outfllows. A microbarst encounter s a
serious probiem for either landing or depaning airerall.
becaise the airerafl & o1 low altitudes and is traveling ot
Just ever 25% above ity stall speed [12],

The design of the control of an aircrall encoun-
tering wind shear after inkeoff may be treated a8 o
problem of stabiliring the climb rate about o desired
walue of the climb rate. The resulting controller uses
only dimb rate information.

The standard negative unity feedback system of
Figure 524 has a loop transfer function

- 200+

G (5)Ci(s) = P BT B YRR

10! 1o 1ot

w'ot e -m’ m’. 1o .m'
Frequency a (ral's)

FIGURE PB.25 Bode plot of a unity Tesdback system.

&y &

FIGURE P8.26

[ T L 1 [+
Frequency o (rdis)

An op-amp cireult.

n
A

il
=
E

FIGURE PB.14 Bandpass ampliisr.

o erew member, with his fect strapped 1o the platfarm
i the end of the shuttle’s robotic arm, uscd his arms
to stop the satellite’s spin, The control system of the
robotic arm has & closed-loop transfer function

Yis) &2
Rs) o 12is+ 02

(0] Determine {he respoose ¥(¢) o 4 unkl siep loput,
Rix) = 1/x.{b) Determine the bandwidih of ibe system.

FIGURE PB.16 Salaits repair

PRI7T The experimemal Oblique Wing Airoraft {OWA)
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PB2 The frequency m

hias o wing that pivots, ms shown in Figure PRIT. The
wing is in the normml uskewed position for low
speeds and con move 1o o skewed postion for
improved supersonic fight [11]. The airerait contral
system loop transler lunction is

#H05x v 1)

{a) Skerch the Bode diagram. (b} Find the frequency
oy when the magnitude is () dB, and find the frequency
sy when the phise is = 180°

Gn)Gis) =

Note the negative gain in G{s)G(s). This system rep-
resents the conteol system for the climb rate. Sketch
the Bode diagram and determine gain (in dB) when
the phase is — 1807,

esponse of a process Gijw) is
shown in Figure P8.22 Determine Gis).

PB2Y The frequency response of a process Giju) is

shown in Figure P8.23. Deduce the type number
{number of for the system. Dy

the transfer function of the system, G{s). Calculate the
Error [0 a unit step input.

P24 The Bode diagram of u closed-loop film

ransport
system is shown in Figure P8.24 [17], Assume that the
system transfer function Ti(s) has two dominant
complex conjugate poles. (a) Determine the best sec-
ond-order model for the system. (b) Determine the
system bandwidih. (¢) Predict the percent overshoot
and settling time (with a 2% criterion) for a step input.

PR25 A unity fecdback closed-loop system has a steady-

0 bog WG jw)]) (dB)

state error equal o AMD, where the input i

5
of -
-5
—1o]-
-5 | it
-0 i W |||1;5| H]lll H
who ot et e et e

Frequency o iradish

FIGURE PB.22 Bode plot of Gis).

20 log 106G jw) (48)

Il
]

|
2

|
2

FIGURE PB.23 Frequency responsa of Gijuw).
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Muxinsm skewed
wimg powition

FIGURE P8.17 Tha Obligus Wing Airorft. top and side
WHWE.

PRI Remote operation plays an impertant e in hos-

tite environments, such as those in nuclear or high-
temperalure environments and in deep space, Tn spite
of the efforts of many researchers, a leleoperation sys-
tem ihat s comparable o the human's direct opera-
tion has not been developed. Rescanch engineers have
Iseen trying 1 improve teleoperations by feeding back
rich semsory information acquired by the robot 1o the
operntor with o seasation of presence. This concept is
called tele-exisience of telepresence [9].

The tele-caitence madter-dave syslem consts
of A master system with a visual and auditory sensa-
tion off presence. a computer control system, and an

shic slave robot with an arm
having seven degrees of freedom and o locomotion
mechanism. The operator’s head movement. right am
right hand and other tuxiliary
motion are measured by the master system. A special-
Iy designed steren visual and auditory mpur system
mounted on the neck mechanism of the slave robot
gathers visunl and auditory miormation feom the
remate environment. These pieces of information are
semn back 10 the masier system and are applicd to the
specially despned stereo display sysiem 1o evolie the
sensation of presence of the operator. The locomotion
comtrol sysiem has the loop transfer function

1205 -+ 0.5)
£+ 13430
bt the Bode diagram for G, {fa )G je) and deter-

mine (he frequency when 20 bog |G, (o) G jor)| is very
chose 1o 0 dR-

GinGn) =

PRI9 A DC motor controller used extensively in autn-

mobiles is shown in Figure PR.A%a). The measured
plot of (x)/f(s) s shown in Figure PE.19{b). Deer-
mine the tramsder lunction of ©(a)/1{x).

Chapter 8 Frequency Response Methods

rlr) = Ar/2. The Bode plot of the magnitude and
phase angle versus w s shown in Figure PE25 for
Gilju). Determine the transfer function Gis).

P8.26  Determine the transfer function of the op-amp cir-

cuit shown in Figure P8.26. Assume an ideal op-amp.
Plot the frequency response when R = [DKELL,
Ry = 9k Ry = 1k, and € = 1| uF.

PB2T A unity feedback system has the loop tramsfer
function

Phase, deg

Kis + 50)

Lis) = GAs)G(s) P Ty

Sketch the Bode plot of the boop transfer function and
indicate how the magnitude 20 logl L{jw)| plot varies as
K varies. Develop a table for K = 0.75.2, and 10, and
for each K determine the cromover [frequency
{us, for 20 Togl Lifw)| = 0dB), the magnitude at low
Eeqm :mbng!LU\uJ] num-cr:u and for the
h for each K.

IR ' bALL !
ot W awt wet
Frequency w (radls)




Advanced Problems

FIGURE APE.4
toputack contol
system.

1,10, 50, 110, nad 300, () Is the open-loop system sta-
ble? s the chosed- loop system stable?

APRLS6  Consider the spring-mass system depicied in Fig-
ure AFGA, Develop a transfer function model o
describe the mation of the mass M = 2 kg.when the
it 4 ae(t) and the output b ofi). Assime that the bin
tial conditions are x{0) = 0 and {0) = 0, Determine
values of & and b such that the maximum sticady-state

of the system to & simssoidal inpat
ufr) = sinfwi}is dess than | for all w, For the values

FIGURE APB.G
Suspended spring n l
mass sysism with
parametors k and b uiry

Design Problems

Vini
Liwad

you selected for k and b, what is the frequency ot
which the peak respanse dccurs?

APRT  An op-nmp cireuit is shawn in Figure APRT. The
cireuil represents m lend compensitor discussed in
more detail in Chapter 10,

(a) Determine the transfer function of (his cironit.

() Sketch the frequency response of the circuit
when ) = 10k{L By = 00 0.€, = 0,1 pF,and
€= I mF.

FIGURE APB.7 Op-amp land ciroult,

amd senwar

FIGURE DP8.3
Automatic iablo
and despenaer.

K-k
aaul sevisiar

Fay
Piition
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ADVANCED PROBLEMS

APR1 A spring-mass-damper system is shown in Figure
APR.1{a). The Bode dingram obtained by experimen-
tal means using a sinuseidal forcing lunction is thown

20 loglG] (dB}

U]

FIGURE AP8.1 [N
A Bpring-mass-
damper systam. =

=10

20|~
—w|

=l

=50

APR2 A sysiem is shown in Figure AP8.2. The nominal
valee of the parameter b is 4.0, Determine the sensi-

in Figure AP&.1{b). Determine the numerical values
of m, b and k.

tivity ST and plot 20 loglST| the Bode magnitude dia-
gram for K = 5,

System with
parameter b.

APB3  As an automobile moves along the road, the verti-
cal displacements at the tires act as the motion excita-
tioa to the automobile suspension sysiem [16]. Figure

FIGURE APB.3  Auto suspension system madel.

APB3 i a schematic diagram of a simplified automo-
blll.‘ wspemion system. for which we assume the input
ion X{s)Ris).
and sketch ll\: Bode diagram when M = 1kg,
b= dNsim andk = I8 N/m.

APBA A helicopier with a load on the end of a cable is

shown in Figure APS.4(a). The position control system
is shown in Figure APR.4(b), where the visual feed-
back is repeesented by H(x). Sketch the Bode diagram
of the loop transfer function L{jw) = G{jw)H (ju).

APRS A closed-loop system with unity feedback has a

transfer function

L i) I

495+ 00

{a) Determine the boop transfer function G(s)G(s).
(b) Plot the log-magnitude-phase (similar to Figure
827}, and identifly the frequency poinis for w equal 1o

Tis) =
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GN PROBLEMS

CDFB.1 In this chapter, we wish (o we o D controller
oy such that

d’ Gils) = K(s + 2).

The tachometer is not used (see Figure CDP41).
Plot the Bode diagram for the system when K = 40,
Determine the step response of this system and esti-
mate the overshoot and settling time (with a 2%
eriterhon).

DPE1  Understanding the behavior of & human sieering

(a) Sketch the Bode disgram for G,(s)G(s)
when K = 20, Determine (1) the requency when the
phase i -180° and (2) the frequency when
2010g|G,G] = 0dB. (b) Plot the Bode diagram for
the closed-loop transfer function T(s) when K = 20.
{c) Determine M . w,. and wy for the closed-loop sys-
temwhen K = Zf:ud K = 25, (d) Sclect the best gain
of the two specified in part (c) when it is desired that
the overshoot of the system to a step input (1) be bess
than 5% and the settling time be as short as possible.

an automobile remains an interesting subject [14. 15, DPE3 A table is used 1o position vials under a dispenser

lﬁ 21} Tln design and development of systems for

wheel steering, active ions, active. inde-
pendent braking, and “drive-by-wire” steering provide
the engineer with considerably more freedom in alter-
ing vehicle-handling qualities than existed in the past.

The vehicle and the driver are represented by
the model in Figure DPB.1, where the driver devel-
ops anticipation of the vehicle de from the
center line. For K = [, plot the Bode diagram of {n)
the loop transfer function G(s)G{s) and (b) the
closed-loop transfer function T{s). (¢} Repem paris

(a) and (b) when K = 50.(d) A driver can select the  pypg.y

gain K. Determine the lppmpnm glln 50 that
M, = 2. and the d is the

head, a5 shown in Figure DP8.3{a). The objective i
speed. accuracy, and smooth motion in order to elimi-
nate spilling. The position control system is shown in
Figure DPS3(b). Since we want small evershoot for a
step input and yet desire a shoet settling time, we will
limit 20 fog M ., 10 3 dB for T{jw). Plot the Bode dia-
gram for a gain & that will result in a stable system,

Then adjust K unnil 20log M, = 3 dB. and deter-

mine the elosed.loop system bandwidth, Determine
the steady-state error for the system for the gain K
selected to m“: the l:qulumcnl for M .

ok £
control system, For certain operations, such as bu:n
be

tainable for the closed-loop system. (¢) Determine
the steady-state error of the system for a ramp input
) =

DP82 The unmanned explunuwn of plancts such as
Mars requires a becaise of the
COMMUNication d:lnp bclwcen robats in space and
their Earth-based stations. This affects all the campo-

y muscle
ﬁnﬂma To ensure adequate operating conditions
for the surgeon. muscle relaxant drugs. which block -
voluntary muscle movements, are administered.

A conventional method used by anesthesiolo-
gists for muscle relaxant administration is o illjecl a
bolus dose whose size is determined by experience
and to inject supplements as required. However, an
fail to maintain a

nents of the system: planning. sensing. and
In particular, such a level of aulonomy can be
achieved only il ench robot has a perception system

may
steady reul of relaxation, resulting in o J-rne drug
p by the paticl. Significant improve-

that can reliably build and maintain models of the
environment, The perception system i a major part of
the development of a complete system that incledes.
planning and mechaiism design. The target vehicle is
the Spider-bot, a four-legged walking robot shown in
Figure DPA.2(a), being developed at NASA Jet
Propulsion Labaratory [18]. The control system of one

ments may be achieved by introducing the concept of
automatic control. which results in a considerable
reduction in the 1o1al relaxant drug consumed [19].

A model of the anesthesia process is shown
in Figure DPRA. Sclect a gain K so that the band-
widih of the closed-loop system is maximized while
M, = L5 Determine the bandwidth attained for

leg is shown in Figure DPE2(b), your design.
Ge) Gl
Riay Detver al Liti]
Desired * Egror 1 istance
distanise ot L " Farin fram center

FIGURE DP8.1 wemer line i
Human stearing
cantrol system.

linc




Computer Problems
DP8.7 Consider the system of Figure DP8.7. Consider
the controfler to be a proportional plus integral plus
derivative (PID) given by

Gls) = Kp+ Kpt + -?

631

Design the PID controller gains to achieve (a) an
acceleration constant K, = 2, (b) a phase margin of
P.M. = 45, and (c) o bandwidth ey, = 3.0, Plot the
response of the closed-loop system to a unit step
input.
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CPB1 Consider the closed-loop transfer lunction
25
T{s) ,—v—! vy

Develop an m-file to, obtain the Bode plot and verify
that the resonant frequency is 5 radis and that the
peak magnitude M, is 14 dB.

CP82 For the following transfer functions, mcld\ the
Bode plots, then verify with the bode

1000
@ 66 = T oG + 1007
5+ 100

N

R TR

(d) Gis) = e Rl )

(s + 3Ns* + 125 + 50)

CP83 For each of the following transfer functions. sketch
the Bode plot and determine the crossover frequency
{that is, the frequency at which 20 log,q| Gljw)| = 0dB):
{a) G{s) = w0 + 100

100
(x4 1{F + 10+ 2)
S0(s + 100)

(s + I)}s + 50)

100" + 145 + 50)
@66 = 1+ 236 + 500)

CP8A A unity negative feedback system has the loop

Iransfer function

(B) Gis) =

(c) Gis) =

54
G {n)G(s) = m

Terms and Concepts

CP89 Design a filter. G{s). with the following frequency
response:

L. For e < | rad/s, the magnitude 20 log,y |G ju) <
0dB

2 For 1< w < 1000 rad/s, the magnitude 20 logq
G{jw)l = 0dB

ANSWERS TO SKILLS CHECK

(5) True
Multiple Choice: (6) a; (7) & (8) b; (9) bs (10) &

(1) b (12) 2 (13) & (14) s (15) d

TERMS AND CONCEPTS

Albpass metwork A nonminimum phase sysiem that
passes all frequencies with equal gain,

Bandwidth  The [requency a1 which the rrequenn e
sponse has declined 3 dB from jis |

Determine the closed-loop system bandwidth. Using
the bode function obtain the Bode plot and label the
plot with the bandwidth.
CPRS A block dingram of 2 second-order system is shown
in Figure CPBS,
() Determine the resonant peak M, the reso-
nant frequency v, and the bandwidth wy, of the system
from the closed-loop Bode plot. Generate the Bode
plot with an m-file for e = 0.1tow = 1000 rad/susing
the logspace function. (b) Estimate the system damp-
ing ratio, {. and natural frequency w,, using Equations
(8.36) and (B37) in Section B.2. (c} From the closed-
loop transfer function, comgute the sctual { and w, and
compare with your resulis in part (b).

Rin — iy

FIGURE CP8.5 A second-order feedback control
system.

CPR6 Consider the feedback sysiem in Figure CPRA.
Obtain the Bode plots of the loop and closed-loop
transfer functions using an m-file.

FIGURE CPB.6 Closed-loop leedback system.

633
3 For w> 1000 md/s. the magnitude 20logy,
IG{jw)] = 0dB

Try 10 maximize the peak magnitude as close o
w = 40 rad/s as possible.

True or False: (1) True: (2) False: (3) False: (4) True:  Word Maich (in order, top to bottom): d.i, g.n. L m,

ajspcehrhigka

frequency domain, denoted by F(s), related by the
Laplace transform as Fis) = £{fin}. where ¥
denotes the Laplace transform.

value.

Bode plot  The [epnlhm of the magnitude of the trans-
Fer function is plotted versus the logarithm of w, the
frequency, The phase ¢ of the transfer function is sep-
arately plomd wversus the logarithm of the hm]m:nq\

Break freq quency al which the
approximation oi' the frequency response for a pole
(or zero) changes slope.

Cormer See Break fregy

Decade A facior of 10in lrtquenty(e[. the range of fre-
quencies from | rad's 1o 10 radis is one decade).

Decibel (dB)  The units of the logarithmic gain.

roots  The roots of the characteristic equation
that represent or dominate the closed-loop transient

TESPOnEE.
Fourier transform  The transformation of # function of
time flr} into the frequency domakn.

Fourier transform palr A pair of functions, one in the
time domain, denated by fT7), and the other in the fre-
quency domain, denoted by Fles), related by the
Fourier transform as Flw) = F{f(1)}. where &
denotes the Fourier transform.

Freg response  The ly
tem 10 4 sinusoidal input signal,

Laplace transform pair A pair of functions. one in the
time domain. denoted by f{r). and the other in the

response of a sys-

L The logarithm of the magnitude
of the transler function, usually expressed in units of
20 dB. thus 20 log,alG|.

Logarithmic plot  Sce Bode plot.

Minximum valse of the frequency response A pair of com-
plex pales will result in @ maximum value for the fre-
quency response occurring # the resonant frequency,

Minimum phase transfer function Al the zeros of a
transfer function lie in the left-hand side of the 5-
plane.

Matural freq The freg of natural
that woubd occur for two complex poles if the damp-
ing were equal to zero.

Monminimem phase transfer function  Transfer functions
with zeros in the right-hand s-plane.

Octave  The frequency interval an = i is an octove of
frequencies (eg., the range of frequencies from
wy = 100 rad/s 0w, = 200 rad's s one octave).

Polar plot A plot of the real part of Giju) versus the
imaginary part of Gijw).

Resonani frequency  The frequency o, at which the max-
imum value of the frequency response of & complex
pair of poles is attained,

Transfer function in the frequency domain  The ratio of
the output to the input signal where (he input & 5
sinusoid. It is expressed as Gfjw).
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DP8S  Consider the control system depicted in Figure
DP8.5(a) where the plant is a “black box™ for which
linle is known in the way of mathematical models. The
only information available on the plant is the frequency
respanse shown in Figure DP8.5(b), Design a con-
troller G,(3) to meet the following specificati [#1]

{a) Determine p and K such that the wunit step
response exhibits a zero steady-stole error and
the percent overshool meets the requirement
PO.= 5%,

by Forihc values of p and K determined in part (a),

the system damping ratio { and the

The crossover frequency is between 10 mdis and 50
rads; (i) The magnitude of G {spG(s) is greater than
20dB forw < 0.1 rad/s,

DPR6 A single-input, single-output system is described by

M= [_"I _'p]-(r! " [’:]..(r)

) =10 1s()

natural frequency w,.

(¢} For the values of p and K determined in past (a),
obiain the Bode plot of the system mnd determine
the bandwidih sy

(d) Using the approximate formula shown in Figure
R.26, compute the bandwidth using { and w, and
compure the valie 1o the actial bandwidth from
part (e},

Comtrofler Black box

Rud Gl sl

Gish T ¥irh

i)

Magnitude (4B}
£

™

=80
w -8
£ i
=50
P )
-1
systarm with “Black e \\--__
wﬁwmm, ® ! 1 w0 e
risponse piot of the Frequency iradis}
“black box”
represented by Gis). (L1}
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CP8.7 A unity feedback sysiem has the loop tronsfer
Tunction

1

Lish = GAEs) = —— s,

] SIS PR T

Generate a plot of the bandwidih verves the parame-
terpmb<p<|

CP88  Consider the problem of controlling an inverted
pendulum on a maoving base, as shown in Figure
CP8.8(a). The transler function of the swwstem i

~1/{M3L)

e e T B TR
= My M )eHML)

Dievelop o sot of internctive m-file scripts to aid in the
wontrol system design. The first script shold sccomplish
ot least the following:

1. Compie the closed-loop tranafer function from the
disturhance to the owiput with K as an adjustable
parameter

2. Draw the Bode plot of the closed-loop system.

3. Agtomalically compute and output M, and w,.
As an Intermediate step, use M, and o, and Equa-
tions (8 36) and (8.37) in Section 82 10 estimate § and
iy Thie second seript stiould ai least estimate ihe sei-
tlimg time and percent overshoot using ¢ and w, as
input varinlles

I the performunce specificatrons are not salis
Tied, change K and ilerate on the design using the first

The design objective is tn halancs the
fiee, B{r) = Uy in the presence of disturbance inpats A
block diagram n:ptca.ma:mn of the system s depicied
in Figure CPRS(b). Let M, = 10 kg, My =100 kg,

Lwim,g= unlm.-'s‘u- S and b= 10, The
bused on a unit step disturb

are as follows:
L sentliog tme (with 0 2% criterion) less than 10
seconibs,

2, percent overshool less than 3%, and
3, stesdy.atate tracking error less than (117 in the
presenee of the disturbanse

1 iprs After of the first two steps, the
final wiep is bo test the design by simulation, The fune-
tioms of the thind seript are s follows:

1. plat the response., d{e), 10 8 unil siep disturbance

with K a8 an adjustuble parameter, ind

L. lubel the plot approprintely.
Utilizing the i ive scripts, design the controller 1o
et the specilications using frequency response Bode
methods To start the design process. use analytic
meihods to compute the minimumn value of K o meel
the stendy-simte trucking error specification. Use the
minimism A us the first guess in the design jteration.

i)

Fan
hadirbunce

Pendulnm model

Aty + Mz ™

ML

Consroliey
+ ~Kix 4 a1
Hilst H—‘*O—" TR
FIGURE CP8.8
{aj An invorted
pendulum on a
mcwing

) A block diagram
Fepresentation,
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9.1 INTRODUCTION

For a control system, it is necessary to determine whether the system is stable.
Furthermore, if the system is stable, it is often necessary to investigate the rela-
tive stability. In Chapter 6, we discussed the concept of stahility and several meth-
ods of determining the absolute and relative stability of a system. The
Roulh ~Hurwitz method, dlscussed in Chapter 6, is useful for investigating the

istic equation exy i in terms of the complex variable 5 = o + fo,
Then, in Chapter 7, we investigated the relative stability of a system utilizing the
root locus method, which is also expressed in terms of the complex variable 5, In
this chapter, we are concerned with investigating the stability of a system in the
real frequency domain, that is, in terms of the frequency response discussed in
Chapter 8.

