
NEW AGE

# FOUNDATION of SWITCHING THEORY and LOGIC DESIGN





A.K. SINGH



NEW AGE INTERNATIONAL PUBLISHERS

## FOUNDATION of SWITCHING THEORY and LOGIC DESIGN

# This page intentionally left blank

# FOUNDATION of SWITCHING THEORY and LOGIC DESIGN

## A.K. SINGH

Assistant Professor
Deptt. of Electronics and Instrumentation Engg.
Northern India Engineering College
Lucknow



## NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

New Delhi • Bangalore • Chennai • Cochin • Guwahati • Hyderabad Jalandhar • Kolkata • Lucknow • Mumbai • Ranchi Visit us at www.newagepublishers.com

Copyright © 2008, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers

All rights reserved.

No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. *All inquiries should be emailed to rights@newagepublishers.com* 

ISBN (13): 978-81-224-2879-7

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com

## Dedicated to My Parents

# This page intentionally left blank

### **PREFACE**

The objective of this book is to develop in the reader the ability to analyze and design the digital circuits. The increased uses of digital technology in objects used for day-to-day life necessitate an in-depth knowledge of the subject for the professionals and engineers.

There are lots of references available on Switching Theory and Basic Digital Circuits, which discuss various topics separately. But through this text our notion was to discover the topics rather than to cover them. This comprehensive text fulfills the course requirement on the subject of Switching Theory and Logic Design for B. Tech degree course in Electronics Engineering of different technical Universities. This text is also bound to serve as a useful reference book for various competitive examinations.

There is no special pre-requisite before starting this book. Each chapter of the book starts with simple facts and concepts, and traverse through the examples & figures it uncovers the advanced topics. The book has 11 well-organized chapters.

Chapter 1 deals with number systems and their arithmetic. It includes an exhaustive set of solved examples and exercise to clarify the concepts. Chapter 2 introduces the basic building blocks of digital electronics. It starts with basic postulates, Boolean algebra and then introduces logic gates. It also deals with several types of implementation using logic gates. For beginners we strongly recommend to work out this chapter twice before proceeding further.

Chapter 3 deals with the Boolean function minimization techniques using Postulates and Boolean Algebra, K-Map and Quine-McCluskey methods. Chapter 4 presents various combinational logic design using the discrete logic gates and LSI & MSI circuits. This chapter also deals with hazards and fault detection. Chapter 5 introduces the Programmable Logic Devices. It also deals with basics of ROM, and then moves towards PLAs, PALs, CPLDs and FPGA.

Chapter 6 introduces the clocked (synchronous) sequential circuits. It starts with discussions on various flip-flops their triggering and flip-flop timings. It then deals with analysis and design of synchronous circuits and concludes with sequence detector circuits. Chapter 7 deals with shift registers and counters. It introduces the basic idea of shift registers and then discusses various modes and application of shift registers. It then introduces the various types and modes of counters and concludes with applications. Chapter 8 describes introductory concept of finite state machines and Chapter 9 deals with asynchronous sequential

circuits. It elaborates the analysis and design procedures with different considerations. Chapter 10 introduces the Threshold logic and its capabilities to realize switching functions. Chapter 11 describes the Algorithmic State Machine. It starts with basic concepts, design tools and concludes with design using multiplexers and PLA.

All the topics are illustrated with clear diagram and simple language is used throughout the text to facilitate easy understanding of the concepts. The author welcomes constructive suggestion and comments from the readers for the improvement of this book at  $singh_a k@rediffmail.com$ 

**AUTHOR** 

### **ACKNOWLEDGEMENT**

This book is the result of the dedication and encouragement of many individuals. I would like to thank my family members especially wife Menka and daughter Omanshi for their patience and continuing support and parents for their blessings.

I am indebted to my friends and colleague especially Manish Tiwari and Arun Prakash for their invaluable contribution in the project.

I thankfully acknowledge the contributions of various authors, data manuals, journals, reference manuals etc. from where materials have been collected to enrich the contents of the book.

Finally, I would like to thank the people at New Age International (P) Limited, especially Mr. L.N. Mishra, who continues support and encourages writing and who made the book a reality. Thanks are also due to Mr. Saumya Gupta, M.D. New Age International (P) Limited for his involvement in the project.

