

Earning 1 - Constant The transmission of transmi

Example 1 - Cont'd

Strain in Elements

Now that we have solved the displacements at the 3 nodes, we may use the train-displacement relations to determine the induced strains in both these elements:

$$\{\varepsilon\}^{T} = \{\varepsilon_{xx}^{1} \quad \varepsilon_{xx}^{2}\}$$

Strain: $\varepsilon = \frac{du}{dx} = [\mathbf{B}]\{u\}$
Stress-Strain Law: $\sigma = E\varepsilon = E[\mathbf{B}]\{u\}$

where ε_{xx}^1 and ε_{xx}^2 are the strains in Element 1 and 2 respectively

$$[B(x)] = [D] \{N(x)\}^{T} = \frac{d}{dx} \{1 - \frac{x}{L}, \frac{x}{L}\} = \{-\frac{1}{L}, \frac{1}{L}\} = \frac{1}{L} \{-1, 1\}$$

We have: Node 1 at $x_1 = 0$; Node 2 at $x_2 = 915$ mm, and Node 3 at $x_3 = 1220$ mm, leading to: the length of Element 1 = $L_1 = 915$ mm; the length of Element 2 = $L_2 = 305$ mm. We may thus express the [B(x)] for both elements to be:

$$\begin{bmatrix} B_1 \end{bmatrix} = \frac{1}{915} \{ -1 \ 1 \}, and \begin{bmatrix} B_2 \end{bmatrix} = \frac{1}{305} \{ -1 \ 1 \}$$

Dr. Hasan Ghasemzadeh

10

The overall stiffness matrix	of the tr	uss structu	re:						
	Γ	53.84	0	0	0	-53.84	0		
[*	K] = 10 ⁶	0	0 0	0 50	-31.6 28.87	0 - 50	0 - 28.87	-	(d)
[K]		0 –	31.6 2	8.87	48.27	-28.87	-16.67		
		- 53.8 0	0 -	– 50 28.87	-28.87 -16.67	103.84 28.87	28.87 16.67		
With this overall stiffness n	natrix, we	e may estal	olish the o	verall sti	ffness equ	ation for t	he truss st	ructure as shown b	elow:
	53.84	0	0	0	-53.	84 0	$\left[u_{1x} \right]$	$\int f_{1x}$	
	0	31.6 0	0 50	-31.	6 0 7 - 5	0 - 28	v_{1y}	f_{1y}	(0)
10 ⁶	10 ⁶ 0	-31.6	28.87	48.2	7 – 28.	87 –16.	$\begin{array}{c} 67 \\ 67 \\ v_{2y} \end{array}$	$= \begin{cases} f_{2y} \\ f_{2y} \end{cases}$	(0)
	-53.8	0	-50	-28.8	87 103.	84 28.8	u_{3x}	f_{3x}	
		0	-28.87	-10.0	0/ 20.0	0/ 10.0	07][V _{3y}]	$\begin{bmatrix} J_{3y} \end{bmatrix}$	

Example Stress analysis of a pressure	ring — cont'd		
Derive the Interpolation function:			
Components of the interpolation function from	Equation (4.49):		
$\alpha_i = r_j z_m - z_j r_m = 2 \times 3 - 1.5 \times 1 = 4.5$	$\beta_i = z_j - z_m = 1^{\circ}.5 - 3 = -1.5$	$\gamma_i = r_m - r_j = 1 - 2 = -1$	
$\alpha_{i} = r_{m} z_{i} - z_{m} r_{i} = 1 \times 0 - 3 \times 1 = -3$	$\beta_j = z_m - z_i = 3 - 0 = 3$	$\gamma_{j} = r_{i} - r_{m} = 1 - 1 = 0$	
$\alpha_m = r_i z_j - z_i r_j = 1 \times 1.5 - 0 \times 2 = 1.5$	$\beta_m = z_i - z_j = 0 - 1.5 = -1.5$	$\gamma_m = r_j - r_i = 2 - 1 = 1$	
The interpolation function:			
$[N(r,z)] = \begin{bmatrix} N_i & 0\\ 0 & N \end{bmatrix}$	$\begin{bmatrix} 0 & N_{j} & 0 & N_{m} & 0 \\ N_{i} & 0 & N_{j} & 0 & N_{m} \end{bmatrix}$		
with the components $\mathbf{N}_{i},\mathbf{N}_{j}$ and \mathbf{N}_{m} expresses	ed in Equation (4.51) to be:		
$N_i = \frac{1}{3} (4.5 - 1.5r - z)$	$N_j = \frac{1}{3}(-3+3r)$ $N_m = \frac{1}{3}(1.5-1.5r)$	(a) + z)	
	Dr. Hasan Ghasemzadeh		88

Example

Element stiffness matrix [K_e]-cont'd:

We thus have the following stiffness matrices relating to the 3 nodes for the present example to be:

$$\begin{bmatrix} K_e^i \end{bmatrix} = \frac{50 \times 10^{10}}{3} \begin{bmatrix} B_i \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B_i \end{bmatrix} = 16.91 \times 10^{10} \begin{bmatrix} 5.0803 & 1.255 \\ 1.255 & 3.8375 \end{bmatrix} \text{ for Node } i \qquad (g1)$$
$$\begin{bmatrix} K_e^j \end{bmatrix} = \frac{50 \times 10^{10}}{3} \begin{bmatrix} B_j \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B_j \end{bmatrix} = 16.91 \times 10^{10} \begin{bmatrix} 27.45 & -2.01 \\ -2.01 & 6.03 \end{bmatrix} \text{ for Node } j \qquad (g2)$$
$$\begin{bmatrix} K^m \end{bmatrix} = \frac{50 \times 10^{10}}{3} \begin{bmatrix} B_i \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B_i \end{bmatrix} = 16.91 \times 10^{10} \begin{bmatrix} 4.9731 & -0.255 \end{bmatrix} \text{ for Node } m \qquad (g3)$$

$$\begin{bmatrix} K_e^m \end{bmatrix} = \frac{50 \times 10^{10}}{3} \begin{bmatrix} B_m \end{bmatrix}^T \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} B_m \end{bmatrix} = 16.91 \times 10^{10} \begin{bmatrix} 4.9731 & -0.255 \\ -0.255 & 3.8375 \end{bmatrix} \text{ for Nodem}$$
(g3)

Dr. Hasan Ghasemzadeh

Numerical Methods in Geomechnics

94

on of nodal displacem	ents from	overall stiff	ness equatio	ns		
nverse of [K] matrix	in Equatio	on (k) is:				
	0.2145	-0.07	0	0	0	0 -
	-0.07	0.2835	0	0	0	0
$ig[Kig]^{\!-\!1} =$	0	0	0.03734	0.01245	0	0
	0	0	0.01245	0.17	0	0
	0	0	0	0	0.2018	0.01341
	0	0	0	0	0.01341	0.2615
e thus have the 6 noo	dal displac	ements fr	om Equatio	n (m) to be:		
		$\left(u_{i} \right)$	ſ	10.0892]	[59	.66]
		w _i		-3.297	-1	9.5
	$\{a\}_{-}$	$ u_j $	1	0	(10^{-12}))
	$\{a\} = \langle$	$w_j = \overline{16}$	5.91×10 ¹⁰	0)
		u_m		9.5048	56	.33
		w		0.06316	3	74

	SUMMARY
1.	A brief overview of key formulations of linear theory of elasticity relevant to the finite element (FE) formulation for stress analysis of deformable elastic solid structures subjected to applied forces, either in the form of body force or as surface tractions.
2.	The small deformation of the solids is supposed so stresses are within the elastic limit of the material
3.	The FE formulation is based on the theories of linear elasticity
4.	General FE formulation is presented for "simplex elements" only. (simplex elements is defined with element displacements follow linear polynomial functions)
5.	FE are presented for the following specific types of structures:
	 (a) 1-D bar elements : Solid bars subject to forces and deformation along the length of the bar (b) 1-D bar elements : Trusses in 2-D plane with planar displacements at nodes but force and stresses along the length (c) Beam elements : Beam bending in planes (d) 2-D triangular plate elements : Thin plates with in-plane loading and deformation (e) 3-D triangular torus elements : Axisymmetric structures
	Dr. Hasan Ghasemzadeh 101

SUMMARY – cont'd	
6. Key FE equations are:	
a) Element displacements and nodal displacement:	
Element displacements $\{\Phi\} = [N(\mathbf{r})]\{\phi\}$ with $\{\phi\} = Nodal$ displacements	
The interpolation function $[N(\mathbf{r})]$ are available in :	
Key equation for 1-D bar and truss elements; beam elements; triangular plate elements; triangular torus element	S
b) Element strains and element displacements: $\{\varepsilon\} = [D] \{\Phi\}$ with $[D]$ Operator c) Element strains and nodal displacements: $\{\varepsilon\} = [D] [N(\mathbf{r})] \{\phi\} = [B] \{\phi\}$	
d) Element stresses and element strains and nodal displacements: $\{\sigma\} = [D]\{\varepsilon\} = [D][B]\{\varphi\}$ with $[D]$ moudulus Matrix	
e) Strain energy in element: $U = \frac{1}{2} \int_{v} \left\{ \varepsilon \right\}^{T} \left\{ \sigma \right\} dv = \frac{1}{2} \int_{v} \left\{ \varphi \right\}^{T} \left[\mathbf{D} \right] \left[B \right] \left\{ \varphi \right\} dv = \frac{1}{2} \left\{ \varphi \right\}^{T} \left(\int_{v} \left[B \right]^{T} \left[\mathbf{D} \right] \left[B \right] dv \right) \left\{ \varphi \right\} dv = \frac{1}{2} \left\{ \varphi \right\}^{T} \left\{ \mathbf{D} \right\} $	
f) Work done to the element by applied body forces {f} and surface tractions {t}:	
$W = \iint [N(\mathbf{r})]^T \{f\} dv + \iint [N(\mathbf{r})]^T \{t\} ds$	
g) Potential energy in elements: $\Pi(\{\phi\}) = U + (-W) = U - W$	
Dr. Hasan Ghasemzadeh	102