The frequency response of a system represents the sinusoidal steady-state
response of a system and provides sufficient information for the determination
of the relative slablhty o!' the system. The frequency response of a system can
readily be ot by exciting the system with sinusoidal input
signals; therefore, it can be utilized to investigate the relative stability of a sys-
tem when the system parameter values have not been determined. Furthermore,
a Frequency‘damam stahility criterion would be useful for determining suitable

o i

the p of  system in order to increase its rela-

m'e stability.
A l’requency domain stahlhly criterion was develcped by H. Nyquist in 1932,
and it remains a fund. PP 1o the i of the stability of lin-

ear control systems [1, 2]. The Nyquist stability criterion is based on a theorem in
the theory of the funclmn of a mmp]ex variable due to Cauchy. Cauchy's theorem

is d with mapping in the plex s-plane, and f ly the
theorem can be understood without a formal proof requiring complex variable
theory.

To determine the relative stability of a closed-loop system, we must investigate
the characteristic equation of the system:

Fis) =1+ L(s) = 0. ©1)

For the single-loop control system of Figure 9.1, L(s) = G, (s)G(s)H (s). For a mul-
tiloop system, we found in Section 2.7 that, in terms of signal-llow graphs, the char-
acteristic equation is

Fis) = Afs) = | = Bb,, + Shply... =0

where A(s) is the sruph determinant. Therefore, we can represent the character-
istic of single-loop or multiple-loop systems by Equation (9.1), where
Lis) is a rational function of s, To ensure Slﬂbllll)‘, we must asceriain that all the
zeros of Fls) lie in the left-hand s-plane. Nyquist thus proposed a mapping of the
right-hand s-plane into the F{s)-plane. Therefore, to use and understand
Nyquist's criterion, we shall first consider briefly the mapping of contours in the
complex plane.

Section 9.2  Mapping Contours in tha s-Plane 8637

of the s-plane unit square contour to the F(s)-plane is accomplished through the
relation F(s), and so

Wt jo=Fls)=25+1=2c + juw) + 1. (9.2)
Therefore, in this case, we have
u=2g+1 (9.3)
and
v = 2w, (9.4)

Thus, the contour has been mapped by Fis) into a contour of an identical form, a
square, with the center shifted by one unit and the magnitude of a side multiplied by
two. This type of mapping, which retains the angles of the s-plane contour on the
Fis)-plane, is called a conformal mapping. We also note that a closed contour in the
s-plane results in a closed contour in the F{s)-plane.

The points A, B, C, and D, as shown in the s-plane conlour, map into the points
A, B.C.and D shown in the F(s)-plane. Furth adi of 1 of the
s-plane contour can be indicated by the direction ABCD and the arrows shown on
the contour. Then a similar traversal occurs on the F(s)-plane contour as we pass
ABCD in order, as shown by the arrows. By convention, the area within a contour to
the right of the traversal of the contour is considered 10 be the area enclosed by the
contour, Therefore, we will assume clockwise traversal of a contour to be positive
and the area enclosed within the contour to be on the right. This convention is op-
posite to that usually employed in complex variable theory, but is equally applicable
and is generally used in control system theory. We might consider the area on the
right as we walk along the contour in a clockwise direction and call this rule “clock-
wise and eyes right.”

Typically. we are concerned with an F{s) that is a rational function of 5. There-
fore, it will be worthwhile to consider another example of a mapping of a contour.
Let us again consider the unit square contour for the function

F9) =~ s 9.5)

+2
Several values of F{s) as 5 traverses the square contour are given in Table 9.1, and
the resulting contour in the Fis)-plane is shown in Figure 9.3(b). The contour in the
Fis)-plane encloses the origin of the F{s)-plane because the origin lies within the en-
closed area of the contour in the Fs)-plane.

Table 9.1 Values of Fis)

Point A Point B Point Point D
smea+ fu L+l 1 1=4 -t -1=f1 -1 -1+j1
. 452 1 4-2j 1-2 . 1+2
Fls) = u+jo = 3 = = ~f -1 +f 5
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PREVIEW

In previous chapters, we discussed stability and developed various tools to deter-
mine stability and to assess relative stability. We continue that discussion in this
chapter by showing how frequency response methods can be used to investigate sta-
bility. The important concepts of gain margin, phase margin, and bandwidth are
developed in the context of Bode plots and Nyquist diagrams. A frequency response
stability result—known as the N}qmsl s:ab]l:ly criterion—is presented and its use
illustrated through several i ‘The implications of having pure
time delays in the system on both stability and performance are discussed, We will
see that the phase lag introduced by the time delay can destabilize an otherwise
stable system. The chapter ludes with a analysis of the
Sequential Design Example: Disk Drive Read S'_vslcm

DESIRED OUTCOMES
Upon ion of Chapter 9, should:

Understand the Nyquul s:abullly cmc rion and li|= mle of the Nyquist plot.

Be Iarml:ur wuh ! in the freq domain.
of umg delays in feedback control systems.

Be cspehie af analmng the relative slnhnl;ly and performance of feedback control

systems using freq response methods ing phase and gain margin, and

system bandwidth.
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9.2 MAPPING CONTOURS IN THE s-PLANE

We are concerned with the mapping of contours in the s-plane by a function Fis). A
contour map is a contour or trajectory in one plane mapped or translated into anoth-
er plane by a relation F{s). Since s is a complex variable, s = @ + jw, the function F{s}
is itself complex; it can be defined as F{s) = u + jvand can be represented on a com-
plex Fis)-plane with coordinates u and v. As an example, let us consider a function
F(s) = 25 + 1 and a contour in the s-plane, as shown in Figure 9.2{a). The mapping

ial im



FIGURE 8.6
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theararm
with three zercs
and one pole
within 1.
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Reexamining the example when F(s) = 2(x + 1/2), we have one zero of F(s)
at s = =1/2, as shown in Figure 9.2. The contour that we chose (that is, the unit
square) enclosed and encircled the zero once within the area of the contour. Simi-
larly, for the function F{5) = 5/(s + 2), the unit square encircled the zero at the
origin but did not encircle the pole at 5§ = —2. The encirclement of the poles and
2eros of F{s) can be related to the encirclement of the origin in the F{s)-plane by
Cauchy’s theorem, commonly known as the principle of the argument, which
states [3,4]:

1f & contour T, in the s-plane encircles Z zeros and P poles of F(s) and does not pass
through any poles or zeros of Fis) and the traversal is in the clockwise direction along
the contour, the correspanding contour Uy in the Fis)-plane encircles the origin of the
Fispplane N = Z = P times in the clockwise direction.

Thus. for the examples shown in Figures 9.2 and 9.3, the contour in the Fls)-
plane encircles the origin once, because N = £ = P = 1, as we expect. As another
example, consider the function F(s) = s/(s + 1/2). For the unit square contour
shown in Figure 9.4(a), the resulting contour in the F(s) plane is shown in Figure 9.4(b).
In this case, N = Z — P = 0, as is the case in Figure 9.4(b), since the contour I'g
does not encircle the origin,

Cauchy’s th can be best comprehended by idering F(s) in terms of
the angle due to each pole and zero as the contour T, is traversed in a clockwise di-
rection. Thus, let us consider the function

{5+ )s + )

R = o+ nr

(9.10)

where —z,is a zero of F{s),and —p, is a pole of Fis). Equation (9.10) can be writien
as

Fls) = |F(s)l £ F(s)

_ ls + Zl”-" + Z:|

Tt il s g it u il e~ /v p)
= 1F()(b, + by = by, = ). (9.11)

Mow, considering the vectors as shown for a specific contour I, (Figure ¥.5a), we
can determine the angles as s traverses the contour. Clearly, the net angle change as
# traverses along I, (a full rotation of 360° for ¢, ¢, and ¢.) is zero degrees.
However, for ¢, as s traverses 360° around T, the angle ¢, traverses a full 360°

ise, Thus, as [, is d, the net angle increase of F(s) is equal
1o 3607, since only one zero is enclosed. If Z zeros were enclosed within ', then the
net angle increase would be equal to ¢, = 2w Z rad. Following this reasoning, if Z
zeros and P poles are encircled as I, is traversed, then 2mZ = 27 F is the net resul-
tant angle increase of Fs), Thus, the net angle increase of T'y of the contour in the

Section 9.2 Mapping Contours in the s-Plane 641
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As an example of the use of Cauchy’s theorem, consider the pole-zero pattern
shown in Figure 9.6(a) with the contour I, to be considered. The contour encloses
and encircles three zeros and one pole. Therefore. we obtain

N=3-1=+2

and I’y completes two
shown in Figure 9.6(b).

For the pole and zero pattern shown and the contour I, as shown in Figure 9.7(a),
one pole is encircled and no zeros are encircled. Therefore, we have

ircly of the origin in the F(s)-plane, as

N=Z-P=-1,

and we expect one encirclement of the origin by the contour Ty in the F(s)-plane.
However, since the sign of N is negative, we find that the encirclement moves in the
counterclockwise direction, as shown in Figure 9.7(b).

Ju v
T
O 5 - o —
Ty
ay by

FIGURE 8.3
Mapping for
Fla) = sfis + 2).

FIGURE 9.4
Mapging for
As) = s/is + 1/2)
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Cauchy’s th is 1 with mapping a Fis) that has a finite
number of poles and zeros within the contour, so that we may express F{s) as
»
K n{s + )
Fls) = 95—, (9.6)

I_]I(s + pi)

where —z; are the zeros of the function F(s) and — p, are the poles of F(s). The fune-
tion Fis) is the characteristic equation, and so

Fis) = 1 + L{s), (9.7)
where
N(s)
L(s) = o
Therefore, we have

. (98)

g
K]lis+2)
H,}-,H(,,:H&s;:M:}L_

D M
K bie) ;[:I,(’ + Pl

and the poles of L(s) are the poles of Fis). However, it is the zeros of F(s) that are
the characteristic roots of the system and that indicate its response. This is clear if we
recall that the output of the system is

P A 4,
TP, R(s) = TP A
Afs) F(s)
where Py and A, are the path factors and cofactors as defined in Section 2.7.

¥(s) = T(REs) = R{s), 2.9)

Chapter @ Stability in the Frequency Domain
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Fis)-plane is simply
dp = bz = by,

2oN = 2nZ - InP, (9.12)

and the net number of encirclements of the origin of the Fis)-plancis N = Z — P.
Thus, for the contour shown in Figure 9.5(a), which encircles one zero, the contour
T ¢ shown in Figure 9.5(b) encircles the ongin once in the clockwise direction.

L




FIGURE 8.10
contour and

mapping
Lis) = Kfislrs + T
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semicircular path of radius r, where r approaches infinity so this part of the con-
tour typically maps to a point. This contour I'y is known as the Nyquist diagram or
polar plot.

Now, the Nyquist criterion is d with the mapping of the ch
equation

Fis) =1+ L(s) (9.15)

and the number of encirclements of the origin of the Fs)-plane. Alternatively, we
may define the function

F'(s) = F(s) = 1 = L(s). (9.16)

The change of fi F d by Equation (9.16) is very convenient
because L{s) is typically available in factored form, while 1 + L(s) is not. Then,
the mapping of I, in the s-plane will be through the function F'(s) = L(s) into
the L{s)-plane. In this case, the number of clockwise encirclements of the origin
of the F{s)-plane becomes the number of clockwise encirclements of the —1 point
in the F'(s) = L{s)-plane because F'(s) = F(s) — 1. Therefore, the Nyquist sta-
bility criterion can be stated as follows:

A Teedback system is stable if and only if the contour [y, in the L{s)-plane does
not encircle the (= 1, 0) point when the number of poles of L(s) in the right-
hand s-plane is zero (P = 0),

‘When the number of poles of L(s) in the right-hand s-plane is other than zero,
the Nyquist criterion is stated as follows:

A Teedback control system is stable if and only if, for the contowr 'y, the
number of Jockwise encirch of the (—1,0) point is equal to the
number of poles of L(s) with positive real parts.

The basis for the two statements is the fact that, for the F'(s) = L(s) mapping,
the number of roots (or zeros) of 1 + L(s) in the right-hand s-plane is represented
by the expression

Z=N+P

Clearly, if the number of poles of L(s) in the right-hand s-plane is zero (P = 0), we
require for a stable system that N = 0, and the contour I, must not encircle the —1
point. Also, if P is other than zero and we require for a stable system that Z = 0,
then we must have N = =P, or P counterclockwise encirclements

It is best to illustrate the use of the Nyquist criterion by completing several
examples.

Section 9.3 The Nyquist Criterion 645

EXAMPLE 8.2 System with a pole at the origin
A single-loop control system is shown in Figure 9.1, where

K
L) sles + 1)
In this single-loop case, L{s) = G, {s)G(s)H(s), and we determine the contour 'y in
the Lis)-plane. The contour I, in the s-plane is shown in Figure 9.10(a), where an
infinitesimal detour around the pole at the origin is effected by a small semicircle of
radius €, where € — 0. This detour is a consequence of the condition of Cauchy’s
theorem, which requires that the contour cannot pass through the pole at the origin.
A sketch of the comtour I'y is shown in Figure 9.10{b). Clearly, the portion of the
contour [y from w = 0% 1o w = +00 is simply L(jw), the real frequency polar plot.
Let us consider each portion of the Nyquist contour I, in detail and determine the
corresponding portions of the L{s)-plane contour Ty,

(a) The Origin of the s-Plane. The small semicircular detour around the pole at
the origin can be represented by setting s = ee'® and allowing ¢ to vary from —90°
atw = 07 to +%0° at w = 0%, Because e approaches zero, the mapping for L(s) is

K i
lin 9 =t 5 = i . o1
‘Therefore, the angle of the contour in the L{s)-plane changes from 90° at w = 0_
1o 90" at w = 0, passing through 0° at w = 0. The radius of the contour in the
Lis)-plane for this portion of the contour is infinite, and this portion of the contour
is shown in Figure 9.10(b). The points denoted by A, 8. and C in Figure 9.10{a) map
1o A, B, and C, respectively, in Figure 9.10(b).

(b) The Portion from e = 0, to w = + oo, The portion of the contour I,
from w = 0, to w = +00 is mapped by the function L{s) as the real frequency polar

T e CaR ]

[
w =0,

{2} 17
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Now that we have developed and illustrated the concept of mapping of con-
tours through a function F{s), we are ready to consider the stability eriterion pro-
posed by Nyquist.

9.3 THE NYQUIST CRITERION

FIGURE 9.8
Nyquigt contour i
shown as the haavy
fina,

{5+ 1§s/10 + 1)

To investigate the stability of a control system, we consider the characteristic equa-
tion, which is F(s) = 0. 50 that
K u(s +z)

Fls) = 1+ L(s) = =

1:[’(; + )

For a system 1o be stable, all the zeros of F(s) must lie in the left-hand s-plane, Thus,
we find that the roots of a stable system (the zeros of F{s)) must lie to the left of the
Jfw-axis in the s-plane. Therefore, we choose a contour I', in the s-plane that encloses
the entire right-hand s-plane, and we determine whether any zeros of F(s) lie within
I, by utilizing Cauchy's theorem. That is, we plot I'r in the F(s)-plane and determine
the number of encirclements of the origin V. Then the number of zeros of F(s) with-
in the T, contour (and therefore, the unstable zeros of F{s)) is

o1

Thus.if P = 0, as is usually the case, we find that the number of unstable roots of the
system is equal to NV, the number of encirclements of the origin of the F{s)-plane.
The Nyquist contour that encloses the entire right-hand s-plane is shown in
Figure 9.8, The contour I, passes along the jw-axis from —joo to +joo, and this
part of the contour provides the familiar F(jw). The contour is completed by a

= (. (9.13)
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EXAMPLE 9.1 System with two real poles
A single-loop control system is shown in Figure 9.1, where

Lis) (9.17)

B K
Tms o+ s + 1)

In this case, L(s) = G{s)G{s)H (s}, and we use a contour I'y in the L(s)-plane. The
contour I, in the s-plane is shown in Figure 9.9(a), and the contour T is shown in
Figure 9.9(b} for 7y = 1,7; = 1/10, and K = 100, The magnitude and phase of
L{jw) for selected values of w are given in Table 9.2, We use these values (o obtain
the polar plot of Figure 9.9(b).

The + jw-axis is mapped into the solid line, as shown in Figure 9.9, The —jw-axis
is mapped into the dashed line, as shown in Figure 9.9. The semicircle with r — o0 in
the s-plane is mapped into the origin of the L{s)-plane.

We note that the number of poles of L{s) in the right-hand s-plane is zero,
and thus P = 0, Therefore, for this system Lo be stable, we require N = Z = 0,
and the contour must not encircle the =1 point in the L(s)-plane. Examining
Figure 9.9(b) and Equation (9.17), we find that, irrespective of the value of K, the
contour does not encircle the —1 point, and the system is always stable for all K
greater than zero. w

ta) by

Table 8.2 Magnitude and Phase of L(jew)
@ 0 01 078 1 2 10 W0 100 =

|Lgjwd] 100 % 796 707 502 68 224 00 0
SL ) 0 =57 -415 -57 -7 =123 -150% -1737 -180
{degrees)




FIGURE 9.12  Nyquist plot for L{s) = G{s)G(sHls) =
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2. The magnitude of L{z) = G{s}G(s)H{s) ass = re* and r— 00 will normally approach
Zero or a constanl. &

EXAMPLE 5.3 System with three poles
Let us again consider the single-loop system shown in Figure 9.1 when

K

Lis) = G (s)G(s)H(s) = Y ——— 1

(9.23)

The Nyquist contour I, is shown in Figure 9.10(a). Again, this mapping is symmetri-
cal for L{fw) and L(~jw) so that it is sufficient to investigate the L{jw)-locus. The
small semicircle around the origin of the s-plane maps into a semicircle of infinite
radius, as in Example 9.2, Also, the semicircle re’® in the s-plane as r — 20 maps inlo
the point L{s) = 0, as we expect. Therefore, to investigate the stability of the sys-
tem, it is sufficient to plot the portion of the contour I'; that is the real frequency
polar plot L{jw) for 0, < @ < +0o.Thus, when s = 4w, we have

K
Juwlfury + 1){jory + 1)
_ —Kn + =) - K w)(1 - w'nia)
1+ wl(e] + 73} + wieird
= K
oty + 730 + &1 — olrymy)]'?

Liju) =

—tan"{wr)) = tan wry) — (7/2). (9.24)

When @ = 0,, the magnitude of the locus is infinite at an angle of =90° in the
L{s)-plane. When w approaches +09, we have

1 i 2
T——‘é—;wﬂ; = tan""(wr;) = tan” (wry)
m

w'Ty

i L) = i,

. 1
= Jim w,ﬁr?‘g Iw/2. (9.25)
Therefore, L) a de of zero at an anglc of —270° [29]. Te

approach at an anglc of 2707, the locus must cross the u-axis in the L(s)-plane, as
shown in Figure 9.11. Thus. it is possible 1o encircle the —1 point. The number of en-
circlements when the —1 point lies within the locus, as shown in Figure 9.11, is equal
to two, and the system is unstable with two roots in the right-hand s-plane. The point
where the L{s)-locus intersects the real axis can be found by setting the imaginary
part of L{jw) = u + juequal o zero. We then have, from Equation (9.24),
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EXAMPLE 9.4 System with two poles at the origin

Again, let us determine the stability of the single-loop system shown in Figure 9.1
when

Lis) = GAnG{s)H (s) (9.29)

U S
Srs+1)

The real frequency polar plot is obtained when 5 = jw, and we have

K K _.
Lijw) = m W{_’ ~ — tan” (wr). (9.30)

‘We note that the angle of L{jw) is always —180° or less, and the locus of L{juw) is
above the w-axis for all values of w. As w approaches 0, we have

Jim L(w) = lim -, (931)
As w approaches +00, we have
a 2 ool
J_::E“LUN} - ,'_L':‘,,;ﬁ"}"ﬂl (932)

At the small semicircular detour at the origin of the s-plane where s = ee™, we have
v - K
el
limL(s) = lim ~ e, (9.33)
where =m/2 = ¢ = /2. Thus, the contour ', ranges from an angle of +ww = 0.

to = atw = 0, and passes through a full circle of 27 rad as w changes from w = 0_
1o w = {,, The complete contour plot of I'; is shown in Figure 9.13. Because the

FIGURE 8.11
Nyquist diagram for
Lig) = Kflsirys + 1)
[rzs + 1)), Thetic
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plot because s = jw and
LU yere = Lij) (9.19)

for this part of the contour. This results in the real frequency polar plot shown in
Figure 9.10{b). When w approaches +00, we have

Jim L(w) = lim ——r : =y
= lim LS /=(w/2) = tan"Nw). (9.20)
w—e | gy’
T the itude approaches zero at an angle of —180°,

(c) The Portion from @ = +o (0 @ = —oo, The portion of I', from
w = +00 [0 w = —00 is mapped into the point zero at the origin of the L{s)-plane
by the function L{s). The mapping is represented by

e (9.21)

K
]1rn L(s}l,-."‘" = lim ’

|
as ¢ changes from ¢ = +90° al w = +00 W0 ¢ = —P0° at w = — 00, Thus, the con-
tour moves from an angle of —180° at w = +00 1o an angle of +180° at w = —oa,
The magnitude of the L(s) contour when r is infinile is always zero or a constant,

(d) The Portion from e = =20 fo @ = 0_ The portion of the contour T,
from w = —00 1o w = 0. is mapped by the function L{s) as

L(s)smjus = L{=fu). 9.22)

Thus, we obtain the complex conjugate of L{jw), and the plot for the portion of the
polar plot from @ = —20 to @ = (. is symmetrical 10 the polar plot from w = +0o
10 @ = 0. This symmetrical polar plot is shown on the L{s)-plane in Figure 9.10(b).

