SIGNALS and SYSTEMS PRIMER with MATLAB[®]

THE ELECTRICAL ENGINEERING AND APPLIED SIGNAL PROCESSING SERIES

Edited by Alexander Poularikas

The Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems Stergios Stergiopoulos

> The Transform and Data Compression Handbook K.R. Rao and P.C. Yip

> > Handbook of Multisensor Data Fusion David Hall and James Llinas

Handbook of Neural Network Signal Processing Yu Hen Hu and Jenq-Neng Hwang

Handbook of Antennas in Wireless Communications Lal Chand Godara

Noise Reduction in Speech Applications Gillian M. Davis

> Signal Processing Noise Vyacheslav P. Tuzlukov

Digital Signal Processing with Examples in MATLAB® Samuel Stearns

Applications in Time-Frequency Signal Processing Antonia Papandreou-Suppappola

> The Digital Color Imaging Handbook Gaurav Sharma

Pattern Recognition in Speech and Language Processing Wu Chou and Biing-Hwang Juang

Propagation Handbook for Wireless Communication System Design Robert K. Crane

Nonlinear Signal and Image Processing: Theory, Methods, and Applications Kenneth E. Barner and Gonzalo R. Arce

> Smart Antennas Lal Chand Godara

Mobile Internet: Enabling Technologies and Services Apostolis K. Salkintzis and Alexander Poularikas

> Soft Computing with MATLAB® Ali Zilouchian

Wireless Internet: Technologies and Applications Apostolis K. Salkintzis and Alexander Poularikas

Signal and Image Processing in Navigational Systems Vyacheslav P. Tuzlukov

> Medical Image Analysis Methods Lena Costaridou

MIMO System Technology for Wireless Communications George Tsoulos Signals and Systems Primer with MATLAB® Alexander Poularikas

SIGNALS and SYSTEMS PRIMER with MATLAB[®]

Alexander D. Poularikas

CRC Press is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20130916

International Standard Book Number-13: 978-1-4200-0695-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

To our grandchildren Colton-Alexander and Thatcher-James who have given us so much pleasure and happiness and have shown us how difficult it is to teach a time-varying, nonlinear, noncausal, and a multiple-input-multiple-output (MIMO) feedback system.

Preface

Signals and Systems is designed for use as a one-semester analog track, a onesemester digital track, a one-semester analog–digital track, or a two-semester analog–digital course.

We have included several carefully chosen examples from many fields to show the wide applicability of the material and methods presented in this text. The selection of examples from diverse engineering fields, as well as from nonengineering fields, helps to motivate and excite the student to delve into this course with enthusiasm. It is important that the student studies and learns the material presented, since this course is one of the most fundamental in the electrical engineering curriculum. To illustrate this diversity, the examples we include are drawn from chemical engineering, mechanical engineering, biomedical engineering, process control, economics, heat transfer, and other areas. They show that systems in general possess two features: the input signals to the system are functions of one or more independent variables, and the systems produce signals when excited by input signals. It is well known that engineers in their long careers will face problems that are not purely electrical engineering. They will be involved in heating problems of their electronic chips, the use of electromechanical elements driven by small motors in the development of disc drives, the modeling of parts of the body when helping biomedical engineers, the development of edge detectors when involved in pattern recognition of targets, and numerous other applications.

It is the author's belief that a good background, first of analog signals and systems, is necessary for the study of discrete signals and systems. It is known that discrete signals do not exist in nature for the simple fact that their detection needs the use of a physical transducer. Therefore, introducing arbitrarily the signal x(n), which is derived from the continuous signal x(t)by taking its values at equal time distances T, it is difficult for the student to understand why x(n) and x(t) are two different signals. Furthermore, unless the student is well versed and has a good knowledge of the spectrum of analog signals, he or she will have difficulties understanding the spectrum of sampled signals. Some methods to build digital filters are based on analog filter considerations and use.

In this text we have strived to balance the modeling and presentation of systems and their interaction with signals, as well as the study of signals.

