
C H A P T E R  

11.1 Boolean 
Functions 

11.2 Representing 
Boolean 
Functions 

11.3 Logic Gates 

11.4 Minimization 
of Circuits 

Boolean Algebra 

T he circuits in computers and other electronic devices have inputs, each of which is either 
.ll. a 0 or a I , and produce outputs that are also Os and 1 s. Circuits can be constructed using 

any basic element that has two different states. Such elements include switches that can be 
in either the on or the off position and optical devices that can either be lit or unlit. In 1 938 
Claude Shannon showed how the basic rules of logic, first given by George Boole in 1 854 in his 
The Laws of Thought, could be used to design circuits. These rules form the basis for Boolean 
algebra. In this chapter we develop the basic properties of Boolean algebra. The operation of a 
circuit is defined by a Boolean function that specifies the value of an output for each set of inputs. 
The first step in constructing a circuit is to represent its Boolean function by an expres sion built 
up using the basic operations of Boolean algebra. We will provide an algorithm for producing 
such expressions. The expression that we obtain may contain many more operations than are 
necessary to represent the function. Later in the chapter we will describe methods for finding an 
expression with the minimum number of sums and products that represents a Boolean function. 
The procedures that we will develop, Karnaugh maps and the Quine-McCluskey method, are 
important in the design of efficient circuits. 

11.1 Boolean Functions 

II-I 

Introduction 

Boolean algebra provides the operations and the rules for working with the set to, I } . Electronic 
and optical switches can be studied using this set and the rules of Boolean algebra. The three 
operations in Boolean algebra that we will use most are complementation, the Boolean sum, and 
the Boolean product. The complement of an element, denoted with a bar, is defined by 0 = 1 
and T = O. The Boolean sum, denoted by + or by OR, has the following values: 

1 + 1 = 1 ,  1 + 0  = 1 ,  0+ 1 = 1 ,  0+0 = O. 

The Boolean product, denoted by . or by AND, has the following values: 

1· 1 = 1 ,  1· 0 = 0, 0· 1 = 0, 0·0 = 0. 

When there is no danger of confusion, the symbol· can be deleted, just as in writing algebraic 
products. Unless parentheses are used, the rules of precedence for Boolean operators are: first, 
all complements are computed, followed by Boolean products, followed by all Boolean sums. 
This is illustrated in Example 1 .  

EXAMPLE 1 Find the value of 1 . 0 + (0 + 1 ). 

Soitltion: Using the definitions of complementation, the Boolean sum, and the Boolean product, 
it follows that 

1·0+ (0 + 1 )  = 0 + T 
= 0 + 0  
= 0 . 

749 
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The complement, Boolean sum, and Boolean product correspond to the logical operators, 
-. , v, and /\, respectively, where 0 corresponds to F (false) and 1 corresponds to T (true). Equal
ities in Boolean algebra can be directly translated into equivalences of compound propositions. 
Conversely, equivalences of compound propositions can be translated into equalities in Boolean 
algebra. We will see later in this section why these translations yield valid logical equivalences 
and identities in Boolean algebra. Example 2 illustrates the translation from Boolean algebra to 
propos itional logic. 

EXAMPLE 2 Translate 1 ·0 + (0 + 1 )  = 0, the equality found in Example 1 ,  into a logical equivalence. 

Solution: We obtain a logical equivalence when we translate each 1 into a T , each 0 into a 
F, each Boolean sum into a disjunction, each Boolean product into a conjunction, and each 
complementation into a negation. We obtain 

(T /\ F) v -.(T v F) == F. 

Example 3 illustrates the translation from propositional logic to Boolean algebra. 

EXAMPLE 3 Translate the logical equivalence (T /\ T) v -.F == T into an identity in Boolean algebra. 

unkS� 

Solution: We obtain an identity in Boolean algebra when we translate each T into ai , each F 
into a 0, each disjunction into a Boolean sum, each conjunction into a Boolean product, and 
each negation into a complementation. We obtain 

( 1  . I )  + 0 = 1 .  

Boolean Expressions and Boolean Functions 

Let B = {O ,  I } . Then Bn = { (x" X2 , • • •  , xn ) I Xi E B for 1 � i � n }  is the set of all possible 
n-tuples of Os and I s. The variable x is called a Boolean variable if it assumes values only from 
B,  that is, if its only possible values are 0 and 1 .  A function from Bn to B is called a Boolean 
function of degree n. 

CLAUDE ELWOOD SHANNON ( 1 9 16-200 I) Claude Shannon was born in Petoskey, Michigan, and grew up 
in Gaylord, Michigan. His father was a businessman and a probate judge, and his mother was a language teacher 

•. and a high school principal. Shannon attended the University of Michigan, graduating in 1936. He continued 
his studies at M.L T., where he took the job of maintaining the differential analyzer, a mechanical computing 
device consisting of shafts and gears built by his professor, Vannevar Bush. Shannon's master's thesis, written 
in 1936, studied the logical aspects of the differential analyzer. T his master's thesis presents the first application 
of Boolean algebra to the design of switching circuits; it is perhaps the most famous master's thesis of the 

. twentieth century. He received his Ph.D. from M.LT. in 1940. Shannon joined Bell Laboratories in 1940, where 
he worked on transmitting data efficiently. He was one of the first people to use bits to represent information. At 

Bell Laboratories he worked on determining the amount of traffic that telephone lines can carry. Shannon made many fundamental 
contributions to information theory. In the early 1950s he was one of the founders of the study of artificial intelligence. He joined 
the M.LT. faculty in 1956, where he continued his study of information theory. 

Shannon had an unconventional side. He is credited with inventing the rocket-powered Frisbee. He is also famous for riding 
a unicycle down the hallways of Bell Laboratories while juggling four balls. Shannon retired when he was 50 years old, publishing 
papers sporadically over the following 10 years. In his later years he concentrated on some pet projects, such as building a motorized 
pogo stick. One interesting quote from Shannon, published in Omni Magazine in 1987, is "I visualize a time when we will be to 
robots what dogs are to humans. And I am rooting for the machines." 
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EXAMPLE 4 The function F(x ,  y) = xy from the set of ordered pairs of Boolean variables to the set to, I }  
is a Boolean function of degree 2 with F(I ,  1 )  = 0, F( I , 0) = I ,  F(O, 1 )  = 0, and F(O, 0) = 0. 
We display these values of F in Table 1 .  .... 

TABLE 1 
x 
I 

I 

0 

0 

y F(x,y) 
I 0 

0 I 

I 0 

0 0 

Boolean functions can be represented using expressions made up from variables and Boolean 
operations. The Boolean expressions in the variables XJ , X2 , • • •  , Xn are defined recursively as 

0, 1 ,  XJ , X2 , • • •  , Xn are Boolean expressions; 

if EJ and E2 are Boolean expressions, then E 1. (EJE2), and (EJ + E2) are 
Boolean expressions. 

Each Boolean expression represents a Boolean function. The values of this function are obtained 
by substituting ° and I for the variables in the expression. In Section 1 1 .2 we will show that 
every Boolean function can be represented by a Boolean expression. 

EXAMPLE 5 Find the values of the Boolean function represented by F(x ,  y ,  z) = xy + z. 

EXAMPLE 6 

IlO III 

Solution: The values of this function are displayed in Table 2. 

Note that we can represent a Boolean function graphically by distinguishing the vertices of 
the n-cube that correspond to the n-tuples of bits where the function has value 1 .  

The function F(x ,  y ,  z) = xy + z from B3 to B from Example 3 can be represented by distin
gu ishing the vertices that correspond to the five 3-tuples ( 1 , 1 , 1 ) ,  ( 1 , 1 , 0), ( 1 , 0 , 0), (0, 1 , 0), 
and (0, 0 , 0), where F(x ,  y, z) = 1 ,  as shown in Figure 1 .  These vertices are displayed using 
solid black circles. .... 

Boolean functions F and G of n variables are equal if and only if F(bl . b2 , • • .  , bn ) = 
G(bJ , b2 , • • •  , bn ) whenever bJ , b2 , • • •  , bn belong to B . Two different Boolean expressions that 

OIO�--+-�OIl represent the same function are called equivalent. For instance, the Boolean expressions xy, 

000 001 
xy + 0, and xy . 1 are equivalent. The complement of the Boolean function F is the function 
F, where F(xJ , . . .  , xn ) = F(xJ , . . .  , xn ). Let F and G be Boolean functions of degree n .  The 
Boolean sum F + G and the Boolean product F G are defined by FIGURE 1 

(F + G)(xJ , . . .  , xn ) = F(xJ , . . .  , xn ) + G(xJ , . . .  , xn ) ,  
(FG)(xJ , . . .  , xn ) = F(xJ , . . .  , xn )G(xJ , . . .  , xn ) .  

TABLE 2 

x y z xy z F(x,y,z) = xy + Z 

I I I I 0 I 

I I 0 I I I 

I 0 I 0 0 0 

I 0 0 0 I 1 

0 I I 0 0 0 

0 1 0 0 I I 

0 0 I 0 0 0 

0 0 0 0 I I 
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TABLE 3 The Boolean Functions of Degree Two. 

x y FI F2 F3 F4 Fs F6 F, Fa F, FlO FII FI2 FI3 FI4 FI5 FI6 
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 0 1 1 1 . 1 0 0 0 0 1 1 1 1 0 0 0 0 

0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

A Boolean function of degree two is a function from a set with four elements, namely, 
pairs of elements from B = {O, I } , to B,  a set with two elements. Hence, there are 1 6  different 
Boolean functions of degree two. In Table 3 we display the values of the 1 6  different Boolean 
functions of degree two, labeled F1 , F2 , ••• , F16• 

EXAMPLE 7 How many different Boolean functions of degree n are there? 

Solution: From the product rule for counting, it follows that there are 2n different n-tuples of 
Os and 1 s. Because a Boolean function is an assignment of 0 or 1 to each of these 2n different 
n-tuples, the product rule shows that there are 22" different Boolean functions of degree n. .... 

Table 4 displays the number of different Boolean functions of degrees one through six. The 
number of such functions grows extremely rapidly. 

Identities of Boolean Algebra 

There are many identities in Boolean algebra. The most important of these are displayed in 
Table 5 .  These identities are particularly useful in simplifying the design of circuits. Each of 
the identities in Table 5 can be proved using a table. We will prove one of the distributive laws 
in this way in Example 8.  The proofs of the remaining properties are left as exercises for the 
reader. 

EXAMPLE 8 Show that the distributive law xCV + z) = xy + xz is valid. 

Solution: The verification of this identity is shown in Table 6. The identity holds because the 
last two columns of the table agree. .... 

TABLE4 The Number of Boolean 
Functions of Degree ". 

Degree Number 

1 4 

2 16 

3 256 

4 65,536 

5 4,294,967,296 

6 18,446,744,073,709,551,616 
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TABLE 5 Boolean Identities. 

Identity 

x=x 

x+x=x 
x·x =x 

x+O=x 
x·l =x 

x+l= 1 
x ·0=0 

x+y=y+x 
xy=yx 

x+(y+z)=(x+y)+z 
x(yz) = (xy)x 

x + yz = (x + y)(x + z) 
x(y+z)=xy+xz 

(�y) :;:::x+y 
(x + y) =xy 

x +xy =x 
x(x + y) = x 

x+x=l 

xx=O 

Name 

Law of the double complement 

Idempotent laws 

Identity laws 

Domination laws 

Commutative laws 

Associative laws 

Distributive laws 

� M9f§�'� laws 

Absorp�Pfll�ws 

Unit property 

Zero property 

1 1 . 1  Boolean Functions 753 

The reader should compare the Boolean identities in Table 5 to the logical equivalences in 
Table 6 of Section 1 .2 and the set identities in Table 1 in Section 2.2 . All are special cases of the 
same set of identities in a more abstract structure. Each collection of identities can be obtained by 
making the appropriate translations. For example, we can transform each of the identities in Ta
ble 5 iqto a IQgical equivalence by changing each Boolean variable into a propositional variable, 
�!lch 0 �nto a F, each 1 into a T, each Boolean sum into a disjunction, each Boolean product 
,nto a conjunction, and each complementation into a negation, as we illustrate in Example 9. 

TABLE 6 Verifying One of the Distributive Laws. 

x y z y+ z xy xz x(y + z) xy+xz 

1 1 1 1 1 1 1 1 
1 1 0 1 1 0 1 1 
1 0 1 1 0 1 1 1 
1 0 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 
0 1 0 1 0 0 0 0 
0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 
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EXAMPLE 9 Translate the distributive law x + yz = (x + y)(x + z) in Table 5 into a logical equivalence. 