To investigate the stability of this second-order system, we first nole that the
number of poles, P, within the right-hand s-plane is zero, Therefore, for this system
ta be stable, we require N = Z = 0, and the contour ['; must not encircle the —1
point in the L{s)-plane. Examining Figure 9.10(b), we find that irrespective of the
value of the gain K and the time constant 7, the contour does not encircle the —1
point, and the system is always stable. As in Chapter 7, we are considering positive
values of gain K. If negative values of gain are to be considered, we should use — K,
where K = 0.

‘We may draw two general conclusions from this example:

L The plot of the contour T'y for the range —o0 < w < 0. will be the complex conjugate
of the plot for the range 0, < w < +00, and the polar plot of L(s) = G{s)G(s)H(s)
will be symmetrical in the L({s)-plane about the u-axis. Therefore, it is sufficient to con-
stroet the contour Iy for the range 0, < w < + 2 in order lo investigate

the stability (keeping in mind the detour around the origin).

Chapter 9 Stability in the Frequency Domain

=

FETR

~K(l/w)(l = w'rirs)

Tl 4 af(n 4T 4 e

(9.26)

Thus, v = 0 when | — w'rjry = Dor w = L/\/7y7;, The magnitude of the real part
of Lijw) at this frequency is
~K(r + 73)
- m afmlfryey
=Kir + mdrimy —Knyry

= AR - LILE S - 9.27
rhtlri+ ) T w27

‘Therefore, the system is stable when
—Kr
(L SO
T+
or

ntn
T2

K=-"1— (9.28)

Consider the case where 7y = 73 = 1, 50 that

K
Lis) = G(s)G(s)H(s) = FEPS T

Using Equation (9.28), we expect stability when
K=2
The Nyquist diagrams for three values of K are shown in Figure 9.12. »



FIGURE 9.156

MNyquist diagram for
Lis) = Kyfisis ~ T}
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=0t v

w=+=

™

w=0"
of the s-plane, we let 5 = e when —7/2 = ¢ = =/2 Then, when 5 = eef®,
we have

&
€

: . K _
tm 49 = iy~ =

/—180° = . (9.35)

Therefore, this portion of the contour [y is a semicircle of infinite magnitude in the
left-hand L{s)-plane, as shown in Figure 9.15. When 5 = juw, we have

K
Lijw) = G(jw)Glj)Hje) = L’_” - s Rl )

SR, fHmf2 + tan~t
(o + w®)?
(9.36)
Finally, for the semicircle of radius r as r approaches infinity, we have

e, {9.37)

i oS

where ¢ varies from «/2 to —/2 in a clockwise direction, Therefore, the contour
[y, at the origin of the L{s)-plane, varies 2o rad in a counterclockwise direction.
Several important values of the L(s)-locus are given in Table 9.3. The contour Iy in
the L{s)-plane encircles the —1 point once in the clockwise direction so N = +1,

Table 8.3 Values of L{s) = G.(s)G(s)H(s)

s jo- j0. i +j= ~ jeo
Lk, o o0 V2 0 0

/L o +90° +135° 180 —180°
Section 8.4 Relative Stability and the Nyguist Critarion 653

at this point, or w® = 1/K. The value of the real part of L{jw) at the intersection is
then

—ufKy(1 + Ky)
woayp, = ——=——— = —K K 9.42
WelfK: Bt FA— 1K (9.42)
Therefore, when =K K; < -1 or K,K; > 1, the contour I'; encircles the —1 point
once in a kwise direction, and therefore N = —1. Then the number of
zeros of the system in the right-hand plane is

Z=N+P=-1+1=0

Thus, the system is stable when K, K; > 1, Often, it may be useful to utilize a com-
puter to plot the Nyquist diagram [5]. =

EXAMPLE 9.6 System with a zero in the right-hand s-plane

Let us consider the feedback control system shown in Figure 9.1 when

= Ky =2)

Lis) = GUAs)G(s)H(s) GrO
‘We have

K(jw — 2) K(jw — 2)
(o + 17 (1 - o) + j20 (5:43)

As w approaches +00 on the + jw axis, we have
lim L{jw) = lim 5 /=w/2
e w00 @ 3

When w = V5, we have L{jw) = K/2. At w = 0,, we have L{jw) = —2K. The
Nyquist diagram for L{jw)/K is shown in Figure 9.17. L{jw) intersects the =1 + j0
paint when K = 1/2. Thus, the system is stable for the limited range of gain
0 < K = 1/2When K > 1/2, the number of encirclements of the —1 pointis N = 1.
‘The number of poles of L({s) in the right half s-plane is P = 0. Therefore, we have

Z=N+P=1,

and the system is unstable. Examining the Nyquist diagram of Figure 9.17, which is
plotted for L{jw)/ K, we conclude that the system is unstable forall K > 1/2. m

9.4 RELATIVE STABILITY AND THE NYQUIST CRITERION

We discussed the relative stability of a system in terms of the s-plane in Section 6.3,
For the s-plane, we defined the relative stability of a system as the property mea-
sured by the relative settling time of each root or pair of roots Therefore, a system
with a shorter settling time is considered more relatively stable. We would like to

FIGURE 9.13

FIGURE 9.16
Nyquist dingram for
Lish = Ky() + Mzl
(sis - 1
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contour encircles the =1 point twice, there are two roots of the closed-loop system
in the right-hand plane, and the system, irrespective of the gain K. is unstable. =

EXAMPLE 9.5  System with a pole in the right-hand s-plane

Let us consider the control system shown in Figure 9.14 and determine the stability
of the system. First, let us consider the system without derivative feedback, so that
K = 0. We then have the loop transfer function

L
sls = 1)
Thus, the loop transfer function has one pole in the right-hand s-plane, and there-

fore P = 1. For this system to be stable, we require N = —F = —1, one counter-
clockwise encirclement of the —1 point. At the semicircular detour at the origin

L(s) = GG(s)Hs) = (©34)

Chapler @ Stahilty in the Fraquency Domain

and there is one pole ¥ = 1 in the right-hand plane so P = 1. Hence,
Z=NitPm2, (9.38)

and the system is unstable because two roots of the characteristic equation, irre-
spective of the value of the gain K|, lie in the right half of the s-plane.
Let us now consider again the system when the derivative feedback is included
in the system shown in Figure 9.14 (K; = 0). Then the loop transfer function is
Kyl + Kas)

Lis) = Gds)Gla)H(s) = ==

(939)

The portion of the contour I', when s = ee'® is the same as the system without
derivative feedback, as shown in Figure 9.6, However, when s = re’ as r ap-
proaches infinity, we have

. KK
L | —aas
'IL%L(.ejl,_,, ,]l."l.‘ . (9.40)
and the ' -contour at the origin of the L{s)-planc varies = rad in a counterclock-
wise direction. The frequency locus L{jw) erosses the w-axis at 4 poinl determined
by considering the real frequency transfer function

Kl + Kajo)

L{jw) = G {ja)Gja)H (jw) = .
.

_ Ko + oK) + e — Kw)K,
w' ' :

(9.41)
The Lijw)-locus imtersects the u-axis a1 a point where the imaginary part of L{jw) is
zero. Therefore,

@ = Ky =0

Lirfoplams

=
—| fu= =

—KiK;




FIGURE 9.18
Potar piot for L[ jue)
three values of

FIGURE 8.18
Bode diagram for

Liju) =
Al foejus + 1)
02w + 1h
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g

o Kiny + 7y) —|
1

Ky Ky Ky

the relative stability. This measure of relative stability is called the gain margin and
is defined as the reciprocal of the gain | L( je)| at the frequency at which the phase
angle reaches — 1807 (that is, v = 0). The gain margin is a measure of the factor by
which the system gain would have to be increased for the L{jw) locus to pass
through the & = —1 point. Thus, for a gain K = K in Figure 9.18, the gain margin is
equal to the reciprocal of L(jw) when v = 0. Because @ = 1/V 7172 when the phase
shift is —180°, we have a gain margin equal to

LI Y ' e |
| Lijw)l [r. + r!] d (5:46)

The gain margin can be defined in terms of a logarithmic (decibel) measure as

1
20log 7 = ~20logd dB. (9.47)

For example, when 71 = v; = 1, the system is stable when K = 2. Thus, when
K = K; = 0.5, the gain margin is equal to

1_[Xem P
o [smm] -
or, in logarithmic measure,

20log 4 = 12dB. (9.49)

‘Therefore, the gain margin indicates that the system gain can be increased by a fac-
tor of four (12 dB) before the stability boundary is reached.

‘The gain margin is the increase in the system gain when phase = — 180 that

will result in a marginally stable system with intersection of the =1 + 70 point
on the Nyquist diagram,
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is shown in Figure 9.20. The indicated phase margin is 43°, and the gain margin is
15 dB. For comparison, the locus for

" 1
Lafjw) = Gdjw)Gjw)Hyjw) = o + 17 (9.52)
is also shown in Figure 9.20, The gain margin for L is equal to 5.7 dB, and the
phase margin for L; is equal to 20°, Clearly, the feedback system Li(jw) is rela-
tively less stable than the system L;(jw). However, the question still remains:
How much less stable is the system L(juw) in comparison to the system L, (jw)? In
the following, we answer this question for a second-order system, and the gener-
al usefulness of the relation that we develop will depend on the presence of dom-
inant roots.

Let us now determine the phase margin of a second-order system and relate the
phase margin to the damping ratio { of an underdamped system. Consider the loop-
transfer function of the system shown in Figure 9.1, where

a?
L(s) = GAs)G(s)H(s) = o+ Ty (9.53)
“The ch istic equation for this d-order system is

£+ Uws + wl =0
‘Therefore, the closed-loop roots are
5= =Ly, £ fu,V1 =2

FIGURE 8.17

Nyquist diagram
Exarnpie 9.6 for
Lifwfic
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determine a similar measure of relative stability useful for the frequency response
method. The Nyquist criterion provides us with suitable information concerning the
absolute stability and, furthermore, can be utilized to define and ascertain the rela-
tive stability of a system.

The Myquist stability criterion is defined in terms of the (—1,0) point on the
polar plot or the 0-dB, —180° point on the Bode di: or log-magnitude-phase
diagram. Clearly, the proximity of the L{fw)-locus to this stability point is a measure of
the relative stability of a system, The polar plot for L{fw) for several values of K and

L(ia) = )G H () = s (040

is shown in Figure 9.18. As K increases, the polar plot approaches the —1 point and
eventually encircles the —1 peint for a gain K = K;. We determined in Section 93
that the locus intersects the w-axis at a point

u=_—Knm (9.45)

ntn

Therefore, the system has roots on the ju-axis when
+
P oty i i §
n
As K is decreased below this marginal value, the stability is increased, and the mar-
gin between the critical gain K = (ry + 73)/r;7; and a gain K = K; is a measure of

Chapter 8  Stability in the Frequency Domain

An alternative measure of relative stability can be defined in terms of the phase
angle margin between a specific system and a system that is marginally stable. The
phase margin is defined as the phase angle through which the L{jew) locus must be
rotated so that the unity magnitude |L{jewr)| = 1 point will pass through the
(=1,0) point in the L{ja) plane. This measure. of relative s:ab\hly is cqual to the
additional phase lag required before the system t This i
can be determined from the Nyquist diagram shown in Figure 9.18. For a gain
K = K;, an additional phase angle, ¢, may be added to the system before the sys-
tem becomes unstable. Similarly, for the gain X, the phase margin is equal to ¢, as
shown in Figure 9.18.

The phase margin is the amount of phase shift of the L(jew) st unity magnitude
that will result in a marginally stable system with intersection of the =1 +
point on the Nyguist diagram.

The gain and phase margins are easily evaluated from the Bode diagram, and
because it is preferable to draw the Bode diagram in contrast to the polar plot, it is
worthwhile to illustrate the relative stability measures for the Bode diagram. The
critical point for stability isu = —1, v = 0in the L(jw)-plane, which is equivalent to
& logarithmic magnitude of 0 dB and a phase angle of 180° (or —180°) on the Bode

diagram.

It is relativel ightforward 1o ine the Nyquist diagram of a
phase system. Speul] care is required with a ini phase system, however,
and the complete Nyquist diagram should be studied to determine stability.

The gain margin and phase margin can be readily calculated by utilizing a com-

puter prog ing the system is phase, In contrast, for nonmini-
phase systems, the iplete Nyquist diagram must be
The Bode diagram of
1
L{jw) = Gfjw)G(jw)H (jw) = jaalja + D02 + 1) (9.50)

is shown in Figure 9.19. The phase angle when the logarithmic magnitude is 0 dB is
equal 1o —137°, Thus, the phase margin is 180° — 137° = 43° as shown in Figure 9.19.
The logarithmic magnitude when the phase angle is —180° is —15 dB. and therefore
the gain margin is equal to 15 dB, as shown in Figure 9.19.

The frequency response of a system can be graphically portrayed on the loga-
rithmic-magnitude-phase-angle diagram. For the log-magnitude-phase diagram,
the critical stability pmnl is the 0-dB, —180° poml aud the gain margin and phas:
margin can be easily d ined and indicated on the diagram. The | I
phase locus of

Lyjw) = G )G {(fu)H (w) = m (9.51)
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The phase margin for this system is

; -y
Bpm = 180 -W’-tln’z{-::

o0 = (et + 02 - g2

2
P ey S
tan [+ e = 2]’-"2' (9.57)
Equation (9.57) is the relationship b the damping ratio { and the phase mar-
gin dipy, which provides a ion b the fi p and the time

response. A plor of { versus g, is shown in Figure 921 The actual curve of { versus
dum can be approximated by the dashed line shown in Figure 9.21. The slope of the
linear approximation is equal to 0.01, and therefore an approximate linear relation-
ship between the damping ratio and the phase margin is

where the phase margin is measured in degrees This approximation is reasonably
accurate for { = 0.7 and is a useful index for lating the fi

with the transient performance of a system. Equation (9.58) is a suitable apprm(m
tion for a second-order system and may be used for higher-order systems if we can
assume that the Iransum response of Ihc system is primarily due to a pair of domi-
nant underdamped roots. The app ion of a higher-order system by a domi-
nant second-order system is a useful approximation indeed! Although it must be
used with care, control engineers find this approach to be a simple, yet fairly accu-
rate, technigue of setting the specifications of a control system.

Therefore, for the system with a loop transfer function

pia i 1
Lie) = e ¥ D02 + 1)
we found that the phase margin was 43°, as shown in Figure 9.19. Thus, the damping
ratio is approximately

(9.59)

{ = 001y = 043 (9.60)
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9.5 TIME-DOMAIN PERFORMANCE CRITERIA IN THE FREQUENCY DOMAIN

The transient performance of a feedback system can be estimated from the closed-
loop rrequeru:y response. The closed-loop [ is the f

Josed-loop transfer fi T(;m) The open and closed-] l.oop fre-
quem:y responses fora d.ﬂgle loop system are related as follows:

V() _ iy = — Gei0IGG)
Rijw) 1+ Gljon)Gljun)H(je)
The Nyquist criterion and the phase margin index are defined for the loop transfer

function L(jw) = G..Um}GUw}H(;m) Ha\mevﬁ as we found in Section 8.2, the
i can be related to the

(9.62)

& L
damping ratio of a second-order system of

e = [Tl )| = (26 VT = )7, | £ <0707, (9.63)

This relation is sraphlmjiy portrayed in Figure 8.11. Because this relationship be-
tween the closed-l and the I is a useful one,
we would like to be ab!e 1o determine M, from the plots completed for the investi-
gation of the Nyquist criterion. That l&,we want to be able to obtain the closed-loop
frequency response (Equation 9.62) from the open-loop frequency response. Of
course, we could determine the closed-loop roots of 1 + L(s) and plot the closed-
loop frequency response. Huwwr.on:: we have invested all the effort neﬁes&ary o
L

find Ihedoud-loupromsofa h Juation, then a closed-l |
Tesponse is Not necessary.
mnlau'on' thc losed-loop and open-loop freq is illu-
d on the itude-phase plot when idering unity fe dback systems,
that is, when H{s) = 1 in Figure 9.1. In the unity case, key p
indicators such as M, and o, can be determined from the magmtude -phase pbol
using circles of of the closed-loop transfer function. These cir-

cles are known as constant M-circles. If the system i lsnmm fact a unity feedback sys-
tem whert .H'Uw} =1, we can modify the system (see Section 5.6). For unity
{back systems, E (9.62) b

Guljw)Gljw)
1+ Gljw)Gljw)
‘The relationship between T(jw) and G {jw)G(jw) is readily obtained in terms of

complex variables in the G.G{jw)-plane. The coordinates of the G G{jw)-plane are
w and v, and we have

T(jw) = M{w)e*™ = (9.64)

Gljw)G(jw) = u + fjo. (9.65)
Therefore, the magnitude of the closed-loop transfer function is

|_Geli)Gliw) | _ | w+jo | __ A+ oy?

M@) = [T GmGUa| ~ [T+u+ ol - (0 +wk + A7

(9.66)

FIGURE 9.20
tude-

phasa curve for
Lyandl,
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0 loglL( joil, 4B

The frequency domain form of Equation (9.53) is
ad

Ljew) = m (9.54)
The magnitude of the f i is equal to 1 at a frequency w,; thus,
= 1 (9.55)
wlw? + 4%,y
Rearranging Equation (9.55), we obtain
(0F + 4w (@) — w,* = 0. (9.56)

Solving for w,, we find that

%=<4;‘+ Ve - 28
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Then the percent overshoot Lo a step input for this system is approximately
PO =22%, (9.61)

as obtained from Figure 5.8 for { = 0.43.

It is feasible to develop a computer program to calculate and plot phase margin
and gain margin versus the gain K for a specified L{jw). Consider the system of
Figure 9.1 with

K

L{s) = GAs)G(s)H(3) P

The gain for which the system is marginally stable is K = K* = 128, The gain mar-
#in and the phase margin plotted versus K are shown in Figures 9.22(a) and (b),
respectively. The gain margin is plotted versus the phase margin, as shown in Figure
9.22(c). Note that either the phase margin or the gain margin is a suitable measure
of the performance of the system. We will normally emphasize phase margin as a
frequency-domain specification.

The phase margin of a system is a quite suitable frequency response measure
for indicating the expected perfi of a system. Another useful index
of per(ormnnr.r. in the frequency domain is M .. the maximum magnitude of the

losed-loop 1 y resp and we shall now consider this practical index.

Gain margin (4B}

Phase margin {degree)

2282858

}-60-40-20 0 20 40 60 50 100
K Phase margin (degree)
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L ?{”&H}' Gl GlRNT + G () Glhul). Nota that
2 > Ky

system from the (& + ,iv) -plane. If the maximum magnitude, M, is the only infor-
mation desumd then it is sufficient to read this value directly from the polar plot.
The itude of the closed-loop M. is the value
of the M circle that is I.angcnl to the G,Uu)G{;mHm “The point of tangency
occurs at the freq) ay, The complete closed-loop fre-
quency response of a system can be obtained by mdm,g the magm!ude M of the cir-
cles that the G.(juw)G(je)-l i at several freqs Therefore, the
system with a gain X = thas losed-I i M at the fi and
;. This magnitude is read from Figure 9.24 and lsshwn on the closed- Ioop[requency
response in Figure 9.25, The bandwidth for K is shown as ey

It may be empincally shown that the i w, on the open-loop
Bode diagram is related to the closed-loop system bandwidth wg by the approxi
tion wy = 1.6a, for { in the range 0.2 10 0.8,

In a similar manner, we can obtain circles of constant closed-loop phase angles.
Thus, for Equation (9.64), the angle relation is

¢ = fTlw) = fu+ jo)/(1 +u+ jv)

af v = L
= tan ‘(;) - tan ‘(1 r u). (9.70)

Taking the tangent of both sides and rearranging, we have

n‘+l;+u—%=0. (9.71)
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Loop gain GG, in decibels

Loop phase. £ (G,G). in degrees

FIGURE 8.26 Nichols chart. The phase curves for the closed-loop system ara shown as heavy
curves.

FIGURE 8.23
Constant M circles.
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Squaring Eq {9.66) and ging, we oblain
(1= M9 + (1 — MY — 2M% = M2 (9.6T)

Dividing Equation (9.67) by 1 — M and adding the term [M%/(1 — M) to both
sides, we have

2Mu M\ M M\
"“l’]‘l—M2+(I-M’)=(1-M’)+(]—M’)' (0:68)

Rearranging, we obtain

M? 2 M ]
(u - M._,) +em (——I - M,) . (9.69)

which is the equation of a circle on the (1, v)-plane with the center at

M

- v=10
The radius of the circle is equal to [M/(1 — M?)|. Therefore, we can plot several cir-
cles of constant magnitude M in the [G.{jw)}G(jw) = 1 + jv]-plane, Several con-
stant M circles are shown in Figure 9.23. The circles to the left of & = —1/2 are for
M > 1, and the circles to the right of u = —1/2 are for M < 1, When M = 1, the
circle becomes the straight line u = —1/2, which is evident from inspection of
Equation (9.67).

