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Abstract In this paper we study the piecewise collocation method for a class of func-
tional integral equations with state-dependent delays that is, where the delays depend
on the solution. It is well known that these equations typically have discontinuity in
the solution or its derivatives at the initial point of integration domain. This disconti-
nuity propagated along the integration interval giving rise to subsequent points, called
”singular points”, which can not be determined priori and the solution derivatives
in these points are smoothed out along the interval. Most of the known numerical
methods for this type of equations are generally very sensitive to the singular points
and therefore must have a process that detects these points and insert them into the
mesh to guarantee the required accuracy. Here, we present a numerical algorithm
based on the piecewise collocation method and an approach for tracking the singular
points relying on the recent strategy for implicit delay differential equations which
has been proposed by Guglielmi and Hairer in 2008. The convergence analysis of the
method is investigated and some numerical experiments are presented for clarifying
the robustness of the method.
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1 Introduction

Introducing the state-dependent delay in modeling real phenomena results frequently
from an attempt to account for the influence of some facts on the behavior of a
population. Over the past several years it has became apparent that equations with
state-dependent delays especially differential type arise in several areas such as in
electrodynamics [10], population models [20], economics [3], and engineering [22,
26]. The literature devoted to this subject is concerned fundamentally with the ana-
lyzing the state-dependent delay differential equations (SDDDEs). The papers by
Feldstein et al. [11, 12], Baker et al. [1], Hauber [18], Hartung et al. [17–19],
Guglielmi and Hairer [13, 14], Zivaripiran and Enright [28] and the monographs by
Bellen and Zennaro [4] and Brunner [6, 7] reflect the development and the current
state of the numerical analysis of SDDDEs.

Mathematical models with state-dependent delay integral equations (SDDIEs) are
wide-spread in applications. For instance, a number of structured population models
and models in epidemiology and immunology are specific cases of SDDIEs. How-
ever, there are only few works available in the literature for numerical solution of
SDDIEs. A family of numerical schemes based on quadrature methods for solving
some classes of SDDIEs whose delay appears in the integrand has been developed
in Cahlon and Nachman [8], and Cahlon [9]. There are also some works deal with
threshold state-dependent delay functional equations in which the delay is implicitly
defined through a threshold condition ([19, 20]). Although some important theoreti-
cal and numerical results were established in this field, a number of open questions
still exist due to the considerable computational complexity compared to the case of
constant delays.

Here, we shall consider the following SDDIE:

⎧
⎨

⎩

y(t) = g(t) + (wθy)(t), t ∈ I := [a, T ],
θ(t, y(t)) ≤ t,

y(t) = φ(t), t ∈ [λ, a),

(1.1)

where λ = inf{θ(t, y(t)), t ∈ I } and the Volterra integral operator wθ : C[λ, T ] →
C[λ, T ] is defined as:

(wθy)(t) :=
∫ t

θ(t,y(t))

k(t, s)y(s)ds.

Let the given functions g(t), k(t, s) and delay function θ(., .) be sufficiently
smooth on their respective domains, φ(t) which is known as initial function is a con-
tinuously differentiable function and y(t) is a real valued bounded function to be
determined.

The theory of (1.1) appeared from early attempts by many researchers such as
Bélair [2] for investigating some population models. The existence and uniqueness
results and the asymptotic behavior of the solutions under the differentiability condi-
tion for some classes of SDDIEs have also discussed in [2]. To make the problem well
defined, a unique solution y(t) is usually identified by specifying an initial function
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φ(t) and some assumptions on the given functions. Therefore, throughout the paper,
we assume that the conditions on the given functions g, k, θ and φ(t) are somehow
that the (1.1) possess a unique solution.

These equations typically have discontinuity in the solution or its derivatives at
the initial point t = a, which may propagate by means of delay function along
the integration interval giving rise to subsequent points, called “singular points”.
More precisely, we observe that y(a+) = g(a+) + (wθy)(a+) may not equal to
y(a−) = φ(a), even in the case y(a+) = y(a−) the derivative of y may be dis-
continuous at t = a. Following [11], these singular points are the odd multiplicity
zeroes of the nonlinear equation θ(t, y(t)) = Z, where Z is either a, or any previ-
ous point of derivative discontinuity. This ensures us, the delay function goes through
the previous jump singular point. Thus, all the singular points obtain from the ini-
tial discontinuity at t = a. Due to this interdependence, calculation of these points is
very difficult, because they should be computed accurately enough to develop high
order accuracy. Nevertheless, the solution derivatives in these points are smoothed
out along the interval.

In this paper, we are concerned on numerical issues and detecting the singular
points which is critical to the numerical solution of (1.1) by the piecewise collocation
method so that for the detection and computation of these points we use the strategy
which is essentially based on the process being offered by Guglielmi and Hairer in
[14] for implicit delay differential equations.

The remainder of the paper is as follows. In the next section we will give some
preliminary concepts and results regarding the continuity and smoothing proper-
ties of the solution. The numerical solvability of the (1.1) using the piecewise
collocation method is investigated in Section 3. In Section 4, we obtain a general
convergence theorem using an alternative approach which is conceptually due to [11]
and finally Section 5 includes some test problems that illustrate the theoretical
results.

