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CONCEPTS AND MODELS OF GPS POSITIONING   

Global Positioning System (GPS) concepts and the mathematical models used in 

kinematic positioning are outlined in this lecture note. The basic concept of GPS, the 

GPS observables, and their associated mathematical models are described. The various 

errors affecting GPS positioning and the remedies to reduce or eliminate them are also 

explained.  

1. 1. Global Positioning System (GPS)    

GPS is a satellite-based radio positioning system developed by the U.S. 

Department of Defense (DOD) for accurate positioning and navigation. Radio signals are 

used from a constellation of earth-orbiting satellites to determine the 3D position of a 

receiver. The system consists of 21 satellites and three spare satellites orbiting 

approximately 20,000 km above the earth's surface in six orbital planes, having a period 

of 12 hours. GPS is an all-weather positioning system providing 24 hour world-wide 

coverage with at least four satellites in view at any time (Milliken et al., 1990 and Wells 

et al., 1986). The system has been fully operational since 1993.    

GPS has three main components; the satellite system, the control system, and the 

users. The control system is operated by the U.S. Air Force for the Joint Program Office 

(JPO) of the DOD. The system consists of five monitoring stations distributed around the 

world. The role of these stations is to monitor the health of the satellites. These tracking 

stations receive signals from the satellites and transmit the collected data to the master 

station where new ephemerides are computed and the navigation messages are prepared 

for uploading to the satellites.  
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1. 1. 1. User Segment    

Users are the third component of GPS. Civilian users wish to determine their 

positions using GPS signals. There are mainly three observables which have been 

implemented in most GPS receivers:  

- Pseudorange  

- Carrier beat phase  

- The rate of phase change 

Both position and velocity of a moving platform can be calculated by measuring signals 

from different GPS satellites (Wells et al., 1986).  

1. 2. GPS Signals   

The GPS signals are transmitted autonomously from all GPS satellites on two 

carrier frequencies; L1 frequency at 1575.42 MHz and L2 frequency at 1227.60 MHz. 

C/A code of 1.023 MHz is modulated on the L1 carrier and P code of 10.23 MHz is 

modulated on both L1 and L2 carriers. A satellite message containing the satellites' 

ephemeris is also modulated on both carriers. A summary of the signal components is 

given in Table 1. 1.        
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Table 1. 1. GPS Signal Components (from Erickson, 1992) 

Carrier Frequency  Wavelength Modulation Frequency Chip length 

L1 1575.42 MHz 19 cm C/A code 

P code 

Message 

1.023 MHz 

10.23 MHz 

50 MHz 

293 m 

29.3 m  

L2 1227.60 MHz 24 cm P code 

Message 

10.23 MHz 

50 MHz 

29.3 m 

 

There are two types of receivers; Single Frequency (receiving only L1 signal) and 

Dual Frequency (receiving both L1 and L2 signals). Most C/A code receivers correlate 

the incoming signal from a satellite with a replica of the code generated in the receiver. 

The dual frequency receivers provide access to P code data through code correlation 

resulting in a full L2 wavelength of 24 cm. Due to a high absolute accuracy available 

using P codes, Selective Availability (SA) is turned on to deteriorate the positioning 

accuracy.    

The type of data that a receiver collects has a direct impact on both achievable 

accuracy and its price. The C/A code receivers are the least expensive receivers on the 

market which determine real time positions with horizontal accuracy of 100 m and 

vertical accuracy of 156 m (Lachapelle, 1993). P code receivers provide accuracies at the 

level of 25 m (horizontal) and 30 m (vertical) in real time mode. Access to P code is 

limited to U.S. and NATO military users.    

Receivers which compute their positions based on carrier phase observations are 

more accurate because of the much finer resolution of the 19 cm and 24 cm carrier 

wavelengths. The most sophisticated and expensive receivers are dual frequency P code 

receivers that provide accuracy ranging from a part per million to a few part per billion. 
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Between theses two extreme cases, one can find a wide range of receivers which meet the 

users accuracy requirements.  