We have tried to balance these two entities and avoid the presentation of a couple of systems, based on electrical circuits alone, for example, and then proceed to deal only with signals and their interaction with system models arbitrarily given without deriving them. It is important that the student be able to create the mathematical representation of a system from the physical laws that govern it, its physical presentation, and its underline constants. Engineers, if they want to be creative, must be able to model accurately the systems they investigate and find their responses under many different excitations. This type of work is at the heart of the engineering field.

The electrical engineering field, as it was taught for a long time based on electrical notion, has been changed considerably. For example, microelectromechanical systems (MEMS) are part of the electrical engineering study today and include mechanical systems, signal processing, mathematics, solid-state physics, vibration analysis (deterministic and random), etc. The above discussion points to the fact that electrical engineering students must possess a wide variety of knowledge in many fields. The engineers must be able to build and study systems and predict results accurately. This book tries to do that by introducing systems from many diverse disciplines.

In the beginning, we introduce the block diagram presentation of systems, starting from the most elementary systems represented by one element, such as resistors, capacitors, mass, etc. This approach starts the student in the right direction so that he or she builds the right foundation. During their career, engineers will deal with block diagram representations of complicated and interrelated systems and will be expected to produce the right solution.

In this text, by expounding and covering continuous and discrete systems, we try to emphasize that some operations are done by computer software, and therefore we are talking about software systems. It is important for the student to realize that circuits, mechanical control systems, and physical media and computers are the everyday compound systems found in most of the devices in the market.

Because coverage of the different fields starts from the fundamental laws and devices, there is an additive flexibility, and the book can be used in other fields of engineering with equal ease. The prerequisites for this course are the standard mathematics and engineering courses up to the junior year.

In this text, we have also introduced advanced concepts in their elementary form such that students require the fundamentals of those principles that will become the basis for their future studies. Concepts such as correlation, match filtering, least squares estimation, adaptation, edge detection, etc., are skillfully introduced so that the student builds his or her knowledge on these important signal processing procedures. Furthermore, although new situations and systems are studied, we require their presentations and solutions to use methods already introduced, such as spectra, convolution, impulse response, etc. This repetition is one of the most basic pedagogical methods of learning available in the field of education. The modeling of signals and systems is inherently mathematical and involves mathematical forms not ordinarily studied by undergraduate engineering majors. Therefore, to improve the student's skills in different fields of needed mathematics, we have included enough mathematical material to serve in understanding the classical solution of differential and difference equations, convolutions and correlations, Fourier transforms, z-transforms, and other important topics. For the same purpose, we have also included as appendices mathematical formulas, definitions, algebraic summations, etc.

We have introduced MATLAB functions and m-files to produce the desired results. We have not introduced SIMULINK or any other canned software program because we feel, at this early learning stage, that the student should program the steps needed to find his or her answer. With this form of programming, the student must first understand the problem, understand the necessary steps in the digital format, find the requested results, and, finally, compare them with the corresponding mathematical results whenever they exist. Educators should refrain from canned programs. Very often, even in my graduate classes, when we learn about Fourier transforms and ask the students to obtain the transform of a finite signal using computers, they come with plots in the frequency domain from 0 to $\frac{1}{2}$, although we have emphasized in class that every finite signal has infinite spectrum. When asked what 0 to 1/2 means in the frequency axis, the answer is that MATLAB gave it to them in this form. In my undergraduate classes, I explain to the students the history and importance of the fast Fourier transform (FFT), but I require that they find the discrete Fourier transform (DFT) from the definition.