‘The open-loop frequency response for a system is shown in Figure 9.24 for two
sm‘n values where K; > K. The frequency response curve for the system with gain
K, is tangent to magnitude circle M, at a frequency w,;. Similarly, the frequency
response curve for gain K, is tangent to magnitude cm:tc M3 at the frequency N.]
Therefore, the closed-loop freq le curves are esti
shown in Figure 9.25. Hence, we can obtain the clased- -loop frequency response ol' a
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where N = tan ¢. Adding the term 1/4[1 + 1/N?%] to both sides of the equation and
simplifying, we obtain

(u + :—')2 + (u = —Z!N_)! = i(l + %)‘ {9.72)

which is the equation of a circle with its center atu = —1/2and v = +1/(2N). The
radius of the circle is equal o 1/2[1 + 1/N?]', Therefore, the constant phase
angle curves can be obtained for various values of N in a manner similar to the M
circles,

The constant M and N circles can be used for analysis and design in the polar
plane, However, it is much easier to obtain the Bode diagram for a system, and it
would be preferable if the constant M and N circles were translated to a logarithmic
gain phm N. B. Nichols transformed the constant M and N circles to the log-

de-phase diagram, and the ing chart is alled the Nichols chart [3,7).
‘The M and N circles appenr as contours on the Nichols chart shown in Figure 9.26.
The coordinates of the log-mqgnlmd&—phase dmyam are l.he same as those used in
Section 85. H uper on the log-magn ph plane we find
constant M and N lines. The constant M lines are given in decibels and the N lines in
degrees. An example will illustrate the use of the Nichols chart to determine the
closed-loop frequency response.

EXAMPLE 9.7  Stability using the Nichols chart
Consider a unity feedback system with a loop transfer function

) : 1
Geliw)Glio) = o (027w + 1) o7
The G {jw)}G(jw)-locus is plotted on the Nichols chart and is shown in Figure 9.27.
The maximum magnitude, M. is equal to +2.5dB and occurs at a frequency
w, = (8. The closed-loop phase angle at w, is equal to —72° The 3-dB closed-loop
bandwidth, where the closed-loop magnitude is —3 dB, is equal to wy = 1.33, as
shown in Figure 9.27. The closed-loap phase angle at wg is equal to ~142°. m

EXAMPLE 5.8 Third-order system

Let us consider a unity feedback system with a loop transfer function
.64

Jol (e + ju + 1]

where [ = (1.5 for the complex poles. The Nichols diagram for this system is shown
in Figure 9.28, The phase margin for this system as it is determined from the Nichols
chart is 30°, On the basis of the phase, we use Equation (9.58) to estimate the system
damping ratio as { = 0.30, The maximum magnitude is equal to +9 dB occurring at
a frequency w, = (.88, Therefore,

Goljw)Gljw) = (9.74)

20log My, = 9dB, or M), = 28.
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Loop gain 5,6 decibels

Loop gain G, in decibels

FIGURE 9.27
Nichols diagram for
GeljwlGljw) =
1/l + 1)
02 + 1))

Thres points on

1.35, respectively. Loop phase. £ (GG degress

Solving Equation (9.63), we find that { = (.18, We are confronted with two conflict-
ing damping ratios, where one is obtained from a phase margin measure and another
from a peak frequency response measure, In this case, we have discovered an exam-
ple in which the correlation between the frequency domain and the time domain is

we are usually safe if the lower value of the damping ratio resulting from the phase
margin and the My, relation is used for analysis and design purposes. m

The Nichols chart can be used for design purposes by altering the G G(jw)-locus
s0 we can obiain a desirable phase margin and M. The system gain K is readily
adjusted to provide a suitable phase margin and M, by inspecting the Nichols chart.
For example, let us consider again Example 9.8, where

K
Geljw)G(jw) = ———mm—— (9.76)
& oty + o + 1]
‘The GG jw)-locus on the Nichols chart for K = 0.64 is shown in Figure 9.28. Let us
determine a suitable value for K so that the system damping ratio is greater than

unclear and uncertain. This apparent conflict is caused by the nature of the
G { je)Gljew)-locus, which slopes rapidly toward the 180° line from the 0-dB axis. If
we determine the roots of the characteristic equation for 1 + L(s), we obtain

g(s) = (s + 0.77)(s* + 02255 + 0.826) = 0. (9.75)

‘The damping ratio of the compl. jugate roots is equal to 0,124, where the com-
plex roots do not dominate the response of the system. Therefore, the real root will
add some damping to the system, and we might estimate the damping ratio to be

0.30. Examining Figure 8.11, we find that it is required that M, be less than 1.75 (4.9 pp ly the value d ined the M, index; that is,{ = 0.18. A designer
dB). From Figure 9.28, we find that the G.G(jw)-locus will be tangent to the 4.9-dB must use the fi domain-to-time-domai lations with caution. However,
curve if the G.G(jw)-locus is lowered by a factor of 2.2 dB. Therefore, K should be
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reduced by 2.2 dB or the factor antilog(2.2/20) = 1.28, Thus, the gain K must be less
3 than 0.64/1.28 = 0.50 if the system damping ratio is to be greater than 030,
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9.6 SYSTEM BANDWIDTH

The bandwidth of the closed-loop control system is an excellent measurement of the
" range of fidelity of response of the system. In systems where the low-frequency mag-

nitude is 0 dB on the Bode di the bandwidth is d at the =3-dB fre-
quency, The speed of response to a step input will be roughly proportional 10 wg,

Wiogltyl Wloglry| and the settling time is inversely proportional to wg. Thus, we seek a large band-

ol 02 p width i with ble system comp 12].

w Consider the following two closed-loop system transfer functions:

) () 1

) = 5

and
1
Tos) = ——. 9.77

=5 @10
The frequency response of the two systems is contrasted in part (a) of Figure 9.29,
and the step response of the systems is shown in part (b). Also the response to a
ramp is shown in part (c) of that figure. The system with the larger bandwidth pro-
vides the faster step response and higher fidelity ramp response.

> MNow consider the two second-order systems with closed-loop transfer functions
r
100
“ )= T 05 + 100
FIGURE 8.29 Response of two first-order systems. and
T =20 (9.78)
the system. Fortunately, the Nyquist criterion can be utilized to determine the ds) = & + 305 + 900 ‘
effect of the time delay on the relative stability of the feedback system. A pure time 3 20 SR 7
. P : Both systems have a { of 0.5. The freq P of both systems is
delay, without attenuation, is represented by the transfer function § in Figure 9.30(a). The natural frequency is 10 and 30 for system.:T, and T,
Gyls) = ¢, (9.79) respectively. The bandwidth is 12.7 and 38.1 for systems Ty and T, respectively. Both
% 5 : iterion inis valii . systems have a 16% overshoot, but T, has a peak time of 0.12 second compared to
::::;ja: btt:aﬂaﬁ:r?;&gﬁg ::: inuodr&m:;“m; :dd‘?u?nwj :)’uslt:sr;‘::?o: 0.36 for T,._as shown i_n Fu_gm 9.30(_&;).“50. note that the selt!ing time for Ty is 02'!
within the contour. The factor adds a phase shift to the frequency response without second, while the settling time for T is 0.8 second. The system with 2 larger bandwidth
altering the magnitude curve. provides a faster response.

This type of time delay occurs in systems that have a movement of a material
that requires a finite time to pass from an input or control point to an output or
measured point [8, 9].

For example, a steel rolling mill control system is shown in Figure 9.31. The The Nyquist stability criterion has becn di d and ill d in the p
motor adjusts the separation of the rolls so that the thickness error is minimized. If sections for control systems whose transfer functions are rational polynomials of
the steel is traveling at a velocity v, then the time delay between the roll adjustment Jjur. Many control systems have a time delay within the closed loop of the system
and the measurement is that affects the stability of the system. A time delay is the time interval between the

d start of an event at one point in a system and its resulting action at another point in

T=-
°

9.7 THE STABILITY OF CONTROL SYSTEMS WITH TIME DELAYS
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Lijw) = Gljw)Gljm)e ™. (9.81)

The usual loop transfer function is plotted on the L{jw)-plane and the stability ascer-
tained relative to the —1 point. Alternatively, we can plot the Bode diagram including,
the delay factor and investigate the stability relative to the 0-dB, —180° point. The
delay factor e results in a phase shift

oo

and is readily added to the phase shilt resulting from G.(jw)G(jw). Note that the
angle is in radians in Equation (9.82). An example will show the simplicity of this
approach on the Bode diagram.

EXAMPLE 5.9 Liquid level control system

A level control system is shown in Figure 9.32(a) and the block diagram in Figure
9.32(b) [11]. The time delay between the valve adjustment and the fluid output is
T = dfv. Therefore, if the flow rate is 5 m’/s, the cross-sectional area of the pipe is
1 m?, and the distance is equal to 5 m, then we have a time delay T = 1 5. The loop
transfer function is then
L(s) = Ga(5)G(5)G ()™
3.5 i
T 1)(30s + V[(£/9) + (s/3) + 1]

‘The Bode diagram for this system is shown in Figure 9.33, The phase angle is shown
both for the denominator factors alone and with the additional phase lag due to the
time delay. The logarithmic gain curve crosses the 0-dB line at w = 0.8. Therefore,
the phase margin of the system without the pure time delay would be 40°. However,
with the time delay added, we find that the phase margin is equal to —3°, and the
system is unstable. Consequently, the system gain must be reduced in order to pro-
vide a reasonable phase margin. To provide a phase margin of 30°, the gain would
have to be decreased by a factor of 5 dB,to K = 31.5/1.78 = 17.7.

A time delay e ina system introd an additi phase lag and
results in a less stable system. Therefore, as pure time delays are unavoidable in
many systems, it is often necessary to reduce the loop gain in order to obtain a sta-
ble response. However, the cost of stability is the resulting increase in the steady-
state error of the system as the loop gain is reduced. m

The systems idered by most analytical tools are described by rational func-
tions (that is, transfer functions) or by a finite set of ordinary constant coefficient
differential equations. Since the time-delay is given by e, where Tis the delay, we
see that the time delay is nonrational, It would be helpful if we could obtain a ratio-
nal funetion approximation of the time-delay. Then it would be more convenient to
incorporate the delay into the block diagram for analysis and design purposes.

‘The Padé approximation uses a series expansion of the transcendental function
¢~ and matches as many coefficients as possible with a series expansion of a rational
function of specified order. For example, to approximate the function e with a first-

(9.83)

order rational function, we begin by ding both functions in a series lly a
Maclaurin series’),
e = J(0) + 70) + (o) + =
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GTY _GT) | (T (T
T = | = _.__._.__._ . xholl S (ol ST
& 1=sT+ 3 T Bl L TN (9.84)

and

mstim o, (o=, (45 _dm\a, .
a.;u,‘a,"( i )”(do‘ d«*)’”

For a first-order approximation, we want to find ng, iy, dy, and d; such that

T o TSk My

¢ Pdstds
Equating the ponding coefficients of the terms in 5, we obtain the relationships
ng _ . omy_ tody ding _dvm _ T?
B e e e = T
dy dy  df dy' d 2
Solving for ng, dg, my, and d, vields
g = dy,
s
dol’
m = %L

Setting dy = 1, and solving yields
mstng  —is 1

~T
g "dil"‘dn s+l G83)
A series expansion of Equation (9.85) yields
o
mstm _—3s+l ¥ e
dsvdy Lew1 ! (L} i g A (9.86)
C il (2.86) 1o E i (9 84]. we verify I.bal the first three terms
match. 5o for small 5, the Padé approxi isa p ion of the
time-delay. Higher-order rational functions can be obtained,
9.8 DESIGN EXAMPLES
lnlhlscump!e.wcpmse.nl three il i The first ple we consider

is a design p that green engineering and involves controlling the
pitch angles of blades on large-sﬂle wind turbmu'me wind speeds are assumed to
be high enough so that the pitch angle of the turbine blades can be prescribed prop-
erly to shed excess puwer o regulnte lhe generated wmd power at desired levels.
The second vehicle control design.
The Nichols d!arl. is |Ilusrrulred asa key element of l.h: design of a controller gain to
meet time-domain specifications. The third P iders the control of a hot
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FIGURE 9.30
Response of two
second-ordor

FIGURE 98.32

FIGURE 8.33

lovel control
Eystam,
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Therefore, to have a negligible time delay, we must decrease the distance to the
measurement and increase the velocity of the flow of steel. Usually, we cannot elim-
inate the effect of time delay; thus, the loop transfer function is [10]

Gos)Gs)e™. (9.80)

However, we note that the frequency response of this system is obtained from the
loop transfer function
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third-order transfer function of the turbine is given by

o= [l o8
where K = ~7000, 7, = 5 seconds, {, = 0.005, and , = 20 rad/s The input to the
turbine model is the commanded pm:h angle (in rndums) plus disturbances and the
uulpul.\s lhe mwrspood {in rpm). For commercial wind turbines, pitch control is often

using a asshown in Figure 9.35(b). Selectmga PID controller

GA:}-K,+%+K»:

requires selecting the coefficients of the controller Kp, Kj, and Ky The objective is 1o
design the PID system for fast and accurate control, The control specifications are gain
margin G.M. = 6 dB and phase margin 30° = P.M. = 60°. The specifications for the
transient response are rise time T, < 4 seconds and time 1o peak T < 10 seconds.

Remember that the output w(s) shown in Figure 935 is actually the deviation
from the rated speed of the turbine. At the rated speed, the pitch control of the
blades is used to regulate the rotor speed. In the linear setting described by Figure
935, the input desired rotor speed wy(s) = 0 and the goal is 1o regulate the output
to zera in the presence of disturbances.

The loop transfer function is

& + (Kp/Kp)s + (Ki/Kp)
sles + 1) + w3+ al)

The objective is to determine the gains Kp, K, and Kp to meet the control design
specifications. The phase margin specification can be used to determine a target
damping of the dominant roots yielding

Lis) = Kel Kp

£ =03
TA9
Desired + PBiich
POl povd i N:‘mm mrmH Turbine lba.:,?«d
wirl - - geans '
0]
Tds
i Cootroller “Turbine, molor, snd peass
i e T
Tk weed —p P Kad, Fanur spoa
alih = Py + (75 + IS+ w5 + 0d) | wn
(b
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‘The dominant poles of the closed-loop feedback control system are w, = 041 and
¢ = 0.29. This is very close to the design values which demonstrates the effective-
ness of the design formulas even when the system under consideration is not a
second-order system.

The response of the wind wrbine to an impulsive disturbance is shown in Figure
9.38. In this numerical experiment, the disturbance (possibly a wind gust) imparts a
step change in the wind turbine blade pitch angle. In practice, the disturbance would
lead to varying pitch angle disturbances on the each blade, but for purposes of
demonstration, we model this as a single step disturbance input. The result of the
disturbance is a change on the rotor speed from the nominal that is brought back to
zero in about 25 seconds. =

TR =7
[ T,=16 |
2= it l_ | | -
H | |
1 Ly | |/N=_,I_—l___
- __‘_é Al | i ] T
LNk -‘!\'i—r,‘-nﬂ I e
gu.'_.'. ) .'.-l [
o 1
PP 110 21 D S S — |
o | !
o2 it FE S
0 | ol
s 0 15 2 3 30 35 4 4
Time (5)
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with Kp/Kp = 5,
KyfKg = 20. and

Kg= -622 % 1078
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ingot robot used in manufacturing. The goal is to minimize the tracking error in the
presence of disturbances and a known time-delay. The design process is illustrated,
leading to a PI controller that meets a mixture of time-domain and frequency-do-
main performance specifications.

EXAMPLE 810 PID control of wind turbines for clean energy

‘Wind energy is currently the fastest-growing energy source in the world. It is a cost-
effective, envi lly friendly solution to energy needs, Modern wind turbines
are large, flexible structures in as wind directi
und flow constantly changes. There are many controls challenges associated with
efficient energy capture and delivery for wind turbines. In this design problem, we
consider the so-called “above-rated™ operational mode of the wind turbine. In this
maoxde, the wind speeds are high enough that the pitch angle of the turbine blades
needs to be prescribed properly to shed excess power so that the generated wind
power is regulated at desired levels. This mode of operation readily permits the
application of linear control theory.

Wind turbines are generally constructed in either a vertical axis configuration
or a horizontal axis configuration, as shown in Figure 9.34, The horizontal axis con-
figuration is the most for encrgy production today. A hori axis wind
turbine is mounted on a tower with two or three blades rotating placed atop a tall
tower and driving an electric generator. The high placement of the blades takes ad-
vantage of the higher wind velocities. The vertical axis wind turbines are generally
smiller and present a reduced noise {ootprint.

When there is sufficient wind, in order to regulate the rotor speed of the turbine
shaft and thus the generatar, the pitch of the wind turhine hlades is collectively ad-
justed using a blade pitch mator, as illustrated in Figure 9.35(a). A simplificd model
of the turbine from the pitch command to the rotor speed is obtained by including
a generator mode d by a first-order transfer f in series with the
drive train pli o d by a d-order transfer function |32]. The
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where we target for a phase margin 2.M. = 30° Then we utilize the rise time design
formula to obtain a target natural frequency of the dominant roots. To this end, we
use the design formula

T, = @ < 4 seconds

to obtain w, > 031 when { = 0.3, For design purposes, we choose w, = 0.4 and
£ = 0.3 for the dominant poles. As a final check on the target damping and natural
frequency, we verify that the time to peak specification is reachable with w, = 0.4
and { = 0.3. The rise time and time 10 peak are estimated to be

2.16{ + 0.6 k
T, =————=3seconds and Tp=———= = Bseconds,
" n a1 -2

which meet the design specification. First we locate the PID zeros in the left half-
plane in the desired performance region defined by w, and & by specifying the ratios
Kp/Kp and K;/Kp and select the gain Kp 1o meet the phase margin and gain
margin specifications using frequency response plots (that is, Bode plot).

The Bode plot is shown in Figure 9.36 where Kp/Kp = 5Sand K;f/Kp = 20.The
value of Kp = —6.22 % 107" was determined by observing the effects of varying
the gain on the phase and gain margins and selecting the gain that satisfied the speci-
fications as closely as possible. The PID controller is then given by

Gids) = — 622 % 107 [w]

The final design results in a phase margin of P.M. = 32.9° and a gain margin of
G.M. = 13.9 dB. The step response is shown in Figure 9.37, The rise time T, = 3.2
seconds and the time to peak Tp = 7.6 seconds. All the specifications are satisfied.

Magnitode (dB)

Phase (deg)
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Table 9.4 Frequency Response Data for Design Example

@ 0 1.2 16 20 28 4 5
dB 20 18.4 178 160 105 27 =52
Degrees 0 ~65 -8 ~108 ~142 ~161 -7

The calculations for 0 = @ = 6 provide the data summarized in Table 9.4. The

Nichols diagram for K = 20 is shown in Figure 9.40. Examining the Nichols chart,

we find that M, is 12 dB and the phase margin is 15 degrees. The step response of

this system is underdamped, and we use ion (9.58) and Figure 5.8 to predict an
i i 61%.

To reduce the overshoot to a step input, we can reduce the gain to achieve a pre-
dicted overshoot. To limit the overshoot to 25%, we select a desired { of the domi-
nant roots as 0.4 (from Figure 5.8) and thus require M, = 1.35 (from Figure 8.11)
or 20 Jog M, = 2.6 dB. To lower the gain, we will move the frequency response

Loop gain 6,G, in decibels

FIGURE 8.40
Michols diagram for
- L
when K = 20 and S —180 —150 —120 -0 —60
:;:ﬂm Loop phase, £ (GG, in degrees
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Examining the Nichols chart for K = 10, we have M,,, = 7 dB, and a phase
muargin of 26 degrees. Thus, we estimate a £ for the dominant roots of 0,23 which
should result in an overshoot to a step input of 23%. The actusl response is record-
ed in Table 9.5, The bandwidth of the system is wg = 5. Therefore, we predict o set-
tling time (with a 2% eriterion) of

4 4
1= o~ O
since wy = Lo, for £ = (.34, using Figure 8.26. The actual settling time is approx-
imilely 5.4 seconds, as shown m Figure 9.41.

The steady-state effect of a unit step disturbance can be determined by using

the final-value theorem with £(s) = 0, as follows:

]
yo) = .ft“.?.*[l G{:;}(,) =T5R (o88)

Thus, the unit disturbince is reduced by the factor 4 + 2K, For K = 10, we have
woo) = 1/24, or the steady-state disturbance is reduced to 4% of the disturbance
magnitude, Thus we have achieved a reasonable result with X =

The best compromise design would be K = 10, since we achicve a compromise
steady-state crror of 16.7%. If the overshoot and seitling time are excessive, then we
need to reshape the L{jw)-locus on the Nichols chart by methods we will describe in
Chapter 10. &

EXAMPLE 912 Hot ingot robot control

The hot ingot robot mechanism is shown in Figure 942, The robot picks up hot ingois
and sety them in a quenching lank. A vision sensor is in place 1o provide a measure-
ment of the ingot position. The controller uses the sensed position information to ori-
ent the robot over the ingot (along the x-axis). The vision sensor provides the desired
position input R{x) to the controller. The block diagram depiction of the closed-loop
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EXAMPLE 9.71 vehicle

The use of remotely controlled vehicles for for LN, § keepi
missions may be an idea whose time has come. One concepl of a mvmg vchk:le is
shown in Figure 9.39(a), and a proposed speed control system is shown in Figure
9.39(b), The desired speed R(s) is transmitted by radio o the vehicle: the disturbance
Ty(x) represents hills aud mc.ks.‘lhc goal is to achieve good overall control with a low
steady-state error and a | P to step ds. R{s) [13].

First, to achieve a low steady-state error for a unil step command, we calculate

= Ii||| .r.!‘.'(.r]

Ris)
'.-q 14+ Lis)

.__.[,, 14K,.’2

where L(s) = G (s}G(s). If we select K = 20, we will obtain a steady-state error of
9% of the magnitude of the input command. Using K = 20. we reformulate
L{s) = G(5)C(5) for Bode dingram calculations, obtaining

10(1 + 52)

L) = GG s) = T + ey

ial

) Tan

Controfler gol
Rzt + Kig+2) 7 1 N
r’:;:.“ '_? * S - Fraed | Sped

(1]
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vertically down on the Nichols chart, as shown in Figure 9.40. At w; = 2.8, we just
intersect the 2.6-dB closed-loop curve, The reduction (vertical drop) in gain is equal
to 13 dB, or a factor of 4.5. Thus, K = 20/4.5 = 4.44, For this reduced gain, the
steady-state error is

1
'"‘1+4.4ﬂ‘“3"

so that we have a 31% steady-state error.