2 Some basic results

In this section, we gather some well-known definitions from [11, 24] and give some
basic important results, which we will use throughout the paper.

At first, we consider the following definition which is followed directly from [24]
for SDDDEs with some minor corrections:

Definition 1 The SDDIE (1.1) has continuity class p ≥ 1, if and only if the follow-
ings hold over the appropriate domain:

i) All of the mixed partial derivatives of kij and θij are continuous, for all
i + j ≤ p.

ii) g ∈ Cp[a, T ], and φ ∈ Cp[λ, a].

In the following, we will show that under certain assumptions, the solution of the
SDDIE (1.1) is continuous on [a, T ]:
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Theorem 1 Let the (1.1) has continuity class p ≥ 1, with a unique bounded solu-
tion. Furthermore the following condition holds:

(H) Lθ K̃ < 1, where Lθ is the Lipschitz constant of θ with respect to the second
variable, ||y||∞ ≤ C, K = sup{|k(t, s)|, (t, s) ∈ [a, T ] × [λ, T ]}, and K̃ = KC

then y(t) is continuous on [a, T ].

Proof Let t ∈ [a, T ], we have

y(t+) − y(t−) = g(t+) − g(t−) +
∫ t

θ(t+,y(t+))

k(t+, s)y(s)ds

−
∫ t

θ(t−,y(t−))

k(t−, s)y(s)ds.

Since (1.1) has continuity class p ≥ 1, then

|y(t+) − y(t−)| = |
∫ θ(t,y(t−))

θ(t,y(t+))

k(t, s)y(s)ds|

≤ Lθ K̃|y(t+) − y(t−)|.
According to assumption (H), we conclude |y(t+) − y(t−)| = 0, and this shows

y(t) is continuous on [a, T ].

Any numerical method for SDDIEs, must address several principles concerning
singular point propagation that were developed by Neves and Feldstein in [11, 24].
In what follows, we give an explanation of these issues without lengthy and detailed
hypothesis.

Definition 2 (From [4, 12]) Suppose that Zj be the zero of the equation θ(t, y(t)) =
Zi , then Zi is known as a unique ancestor of Zj and Z0 = a is called a 0-level
singular point. Consequently, Zj is called a k-level singular point, if Zi be a k −
1-level singular point.

Now, let us assume that zi is the order of continuity of Zi , that is the greatest
integer such that y(zi−1) is continuous at Zi . Using Theorem 1, we conclude zi ≥ 1,
for i ≥ 1. Following [24], the discontinuities in the solution or its derivatives can
occur only at zeros of the equation:

{
θ(Zj , y(Zj)) = Zi, 0 ≤ i < j ≤ η

Z0 = a.
(2.1)

If Zj is a zero of the equation whose multiplicity is even, then Zj cannot be a
singular point, that is y ∈ Cp near Zj . Noting that such a Zj has no computational
role. (For more details see [4, 24]). Since generically the multiplicity of a singular
point is one and a higher multiplicity cannot be checked numerically, we here focus
on the singular points with simple multiplicity. So from now on, our mean about the
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singular points is the simple multiplicity zeros of (2.1), with order of continuity less
than or equal p.

The following auxiliary theorem which is known as smoothing property tells us
like SDDDEs [24], the smoothing property of y(t) in each singular point increases
with respect to its ancestor. In fact, the solution becomes smoother and smoother as
the integration proceeds:

Theorem 2 Suppose that the (1.1) has a continuity class p ≥ 1 and the condition
(H) holds. Let Zj be the least zero of θ(t, y(t)) = Zi with simple multiplicity such
that Zj > Zi , and zi , zj are the order of continuity of Zi and Zj , respectively, with
0 ≤ zi < p, then zj = zi + 1.

Proof If zi = 0 then zj = 1, because of Theorem 1. Now suppose that zi > 0. For
the sake of simplicity, we set k(t, s)y(s) := G(t, s, y) and let Gi be the ith partial
derivative of G with respect to the first argument, then for each 1 ≤ k ≤ p:

y(k)(t) = g(k)(t) +
∫ t

θ(t,y(t))

Gk(t, s, y(s))ds +
k−1∑

l=0

dl

dtl

[
GK−l−1(t, t, y(t))

− θ
′
(t, y(t))Gk−l−1(t, θ(t, y(t)), y(θ(t, y(t))))

]
. (2.2)

Note that the highest order derivative of y in the right hand of (2.2) is kth
derivative, which appears in the (k − 1)th derivative of θ

′
Gk−l−1(t, θ, y(θ)). Mov-

ing this term to the left, showing the remainder of dk−1

dtk−1

(
θ

′
Gk−l−1(t, θ, y(θ))

)
by

ϕ(t, θ, y(θ)) and rearranging the equation with respect to y(k), we obtain:

y(k)(t) = 1

1 + θyG(t, θ, y(θ))

[

g(k)(t) +
∫ t

θ(t,y(t))

Gk(t, s, y(s))ds − ϕ(t, θ, y(θ))

+
k−1∑

l=0

dl

dtl
Gk−l−1(t, t, y(t))

−
k−2∑

l=0

dl

dtl
(θ

′
Gk−l−1(t, θ, y(θ)))

]

. (2.3)

Since θy(t, y(t)) ≤ Lθ , by using the condition (H), we conclude
|θyG(t, θ, y(θ))| < 1 for each t ∈ [a, T ], therefore θyG(t, θ, y(θ))+ 1 �= 0 for each
t ∈ [a, T ].