1. 3. GPS Observables   

A pseudorange (code observation) is the difference between the transmission time 

at the satellite and the reception time at the receiver (Erickson, 1992). Pseudorange 

between the satellite and the receiver is obtained by scaling it using the speed of light. 

The observation equation for a pseudorange is given as (Wells et al., 1986);    

p c dt dT d d dion trop p( )

   

      1. 1 

where 

p is the observed pseuodorange, 

 

is the unknown satellite-receiver range, 

c is the speed of light, 

dt is the satellite clock error, 

dT is the receiver clock error, 

d

 

is the orbital error, 

iond

 

is the ionospheric error, 

tropd

 

is the tropospheric error, 

p

 

is the code measurement noise and multipath.  

The code measurement noise, p , is a function of the code receiver noise, prx , and 

multipath, mult , (Lachapelle, 1991).  

The satellite-receiver range, , has the form of:     

s
r

s
r

s
rX X Y Y Z Z        1. 2 
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where  

s s sX Y Z, , are satellite coordinates computed using broadcast ephemeris, 

r r rX Y Z, , are the unknown receiver coordinates.   

For single point positioning, the number of unknowns are four r r rX Y Z dT, , , , 

therefore, a minimum of four satellites are required to solve for a solution at a single 

epoch.   

The carrier phase observation is a measure of the misalignment between an 

incoming signal and replica of it generated by the receiver oscillator when a satellite is 

locked on. If a continuous lock is assumed, this measurement is a sum of the initial phase 

misalignment at epoch 0t

 

and the number of integer cycles from epoch 0t

 

to the current 

epoch t. The measured carrier phase can be written as (Erickson, 1992):     

measured fraction eger t t( ) int ( , , )0

   

     1. 3   

Carrier phase measurements are converted from cycles to units of lengths by their 

wavelengths. An ambiguity term (the unknown number of integer cycles between the 

satellite and receiver at starting epoch 0t

 

)should be added to carrier phase measurement 

in order to represent a satellite-receiver range. The carrier phase observation equation is 

written as (Lachapelle, 1993):     

c dt dT N d d dion trop( )

  

      1. 4 

where  

 

is the observed carrier phase, 

 

is the unknown satellite-receiver range, 
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c is the speed of light, 

dt is the satellite clock error, 

dT is the receiver clock error, 

 
is the carrier wavelength, 

N is the unknown integer cycle ambiguity, 

d

 

is the orbital error, 

iond

 

is the ionospheric error, 

tropd

 

is the tropospheric error, 

 

is the carrier phase measurement noise and multipath.  

The differences between pseudorange and carrier phase observation equations are 

the addition of ambiguity term, N , for carrier phase observations and the reversal of 

signs for the ionospheric correction term iond

 

due to the phase advance, while code is 

delayed.   

Doppler frequency is the third fundamental GPS observation which is the first 

derivative of the carrier phase with respect to time. The Doppler frequency is measured 

on the pseudorange. The observation equation for GPS Doppler frequency can be written 

as (Liu, 1993):     

( )c dt dT d d dion trop         1. 5  

where ( · ) denotes a time derivative. As seen in the above equation, this measurement is 

not a function of the carrier phase ambiguity, therefore, it is free from cycle slips and can 

be used to determine the receiver velocity.    
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1. 4. GPS Error Sources   

The GPS errors consist of orbital errors, satellite and receiver clock errors, 

tropospheric and ionospheric delays, receiver noise, and multipath. They are explained in 

the following sections.  

2. 4. 1 Orbital Error   

Orbital error initiates from the uncertainties of the predicted ephemerides and 

Selective Availability (SA). An estimation of the broadcast ephemerides error is about 20 

m. If post-mission ephemerides are used, then the precise orbits are accurate to 1 m. SA 

is implemented by both satellite clock dithering and degrading satellite orbital 

information to prevent unauthorized real-time use of full GPS position and velocity 

accuracy.  