Pedagogical features

- 1. The book introduces all the needed mathematical background within the chapters; some additional material is included in the appendices.
- 2. There is a balance between signals and systems, and both are emphasized equally.
- 3. Examples are derived from many diverse fields to emphasize that this course is applicable to any field as long as the systems are characterized by the same form of mathematical equations.
- 4. Key equations are boxed to emphasize their importance.
- 5. There are examples in the text and problems. In addition, appendices are also added in some chapters to elucidate the mathematics of the chapter.
- 6. We use paragraphs with the indication "**Note**" to emphasize the meaning of a concept or to improve the understanding of an operation.
- 7. Analog and digital signal processing and systems are presented in separate chapters. From experience, we have found that students get confused easily by jumping back and forth between analog and digital. It may seem appropriate and even novel for an experienced

person, but for a student that is meeting many of these concepts and mathematical areas for the first time, it is rather confusing.

- We strive to repeat introduced concepts, such as convolution, correlation, spectra, etc., throughout the book. Repetition is the most fundamental pedagogical learning process, and in this book we try to use it.
- 9. The author believes that at an early stage of an engineering student's career, exposure to random signals and their interaction with linear time-invariant (LTI) systems is essential. There is nothing deterministic in the physical world. Most students in their professional life will deal with and study random phenomena, such as earthquake signals, electroencephalograms, thermal noise in electrical elements, noise introduced during the transportation of signals through different communication channels, radar returns, target recognition, acoustic signals in the ocean, etc. For this reason, Chapter 13 was added.
- 10. It is very important that our undergraduate students come in contact with and understand filtering processes that are adaptive and learn where such devices are used in practice. For this reason, we have added Chapter 14, where Wiener and least mean square (LMS) filtering are introduced. We provide numerous examples of how these filters are used, and we expect that this will stimulate the student's interest to continuously be involved in the digital signal processing discipline.
- 11. We introduce the fundamentals of digital sampling and the effect it has on the spectrum.
- 12. At the end of each chapter we summarize the new definitions and concepts that were introduced in the chapter.
- 13. The material is introduced in a concise format but is elucidated by a large number of examples.
- 14. The book has been arranged in such a way that it can be used for a one- or two-semester course. Furthermore, the track can be analog, digital, or analog–digital.

The text consists of 14 chapters. Chapter 1 introduces both analog and digital signal presentation. It also introduces the presentation of signals by a complete set of orthogonal signals.

Chapter 2 introduces linear and time-invariant continuous-time systems. In addition, the chapter covers convolution and impulse response of such systems.

Chapter 3 introduces discrete-type systems and their solution. It also discusses how to simulate analog systems using discrete methods.

Chapter 4 presents the analysis of periodic signals in Fourier series, the amplitude and phase spectra of these signals, as well as the effect that linear time-invariant systems have on them.

Chapter 5 develops the Fourier transform and its great utility in identifying systems, studying the spectra of signals as well as the influence that systems have on these spectra, known as filtering of signals. The Gibbs' phenomenon is also introduced, along with its significance in the study of signals. Chapter 6 introduces the sampling theorem and the importance of signal bandwidth in the aliasing problem.

Chapter 7 introduces the discrete-time Fourier transform and the discrete Fourier transform. With examples, this chapter gives a clear understanding of the effects of decreasing the sampling time and padding with zeros the sequences on the spectra of discrete signals.

Chapter 8 presents in some detail the Laplace transform and its usefulness in solving differential equations, identifying analog systems, and producing transfer functions of systems, as well as its use in feedback control of systems. The Bode plots are also introduced.

Chapter 9 presents the z-transform and its applications in solving difference equations, developing the transfer functions of discrete systems, and finding the frequency response of discrete systems.

Chapter 10 brings forth the analog filter design. Specifically, it introduces the Butterworth and Chebyshev filter, and finally, it introduces the design of analog filters with the use of MATLAB functions.

Chapter 11 introduces the digital filter, known as the finite impulse response or the nonrecursive filter.

Chapter 12 introduces the infinite impulse response digital filter and its use for filtering discrete signals.

Chapter 13 develops the fundamentals of random variables and their use for finding the spectrums of stationary processes' random sequences. This chapter introduces the Wiener–Kinthcin relation and the nonparametric spectral estimation.

Chapter 14 characterizes different types of filtering and their uses. Particularly, it introduces the use of Wiener filtering and least mean squares filtering. It presents several examples with applications to noise elimination, system identification, and channel equalization.