Let us set k = zi . Since (1.1) has a continuity class p ≥ 1 and y(zi−1) is contin-
uous, the first four terms in (2.3) inside the bracket are continuously differentiable
at t = Zj . So we should prove that the last term is continuously differentiable at
t = Zj . It will be obtained by using a similar manner in [24] with some compli-
cated notations which we refrain from going into details. Finally, y(zi) is continuous
at t = Zj and so zj = zi + 1.

Therefore, to obtain a high order method of order p for the (1.1), we have to
compute the singular points with order of continuity less than or equal p and in the
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case z0 ≥ p, it is not necessary to compute them. As a result of the theorem, we
conclude that there are only finitely many computationally important singular points
with order of continuity less than or equal p, which can be ordered as a = Z0 <

Z1 < · · · < Zi < · · · < Zη ≤ T , such that each Zj is the simple multiplicity zero of
the (2.1).

The next theorem which is followed from Theorem 3.2 of [24] states that if Z > a

be a fixed point of θ(t, y(t)), then Z is the limit of an infinite sequence of singular
points:

Theorem 3 Assume that the (1.1) has continuity class p = ∞, and θ is strictly
increasing for t ∈ I , such that it has only one fixed point Z on the interval U ⊆ I ,
then there is a sequence of singular points such that

lim
k→∞ Zk = Z.

3 The numerical analysis

Here, we analyze the piecewise collocation method for SDDIE (1.1) using an appro-
priate strategy for detecting the singular points which has taken from [14]. We
will show that inserting the singular points into the set of mesh points causes the
improvement of the convergence order of the proposed method.

3.1 Piecewise collocation method

Let Ih = {tn : a = t0 < t1 < · · · < tN = T } be a non uniform mesh on the given
interval I and

hn := tn+1 − tn, 0 ≤ n ≤ N − 1,

where the diameter of the mesh is h = maxn hn. For given integer p ≥ 1, we define
the linear space of (real) piecewise polynomials with respect to the mesh Ih as

S
(−1)

p−1 (Ih) := {u : u|(tn,tn+1] ∈ πp−1 (0 ≤ n ≤ N − 1)}, (3.1)

where πp−1 denotes the space of all (real) polynomials of degree not exceeding p −
1 and u|(tn,tn+1] is the restriction of u on (tn, tn+1]. The collocation solution u ∈
S

(−1)

p−1 (Ih) can be defined by the collocation equation
⎧
⎨

⎩

u(t) = g(t) +
∫ t

θ(t,u(t))

k(t, s)u(s)ds, t ∈ Xh,

u(t) = φ(t), λ ≤ t < a,

(3.2)

where θ(t, u(t)) ≤ t, for all t ∈ Xh and

Xh := {
tn,i = tn + cihn : 0 ≤ c1 < · · · < cp ≤ 1, (0 ≤ n ≤ N − 1)

}
,

is the set of collocation points including the collocation parameters {ci}. For p ≥ 2,
by choosing c1 = 0, cp = 1, it follows that the collocation solution u(t) is continuous
on I .
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The collocation (3.2) has the singular points similar to the original equation,
namely a = Zh,0 < Zh,1 < · · · < Zh,i < · · · < Zh,η ≤ T , whose levels are ≤ p

and can be obtained from the following equation:
{

θ(t, u(t)) = Zh,i , 0 ≤ i < j ≤ η,

Zh,0 = a.
(3.3)

A convenient computational form of the collocation equation is obtained when we
employ the local Lagrange basis functions and setting

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lj (v) =
p∏

k=1
k �=j

v − ck

cj − ck

, v ∈ [0, 1]

Un,j = u(tn + cjhn),

(3.4)

the restriction of the collocation solution to the subinterval (tn, tn+1], i.e. un(t), can
be expressed as:

un(t) = u(tn + vhn) =
p∑

j=1

Lj (v)Un,j , v ∈ (0, 1]. (3.5)

Since θ(tn,i, Un,i) ≤ tn,i , there exist an index κ ≤ n, such that:

tκ ≤ θ(tn,i, Un,i) < tκ+1, (κ = κ(n, i)). (3.6)

Now we consider the following two cases:

Case 1 κ = n, the collocation equation may be written as

Un,i = g(tn,i ) +
∫ tn,i

θ(tn,i ,Un,i )

k(tn,i , s)un(s)ds.