Solution: To translate a Boolean identity into a logical equivalence, we change each Boolean 
variable into a propositional variable. Here we will change the Boolean variables x, y, and z into 
the propositional variables p, q ,  and r. Next, we change each Boolean sum to a disjunction and 
each Boolean product into a conjunction. (Note that 0 and 1 do not appear in this identity and 
complementation also does not appear.) This transforms the Boolean identity into the logical 
equivalence 

p v (q /\ r) == (p V q) /\ (p V r) . 

This logical equivalence is one of the distributive laws for propositional logic in Table 6 in 
Section 1 .2 .  � 

Identities in Boolean algebra can be used to prove further identities. We demonstrate this 
in Example 1 0. 

EXAMPLE 10 Prove the absorption law x(x + y) = x using the other identities of Boolean algebra shown in 
Table 5 .  (This is called an absorption law because absorbing x + y into x leaves x unchanged.) 

Exam: � Solution: The steps used to derive this identity and the law used in each step follow: 

x(x + y) = (x + O)(x + y) Identity law for the Boolean sum 

Duality 

= X + 0 . y Distributive law of the Boolean sum over the 

Boolean product 

= x + Y . 0 Commutative law for the Boolean product 

= X + 0 Domination law for the Boolean product 

= x. Identity law for the Boolean sum 

The identities in Table 5 come in pairs (except for the law of the double complement and the unit 
and zero properties). To explain the relationship between the two identities in each pair we use 
the concept of a dual. The dual of a Boolean expression is obtained by interchanging Boolean 
sums and Boolean products and interchanging Os and 1 s. 

EXAMPLE 11 Find the duals of x(y + 0) and x · 1  + (y + z). 

Solution: Interchanging . signs and + signs and interchanging Os and 1 s in these expressions 
produces their duals. The duals are x + (y · 1 )  and (X + O)(yz), respectively. � 

The dual of a Boolean function F represented by a Boolean expression is the function 
represented by the dual of this expression. This dual function, denoted by Fd, does not depend on 
the particular Boolean expression used to represent F .  An identity between functions represented 
by Boolean expressions remains valid when the duals of both sides of the identity are taken. 
(See Exercise 30 for the reason this is true.) This result, called the duality principle, is useful 
for obtaining new identities. 

EXAMPLE 12 Construct an identity from the absorption law x(x + y) = x by taking duals. 

Solution: Taking the duals of both sides of this identity produces the identity x + xy = x, which 
is also called an absorption law and is shown in Table 5 .  � 
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The Abstract Definition of a Boolean Algebra 

In this section we have focused on Boolean functions and expressions. However, the results we 
have established can be translated into results about propositions or results about sets. Because 
of this, it is useful to define Boolean algebras abstractly. Once it is shown that a particular 
structure is a Boolean algebra, then all results established about Boolean algebras in general 
apply to this particular structure. 

Boolean algebras can be defined in several ways. The most common way is to specify the 
properties that operations must satisfy, as is done in Definition 1 .  

DEFINITION 1 A Boolean algebra is a set B with two binary operations V and /\, elements 0 and 1 ,  and a 
unary operation - such that these properties hold for all x, y, and z in B: 

x vO =x } 
x /\ 1 = x 

Identity laws 

x Vx= I } 
x /\ x = 0 . Complement laws 

(x V y) V Z = x V (y V Z) } 
Associative laws 

(x /\ y) /\ z = x /\ (y /\ z) 

x V y = y V x } 
Commutative laws 

x/\ y= y/\x 

x V (y /\ z) = (x V y) /\ (x V Z) } 
Distributive laws 

x /\ (y V z) = (x /\ y) V (x /\ z) 

Using the laws given in Definition 1 ,  it is possible to prove many other laws that hold for every 
Boolean algebra, such as idempotent and domination laws. (See Exercises 35-42.) 

From our previous discussion, B = {O, I} with the OR and AND operations and the com
plement operator, satisfies all these properties. The set of propositions in n variables, with the V 
and /\ operators, F and T, and the negation operator, also satisfies all the properties of a Boolean 
algebra, as can be seen from Table 6 in Section 1 .2 .  Similarly, the set of subsets of a universal 
set U with the union and intersection operations, the empty set and the universal set, and the 
set complementation operator, is a Boolean algebra as can be seen by consulting Table 1 in 
Section 2.2. So, to establish results about each of Boolean expressions, propositions, and sets, 
we need only prove results about abstract Boolean algebras. 

Boolean algebras may also be defined using the notion of a lattice, discussed in Chapter 8. 
Recall that a lattice L is a partially ordered set in which every pair of elements x, y has a least 
upper bound, denoted by lub(x, y) and a greatest lower bound denoted by glb(x, y). Given two 
elements x and y of L, we can define two' operations V and /\ on pairs of elements of L by 
x V y = lub(x, y) and x /\ y = glb(x, y). 

For a lattice L to be a Boolean algebra as specified in Definition I, it must have two 
properties. First, it must be complemented. For a lattice to be complemented it must have a 
least element 0 and a greatest element 1 and for every element x of the lattice there must exist an 
element x such that x V x = 1 and x /\ x = O. Second, it must be distributive. This means that 
for every x, y, andz inL,x V (y /\ z) = (x V y) /\ (x V z) and x /\ (y V z) = (x /\ y) V (x /\ z). 

Showing that a complemented, distributive lattice is a Boolean algebra is left as Exercise 39 at 
the end of this section. 
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Exercises 

1. Find the values of these expressions. 
a) 1·0 b) 1 + 1 c )  0·0 d )  (1 + 0) 

2. Find the values, if any, of the Boolean variable x that 
satisfy these equations. 
a) x·l = O  b) x + x = O  
c )  X· 1 = x d )  X· x = 1 

3. a) Show that ( 1  . 1 )  + (0 . I + 0) = 1 .  
b) Translate the equation in part (a) into a propositional 

equivalence by changing each 0 to a F, each 1 to a 
T, each Boolean sum into a disjunction, each Boolean 
product into a conjunction, each complementation into 
a negation, and the equals sign to a propositional 
equivalence sign. 

4. a) Show that (1 . 0) + ( 1  ·0) = 1 .  
b) Translate the equation in part (a) into a propositional 

equivalence by changing each 0 to a F, each I to a 
T, each Boolean sum into a disjunction, each Boolean 
product into a conjunction, each complementation into 
a negation, and the equals sign to a propositional 
equivalence sign. 

5. Use a table to express the values of each of these Boolean 
functions. 
a) F(x , y, z) = xy 
b) F(x , y, z) = x + yz 
c )  F(x , y, z) = xy + (xyz) 
d )  F(x , y, z) = x(yz + yZ) 

6. Use a table to express the values of each of these Boolean 
functions. 
a) F(x , y, z) = z  
b) F(x , y, z) = xy + yz 
c )  F(x , y , z) = xyz + (xyz) 
d )  F(x , y, z) = y(xz + xZ) 

7. Use a 3-cube Q3 to represent each of the Boolean func
tions in Exercise 5 by displaying a black circle at each 
vertex that corresponds to a 3-tuple where this function 
has the value 1 .  

8. Use a 3-cube Q3 to represent each of the Boolean func
tions in Exercise 6 by (tisplaying a black circle at each 
vertex that corresponds to a 3-tuple where this function 
has the value 1 .  

9. What values of the Boolean variables x and y satisfy 
xy = x + y? 

10. How many different Boolean functions are there of de
gree 7? 

11. Prove the absorption law x + xy = x using the other laws 
in Table 5 .  

ts"12. Show that F(x , y ,  z )  = xy + x z  + y z  has the value 1 if 
and only if at least two of the variables x, y, and z have the 
value 1 .  

13. Show that xy + yz + xz = xy + yz + xz. 
Exercises 14-23 deal with the B oolean algebra to, I} with 
addition, multiplication, and complement defined at the 

1 1 -8 

beginning of this section. In each case, use a table as in 
Example 8. 
14. Verify the law of the double complement. 

15. Verify the idempotent laws. 

16. Verify the identity laws. 

17. Verify the domination laws. 

18. Verify the commutative laws. 

19. Verify the associative laws. 
20. Verify the first distributive law in Table 5 .  
2 1 .  Verify De Morgan's laws. 
22. Verify the unit property. 
23. Verify the zero property. 

The Boolean operator EB, called the XOR operator, is defined 
by 1 EB 1 = 0, 1 EB 0 = 1 , 0 EB 1 = 1 ,  and 0 EB 0 = o. 
24. Simplify these expressions. 

a) x EB 0 b) x EB 1 
c ) xEBx d ) xEBx 

25. Show that these identities hold. 
a) x EBy = (x + y)(xy) 
b) x EB Y = (xY) + (Xy) 

26. Show that x EB y = y EB x . 
27. Prove or disprove these equalities. 

a) x EB (y EBz) = (x EBy) EBz 
b) x + (y EB z) = (x + y) EB (x + z) 
c )  x EB (y + z) = (x EBy) + (x EBz) 

28. Find the duals of these Boolean expressions. 
a) x + y b) x y  
c )  xyz + x y z  d )  xz + x . 0 + x . 1 

*29. Suppose that F is a Boolean function represented by a 
Boolean expression in the variables XI , • • .  , xn• Show that 
Fd(XI , . . .  , xn) = F( XI , . . .  , xn). 

*30. Show that if F and G are Boolean functions represented 
by Boolean expressions in n variables and F = G, then 
Fd = Gd, where Fd and Gd are the Boolean functions 
represented by the duals of the Boolean expressions rep
resenting F and G, respectively. [Hint: Use the result of 
Exercise 29.] 

*31. How many different Boolean functions F(x , y, z) are 
there such that F(X, y, Z) = F( x , y, z) for all values of 
the Boolean variables x , y, and z? 

*32. How many different Boolean functions F(x , y, z) are 
there such that F( x, y, z) = F(x , y, z) = F(x , y, z )  
for all values of the Boolean variables x , y, 
and z? 

33. Show that you obtain De Morgan's laws for proposi
tions (in Table 5 in Section 1 .2) when you transform 
De Morgan' s  laws for Boolean algebra in Table 6 into 
logical equivalences. 
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34. Show that you obtain the absorption laws for proposi
tions (in Table 5 in Section 1 .2) when you transform the 
absorption laws for Boolean algebra in Table 5 into logical 
equivalences. 

39. Show that De Morgan's laws hold in a Boolean algebra. 
That is, show that for all x and y, (x v y) = x A y and 
(XAy) = xvy. 

40. Show that in a Boolean algebra, the modular properties 
hold. That is, show that x A (y V (x A z» = (x Ay) V 
(x A z) and x v (y A (x V z» = (x v y) A (x V z) . 

In Exercises 35-42, use the laws in Definition 1 to show that 
the stated properties hold in every Boolean algebra. 
35. Show that in a Boolean algebra, the idempotent laws 

x v x = x and x A x = x hold for every element x .  4 1 .  Show that i n  a Boolean algebra, i f  x v y = 0,  then x = 0 
and y = 0, and that if x Ay = 1 ,  then x = 1 andy = 1 .  

36. Show that in a Boolean algebra, every element x has a 
unique complement x such that x v x = 1 andx A x = o. 42. Show that in a Boolean algebra, the dual of an identity, 

obtained by interchanging the v and A operators and in
terchanging the elements 0 and 1 ,  is also a valid identity. 

37. Show that in a Boolean algebra, the complement of the 
element 0 is the element 1 and vice versa. 

38. Prove that in a Boolean algebra, the law of the double 
complement holds; that is, x = x for every element x .  

43. Show that a complemented, distributive lattice i s  a 
Boolean algebra. 

11.2 Representing Boolean Functions 

Two important problems of Boolean algebra will be studied in this section. The first problem 
is: Given the values of a Boolean function, how can a Boolean expression that represents this 
function be found? This problem will be solved by showing that any Boolean function can be 
represented by a Boolean sum of Boolean products of the variables and their complements. The 
solution of this problem shows that every Boolean function can be represented using the three 
Boolean operators . , +, and -. The second problem is: Is there a smaller set of operators that 
can be used to represent all Boolean functions? We will answer this problem by showing that 
all Boolean functions can be represented using only one operator. Both of these problems have 
practical importance in circuit design. 

Sum-of-Products Expansions 

We will use examples to illustrate one important way to find a Boolean expression that represents 
a Boolean function. 