1. 4. 2. Satellite and Receiver Clock Errors   

The satellite clock error is defined as the difference between satellite clock time 

and true GPS time. The functional relationship between these two times is given as 

(Wells et al., 1986):     

svt a a t t a t t0 1 0 2
2

0( ) ( )          1. 6 

where 

svt

 

is the difference between satellite clock and GPS time, 

t is the measurement transmission time, 

0t is the reference time, 

0a is the satellite clock time offset, 
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1a is the frequency offset, 

2a is the frequency drift.   

GPS satellites use atomic clocks which maintain a highly accurate GPS time. 

However, the accuracy is deteriorated by SA. Single differencing between two receivers 

removes the satellite clock error.   

Receiver clock error is defined as the offset of the receiver clock time with 

respect to GPS time. Geodetic receivers are generally synchronized with GPS time before 

observation sessions but this synchronization accuracy is at the millisecond level. The 

receiver clock may also drift after synchronization. The receiver clock error depends on 

receiver hardware and can be estimated as an unknown parameter or eliminated by 

differencing from one receiver to two satellites.  

1. 4. 3. Tropospheric and Ionospheric Delays   

The tropospheric delay is caused by the refractions of a GPS signal in the lower 

atmosphere (the layer from the earth surface to approximately 60 km). The magnitude of 

this error is influenced by a number of parameters such as the temperature, humidity, 

pressure, and the type of the terrain below the signal path. A number of studies have been 

performed to create tropospheric models (Hopfield, 1969, Saastamoinen, 1973, Black, 

1978). A thorough analysis of these models can be found in (Hoffmann et al., 1992).   

The ionospheric layer is roughly from 50 to 1000 km above the earth surface. 

GPS signals traveling through the ionosphere are affected by both refraction and 

dispersion. The refractive group index of the ionosphere is greater than 1, meaning that 

the group velocity of radio waves is less than the speed of light in vacuum. The refractive 
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phase index of ionosphere is less than 1, therefore, the phase velocity of radio waves is 

greater than the speed of light in vacuum. This causes an advance on the measured carrier 

phase and delay on the measured pseudorange. The ionospheric delay is directly affected 

by the Total Electron Content (TEC) along the propagation path (Klobuchar, 1983). The 

ionospheric error may range from 5 m (at night, the satellite at the zenith) to 150 m (at 

midday and the satellite at low elevation)(Wells et al. 1986). 

    

Ionospheric effect can be assessed by taking dual frequency measurements and 

using the dispersive nature of the ionosphere. The techniques based on dual frequency 

correction can remove most of the ionospheric error. However, during high solar activity 

cycle and mid afternoons this technique may not be adequate for certain applications 

(Well et al., 1986). Another way to reduce ionospheric effect is to use differencing 

observations from one satellite between two stations due to the spatial correlation 

between the stations. The third method is to apply the broadcast model for reducing the 

ionospheric error (Klobuchar, 1983).  

1. 4. 4. Receiver Noise   

Receiver measurement noise includes the thermal noise intercepted by the 

antenna or generated by the internal components of the receiver (Martin, 1980). It is 

affected by signal to noise density, the tracking bandwidth, and code tracking 

mechanization parameters. The noise levels for C/A code pseudorange is 1m, for P code 

pseudorange is 10 cm and for carrier phase is 5 mm. The new narrow correlator C/A code 

receivers can achieve 10 cm accuracy for C/A code pseudorange.    
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1. 4. 5 Multipath   

Multipath is the phenomena where the reception of signals is reflected by objects 

and surfaces in the environment around the antenna (Liu, 1993). Pseudorange multipath 

can reach up to one chip length of the PRN codes (e.g. 293 m for C/A code and 29.3 m 

for P code) while carrier phase multipath is less than 25% of the carrier phase wavelength 

(e.g. 5 cm for L1)(Georgiadou and Kleusberg, 1989). In an airborne GPS environment, 

multipath error signatures are generally randomized due to the aircraft motion and flexing 

(Shi, 1994).  

1. 5. Differential GPS    

In order to achieve high accuracy for geodetic positioning, differential GPS 

techniques are used to eliminate or reduce several GPS error sources.  