Using some manipulations we conclude:

Un,i = gn,i + hn

p∑

j=1

(∫ ci

θ(tn,i ,Un,i )−tn

hn

k(tn,i, tn + shn)Lj (s)ds

)

Un,j ,

or equivalently, in the compact form:

Un = gn + hn	̄n(Un)Un, (3.7)

where
[
	̄n(Un)

]

ij
:=
∫ ci

θ(tn,i ,Un,i )−tn

hn

k(tn,i, tn + shn)Lj (s)ds,

and

Un = (Un,1, ..., Un,p)T , gn = (gn,1, ..., gn,p)T , gn,i = g(tn,i ).
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Case 2 κ < n, in this case we have

Un,i = gn,i +
∫ tκ+1

θ(tn,i ,Un,i )

k(tn,i, s)uκ(s)ds +
n−1∑

l=κ+1

∫ tl+1

tl

k(tn,i, s)ul(s)ds

+
∫ tn,i

tn

k(tn,i, s)un(s)ds,

and so

Un,i = gn,i + hκ

p∑

j=1

(∫ 1

θ(tn,i ,Un,i )−tκ

hκ

k(tn,i , tκ + shκ)Lj (s)ds

)

Uκ,j

+
n−1∑

l=κ+1

hl

p∑

j=1

(∫ 1

0
k(tn,i, tl + shl)Lj (s)ds

)

Ul,j

+hn

p∑

j=1

(∫ ci

0
k(tn,i, tn + shn)Lj (s)ds

)

Un,j .

Therefore:

Un=gn+hκ	n(Un)Uκ+
n−1∑

l=κ+1

hlB(l)
n Ul+hnBnUn, n = 0, 1, 2, ..., N−1, (3.8)

in which

[	n(Un)]ij :=
∫ 1

θ(tn,i ,Un,i )−tκ

hκ

k(tn,i , tκ + shκ)Lj (s)ds,

[Bn]ij :=
∫ ci

0
k(tn,i, tn + shn)Lj (s)ds,

[
B(l)

n

]

ij
:=

∫ 1

0
k(tn,i, tl + shl)Lj (s)ds, (i, j = 1, 2, ..., p).

Note that, in both cases we end up with an algebraic nonlinear system of equations
with Un = (Un,1, ..., Un,p)T unknowns, whose solution with (3.5) give the collo-
cation solution u(t). Generally, the integrals occurring in the collocation equation
can not be obtained in analytical form, and a suitable quadrature is needed for their
approximations.

The discretized form of (3.2) can be considered as

û(t) = g(t) + (ŵθ û)(t), t ∈ Xh,

where ŵθ is a discretization of wθ in the (1.1). Following [6], we need to make sure
that the quadrature formulas are chosen such that the order of the resulting quadrature
errors will match the order of convergence of the exact collocation solution. This can
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be achieved if we choose interpolatory p-point quadrature formulas whose abscissas
are given by the p collocation parameters {ci}. In particular, the general quadrature
rule for an arbitrary function f (s), for s ∈ [0, 1] may be considered as

∫ 1

0
f (s)ds ≈

p∑

r=1

brf (cr ),

where br = ∫ 1
0 Lr(s)ds. Therefore

∫ 1

0
k(tn,i, tl + shl)Lj (s)ds ≈

p∑

r=1

brk(tn,i, tl,r )Lj (cr )=bjk(tn,i, tl,j ) : =
[
B̂(l)

n

]

ij
,

and
∫ ci

0
k(tn,i, tn + shn)Lj (s)ds = ci

∫ 1

0
k(tn,i, tn + cishn)Lj (cis)ds

≈ ci

p∑

r=1

brk(tn,i, tn + cicrhn)Lj (cicr ) :=
[
B̂n

]

ij
.

Consequently, the other integrals can be approximated as follows:

[
	̂n(Un)

]

ij
:= tκ+1 − θ(tn,i, Un,i)

hκ

p∑

r=1

brk(tn,i, (1 − cr )θ(tn,i, Un,i) + cr tκ+1)

× Lj

(

(1 − cr )

(
θ(tn,i , Un,i) − tκ

hκ

)

+ cr

)

,

[ ˆ̄	n(Un)
]

ij
:= tn,i − θ(tn,i, Un,i)

hn

p∑

r=1

brk(tn,i, cr tn,i + (1 − cr )θ(tn,i, Un,i))

× Lj

(

cicr + (1 − cr )

(
θ(tn,i, Un,i) − tn

hn

))

,

where B̂
(l)
n , B̂n, 	̂n(Un), and ˆ̄	n(Un) are the discretization form of B(l)

n , Bn, 	n(Un),
and 	̄n(Un), respectively.

Under these assumptions, the fully discretized collocation equations in both cases
are respectively as follows:

Ûn = gn + hn
ˆ̄	n(Ûn)Ûn,

Ûn = gn + hκ 	̂n(Ûn)Ûκ +
n−1∑

l=κ+1

hlB̂
(l)
n Ûl + hnB̂nÛn,

where Ûn = (Ûn,1, ..., Ûn,p)T and Ûn,i = ûn(tn,i), for n = 0, 1, 2, ..., N − 1.
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3.2 Numerical algorithms

It is known, the efficiency of a numerical method for solving the state dependent
delay integral equations can be improved significantly if the singular points are cho-
sen carefully, like SDDDEs. In the SDDIEs under consideration, the singular points
can not be computed in advance, therefore we should obtain the collocation solutions
and the singular points simultaneously.

There are some different strategies in the literature for detection and computation
of the singular points mainly associated to SDDDEs. ( see e.g. [11, 14, 18]). Here,
we use an efficient procedure for detection and computation of the singular points for
implicit delay differential equations which is mainly based on the paper of Guglielmi
and Hairer [14].