In last but not the least by the blessing of almighty and good fortune I get such a supporting and cooperative people around me who in one way or other help me to complete this project in time.

ARUN KUMAR SINGH

# This page intentionally left blank

## CONTENTS

|      | Preface                                                      | (vii) |
|------|--------------------------------------------------------------|-------|
|      | Acknowledgement                                              | (ix)  |
| СНАЕ | PTER 1: NUMBER SYSTEMS AND CODES                             | 1     |
| 1.0  | Introduction                                                 | 1     |
| 1.1  | A Review of the Decimal System                               | 1     |
| 1.2  | -                                                            | 1     |
|      | 1.2.1 Binary to Decimal Conversion                           | 2     |
|      | 1.2.2 Decimal to Binary Conversion                           | 2     |
|      | 1.2.3 Binary Formats                                         | 3     |
|      | 1.2.4 Data Organization                                      | 3     |
| 1.3  | Octal Numbering System                                       | 7     |
|      | 1.3.1 Octal to Decimal, Decimal to Octal Conversion          | 7     |
|      | 1.3.2 Octal to Binary, Binary to Octal Conversion            | 8     |
| 1.4  | Hexadecimal Numbering System                                 | 8     |
|      | 1.4.1 Hex to Decimal, Decimal to Hex Conversion              | 9     |
|      | 1.4.2 Hex to Binary, Binary to Hex Conversion                | 9     |
|      | 1.4.3 Hex to Octal, Octal to Hex Conversion                  | 10    |
| 1.5  | Range of Number Representaion                                | 11    |
| 1.6  | Binary Arithmatic                                            | 13    |
| 1.7  | Negative Number & Their Arithmatic                           | 15    |
|      | 1.7.1 1's & 2's Complement                                   | 15    |
|      | 1.7.2 Subtraction Using 1's & 2's Complement                 | 17    |
|      | 1.7.3 Signed Binary Representation                           | 19    |
|      | 1.7.4 Arithmatic Overflow                                    | 22    |
|      | 1.7.5 9's & 10's Complement                                  | 22    |
|      | 1.7.6 <i>r</i> 's Complement and ( <i>r</i> –1)'s Complement | 23    |
|      | 1.7.7 Rules for Subtraction using $(r-1)$ 's Complement      | 24    |
|      | 1.7.8 Rules for Subtraction using r's Complement             | 26    |
| 1.8  | Binary Coded Decimal (BCD) & Its Arithmatic                  | 27    |

| 1.9  | Codes   |                                                          | 29 |
|------|---------|----------------------------------------------------------|----|
|      | 1.9.1   | Weighted Binary Codes                                    | 30 |
|      | 1.9.2   | Non-Weighbted Codes                                      | 33 |
|      | 1.9.3   | Error Detecting Codes                                    | 35 |
|      | 1.9.4   | Error Correcting Codes                                   | 39 |
|      | 1.9.5   | Hamming Code                                             | 41 |
|      | 1.9.6   | Cyclic Codes                                             | 44 |
|      | 1.9.7   | Alphanumeric Codes                                       | 46 |
| 1.10 | Solved  | Examples                                                 | 48 |
| 1.11 | Exerci  | se                                                       | 55 |
| СНАР | TER 2:  | DIGITAL DESIGN FUNDAMENTALS-BOOLEAN                      |    |
|      |         | ALGEBRA & LOGIC GATES                                    | 57 |
| 2.0  | Introd  | uctory Concepts of Digital Design                        | 57 |
| 2.1  | Truth   | Table                                                    | 58 |
| 2.2  | Axiom   | atic Systems and Boolean Algebra                         | 59 |
|      | 2.2.1   | Huntington's Postulate                                   | 60 |
|      | 2.2.2   | Basic Theorems and Properties of Boolean Algebra         | 61 |
| 2.3  | Boolea  | n Functions                                              | 63 |
|      | 2.3.1   | Transformation of a Boolean Functions into Logic Diagram | 65 |
|      | 2.3.2   | Complement of a Function                                 | 65 |
| 2.4  | Repres  | sentation of a Boolean Function                          | 66 |
|      | 2.4.1   | Minterm and Maxterm Realization                          | 67 |
|      | 2.4.2   | Standard Forms                                           | 69 |
|      | 2.4.3   | Conversion between Standard Forms                        | 71 |
| 2.5  | Logic ( | Gates                                                    | 71 |
|      | 2.5.1   | Positive and Negative Logic Designation                  | 71 |
|      | 2.5.2   | Gate Definition                                          | 72 |
|      | 2.5.3   | The AND Gate                                             | 73 |
|      | 2.5.4   | The OR Gate                                              | 74 |
|      | 2.5.5   | The Inverter and Buffer                                  | 76 |
|      | 2.5.6   | Other Gates and Their Functions                          | 78 |
|      | 2.5.7   | Universal Gates                                          | 78 |
|      | 2.5.8   | The Exclusive OR (Ex-OR) Gate                            | 82 |
|      | 2.5.9   | The Exclusive NOR (Ex-NOR) Gate                          | 85 |
|      | 2.5.10  | Extension to Multiple Inputs in Logic Gates              | 86 |