EXAMPLE 1 Find Boolean expressions that represent the functions F (x, y, z) and G(x, y, z), which are given 
in Table 1 .  

Solution: An expression that has the value 1 when x = z = 1 and y = 0, and the value 0 

TABLE 1 

otherwise, is needed to represent F.  Such an expression can be formed by taking the Boolean 
product of x, y, and z. This product, xyz, has the value 1 if and only if x = Y = z = 1 ,  which 
holds if and only if x = z = 1 and y = O. 

x y z 

1 1 1 
1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 
0 0 1 
0 0 0 

F 
0 
0 
1 
0 
0 
0 
0 
0 

G 
0 
1 
0 
0 
0 
1 
0 
0 

To represent G,  we need an expression that equals 1 when x = y = 1 and z = 0, or when 
x = z = 0 and y = 1 .  We can form an expression with these values by taking the Boolean sum 
of two different Boolean products. The Boolean product xyz has the value 1 if and only if 
x = y = 1 and z = O. Similarly, the product xyz has the value 1 if and only if x = z = 0 and 
y = 1 .  The Boolean sum of these two products, xyz +xyz, represents G,  because it has the 
value 1 if and only if x = y = I and z = 0 or x = z = 0 and y = 1 .  .... 

Example 1 illustrates a procedure for constructing a Boolean expression representing a 
function with given values. Each combination of values of the variables for which the function 
has the value 1 leads to a Boolean product of the variables or their complements. 
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DEFINITION 1 A literal is a Boolean variable or its complement. A minterm of the Boolean variables 
Xl, X2, • • •  , Xn is a Boolean product YIY2 • • •  Yn, where Yi = Xi or Yi = Xi. Hence, a minterm 
is a product of n literals, with one literal for each variable. 

A minterm has the value 1 for one and only one combination of values of its variables. More 
precisely, the minterm YI Y2 . • •  Yn is I if and only if each Yi is I, and this occurs if and only if 

Xi = I whenYi = Xi and Xi = 0 whenYi = Xi' 

EXAMPLE 2 Find a minterm that equals I if Xl = X3 = 0 and X2 = X4 = X5 = I, and equals 0 otherwise. 

EXAMPLE 3 

Extra� 
Examples""" 

Solution: The minterm XIX2X3X4X5 has the correct set of values. 

By taking Boolean sums of distinct minterms we can build up a Boolean expression with a 
specified set of values. In particular, a Boolean sum of minterms has the value I when exactly 
one of the minterms in the sum has the value I. It has the value 0 for all other combinations of 
values of the variables. Consequently, given a Boolean function, a Boolean sum of minterms 
can be formed that has the value I when this Boolean function has the value I, and has the 
value 0 when the function has the value O. The minterms in this Boolean sum correspond 
to those combinations of values for which the function has the value I. The sum of minterms 
that represents the function is called the sum-of-products expansion or the disjunctive normal 
form of the Boolean function. (See Exercise 42 in Section 1 .2 for the development of disjunctive 
normal form in propositional calculus.) 

Find the sum-of-products expansion for the function F(x, y, z) = (x + y)z. 

Solution: We will find the sum-of-products expansion of F(x, y, z) in two ways. First, we will 
use Boolean identities to expand the product and simplify. We find that 

F(x, y, z) = (x + y)z 

= xz + yz Distributive law 

= X lZ + Iyz Identity law 

= x(y + Y)z + (x + X)yz Unit property 

= xyz + xyz + xyz + xyz Distributive law 

= xyz +xyz +xy z. Idempotent law 

Second, we can construct the sum-of-products expansion by determining the values of F for 
all possible values of the variables x, y, and z. These values are found in Table 2. The sum-of
products expansion of F is the Boolean sum of three minterms corresponding to the three rows 
of this table that give the value I for the function. This gives 

F(x, y, z) = xyz +xyz +xyz. 

It is also possible to find a Boolean expression that represents a Boolean function by taking 
a Boolean product of Boolean sums. The resulting expansion is called the conjunctive normal 
form or product-of-sums expansion of the function. These expansions can be found from 
sum-of-products expansions by taking duals. How to find such expansions directly is described 
in Exercise 1 0  at the end of this section. 
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TABLE 2 

x y z x+y z 
I I I I 0 
I I 0 I I 
I 0 I I 0 
I 0 0 I I 
0 I I I 0 
0 I 0 I I 
0 0 I 0 0 
0 0 0 0 I 

Functional Completeness 

(x+y)z 
0 
I 
0 
I 
0 
I 
0 
0 
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Every Boolean function can be expressed as a Boolean sum of mintenns. Each mintenn is the 
Boolean product of Boolean variables or their complements. This shows that every Boolean 
function can be represented using the Boolean operators . , +, and -. Because every Boolean 
function can be represented using these operators we say that the set { . , +, - } is functionally 
complete. Can we find a smaller set of functionally complete operators? We can do so if one 
of the three operators of this set can be expressed in tenns of the other two. This can be done 
using one of De Morgan's laws. We can eliminate all Boolean sums using the identity 

x + y = xy, 

which is obtained by taking complements of both sides in the second De Morgan law, given in 
Table 5 in Section 11.1, and then applying the double complementation law. This means that the 
set { . , - } is functionally complete. Similarly, we could eliminate all Boolean products using the 
identity 

xy = x + y, 

which is obtained by taking complements of both sides in the first De Morgan law, given in 
Table 5 in Section 11.1, and then applying the double complementation law. Consequently 
{+,  - } is functionally complete. Note that the set {+,  .} is not functionally complete, because 
it is impossible to express the Boolean function F(x) = x using these operators ( see Exer
cise 19). 

We have found sets containing two operators that are functionally complete. Can we find a 
smaller set of functionally complete operators, namely, a set containing just one operator? Such 
sets exist. Define two operators, the I or NAND operator, defined by 1 I 1 = 0 and 1 I 0 = 
o I 1 = 0 I 0 = 1; and the -I- or NOR operator, defined by 1 -I- 1 = 1 -I- 0 = 0 -I- 1 = 0 and 
o -I- 0 = 1. Both of the sets { I } and { -I- } are functionally complete. To see that { I } is function
ally complete, because { . , - }  is functionally complete, all that we have to do is show that both 
of the operators· and - can be expressed using just the I operator. This can be done as 

x = x  lx , 

xy = (x I y) I (x I y). 

The reader should verify these identities ( see Exercise 14). We leave the demonstration that 
{ -I- } is functionally complete for the reader ( see Exercises 15 and 16). 
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Exercises 

1. Find a Boolean product of the Boolean variables x, y, 
and z, or their complements, that has the value 1 if and 
only if 
a) x = y = 0, Z = 1 .  
c) x = 0 ,  y = z = 1 .  

b) x=O,y= l,z=O. 
d) x =y =z = O. 

2. Find the sum-of-products expansions of these Boolean 
functions. 
a) F(x,y)=x + y  
c) F(x,y) = 1 

b) F(x, y) = xy 
d)F(x,y)=y 

3. Find the sum-of-products expansions of these Boolean 
functions. 

a) F(x,y,z)=x + y+ z  
b) F(x, y, z) = (x + z)y 
c) F(x,y,z) =X 
d) F(x,y,z)=xy 

4. Find the sum-of-products expansions of the Boolean func
tion F(x, y, z) that equals 1 if and only if 
a) x = O. b) xy = O. 
c) x + y = O. d) xyz = O. 

5. Find the sum-of-products expansion of the Boolean func
tion F (w , x, y, z) that has the value 1 if and only if an odd 
number of w, x, y, and z have the value 1 .  

6. Find the sum-of-products expansion of the Boolean func
tion F(XI' X2, X3, X4, X5) that has the value 1 if and only 
if three or more of the variables Xl, x2, x3, X4, and X5 have 
the value 1 .  

Another way to find a Boolean expression that represents a 
Boolean function is to form a Boolean product of Boolean 
sums of literals. Exercises 7-1 1  are concerned with represen
tations of this kind. 

7. Find a Boolean sum containing either x or X, either y or 
y, and either z or z that has the value 0 if and only if 
a) x = y = 1 ,  z = O. b) x = y = z = O. 
c) x = z = 0, y = 1 .  

8. Find a Boolean product of Boolean sums of literals that 
has the value 0 if and only if either x = y = 1 and z = 0,  
x = z = 0 andy = 1 ,  01: x = y = z = O.  [Hint: Take the 

11.3 Logic Gates 

Introduction 

1 1- 1 2  

Boolean product of  the Boolean sums found in  parts (a), 
(b), and (c) in Exercise 7.] 

9. Show that the Boolean sum Yl + Y2 + ... + Yn, where 
Yi = Xi or Yi = Xi, has the value 0 for exactly one combi
nation of the values of the variables, namely, when Xi = 0 
if Yi = Xi and Xi = 1 if Yi = Xi . This Boolean sum is 
called a maxterm. 

10. Show that a Boolean function can be represented as 
a Boolean product of maxterms. This representation is 
called the product-of-sums expansion or conjunctive 
normal form of the function. [Hint: Include one max
term in this product for each combination of the variables 
where the function has the value 0 .] 

11. Find the product-of-sums expansion of each of the 
Boolean functions in Exercise 3 .  

12. Express each o f  these Boolean functions using the oper
ators . and - . 
a) x + y + z  
c) (x +)i) 

b) x + y(X + z) 
d) x(x + y +Z) 

13. Express each of the Boolean functions in Exercise 12  
using the operators + and - .  

14. Show that 

a) X = x I x. b) xy = (x I y) I (x I y). 
c) x + y = (x I x) I (y I y). 

15. Show that 
a) x=x -!-x. 
b) xy = (x -!- x)..!- (y -!- y). 
c) x + y = (x -!- y)..!- (x -!- y). 

16. Show that { -!- } is functionally complete using Exercise 1 5 . 
17. Express each of the Boolean functions in Exercise 3 using . 

the operator I . 
18. Express each of the Boolean functions in Exercise 3 using 

the operator -!- .  
19. Show that the set of  operators {+, . } i s  not functionally 

complete. 
20. Are these sets of operators functionally complete? 

.){ +, EB} b) C EB} c) {" EB} 

uDaiC Boolean algebra is used to model the circuitry of electronic devices. Each input and each output 
of such a device can be thought of as a member of the set to, I }. A computer, or other electronic 
device, is made up of a number of circuits. Each circuit can be designed using the rules of 
Boolean algebra that were studied in Sections 1 1 . 1  and 1 1 .2 .  The basic elements of circuits 
are called gates. Each type of gate implements a Boolean operation. In this section we define 
several types of gates. Using these gates, we will apply the rules of Boolean algebra to design 
circuits that perform a variety of tasks. The circuits that we will study in this chapter give output 
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:--.:0 x+y� 

(a) Inverter (b) OR gate 

FIGURE 1 Basic Types of Gates. 

FIGURE 2 Gates with n Inputs. 

11.3 Logic Gates 761 

(c) AND gate 

that depends only on the input, and not on the current state of the circuit. In other words, these 
circuits have no memory capabilities. Such circuits are called combinational circuits or gating 
networks. 

We will construct combinational circuits using three types of elements. The first is an 
inverter, which accepts the value of one Boolean variable as input and produces the complement 
of this value as its output. The symbol used for an inverter is shown in Figure l( a). The input to 
the inverter is shown on the left side entering the element, and the output is shown on the right 
side leaving the element. 

The next type of element we will use is the OR gate. The inputs to this gate are the values 
of two or more Boolean variables. The output is the Boolean sum of their values. The symbol 
used for an OR gate is shown in Figure I ( b). The inputs to the OR gate are shown on the left 
side entering the element, and the output is shown on the right side leaving the element. 

The third type of element we will use is the AND gate. The inputs to this gate are the values 
of two or more Boolean variables. The output is the Boolean product of their values. The symbol 
used for an AND gate is shown in Figure 1 ( c). The inputs to the AND gate are shown on the left 
side entering the element, and the output is shown on the right side leaving the element. 

We will permit multiple inputs to AND and OR gates. The inputs to each of these gates are 
shown on the left side entering the element, and the output is shown on the right side. Examples 
of AND and OR gates with n inputs are shown in Figure 2 .  

Combinations of Gates 

Combinational circuits can be constructed using a combination of inverters, OR gates, and AND 
gates. When combinations of circuits are formed, some gates may share inputs. This is shown in 
one of two ways in depictions of circuits. One method is to use branchings that indicate all the 
gates that use a given input. The other method is to indicate this input separately for each gate. 
Figure 3 illustrates the two ways of showing gates with the same input values. Note also that 
output from a gate may be used as input by one or more other elements, as shown in Figure 3 .  
Both drawings in Figure 3 depict the circuit that produces the output xy + xy. 