‘The actual step response when K = 4.44, as shown in Figure 9.41, has an over-
shoot of 32%. If we use a gain of 10, we have an overshoot of 48% with a steady-
state error of 17%. The performance of the system is summarized in Table 9.5. Asa
suitable compromise, we select K = 10 and draw the frequency response on the
Nichols chart by moving the response for K = 20 down by 20log2 = 6dB, as
shown in Figure 9.40.

Table 8.5 Actual Response for Selected Gains

K 444 10 0
Percent overshoot 324 484 614
Settling time (seconds) 404 5.46 658
Peak time (seconds) 119

088 0.67
L 3% 16.7% %1%
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Contralier Hot ingot robot
i Topics empluasized in this example Rish + o~ Eils) T sk
FIGURE 943 Desited posiion 4 W Actaal pasition
=
block diagram.

Tdentify the varmbles to be controlled
Write the specifications
Establich the system configueatson

Obtain a model of the process, the

@ Sere Figure 942 und 9.43, and
sctusor, And 1he senir 2

Equaation {9.89),

Deseribe § costiobler snd select key — Se¢ Equatioe (5.92) for
parameters hu e adiisied the 1 controbler

Fpshuipa i paay +— Sie Figures 0,91 and .52

system is shown in Figure 943, More information on robots and robot vision systems
can be found in [15,30,31].

The position of the robot along the track is also measured (by a sensor other
than the vision sensor) and is avail for feedback to the . We assume
that the position measurement is noise free, This is not a restrictive assumption since
many accurate position sensors are available today. For example some laser diode
systems are self-contained (including the power supply, optics, and laser diode) and
provide position accuracy of over 99.9%.

‘The robot dynamics are modeled as a second-order system with two poles at
5 = —1 and include a time delay of T = m/4 5. Therefore,

G s 0.89

(s) = G (9.89)
where T = n/4 5. The elements of the design process emphasized in this example
are highlighted in Figure 9.44. The control goal is as follows:

amalyze the performance
Control Goal
! Minimize the tracking error £(5) = R{s) — ¥(s) in the presence of external
IF the performance dacs not mect the 1F the performance meets the specifications. . & % 7
o & e il I design, disturbances while accounting for the known time-delay.
4 - To this end the following control specifi must be satisfied
FIGURE 8.44 Elements of the control system design process emphasized in the hot ingot rabat control example. Design Specifications
DS1  Achieve a steady-state tracking error less than 10% for a step input.
FIGURE .45 “cobinoller Fiot bruges robos DS2  Phase margin greater than 50° with the time-delay T = /45
Hot ingot robot . D83 Percent overshoot less than 10% for a step inpuL
cantrol system Ry + o Eli) 5 i My
block dingram with  [esir posstian . IAPET. Actal pesitiom Our design method is first to id | ller. We will show
Inr:ima'?;:o i that the dsstgn spcuf'cauuns cannot be slmnll.nnenus!y satisfied with a propor-
tional 1, the feedback system with proportional control pro-

vides a useful vehicle to dluuss in some detail the effects of the time-delay. In
particular, we consider the effects of the time-delay on| the Nyqulsl plot. TM final

The feedback control system iy shown in Figure 9.45 with a proportional controller design uses a Pl controller, which is capable of providing adeq [
and no time-delay. The system is a type-zero svstem, so we expect n nonzero steady- (that is, it satisfies all design specifications).
state tracking error to a step inpul (see Section 5.6 for a review of system type). The As a first try, we ider a simple prop !
closed-loop transfer function is
Gus) = K
T(s) = u ‘Then ignoring the time-delay for the moment, we have the loop gain

Pruatl+k
With the tracking error defined us
E(s) = R(s) = Y(s),
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Solving for T yields T = 0.24s. Thus for time-delays less than 7 = 0.24 5, our
closed-loop system remains stable. However, the time-delay T = /4 5 will cause
instability. Raising the gain only exacerbates matters, since the phase margin goes
down further. Lowering the gain raises the phase margin, but the steady-state track-
ing error exceeds the 10% limit. A more complex controller is necessary. Before
proceeding, let us consider the Nyquist plot and see how it changes with the addition
of the time-delay. The Nyquist plot for the system (without the time-delay)

L(s) = Gs)GLs) = (TfT)’

is shown in Figure 9.47, where we use K = 9. The number of open-loop poles of
G (5)G(x) in the right half-plane is P = 0. From Figure 9.47 we see that there are no
encirclements of the —1 point, thus, N = 0,

By the Nyquist theorem, we know that the net number of encirclements N
equals the number of zeros Z (or closed-loop system poles) in the right half-plane
minus the number of open-loop poles P in the right half-plane. Therefore,

Z=N+P=10

Since Z = 0, the closed-loop system is stable. More importantly, even when the gain
K is increased (or decreased), the —1 point is never encircled—the gain margin is
oe. Similarly when the time-delay is absent, the phase margin is always positive, The
value of the PM. varies as K varies, but the PM. is always greater than zera.

SRR ) E ATy NS 9T 1R

¥

Tmaginary Axis

K

X
L) = GsIGE) = = T T
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and with R(s) = a/s. where a is the input magnitude, we have

fH2+1 @
B = o rivks
Using the final value theorem (which is possible since the system is stable for all
positive values of K) yields

" N, |
&= ET«:E{:) TR

Per specification D51, we require the steady-state tracking error be less than 10%.
Therefore,

T
Solving for the appropriate gain K yields K = 9. With K = 9, we obiain the Bode
plot shown in Figure 5.46.

If we rarise the gai.n above K = 9, we find that the crossover moves to the right
(that is, e, ) and the cor ding phase margin (PM.) decreases. Is a
PM. =389 atw= 28 rad/s sufficient for stability in the presence of a time-delay
of T = /4 57 The addition of the time-delay term causes a phase lag without chang-
ing the magnitude plot. The amount of time-delay that our system can withstand while
remaining stable is ¢ = —wT which implies that

—389w _

180 —28T.

Magnitude (dB)

S
Phase (deg)

FIGURE 9.47 = |

Myquist plot with \L Baoda plot with

K = 8 and no time- K =9 and no time-
delay Jor 83 0 2 4 6 ] n margin G.M. ‘D:|
the minus 1 point. Real Axis and phase mangn
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be below the crossover frequency (5o that the phase margin is not reduced signifi-
cantly due to the presence of the Pl zero), a good rule-of-thumb is 1o select
1/7 = Ky/Kp = 0.lw,. To make the break frequency of the controller zero one
decade below the crossover frequency. The final value of K is computed 1o be
K; = 01w, Kp = 00164, where w, = (.87 rad/s. Thus the PI controller is

ey = L0 £ OTIEY o
The Bode plot of G.(x)G(s) is shown in Figure 9.51. The gain and phase margins are
G.M. = 53dBand PM. = 56.5°
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With the time-delay in the loop, we can rely on analytic methods to obtain the
o 1 T L) R : Nyquist plot. The loop transfer function with the time-delay is
=05 | H s
! i
RS . 2 : K .
:° T e | i L) = Guo)Gts) = —X o
l_ H | stabile (s + 1)
B of——pf--EmEL L § oof
] H 1 Q Using the Euler identity
£ , I Y M . S
! | ] i T = cos(wT) - jsin(wT),
-10 L - -1 L
=5 L 5 o =5 e 3 L] and substituting s = jur into L(s) yields
Real Asks P
o jua) = ————— T
0 1 e : Lijw (oo + 1)1
5 3 3 3 y B K
oo E. . — nmnbh: = I““ - o) cos(wT) — 2esin(wT) - jl(1 - o) sin(eT) + 2w cos(wT)].
§ E (9.90)
ol | N 4 _—
FIGURE 9.49 | H
St Tl o 5 0 s o s 0 A= (1 oP +ded
time-delays. Real Axis Real Axis
. . . Generating a plot of Re{ L{jw)) versus Im(L{jw)) for various values of w leads
Figure 9.49 shows the Nyquist plot fur four ",alf'Fs of “'":_da.h" T=001, to the plot shown in Figure 9.48, With K = 9, the number of encirclements of the —1
0.24, and w/4 = 0.78 5. For T = 0 there is no possibility of an encirclement of the pointis N = 2. Therefore, the system is unstable since Z = N + P = 2
~1 point as K varies {see the upper left graph of Figure 9.49), We have stability (that . '
is, N = 0) for T = 0.1 s (upper right graph), marginal stability for T = 0.24 s (lower
left graph), and for T = =/4 = 0.78 s we have N = 1 {lower right graph), thus the
closed-loop system is unstable,
Since we know that T = /4 in this example, the proportional gain controller is
not a viable controller. With it we cannot meet the steady-state error specifications
and have a stable closed-loop system in the presence of the time-delay T = /4.
However, before proceeding with the design of a controller that meets all the speci-
fications, let us take a closer look at the Nyquist plot with a time-delay. 2
Suppose we have the case where K = 9and T = 0.1 5. The associated Nygquist :
plot is shown in the upper right of Figure 9.45. The Nyquist plot intersects (or cross- _E
es over) the real axis whenever the imaginary part of G.(jw}G(jw) = 0 [see Equa- E
tion (9.90)), or E
(1 = &) sin(0.1w) + 20 cos(0.1w) = 0,
Thus we obtain the relation that ibes the ies w at which occurs: FIGURE 9.48
Hyguist plat with
(1 = &) tan{0.1w) K=0andT = /4
VRN | (9.91) showing two
Equation (9.91) has an infinite number of solutions. The first real-axis crossing (far- o oL
thest in the left half-plane) occurs when o = 4.43 rad/s. 3
The magnitude of |L(j4.43)] is equal to 0.0484 K. For stability we require that
|L{ja)l < 1 when @ = 4.43 (to avoid an encirclement of the —1 point). Thus, for
e 688 Chapter 3 Stability in the Frequency Domain
stability we find
1
K< T 2067,
when T = 0.1, When K = 9, the closed-loop system is stable, as we already know. If
the gain K = 9 increases by a factor of 2.3 to K = 20,67, we will be on the border of
instability. This factor & is the gain margin:
G.M. = 20log,; 2.3 = 7.2dB.
Consider the PI controller
Kps +
Gls) = Kp + % = %"’ (9.92)
The loop system transfer function is
= Kotk K
L(s) = GAs)G(s) s
FIGURE 9.50 ‘The system type is now equal to 1; thus we expect a zero steady-state error to a step
Uncompensated input, The steady-state error specification DS1 is satisfied. We can now concentrate
E"f‘nﬂ:“a“*‘ on meeting specification DS3, PO. < 10% and DS2, the requirement for stability in
= mf4, the presence of the time-delay T = /45
From the percent b we can d ine a desired system
damping ratio, Thus we determine far PO, = 10% that { = 0.59. Due to the PI con-
troller, the system now has a zero at 5 = —K;/Kp. The zero will not affect the
design procedure. At @ = 0.7 the magnitude is about 14,5 dB. If we want the closed-loop system stability, but it will affect the performance. Using the approxi-
crossover 10 be w, = 0.87 rad/s, the controller needs to attenuate the system gain mation (valid for small {, P.M. expressed in degrees)
by 14.5 dB, so that the magnitude is 0 dB at w, = 0.87. With - PM.
st d 100"
Gils) = Kp—, we determine a good target phase margin (since we want [ = 0.59) o be 60%. We
can rewrite the P1 controller as
we can consider Kp to be the gain of the f (@ good approximation for
large w). Therefore, Gis) = x‘_l £
= (oA =
L Gl 0:188, where 1/7 = Ky/Kp is the break f of the ller. The PI tler is
1 d S essenuallyawﬂmrandmﬁpmkgmmemmbewmmmqum
Finally we need to select K. Since we want the break frequency of the controller 1o We would like to place the break fre SR i thiat

the phase margin is not reduced significantly due to the presence of l.he PI zero,
The uncompensated Bode plot is shown in Figure 9.50 for

9
G — T,
O =
where T = m/4. The uncompensated system phase margin is 2M. = —8834° at
w, = 2.83 rad/s. Since we want PM. = 60°, we need the phase to be minus 120° at
the crossover frequency. In Figure 9.50 we can estimate the phase ¢ = —120°
at w = 0.87 rad/s. This is an approximate value but is sufficiently accurate for the
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We consider whether the design specifications have been met. The steady-state

tracking specification (DS1) is certainly satisfied since our system is type one; the PI

ller introduced an i The phase margin (with the time-delay) is

£M. = 56.5°, so the phase margin specification, D52, is satisfied, The unit step

response is shown in Figure 9.52. The percent overshoot is approximately

PO, = 42%, The target percent overshoot was 10%, so DS3 is satisfied. Overall
the design specifications are satisfied.

9.9 PID CONTROLLERS IN THE FREQUENCY DOMAIN

FIGURE 9.55
An axample of the
nyquist function,

FIGURE 8.58
A cosed-loop

The PID controller provides a proportional term, an integral term, and a derivative
term (see Section 7.6). We then have the PID controller transfer function as

Gs) = Kp + ? + Kps. (9:94)

1f we set Kjp = 0, we have the PI controller
K,
Gs) = Kp + -;’ (9.95)

If we set K; = 0, we have the PD controller

Gofs) = Kp + Kps. (9.96)
In general, we note that PID are parti y useful for ing the
steady-state error and improving the i when (s) has one or two

poles (or may be approxi dbya d-order process),
We may use freg Y resp
ler. The PID ller, E

x,(%’; + i—:s + 1) Kfrs + 1)(&; + 1)

10 rep the addition of a PID
(9.94), may be rewritten as

Gds) = (9.97)

s 5
The Bode diagram of Equation (9.97) is shown in Figure 9.53 for wr, K; = 2, and
& = 10, The PID controller is a form of a notch (or bandstop) compensator with a
vanable gain, K;. Of course, it is possible that the controller will have complex zeros
and a Bode diagram that will be dependent on the { of the complex zeros. The con-
tribution by the zeros to the Bode chart may be visualized by reviewing Figure 8.10
for complex poles and noting that the phase and magnitude change as { changes.
The PID controller with complex zeros is

_ Kl + Qoo - (@/e.))

Gilw) Jas

(9.98)

Normally, we choose 0.9 > § > 0.7.
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==num=|0.5); den=[12105];
=agyset{num,
>=nyquist{sys)

Imaginary Axis

s i S A i | —
Zi 08 —06 —04 02 0 02 04 06 08 |
Real Anis

automatically generated; otherwise, the real and imaginary parts of the frequency
response (along with the frequency vector w) is returned. An illustration of the
nyquist function is given in Figure 9.55,

As discussed in Section 9.4, relative stability measures of gain margin and phase
margin can be determined from both the Nyquist plot and the Bode diagram. The
gain margin is a measure of how much the system gain would have to be increased
for the L{jw) locus to pass through the =1 -+ j0 point, thus resulting in an unstable
system. The phase margin is a of the additional phase lag required before
the system becomes unstable. Gain and phase margins can be determined from both
the Nyquist plot and the Bode diagram.

Consider the system shown in Figure 9.56. Relative stability can be determined
from the Bode diagram using the margin function, which is shown in Figure 9.57. If
the margin function is invoked without lefi-hand arguments, the Bode diagram is
automatically generated with the gain and phase margins labeled on the diagram.
This is illustrated in Figure 9.58 for the system shown in Figure 9.56.

‘The script to generate the Nyquist plot for the system in Figure 9.56 is shown in
Figure 9.59. In this case, the number of poles of L(s) = G.(s)G(s)H(s) with positive
real parts is zero, and the number of counterclockwise encirclements of —1 is zero;

FIGURE 9.51

Compensated Bode
plot with K = 8 and
T = w/d.

FIGURE 8.53
Bode diagram for a
PID controBier using
the
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FIGURE 9.54
The nyquist

We now approach the issue of stability using the computer as a tool. This section revis-
its the Nyquist diagram, the Nichols chart, and the Bode diagram in our discussions on
relative stability, Two examples will the freq domain design approach
We will make use of the frequency response of the closed-loop transfer function T'(jw)
as well as the loop transfer function L{jw). We also present an illustrative example that
shows how to deal with a time delay in the system by utilizing a Padé approximation
(6], The functions covered in this section are nyquist, nichols, margin, pads, and ngrid,
It is generally more difficult to manually generate the Nyquist plot than the
Bode diagram. However, we can use the control design software to generate the
Nyquist plot. The Nyquist plot is generated with the nyquist function, as shown in
Figure 9.54, When nyquist is used without left-hand arguments, the Nyquist plot is

2 7
i |
-
T
-2 i I
-05 [] 0s [ 15
Real Asis
User-supplied
[l
e irm,wjryquistsys.w)




FIGURE 9.62
The pade funclion.
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Gm = 3.0127, Pm = 452851

Imaganary Axin

1 R | |
—0% —06 —04 —02 0 02 04 06 08 |
Real Axis
(a)

% The Nyguist plot of
%

05

L

L D Tr———
LY #3+2502+8+05

%

% with gain and phase margin calculation.
%

nurmw{0.5): dene]1 2 1 0.5): sysstiinum.den);
%

Imag,phase

I wi=bade(sys):
Gim, Pm.Weg, Wiopl=margin{mag, W ! I
Weg, mag,phase. H i

tile{!Gm = ,num@strigm).’ Pm = *num@str{Pm)]
bel gain and phase
margins o plot.

ib)

hence, the closed-loop system is stable. We can also determine the gain margin and
phase margin, as indicated in Figure 9.59.

Nichols Chart.  Michols charts can be generated using the nichols function, shown
in Figure 9.60. If the nichols function is invoked without left-hand arguments, the
Nichols chart is automatically generated; otherwise the nichols function returns the
magnitude and phase in degrees (along with the frequency w). A Nichols chart grid
is drawn on the existing plot with the ngrid function. The Nichols chart, shown in
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Figure 9.61, is for the system

— i
o) = e ¥ D0 + 1) (9.99)

EXAMPLE 9.13  Liguid level control system

Consider a liquid level control system described by the block diagram shown in
Figure 9.32 (see Example 9.9), Note that this system has a time delay. The loop
transfer function is given by

35T
(5 + 1)(305 + 1)(s%/9 + 5/3 + 1)

‘We first change Equation (9.100) in such a way that L{s) has a transfer function
form with pol jals in the and the d i To do this, we can
make an approximation to e™7 with the pade function, shown in Figure 9.62. For
example, suppose our time delay is T =15, and we want a second-order
approximation # = 2. Using the pade function, we find that

Lis) = (9.100)

£ - 65+ 12
£+ 65+ 12

(9.100), we have

¢ (9.101)

Substituting Equation (9.101) into Eq

Fisa 3152 — 65 + 12)
) (5 + D(30s + 1)(£/9 + /3 + 1)(& + 65 + 12)’

Now we can build a seript to investigate the relative stability of the system using the
Bode diagram. Our goal is to have a phase margin of 30°. The associated script is
shown in Figure 9.63. To make the script interactive, we let the gain K (now set at
K = 31.5) be adjustable and defined outside the script at the command level. Then
we set K and run the script to check the phase margin and iterate if necessary. The
final selected gain is X = 16. Remember that we have utilized a second-order Padé
approximation of the time delay in our analysis. =

Imaw[ |Onhrnrwinw.lm|

[num,denj=pade(T,n)

¥
[,A.r.i _‘r,%‘ﬂ,..,-;‘!‘;“."‘

FIGURE 0.57
The margin

FIGURE 8.58
for the system in
Figura 8.56 with the
grain margin and the

phase margin
Iindicated on the
plots.

FIGURE 9.60

Chapter 9 Stability in the Frequancy Domain

[mag,phase wisbode(sys): of
[Gm, P, Weg,Wep|=marginimag,phase,w):

L [Gm, P Weg Weplemargin(sys); l

| cinmagace |

g
i

10!
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Open-Loop Gain (d8)

a0 — -

—s0 i L i

Open-Loop Phase {deg?

L L 5 i
=240 =220 -200 =180 =i =-140 -12) -100 —BO

num=[1]; dan=[0.21.210};
sys=tiirum,den);
welogspace(-1,1,
nichols(sys,w:
ngrid




FIGURE 9.66
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The effect of the gain K on the steady-state error is clear from Equation (9.102): If
K = 20, the error is 9% of the input magnitude; if K = 10, the error is 17% of the
input magnitude,

Mow we can i the b ification in the freq domain.
Suppose we require that the percent overshoot is less than S0%. Solving

PO, = 100 exp™ e Vise 30

for { yields { = 0215. Referring to Figure 8.1, we find that M,,, = 2.45. We must
keep in mind that the information in Figure 8.11 is for second-order systems only
and can be used here only as a guideline, We now pute the closed-loop Bode
diagram and check the values of M. Any gain K for which M, = 245 may be a
valid gain for our design, but we will have 1o investigate step responses further to
check the actual overshoot. The script in Figure 9.64 aids us in this task. We further
investigate the gains K = 20, 10, and 4.44 (even though M, = 2.45 for K = 20).

10! =

1!

. Loop for three gains
slogepace(0.1 200) K20, 104 448+ 0 T

fori=13

numge=HK(l)'(1 2]; dengc=[1 1]; sysge=ti{numege, dengc;
wmo-('l dang=[1 ?4] wﬂmm

[mag, Muhmotm
-lzw:l-must.l

%

Comgute chosed-loop
frequency respanse

loglogiw,mag_save(1,:), w.mag_save(2..), w.mag_save(3, )
xlabel{ Freguancy (radis)'}, ylabel['Magnitude), grid on

ihy
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0F T T T T T T —T |
[E18 o e

Open-Loop Gain (dB)
LI
S
T T
\
H
—

K=20 !
~1sF | g
1
L |
-2} — 1 14
|
e | e
| 1
-30 PO KN PO - EET T S T |
=180 ~160 =140 =120 ~-100 -0 —60 —d40 =20 o

Open-Loop Phase (deg)
fap

%wwwumvﬂm

mm-n 2} denges{1 'Pwﬂw
numg=(1]; deng={1 2 4}; sysg

w-w-tmm‘p:
%

Ka[20,10.4.44];
Thoid off, eif
for i=1:3

nichols(K{f)sys.w), ngrid
haid on
and

and incorporates a PD controller with a zero at & = —1. We will determine the system
gain margin and phase margin when K = 400.