The following are some suggestions in using the text.

One-semester course: Analog and digital signal processing

Chapter 1: $1.1 \rightarrow 1.3$ Chapter 2: $2.1 \rightarrow 2.7$ Chapter 3: $3.1 \rightarrow 3.4$ Chapter 5: $5.1 \rightarrow 5.3$ Chapter 6: $6.1 \rightarrow 6.2$ Chapter 7: $7.5 \rightarrow 7.6$ Chapter 8: $8.1 \rightarrow 8.3$ Chapter 10: $10.1 \rightarrow 10.5$ Chapter 11: $11.1 \rightarrow 11.3$

One-semester course: Analog signal processing

Chapter 1: $1.1 \rightarrow 1.3$ Chapter 2: $2.1 \rightarrow 2.7$ Chapter 4: $4.1 \rightarrow 4.4$ Chapter 5: $5.1 \rightarrow 5.2$ Chapter 6: $6.1 \rightarrow 6.2$ Chapter 8: $8.1 \rightarrow 8.7$ Chapter 10: $10.1 \rightarrow 10.6$

One-semester course: Discrete signal processing

Chapter 1: $1.1 \rightarrow 1.3$ Chapter 3: $3.1 \rightarrow 3.3$ Chapter 5: $5.1 \rightarrow 5.2$ Chapter 6 Chapter 7: $7.5 \rightarrow 7.6$ Chapter 11: $11.1 \rightarrow 11.3$ Chapter 13

Two-semester course

All the chapters could be covered, including the starred chapters and sections. Some sections may be skipped at the discretion of the instructor. The starred sections may be skipped without loss of continuity.

The author acknowledges the valuable and helpful comments of Professor Nicolaos Karayiannis of the University of Houston. The author is indebted to Dr. Haluk Ogmen, department chair, and Dr. Raymond Flumerfelt, dean of the College of Engineering, who provided an excellent academic and research environment at the University of Houston.

MATLAB[®] is a registered trademark of The MathWorks, Inc. For product information, please contact:

The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 E-mail: info@mathworks.com Web: www.mathworks.com

The Author

Alexander D. Poularikas received his Ph.D. from the University of Arkansas and became professor at the University of Rhode Island. He became chairman of the Engineering Department at the University of Denver and then became chairman of the Electrical and Computer Engineering Department at the University of Alabama in Huntsville. He has published six books and has edited two. Dr. Poularikas served as editor-in-chief of the Signal Processing series (1993–1997) with Artech House and is now editor-in-chief of the Electrical Engineering and Applied Signal Processing series, as well as the Engineering and Science Primers series (1998–present) with Taylor & Francis. He was a Fulbright scholar, is a lifelong senior member of IEEE, and is a member of Tau Beta Pi, Sigma Nu, and Sigma Pi. In 1990 and 1996, he received the Outstanding Educator Award of IEEE, Huntsville Section.

Abbreviations

A/D	Analog-to-digital conversion
AM	Amplitude modulation
AR	Autoregressive
ARMA	Autoregressive moving average
cdf	Cumulative density function
dB	Decibel
DFT	Discrete Fourier transform
DSBSC	Double-sideband suppressed carrier
DTFT	Discrete-time Fourier transform
FFT	Fast Fourier transform
FIR	Finite impulse response
FM	Frequency modulation
GHz	Gigahertz
IDTFT	Inverse discrete-time Fourier transform
IFFT	Inverse fast Fourier transform
iid	Independent and identically distributed
IIR	Infinite impulse response
ILT	Inverse Laplace transform
KCL	Kirchhoff current law
KVL	Kirchhoff voltage law
LMS	Least mean squares
LT	Laplace transform
LTI	Linear time invariant
MMSE	Minimum mean square error
MSE	Mean square error
NLMS	Normalized least mean squares
PAM	Pulse amplitude modulation
pdf	Probability random function
PID	Proportional integral differential controller
ROC	Region of convergence
rv	Random variable
SFG	Signal flow graph
SSB	Single sideband
WGN	White Gaussian
WN	White noise
WSS	Wide-sense stationary

