رفتار دینامیکی خاک ها

Hasan Ghasemzadeh

Soil dynamics

□ آزمایشات آزمایشگاهی
□ آزمایشات صحرایی
□ رفتار خاک ها تحت بار سیکلی

Dr. H. Ghasemzadeh

آزمایشات صحرایی In-Situ Tests In-Situ Testing - Objectives

- Select in-situ tests for augmenting,
 supplementing, and even replacing borings.
- □ Realize the applicability of various in-situ methods to different soil conditions.
- □ Recognize the complementary nature of insitu direct push methods with conventional rotary drilling & sampling methods.
- □ Recognize values for utilizing these methods and quality implications for their underuse:

Shear Wave Velocity, V_s

- □ Fundamental measurement in all solids (steel, concrete, wood, soils, rocks)
- □ Initial small-strain stiffness represented by shear modulus: $G_0 = \rho_T V_s^2$ (alias $G_{dyn} = G_{max} = G_0$)
- \Box Applies to all static & dynamic problems at small strains (γ_s < 10⁻⁶)
- □ Applicable to both undrained & drained loading cases in geotechnical engineering.

Property	Method
Shear (s) and compression (p) wave velocity	□ Suspension (p-s) logging□ Downhole logging (impulsive and vibratory sources)
Density	□ Gravity-density logging □ Compensated density (γ-γ logging)
Geometry of contact (depths/thicknesses)	□ Geologic logs (examination of core/cuttings) □ Geophysical logging suite Compensated density (γ-γ) Neutron porosity Dual induction resistivity Full waveform sonic
Modulus reduction and damping	Resonant column and torsional shear tests
Sediment particle size	□ Gradation testing
Borehole condition	□ Acoustic televiewer □ Caliper logging □ Gyroscope surveys

Soil Dynamics Tests (Geophysical Methods)

Electromagnetic Wave Techniques

Electromagnetic Wave

- □ Nondestructive methods
- □ Non-invasive; conducted across surface.
- Measurements of electrical & magnetic properties of the ground: resistivity (conductivity), permittivity, dielectric, and magnetic fields.
- □ Cover wide spectrum in frequencies
 (10 Hz < f < 10²² Hz).

Dr. H. Ghasemzadeh

48

Electromagnetic Wave

□ Surface Mapping Techniques:

- Ground Penetrating Radar (GPR)
- Electrical Resistivity (ER) Surveys
- Electromagnetic Conductivity (EM)
- Magnetometer Surveys (MS)

□ Downhole Techniques

- Resistivity probes, MIPs, RCPTu
- 2-d and 3-d Tomography

Dr. H. Ghasemzadeh

49

Ground Penetrating Radar (GPR)

- □ GPR surveys conducted on gridded areas
- □ Pair of transmitting and receiver antennae
- □ Short impulses of high-freq EM wave
- □ Relative changes in dielectric properties reflect differences in subsurface.
- □ Depth of exploration is soil dependent (up to 30 m in dry sands; only 3 m in wet saturated clay)

Dr. H. Ghasemzadeh

50

Electrical Resistivity (ER) Surveys

- \Box Resisitivity ρ_R (ohm-m) is an electrical property. It is the reciprocal of conductivity
- □ Arrays of electrodes used to measure changes in potential.
- □ Evaluate changes in soil types and variations in pore fluids
- □ Used to map faults, karst features (caves, sinkholes), stratigraphy, contaminant plumes.

Dr. H. Ghasemzadel

59

What will be gained by changing electrode spacing?

Depth of ER survey: i.e., greater spacing influences deeper

Electrical Resisitivity I		
$(\varOmega.m)$ مقاومت ويژه	جنس خاک	
20-100	زمین گلی	
10-150	خاک گیاهدار	
5-100	ذغال سنگ مرطوب	
50	خاک رس نرم	
100-200	خاک آهک دار و خاک رس فشرده	
50-500	ماسه رس دار	
1500-3000	خاک دارای قطعات سنگ	
100-300	سنگ اَهک نرم	
1000-5000	سنگ آهک فشرده	
50-300	شيست	
1500-10000	گرانیت و ماسه سنگ	
	Dr. H. Ghasemz	