The Bode diagram for the system of Figure 852 when K = 400 is shown in
Figure 9.68. The gain margin is 2.9 dB, and the phase margin is 37.2°. The plot of the
step response of this system is shown in Figure 9.69. The settling time of this design
isT, = 9.6 ms

Chapter @ Stability in the Frequency Domain

Gim = 4364 (ai 0.73145 radfs). Pm = 30852 deg. (ar 048496 radfs)
T
IR

Phase (deg)

w

oK 18; liguid Commard level input.

lquidm

% Liquid Control System Analysis

%

[np,dplpade(1.2);

sysp=iinp.dp);

num=K;:

di={1 1} d2={30 1) d3={1/9 131}

dan=convid conv(d2,43));

sysg=ifinum,den); c ol

e Coepute gain and

phase margine.
ib)
EXAMPLE8.14 R 1 Hled i vehicle

Consider the speed control system for a 1 i i wehicle

shown in Figure 9,39, The design objective is to achieve good control with a low

steady-state error and a low hoot to a step 1. Building a script will allow

us to perform many design iterations quickly and efficiently. First, we investigate the
steady-state error specification. The steady-state error to a unit step command is
1

=TT Ka

(9.102)
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b=f0:0.01:10) K={20,10,4.44];
‘.r-muﬂ)amm.wﬂ'ﬂ}:

for in1:3
numge=K(i}*[1 2], dange=(1 1]; sysge=tl{numge,dange):
numg={1. deng=(1 2 4| sysg=thnumg,dangl.
syss=series{sysgc.sysgl
sysatesdbackisyss,[1]);
o F

and fesponse.

“
Py (Y (2] Ly 30 grid
adabol{ Time {s)). yiabes'yit))

(L1

We can plot the step responses Lo quantify the overshoot as shown in Figure 9.65.
Additionally, we could have used a Nichols chart to aid the design process, as shown
in Figure 9.66.

The results of the analysis are summarized in Table 9.5 for K = 20, 10, and 4.44,
We choose X = 10 as our design gain. Then we obtain the Nyquist plot and check
relative stability, as shown in Figure 9.67. The gain margin is G.M. = 49.56 dB and
the phase margin is P.M, = 26.11°. =

9.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

ey
)

In this chapter, we will examine the system described in Chapter 8, using the system
represented by Figure 8.52. This system includes the effect of the flexure resonance
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Gm = Inf, Pm = 26,0559
T T T T

T_-Iaonn

win

06

04 % Remately Controfied Vehicle

| | %NMMWK—‘O

mmm-“ﬂ' 2} denge={1 1}; sysge=ti{numpc,dengel.
deng);

02 R I -1
| I murmg={1}; deng={1 2 4]; sysg=tinumg,
M-&kmm

FIGURE :‘,“ | i | | | |
m‘. the

0002 004 0006 0008 001 002 0014 0016 0018 002 [Gm, P Weg, Wopl=margin(sys);
Dten taf shop s FIGURE 9.67 L = g

i nyquistisysl;
9.12 SUMMARY controlled vehicle libe([Gm = ", num2sir(Gmi), * Pm = "rum2str(Pm)])

(k) m-tile script. L]
“The stability of a feedback control system can be determined in the frequency domain
by utilizing Nyquist's criterion. Furthermore, Nyquist’s criterion provides us with two
relative stability measures: (1) gain margin and (2) phase margin. These relative stabil- Gim = 22889 B, {ni S420.8 ﬂdﬁl PurS STISA O (W 12302 1ol
wmmmsum be utilized as indices of the transient performance on the basis of cor- P E B Mm,,..u“ag H
blished between the freq domain and the transient response. The 1

magnitude and phase of the closed-loop system can be determined from the frequency
response of the open-loop transfer function by utilizing constant magnitude and phase
circles on the polar plcl Alternatively, we can ulllm @ log-magnitude-phase diagram
with closed-) and phase curves superimp (called the Nichols chart) -200 i | |
to obtain th:chstd loop frequency response. A measure of relative mbuhty the maxi- ! 1o 1o’ 0 I
mum magnitude of the closed-loop freg My is ble from the
Nichols chart. The frequency response, M., can be mn'eluled with the damping ratio
of the time response and is a useful mdnbfp:ffcrmam Finally, a control system with
a pure time delay can be investigated in a manner similar to that for systems without
time delay. A summary of the Nyquist criterion, the relative stability measures, and the
Nichols diagram is given in Table 9.6 for several transfer functions.

Table 9.6 is very useful and important to the designer and analyst of control sys-
tems. If we have the model of a process G(s) and a controller G.(s), then we can deter-
mine L{s) = G_(s)G(x). With this loop transfer function, we can examine the transfer FIGURE 9.68
function table in column 1. This table contains fifteen typical transfer functions. For a Bode deagram of
selected transfer function, the table gives the Bode disgram, the Nichols diagram, and Lim zpesom s
the root locus. With this information, the designer can determine or estimate the per- ;
formance of the system and consider the addition or alteration of the controller G, (s).

Gain (4B}

<
E
2

Phase (deg)
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Table 8.6 Transfer Function Plots for Typical Transfer Functions
Table 9.6 (continuecd)

L Polar Piot Bode Diagram
Nichols Diagram Root Locus Comments L
Ju
M Y P
Phase 1
imangin Stable: gai S s+l
odit = ) " Roof locus table: gain margin
B 7 A Tor *
b
Ju—m
Phae o
Aargan @,
I i K
" T
{smy + 1Nsr2 + 1)
0dB " Y entary regulator: stable; gain
~180"] -9 o 1 1 o margin = oo
A Tw
L)
e

K

{ery = Ismy + Isrs + 1)

ol

Regulator with additional encrgy-
storage component; unstable, but can
be made stable by reducing gain

o —r
1 & M
M -
. K
4 I =180"
i P ow g
i Ideal i bl ok
180 —or 53 - eal integrator; stable 20 dBdec
wem

(continued}
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Table 9.6 (continued)

Nichols Diagram Root Locus Comments
Phuse Ju
margin
o o >
oan ) Elementary ins_:rum:n} servo; inher-
fifl~ * = ently stable; gain margin = oo
i}
.. :

€

Instrument servo with field control
motor or power servo with elemen-
tary Ward-Leonard drive; stable as
shown, but may become unstable with
increased gain

Elementary instrument servo with
phase-lead (derivative) compensator;
stable

Inherently marginally stable; must be

ol

Inherently unstable; must be

M| - Pime
margin

=2 180 -

e

/;dv
o

Stable for all gains

Inherently unstable

unstable
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Table 9.6 (continued)
Lis)

g

K
b Som + Dem + 1)

Kist, + 1)
“am + IMemy £ 1)

—AO B o pargln = 1)

! k o Phas i =0
A et Wargin =
g X ..-J{_g"—l u= ‘- ar ¢
e Lo 4 I og w—s
.\%- —')'.r
(eontinwed)
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Table 9.6 (continued)

Lis)
e
A Pl +1)
Pl mesgin
K@z +1)
> Plary + 1)
T
e
s 7 N
P %
7Y, - \ é
K A 4
5 ‘. i S
ST ) Phane
k) g -
Vg S ™
Ksrg + 1)
12, ;1—

(cantined}
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Conditionally stable; becomes
unstable il gain is 100 low

Conditionally stable; stable at low
gain, becomes unstable as gain is
raised, again becomes stable as gain is
further increased, and becomes
unsiable for very high gains

Conditionally stable; becomes
unstable at high gain

SKILLS CHECK

T this section, we provide th your k ge: True or False, Muliiple
Choice, and Word Match. To obtain dlmcl feedback. check your answers with the answer key
provided at the conclusion of the end-of chapter problems. Use the block diagram in Figure
9.70 as specified in the various problem statements.

Skills Check 713
and the les is the proportional-plus-derivative (PD)
G,(3) = K(1 + Tu).
8 When T, = 0, the PD reduces to a Gis) = K.Inthis

«case, use the Nyquist plot to determine the Inmngvnlu: of K for closed-loop stability.
a K=05

b K=16

e K=24

d K =43

Using the value of K in Problem &, compute the gain and phase margins when Ty = 0.2.
a. G.M, = 14dB P.M. = 27"

b. G.M, = 20dB P.M. = 645"

e G.M, = oo dB, P.M. = 60

d. Closed-loop system is unstable

10, Determine whether the closed-loop system in Figure 9.70 is stable or not, given the loop
transfer function

L) = Gdnats) = it
In addition, if the closed-loop system is stable, compute the gain and phase margins.
a Stable, GM. = 24dB.P.M. = 2.5°
b. Steble,G.M. = 3dB, P.M. = 24°
e Stable, G.M. = 2o dB, P.M. = 60°
d. Unstable
11. Consider the closed-loop system in Figure 9.70, where the loop transfer function is

Lisy = Goicts) = LD,

Determine the value of the gain K such that the phase margin is P.M, = 407,
s K=164
b K =215
e K =163
d. Closed-loop system is unstable for all K > 0
12, Consider the feedback system in Figure .70, where

P
Gels) = s+ 5

Notice that the plant contains a time-delay of T = 0.2 seconds. Determine the gain & such
that the phase margin of the system is P.M. = 50°, What is the gain margin for the same
guin K7

8. K =835,GM. = 26dB

b K =215 G.M. = 10748
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Table 9.6 (continued)

Lis)

Polar Plot Boda Diagram

13

14

Kism, + 1)am = 1)

.l"

1. Kisr, + 1)
TP+ ) 4 1)

-2 Ciain
[ maigin g

-
- M |tog
Kigr, + 1){zm, + 1) a -
“ sy = Diamy + Dy + ey + 1) g
-t Phase
rrargin
Phase f
oM e

* Claln
Irargin

T2
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Comroller | | Process

Ris) Gis) —e G ¥is)

FIGURE 9.70 Biock diagram for the Sidis Check.

In the following True or False and Multiple Choice problems, circle the correct answers.
1. The gain margin of a system is the increase in the system gain when the

phase is —1807 that will result in & marginally stable system. True or Falre
2. A conformal mapping is a contour mapping that retains the angles on

the s-plane on the transformed F{s)-plane. True or False
3, The gain and phose margin are readily evaluated on either a Bode plot

ar & Nyquist plot. True or Falve
4. A Nuchols chart displa ibing the relationship between the

open-loop and dmd-luap [mqnmcy mspnmu True or False
&, The phase margin of a second-order system (with no zeros) is a function

of both the damping ratio { and the natural frequency, o, True or False
6. Consider the closed-loop system in Figure 9.70 where

325(1 + 5/6)

o) = G40 = S+ gy

The crossover frequency and the phase margin are:
. ow=20nds PM. = 372°
b w = 2.5 rackis, P.M. = 5497
€ w=53mds P.M. = 681"
do w = 107 mdis, P.M, = 475°
7. Consbder the block diagram in Figure 9.70. The plant transfer function is

1
Gl = T om0 T 1)

and the controller is

+ 02
45
Unilize the Nyquist stability criterion to characterize the stability of the closed-loop
system.
8. The closed-loop system is stable.
b The closed-loop system is unstable.
© The closed-loop system is marginally stable.
d. None of the above.

For Problems 8 and 9, consider the block diagram in Figure 9.70 where

Gels) =

9
G = R e o)



Exercises 715
«©. Bandwidih A contour mapping that retains the angles on the
s-plane on the F(s)-planc.
d. Contour map 1f & contour encireles Z zercs and P poles of F(s)
ing clockwise, the ling contour in
the F{s)-plane encircles the origin of the F{s)-plane
N = Z = P times clockwise. —_—
. Michols chart The amount of phase shift of G {jw)G{ jor) at unity
magnitude that will result in a marginally stable system
with intersections of the point —1 + j0 on the Nyquist
diagram. _
L Closed-loop Events oocurring at time f at one point in the
frequency response  system occus at another point in the system at a later
time, 1 + T.
g Logarithmic A feedback system is stable if and only if the contour
{decibel) measure  in the G{x)-plane docs not encircle the (=1, 0) point
when the number of poles of G5} in the right-hand
s-plane is zero. 1 G(r) has P poles in the right-
hand plane, then the aumber of counterclockwise
encirclements of the (—1, 0} point must be equal
1o P for a stable system. Ay
. Gain margin A contour of trujectory in one plane i mapped into
another plane by a relatlon F{s).
L Nyquist stability The increase in the system gain when phase = = 180°
criterion that will result in & marginally stable system with
intersection of the —1 + j0 podnt on the Nyquist
diagram. —
J- Phase margin The frequency at which the frequency response hins
declined 3 dB from its low-frequency value. ST
k. Conformal A measure of the gain margin. ey
mapping
EXERCISES
E9.1 A system has the loop wransfer function where K = 10.5. Show that the system crossover (0 dB)

21 + 510)

(1 + S0l + 59 + 581)
Plot the Bode dingram. Show that the phase margin is
approximately 17.5° and that the gain margin is ap-
proximately 26.2 dB.

E%2 A system has the loop transfer function
{1 + 5/5)

(1 + 5200 + 510)°

Liz) = GAs)Gs) =

Lix) = G ls)G(s) =

Exercises

E%13 A unity feedback system has a loop transfer funerion

L) = GaG() = s

() Find the ol the closed-)

Irequency response using the Nichols chart. (b) I-'In:l

the bandwidih and the resonant frequency of this sys-
tem. () Lise these frequency measures o estimate the
wvershoot of the system to o siep response.
Amxwers: (a) 75 dB. (bl wy = 1% m, = 126

ES.14 A Nichols chart is given in Figure E9.14 for a system
with €,(jw)G{jw). Using the followiny, table. find {a)
the peak resonnnce M, in di: (b) the tesonant fre-
quency m,: (<) the 3-dB bandwidth; and (d) the phase
margin of the system.

ey
ods 1 3 6 0

frequency is 5 rad's and that the phase margin is 40°,

E9.3  An integrated circuit is available to serve as a feed-
back system to regulate the output valtage of a power
supply. The Bode diagram of the required loop trans-
fer function 7, (fw)(jw) is shown in Figore E9.3
Estimate the gain and phase margins of the regulator,
Answer: G.M, = 25dB, PM, = 75°

E94 Consider o system with a loop transfer function

100
G5)G(5) = m
7
E915 Consider o unity feedback system with the loop
transfer lunction
= L 100
Lix) = G, {)G{s) = PR

Find the handwidth of the closed-loop system.
Answers: sy = 6.4 radisee

E9.06 The pure time delay « 7 may be approximated by
a tranafer function as

for 0 < w < 2/T. Obtain the Bode diagram for the
actunl transfer function and the approximation for
T=02for0 < w-<10,

~0.% ul

=\t

-3dp
-3

a2 o
{4
g
0
6| =
&
7
FIGURE E0.14 g

-4 df
b dl

1]
HNichols chan for

Gl jouh G Lo phase £ G, G {degrees)
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e K=50GM =cxdB
d K =122.GM. = 147dB

13. Coasider the control system in Figure 9.0, where the loop transfer function is

L{s) = Gs)0(s) = ———

s+ 1)

The value of the resanant peak, M, _and the damping factor, . for the closed-loop system

are:

& M, =037.0 =077
b M, =115¢ =05
o M, =255.0=05
4 M, =055 =025

14, A feedback model of human reaction time used in analysis of vehicle control can use the
block diagram model in Figure 9.70 with

Gls) = e and Gis) =

1
0L+ 1)

A typical driver has a reaction time of T = 0.3 seconds. Determine the bandwidih of the

closed.boop system.
n ap = 05 radis

b oy = 106 radls
€ oy = 197 radls
A wy = 2006 radis

15 Consider a control system with unity feedback as in Figure 9.70 with loop transfer
function

Lis) = Gis}G(s) =

The gain and phase margin are:
n G.M. = codB P.M, = 581°

b, G.M. = A4dB P.M, = 473"
© G.M. = 66dB, .M. = 604"
d. Closed-loop system is unstable

{5 +4)
sr+ 1)(z + 5)'

In the following Word Match problems, match the term with the definition by wriling the
provided.

correct letter in the space
u. Time delay The fi

respanse of the closed-loog transfer

function T{jor).

b, Cauchy's theorem A chart die

ing the curves for the

between the open-loop and closed-loop frequency

response.
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Voltage gain (a8}

0 1ob 1k 10k 100k 1M
Frequency (Hz)

FIGURE E9.3 Power supply regulator,

We wish 1o obtsin a resonant peak M = 3.0 dB for
the closed-loop system. The peak occurs between 6
and Y rad/s and s only 1.23 dB. Plot the Nichols chart
for the range of frequency from 6 to 15 radis. Show
that the system gain needs 1o be raised by 4.6 dB 10
171, Determine the resonant frequency for the adjusted
system.

Answer: w, = 11 rad/s

E9.5 An integrated CMOS digital circuit can be repre-
sented by the Bode diagram shown in Figure E9.5.
(a) Find the gain and phase margins of the circuit.
(b Estimate how much we would need 1o reduce the
system gain (dB) to obtain a phase margin of 60°.

L I L
I kHz 10&Hz 100kH | MHz 10MHz
Frequency

b —360 -

FIGURE E9.5 CMOS circuit,

E9.6 A system has a loop transfer function
K(s + 100)
s+ 10)s + &0)
When K = 500, the system is unstable. Show that il
we reduce the gain 1o 50, the resonant peak {s 3.5 B
Find the phase margin of the system with K = S0
E9.7 A unity feedback system has o loop transfer function
K
L) = GIGE) = .
Determine the range of K for which the system is sta-
ble using the Nyquist plot.
ES.8 Consider a unity feedback system with the loop
transfer function

Lis) = Gla)i(s) =

Lis) = GAnG(s) =

—K___

ax + s +2)

(a) For K = 4, show that the gain margin is 3.5 JB.

(b) 1F we wish 1o achieve a gain margin equal 1o
16 dB, determine the value of the gain K.

Answer: (b) K = 098

E9.9 For the system of EG.8. find the phase margin of the
system for K = 5.

E9.10 Coisider the wind tunncl contrel system of Problem
P731 for K = 326. Obtain the Bode diagram and show
that the PM. = 25° and that the G.M. = 10 B Also,show
that the bandwidth of the chosed-loop system is & radis.

E%11 Consider a unity feedback system with the loop
transfer lunction

W1 + D.4s5)
GBI 3] e,
A0GE) = TTTEN + 034 + 00ae)
{a) Plot the Bode diagram. (b) Find the gain margin
and the phase margin,

E®12 A unity feedback system with the loop transfer
Tunction

Lis) = Gs)G(s) = —
’ strs 7 i + 1)

where vy = 002 and 13 = 0.2 (a) Select a gain K so
that the steady-state error for a ramp input is 10% of
the magnitude of the mmp function A, where
)= Aer =0, (b) Plot the Bode plot of
G{£)G(s). and determine the phase and gain mar-
gins. (¢) Using the Nichals chart, determine the band-
width wy, the resonunt peak M. and the resonant
frequency o, of the closed-loop system.
Amswer:

{a) K =10

(b) PM. =32"GM. = |5dB

(¢) wp = 103, M, = [B4,0, w65
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FIGURE E8.20
Automobile control
system.

system, (b) estimate the bandwidih of the closed-loop
system, and (c) estimate the setthing time (with a 2%
criterion) of the system.

E9.19 A unity feedback system with G.(s) = K has

ol

Gls) = T

Select a gain K so that the phase margin of the system is
0%, Detetrmine the gain margin for the selected gain, K

E®.20 Consider o simple model of an avtomobile driver
following another car on the highway at high speed.
‘The model shown in Figure E9.20 incorporates the
driver’s reaction time, T. One driver hos T = 15, and
another has 7 = L5s. Determine the time
¥{1) of the system for both drivers for a step change in
the command signal R{s) = —1/s, due to the braking
of the lead car.

E%.21 A upity feedback control system has a loop trans-
fer function

K
Lis) = GAs)G(s) = FIESITTEE Y
Determine the phase margin, the crossover frequency,
and the gain margin when K = 1300,

Answers: PM = |66%w, = 49,GM = dor12dB
E922 A unity feedback system has a loop transfer function

K

Lis) = G (s)G(s) PFET
(a} Using a Bode diagram for K = 10. determine the
system phase margin, (b) Select a gain K 5o that the
phase margin is at least 60°.

E9.23 Consider again the system of E9.21 when K = 438
Determine the closed-loop system bandwidth, resonant
frequency. and M, using the Nichoks chart.

Answers: wp = 425 md/s, w, = LT, M, = 1.7

PROBLEMS

P9.1 For the Nyquist plots of Problem P81, use the
Nyquist criterion to ascertain the stability of the various
systems. In each case, specily the values of N, P, and Z.

P92 Sketch the Nyquist plots of the following loop transfer
fonctions L(s) = G {s)F(s), and determine whether
the system is stable by applying the Nygusist criterion:

K
(@) Lis) = GAs)G(s) " FeEeTy

Kis+1)

s+ 6)

11 the system is stable, find the maximum value for K
by determining the point where the Nyquist plot
crosses the i-axis.

P9.3 (a) Find a suitable contour T', in the s-plane that can
be used to determine whether all roots of the charac-
teristic equation have damping ratios greater than £y
{b) Find a suitable contour T, in the s-plane that can
be used to determine whether all the roots of the char-
acteristic equation have real parts less than 5 = —oy.
{c) Using the contour of part (b) and Cauchy's theo-
rem, determine whether the following characteristic
equation has roots with real parts less than 5 = —1:

qis) = £ + 118 + S6s + 96,

P94 The Nyquist plot of a conditionally stable system &

shown in Figure P9.4 for a specific gain K. (a) Determine
Ie
————

/ \f.!}uﬂﬂ)n}.plmlr

(&) Ls) = GAs)Gia) =

E9.24 A unity feedback system has a loop transfer function

&
Lis) = G(5)G{s) R
where & =1 and 7 =1 The polar plot for
Glja)iju) is shown in Figure E9.24, Determine
whether the system is stable by using the Nyguist
criterion.