In our numerical algorithms, all singular points with level less than or equal p

are computed to get a method with order of convergence p. We start with t0 := a

and t1 := t0 + h, where h is an initial step size. Suppose that the problem is solved
successfully until tn, and the singular point Zh,i is computed in the previous steps.
Our aim is computing the Zh,j . Let us define f (t) = θ(t, un−1(t)) − Zh,i, where
un−1(t) is the collocation solution of the preceding step. We consider two cases:

Case 1 If f (t) does not change sign on [tn, tn + h], then we take tn+1 := tn + h

and solve the collocation (3.7)–(3.8) for the unknowns Un,1, ..., Un,p using a Newton
type method, while it is necessary to choose suitable initial values for unknowns
with desired accuracy (we take U

[0]
n,i := un−1(tn,i)). Noting that in the initial point t0

(z0 = 0), the choice of u−1(t) as an approximation of u0(t) may be unsuitable and
so the considered iterative method may be divergent. To overcome this difficulty we
may use u0(t

+
0 ) as an approximation of u0(t0,i ) such that:

u0(t
+
0 ) = g(t0) +

∫ t0

θ(t0,u0(t
+
0 ))

k(t0, s)φ(s)ds.

There are unknown indices κ in the collocation equations which should be deter-
mined, however according to (3.6) each κ depends on the stage value Un,i . Therefore,
in each step of the iterative method, the value of each κn,i obtains by using the value
of Un,i in the previous step.

We summarize our strategy in the following algorithm:

Algorithm 1

for l = 1, 2, ... until convergence.
begin

- Compute κ
[l]
n,i , by replacing Un,i with U

[l−1]
n,i in relation (3.6), for each i =

1, ..., p;
- Take κn,i := κ

[l]
n,i in the collocation equations and apply one step of the iterative

method to compute U
[l]
n,1, ..., U

[l]
n,p;

end.
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Case 2 If f (t) changes sign on [tn, tn+h], then we consider tn+1 (the next grid point)
as an unknown value in the collocation (3.7)–(3.8) and determine it, in such a way
that tn+1 exactly equals to Zhj . For this purpose, we denote the collocation (3.7)–
(3.8) by Fi(Un,1, ..., Un,p, tn+1, κn,1, ..., κn,p) = 0, where Un,1, ..., Un,p, and tn+1
are unknowns and each κn,i depends on the stage values Un,i , which is determined
by the (3.6). Now, we consider the following system of equations for the unknowns
Un,1, ..., Un,p and tn+1

Fi(Un,1, ..., Un,p, tn+1) = 0, i = 1, 2, ..., p, (3.9)

θ(tn+1, un(tn+1)) = Zh,i, (3.10)

where un(t) is the collocation solution of the current step that depends on the
Un,1, ..., Un,p. The above system may be solved using a Newton type method, that
exploits the structure of the system. With the aim of not destroying this structure,
we solve the above system with a splitting idea. ( See e.g. [13, 14]). While, it
is necessary to choose suitable initial values for unknowns with desired accuracy
(U [0]

n,i := un−1(tn,i)) and use the zero of θ(t, un−1(t)) = Zh,i on [tn, tn + h] as initial
value of tn+1.

The following algorithm summarizes our strategy in this case:

Algorithm 2

for l = 1, 2, ... until convergence.
begin

- Compute κ
[l]
n,i , by replacing Un,i with U

[l−1]
n,i in relation (3.6), for each i =

1, ..., p;
- Take κn,i := κ

[l]
n,i and tn+1 := t

[l−1]
n+1 in (3.9) and apply one step of the

iterative method which yields collocation approximation u
[l]
n (tn + vhn) for

v ∈ [0, 1];
- Replacing un(t) with u

[l]
n (t) in the (3.10) and compute t

[l]
n+1

by using one step of the iterative method on this equation;
end.

Remark 1 If there are more than one singular point in the interval [tn, tn+1], such that
the algorithm can not immediately find the leftmost one, the error control method
[13, 25] should be used to automatically rejects the step size and accordingly reduces
it.

4 Convergence analysis

The object of the present section is to describe the convergence behavior of the pro-
posed numerical method. We will show that under appropriate conditions, when the
singular points are approximated by the presented process in Section 3.2, the rate of
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convergence u to the exact solution y depends on the continuity conditions of the
(1.1), i.e. if this equation has continuity class p, then the collocation solution has
order of convergence p.

In order to obtain the convergence order, it is necessary to locate primary singular
points as well. To do so, we divide our discussion into two folds: vanishing and
non-vanishing delays.

In the first one, using Theorem 3, it is seen how the singular points are located
near the zero point of the delay function θ(t, y(t)) − t. In this case, which is called
vanishing delay, there exist a point Z > a such that θ(Z, y(Z)) = Z. As in equa-
tion (1.1), it is assumed that θ(., .) is continuous and strictly increasing function, for
any k level singular point Zi , where θ(Zi, y(Zi)) < Zi , then there exist (k + 1)

level singular point Zj , such that θ(Zj , y(Zj)) < Zj . From Theorem 3, we have
also Zi < Zj < Z, so there are infinitely many singular points on the left hand side
of Z. To achieve a numerical method of pth order, we have to locate the points that
the mth derivatives (m ≤ p) have really jump. According to Theorems 2 and 3, we
deduce that y ∈ C(m); m > p, in a neighborhood of Z. Due to the fact that our com-
putational concern is jump points satisfied in the relation y(m)(t), m ≤ p, without
loss of generality, we may ignore such neighborhoods of fixed point Z. Therefore,
the different continuity orders of these points yield, there exist many primary finitely
singular points which are isolated. In the non-vanishing delay, which is assumed
that θ(t, y(t)) < t , we have not any clustering fixed point. Therefore according to
Theorem 2, there exist many primary finitely singular points which are isolated as
well.