Contents

Chap	oter 1 Signals and their functional representation1
1.1	Some applications involving signals
1.2	Fundamental representation of simple time signals
	Periodic discrete-time signals
	Nonperiodic continuous signals7
	Unit step function
	Rectangular pulse function
	Sinc function9
	Nonperiodic special discrete signals10
	Delta function10
	Comb function
	Arbitrary sampled function
1.3	Signal conditioning and manipulation14
	Modulation
	Shifting and flipping
	Time scaling
	Windowing of signals
*1.4	Representation of signals
Impo	ortant definitions and concepts25
Chap	oter 1 Problems
Appe	endix 1.1: Elementary matrix algebra
Appe	endix 1.2: Complex numbers
Appe	endix 1.1 Problems
Appe	endix 1.2 Problems
Chap	oter 2 Linear continuous-time systems
2.1	Properties of systems
2.2	Modeling simple continuous systems
	Electrical elements
	Capacitor43
	Inductor45
	Resistor
	Mechanical translation elements
	Ideal mass element48
	Spring
	Damper

	Mechanical rotational elements	50
	Inertial elements	50
	Spring	51
	Damper	52
2.3	Solutions of first-order systems	52
	Zero-input and zero-state solution	54
	Standard solution techniques of differential equations	56
2.4	Evaluation of integration constants: initial conditions	63
	Switching of sources	64
	Conservation of charge	64
	Conservation of flux linkages	64
	Circuit behavior of L and C	65
	General switching	65
2.5	Block diagram representation	68
2.6	Convolution and correlation of continuous-time signals	71
	Matched filters	83
	Correlation	
2.7	Impulse response	86
Impo	ortant definitions and concepts	96
Chap	pter 2 Problems	97
~1		
Chaj	pter 3 Discrete systems	
3.1	Discrete systems and equations	
3.2	Digital simulation of analog systems	
*3.3	Digital simulation of higher-order differential equations	
3.4	Convolution of discrete-time signals	
Impo	ortant definitions and concepts	
Chap	oter 3 Problems	142
App	endix 3.1: Method of variation of parameters	149
App	endix 3.2: Euler's approximation for differential equations	152
Chaj	pter 4 Periodic continuous signals and their spectrums	
4.1	Complex functions	
	Continuous-time signals	
	Discrete-time signals	160
4.2	Fourier series of continuous functions	161
	Fourier series in complex exponential form	162
	Fourier series in trigonometric form	165
4.3	Features of periodic continuous functions	169
	Parseval's formula	169
	Symmetric functions	170
	Even function	172
	Odd function	172
	*Finite signals	172
	-	

4.4	Linear systems with periodic inputs	
Impo	ortant definitions and concepts	
Chaj	pter 4 Problems	
	•	
Cha	pter 5 Nonperiodic signals and their Fourier transform	
5.1	Direct and inverse Fourier transform	
	Real functions	194
	Real and even functions	
	Real and odd functions	
5.2	Properties of Fourier transforms	
	Linearity	196
	Symmetry	
	Time shifting	
	Scaling	
	Central ordinate	
	Frequency shifting	
	Modulation	
	Derivatives	
	Parseval's theorem	
	Time convolution	
	Frequency convolution	
	Summary of continuous-time Fourier properties	
*5.3	Some special Fourier transform pairs	
*5.4	Effects of truncation and Gibbs' phenomenon	
*5.5	Linear time-invariant filters	
	Distortionless filter	
	Ideal low-pass filter	
	Ideal high-pass filter	
Impo	ortant definitions and concepts	
Chaj	pter 5 Problems	
App	endix 5.1	
11		
Cha	pter 6 Sampling of continuous signals	
6.1	Fundamentals of sampling	
6.2	The sampling theorem	
	Construction of analog signal from its sampled values	
Impo	ortant definitions and concepts	
Chaj	pter 6 Problems	254
I		
Cha	pter 7 Discrete-time transforms	
7.1	Discrete-time Fourier transform (DTFT)	
	Approximating the Fourier transform	
7.2	Summary of DTFT properties	
7.3	DTFT of finite time sequences	
	Windowing	
	~	