1. 5. 1 Single Differencing   

The observation equations for pseudorange, carrier phase, and Doppler frequency 

contain bias terms such as satellite and receiver clock errors, orbital errors, and 

atmospheric effects. Many of these errors are spatially correlated to some extent between 

the receivers tracking simultaneous satellites. Some errors are satellite dependent (orbital, 

atmospheric, and satellite clock errors) and some errors are receiver dependent (receiver 

clock error). Single differencing (between satellites or between receivers) and double 

differencing (between receivers and between satellites) of GPS observations can be 

applied to eliminate or effectively reduce the common errors. The single " between 

receivers" and " between satellites" differences are shown in Figures 1.1 and 1.2. 
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Figure 1.1. Single Differencing Between Receivers 

Receiver A

GPS Satellite

GPS Orbit
S1

Satellite-Receiver  
      Distance

S2

AS1 AS 2

 

Figure 1.2. Single Differencing Between Satellites 

The single difference equations for the pseudorange, carrier phase, and Doppler 

frequency are (Lachapelle, 1991):  
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"between receivers"    

  = d c dT d dion trop p        1. 7   

 = d c dT N d dion trop       1. 8   

 = d c dT d dion trop        1. 9  

"between satellites"    

  = d c dt d dion trop p      1. 10   

 = d c dt N d dion trop

  

   1. 11   

 = d c dt d dion trop

   

   1. 12 

where  

 

denotes a single difference operator between receivers, 

 

denotes a single difference operator between satellites.   

In the single difference observable (between receivers), the satellite clock error 

has been eliminated and the orbital error and atmospheric effects have been reduced and 

their residuals can be neglected for monitor-remote distances less than 30 km under 

normal atmospheric conditions. The relative receiver clock error, however, may be 

significant and must be estimated along with the parameters of position, velocity, and 

carrier phase ambiguity (Liu, 1993). Single difference observable (between satellites) 

eliminates receiver clock error.  

1. 5. 2. Double Differencing    

This technique is based on taking difference between receivers and between 

satellites (Figure 1.3). 
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Receiver A
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Figure 1.3. Double Differencing 

Double difference observation equations are written as(Lachapelle, 1993):    

  = d d dion trop p      1. 13   

 = d N d dion trop

 

   1. 14   

 = d d dion trop

   

   1. 15  

where 

 

denotes the double difference operator between two stations and two 

satellites.   

The advantage of using this observable is that both the receiver and satellite clock 

errors have been canceled out, while the disadvantage is increased noise. This method 

also allows to optimally exploit the integer nature of carrier phase ambiguity. Double 

differencing GPS positioning is considered as the best processing method (Cannon, 

1987,1991, Remondi,1984). This observable still contains the double difference 

ambiguity term which has to be resolved before the beginning of the kinematic mission 
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and then fixed in kinematic surveys. In airborne kinematic positioning, cycle slips may 

often occur in carrier phase observation due to aircraft dynamics (e.g. turning) and 

multipath effects. Therefore, it is mandatory to resolve ambiguity on the fly for precise 

GPS positioning.   

1. 6. Algorithms for Kinematic GPS   

There are mainly two algorithms being used in kinematic GPS; Kalman filtering 

and least squares (Schwarz et al., 1989, Cannon, 1987,1991, Georgiadou and Kleusberg, 

1991). Under certain conditions, one algorithm is equivalent to the other one in terms of 

computational aspects. It is important to know about the features of the algorithms and 

their relationships in kinematic GPS.   