| 2.6  | NAND   | -NOR Implementation                                                  | 91  |
|------|--------|----------------------------------------------------------------------|-----|
|      | 2.6.1  | Implementation of a Multistage Digital Circuit using NAND Gates Only | 91  |
|      | 2.6.2  | Implementation of a Multistage Digital Circuits using NOR Gates Only | 93  |
| 2.7  | Exerci | se                                                                   | 95  |
| СНАР | TER 3  | BOOLEAN FUNCTION MINIMIZATION TECHNIQUES                             | 106 |
| 3.0  | Introd | uction                                                               | 106 |
| 3.1  | Minim  | ization using Postulates & Theorems of Boolean Algebra               | 106 |
| 3.2  | Minim  | ization using Karnaugh Map (K-Map) Method                            | 107 |
|      | 3.2.1  | Two and Three Variable K-Map                                         | 108 |
|      | 3.2.2  | Boolean Expresion Minimization Using K-Map                           | 110 |
|      | 3.2.3  | Minimization in Products of Sums Form                                | 113 |
|      | 3.2.4  | Four Variable K-Map                                                  | 114 |
|      | 3.2.5  | Prime and Essential Implicants                                       | 117 |
|      | 3.2.6  | Don't Care Map Entries                                               | 118 |
|      | 3.2.7  | Five Varibale K-Map                                                  | 119 |
|      | 3.2.8  | Six Varibale K-Map                                                   | 121 |
|      | 3.2.9  | Multi Output Minimization                                            | 123 |
| 3.3  | Minim  | ization Using Quine-McCluskey (Tabular) Method                       | 124 |
| 3.4  | Exerci | se                                                                   | 130 |
| СНАР | TER 4  | COMBINATIONAL LOGIC                                                  | 135 |
| 4.0  | Introd | uction                                                               | 135 |
| 4.1  | Arithn | natic Circuits                                                       | 137 |
|      | 4.1.1  | Adders                                                               | 137 |
|      | 4.1.2. | Subtractors                                                          | 140 |
|      | 4.1.3  | Code Converters                                                      | 143 |
|      | 4.1.4  | Parity Generators and Checkers                                       | 147 |
| 4.2  |        | nd LSI Circuits                                                      | 149 |
|      | 4.2.1  | The Digital Multiplexers                                             | 150 |
|      | 4.2.2  | Decoders (DeMultiplexers)                                            | 153 |
|      | 4.2.3  | Encoders                                                             | 161 |
|      | 4.2.4  | Serial and Parallel Adders                                           | 163 |
|      | 4.2.5  | Decimal Adder                                                        | 168 |
|      | 4.2.6  | Magnitude Comparator                                                 | 171 |