For the given singular points Zi and Zj , there exist ξi and ξj such that

a ≤ Zi − ξi < Zi + ξi < Zj − ξj < Zj + ξj ≤ T ,

where Zi is an ancestor of Zj .

Let ŷ, ˆ̂y be two Cp extensions of y, such that the first is defined from [Zi, Zi +ξi]
back to [Zi − ξi , Zi + ξi ], and the second is defined from [Zi − ξi , Zi] forward
to [Zi − ξi , Zi + ξi]. The following Lemma from [11] is useful to obtaining the
collocation error at the near singular points.

Lemma 1 If the (1.1) has continuity class p ≥ 1, then for all sufficiently small
h > 0,

‖ŷ − y‖[Zi ,Zi+h]
∞ = O(h

zi
),

‖ ˆ̂y − y‖[Zi−h,Zi ]
∞ = O(h

zi
),

where zi is the order of continuity of Zi .

Now, let Zhi denotes an approximate value of Zi , which is generated by the intro-
duced approach and ri is the rate of error, i.e. |Zhi − Zi | = O(hri ). The following
theorem is the main result of this section:

Theorem 4 Let the SDDIE (1.1) has continuity class p ≥ 1, the condition (H) holds
and the equation has only one singular point Zi ∈ [tm, tm + h) ⊆ [t0, tM ], M ≤ N .
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If Zhi ∈ [tm, tm + h), then

‖y − u‖[t0 ,tM ]
∞ = O(hmin{p,rizi }),

where u is the collocation approximation of y.

Proof Let us assume that Zhi < Zi and Zhi be a nodal point i.e. tm+1 = Zhi and
tm+2 = tm + h, also let � be the set of all integer numbers from k̂ to M where
k̂ = max{κ(n, i) : n = 0, 1, ..., M − 1, i = 1, 2, ..., p} where each κ(n, i) satisfies
(3.6). We consider the following two cases:

Case 1 l ∈ � − {m + 1}, since there is not any singular points on [tl , tl+1], we
conclude y ∈ Cp[tl , tl+1]. By using the Peano’s Theorem we have

y(tl + shl) =
p∑

j=1

Lj (s)Yl,j + h
p
l Rp,l(y, s), s ∈ [0, 1], (4.1)

where Ylj = y(tlj ) and Rp,l(y, s) = ∫ 1
0 kp(s, z)y(p)(tl + zhl)dz, with

kp(s, z) = 1

(p − 1)!

⎧
⎨

⎩
(s − z)

p−1
+ −

p∑

j=1

Lj(s)(cj − z)
p−1
+

⎫
⎬

⎭
, z ∈ [0, 1].

It follows from (3.5) and (4.1), the collocation error e := y − u possesses the
local representation

e(tl + shl) =
p∑

j=1

Lj (s)εlj + h
p

l Rp,l (y, s), s ∈ (0, 1] (4.2)

with εlj := Ylj − Ulj . Therefore

|e(tl + shl)| ≤ 
p‖εl‖1 + h
p
l Kp‖y(p)‖∞ ≤ 
p‖εl‖1 + O

(
h

p
l

)
, (4.3)

where 
p = max(j) ‖Lj ‖∞ and Kp = max
s∈[0,1]

∫ 1
0 |kp(s, z)|dz.

Case 2 l = m + 1, and ŷ is a Cp extension of y from [Zi, tm+2] back to [Zhi, tm+2],
consequently using the Peano’s Theorem and Lemma 1, we have

|e(tm+1 + shm+1)| ≤ |y(tm+1 + shm+1) − ŷ(tm+1 + shm+1)|
+ |ŷ(tm+1 + shm+1) − u(tm+1 + shm+1)|

≤ ‖y − ŷ‖[Zhi ,Zi ]∞ +
p∑

j=1

|Lj(s)||ε̂m+1,j | + h
p

m+1|Rp,m+1(ŷ, s)|

= O(hrizi ) +
p∑

j=1

|Lj (s)||ε̂m+1,j | + O(h
p

m+1), (4.4)
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where ε̂m+1,j = ŷ(tm+1,j )−u(tm+1,j ). Representing ε̂m+1,j −εm+1,j = ŷ(tm+1,j )−
y(tm+1,j ), we have

|ε̂m+1,j | ≤ |εm+1,j | + |ŷ(tm+1,j ) − y(tm+1,j )| ≤ |εm+1,j | + O(hrizi ),

thus
|ε̂m+1,j | ≤ |εm+1,j | + O(hrizi ). (4.5)

Inserting (4.5) into (4.4) yields

|e(tm+1 + shm+1)| ≤ 
p‖εm+1‖1 + O(h
p

m+1) + O(hrizi ). (4.6)

From (1.1) and (3.2) we have

εn,i =
∫ θ(tn,i,Un,i )

θ(tn,i ,Yn,i )

k(tn,i, s)y(s)ds +
∫ tκ+1

θ(tn,i ,Un,i )

k(tn,i, s)e(s)ds

+
n−1∑

l=κ+1

∫ tl+1

tl

k(tn,i , s)e(s)ds+
∫ tn,i

tn

k(tn,i, s)e(s)ds. (n = 0, 1, ..., M − 1)

Using some manipulations, the above relation with the condition (H) yield

|εni | ≤ K

1 − K̃Lθ

[
n−1∑

l=κ

hl

∫ 1

0
|e(tl + shl)|ds + hn

∫ ci

0
|e(tn + shn)|ds

]

.