E9.25 A unity feedback system has a loop transfer function

117

L) = GdIGE) = S gasant + e
Determine the phase margin and the crossover fre-
quency.
Answers: PM. = 177", w, = 831 rad/s

E9.26 For the system of EY.25, determine M . o, and
wy for the closed-loop frequency response by using
the Nichols chart.

EQ.27 A unity leedback system has a loop transler function

K
Lis) = GAs)G(s) = oy

whether the sysiem is stable, and ind the number of
roots (if any) in the right-hand s-plane. The system has
no poles of G(s)G(s) in the right half-plane. (b) Deter-
mine whether the system is stable if the =1 point lies at

the dot on the axis.
P95 A speed control for a gasoline engine & shown in
Figure P9.5. B f the restriction at th

intake and the capacitance of the reductbon manifold,
the lng 7, occurs and is equal to 1 second. The engine
time constant 1, i equal 10 J /b = 3 5. The speed men-
surement time constant i 7, = 0.45 (a) Determine
the necessary gain K if the steady-state speed error is
required to be less than 10% of the speed reference set-
ting. (b) With the gain determined from part (a), apply
the Nyquist criterion to investigate the stability of the
system. (¢) Determine the phase and gain marging of
the system.

P96 A disect-dri isani i : in
which no reducers are used between molors and their
londs. Because the mador rotors are directly coupled 1o
the loads, the drive systems have no backlash, small fric-
tion, and high mechanical stiffness, which are all impor-
tant features for fast and sccurate positioning and
dexterous handling using sophisticated 1orque control,

The goal of the MIT direct-drive arm preject is 1o
achieve arm speeds of 10 mis [15]. The arm has
torques of up 1o 660 N m (475 it Ih). Feedback and a
sel of pasition and velocity sensors are used with cach
motar. The frequency response of ane joint of the arm
s shown in Figure PR.6{a). The two poles appear at 3.7
Hz and 68 Hz. Figure P9.6(b) shows the step response
with position and velocity feedback used. The time
constant of the closed-loop system is 82 ms Develop
the block diagram of the drive system and prove that
B2 ms is a reasonable result.

PO A vertical takeoff (VTOL) aircraft is an inherently
unstable vehicle and requires an automatic stubiliza-
tian system. An attitude stabilization system for the
K-16B ULS Army VTOL sircealt has been designed
and is shown in block diagram form in Figure P9.7
[16]- At 40 knots, the dynamics of the vehicle are
approximately represented by the transfer funciion

1]
= o

Fisy
Speed
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ES.17 A unity feedback system has a loop transfer function the steady-siate error for a ramp input for the gain of
part (b)?

E9.08 An actuator for a disk drive uses a shock mouant o
absorh vibrational energy st approximately 50 Hz
[14]. The Bode diagram of G {s)G(s) of the contral

() Plot the Bode diagram and (b) determine the gain system is shown in Figure E9.18. (a) Find the expected

K required to obtain 2 phase margin of 30°. What is percent avershoot lor a step input for the closed-loop

Kis +2)

Lis) = Gils)Gi(s) = TiaEei

X: 48693 ¥i ~4.5924m ¥: 00
Trans | R#d oA 100 Expasi
A0.000

LOMAG |
)

]

T . . . .
40,000 LG HZ P

Gan ermwe

fa}

X: 48693 ¥: 36218 ¥: 00
Trans | Rad wA (00 Expand
180,00

M\ T

Phase mangin
a8 crmsiver

i

FIGURE E8.18 g — ]
Bode of 40,000 LG HE e H: 50000
the sk crive,

GAs|Gis). by
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Dietermine the maximum gain K for which the phase  E9.30  Consider the system represented in staie variable
margin is at least 40° and the gain morgin is at east & farm
dB. What are the gain margin and phase margin for
this value of K7

E9.28 A unity feedback system has the loop tramsfer
function where

noo o
Lis) = GAa)G(s) = ;(:_flﬁi A |:—|n -mn]'s ol [|]

() Determine the phase margin of the system when

K = 0.16. (b) Use the phase margin to estimate { and

predict the overshoot. (c) Calculate the actual re- Sketch the Bode plot.

sporse for this second-order system, and compare the gy 31 A closed-loop feedback system is shown in Figure

result with the part (b) estimate. E9.31. Sketch the Bode plot and determine the phase
E9.2% A loop transfer lunction is margin.

%= Ax + Bu
¥ =Cx + Du,

C = (1000 0].and D = [0].

L) = GG = T

Using the contour in the s-plane shown in Figure
ES.24, determine the corresponding contour in the
Fishplarne (8 = =1 + j).

¥isp

J: FIGURE E9.31 Monunity feedback system.
E9.32 Consider the system described in state variable
'|')7 form by
A1) = Axit) + Buli)
B s n ) = Cxir)
where
o 1 0
O N T A PO
A £ -4 =1 33
-l ] 1 Compute the phase margin.
ES.33  Consider the system shown in Figure EY.33. Com-
pute the loop transfer function Lis), and sketch the
H e r Bode plot, Determine the phase margin and gain mar-

in when the controlier gan £ = 5.

Comcher | Poue |
- 4
L Hish
: o * dH2Eh e d >

FIGURE E9.33 yrv—
Nonunity feedback e
system with 10
nlupnl!lun: PR
controller K.




Problems 723
1)
Servovalve and actumor
Amplifier
[T T LN o/
Pisitiom

FIGURE P3.8
(8] A sorvovalve and
actuator (courtesy

of Moog. Inc..
Industrial Division),
() Binck diagram

edpe of the wing and o brake on the il fo control the
flight during entry. The black dingram of a pltch rate
control system |s shown In Figure PO.9(b). The sensor
s represented by & gain, H#is) = 0.5, and the vehicle
by the transfer function

030(s + QiSH" + 1600)
(F & 008 + 16Kx + 70)

s} =

The comtroller Gis) can be a pain or any suitable
transfer function. {a) Sketch the Bode diagram of the
system when (1) = 2 and determine the stability
margin. (h) Sketch the Bode dingram of the sysem
when

Gdt) = Ky + Kyfs and  Ky/Kp = 05

The gain K. should he selected o that the gain mar-
®in is 10 dB.

POID Machine tooks are alten automatically controlied as
shwwn in Figure PRI0 These automatic systems are
often ealled mumerical machine controls (9], On each
wurs, the desired position of the machine ool

Problems

Besined
'. m crceniaion

il
Comcyor

4

ihh

compared with the actual position andd & wsed 1o acte-
e o salenuid coil mnd the shall of a hydraulic schutor
The tmnsfer function of the setwitor {sec Table 27) is

Xis) K,
G, - —
S e e T

where K, = | and r, = (.45 The output voltage of
the difference amplifier s

Efs) = K Xls)} = Xoshh.

whare wr) is the desired position input. The force on
the shaft i progortional to the current i, s (hat
F o= Kt} where K. = 3.0, The spring constant K,
isoqual o 15 & = 01, and £ = 02

{a) Determine the gain X, that results in & systen
with a phise margin of 30°. (b) For the gain K| of part
(a) determine M o, and the closed-loop system
handvwidih. () Estimate the percent avershoot of the
transient respomse 10 0 siep input Ngla) = 1, sod
the settling time {to within 2% of the final value)
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Messurenent
| of vncenmation

E—
Controller Conveyor Tank
+ E = > Wi
Flﬂl.ﬁ P11 i --—vQ—- Gl o Gl G il
concentration
control.

The irampon of the feed along the conveyor requines
a transport {04 delay) time, 7 = 15 (u) Sketch the
Hode dingram when Ky = Ky = 1. and investigale
the smability of the system. (b) Sketch ihe Bode din-
gram when Ky = (L1 and K; = 004, and investigate
the stability of the system, () When K, = 0 use the
Nyquist criterion 1o caleulte the mukimum allowalle
gnin K for the system 1o remain stable.

PO A simplified model of the control systens for regu-
Inting the pupillary aperiure in the humon eye s
shown in Figure P9.12 [20). The guin K repeesents the
pupillary gain, and 7 is the pupil time constant, which
0.5 5 The time delay Tis equal to 15 < The pupillary
nin is equal 1o 2.

{a) Assuming the time delny 5 neghigible, sketch the
Bode dingram for the system. Determine the phase
margin of the system. (h) Include the effect of the time
delay by adding the phase shift due to the delay.
Determine the phese margin of the system with the
time delay included

A3 A controlier is used 1o regulate the temperature

of & mokd for plastic part fabrication. as shown in
Figure P13 The value of the delay time is estimated
as 1.7 < {a) Using the Nyguist eriterion, determine
the stability of the syitem for K, = K =1
(b) Determine o suitable value for &, for a stable sys-
vem (hat will viekd a phase margin greater than S0°
when K = 1.

Light
imennity
Hn
" Popll 1w
Riry K anen .
Befenines RS o §o—
Oplic nerve

FIGURE P9.12
Hurnar: gupil

nportura contml
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]

El
0

Magnitude {dB)
S

Risp
Relerence

FIGURE PB.7
VTOL aircratt

4Hz 10 0 60 100 H2
fa
—t
200 ms
b}

0]
Attt

Rate gyro [

system,

“The actuator and filter are represented by the iransfer
function

K 7

{a) Obtain the Bode disgram of the loop transfer
function L{s) = G{s)G{s)H(s) when the gain &
Ky = 2 (b) Determine the gain and phase margins of
this system. (¢) Determine the steady-state error for a
wind disturbance of T{s) = 1/5 (d) Determine the
maximum amplitude of the resonant peak of the
chosed-loop frequency response and the frequency of
the resonance. (¢) Estimate the damping ratio of the
system from M, and the phase margin.

P98 Electrohydraulic servomechanisms are used in con-
trol systems requiring a rapid response for a large

i Hisy =13

The output sensor yields a measurement of actuntor
position, which is compared with V.. The error is
amplified and the hydraulic valve position, thus
controlling the hydraulic fuid fiow to the actuator. The
block diagram of a closed-loop electrohydraulic serva-
mechanism using pressure feedback 1o obtain damping
is shown in Figure P9.8(b) [17, 18], Typical values for
this sysiem are r = 002 s for the hydrulic system
they are ay = T(2%) and {3 = 005 The structural
resonance ay is equal to 10{2x). and the damping is
£ = 0.05. The loop gain is KK, K3 = 1.0, () Sketch
the Bode diagram and determine the phase margin of
the system. {b) The damping of the systein can be in-
creased by dnilling a small hole in the piston so that
{3 = 0.25. Sketch the Bode diagram and determine
the phase margin of this system,

mas. An electrohydraulic servomechanism can pro-  P9.9  The space shuttle, shown in Figure PY.9(a). carries

wide an output of 100 kW or greater [17]. A photo of a
servovalve and ctuator is shown in Figure P9.8(a).

large payloads into space and returms them Lo earth
for reuse [19]. The shuttle uses elevons a1 the trailing
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FIGURE PO.9 i
() The Eann
orbiting space »
o Conmoller Vehicke

The remote " 2 - " Viny
manipulndor rabot is 1! hast an Pl e
shown with tha =

bay doors 1
apen nthis ap !E.
m""“‘-ﬂ"‘“’ﬂ m‘ :‘Vh:h Hish
rate contral system
[Courtesy of NASA ) (h

L]

FIGURE P9.10
Machine tool 2
control. ; Sapply

PRI A control system for s chemicn] concentration con-
trol system 8 shown in Figure P9.11 The system
receives 8 granulnr feed of varying compasilion, and
we wanl to makntain o comstont composition of the
owlput mixture by adjusting the feed-Now valve. The
wramder functhon of the tank and output valve is

" 5
O =
5

and that of the controller is

K3
Gla) = Ky + -“.



Phattransisior Motor and cart dysarm
arry
FIGURE P2.16 it 1 Yas
{a) An elactric ¥ e TR ] Can besting
carrior vehicle N
(photo courtesy of
Ganftrol Engineering
Corporation,
(b} Block diagram. L
FIGURE P2.17
Chomical reactor
control.
[22]. A typical chemical resctor control scheme is K
shown in Figure P17, The disurbance is represented G =g ™
by L), and the chemical process by Gy and (5, The
controller is represented by 7, and the valve by Gy where 7, = ry = 45 and K; = K, = 0.1, The valve
The feedback seror is i) and will be asumed ta be constants are Ky = 20 and 7y = (.55 We want to
equal to 1. We will assume that Gy, €. and G are all of maintain & steady-state ervor Jess than 5% of the
the form desired reference position.
Problams 729
Fan
Dynamics.
i = 1 1y
+ (200 + 14108 + (NOSS + 1) Mt
FIGURE P9.20 e
Tiltrotor srcraft
control

P921  Conmsider 0 upity feedback system with the loop
transfor function

- K

GlAG0) = e+ )

() Sketch the Bode dingram for K = 4 Determing
() the gain margin, () the value of K regquined to pro-
vide a gain marin eqanl tw 12 B, and (d) the value of
K 10 yicld & steady-state error of 25% of the magni-
tude A for the ramp mput r(f) = ALd = 0. Can this
nain be utiled and achicve acceptable performance?

P22 The Nichols diagram for G, (je)G{jn) of a closcd-

Do wystiem bs shown in Figune PUIL The frequency for
cach polnt on the graph is given in the fallowing table:

Point 1 2 3 4 5 6 7 B 9
- ) 20 26 34 42 52 60 7O RO

Dietermsine (u) the resonnnt frequency, (b) the band-
width. {c) the phase margin. and (d} the gain margin
(e} Estimate the overshool and setifing time {with a
2% eriterion) ol the response 1o a step input.

u

P24
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o
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P8 A maodel of an

FIGURE P8.18
Automabiie and
driver control,

FIGURE P2.18
Wasie collection
‘system.

automobiles. Figure PO14 is on eample of an

aulomobile control system, the steering control for a re-

search automobile. The control stick is used for steer-

ing A typical driver has a reaction time of 7 = 025,

(a) Using the Nichols chart. J ine e U
of the gain X that will result in a system s with o
pcnk mmltuﬂr of the closed-loop frequency

s less than or equal to 2 dB.

(b} Emmm me damping ratio of the system based
o (1) M., and (2) the phase margin, Compare
the n:wlts and explain the difference, il any.

(e} ine the closed-loop 3-8 bandwidth of the
system.

PO.15 Consider the automatic ship-steering system dis-

cussed in Problem PB.11. The frequency response of

the open-loop portion of the ship steering contral sys-

tem is shown in Figure PR.1L The deviation of the
tanker from the straight track is measured by radar
and i used to generate the error signal, as shown in

Figure P9.15, This error signal is used 1o contral the

rudder angle 5(s).

{a) Is this system stable? Discuss what an unstable
ship-sieering system indicates in terms of the
trnsient response of the system. Recall (hat the
system under consideration i a ship attemping
1o fallow a straight track.

b} Is it possible 10 stabilize this system by lowering
the gain of the transter function G{x)?

(e} Is it possible to stabilize this system? Suggest o
suitable feedback compensator,

fa) When Gyis) = K, find the necessary gain (o sal-
isly the errorconstunt requirement., For this con-
dition, defermine the expecied overshoot to n
step chnoge in the reference signal /i),

(b) If the controller has o proportional ierm plus an in-
tegrul term so that Gy(s) = Ky{l + 1/s), deter-
mine & sutable gaan 10 yield a system with an
overshood less than 30%, bat gremer than 5%, For
parts () and (b}, use the approximation of the
dampiiie ratio s 8 function of phise |||'|r|;|u that
yields { = I'JDHq.,_ For these sume

c f Healing
dynamics
Ris1 ¥
\ . LT}
Pl wxs 1) e T
" X emperature
FIGURE Pa,13 WP
Temperature
controlier
Human Vehicle and
resction lime frant wheels
Rin Tay
Doired  *+ | Gl wick X 4
direvtion T8 T Hole+ 1) ?}'::;:'
FIGURE P8.14 of travel
Automobile steering
control,
POl E ics and re being used I

(d) Repeat parts (a). (b). and (c) when switch § is
closed,

Disired constant
heading
s H - )\ -
Derivative
feedback.
Kx
Swinh 5

FIGURE P9.15  Automatic ship steering.

PO.16  An electric carrier that automatically follows o

tape track laid out on a factory floor is shown in
Figure P9.16{a) [15]. Closed-loop feedback systems
are used to contrel the guidance and speed of the
wvehicle. The cart senses the tape path by means of an
array of 16 phototransistors. The block diagram ol
the steering system is shown in Figure PO.16(b).
Select a gain & so that the phase margin is approxi-
mately 0%,

PRIT  The primary objective of many control sysiems is 1o

muintain the outpat variable at the desired or reference
condition when the system s subjecied to a disturhance

Chapter 8  Stabdity in the Frequency Domain
P19 In the United States, billions of dollars are spent

anmually for solid waste collection and disposal, Cine
systom, which uses a remate control pick-up arm for
collecting waste bags. i chown in Figure PRIY. The
Ioop transfer function of the remaote pick-up arm is

2 i 05
L) = GG = S

L'll Hnl the Nichots chart and show llul the qun mar-
Iy 32 di (b) D he phase

Ut 1} =

(e) Estimate :nz settling time (with a 2% criterbon ) af
the siep respomse of the system for the controller
of parts (a) and (b).

() The system is expected to be subjected 1o a step
disturbance U(s) = Afr. For simplicity, assume
that the desired reference is rit) = 0 when the
system has settled. Determine the response of the
wystem of part (b) 1o the disturbance

ibile driver ing, o stier

mmigia mad the My, for the closed loop Alln. deter-
mine the closed-loop bandwidth.

920 The Bell-Boeing V-22 Osprey Titrotor is both an air-

plane and & bdimpeﬂ. Its advantuge is the ability to
rodate fts engines 1o a vertical position, as shown in
Figure PT.33(a), for takealfs and I:omp and then
switch the engines to a horizontal position for crulsing
as an mirplane. The altiiude control svstem in the
helicopter mode s shown in Figure P20, (a) Obain

A course i shown in Figure PO.IS, where K = 53
{a} Find the freqquency response and the gain and phase
margins when the reaction time T ks zero, (b) Find the
phase margin when ihe reaction Hme s L] <
(e} Find the reaction time that will cause the systen io
be bordetline stable (phase margin = 0%),

the freg response of the sysiem for K = 100,
[} Find the gain mangin and ihe phase maggn for this
system. (c) Select a suitable gain & so that the phase
margin is 4%, {Decrease (he gain above K = 100, )
() Find the response v} of the system for the gain
selocted in part (c)

Laeral
displacement

Awin
x
L

R TR R

Prriver

i At




Mine water acidity

Advanced Probiems

closed-loop system is stable, Plot the phase margin
as a function of the gain | = K = K,.,. Explain
what happens to the phase margin as K approaches
Ko

PU28  Consider the feedback system shown in Figure

P28 with the process transfer function given as

W=

73

The isthe
Gls) = Kp.

{n) Deternmine a value of K such that the phase mar-
#in i approximately PM, = 45°,

(1) Using the M. obtained, predict the percent over-
shoot of the chosed-koop system Lo a unit step input.

fc} Plot the step response and compare the actual
percent overshoor with the predicted percent

overshoot.
Controdler Process
AMEM F TG LN I =i e "
system with a 3 » s+ 1y ad
ki &
controfier in the
Ioop.
ADVANCED PROBLEMS
AP91 Operational fi undergo sul | mass  APOZ  Anesthesis i used in surgery fo induce uncon-

peny and configuration clmnw dun:g their life-
time [25], For example, the incrtias change consider-
ably during operations. Coosider the orientation
control system shown in Figure AP9.1.
{a) Plot the Bode diagram, aud determine the gain
and phase margins when w,® = 15,267, (b) Repeat
part {n) when w,” = 9500, Note the effect of chang-
ing e, by 39%,

mﬂﬁs DM pmblﬁn \mh dmg—lnduc:d uncon-

Furihermore, the piticnt retwme dumpes during an
operation. A model of drug-induced anesthesia control
is shown in Figure AP9.2 The proxy for unconscious-
ness is the arterial blood pressure.

{a) Plot the Bode diagram and determine the gain mar-
gin and the phase masgin when T = 0,05 5. (b) Repeat

and 100 heavy for practical ise. One solution is to elim-

inate the cable. The key to the cordless elevator is the

hnul moatar tﬂ:hnulom' now being applied 1o the
wcally levitated rul

Controlier Dysamics
Ris + Hin)
Orientatinin 130+ 10y ‘—m“-—1 Orientation
i 3 Ais + 1) 4 10 = wd A
FIGURE APS.1 o
Spacecrafl i+
onentation control.
Rin | Comrciler | | Body dymemics | Yish
Diesarcy h 2e70F Actual
bloed AL 7 Bl
pressuns = pressare
FIGURE APS.2 Seasor
Control of blood 2
pressurn with i+1
anesthesia.
Advanced Problems 733

AP98 A control system is shown in Figure APO.A. The

gain K i greater than 500 and less than 3000, Select a
gain that will cause the system step response 1o have
an af less than 20%. Plot the Nichols dia-

tion gymm Undcf consideration is a linear 1ynchm-
nous motor that propels & passenger car along the
tracklike guideway running the length of the elevator
shaft. The motor works by the interaction of an elec-
tromagnetic fiekd from electric coils on the guideway
with magnets on the car [28].

If we assume that the motor has neghigible friction.
the system may be represented by the model shown in
Figure AP9.7. Deterntine K sa that the phase margin of
the system is 45°. For the gain K sclected, determine
the system bandwidth. Also calculate the maximum
walue of the outpat for & unit step disturbance for the
selected gain.

gram. and caleulate the phase margin,

AP9.9  Consider agnin the system shown in Figure AP7.12

which uscs a PI controller. Let
%‘; =02,

and determine the gain Kp that provides the moxi-
mum phase margin.