| 4.3  | Hazards                                          | 173 |
|------|--------------------------------------------------|-----|
|      | 4.3.1 Hazards in Combinational Circuits          | 173 |
|      | 4.3.2 Types of Hazards                           | 175 |
|      | 4.3.3 Hazard Free Realizations                   | 176 |
|      | 4.3.4 Essential Hazard                           | 178 |
|      | 4.3.5 Significance of Hazards                    | 179 |
| 4.4  | Exercise                                         | 179 |
| СНАР | TER 5: PROGRAMMABLE LOGIC DEVICES                | 183 |
| 5.0  | Introduction                                     | 183 |
| 5.1  | Read Only Memory (ROM)                           | 183 |
|      | 5.1.1 Realizing Logical Functions with ROM       | 185 |
| 5.2  | Programmable Logical Arrays                      | 190 |
|      | 5.2.1 Realizing Logical Functions with PLAs      | 191 |
| 5.3  | Programmable Array Logic (PAL)                   | 195 |
|      | 5.3.1 Commercially Available SPLDs               | 197 |
|      | 5.3.2 Generic Array Logic (GAL)                  | 198 |
|      | 5.3.3 Applications of PLDs                       | 199 |
| 5.4  | Complex Programmable Logic Devices (CPLD)        | 199 |
|      | 5.4.1 Applications of CPLDs                      | 200 |
| 5.5  | Field Programmable Gate Arrays (FPGA)            | 200 |
|      | 5.5.1 Applications of FPGAs                      | 203 |
| 5.6  | User-Programmable Switch Technologies            | 203 |
| 5.7  | Exercise                                         | 205 |
| CHAF | TER 6: SYNCHRONOUS (CLOCKED) SEQUENTIAL CIRCUITS | 206 |
| 6.0  | Introduction                                     | 206 |
| 6.1  | Flip-Flops                                       | 207 |
|      | 6.1.1 RS Flip-Flop                               | 209 |
|      | 6.1.2 D Flip-Flop                                | 213 |
|      | 6.1.3 Clocked Flip-Flops                         | 215 |
|      | 6.1.4 Triggering of Flip-Flops                   | 224 |
|      | 6.1.5 JK and T Flip-Flops                        | 225 |
|      | 6.1.6 Race Around Condition and Solution         | 228 |
|      | 6.1.7 Operating Characteristics of Flip-Flops    | 229 |
|      | 6.1.8 Flip-Flop Applications                     | 230 |
| 6.2  | Flip-Flop Excitation Table                       | 231 |
| 6.3  | Flip-Flop Conversions                            |     |
|      |                                                  |     |

| 6.4  | Analys                                   | sis of Clocked Sequential Circuits          | 234 |
|------|------------------------------------------|---------------------------------------------|-----|
| 6.5  | Designing of Clocked Sequential Circuits |                                             | 239 |
| 6.6  | Design Examples                          |                                             | 244 |
| 6.7  | Solved                                   | Examples                                    | 250 |
| 6.8  | Exercis                                  | se                                          | 256 |
| СНАР | TER 7                                    | : SHIFT REGISTERS AND COUNTERS              | 260 |
| 7.0  | Introdu                                  | uction                                      | 260 |
| 7.1  | Shift F                                  | Registers                                   | 260 |
| 7.2  | Modes                                    | of Operation                                | 263 |
|      | 7.2.1                                    | Serial In-Serial Out Shift Registers        | 263 |
|      | 7.2.2                                    | Serial In–Parallel Out Shift Registers      | 264 |
|      | 7.2.3                                    | Parallel In-Serial Out Shift Registers      | 265 |
|      | 7.2.4                                    | Parallel In-Parallel Out Shift Registers    | 265 |
|      | 7.2.5                                    | Bidirectional Shift Registers               | 265 |
| 7.3  | Applica                                  | ations of Shift Registers                   | 266 |
|      | 7.3.1                                    | To Produce Time Delay                       | 266 |
|      | 7.3.2                                    | To Simplify Combinational Logic             | 266 |
|      | 7.3.3                                    | To Convert Serial Data to Parallel Data     | 267 |
| 7.4  | Counte                                   | ers                                         | 267 |
|      | 7.4.1                                    | Introduction                                | 267 |
|      | 7.4.2                                    | Binary Ripple Up-Counter                    | 267 |
|      | 7.4.3                                    | 4-Bit Binary Ripple Up-Counter              | 270 |
|      | 7.4.4                                    | 3-Bit Binary Ripple Down Counter            | 272 |
|      | 7.4.5                                    | Up-Down Counters                            | 273 |
|      | 7.4.6                                    | Reset and Preset Functions                  | 274 |
|      | 7.4.7                                    | Universal Synchronous Counter Stage         | 275 |
|      | 7.4.8                                    | Modulus Counters                            | 277 |
|      | 7.4.9                                    | Asynchronous Counter (Counter Reset Method) | 278 |
|      | 7.4.10                                   | Logic Gating Method                         | 285 |
|      | 7.4.11                                   | Design of Synchrous Counters                | 289 |
|      | 7.4.12                                   | Lockout                                     | 295 |
|      | 7.4.13                                   | Ring Counter                                | 297 |
|      | 7.4.14                                   | Johnson Counter                             | 299 |
|      | 7.4.15                                   | Ring Counter Applications                   | 303 |
| 7.5  | Exercis                                  | se                                          | 309 |