Now, by using (4.3) and (4.6) we have

|εni| ≤ ζ

n−1∑

l=κ

hl

∫ 1

0
[
p‖εl‖1 + O(h

p
l )]ds + hn

∫ ci

0

[

p‖εn‖1 + O(h

p
n )
]
ds

+fn,m O(hrz+1),

where ζ = K

1−K̃Lθ
, fn,m = 1 for n ≥ m and otherwise fn,m = 0. This gives

(1 − hnp
pζ )‖εn‖1 ≤ p ζ

[


p

n−1∑

l=κ

hl‖εl‖1 +
n∑

l=κ

O(h
p+1
l )

]

+ fn,m O(hrizi+1).

According to condition (H) and choosing the step size h so small, we obtain
hnp
pζ < 1, therefore

‖εn‖1 ≤ C1

n−1∑

l=κ

hl‖εl‖1 + C2O(hp+1) + fn,mO(hrizi+1), (4.7)

From Gronwall’s inequality [4], we have

‖εn‖1 ≤ O(hp+1) + fn,m O(hrizi+1). (4.8)

Inserting (4.8) into (4.3) or (4.6) yield

|e(tn + shn)| ≤ O(hp) + fn,m O(hrizi ). (n = 0, 1, .., M − 1)

Finally, the error estimate of the theorem will be obtained �
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Theorem 5 Assume the hypothesis of Theorem 4 hold. Furthermore let Zj ∈
[tm, tm + h] and zj rj ≥ p, then for sufficiently small h

|Zj − Zhj | = O(hmin{p,ri}).

Proof Let us set f (t) = θ(t, y(t)) − Zi and fh(t) = θ(t, u(t)) − Zhi . By using
mean value theorem for each t ∈ [tm, tm + h], we can write

f (t) = (
t − Zj

)
f ′(ξ(t)), for some ξ(t) ∈ (tm, tm + h), (4.9)

hence f (t) = O(h). Due to the Lipschitz continuity of θ with respect to its second
variable, Theorem 4 and rj zj ≥ p, we have

|f (t)−fh(t)| ≤ Lθ |y(t)−u(t)|+|Zi −Zhi | = O(hp,zj rj )+O(hri ) = O(hmin{p,ri }).
(4.10)

Since h is sufficiently small, using f (tm) = O(h) and (4.10) we have

|f (tm) − fh(tm)| ≤ |f (tm)|.
This implies that f and fh have the same sign at tm and similarly at tm + h. Due

to changing sign of f on [tm, tm + h], fh also changes sign on [tm, tm + h]. Since
fh(Zhj ) = 0 and fh is continuous on [tm, tm + h], then Zhj ∈ [tm, tm + h). Now by
using Theorem 2, we conclude that zj ≥ 1, and so f ′(t) is continuous on t = Zj .
Considering the continuity of f ′(t) and the fact that f ′(Zj ) �= 0 for sufficiently
small h, there exists an open interval V ⊂ I such that Zhj , Zj ∈ V and |f ′(t)| > 0
for all t ∈ V . Therefore, there exists a minimum M for |f ′(t)| on V , such that

|f ′(t)| ≥ M > 0, for all t ∈ V . (4.11)

From (4.10) we get

|f (Zhj )| = O(hmin{p,ri}). (4.12)

It follows from (4.9), (4.12) and inequality (4.11) that

|Zhj − Zj | = |f (Zhj )|
|f ′(ξ)| = O(hmin{p,ri }).

Corollary 1 Let the (1.1) has continuity class p ≥ 1, and there exist a finite number
of singular points with order of continuity lees than p in [a, T ], which are ordered
as, a = Z0 < Z1 < · · · < Zη ≤ T . Repeated application of Theorem 4, gives

‖y − u‖[a,T ]∞ = O(hQ), (4.13)

where

Q = min
0≤j≤η

{p, rj zj }.

To complete this section, we give the following theorem which shows that, when
the singular points are included in the mesh points, the high order of convergence is
maintained as well.
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Theorem 6 Assume that (1.1) has continuity class p ≥ 1, and there exist a finite
number of singular points with order of continuity lees than p in [a, T ], which are
ordered as, a = Z0 < Z1 < · · · < Zη ≤ T . Furthermore, let z0 ≥ 1, condi-
tion (H) holds and the singular points are approximated by the method described in
Section 3.2, then

‖y − u‖[a,T ]∞ = O(hp).

Proof The proof is followed from Theorem 5.4 in [11].

