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174 Planes of Weakness in Rocks

Problems

p:u.; J..as Y|

1. Determine by mathématical calculation the mean orientation and the Fisher
distribution parameter ksfor each of the joint sets represented by the follow-
ing data collected in the field:

Joint or Strike Dip Joint or Strike Dip
Other Plane © ©) Other Plane ©) ©)
1 S4E 35 NE 16 S38 W 62 NW
2 S42 E 35 NE 17 S36 W 63 NW
3 S40 E 39 NE 18 S38E 41 NE
4 S30 W 60 NW 19 S25 E 38 NE
5 S35 W 61 NW 20 S30 W 58 NW
6 S41 E 34 NE 21 N30 E 30 SE
7 S32w 59 NW 22 N3SE 32 SE
8 S35 W 62 NW 23 N2 E 28 SE
9 S38 E 37 NE 24 N45 E 60 NW
10 S40 E 37 NE 25 NS5 E 58 NW
11 S33 W 61 NW 26 NSO E 59 NW
12 S33 W 64 NW 27 N30 W 90
13 S40 E 37 NE 28 N4O W 88 NE
14 S41 E 36 NE 29 N4O W 1 NE
15 S40 W 62 NW 30 N30 E 24 SE

2. Plot the normals to the joint planes of Problem 1 on an upper hemisphere
stereographic projection and compare the calculated preferred orientations
with what seem to be the points where the greatest density of normals

occur.

3. A multistage triaxial test with a sawed joint oriented 45° with the axis of the

core yielded the following data. Determine ¢,,.

Confining Pressure (p)

Maximum Axial Stress

(MPa) (MPa)
0.10 0.54
0.30 1.63
0.50 2.72
1.00 5.45

<

9.~MJ



Problems 175

4. A reverse fault in the rock of Problem 3 has a dilatancy angle of 5° and is
inclined 20° with the horizontal. What is the maximum horizontal stress that
could be sustained at a depth of 2000 m in this rock?

5. Trace the roughness profile of Figure 5.15a on a sheet of paper; then cut
along it carefully with scissors to produce a model of a direct shear speci-
men. Slide the top to the right past the bottom, without rotation and without
‘‘crushing,’” and draw the path of any point on the top block. Compare this
path to the constructed dilatancy curve of Figure 5.16b. Mark the locations
of potential crushing at different shear displacements.

6. A normal fault that is partly cemented with calcite mineralization dips 65°
from horizontal. The fault slipped when the water pressure reached 10 MPa
at a depth of 600 m. If §; = 1 MPa and ¢; = 35°, what was the horizontal
stress before the fault slipped?

7. S; = 0 and ¢; = 28.2° for a sawed joint oriented 50° from vertical in a
saturated triaxial compression specimen. The confining pressure is 1.5 MPa
and the axial stress o; = 4.5 MPa with zero joint water pressure. What
water pressure will cause the joint to slip if o) and o3 are held constant?

8. The following data were taken in a direct shear test conducted in the field
along a rock joint, with area 0.50 m?. The weight of the block above the joint
is 10 kN.

T, Shear Force (kN) 0|1.0|2.0|3.0|5.0|6.5 |6.0|S.5| 5.4| 5.3
u, Shear Displacement (mm)0 10.511.011.5/3.0/5217.5l0511.51=12

Assuming that joint cohesion is zero, and that ¢, = ¢sq, determine the
peak and residual friction angles, the shear stiffness (MPa/m), and the
dilatancy angle at peak and post peak displacements.

9. A jointed shear test specimen is drilled at angle « with the normal to the

shear plane and a model rock bolt is installed and tensioned to force Fjp (see

figure). Then a pair of shear forces T are applied until the joint slips.

(a) What is the bolt tcnsmn Fp just sufficient to prevent slip under shear
force T.

(b) What is the value of e-that minimizes the value of Fj required to prevent
joint slip? .

(c) How are the answers lo be changed if the joint tends to dilate during
shear, with dilatancy angle i, and the bolt has stiffness k,?
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10. John Bray (1967) derived the following expression for the limiting effective

11.

12.

stresses for joint slip:

o _ _ tan|y|
o;  tan(|y| + @)

where ¢ is the angle between the direction of oy and the joint plane. (The
derivation for this useful formula is given in Appendix 4 in the derivations
to equations 7.11 to 7.16.) Draw a polar plot of the ratio o3/of for limiting
conditions as a function of Y(—7/2=< ¢ < =/2) for values of (a) ¢; = 20° and
(b) ¢, = 30°. Label the regions on these diagrams corresponding to slip and
safe principal stress ratios.

Kfz

Use the expression given in Problem 10 to re-solve Problem 5-7. (Hint:
Substitute o, — p, and o5 — p.. in place of o, o})

(a) Sedimentation is increasing the thickness of overburden (z) and the
vertical stress (o) in a rock mass. Assume the rock strength is given by
S;= 1 MPaand ¢ = 30°. Withv = 0.2, and y = 0.025 MPa/m, draw the
limiting Mohr circle that causes shear failure in the rock and determine
the corresponding values of z, o, and oy.

(b) Now assume that shear fractures have formed, in the orientation deter-



13.

14.
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mined by the shear failure in (a). The new shear joints have ¢; = 20°.
Draw the new Mohr circle after the failure and determine the new value
of o, (no change in o, has occurred).

(c) Assume additional sedimentation increases the value of o, to 1.5 times
its value in (b). What are the corresponding values of z and o . Draw the
corresponding Mohr circle.

(d) Now erosion begins, reducing o,. Assuming the corresponding reduc-
tion in oy is given by Aoy = [v/(1 = ¥)] Ao, draw a series of Mohr
circles and determine the value of z when o}, = o,.