EXAMPLE 1 Construct circuits that produce the following outputs: ( a) (x + y)x, ( b) x (y + Z), and 
( c) (x + y + z)(XyZ). 

Solution: Circuits that produce these outputs are shown in Figure 4. 
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x-------.! 

Y --------.t 

xy +xy 

x ---.! 

y-------.! 

x ----.----� 
y -....+-----� 

xy +xy 

FIGURE 3 Two Ways to Draw the Same Circuit. 

(a) 

(b) 

y --.... L-__ 

x---� 

x ---.r-...... 
y- --.t 
z --�-./  

(c) x -----pj 

y ----.! 

z -----.t 

(x + y )x 

x+y + z  

(x  + y + z )xyz 

FIGURE 4 Circuits that Produce the Outputs Specified in Example 1. 
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EXAMPLE 2 

EXAMPLE 3 

TABLE 1 

x y F(x,y) 

I I I 
I 0 0 
0 I 0 
0 0 I 

y ---I�� 
x--� ,.--. 

xy +xz+ yz 

FIGURE 5 A Circuit for Majority Voting. 

Examples of Circuits 

1 1 .3  Logic Gates 763 

We will give some examples of circuits that perform some useful functions. 

A committee of three individuals decides issues for an organization. Each individual votes either 
yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes. 
Design a circuit that determines whether a proposal passes. 

Solution: Let x = I if the first individual votes yes, and x = 0 if this individual votes no; let 
y = 1 if the second individual votes yes, and y = 0 if this individual votes no; let z = 1 if 
the third individual votes yes, and z = 0 if this individual votes no. Then a circuit must be 
designed that produces the output 1 from the inputs x, y, and z when two or more of x, y, 
and z are 1 .  One representation of the Boolean function that has these output values is xy + 
xz + yz ( see Exercise 1 2  in Section 1 1 . 1 ) .  The circuit that implements this function is shown in 
Figure 5. ... 

Sometimes light fixtures are controlled by more than one switch. Circuits need to be designed 
so that flipping any one of the switches for the fixture turns the light on when it is off and turns 
the light off when it is on. Design circuits that accomplish this when there are two switches and 
when there are three switches. 

Solution: We will begin by designing the circuit that controls the light fixture when two different 
switches are used. Let x = 1 when the first switch is closed and x = 0 when it is open, and let 
y = 1 when the second switch is closed and y = 0 when it is open. Let F (x, y) = 1 when the 
light is on and F(x, y) = 0 when it is off. We can arbitrarily decide that the light will be on 
when both switches are closed, so that F ( 1 ,  I) = 1 .  This determines all the other values of F. 
When one of the two switches is opened, the light goes off, so F( I, 0) = F(O, 1 ) = O. When the 
other switch is also opened, the light goes on, so F(O, 0) = 1 .  Table 1 displays these values. We 
see that F(x, y) = xy + xy. This function is implemented by the circuit shown in Figure 6. 

x---+r-""" 

.xy + 1'y 

FIGURE 6 A Circuit for a Light Controlled by Two Switches. 
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TABLE 2 

x y z F(x,y,z) 

I I I I 
I I 0 0 
I 0 I 0 
I 0 0 I 
0 I I 0 
0 I 0 I 
0 0 I I 
0 0 0 0 

uDaLe 
TABLE 3 
Input and 
Output for the 
Half Adder. 

Input Output 

x y s c 

I I 0 I 
I 0 I 0 
0 I I 0 
0 0 0 0 

x -----�-....., xyz 
y �----� 
z-----�-/ 
x ----------, 

x 

y 

z --------' 

xyz + xyz + xyz + xyz . 

FIGURE 7 A Circuit for a Fixture Controlled by Three Switches. 

We will now design a circuit for three switches. Let x, y, and z be the Boolean variables that 
indicate whether each of the three switches is closed. We let x = 1 when the first switch is closed, 
andx = 0 when it is open; y = 1 when the second switch is closed, and y = 0 when it is open; and 
z = 1 when the third switch is closed, andz = O when it is open. LetF(x , y, z) = 1 when the light 
is on and F (x , y ,  z) = 0 when the light is off. We can arbitrarily specify that the light be on when 
all three switches are closed, so that F ( 1, 1, 1) = 1. This determines all other values of F. 
When one switch is opened, the light goes off, so F( I ,  1, 0) = F(I ,  0, 1) = F(O, 1, 1) = O. 
When a second switch is opened, the light goes on, soF( I ,  0, 0) = F(O, 1, 0) = F(O, 0, 1) = 1. 
Finally, when the third switch is opened, the light goes off again, so F(O, 0, 0) = 0. Table 2 
shows the values of this function. 

The function F can be represented by its sum-of-products expansion as F (x , y, z) = 
xyz + xy z + xyz + x yz. The circuit shown in Figure 7 implements this function. ... 

Adders 

We will illustrate how logic circuits can be used to carry out addition of two positive integers 
from their binary expansions. We will build up the circuitry to do this addition from some 
component circuits. First, we will build a circuit that can be used to find x + y, where x and y 
are two bits. The input to our circuit will be x and y, because these each have the value 0 or the 
value 1. The output will consist of two bits, namely, s and c, where s is the sum bit and c is the 
carry bit. This circuit is called a multiple output circuit because it has more than one output. 
The circuit that we are designing is called the half adder, because it adds two bits, without 
considering a carry from a previous addition. We show the input and output for the half adder 
in Table 3 .  From Table 3 we see that c = xy and that s = xy + xy = (x + y)(xy). Hence, the 
circuit shown in Figure 8 computes the sum bit s..and the carry bit c from the bits x and y.  

We use the full adder to compute the sum bit and the carry bit when two bits and a carry 
are added. The inputs to the full adder are the bits x and y and the carry Cj . The outputs are the 
sum bit s and the new carry Ci+ 1. The inputs and outputs for the full adder are shown in Table 4. 



11-17 

X+Y 

Carry =xy 

Ci 

-------.J 
(X+Y )(Xy ) 

x 

Y 
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S = XY Ci + XYCi + XY Ci + XYCi 

Ci+1 =XY Ci+XY Ci+ 

XY 

FIGURE 8 The Half Adder. FIGURE 9 A Full Adder. 

TABLE 4 
Input and 
Output for 
the Full Adder. 

Input Output 

x y CI S CI+1 

1 1 1 1 1 
1 1 0 0 1 
1 0 1 0 1 
1 0 0 1 0 
0 1 1 0 1 
0 1 0 1 0 
0 0 1 1 0 
0 0 0 0 0 

Exercises 

Xo 

1--------. 

So 
Yo 

Full xI adder 
Y I 

ci 

x2 

Y 2 

FIGURE 10 Adding Two Three-Bit 
Integers with Full and Half Adders. 

The two outputs of the full adder, the sum bit s and the carryCi+J. are given by the sum
of-products expansions xyCj + xy Cj + xyCj + xyCj and xyCj + xyCj + xyCj + xyCj , respec
tively. However, instead of designing the full adder from scratch, we will use half adders to 
produce the desired output. A full adder circuit using half adders is shown in Figure 9. 

Finally, in Figure l O we show how full and half adders can be used to add the two three-bit 
integers (X2XIXoh and (Y2YIYoh to produce the sum (S3S2SISoh. Note that S3, the highest-order 
bit in the sum, is given by the carry C2. 

In Exercises 1-5 find the output of the given circuit. 3. X ---'�---"" 
Y ----. .. __ �___" 1. x 

Y ---I� 
z __ --.! 
X ___ ------' 

Y---.J 4. x 

y----� 
z--_--' 

2. X --� 
x 

Y----� 

Y --� z 
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5. x ----____ ..-----...... 
y------I� 
Z ----____ L-____ 

x 
y --"'::""---+1 
z -----.L-____ 
x 

y 

z 

6. Construct circuits from inverters, AND gates, and OR 
gates to produce these outputs. 
a) x + y  b) �x 
c) xyz + xyz d) (X + z)(y + Z) 

7. Design a circuit that implements majority voting for five 
individuals. 

8. Design a circuit for a light fixture controlled by four 
switches, where flipping one of the switches turns the 
light on when it is off and turns it off when it is on. 

9. Show how the sum of two five-bit integers can be found 
using full and half adders. 

10. Construct a circuit for a half subtractor using AND gates, 
OR gates, and inverters. A half subtractor has two bits as 
input and produces as output a difference bit and a borrow. 

11. Construct a circuit for a full subtractor using AND gates, 
OR gates, and inverters. A full subtractor has two bits 
and a borrow as input, and produces as output a difference 
bit and a borrow. 

12. Use the circuits from Exercises 1 0  and 1 1  to find the dif
ference of two four-bit integers, where the first integer is 
greater than the second integer. 

*13. Construct a circuit that compares the two-bit integers 
(xlxoh and (YlYoh, returning an output of 1 when the 
first of these numbers is larger and an output of 0 other
wise. 

*14. Construct a circuit that computes the product of the two-

11.4 Minimization of Circuits 

Introduction 

1 1 - 1 8  

bit integers (x lxoh and (YlYO)2 . The circuit should have 
four output bits for the bits in the product. 

Two gates that are often used in circuits are NAND and NOR 
gates. When NAND or NOR gates are used to represent cir
cuits, no other types of gates are needed. The notation for 
these gates is as follows: 

x�x� 
y� y� 

*15. Use NAND gates to construct circuits with these outputs. 

a) x b) x + Y c) xy d) x €By 
*16. Use NOR gates to construct circuits for the outputs given 

in Exercise 1 5 .  
*17. Construct a half adder using NAND gates. 
*18. Construct a half adder using NOR gates. 

A multiplexer is a switching circuit that produces as output 
one of a set of input bits based on the value of control bits. 
19. Construct a multiplexer using AND gates, OR gates, and 

inverters that has as input the four bits xo, Xl , X2 , and X3 
and the two control bits Co and C l. Set up the circuit so 
that Xi is the output, where i is the value of the two-bit 
integer (C l CO)2. 

The depth of a combinatorial circuit can be defined by spec
ifying that the depth of the initial input is 0 and if a gate has 
n different inputs at depths dl• d2 ••••• dn , respectively, then 
its outputs have depth equal to max(dl• d2 •...• dn ) + 1; this 
value is also defined to be the depth of the gate. The depth of 
a combinatorial circuit is the maximum depth of the gates in 
the circuit. 
20. Find the depth of 

a) the circuit constructed in Example 2 for majority 
voting among three people. 

b) the circuit constructed in Example 3 for a light con
trolled by two switches. 

c) the half adder shown in Figure 8. 
d) the full adder shown in Figure 9. 

The efficiency of a combinational circuit depends on the number and arrangement of its gates. 
The process of designing a combinational circuit begins with the table specifying the output 
for each combination of input values. We can always use the sum-of-products expansion of 
a circuit to find a set of logic gates that will implement this circuit. However, the sum-of
products expansion may contain many more terms than are necessary. Terms in a sum-of
products expansion that differ in just one variable, so that in one term this variable occurs 
and in the other term the complement of this variable occurs, can be combined. For instance, 
consider the circuit that has output I if and only if x = y = z = I or x = z = I and y = o. The 
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x --4-r---..... 
y ----.! 
z ---I�--'" 

x ___ ---, 

y 

z --------' 

xyz 

: ------.!:O xz � 

xyz +xyz 

FIGURE 1 Two Circuits with the Same Output. 
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sum-of-products expansion of this circuit is xyz + xyz.  The two products in this expansion 
differ in exactly one variable, namely, y. They can be combined as 

xyz + xyz = (y + Y)(xz) 
= 1 . (xz) 
= xz .  

Hence, xz is a Boolean expression with fewer operators that represents the circuit. We show 
two different implementations of this circuit in Figure 1 .  The second circuit uses only one gate, 
whereas the first circuit uses three gates and an inverter. 

This example shows that combining terms in the sum-of-products expansion of a circuit 
leads to a simpler expression for the circuit. We will describe two procedures that simplify 
sum-of-products expansions. 

The goal of both procedures is to produce Boolean sums of Boolean products that represent 
a Boolean function with the fewest products of literals such that these products contain the 
fewest literals possible among all sums of products that represent a Boolean function. Finding 
such a sum of products is called minimization ofthe Boolean function. Minimizing a Boolean 
function makes it possible to construct a circuit for this function that uses the fewest gates and 
fewest inputs to the AND gates and OR gates in the circuit, among all circuits for the Boolean 
expression we are minimizing. 