1. 6. 1 Kalman Filter Algorithm   

Assuming the system model and measurement model have the form of:     

k k k k k kX X W, ,1 1 1

     

   1. 16    

k k k kl A X

      

   1. 17 

for the update equations:    

k k k k k kX X K l A X( ) ( ) { ( )}

    

   1. 18    

k
X

k k k
XC I K A C( ) { } ( )

     

   1. 19    

k k
X

k
T

k k
X

k
T

lK C A A C A C( ) { ( ) }
11       1. 20 

and for the prediction equations:    

k k k kX X( ) ( ), 1 1

     

   1. 21    

k
X

k k k
X

k k
T

k k
WC C C( ) ( ), , ,1 1 1 1

    

   1. 22 
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where 

X  is the state vector, 

 
is the transition matrix, 

I is the identity matrix, 

W is the system process noise vector, 

A is the design matrix, 

 

is the measurement noise, 

k is the epoch number, 

WC

 

is the covariance matrix of W, 

K is the Kalman gain matrix, 

lC

 

is the covariance matrix of l, 

XC

 

is the covariance matrix of X, 

(-) is a predicted quantity, 

(+) is an updated quantity, 

( ^ ) is an estimated quantity.   

Different definitions of the transition matrix, , and the covariance of the system 

process noise, WC , can be used based on the choice of the state space model for 

kinematic GPS (Schwarz et al., 1989). The covariance matrix of the system process 

noise, WC , is given as (Shi, 1994):     

W
t

TC z Q z z dz
0    

   1. 23  

where Q is the spectral density matrix. The state space model is affected by parameters 

such as, the system dynamics, state vector, and the assumption on the process behavior of 

the system (Gelb, 1974, Schwarz et al., 1989). The state space model plays an important 

role in improving the interpolation accuracy when the data rate is low. Schwarz et al. 
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(1989) have shown that with a 3 seconds data rate, positioning accuracy improves when 

using a constant velocity model and velocity accuracy improves when using a constant 

acceleration model.    

The Kalman filter can be implemented with different kinematic GPS models and 

different measurements (Shi, 1994). The process noise is also fully used in the filter by 

considering the spectral density matrix, Q, which allows the system to adjust the 

contribution to the estimates from the observables at the measurement epoch versus a 

contribution before the epoch.    

The Kalman filter is usually employed in kinematic GPS applications where the 

remote receiver is installed on a moving platform and the reference receiver is set up on 

the ground station.  

1. 6. 2. Least Squares Algorithm   

The least squares algorithm for kinematic GPS does not use dynamic information 

(Georgiadou and Kleusberg, 1991). In this algorithm, no assumption is made on the 

remote motion and no system process noise is considered. If a priori information about 

unknown parameter is used, the approach is called sequential least squares but if only 

observables at the measurement epoch are used, it is called the least squares approach.  

If the measurement model is considered as:    

k k k kl A X1 1 1

      

   1. 24  

then the equation for the estimated vector and its covariance matrix in the sequential 
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l least squares approach are given as (Krakiwsky, 1990):    

k kX X X( ) ( )1

      
    1. 25   

k
X

k
X XC C C( ) 1

       

   1. 26   

k k k
T

l k k
X

k
T

l k k kX X A C A C A C l A X( ) { } ( )
1

1 1 1    1. 27   

k
X

k
T

l k k
XC A C A C

1
1 1{ ( )}         1. 28 

where  

X

 

is the increment vector over two successive epochs, 

XC is the covariance matrix of X , 

(-) is for an estimate based on data collected before epoch k.   

The equations for least squares approach are written as:    

k k
T

l k k
T

l kX A C A A C l
11 1          2. 29   

k
X

k
T

l kC A C A
11          1. 30   

In the least squares approach, the discrete position of the remote station is 

computed by using observations at one epoch, without any need of the process noise 

information or dynamic assumption. Therefore, the positioning solutions in successive 

epochs are independent. This approach can be applied to the case when the reference 

receiver is used either in static or in kinematic mode and a high data rate is used. Shi 

(1994) found that with a 2 Hz or even 1 Hz data rate, the position of an aircraft (with the 

speed of 80 m per second) from the Kalman filter algorithm (with a constant velocity 

model) are identical to those from the least squares approach. The Kalman filter 
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algorithm can be mathematically transformed to the least squares approaches. The 

mathematical proofs can be found in (Shi,1994).    

The advantage of using Kalman filter is that it has a general form of the equations 

which allows the implementation of different kinematic GPS models and measurements. 

In addition to this, because of its flexibility, it can meet the needs of a practical 

application in different dynamic environments.                     
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