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systems of partial differential equations

Abstract
In this paper, an approach based on matrix polynomials is in-
troduced for solving linear systems of partial differential equa-
tions. The main feature of the proposed method is the compu-
tation of the Smith canonical form of the assigned matrix poly-
nomial to the linear system of PDEs, which leads to a reduced
system. It will be shown that the reduced one is an indepen-
dent system of PDEs having only one unknown in each equa-
tion. A comparison of the results for several test problems
reveals that the method is very effective and convenient. The
basic idea described in this paper can be employed to solve
other linear functional systems.
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1. IntroductionSystems of partial differential equations arise in many scientific fields such as solid state physics, fluid dynamics,mathematical biology and chemical kinetics [8, 11, 17]. There are some well-known numeric-analytic methods suchas Exp-function method [8], the Adomian decomposition method [17], the variational iteration method [14], and thedifferential transform method [3] for obtaining the closed form approximate solution of linear systems of PDEs. Most ofthese techniques are based on the substitution of an initial (nontrivial) approximate solution in the corresponding partialdifferential equation, and they mainely depend on the choice of the auxiliary operators. Moreover, by increasing thedimension of the system, these methods usually encounters difficulties with high computational complexity. However,finding accurate and efficient methods for solving linear systems of PDEs has long been an active research undertaking.On the other hand, recently, a great deal of attention has been devoted to the study of matrix polynomials, which wasextensively studied by Gohberg et al. [7], with particular focus on its applications. In this work, we present an alternativenew approach based on the Smith decomposition form of the matrix polynomials for finding solutions of linear systemsof PDEs. The symbolic computation of Smith canonical form of matrix polynomials is also a widely studied topic, whichis well addressed in [18]. This method was successfully applied to system of operator equations [15], linear functionalsystems [1], system of ordinary differential equations [7, 9, 12], system of integral equations [16] and linear differentialalgebraic equations [2].The principle task in this paper, is to introduce a novel method for obtaining the exact solution of linear system of PDEs.First, a matrix polynomial equation is assigned to the system, and the explicit system is presented by considering itscorresponding matrix polynomial equation. Then, an equivalent system, consisting of linear equations having only one
∗ E-mail: nikta.shayanfar@gmail.com
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unknown in each equation, is obtained by applying the Smith form of the mentioned matrix polynomial. In favorablecases, (see for instance, the problems studied in Section 3) it may even turn out that the obtained independent systemcan be evaluated analytically.This paper is organized as follows: In Section 2, a matrix polynomial based method has been introduced. The efficiencyand accuracy of the method are demonstrated through several test problems in Section 3 and advantages of the methodcompared with other numeric-analytic methods are discussed. Finally, the conclusion appears in Section 4.
2. The basic ideaIn this section, we sketch the proposed method based on matrix polynomials for computing solutions of linear systemsof partial differential equations.
2.1. Matrix polynomialsHere, we recollect some basic definitions and properties of matrix polynomials that are needed in the sequel. For moredetails, we refer the reader to [6, 7].Recall that a matrix polynomial over R[λ] is simply a matrix with polynomial elements in λ with coefficients in R which canalternatively be considered as a polynomial with matrix coefficients. Such matrices arise in the mathematical treatmentof various types of linear systems. (See for instance [7, 13]).
Definition 2.1.A square matrix polynomial is called unimodular if its determinant is a nonzero constant.
Theorem 2.2.(From [7]) Let A(λ) be an n × n full rank matrix over R[λ]. There exist unimodular n × n matrix polynomials P(λ) and
Q(λ) such that

P(λ)A(λ)Q(λ) = D(λ), (2.1)
where D(λ) = diag[d1(λ), · · · , dn(λ)] is called the Smith canonical form of A(λ), with monic scalar polynomials di(λ)
such that di(λ) is divisible by di−1(λ).
The following lemma develops the basis of our method. It establishes the correspondence between the solution of ageneral system of operator equations and an independent system, which has been pointed out in [7] for system of ODEs.
Lemma 2.3.(From [7]) Let D(λ) be the Smith canonical form of the matrix A(λ) as (2.1). Then the system given in the form A(λ)X = G,
can be reduced to the system

D(λ)Y = P(λ)G, (2.2)
while the unknown vector X being known from:

X = Q(λ)Y . (2.3)
It is a marked advantage of the method that the reduced structure (2.2) include one unknown in each equation, since
D(λ) is a diagonal matrix.
2.2. Analysis of the methodIn the sequel, we give a slightly modified version of the proposed method in Lemma 2.3 for obtaining the solution of alinear system of PDEs in a more efficient way. We proceed as follows:To clarify the basic ideas, consider the scalar unknown function ui(x1, · · · , xk ), being a particular solution of the partialdifferential system:

Li(u1, u2, · · · , un) = gi, i = 1, · · · , n, (2.4)
43
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with convenient initial data in a compact domain Ω of that space, such that Li is a linear operator of a certain order N:
Li = N∑

m=m0
∑
|J|=maJD

m
J ,

where m0 ≥ 0, is the minimal order, aJ ∈ R, J = (j1, · · · , jk ) ∈ Nk , |J| =∑k
n=1 jn, and Dm

J = ∂m/∂x j11 · · · ∂x jkk . In addition,
gi are source terms in a k dimensional space. We suppose that the smoothness assumptions, to be made, will ensurethat the differential operators Li are completely continuous acting on functions.Considering the linear operator Li, the system (2.4) can be written as

n∑
j=1 Lijuj = gi, i = 1, · · · , n, (2.5)

where Lij := Li(uj ). To proceed in depth, let us consider the coupled system for the case k = 2, so ui = ui(x, t), wouldbe the solution of (2.5). (The study of the system for higher size remains a challenge). Suppose that there exists twolinear differential operators
λ = ∂

∂t , µ = ∂
∂x , (2.6)

such that (2.5) can be turned into a matrix polynomial equation as follows:
A(µ)[λ]X = G, (2.7)

where A(µ)[λ] = [Lij (µ, λ)]n×n is a bivariate matrix polynomial, G = [gi(x, t)]n×1 is the source term, and X = [ui(x, t)]n×1is the unknown vector should be determined.One obvious approach to study bivariate matrix polynomials is the extension of the well known results for univariatematrix polynomials, such that the principal variable of the bivariate matrix polynomial is considered as the variable thatemerges in practice among all of the variables, and other variables are considered as constants. More precisely, whendealing with matrices in R[λ, µ], it is necessary to be clear which ring is being used, R(µ)[λ] or R(λ)[µ]. Throughoutthis paper, we concentrate on R(µ)[λ], the ring of polynomials in λ in which its coefficients are functions in term of theconstant µ. For the problem of reducing a bivariate matrix polynomial to Smith canonical form see e.g. [4, 5].In order to allow the applicability of the proposed method, first we should obtain the Smith canonical form (2.1) in
R(µ)[λ], while the matrices P(µ)[λ] and Q(µ)[λ] should be unimodular. Following the same arguments, the reduced systemis

D(µ)[λ]Y = P(µ)[λ]G, (2.8)which contains n independent equations in Y , and the unknown vector is constructed with
X = Q(µ)[λ]Y . (2.9)

The following algorithm summarizes the proposed matrix polynomial approach for the problem:
Algorithm: Matrix polynomial approach for linear system of PDEs

Consider the linear system of PDEs (2.5) for n = 2
Step 1. Set the variables of the matrix polynomial with two linear differential operators λ = ∂

∂t , µ = ∂
∂x .

Step 2. Turn the linear system of PDEs to a matrix polynomial equation like (2.7).
Step 3. Construct the Smith canonical form in R(µ)[λ], as P(µ)[λ]A(µ)[λ]Q(µ)[λ] = D(µ)[λ].
Step 4. Develop the reduced system as (2.8).
Step 5. Solve (2.9) for the unknown vector.
We emphasize that although there exist other symbolic procedures to solve the systems of partial differential equations,here our aim is to obtain a framework based on matrix polynomials which may be applied for other general systems.Noting that, the important concept in this reduction is equivalence of the main system and a system of independentequations. Exploiting the analytical results of independent equations facilitates the solvability of the reduced system.

44



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

An approach based on matrix polynomials…

3. Illustrative examplesIn this section, the exact solution of various class of linear systems of partial differential equations (homogenous,nonhomogenous and higher order PDEs) is presented to assess the efficiency of the method. All the computationsassociated with the examples were performed using computer algebra package Mapler.
Example 3.1 (from [14]).Consider the following homogenous linear system of partial differential equations

∂u
∂t −

∂v
∂x + (u+ v ) = 0,

∂v
∂t −

∂u
∂x + (u+ v ) = 0,

with initial conditions u(x, 0) = sinh(x), v (x, 0) = cosh(x), and the exact solution u(x, t) = sinh(x−t), v (x, t) = cosh(x−t).Selecting the operators in (2.6), the system is transformed to (2.7) with G = 0, X = [u, v ]T and
A(µ)[λ] = (1 + λ 1− µ1− µ 1 + λ

)
.