(e) With further erosion, the shear joints formed in (a) are no longer rele-
vant to the stress circles since the major stress is now horizontal. New
joints form when the Mohr circle contacts the rock strength envelope.
Draw this circle and determine the corresponding values of z, o,
and o,.

(f) Assume the Mohr circle is now limited by the new joints. Find the
appropriate new value for o (no change in o).

(g) Draw graphs showing the variations of o, and o, with z increasing to the
max found in (c) and then decreasing to zero.

The average fracture frequency () across a rock core is the total number of

natural fractures divided by the total length drilled.

(a) Suppose there is only one set of joints and that \ is the fracture fre-
quency measured in a direction normal to them. Derive an expression
giving \ in a direction @ with respect to the normal.

(b) There are two orthogonal sets of fractures with A values, respectively A,
and ). Derive an expression for A measured in a direction 8 from A;.

(c) Given A\; = 5.0 and \; = 2.0 fractures per meter. Find the values of § and
X such that the fracture frequency is a maximum. What is the average
fracture spacing in this direction?

Barton (1973) proposed an empirical criterion of peak shear strength for
joints:

7 = o, tan[JCR log (JCS/o,) + ¢;]
where JCS is the compressive strength of the wall rock, and JCR is the joint
roughness coefficient. (In this expression, the argument of tan is under-

stood to be expressed in degrees.) Compare this equation with Equa-
tion 5.8.
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Problems

1. Show that the stress-strain relationship connecting deviatoric strain e;; and
deviatoric stress 7; consists of six uncoupled identical statements:
Tij = 263;‘;‘
iLj=1,3

Il

(“‘Deviatoric strain’’ is discussed in Appendix 2.)

2. Suppose a triaxial compression test is conducted by simultaneous change in
o and p; derive expressions for E and v in terms of the axial and lateral
strains and the stresses o and p.

3. Describe a procedure for triaxial testing that raises the deviatoric stress
while the nondeviatoric stress remains constant.

4. The following forces and displacements were measured in an unconfined

compression test of a cylindrical claystone specimen 5.0 cm in diameter and
10.0 cm long.
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Problems 219

Axial Axial Lateral Axial Axial Lateral
Force Shortening Extension Force Shortening Extension

™N) (mm) (mm) (N) (mm) (mm)

0 0 0 ghtrl 0.080 0.016
‘600 0.030 I 2,500 0.140
1000 0.050 AR 5,000 0.220
1500 0.070 6,000 0.260
2000 0.090 7,000 0.300

L. 2500 0.110 0.018 ), L 7,500 0.330 0.056

(y f: ) Vs

0.040 0.009 f’t 0.120 0.025
b zsoo 0.110 (5 Yob 4 500 0.330
3000 0.130 9,000 0.400

4000 0.170 ) 10, 000 0.440 0.075

7 5000 0.220 0.03% /) b~ 0.160 0.035

Compute E and v corresponding todcforma.tion and their counter-
parts M and v, for permanent deformation from the above data.

. A triaxial compression test is performed as follows: (a) An all-around pres-

sure is first applied to the jacketed rock specimen. Nondiviatoric stress & is
plotted against nondeviatoric strain ¢ and the slope D, = AG/Az is deter-
mined. (b) Then deviatoric stress is increased while nondeviatoric stress is
held constant and the axial deviatoric stress o 4., is plotted against the
axial deviatoric strain &, 4ev. The slope D, = Ady goy/A€) 4oy is determined
from the graph. Derive formulas exprcssin@?)in terms of D, and D;.

. (a) Derive a relationship between E, the modulus of elasticity computed

from the reloading curve of stress and strain; M, the modulus of permanent
deformation; and E,a, the modulus of deformation computed from the
slope of the loading curve of stress and strain. (b) Show how M varies with
axial strain throughout the complete stress-strain curve.

. In a full seismic wave experiment, the compressional and shear wave veloc-

ities were measured as V, = 4500 m/s, V, = 2500 m/s. Assuming the density
of the rock is 0.027 MN/m?, calculate E and ».

. What physical phenomena could explain a plate-bearing pressure versus

displacement curve like that of Figure 6.9?

. A rock mass is cut by one set of joints with spacing § = 0.40 m. (a) If the

joint normal and shear deformations are assumed to be equal to that of the
rock itself, express k; and k, in terms of E and v. (b) Assuming E = 10* MPa
and v = 0.33, calculate all the terms of the strain-stress relationship for an
equivalent transversely isotropic medium, (corresponding to Equation 6.9).
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10. Modify Equations 6.23 and 6.24 accordingly for a rock mass with three

11.

12.

13.

mutually perpendicular sets of joints.

Show that for rock cut by one set of joints with spacing S, the normal
strains and normal stresses referred to n, s, f coordinates are related by

€n 1 p v —v o,
g | = 17 1 - oy
& - —v 1 o,

where p = 1 + E/k,S and where E and » are Young's modulus and Pois-
son’s ratio of the rock, k, is the normal stiffness of the joints, and # is the
direction perpendicular to the joint planes.

A jacketed rock cube, with edge length 50 cm, is subject to an all around
pressure p. The pressure versus volumetric strain curve recorded is given
in the figure. Assume the rock contains three mutually perpendicular joint
sets all spaced 5 cm apart. Calculate the normal stiffness of the joints k, at
each of the normal pressures corresponding to the start of unloading paths
(2.4, 4.8, and 10.3 MPa).

100

8.0

6.0

p (MPa)

4.0

20

0.002 0.004 0.006 0.008 0.010  Awlv
0.0027 0.0043 0.0058

Let v,, v, and v be respectively the Poisson’s ratios for plastic, total, and
elastic strain; that is, for strain applied in the x direction, v = —¢,/g,, etc.
Derive a formula expressing v, as a function of E, M, v, and v,.



