

	Model	Perkins and Kern	Geertsma and deKlerk	Radial
Classical	Fracture	$x_f = c_1 t^{4/5}$	$x_f = c_1 t^{2/3}$	$R_f = c_1 t^{4/9}$
Models'	Laten	$c_1 = c_1' \left(\frac{q_i^3 E'}{\mu h_f^4} \right)^{1/5}$	$c_1 = c_1' \left(\frac{q_i^3 E'}{\mu h_f^3}\right)^{1/6}$	$c_1 = c_1' \left(\frac{q_i^3 E'}{\mu}\right)^{1/9}$
Closed Form		$c_1' = \left(\frac{625}{512\pi^3}\right)^{1/5} = 0.524$	$c_1' = \left(\frac{16}{21\pi^3}\right)^{1/6} = 0.539$	$c_1' = 0.572$
Relations:	Width	$w_{w,0} = c_2 t^{1/5}$	$w_w = c_2 t^{1/3}$	$w_{w,0} = c_2 t^{1/9}$
		$c_2 = c_2' \left(\frac{q_i^2 \mu}{E' h_f} \right)^{1/5}$	$c_2 = c_2' \left(\frac{q_i^3 \mu}{E' h_f^3} \right)^{1/6}$	$c_2 = c_2' \left(\frac{q_i^3 \mu^2}{E'^2} \right)^{1/9}$
		$c_2' = \left(\frac{2560}{\pi^2}\right)^{1/5} = 3.04$	$c_2' = \left(\frac{5376}{\pi^3}\right)^{1/6} = 2.36$	$c'_{2} = 3.65$
		$\overline{w} = \gamma w_{w,0}$	$\overline{w}=\gamma w_w$	$\overline{w}=\gamma w_{w,0}$
		$\gamma = 0.628$	$\gamma = 0.785$	$\gamma = 0.533$
	Net Pressure	$p_{n,w} = c_3 t^{1/5}$	$p_{n,w} = c_3 t^{-1/3}$	$p_{n,w} = c_3 t^{-1/3}$
		$c_3 = c'_3 \left(\frac{E'^4 \mu q_i^2}{h_f^6} \right)^{1/5}$	$c_3 = c_3' \left(E'^2 \mu \right)^{1/3}$	$c_3 = c'_3 (E'^2 \mu)^{1/3}$
		$G'_{1} = \left(\frac{80}{M^2}\right)^{1/4} = 1.52$	$c'_3 = \left(\frac{21}{16}\right)^{1/3} = 1.09$	$c'_3 = 2.51$