Now, the Smith canonical form with respect to λ, equivalently in R(µ)[λ], is as follows:
P = ( −1

µ−1 0
λ+ 1 µ − 1

)
, D = (1 00 λ2 + 2λ− µ2 + 2µ

)
, Q = 0 11 λ+1

µ−1
 .

Note that P and Q are unimodular for all values of λ and µ 6= 1. So we can construct the reduced system according to(2.8) as
y1 = 0, (λ2 + 2λ− µ2 + 2µ)y2 = 0, (3.1)

and the solution (2.9) in the operator form is:
u = y2, v = y1 + λ+ 1

µ − 1y2. (3.2)
Substitution of u from (3.2) in (3.1), leads to the following independent equation in u:

(
∂2u
∂t2 + 2∂u∂t

)
−
(
∂2u
∂x2 − 2∂u∂x

) = 0.
We should mention the diversity of the well-known numeric-analytic methods for solving such an equation, however weapproximate the solution with spectral type method, considering u(x, 0) = sinh(x). Consequently, multiplying both sidesof the second equation of (3.2) by the nonzero (µ − 1), and substituting y1 and y2 leads to the independent equation

∂v (x, t)
∂x − v (x, t) = sinh(x − t)− cosh(t − x),

for determining the approximate solution of v (x, t), considering v (x, 0) = cosh(x). This system has been solved in [14]with variational iteration method. The computational results reported in Table 1, with 8 number of iterations for bothmethods, show the accuracy of the method in comparison to the method presented in [14].The presented scheme is also applicable to nonhomogenous systems of linear PDEs which will be considered in thefollowing:
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Table 1. The absolute errors of our method in comparison to the method presented in [14].

u(x, t) v (x, t)
x t Our method Method in [14] Our method Method in [14]0 0 0 0 0 00.2 1.411447 E-12 2.666666 E-6 6.352029 E-11 2.822720 E-140.4 7.234504 E-10 8.533334 E-5 1.628289 E-8 2.893099 E-110.6 2.786252 E-8 6.479999 E-4 4.182422 E-7 1.670839 E-90.8 3.720288 E-7 2.730664 E-3 4.190749 E-6 2.973341 E-81.0 2.780945 E-6 8.333308 E-3 2.507925 E-5 2.776723 E-70.2 0 2.000000 E-20 0 0 00.2 1.134915 E-11 2.720178 E-6 6.451076 E-11 5.368960 E-70.4 2.540366 E-9 8.704570 E-5 1.646398 E-8 1.718070 E-50.6 5.578558 E-8 6.610035 E-4 4.210253 E-7 1.304674 E-40.8 4.642544 E-7 2.785466 E-3 4.199941 E-6 5.498114 E-41.0 2.212607 E-6 8.500586 E-3 2.502261 E-5 1.678078 E-30.4 0 1.000000 E-20 0 0 00.2 2.456522 E-11 2.882859 E-6 6.809027 E-11 1.095339 E-60.4 5.906136 E-9 9.225151 E-5 1.730583 E-8 3.505089 E-50.6 1.416725 E-7 7.005354 E-4 4.407055 E-7 2.661692 E-40.8 1.319169 E-6 2.952058 E-3 4.377691 E-6 1.121658 E-31.0 7.294961 E-6 9.009023 E-3 2.597021 E-5 3.423225 E-30.6 0 1.000000 E-20 0 0 00.2 3.876719 E-11 3.161240 E-6 7.440249 E-11 1.697742 E-60.4 9.508940 E-9 1.011597 E-4 1.884222 E-8 5.432780 E-50.6 2.332453 E-7 7.681824 E-4 4.780728 E-7 4.125534 E-40.8 2.227028 E-6 3.237126 E-3 4.731133 E-6 1.738522 E-31.0 1.267008 E-5 9.879023 E-3 2.796009 E-5 5.305759 E-30.8 0 0 0 0 00.2 5.452503 E-11 3.566493 E-6 8.370074 E-11 2.368282 E-60.4 1.349337 E-8 1.141278 E-4 2.113481 E-8 7.578508 E-50.6 3.341791 E-7 8.666592 E-4 5.346269 E-7 5.754948 E-40.8 3.224265 E-6 3.652112 E-3 5.274453 E-6 2.425159 E-31.0 1.855370 E-5 1.114550 E-2 3.107210 E-5 7.401232 E-31.0 0 1.000000 E-19 0 1.000000 E-19 00.2 7.247114 E-11 4.114881 E-6 9.635819 E-11 3.133869 E-60.4 1.801934 E-8 1.316762 E-4 2.427562 E-8 1.002838 E-40.6 4.485246 E-7 9.999180 E-4 6.126374 E-7 7.615328 E-40.8 4.350902 E-6 4.213670 E-3 6.029455 E-6 3.209126 E-31.0 2.518195 E-5 1.285929 E-2 3.543114 E-5 9.793742 E-3

