1. Compute the absolute error and relative error in approximations of p by p^{*}.
a. $\mathrm{p}=\mathrm{e}^{10}, \mathrm{p}^{*}=22000$
b. $\mathrm{p}=\pi, \mathrm{p}^{*}=\frac{22}{7}$
c. $\mathrm{p}=8!, \mathrm{p}^{*}=39900$
2. Find the second Taylor Polynomial $P_{2}(x)$ for the function $f(x)=e^{x} \cos (x)$ about $x_{0}=0$.
a. Use $P_{2}(0.5)$ to approximate $f(0.5)$. Find an upper bound for error $\left|f(0.5)-P_{2}(0.5)\right|$ using the error formula, and compare it to the actual error.
b. Find a bound for the error $\left|f(0.5)-\mathrm{P}_{2}(0.5)\right|$ in using $\mathrm{P}_{2}(0.5)$ to approximate $\mathrm{f}(\mathrm{x})$ on the interval $[0,1]$.
c. Approximate $\int_{0}^{1} f(x) d x$ using $\int_{0}^{1} \mathrm{P}_{2}(x) d x$.
d. Find an upper bound for the error in (c) using $\int_{0}^{1}\left|R_{2}(x) d x\right|$, and compare the bound to the actual error.
3. The polynomial $P_{2}(x)=1-\frac{1}{2} x^{2}$ is to be used to approximate $f(x)=\cos (x)$ in interval $[-0.5,0.5]$.

Find a bound for the maximum error.
4. Find intervals containing solutions to the following equations (with theorem).

Also for parts (c), (d) find rational roots and number of positive or negative roots.
a. $\mathrm{x}-3^{-\mathrm{x}}=0$
b. $4 \mathrm{x}-\mathrm{e}^{\mathrm{x}}=0$
c. $x^{3}-2 x^{2}-4 x+3=0$
d. $x^{3}+4.001 x^{2}+4.002 x+1.101=0$
5. Use the Secant \& False Position \& Modified False Position Methods to find solutions accurate to within 10^{-4} for the following equation.

$$
\mathrm{x}-\cos (\mathrm{x})=0 \quad \text { on }\left[0, \frac{\pi}{2}\right]
$$

6. A trough of length L has a cross section in the shape of a semicircle with radius r. When filled with water to within a distance h of the top, the volume, V , of water is

$$
\mathrm{V}=\mathrm{L}\left[0.5 \pi \mathrm{r}^{2}-\mathrm{r}^{2} \arcsin \left(\frac{\mathrm{~h}}{\mathrm{r}}\right)-\mathrm{h} \sqrt{\left(\mathrm{r}^{2}-\mathrm{h}^{2}\right)}\right]
$$

Suppose $\mathrm{L}=10 \mathrm{ft}, \mathrm{r}=1 \mathrm{ft}$ and $\mathrm{V}=12.4 \mathrm{ft}^{3}$. Find the depth of water in trough to within 0.01 ft with Newton-Raphson Method.

7. Use Modified Newton-Raphson method (one \& two state) to approximate the solutions of the following equation with 8 digit precision in the given interval.

$$
\mathrm{x}^{2}-2 \mathrm{xe}^{-\mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}=0 \text { on }[0,1]
$$

8. Write a C program for Bairstow Method and use following Example : $x^{4}-3.1 x^{3}+2.1 x^{2}+1.1 x+5.2 \quad$ Beginning with the trial factor $x^{2}-4 x+5$
Find factors with 3-digit precision .