7.4	Frequency response of linear time-invariant (LTI) discrete	
	systems	
7.5	The discrete Fourier transform (DFT)	
7.6	Summary of the DFT properties	271
*7.7	Multirate digital signal processing	
	Down sampling (or decimation)	
	Frequency domain of down-sampled signals	
	Interpolation (up sampling) by a factor U	
	Frequency domain characterization of up-sampled signals	
Impo	ortant definitions and concepts	
Chap	oter 7 Problems	
App	endix 7.1: Proofs of the DTFT properties	
App	endix 7.2: Proofs of DFT properties	
Арр	endix 7.3: Fast Fourier transform (FFT)	
Cha	oter 8 Laplace transform	
8.1	One-sided Laplace transform	
8.2	Summary of the Laplace transform properties	
8.3	Systems analysis: transfer functions of LTI systems	
8.4	Inverse Laplace transform (ILT)	
	MATLAB function residue	
8.5	Problem solving with Laplace transform	
8.6	Frequency response of LTI systems	352
8.7	Pole location and the stability of LTI systems	
	Simple-order poles	
	Multiple-order poles	
*8.8	Feedback for linear systems	
	Cascade stabilization of systems	
	Parallel composition	
	Feedback stabilization	
	Sensitivity in feedback	
	Rejection of disturbance using feedback	
	Step response	
	Proportional controllers	
*0.0	Proportional integral differential (PID) controllers	
.9	Dode plots	
	Bode diagram for differentiator	
	Bode diagram for an integrator	
	Bode diagram for a real pole	
Imn	bute utagraffi for a fear pole	
Char	ator 8 Problems	
∆ nn	andix 81. Proofs of Lanlace transform properties	
rpp	eners our roots of Laplace transform properties	

Chap	oter 9 The z-transform, difference equations, and discrete	
s	ystems	401
9.1	The z-transform	401
9.2	Convergence of the z-transform	405
9.3	Properties of the z-transform	412
	Summary of z-transform properties	413
9.4	z-Transform pairs	423
9.5	Inverse z-transform	423
9.6	Transfer function	431
	*Higher-order transfer functions	437
9.7	Frequency response of first-order discrete systems	438
	Phase shift in discrete systems	443
*9.8	Frequency response of higher-order digital systems	443
9.9	z-Transform solution of first-order difference equations	447
*9.10	Higher-order difference equations	450
	Method of undetermined coefficients	454
Impo	rtant definitions and concepts	459
Chap	ter 9 Problems	459
*App	endix 9.1: Proofs of the z-transform properties	473
Chap	oter 10 Analog filter design	477
10.1	General aspects of filters	477
10.2	Butterworth filter	479
10.3	Chebyshev low-pass filter	486
10.4	Phase characteristics	494
10.5	Frequency transformations	494
	Low-pass-to-low-pass transformation	494
	Low-pass-to-high-pass transformation	495
	Low-pass-to-band-pass transformation	495
	Low-pass-to-band-stop transformation	498
10.6	Analog filter design using MATLAB functions	500
_	Butterworth filter design	500
Impo	rtant definitions and concepts	501
Chap	ter 10 Problems	501
C1		
Chap	oter 11 Finite Impulse Response (FIR) filters	505
11.1	Properties of FIR filters	505
		505
	Frequency normalization	505
	Phase consideration.	506
	Scaling the digital transfer function	507
11 0	Symmetric FIK IOW-pass filters	
11.2	rik inters using the Fourier series approach	