Until the early 1 960s logic gates were individual components. To reduce costs it was impor
tant to use the fewest gates to produce a desired output. However, in the mid- 1 960s, integrated 
circuit technology was developed that made it possible to combine gates on a single chip. Even 
though it is now possible to build increasingly complex integrated circuits on chips at low cost, 
minimization of Boolean functions remains important. 

Reducing the number of gates on a chip can lead to a more reliable circuit and can reduce 
the cost to produce the chip. Also, minimization makes it possible to fit more circuits on the 
same chip. Furthermore, minimization reduces the number of inputs to gates in a circuit. This 
reduces the time used by a circuit to compute its output. Moreover, the number of inputs to a 
gate may be limited because of the particular technology used to build logic gates. 

The first procedure we will introduce, known as Karnaugh maps (or K-maps), was designed 
in the 1 950s to help minimize circuits by hand. K-maps are useful in minimizing circuits with 
up to six variables, although they become rather complex even for five or six variables. The 
second procedure we will describe, the Quine-McCluskey method, was invented in the 1 960s. 
It automates the process of minimizing combinatorial circuits and can be implemented as a 
computer program. 
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liDksi:::i 

y y 

:� xL:I:J 
FIGURE 2 

K-maps in Two 
Variables. 

EXAMPLE l 

Unfortunately, minimizing Boolean functions with many variables is a computationally 
intensive problem. It has been shown that this problem is an NP-complete problem (see Section 
3 .3  and [Ka93]), so the existence of a polynomial-time algorithm for minimizing Boolean circuits 
is unlikely. The Quine-McCluskey method has exponential complexity. In practice, it can be 
used only when the number of literals does not exceed ten. Since the 1 970s a number of newer 
algorithms have been developed for minimizing combinatorial circuits (see [Ha93] and [Ka93]). 
However, with the best algorithms yet devised, only circuits with no more than 25 variables can 
be minimized. Also, heuristic (or rule-of-thumb) methods can be used to substantially simplify, 
but not necessarily minimize, Boolean expressions with a larger number of literals. 

Kamaugh Maps 

To reduce the number of terms in a Boolean expression representing a circuit, it is necessary 
to find terms to combine. There is a graphical method, called a Karnaugh map or K-map, 
for finding terms to combine for Boolean functions involving a relatively small number of 
variables. The method we will describe was introduced by Maurice Karnaugh in 1 953 .  His 
method is based on earlier work by E. W. Veitch. (This method is usually applied only when 
the function involves six or fewer variables.) K-maps give us a visual method for simplifying 
sum-of-products expansions; they are not suited for mechanizing this process. We will first 
illustrate how K-maps are used to simplify expansions of Boolean functions in two variables. 
We will continue by showing how K-maps can be used to minimize Boolean functions in three 
variables and then in four variables. Then we will describe the concepts that can be used to 
extend K-maps to minimize Boolean functions in more than four variables. 

There are four possible minterms in the sum-of-products expansion of a Boolean function 
in the two variables x and y. A K-map for a Boolean function in these two variables consists of 
four cells, where a 1 is placed in the cell representing a minterm if this minterm is present in 
the expansion. Cells are said to be adjacent if the minterms that they represent differ in exactly 
one literal. For instance, the cell representing xy is adjacent to the cells representing xy and xy. 
The four cells and the terms that they represent are shown in Figure 2.  

Find the K-maps for (a) xy + xy, (b) xy + xy, and (c) xy + xy + xy. 

Solution: We include a 1 in a cell when the minterm represented by this cell is present in the 
sum-of-products expansion. The three K-maps are shown in Figure 3 .  <II1II 

We can identify minterms that can be combined from the K-map. Whenever there are I s  
in two adjacent cells in the K-map, the minterms represented by these cells can be combined 
int.o a product involving just o�e �f.��e r.ari�ble�: f�EJR�aR.Et: :X¥ �nd �y �e represente� by 
adJa�ent cells and can be com��?�d �p.to 'y� ��c���e fr t t ;f  � �:f. t X)y = y. Moreover, If I s  
are m all four cells, the fo�r f11.fnte�� can R� ppmRm�4 Hl.J:g Rn-� term, namely, the Boolean 
expression 1 that involves none of the variables. We circle' SlocKs of cells in the K-map that 
represent minterms that can be combined and then find the corresponding sum of products. The 

MAURICE KARNAUGH (BORN 1 924) Maurice Kamaugh, born in New York City, received his B.S. from 
the City College of New York and his M.S.  and Ph.D. from Yale University. He was a member of the technical 
staff at Bell Laboratories from 1 952 until 1 966 and Manager of Research and Development at the Federal 
Systems Division of AT&T from 1 966 to 1 970. In 1 970 he joined IBM as a member of the research staff. 
Kamaugh has made fundamental contributions to the application of digital techniques in both computing and 
telecommunications. His current interests include knowledge-based systems in computers and heuristic search 
methods. 



1 1-21  

y y y y y y 

:EE :EE :EE 
(a) (b) (c) 

1 1 .4 Minimization of Circuits 769 

FIGURE 3 K-maps for the Sum-of-Products Expansions in Example 1 .  

y y y y y 
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FIGURE 4 Simplifying the Sum-of-Products Expansion from Example 2. 

goal is to identify the largest possible blocks, and to cover all the I s with the fewest blocks using 
the largest blocks first and always using the largest possible blocks. 

EXAMPLE 2 Simplify the sum-of-products expansions given in Example 1 .  

Solution: The grouping of minterms is shown in Figure 4 using the K-maps for these expansions. 
Minimal expansions for these sums-of-products are (a) y, (b) xy + xy, and (c) x + y. .... 

A K-map in three variables is a rectangle divided into eight cells. The cells represent the 
eight possible minterms in three variables. Two cells are said to be adjacent if the minterms that 
they represent differ in exactly one literal. One of the ways to form a K-map in three variables is 
shown in Figure 5(a). This K-map can be thought of as lying on a cylinder, as shown in Figure 
5(b). On the cylinder, two cells have a common border if and only if they are adjacent. 

To simplify a sum-of-products expansion in three variables, we use the K-map to identify 
blocks of minterms that can be combined. Blocks of two adjacent cells represent pairs of 
minterms that can be combined into a product of two literals; 2 x 2 and 4 x 1 blocks of cells 
represent minterms that can be combined into a single literal; and the block of all eight cells 

yz yz yz yz 

x xyz xyz xji£ xjiz 

iyz iyz xy£ xyz 

(a) 

FIGURE 5 K-maps in Three Variables. 

xyz 

iyz 

(b) 
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yz yz yz yz yz yz 

(a) (b) 

yz yz yz YZ 

(d) 

yz yZ yz 

yz yz yz yz 

I = xy: + xy;: + xv;: + xv: + 
Xyz + .�\';: + is';: + .r.v: 

(e) 

yz yz yz 

(c) 

FIG U R E  6 Blocks in K-maps in Three Variables. 

represents a product of no literals, namely, the function 1 .  In Figure 6, 1 x 2, 2 x I ,  2 x 2, 4 x l , 
and 4 x 2 blocks and the products they represent are shown. 

The product of literals corresponding to a block of alI I s in the K -map is called an implicant 
of the function being minimized. It is called a prime implicant if this block of I s is not contained 
in a larger block of 1 s representing the product of fewer literals than in this product. 

The goal is to identify the largest possible blocks in the map and cover all the 1 s in the map 
with the least number of blocks, using the largest blocks first. The largest possible blocks are 
always chosen, but we must always choose a block if it is the only block of 1 s covering a 1 in 
the K-map. Such a block represents an essential prime implicant. By covering all the 1 s in the 
map with blocks corresponding to prime implicants we can express the sum of products as a 
sum of prime implicants. Note that there may be more than one way to cover all the I s  using 
the least number of blocks . 

Example 3 illustrates how K-maps in three variables are used. 

EXAMPLE 3 Use K-maps to minimize these sum-of-products expansions. 

(a) xyz + xy z + xyz + xyz  
(b) xyz + xyz + xyz + xyz + xyz  
(c) xyz + xyz + xyz + xy z + xyz + xyz + xyz 
(d) xyz + xy z + xyz + xyz  

Solution: The K-maps for these sum-of-products expansions are shown in Figure 7.  The grouping 
of blocks shows that minimal expansions into Boolean sums of Boolean products are (a) xz + 
y z  + xyz, (b) y + xz, (c) x + y + z, and (d) xz + xy. In part (d) note that the prime implicants 
xz and xy are essential prime implicants, but the prime implicant yz is a prime implicant that 
is not essential because the cells it covers are covered by the other two prime implicants. <I 

A K-map in four variables is a square that is divided into 1 6  cells. The cells represent the 
1 6  possible minterms in four variables. One of the ways to form a K-map in four variables is 
shown in Figure 8. 
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FIGURE 7 Using K-maps in Three Variables. 
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1 1 \  
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Two cells are adjacent if and only if the minterms they represent differ in one literal. 
Consequently, each cell is adjacent to four other cells. The K -map of a sum-of-products expansion 
in four variables can be thought of as lying on a torus, so that adjacent cells have a common 
boundary (see Exercise 28). The simplification of a sum-of-products expansion in four variables 
is carried out by identifying those blocks of2, 4, 8, or 1 6  cells that represent minterms that can be 
combined. Each cell representing a minterm must either be used to form a product using fewer 
literals, or be included in the expansion. In Figure 9 some examples of blocks that represent 
products of three literals, products of two literals, and a single literal are illustrated. 

As is the case in K-maps in two and three variables, the goal is to identify the largest 
blocks of 1 s in the map that correspond to the prime implicants and to cover all the 1 s using the 
fewest blocks needed, using the largest blocks first. The largest possible blocks are always used. 
Example 4 illustrates how K-maps in four variables are used. 

EXAMPLE 4 Use K-maps to simplify these sum-of-products expansions. 

wx 

w.t 

w.\' 

»'X 

(a) wxyz + wxyz + wxy z + wxyz + wxyz + wxy z  + wxyz + 
w xyz + w xyz 

(b) wxy z + wxyz + wxyz + wxy z  + wxyz + w xyz + w xyz  
(c) wxyz + wxyz + wxyz + wxyz + wxy z  + wxyz + wxyz + wxyz + 

wxyz + w xyz + w x yz 

yz yz YZ yz 

wxy� wxy;: wxyz wx.Vz 

WXF wxy;: wxy;: wxy;: 

ii'i,,;: wi)': ii'xS'Z wxyz 

wxy;: ii'xy;: wx.vz wx.vz 

FIGURE 8 K-maps in Four Variables. 
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(a) 

xz = wxyz + wxyz + 
wxyz + wxyz 

(c) 

wx 

wi 

wi = wiyz + 11'iy;: + 
wi5;z + w.i}z 

(b) 

z = wxyz + wxyz + wiy.:' + 
wi.v.:' + wiyz + 11'.1:.1'.:' + wxy.:' + ivx.i"':: 

(d )  

FIGURE 9 Blocks in K-maps in Four Variables. 
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Solution: The K-maps for these expansions are shown in Figure 1 0. Using the blocks shown 
leads to the sum of products (a) wyz + wxz + wxy + w xy + wxyz, (b) yz + wxy + XZ, and 
(c) Z + w x + w X y. The reader should determine whether there are other choices of blocks in 
each part that lead to different sums of products representing these Boolean functions. .... 

K-maps can realistically be used to minimize Boolean functions with five or six variables, 
but beyond that, they are rarely used because they become extremely complicated. However, the 
concepts used in K-maps play an important role in newer algorithms. Furthermore, mastering 
these concepts helps you understand these newer algorithms and the computer-aided design 
(CAD) programs that implement them. As we develop these concepts, we will be able to illustrate 

yz vz yz yz yz vz 

wx 1 ( 1 1) wx 1 

wi 0 ( 1 1) wi 1 I) t' 

1 1) wi 1 1/ 

wx 0) wx 0 
(a) (b) 

FIGURE 1 0  Using K-maps in Four Variables. 

vz v -

wx 1 1 

wi . ( 1 I) 1 

1 1 

wx ( 1 1 1 1) 
(c) 
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them by referring back to our discussion of minimization of Boolean functions in three and in 
four variables. 