| CHAF | PTER 8: INTRODUCTORY CONCEPT OF FINITE                |     |
|------|-------------------------------------------------------|-----|
|      | STATE MACHINES                                        | 312 |
| 8.0  | Introduction                                          | 312 |
| 8.1  | General Model of FSM                                  | 312 |
| 8.2  | Classification of FSM (Mealy & Moore Models)          | 314 |
| 8.3  | Design of FSM                                         | 316 |
| 8.4  | Design Examples                                       | 318 |
| 8.5  | Capabilities and Limitations of Finite State Machines | 320 |
| 8.6  | Exercise                                              | 321 |
| СНАР | TER 9: ASYNCHRONOUS SEQUENTIAL LOGIC                  | 322 |
| 9.0  | Introduction                                          | 322 |
| 9.1  | Difference Between Synchronous and Asynchronous       | 324 |
| 9.2  | Modes of Operation                                    | 325 |
| 9.3  | Analysis of Asynchronous Sequential Machines          | 326 |
|      | 9.3.1 Fundamental Mode Circuits                       | 326 |
|      | 9.3.2 Circuits Without Latches                        | 326 |
|      | 9.3.3 Transition Table                                | 329 |
|      | 9.3.4 Flow Table                                      | 330 |
|      | 9.3.5 Circuits with Latches                           | 331 |
|      | 9.3.6 Races and Cycles                                | 336 |
|      | 9.3.7 Pulse-Mode Circuits                             | 337 |
| 9.4  | Asynchronous Sequential Circuit Design                | 340 |
|      | 9.4.1 Design Steps                                    | 340 |
|      | 9.4.2 Reduction of States                             | 342 |
|      | 9.4.3 Merger Diagram                                  | 343 |
| 9.5  | Essential Hazards                                     | 344 |
| 9.6  | Hazard-Free Realization Using S-R Flip-Flops          | 345 |
| 9.7  | Solved Examples                                       | 348 |
| 9.8  | Exercise                                              | 352 |
| СНАР | PTER 10: THRESHOLD LOGIC                              | 353 |
| 10.0 | Introduction                                          | 353 |
| 10.1 | The Threshold Element or T-Gate                       | 353 |
| 10.2 | Physical Realization of T-Gate                        | 355 |
| 10.3 | Capabilities of T-Gate                                | 356 |

| 10.4 | Properties of Threshold Functions           | 359 |
|------|---------------------------------------------|-----|
| 10.5 | Synthesis of Threshold Functions            | 360 |
| 10.6 | Multi-Gate Synthesis                        | 363 |
| 10.7 | Limitations of T-Gate                       | 363 |
| 10.8 | Exercise                                    | 363 |
| СНА  | PTER 11: ALGORITHMIC STATE MACHINE          | 364 |
| 11.0 | Introduction                                | 364 |
| 11.1 | Design of Digital System                    | 364 |
| 11.2 | The Elements and Structure of the ASM Chart | 365 |
|      | 11.2.1 ASM Block                            | 367 |
|      | 11.2.2 Register Operation                   | 367 |
|      | 11.2.3 ASM Charts                           | 368 |
| 11.3 | ASM Timing Considerations                   | 373 |
| 11.4 | Data Processing Unit                        | 375 |
| 11.5 | Control Design                              | 378 |
|      | 11.5.1 Multiplexer Control                  | 379 |
|      | 11.5.2 PLA Control                          | 381 |
| 11.6 | Exercise                                    | 383 |
| REFE | ERENCES                                     | 384 |
| INDE | X                                           | 385 |
|      |                                             |     |