11.3 FIR filters using windows	513
Windows	513
High-pass FIR filters	515
Band-pass FIR filters	516
Band-stop FIR filters	516
*11.4 Prescribed filter specifications using a Kaiser window	519
11.5 MATLAB FIR filter design	522
Low-pass FIR filter	522
High-pass FIR filter	522
Band-pass FIR filter	522
Band-stop FIR filter	523
Window use	523
Important definitions and concepts	523
Chapter 11 Problems	523
*	
Chapter 12 Infinite Impulse Response (IIR) filters	525
12.1 The impulse-invariant method approximation in the time domain	525
12.2 Bilinear transformation	532
12.3 Frequency transformation for digital filters	538
Low-pass-to-low-pass transformation	538
Low-pass-to-high-pass transformation	539
Low-pass-to-band-pass transformation	540
Low-pass-to-band-pass transformation	542
12.4 Recursive versus non-recursive design	542
Important definitons and concepts	543
Chapter 12 Problems	543
-	
Chapter 13 Random variables, sequences, and power spectra	
densities	545
13.1 Random signals and distributions	545
Stationary and ergodic processes	548
13.2 Averages	548
Mean value	548
Correlation	549
Covariance	553
Independent and uncorrelated rv's	553
13.3 Stationary processes	554
Autocorrelation matrix	554
Purely random process (white noise, WN)	557
Random walk (RW)	557
13.4 Special random signals and probability density functions	557
White noise	557
Gaussian processes	558
Algorithm to produce normalized Gaussian distribution	558

	Lognormal distribution	559
	Algorithm to produce lognormal distribution	559
	Chi-square distribution	560
13.5	Wiener-Kintchin relations	560
13.6	Filtering random processes	562
	Spectral factorization	565
	Autoregressive process (AR)	565
13.7	Nonparametric spectra estimation	568
	Periodogram	568
	Correlogram	568
	Computation of $\hat{S}_p(ej\omega)$ and $\hat{S}_c(ej\omega)$ using FFT	568
	General remarks on the periodogram	570
	Blackman–Tukey (BT) method	570
	Bartlett method	572
	Welch method	573
	Modified Welch method	575
	The Blackman–Tukey periodogram with the Bartlett window.	577
Impo	ortant definitions and concepts	578
Chap	pter 13 Problems	579
*Cha	apter 14 Least square system design, Wiener filter, and the	
	LMS filter	
14.1	The least-squares technique	
110	Linear least squares	
14.2	The mean square error	590
	The Wiener filter	
	The wiener solution	
140	Orthogonality condition	
14.3	Wiener filtering examples	
	Minimum mean square error (MIMSE)	602
111	Optimum filter (w°)	603
14.4	The LMC elegerithm	608
145	Free LWS algorithm	609
14.3 Imm	Examples using the LIVIS algorithm	
Char	oright definitions and concepts	
Chap	JUEI 14 FIODIEIRS	
Ann	andix A Mathematical formulas	627
	Trigonometric identities	
Δ 2	Orthigonality	027 670
Δ3	Summation of trigonometric forms	629 679
A 4	Summation formulas	630
11.1	Finite summation formulas	630 630
	Infinite summation formulas	630 630
	Sorios expansions	
A 7	PLIES PULITISTICS	

A.6	Logarithms	631
A.7	Some definite integrals	632
Appe	endix B Suggestions and explanations for MATLAB use	633
B.1	Creating a directory	633
B.2	Help	633
B.3	Save and load	634
B.4	MATLAB as calculator	634
B.5	Variable names	634
B.6	Complex numbers	634
B.7	Array indexing	635
B.8	Extracting and inserting numbers in arrays	635
B.9	Vectorization	635
B.10	Matrices	636
B.11	Produce a periodic function	636
B.12	Script files	636
	Script file pexp.m	637
B.13	Functions	637
B.14	Subplots	638
B.15	Figures	638
B.16	Changing the scales of the axes of a figure	639
B.17	Writing Greek letters	639
B.18	Subscripts and superscripts	640
B.19	Lines in plots	640
	•	
Index	Χ	641