The K-maps we used to minimize Boolean functions in two, three, and four variables are 
built using 2 x 2, 2 x 4, and 4 . x 4 rectangles, respectively. Furthermore, corresponding cells in 
the top row and bottom row and in the leftmost column and rightmost column in each of these 
cases are considered adjacent because they represent minterms differing in only one literal. We 
can build K-maps for minimizing Boolean functions in more than four variables in a similar 
way. We use a rectangle containing 2 ln/2J rows and 2 rn/21 columns. (These K-maps contain 2n 
cells because rnj21 + Lnj2J = n.) The rows and columns need to be positioned so that the 
cells representing minterms differing in just one literal are adjacent or are considered adjacent 
by specifying additional adjacencies of rows and columns. To help (but not entirely) achieve 
this, the rows and columns of a K-map are arranged using Gray codes (see Section 9.5), where 
we associate bit strings and products by specifying that a I corresponds to the appearance of 
a variable and a 0 with the appearance of its complement. For example, in a 1 0-dimensional 
K-map, the Gray code 0 1 1 1 0 used to label a row corresponds to the product XIX2X3X4XS . 

EXAMPLE 5 The K-maps we used to minimize Boolean functions with four variables have two rows and two 
columns. Both the rows and the columns are arranged using the Gray code 1 1 , 1 0,00,0 1 .  The 
rows represent products WX, WX, w X, and WX, respectively, and the columns correspond to the 
products yz, yz, yz, and yz, respectively. Using Gray codes and considering cells adjacent in 
the first and last rows and in the first and last columns, we ensured that minterms that differ in 
only one variable are always adjacent. .... 

EXAMPLE 6 To minimize Boolean functions in five variables we use K-maps with 2
3 = 8 columns and 

2
2 = 4 rows. We label the four rows using the Gray code 1 1 , 1 0,00,0 1 ,  corresponding to 

XIX2, X IX2, XIX2, and XIX2, respectively. We label the eight columns using the Gray code 
1 1 1 , 1 1 0, 1 00, 1 0 1 ,00 1 ,000,0 1 0,0 1 1 corresponding to the terms X3X4XS, X3X4XS, X3X4XS, X3X4XS, 
X3X4XS, X3X4XS, X3X4XS, and X3X4XS, respectively. Using Gray codes to label columns and rows 
ensures that the minterms represented by adjacent cells differ in only one variable. However, to 
make sure all cells representing products that differ in only one variable are considered adjacent, 
we consider cells in the top and bottom rows to be adjacent, as well as cells in the first and eighth 
columns, the first and fourth columns, the second and seventh columns, the third and sixth 
columns, and the fifth and eighth columns (as the reader should verify). .... 

To use a K-map to minimize a Boolean function in n variables, we first draw a K-map of 
the appropriate size. We place I s  in all cells corresponding to minterms in the sum-of-products 
expansion of this function. We then identify all prime implicants of the Boolean function. To do 
this we look for the blocks consisting of 2k clustered cells all containing a i , where 1 ::: k ::: n .  
These blocks correspond to the product of  n - k literals. (Exercise 33 asks the reader to verify 
this.) Furthermore, a block of 2k cells each containing a 1 not contained in a block of 2k+ 1 

cells each containing a 1 represents a prime implicant. The reason that this implicant is a prime 
implicant is that no product obtained by deleting a literal is also represented by a block of cells 
all containing 1 s. 

EXAMPLE 7 A block of eight cells representing a product of two literals in a K-map for minimizing Boolean 
functions in five variables all containing 1 s is a prime implicant if it is not contained in a larger 
block of 1 6  cells all containing 1 s representing a single literal. .... 

Once all prime implicants have been identified, the goal is to find the smallest possible subset 
of these prime implicants with the property that the cells representing these prime implicants 
cover all the cells containing a 1 in the K-map. We begin by selecting the essential prime 
implicants because each of these is represented by a block that covers a cell containing a 1 that 
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unkS� 

EXAMPLE S 

is not covered by any other prime implicant. We add additional prime implicants to ensure that 
all I s  in the K-map are covered. When the number of variables is large, this last step can become 
exceedingly complicated. 

Don't Care Conditions 

In some circuits we care only about the output for some combinations of input values, be
cause other combinations of input values are not possible or never occur. This gives us freedom 
in producing a simple circuit with the desired output because the output values for all those 
combinations that never occur can be arbitrarily chosen. The values of the function for these 
combinations are called don 't care conditions. A d is used in a K-map to mark those com
binations of values of the variables for which the function can be arbitrarily assigned. In the 
minimization process we can assign I s  as values to those combinations of the input values that 
lead to the largest blocks in the K-map. This is illustrated in Example 8.  

One way to code decimal expansions using bits is to use the four bits of the binary expansion 
of each digit in the decimal expansion. For instance, 873 is encoded as 1 0000 1 1 100 1 1 .  This 
encoding of a decimal expansion is called a binary coded decimal expansion. Because there 
are 1 6  blocks of four bits and only 1 0  decimal digits, there are six combinations of four bits that 
are not used to encode digits. Suppose that a circuit is to be built that produces an output of 1 if 
the decimal digit is 5 or greater and an output of 0 if the decimal digit is less than 5. How can 
this circuit be simply built using OR gates, AND gates, and inverters? 

Solution: Let F (w , x ,  y, z) denote the output of the circuit, where wxyz is a binary expansion 
of a decimal digit. The values of F are shown in Table 1 .  The K-map for F, with ds in the 
don 't care positions, is shown in Figure l 1 (a). We can either include or exclude squares with 
ds from blocks. This gives us many possible choices for the blocks. For example, excluding 
all squares with ds and forming blocks, as shown in Figure 1 1 (b), produces the expression 
wxy + wxy + wxz. Including some of the ds and excluding others and forming blocks, as 
shown in Figure I I (c), produces the expression wx + wxy + xyz.  Finally, including all the ds 
and using the blocks shown in Figure I I (d) produces the simplest sum-of-products expansion 
possible, namely, F(x ,  y ,  z) = w + xy + xz. <III! 

TABLE 1 

Digit w x y z F 

0 0 0 0 0 0 

I 0 0 0 I 0 

2 0 0 I 0 0 

3 0 0 1 I 0 

4 0 1 0 0 0 

5 0 I 0 I 1 
6 0 I 1 0 1 

7 0 1 1 1 1 

8 1 0 0 0 I 
9 1 0 0 1 1 
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FIGURE 1 1  The K-map for F Showing Its Don 't Care Positions. 

The Quine-McCluskey Method 

We have seen that K-maps can be used to produce minimal expansions of Boolean functions as 
Boolean sums of Boolean products. However, K-maps are awkward to use when there are more 
than four variables. Furthermore, the use ofK -maps relies on visual inspection to identify terms 
to group. For these reasons there is a need for a procedure for simplifying sum-of-products 
expansions that can be mechanized. The Quine-McCluskey method is such a procedure. It can 
be used for Boolean functions in any number of variables. It was developed in the 1 950s by 
W. V. Quine and E. J. McCluskey, Jr. Basically, the Quine-McCluskey method consists of two 
parts. The first part finds those terms that are candidates for inclusion in a minimal expansion 
as a Boolean sum of Boolean products.  The second part determines which of these terms to 
actually use. We will use Example 9 to illustrate how, by successively combining implicants 
into implicants with one fewer literal, this procedure works. 

EDWARD 1. McCLUSKEY (BORN 1929) Edward McCluskey attended Bowdoin College and M.I.T. ,  where 
he received his doctorate in electrical engineering in 1 956. He joined Bell Telephone Laboratories in 1 955, 
remaining there until 1 959. McCluskey was professor of electrical engineering at Princeton University from 
1 959 until 1 966, also serving as director of the Computer Center at Princeton from 1 96 1  to 1 966. In 1 967 he 
took a position as professor of computer science and electrical engineering at Stanford University, where he also 
served as director of the Digital Systems Laboratory from 1 969 to 1 978. McCluskey has worked in a variety of 
areas in computer science, including fault-tolerant computing, computer architecture, testing, and logic design. 
He is currently director of the Center for Reliable Computing at Stanford University. McCluskey is also an 
ACM Fellow. 
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TABLE 2 

Minterm Bit String Number of Is 

xyz I I I  3 

xyz 1 0 1  2 

xyz O i l 2 

x yz 00 1 I 

x yz 000 0 

EXAMPLE 9 We will show how the Quine-McCluskey method can be used to find a minimal expansion 
equivalent to 

unksEC 

xyz + xyz + xyz + xyz + xy z. 

We will represent the minterms in this expansion by bit strings. The first bit will be 1 if x 
occurs and 0 if x occurs. The second bit will be 1 if y occurs and 0 if Y occurs. The third bit 
will be 1 if z occurs and 0 ifz occurs. We then group these terms according to the number of I s  
in the corresponding bit strings. This information i s  shown in Table 2. 

Minterms that can be combined are those that differ in exactly one literal. Hence, two terms 
that can be combined differ by exactly one in the number of 1 s in the bit strings that represent 
them. When two minterms are combined into a product, this product contains two literals. A 
product in two literals is represented using a dash to denote the variable that does not occur. For 
instance, the minterms xyz and xyz, represented by bit strings 1 0 1  and 00 1 ,  can be combined 
into yz, represented by the string -0 1 .  All pairs of minterms that can be combined and the 
product formed from these combinations are shown in Table 3 .  

Next, all pairs of  products of  two literals that can be  combined are combined into one 
literal. Two such products can be combined if they contain literals for the same two variables, 
and literals for only one of the two variables differ. In terms of the strings representing the 
products, these strings must have a dash in the same position and must differ in exactly one of 
the other two slots. We can combine the products yz and yz, represented by strings -1 1 and 
-0 1 ,  into z, represented by the string - -1 . We show all the combinations of terms that can be 
formed in this way in Table 3 .  

WILLARD VAN ORMAN QUINE ( 1 908-2000) Willard Quine, born in Akron, Ohio, attended Oberlin 
College and later Harvard University, where he received his Ph.D. in philosophy in 1 932. He became a Junior 
Fellow at Harvard in 1 933 and was appointed to a position on the faculty there in 1 936. He remained at Harvard 
his entire professional life, except for World War II, when he worked for the U.S.  Navy decrypting messages 
from German submarines. Quine was always interested in algorithms, but not in hardware. He arrived at his 
discovery of what is now called the Quine-McCluskey method as a device for teaching mathematical logic, 
rather than as a method for simplifying switching circuits. Q�ine was one of the most famOUS philosophers of 
the twentieth century. He made fundamental contributions to the theory of knowledge, mathematical logic and 
set theory, and the philosophies of logic and language. His books, including New Foundations of Mathematical 

Logic published in 1 937 and Word and Object published in 1 960, have had profound impact. Quine retired from Harvard in 1978 
but continued to commute from his home in Beacon Hill to his office there. He used the 1 927 Remington typewriter on which he 
prepared his doctoral thesis for his entire life. He even had an operation performed on this machine to add a few special symbols, 
removing the second period, the second comma, and the question mark. When asked whether he missed the question mark, he 
replied, "Well, you see, I deal in certainties." There is even a word quine, defined in the New Hacker s Dictionary as a program 
that generates a copy of its own source code as its complete output. Producing the shortest possible quine in a given programming 
language is a popular puzzle for hackers. 
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TABLE 3 

Step ] Step 2 

Term Bit String Term String Term String 

1 xyz 1 1 1  ( 1 ,2) xz 1-1 ( 1 ,2,3,4) z - -1 

2 xyz 1 0 1  ( 1 ,3) yz -1 1 

3 xyz 01 1 (2,4) yz -0 1 

4 xyz 00 1 (3,4) xz 0-1 

5 
- - -

000 (4,5) xy 00-x y z  

In Table 3 we also indicate which tenns have been used to fonn products with fewer literals; 
these tenns will not be needed in a minimal expansion. The next step is to identify a minimal 
set of products needed to represent the Boolean function. We begin with all those products that 
were not used to construct products with fewer literals. Next, we fonn Table 4, which has a 
row for each candidate product fonned by combining original tenns, and a column for each 
original tenn; and we put an X in a position if the original tenn in the sum-of-products expansion 
was used to fonn this candidate product. In this case, we say that the candidate product covers 
the original mintenn. We need to include at least one product that covers each of the original 
mintenns. Consequently, whenever there is only one X in a column in the table, the product 
corresponding to the row this X is in must be used. From Table 4 we see that both z and xy are 
needed. Hence, the final answer is z + xy. .... 

As was illustrated in Example 9, the Quine-McCluskey method uses this sequence of steps 
to simplify a sum-of-products expression. 