Example 3.2.Let us consider the linear nonhomogenous system from [3]:


∂z
∂t + ∂w

∂x = xet + ex+t ,
∂z
∂x −

∂w
∂t = et − ex+t ,

with the initial data z(x, 0) = x, w(x, 0) = ex , and exact solution z(x, t) = xet , w(x, t) = ex+t .
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Defining the same linear operators as (2.6), we can rewrite the system as (2.7) with X = [z, w ]T ,
G = xet + ex+t

et − ex+t
 , A(µ)[λ] = λ µ

µ −λ

 .

Neglecting the case of µ = 0, the Smith form over R(µ)[λ] is:
P =  1

µ 0
λ µ

 , D = 1 0
0 µ2 + λ2

 , Q = 0 1
1 −λ

µ

 .

The second equation of the reduced system (2.8) leads to the independent equation:
(µ2 + λ2)y2 = λ(g1) + µ(g2),

and considering the first equation of (2.9), we have z = y2. So the function z is obtained via the independent equation
∂2z
∂x2 + ∂2z

∂t2 = xet ,

together with the condition z(x, 0) = x, leads to the exact solution, and w is obtained by replacing z in the first equationas:
∂w
∂x = ex+t ,

which can be solved with direct integration, considering the condition w(x, 0) = ex .

It is obvious that two above independent equations for determining z and w with analytical methods are superior to thenumeric-analytic methods for solving the system. Furthermore, the generality of the method to the higher order linearsystem of PDEs can be considered in the following example:
Example 3.3.Consider the second order linear nonhomogenous system of PDEs [3]:


∂2z(x, t)
∂t2 − ∂w(x, t)

∂x = 2x2 − et ,
∂w(x, t)
∂t + ∂2z(x, t)

∂x2 = 2t2 + xet ,
(3.3)

subject to
z(x, 0) = 0, zt(x, 0) = 0, w(x, 0) = x. (3.4)

It can be seen that for suitable chosen differential operators (2.6), the system can be reformulated as (2.7) with X = [z, w ]T ,
G =  2x2 − et

2t2 + xet

 , A(µ)[λ] = λ2 −µ
µ2 λ

 .

Let us suppose µ 6= 0, the Smith form with respect to λ is:
P = − 1

µ 0
λ µ

 , D = 1 0
0 λ3 + µ3

 , Q = 0 1
1 λ2

µ

 . (3.5)
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Following the same argument, the second equation in the reduced system (2.8) is:
(λ3 + µ3)y2 = λ(g1) + µ(g2),

and according to the first equation of (2.9), z = y2, and the operator equation (µ3 + λ3)z = λ(g1) + µ(g2), leads thefunction z to be obtained analytically from
∂3z
∂x3 + ∂3z

∂t3 = 0,
and w is obtained by replacing z in the first equation of (3.3), as the simple equation:

∂w(x, t)
∂x = et .

The two above equations, considering the conditions (3.4), give the exact solution for z and w. We should mention thesimplicity of analytical solving of these reduced equations for obtaining the exact solution z(x, t) = x2t2, w(x, t) = xet ,instead of solving the main system.The most notable advantage of the proposed method is analytic solvability of the independent equations rather thansystem of equations. Some other beneficial points of the method include its generalization for solving higher orderproblems, the fast solution evaluating, and dealing with a few number of parameters. Another advantage of this novelmethod will be apparent when it is applied to solve the problems that have no analytical solutions or their analyticalsolutions can not be determined directly. It is demonstrated that matrix polynomial theory is a promising tool for morecomplicated linear, homogeneous or nonhomogeneous systems of PDEs.
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