APOID A multiioop block disgram is shown in Figure

AP0

Kixi =0

Motor und valve

Hisp

- &

Deslood e [ ™ SNt

FIGURE APS.6 acidisy = wwidity
control,

L

i +
Livalion Kis+ )
FIGURE AP9.7 pultive =
Elgvator position
contral,

Tan
Controdl Elevaior and
lineas mosor
L I Yin
I ¥ vl
positink
|
Yisy

HE + 30+ 3.56)

3 Kis 417
Ry = )—-I—
T {3+ 10)s + 25)

FIGURE AP2.8
Gain selection.

FIGURE AP 8.10

Pt An i T_LBJ
conirol sysiem.

730 Chapter 8 Stability in the Frequency Domain

P9.23 A closed-loop system has a loop transfer lunction

T T |
L) = GG = R+ 1)
(a} Determine the gam K so that the phase murgin i
00, (b} For the gain K selected in part (a). determine
the gain margin of the system,
P34 A closed-loop system with unity feedback has a
loop transfer function
Kin + 20)
Lia) = GGy = - 5
(2} Determing the gain K 50 that the phise margin is
457 () For the gain K selected in part (i), determine
the gain margin. (¢) Predict the bandwidih of the
closed-loop system.
P925 A chsed-loop system has the loop transfer linction

T
Hs) = G {s)G(s) = "-‘;—.

vk oot

{8} Dedermine the gain K so that the phase margin is
6" when T = 02 (b} Mot the phose margin versus
the time delay T for K as in part {a)

PO.26 A specialty machine shop s improving the elficiency

ol its surface-grinding process [21]. The existing
machine is mechanically sound, but manually operated.
Automating the machine will free the operator lor
other tasks and thus increase overall throughput of
the machine shop. The grinding maching is shown in
Figure PO.26(a) with all three axes automated with
motors and leedback systems. The control system for
e y-nxds 18 shown in Figure PL26(b). To achieve &
Tow steady-stale error (o a ramp commund. we choose
K = . Sketch the Bode diagram of the open-loop
system and obiain the Nichols chart plot. Determine
he gain and phase margin of the system and the band-
width of the closed-loop system. Extimate the { of the
sysem and the predicted overshoot and setiling lime
{with u 2% eriterion).

P9.27 Consider the systom shown in Figure PO.27, Deter-

mine the maximum value of K = K, for which the

FIGURE P8.26 Surfsce-grinding wheel contrd system.

Coniroller Process
)t X ~ M
b P2t d
FIGURE Pa.27 Sonsr
Nonunity fesdback =
system with =
POt vl
cantroller K.
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Contrller Process
Rixi ¥irp
66(1 + hin K
Desired i T Tt At
depth 1+ 000 (0 + 001N + 150 Pead e
Sensar
FIGURE AP9.3 1
wﬁ::u‘l depth 14 2
Controller Paper machine
Rixt + W | Tisp

Ceiived pred FEaT ] rdvanipled
FIGURE AP9.4 welightiana - 2 weigl ‘
Paper maching
control.

part (a) when T = (L1 &, Describe the effect of the
100% increase in the time delay T, (c) Using the phase
‘margin. predict the overshoot for a step input for parts
{a) and (b}

AP9.3  Welding processes have been sutomated over the
past decades. Weld guality features, such as finnl met-
allusgy and joint mechanics, typically are not measur-
able online for control, Therefore. some indirect way
of controlling the weld quality is necessary. A compre-
hensive approach to in-process contral of welding
includes both geometric features of the bead (such as
the crosssectional featurcs of width, depth, and
height) and thermal characteristics (such as the heat-
affected zone width and cooling rate), The weld bead
depth. which is the key peometric altribute of a major
class of welds, is very difficult 1o measure directly, but
a method 1w estimate the depth using temperature
measurement has been developed [26]. A model of the
weld control system is shown in Figure AP9.3,

{8) Determine the phase margin and gain margin for
the system when K = 1. (b) Repeat pari (a) when
K = 15, (c) Determine the bandwidth of the system
for K =1 and K = 1.5 by using the Nichols chart.
(d) Predice the settling time (with a 2% criterion) of o
step response for £ = 1 and K = 1.5,

AP94 The control of a paper-making machime i quite
complex [27]. The goal is to deposit the proper amount
of fiber suspemsion (pulp) at the right speed and in a
uniform way. Dewatering. fiber deposition, rofling.
and drying then take place in sequence. Control of the
paper weight per unit area 1 very important. For the
control system thown in Figure AP9.4_sclect K 5o that
the phase morgin P.M, = 45% and the gain margin
G.M. = 10 dB, Plot the step response for the selected

gain. Determine the bandwidih of the closed-loop
system.

AP9S NASA is planning many Mars missions with rover

g

vehicles. A typical rover is a solar-powered vehicle
which will see where it s going with TV cameras and
will measure distance 1o objects with laser range find-
ers. [t will be able to climb a 30° slope in dry sand and
will carry a spectrometer that can determiine the
«chemical composition of surface rocks. [t will be con-
wralled remately from Earth.

For the model of the position control system
shown in Figure AP95, determine the gain K that
maximizes the margin, Determine the over-
shoat for a step input with the selected gain.

Costrofler
[Comotier | [ Piam_]
Kl + 04) ]

i

pt
i3 i+ 0

FIGURE AP9.5  Position control system of a Mars rover.

AP9.6  The acidity of water draining from a coal mine is

often controlled by adding lime to the water. A valve
controls the lime addition and a sensor is downstream.
For the maodel of the system shown in Figure APYS,
determine K and the distance D 1o maintain stability.
We require D > 2 meters in order 1o allow full mis-
ing before sensing.

AP.T  Building elevators are limited 10 abou 800 meters.

Above that height, elevator cables become too thick



Design Problems

mominal time delay with T = 1 5. The goal is to achieve
a step response wilh zero steady-state error and per-
cent overshoot P.O. = 0%,

Consider the conmroller

5
o) = o

DESIGN PROBLEMS

CDPY.]  The system of Figure CDPA.1 wes a controller
oy Gis) = K. Determine the value of K, so thal the
L+J phase margin is 707, Plot the response of this system 1o

aslep input.

DP9 A mobile robot for Loxic waste cheanup is shown in
Figure DP9.1(a) [23]. The closed-loop speed control is
represented by Figure 9.1 with H{z) = L. The Nichuls
«chart in Figure DP9.1{b) shows the plot of G,{juw)
Gifjorl/ K versus w. The value of the frequency a1 the

points indicaled is recorded in the following rable:

Point 1 2 3 4
- 2 5 1 m

{2} Dretermine the gain and phase margins of the
clesed-loop system when K = 1. (b) Determine the

5
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For the nomenal time delay of T = | 5. plot the step re-
sponse and verily that steady-siate tracking error and
percent overshoot specifications arce satisfied. Deter-
mine the masimum time delay. T, possible with the
PID contraller that continues 1o stabilice the closed-
loop system. Plot the phase margin as a function of
time delay up to the maximum allowed for stability.

patient status within narrow bounds Consider the
use of & drug delivery system for the regulation of
hlood pressure by the infusion of n drug. The feedback
control system is shown in Figure DP9.3. Select an ap-
propriate gain K that mainialss narrow deviation
for blood pressure while achieving a good dynamic
response.

DP94 A robot tennis player is shown in Figure DP9.4{a),

and a simplificd control system for 84{r) is shown in
Figure DP9.4(b), The goal of the control system is (o
attain the best step response while attaining a high K
for the system. Select K, = 0.4 and K 5 = 075, and
determine the phase margin, gain margin, bandwidth.
percent overshoot, and settling time for ench case.
Obtain the step response for each case and select the
best value for K.

resonant peak in dB and the resonant frequency for DP9 An electrohydraulic actuator is used o actuate

K = 1. (c) Detcrmine the system bandwidth and
estimate the setlling time (with a 2% criterion) and
percent overshoot of this system lor a step input,
{d) Determine the appropriate gain K so that the
wvershoot to a siep input is 30%. and estimate the set-
Hing time of the system,

DP9.2 Flexibleoint robotic arms are constructed of
lightweight materials and exhibit lightly damped
open-loop dynamics [15], A feedback contral sysiem
ffor a Aexible arm is shown in Figure DP9.2. Select £

pe loads for & robot manipulator, as shown in
Figure DPYS [17). The system is subjected 10 a step
imput. and we desire the steady-state error to be mini-
mized. However. we wish to keep the overshoot less
than 10%. Let T = 085,

() Select the gain K when G (s} = K. and determine
the resulting avershool, settling time (with a 2% erite-
rion ). and steady-state error. (b) Repeat part {a) when
Giis) = K; + Kyfs by sclecting K and Ky Sketch
the Nichols chart for the selected gains Ky and Kr.

s (hat the system hns masimum phase margin. Pre-  ppos  The physical representation of 4 steel strip-rolling

dict the overshoot for a step input based on the phase
margin altained, and compare it to the actual over-

shoot for a step input. Determinc the bandwidth of
the closed-loop system, Predict the seitling time {with
a 2% criterion) of the system 1o a step input and com-
pare it to the actual settling time. Discuss the suitabiliny

of this control system.

DP93  An sutomatic drug delivery system is used in the
regulation of critical care patients saffering from
cardine failure [24]. The goal is 10 maintain stable

Dasign Problams

mill is a damped-spring system [8]. The output thick-
ness sensor is located a pegligible distance from the
output of the mill. and the objective is to keep the thick-
ness a3 close Lo a refercnce value as possible. Any
change of the inpul sirip thicknets s regarded as a dis-
turbance. The system is a nonunity feedback system, sx
shown in Figure DP9.6, Depending on the maintenance
of the mill, the parameter varics ns B0 = b < 300,
Determine the phase margin and gain margin for
the two extreme values of b when the normal value of

Comtrodjer
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An articulated

Rish Gin

Ty * 1)

FIGURE DP2.5 !
Electrohydraulic

actuator

734 Chapter 8 Stabllity in tha Frequency Domain

(@) Compute the transfer lunction T(s) = ¥{s)/Ris).
) Determine X such that the steady-state trocking
rTor to a unit step input R(s) = 1/y & zero, Plot

the unit step tespome.
() Using K from part (b), compute the system band-
widih as.

APLIL  Patbents with a cardiological illness and less than
normal heirt muscle strength can benefit from an is-
sistince device. An electric ventricular nssist device
(EVALY) converts clectric power into bood How by
maving A pusher plate against a flexible blood sac. The
pusher plate reciprocates to cject blood in systole and
to allow the sac 10 fill in diastole. The EVAD will
be implanted in tandem or in parnllel with the intact
nntural heart as shown in Figure AP9.01(s). The

EVAD is driven hy rechargeable batteries, and the

Haiery pack

electric power is trunsminted inductively across the
skin thratgh a transmission system, The batteries and
The trumsmission sysiem limil the clectric encrgy stor-
age and ihe transmitied peak power. We desire 0
drive the EVAID in a fashion that minkmnires its glec-
tric poweT comsuniption [33].

The EVAI has a single vput, the applied motor
voltage, and o single outpat, the blood flow rate, The
control system of the EVAD performs two main tisks:
1t ndjusts the motor voltage 1o drive the pusher plaie
through its desired stroke, and i varies the EVAD
lslasd Flowd o meet the body's eardiang outgul demandd.
The blood Mow controller adjusts the blood flow rate
loy warying the EVAD beat rate. A model of the feed-
back control system is shown in Fignre AP9.11(R).
The motor, pump, and Wood sac can be modeled by a

Energy tranamiision
wsiem

Conmalter

Vis) Mutor, pamp, and
Controller blood tue
FIGUREAPS.11 Mo — "'::'; .
{8} An sipciric Eesitnd G b T
triculie : Gl = (]
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Vil ju =t Valve

Vave
— L vt

Qo) 1100

G5

FIGURE DP2.9

(ra * WHms o 1)

Fan

{1} Prepare o table comparing the percent overshood,
aeriling vime, and steady-state ernor for the desigas
ol purts (b) through (e).
DPFLIE Comsider the system b deseribed in state varisbie
form by

wft) = Asir) + Balr)

i) = Cxir)
where

oo 1]

A= [; .\]" - [[],c -1 0]
Assume that the mput s a linear combination of the
states, that b

(i) = =Kxir) + rir),

where i) 15 the reference input and the gai matrix b
K= [K, K| Substituting u(r) into the stale vari-
able equation yields the elosed-loop system

x{f) = [A = BE[x(i) + Beit)

i

by Dcn;.n :hc i mlnx K nJ meai the wiwlng

(i) the system handwidth ay, = 1 rad; llnd (lll.}
the steady-state ervor to A unit step input
Bls) = 1/5 iszero,

DPIL The primary contral boop of o nuclear power
plant inchudes a time delay due 1o the need 10 trans-
port the Auid from the reactor to the measurement
jpaint as shown in Figore DP9.11.The transfer [unction
of the controller is

K
Gs) = K —T’

The transler function of the reactor and time delay is
T

)= =l

where T = (04 5 und = = 0.2 & Using frequency re-
spomss methods, design the controller so (hat the over-
shioot of the system is P00 = 10%. With this eontrolier
in the koop, estimate the percent overshoot and settling

) =Gt} time (with 8 2% m“wﬂnn):na unﬁ;lm Determine the
{a) Obtain. the weuation d acrual hoot and seitling time and compare wi(h
with A-BK. the estimated values.
Answers to Skills Check 741
FIGURE CPO.6 Pi contraller Blnk-w-‘u-uniuilz
A feedback control o & 100 + 1) =hylx® = 25000 "
syslem lor the yaw  desined PR
Mo ool & = (s = 3ts? + 505 + 1000}
of a bank-lo-tum
PO controlker Stellite
+ '
L . Ko+ Ko e ] "
FIGURE CP8.7 [ Delay |
A block deagram of H
a =aF
satelite. |

{a) Assume no trmnsmission time delay (ie. T = Ul
and design the controlier o the following specifi
cations: (1) percent overshoot less than 20% to a
unit step input and (2) time 1o peak bess than 3

5

(b} Compute the phase margin with the controller in
the luop but assuming a zero Iransmisskon time
delny. Estimate the amount of allowable time
delay for a stable system from the phase margin
calculation.

(€] Using a sccond-order Padé approximation o the
time delay, determing the maximum allowable
delay T, lor system stability by developing a m-
fibe script thal employs the pade fanction and
compuites the closed-loop system poles s 4 func-
tion of the time delay T. Compare yoor answer
with the one obtained in pan (b),

CP98  Consader the system represented in state variable
form

[ e[k
v 8 O+ [0
Uising the myquist function. obtain the polar plot.

ANSWERS TO SKILLS CHECK

() & (12 803 bi(14) & (15) 2

CP9Y  For the system in CP9.E, uwse the nichols function
o obiain the Nichols chart and determine the phase
margin and gain margin.

CPO.ID A closed-loop feedback system is shown in Figure
CPY.I0. {n) Obtain the Nyquist plot and determine the
phase margin, Assume that the time delay T = Os.
(b) Computc the phase margin when 7 = (0Fs
{c) Determine the minimum time delay thay destabi-
lizes the elosed-loop system.

FIGURE CP9.10 Manunily leedback system with a tima

True or False: (1) True; (2) True: (3) True; (4) Troe; WMm(mmd:l top to bottom ) £e. k. b, j.a,
(5} False
Multiple Choice: (6) bt (7) a; (8) d: (9) a: (10) &

iLd.hecg
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Comtroller Sirig il
Kis +0.0) 3333
Rish o o o T Fis)
=
FIGURE DP8.6 3
Stealstig-1ofing e

the gain s K = 170, Recommend a reduced value for
K so that the phase margin is greater than #° and the
gain margin is greater than & dB for the range of b,

DP9,7  Vehicles for lunar construction and exploration
work will face conditions unlike anything found on
Earth. Farthermaore, they will be controlled via remote
control. A block dingram of such a vehicle and the
«control are shown in Figure DPY.T. Sclect a suitable
gain K when T = 0155, The gaal is to achicve a fast
step respanse with an overshoot of less than 20%.

DP38  The control of a high-speed steel-rolling mill is &
challenging problem. The goal is to keep the strip
thickness accurate and readily adjustable. The model
of the control system is shown in Figure DPY.S. Design
a control system by selecting K so that the step re-
sponse of the system is as fast as possible with an over-
shoot less than 0.5% and o settling time (with a 2%
criterion) bess than 4 secomds. Use the oot locus to se-
lect K. and cabculate the roots for the selected K, De-
scribe the dominant rooi{s) of the system,

DP9.9 A two-tank system containing a heated liquid

wout of the second tank. The block diagram model is
shown in Figure DP9.%{b). The system of the 1wo
tanks has a heater in tank 1 with a controllable heat
input . The time constants are #; = l0s and
Ty = 505

(n) Determine T(s) in terms of Ty(s) and To,s).

(b} If Tauls). the desired outpur temperature, is

changed instantancously from Tids) = Afs w

Tyds) = 2Afs, determine the transient response

of To{r) when G (s) = K = 500, Assume that,

prior 1o the abrupt temperature change. the sys-

tem is at steady state.

Find the steady-state error e, for the system of

part (b). where E(s) = Tads) — Talsh.

(d) Let € {3s) = Kfs and repeat parts (b) and (c).

a gain K such that the peroeat overshoot is

bess than 10%.

() Design a controller that will result in & system
with a settling time (with a 2% criterion) of
T, < 180s and a percent overshoot of less than
10%, while maintaining a zero steady-state emmor

e

has the model shown in Figure DP9.%(a), where T, is whei
the temperature of the fluid fMlowing into the first Gds) = Kp + ﬂ
tank and T is the temperature of the liquid (lowing . LM Ey
Controller Vehicle Signal transmisshon
Pp— K — ﬁ — T ¥ink
FIGURE DP9.7 K
Lunar vehicle
contal.
Dyonicy
Ris) * & Fisy
Diesired Thickness
FIGUREDPaS b "\ wr+ 25N + 1003 + 2600) wtarip
Steel-roikng mill
control.
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FIGURE DP9.10
Nuclear reactor

CP9,1  Consider a unity negative feedback control system

witly
141
Lix) = Glas) = Trnrn
Verify that the gain margin is 5 and thar the phase
murgin s 107,
CP92  Uking the nyquist function. obtain the polar plot
for the l'nihvmng transfer funciions:

(n) Gis) = m'

50

(b} Gis) = TR

(c) Gl = -
¥

CP9.3 Using the nichols function, obtam (he Nichols
chisrt with @ grid for the following transfer functions:
o 1
) Gls) = st
1
b Gl = ———
(b Gla) E e
(0 66} =
Fanftilsen
Determine the approximate phase and gain margins
[rom the Nichols charts and label the charts accordingly.
CP9.4 A negative feedback control system has the loop
transfer lunctivn

T

i
Lis) = G labHis) = 'K+ 7

Temperate
e asrEt

Temmpernlin:
setting

(a) When T = 1.2 5. find X such that the phase margin
b 41" using the mang function. (b) Obtsin o plot of
phse margin versus T for K as in pant (a), with
=T =03

CP9.5 Consider the puper mnchine conlrol in Figure
APSAL, Develop an mefile 1o plat the bandwidth of the
closed-loop system a8 K varies 0 the  interval
I'= K =350

CP6 A block disgram of the yaw acceleration con-
trol system for a h:nt-:wlufn missile is shown in
Figure CFO.6. The inp yiw acceleration eon
mand {in g's}, and the ol i misstle yaw acceler-
ation {in g's). The controller is speeified 1o be 4
proportional, integral (P1) controller, The nominal
value of by is 0.5,

(a) Uking the margin function, compute the phase
mEArgin, gain margin, and system crossover fre-
quency (0 dB), ing the nomingl vilue of by

() Using the gain margin from part (a), determine
the maximum value of by for b stable system.
Verify your amswer with a Routh-Hurwitz
analysis of the charncteristic equation.

CPO.T  An engineering lnboratory has pn-scnlni a plan to
operaie an Earth-orbiting satellite that i to be con-
trolled from o groand station. A block dingram of the
proposed system is shown in Figure CP9LT. It takes T
seconds for a signal to reach the spacceraft from the
ground siation and the identieal delay for o retarn sig-
nal. The proposed ground-hased controller is o pro-
partioaal-derivative (PD) controller, where

Gels) = Kp + Kps.
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TERMS AND CONCEPTS

The frequency at which the frequency response
has declined 3 dB from iis low-frequency value.
theorem  If a contour encircles # zeros and P
poles of Fis) ing clockwise, the di
contour in the Fs}-plane encircles the origin of the
Fis)-plane ¥ = Z - P times clockwise.

Closed-loop frequency response  The frequency response
of the closed-loop transfer function T{jw).

Conformal mapping A contour mapping that retains the
angles on the s-plane on the Fls)-plane.

Contour map A contour of trajectory in one plane is
mapped [nto another plane by a relation Fix).

Gain margin The increase in the system gain when
phase = —180° that will result in o marginally stable
system with intersection of the —1 + {0 point on the
Nyquist diagram.

Logarithmic (decibel) measure A measure of the gain

1

i i 201 1/}, where — = ———

margin defined as 20 logyf1/d), where 5 Tl
when the phase shilt is =180°,

Chapter 8 Stability in the Frequency Domain

Nichals chart A chart displaying the curves for the rela-
tionship between the open-loop and closed-loop fre-
quency response.

INyquist stability criterion A feedback system is stable if,
and only if, the contour in the L{x)-plane does not en-
circle the (=1,0) point when the number of poles of
Lis) in the right-hand s-plane is zero. If L{s) has P
poles in the right-hond plane, then the number of
counterclockwise encirclements of the (—1,0) paing
must be equal 1o P for a stable system,

Phase margin  The amount of phase shift of the Lifw) at
unity magnitude that will result in & marginally stable
system with intersections of the ~1 + f0 point on the
Nynquist diagram.

Principle of the argument  See Cauchy’s theorem.

Time delay A time delay T, 30 that evenls occurring at
time 1 at one point in the system occur at another
point in the system at & later time £ + T