I .  Express each mintenn in n variables by a bit string of length n with a I in the ith position 
if Xi occurs and a 0 in this position if Xi occurs. 

2. Group the bit strings according to the number of I s in them. 

3. Detennine all products in n - I variables that can be fonned by taking the Boolean sum 
of mintenns in the expansion. Mintenns that can be combined are represented by bit 
strings that differ in exactly one position. Represent these products in n - I variables 
with strings that have a I in the ith position if Xi occurs in the product, a 0 in this position 
if Xi occurs, and a dash in this position if there is no literal involving Xi in the product. 

4. Detennine all products in n - 2 variables that can be fonned by taking the Boolean sum 
of the products in n - I variables found in the previous step. Products in n - I variables 
that can be combined are represented by bit strings that have a dash in the same position 
and differ in exactly one position. 

S. Continue combining Boolean products into products in fewer variables as long as possible. 

6. Find all the Boolean products that arose that were not used to fonn a Boolean product in 
one fewer literal. 

TABLE 4 
xyz -\fz �z xyz xyz 

z X X X X 

xy X X 
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TABLE 5 

Term Bit String Numher ofls 

wxyz 1 1 10 3 

wxyz 1 0 1 1 3 

Wxyz 01 1 1  3 

wxyz 1 0 1 0  2 
Wxyz 0 1 0 1  2 
Wxyz 001 1 2 

Wxyz 0001 1 

7. Find the smallest set of these Boolean products such that the sum of these products 
represents the Boolean function. This is done by forming a table showing which minterms 
are covered by which products. Every minterm must be covered by at least one product. 
The first step in using this table is to find all essential prime · implicants. Each essential 
prime implicant must be included because it is the only prime implicant that covers one of 
the minterms. Once we have found essential prime implicants, we can simplify the table 
by eliminating the columns for minterms covered by this prime implicant. Furthermore, 
we can eliminate any prime implicants that cover a subset of minterms covered by another 
prime implicant (as the reader should verify). Moreover, we can eliminate from the table 
the column for a minterm if there is another minterm that is covered by a subset of the 
prime implicants that cover this minterm. This process of identifying essential prime 
implicants that must be included, followed by eliminating redundant prime implicants 
and identifying minterms that can be ignored, is iterated until the table does not change. 
At this point we use a backtracking procedure to find the optimal solution where we add 
prime imp Ii cants to the cover to find possible solutions, which we compare to the best 
solution found so far at each step. 

A final example will illustrate how this procedure is used to simplify a sum-of-products 
expansion in four variables. 

EXAMPLE 10 Use the Quine-McCluskey method to simplify the sum-of-products expansion w xyz + w X yz + 
wxyz + wxyz + wxyz + w xyz + w xyz. 

TABLE 6 

1 
2 
3 

4 
5 

6 

7 

Term 

wxyz 
wxyz 
Wxyz - -wxyz 
Wxyz 
Wxyz 
Wxyz 

Bit String 

1 1 10 ( 1 ,4) 
1 0 1 1 (2,4) 
0 1 1 1  (2,6) 
1 0 1 0  (3,5) 
0 1 0 1  (3,6) 
001 1 (5,7) 
0001 (6,7) 

Step 1 Step 2 

Term String Term String 

wyz 1-10 (3,5,6,7) Wz 0 - -1 
wxy 1 0 1-
xyz -01 1  
Wxz 01-1 
Wyz 0-1 1 
Wyz 0-0 1 
Wxz 00-1 
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TABLE 7 

wxyz wXyz 

Wz 

wyz X 

wxy X 

xyz X 

wxyz wXyz wxyz 
X X 

X 

X 
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wXyz wxyz 
X X 

X 

Solution: We first represent the minterms by bit strings and then group these terms together 
according to the number of I s  in the bit strings. This is shown in Table 5 .  All the Boolean 
products that can be formed by taking Boolean sums of these products are shown in Table 6. 

The only products that were not used to form products in fewer variables are wz, wyz, 
wxy, and xyz. In Table 7 we show the minterms covered by each of these products. To cover 
these minterms we must include wz and wyz, because these products are the only products that 
cover wxyz and wxyz, respectively. Once these two products are included, we see that only 
one of the two products left is needed. Consequently, we can take either wz + wyz + wxy or 
wz + wyz + xyz as the final answer. .... 

Exercises 

1. a) Draw a K-map for a function in two variables and put 
a 1 in the cell representing x y. 

b) What are the rninterms represented by cells adjacent 
to this cell? 

2. Find the sum-of-products expansions represented by each 
of these K-maps. 

a) y y 

:E8 
b) y y 

:E8 
c) y y :B xB 

3. Draw the K-maps of these sum-of-products expansions in 
two variables. 
a) xy b) xy + xy 
c) xy + xy + xy + xy 

4. Use a K-map to find a minimal expansion as a Boolean 
sum of Boolean products of each of these functions of the 
Boolean variables x and y. 

a) xy + x y  
b )  xy + xy 
c) xy + xy + xy + x y  

5. a )  Draw a K-map for a function in three variables. Put a 
1 in the cell that represents xyz. 

b) Which minterms are represented by cells adjacent to 
this cell? 

6. Use K-maps to find simpler circuits with the same output 
as each of the circuits shown. 

b) x 
y Z z 

x 
y Z 
x 
y 
z 

x 
y 
z 

c) x-{>o i :  )ryZ iyz[(x + z) + <y + i)l 
� I U. x 

z Z 

y Y 

z z 
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7. Draw the K-maps of these sum-of-products expansions in 
three variables. 
a) xy z b) xyz + x y z  
c )  xyz + xyz + xyz + xyz 

8. Construct a K-map for F(x ,  y, z) = xz + yz + xyz. Use 
this K-map to find the implicants, prime implicants, and 
essential prime implicants of F (x , y, z). 

9. Construct a K-map for F(x ,  y ,  z) = xz + xyz + yz. Use 
this K-map to find the implicants, prime implicants, and 
essential prime implicants of F (x , y, z). 

10. Draw the 3-cube Q 3 and label each vertex with the 
minterm in the Boolean variables x ,  y, and z associated 
with the bit string represented by this vertex. For each 
literal in these variables indicate the 2-cube Q2 that is a 
subgraph of Q 3 and represents this literal. 

11 .  Draw the 4-cube Q4 and label each vertex with the 
minterm in the Boolean variables w ,  x, y, and z asso
ciated with the bit string represented by this vertex. For 
each literal in these variables, indicate which 3-cube Q3 
that is a subgraph of Q4 represents this literal. Indicate 
which 2-cube Q2 that is a subgraph of Q4 represents the 
products wz, xy, and y z. 

12. Use a K-map to find a minimal expansion as a Boolean 
sum of Boolean products of each ofthese functions in the 
variables x, y, and z. 

a) xyz + x yz 
b) xyz + xyz + xyz + xyz 
c) xyz + xyz + xy z + xyz + xyz 

d) xyz + xyz + xy z + xyz + xyz + x y z  

1 3 .  a) Draw a K-map for a function i n  four variables. Put a 
I in the cell that represents wxyz. 

b) Which minterms are represented by cells adjacent to 
this cell? 

14. Use a K-map to find a minimal expansion as a Boolean 
sum of Boolean products of each of these functions in the 
variables w ,  x ,  y, and z.  
a) wxyz + wxyz + wxy z + wxyz + wxyz 
b) wxyz + wxyz + wxyz + wxyz + w xyz + wxyz 
c) wxyz + wxyz + wxyz + wxyz + wx y z  + 

wxyz + wxyz + w x yz 

d) wxyz + wxyz + wxyz + wxyz + wxyz + 
wxyz + w xyz + wxyz + wxyz 

15. Find the cells in a K-map for Boolean functions with five 
variables that correspond to each of these products. 
a) XlX2X3X4 
d) X3X4 

16. How many cells in a K-map for Boolean functions 
with six variables are needed to represent X l ,  XIX6, 
X IX2X6 , X2X3X4XS , and X IX2X4XS , respectively? 

17. a) How many cells does a K-map in six variables have? 
b) How many cells are adjacent to a given cell in a K -map 

in six variables? 
18. Show that cells in a K-map for Boolean functions in 

five variables represent minterms that differ in exactly 
one literal if and only if they are adjacent or are in cells 

1 1-32 

that become adjacent when the top and bottom rows and 
cells in the first and eighth columns, the first and fourth 
columns, the second and seventh columns, the third and 
sixth columns, and the fifth and eighth columns are con
sidered adjacent. 

19. Which rows and which columns of a 4 x 1 6  map for 
Boolean functions in six variables using the Gray codes 
1 1 1 1 , 1 1 1 0, 1 0 1 0, 1 0 1 1 , 1 00 1 , 1 000,0000,000 1 ,00 1 1 , 00 1 0, 
0 1 1 0,0 1 1 1 ,0 1 0 1 ,0 1 00, 1 1 00, 1 1 0 1  to label the columns 
and 1 1 , 1 0,00,0 1 to label the rows need to be considered 
adjacent so that cells that represent minterms that differ 
in exactly one literal are considered adjacent? 

*20. Use K-maps to find a minimal expansion as a Boolean 
sum of Boolean products of Boolean functions that have 
as input the binary code for each decimal digit and pro
duce as output a 1 if and only if the digit corresponding 
to the input is 
a) odd. b) not divisible by 3 .  
c )  not 4 ,  5 ,  or  6 .  

*21 .  Suppose that there are five members on a committee, but 
that Smith and Jones always vote the opposite of Marcus. 
Design a circuit that implements majority voting of the 
committee using this relationship between votes. 

22. Use the Quine-McCluskey method to simplify the sum
of-products expansions in Example 3 .  

23. Use the Quine-McCluskey method to simplify the sum
of-products expansions in Exercise 12 .  

24.  Use the Quine-McCluskey method to simplify the sum
of-products expansions in Example 4.  

25.  Use the Quine-McCluskey method to simplify the sum
of-products expansions in Exercise 14.  

*26. Explain how K-maps can be used to simplify product-of
sums expansions in three variables. [Hint: Mark with a 0 
all the maxterms in an expansion and combine blocks of 
maxterms.] 

27. Use the method from Exercise 26 to simplify 
the product-of-sums expansion (x + y + z)(x + y + Z) 
(x + y + Z)(x + y + z)(X + y + z). 

*28. Draw a K-map for the 16 minterms in four Boolean vari
ables on the surface of a torus. 

29. Build a circuit using OR gates, AND gates, and inverters 
that produces an output of 1 if a decimal digit, encoded 
using a binary coded decimal expansion, is divisible by 3 ,  
and an output of 0 otherwise. 

In Exercises 30-32 find a minimal sum-of-products expan
sion, given the K-map shown with don '( care conditions indi
cated with ds. 

30. yz yz yt. yz 
wx d 1 d 1 

wx d d 
wx d 1 

wx 1 d 

31 .  WX.�Z yz yz �z 
wx d 1 

wx 1 d 
wx d d 
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32. YZ YZ YZ y, 
wx d d 1 

wx d d 1 d 
wi 

Wx 1 1 1 d 

Key Terms and Results 

TERMS 

Boolean variable: a variable that assumes only the values 0 
and 1 

x (complement of x): an expression with the value I when x 

has the value 0 and the value 0 when x has the value I 
X ·  Y (or xy) (Boolean product or conjunction of x and y):  

an expression with the value 1 when both x and y have the 
value 1 and the value 0 otherwise 

x + y (Boolean sum or disjunction of x and y) :  an expres
sion with the value 1 when either x or y, or both, has the 
value 1 , and 0 otherwise 

Boolean expressions: the expressions obtained recursively by 
specifying that 0, 1 ,  x "  . . .  , Xn are Boolean expressions and 
If" (E, + E2), and (E, E2) are Boolean expressions if E ,  
and E2 are 

dual of a Boolean expression: the expression obtained by 
interchanging + signs and . signs and interchanging Os 
and I s  

Boolean function of degree n:  a function from Bn to B where 
B = {O, I }  

Boolean algebra: a set B with two binary operations v and 1\, 
elements 0 and 1 ,  and a complementation operator - that 
satisfies the identity, complement, associative, commuta
tive, and distributive laws 

literal of the Boolean variable x: either x or x 

minterm of x . .  X2 , ' "  , xn :  a Boolean product Y,Y2 · · ·  Yn , 
where each Yi is either Xi or Xi 

sum-of-products expansion (or disjunctive normal form): 
the representation of a Boolean function as a disjunction of 
minterms 

functionally complete: a set of Boolean operators is called 
functionally complete if every Boolean function can be rep
resented using these operators 

x I y (or x NAND y):  the expression that has the value 0 when 
both x and Y have the value 1 and the value 1 otherwise 

x � y (or x NOR y):  the expression that has the value 0 when 
either x or Y or both have the value 1 and the value 0 other
wise 

inverter: a device that accepts the value of a Boolean variable 
as input and produces the complement of the input 

Key Terms and Results 781 

33. Show that products of k literals correspond to 2n-k_ 

dimensional subcubes of the n-cube Qn , where the ver
tices of the cube correspond to the minterms represented 
by the bit strings labeling the vertices, as described in 
Example 8 of Section 9.2. 

OR gate: a device that accepts the values of two or more 
Boolean variables as input and produces their Boolean sum 
as output 

AND gate: a device that accepts the values of two or more 
Boolean variables as input and produces their Boolean prod
uct as output 

half adder: a circuit that adds two bits, producing a sum bit 
and a carry bit 

full adder: a circuit that adds two bits and a carry, producing 
a sum bit and a carry bit 

K-map for n variables: a rectangle divided into 2n cells where 
each cell represents a minterm in the variables 

minimization of a Boolean function: representing a Boolean 
function as the sum of the fewest products of literals 
such that these products contain the fewest literals possi
ble among all sums of products that represent this Boolean 
function 

implicant of a Boolean function: a product ofliterals with the 
property that if this product has the value 1 ,  then the value 
of this Boolean function is 1 

prime implicant of a Boolean function: a product of literals 
that is an implicant of the Boolean function and no product 
obtained by deleting a literal is also an implicant of this 
function 

essential prime implicant of a Boolean function: a prime 
implicant of the Boolean function that must be included in 
a minimization of this function 

RESULTS 

The identities for Boolean algebra (see Table 5 in Section 1 1 . 1 ). 
An identity between Boolean functions represented by Boolean 

expressions remains valid when the duals of both sides of 
the identity are taken. 

Every Boolean function can be represented by a sum-of-
products expansion. 

Each of the sets {+ ,  - }  and { . , - }  is functionally complete. 
Each of the sets { + } and { I } is functionally complete. 
The use of K-maps to minimize Boolean expressions. 
The Quine-McCluskey method for minimizing Boolean 

expressions. 
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Review Questions 

1. Define a Boolean function of degree n . 
2. How many Boolean functions of degree two are there? 
3. Give a recursive definition of the set of Boolean expres

sions. 
4. a) What is the dual of a Boolean expression? 

b) What is the duality principle? How can it be used to 
find new identities involving Boolean expressions? 

5. Explain how to construct the sum-of-products expansion 
of a Boolean function. 

6. a) What does it mean for a set of operators to be func
tionally complete? 

b) Is the set {+ ,  . } functionally complete? 
c) Are there sets of a single operator that are functionally 

complete? 
7. Explain how to build a circuit for a light controlled by two 

switches using OR gates, AND gates, and inverters. 
8. Construct a half adder using OR gates, AND gates, and 

inverters. 
9. Is there a single type oflogic gate that can be used to build 

Supplementary Exercises 

1. For which values of the Boolean variables x , y, and z does 
a) x + y + z = xyz? 
b) x(y + z) = x + yz? 
c) xyz = x + y + z? 

2. Let x and y belong to to, I } .  Does it necessarily follow 
that x = y if there exists a value z in to, I }  such that 
a) xz = yz? b) x + z = y + z? 
c) x €a z = y €a z? d) x ..J.. z = y ..J.. z? 
e) x I z = y I z? 

A Boolean function F is called self-dual if and only if 
F(xJ , . . .  , xn )  = F(XJ , . . .  , xn) .  

3. Which of these functions are self-dual? 
a) F(x , y) = x  b) F(x , y) = xy + xy 
c) F(x , y) = x + y d) F(x , y) = xy + xy 

4. Give an example of a self-dual Boolean function of three 
variables. 

*5. How many Boolean functions of degree n are self-dual? 
We define the relation :::; on the set of Boolean functions 
of degree n so that F :::; G , where F and G are Boolean 
functions if and only if G(x\ , X2 ,  • • •  , xn )  = I whenever 
F(x\ , X2 , • • •  , xn ) = 1 .  

6. Determine whether F :::; G or G ::5 F for the following 
pairs of functions. 
a) F(x , y) = x , G(x , y) = x + y 
b) F(x , y) = x + y, G(x , y) = xy 
c) F(x , y) = x, G(x , y) = x + y 
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all circuits that can be built using OR gates, AND gates, 
and inverters? 

10. a) Explain how K-maps can be used to simplify sum-of
products expansions in three Boolean variables. 

b) Use a K-map to simplify the sum-of-products expan
sion xyz + xyz + xyz + xyz + xyz. 

1 1 .  a) Explain how K-maps can be used to simplify sum-of
products expansions in four Boolean variables. 

b) Use a K-map to simplify the sum-of-products ex
pansion wxyz + wxyz + wxyz + wxyz + wxyz + 
wxyz + wxyz + wxyz + wxyz. 

12. a) What is a don 't care condition? 
b) Explain how don 't care conditions can be used to build 

a circuit using OR gates, AND gates, and inverters that 
produces an output of I if a decimal digit is 6 or greater, 
and an output of 0 if this digit is less than 6. 

13. a) Explain how to use the Quine-McCluskey method to 
simplify sum-of-products expansions. 

b) Use this method to simplify xyz + xyz + xyz + 
xyz + xyz. 

7. Show that if F and G are Boolean functions of degree n, 
then 
a) F :::; F + G .  b) FG :::; F .  

8 .  Show that i f  F , G , and H are Boolean functions o f  degree 
n ,  then F + G :::; H if and only if F :::; H and G :::; H .  

*9. Show that the relation :::; i s  a partial ordering on the set of 
Boolean functions of degree n . 

*10. Draw the Hasse diagram for the poset consisting of the 
set of the 1 6  Boolean functions of degree two (shown in 
Table 3 of Section 1 1 . 1 )  with the partial ordering :::; . 

*11 .  For each of these equalities either prove it is an identity 
or find a set of values of the variables for which it does 
not hold. 
a) x I (y I z) = (x I y) I z 
b) x ..J.. (y ..J.. z) = (x ..J.. y) ..J.. (x ..J.. z) 
c) x ..J.. (y I z) = (x ..J.. y) I (x ..J.. z) 

Define the Boolean operator <:) as follows: I <:) 1 = 1 , I <:) 0 = 
0, 0 <:) 1 = 0, and 0 <:) 0 = 1 .  
12. Show that x <:) y = xy + xy. 
13. Show that x <:) y = (x €a y). 
14. Show that each of these identities holds. 

� x <:) x = 1  � x <:) x = O  
c) x <:) y = y <:) x 

15. Is it always true that (x <:) y) <:) z = x <:) (y <:) z)? 
*16. Determine whether the set (<:)} is functionally complete. 
*17. How many of the 1 6  Boolean functions in two variables 

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight

USER
Highlight



1 / -35 

x and y can be represented using only the given set of 
operators, variables x and y, and values 0 and I ?  
a) {-I b) { . } c) H} d )  { - , +} 

The notation for an XOR gate, which produces the output 
x $ y from x and y, is as follows: 

18. Determine the output of each of these circuits. 
a) 

b) 

19.  Show how a half adder can be constructed using fewer 
gates than are used in Figure 8 of Section 1 1 .3 whenXOR 
gates can be used in addition to OR gates, AND gates, and 
inverters. 

20. Design a circuit that determines whether three or more 
of four individuals on a committee vote yes on an issue, 
where each individual uses a switch for the voting. 

� A threshold gate produces an output y that is either 0 
or 1 given a set of input values for the Boolean variables 
XI , X2 , • • •  , xn • A threshold gate has a threshold value T ,  
which i s  a real number, and weights W I , W2 , • • •  , Wn , each 
of which is a real number. The output y of the threshold 
gate is 1 if and only if W I  X I + W2X2 + . . .  + WnXn � T .  The 

Computer Projects 

Write programs with these input and output. 

1. Given the values of two Boolean variables x and y, find 
the values ofx + y, xy, x $ y, x I y, and x .j.. y. 

2. Construct a table listing the set of values of all 256 
Boolean functions of degree three. 

3. Given the values of a Boolean function in n variables, 
where n is a positive integer, construct the sum-of
products expansion of this function. 

4. Given the table of values of a Boolean function, express 
this function using only the operators · and 

-
. 
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threshold gate with threshold value T and weights 
W I ,  W2 , • • •  , Wn is represented by the following diagram. 
Threshold gates are useful in modeling in neurophysiology 
and in artificial intelligence. 

X2 

I--.... y 

21. A threshold gate represents a Boolean function. Find a 
Boolean expression for the Boolean function represented 
by this threshold gate. 

X2 __ -.! i---..... y 

22. A Boolean function that can be represented by a thresh
old gate is called a threshold function. Show that each 
of these functions is a threshold function. 
a) F(x) = x  b) F(x , y) = x + y 
c) F(x , y) = xy d) F(x , y) = X  I y 
e) F(x , y) = x .j.. y t) F(x , y , z) = X  + yz 
g) F(w , x , y , z) = W + xy + Z  
h) F(w , x , y, z) = wxz + xyz 

*23. Show that F(x ,  y) = x $ y is not a threshold function. 
*24. Show that F(w , x , y , z) = wx + yz is not a threshold 

function. 

s. Given the table of values of a Boolean function, 
express this function using only the operators + 
and -. 

*6. Given the table of values of a Boolean function, express 
this function using only the operator I . 

*7. Given the table of values of a Boolean function, express 
this function using only the operator .j.. . 

8. Given the table of values of a Boolean function of degree 
three, construct its K-map. 
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9. Given the table of values of a Boolean function of degree 
four, construct its K-map. 

'10. Given the table of values of a Boolean function, use the 
Quine-McCluskey method to find a minimal sum-of
products representation of this function. 

Computations and Explorations 

11. Given a threshold value and a set of weights for a thresh
old gate and the values of the n Boolean variables in the 
input, determine the output of this gate. 

12. Given a positive integer n, construct a random Boolean 
expression in n variables in disjunctive normal form. 

Use a computational program or programs you have written to do these exercises. 

1. Compute the number of Boolean functions of degrees 
seven, eight, nine, and ten. 

2. Construct a table of the Boolean functions of degree three. 
3. Construct a table of the Boolean functions of degree four. 
4. Express each of the different Boolean expressions in three 

variables in disjunctive normal form with just the NAND 
operator, using as few NAND operators as possible. What 
is the largest number of NAND operators required? 

5. Express each of the different Boolean expressions in dis
junctive normal form in four variables using just the NOR 

Writing Projects 

operator, with as few NOR operators as possible. What is 
the largest number of NOR operators required? 

6. Randomly generate 1 0  different Boolean expressions in 
four variables and determine the average number of steps 
required to minimize them using the Quine-McCluskey 
method. 

7. Randomly generate 1 0  different Boolean expressions in 
five variables and determine the average number of steps 
required to minimize them using the Quine-McCluskey 
method. 

Respond to these questions with essays using outside sources. 

1 .  Describe some of the early machines devised to solve 
problems in logic, such as the Stanhope Demonstrator, 
Jevons's Logic Machine, and the Marquand Machine. 

2. Explain the difference between combinational circuits 
and sequential circuits. Then explain how flip-flops are 
used to build sequential circuits. 

3. Define a shift register and discuss how shift registers are 
used. Show how to build shift registers using flip-flops 
and logic gates. 

4. Show how multipliers can be built using logic gates. 
5. Find out how logic gates are physically constructed. Dis

cuss whether NAND and NOR gates are used in building 
circuits. 

6. Explain how dependency notation can be used to describe 
complicated switching circuits. 

7. Describe how multiplexers are used to build switching 
circuits. 

8. Explain the advantages of using threshold gates to con
struct switching circuits. Illustrate this by using threshold 
gates to construct half and full adders. 

9. Describe the concept of hazard-Jree switching circuits 
and give some of the principles used in designing such 
circuits. 

10. Explain how to use K-maps to minimize functions of six 
variables. 

11 .  Discuss the ideas used by newer methods for minimiz
ing Boolean functions, such as Espresso. Explain how 
these methods can help solve minimization problems in 
as many as 25 variables. 

12. Describe what is meant by the functional decompo
sition of a Boolean function of n variables and dis
cuss procedures for decomposing Boolean functions 
into a composition of Boolean functions with fewer 
variables. 