5 Numerical results

In this section, we present results of some numerical experiments to illustrate the
effectiveness of the proposed method. We consider the collocation parameters as
ci = (i−1)/(p−1), for i = 1, 2, ..., p in Examples 1, 2, 4 and Gauss Lobatto points
in Example 3. The accuracy of the proposed method is measured by computing the
maximum errors at overall interval I . This shows that after computing the singular
points, the proposed method maintains the convergence order p. We also report the
observed order of convergence of the method. All computations are performed by
Maple� 12 with tolerance 10−10. It should be noted that, in all the examples we
have firstly considered the equal step sizes and after detecting the singular points we
transit to the variable case.

Example 1 Consider the following SDDIE
⎧
⎨

⎩

y(t) = √
2 + ∫ t

ln(y(t))−1 y(s)ds, 0 ≤ t ≤ 1

y(t) = 0. t ≤ 0

with the exact solution

y(t) =
⎧
⎨

⎩

√
2 exp(t), 0 ≤ t ≤ Z1

exp( e

e+√
2
(t − 1 + ln(2)/2) + 1), Z1 ≤ t ≤ 1

Table 1 The errors |Z1 − Zh1|
and ‖y − u‖[0,1]∞ in Example 1 h |Z1 − Zh1| ‖y − u‖[0,1]∞

p = 2 p = 4 p = 2 p = 4

h0 2.91E−03 3.15E−07 2.05E−02 4.74E−06

h0/2 8.17E−04 2.36E−08 6.70E−03 3.70E−07

h0/4 2.05E−04 1.48E−09 1.75E−03 2.39E−08

h0/8 5.28E−05 9.38E−11 4.47E−04 1.51E−09

h0/16 1.32E−05 5.90E−12 1.16E−04 9.73E−11

h0/32 3.31E−06 3.72E−13 2.94E−05 6.17E−12
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Table 2 Convergence orders of
|Z1 − Zh1| and ‖y − u‖[0,1]∞ in
Example 1

h |Z1 − Zh1| ‖y − u‖[0,1]∞

p = 2 p = 4 p = 2 p = 4

h0 1.83 3.74 1.61 3.68

h0/2 1.99 4.00 1.94 3.95

h0/4 1.96 3.97 1.97 3.98

h0/8 2.00 3.99 1.95 3.96

h0/16 2.00 3.99 1.98 3.98

h0/32 2.00 3.99 1.99 3.99

which is obtained by using the method of steps which introduced by Bellman [5],
where Z1 = 1− 1

2 ln(2) ≈ 0.6534264. The maximum error ‖y −u‖[0,1]∞ and absolute
error |Z1 − Zh1| are tabulated in Table 1, for different values of p and h with h0 =
0.25.

Here, Z0 = t0 = 0, z0 = 0, r0 = ∞, z1 = 1, r1 = min{p, r0} = p, so
|Z1 − Zh1| = min{p, r0} = p, which can be observed from Table 2. Also from
(4.13), we conclude that Q = min{p, z0r0, z1r1} = p, where z0r0 is determined from
‖y − ŷ‖[Zh0,Z0]∞ = O(hr0z0) = O(h∞), because of Z0 = Zh0. Reported numerical
results in Table 2 confirm the results of Theorems 4 and 5.

Fig. 1 Point-wise absolute errors for p = 2, and different values of h in Example 1
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Fig. 2 Point-wise absolute errors for p = 4, and different values of h in Example 1

Figures 1 and 2 show the point-wise absolute errors |y(t)−u(t)| in the collocation
points tn,i , for different values of h with p = 2, 4. They indicate that the point-wise
absolute errors decay exponentially as h decreases. We observe that there is a jump
in the error behaviors at the singular point Z1 ≈ 0.6534264.

Example 2 Consider the following SDDIE with two singular points
⎧
⎨

⎩

y(t) = 1 +
∫ t

y(t)−√
2

y(s)

s + 1
ds, 0 ≤ t ≤ 2

y(t) = 0, t < 0
(5.1)

Table 3 The errors |Z1 − Zh1|, |Z2 − Zh2| and ‖y − u‖[0,Zh2]∞ in Example 2

h |Z1 − Zh1| |Z2 − Zh2| ‖y − u‖[0,Zh2]∞

p = 2 p = 4 p = 2 p = 4 p = 2 p = 4

h0 9.71E−17 9.72E−17 1.18E−03 3.57E−07 1.03E−03 4.31E−07

h0/2 9.72E−17 9.72E−17 3.32E−04 2.51E−08 2.76E−04 2.96E−08

h0/4 9.72E−17 9.72E−17 8.79E−05 1.82E−09 7.96E−05 2.31E−09

h0/8 9.72E−17 9.72E−17 2.25E−05 1.17E−10 2.03E−05 1.48E−10

h0/16 9.72E−17 9.72E−17 5.71E−06 7.57E−12 5.27E−06 9.81E−12

h0/32 9.72E−17 9.72E−17 1.45E−06 4.85E−13 1.32E−06 6.15E−13
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Table 4 Convergence orders of
‖y − u‖[0,Zh2]∞ and |Z2 − Zh2| in
Example 2

h |Z2 − Zh2| ‖y − u‖[0,Zh2]∞

p = 2 p = 4 p = 2 p = 4

h0 1.83 3.83 1.90 3.86

h0/2 1.92 3.79 1.79 3.68

h0/4 1.96 3.96 1.97 3.96

h0/8 1.98 3.95 1.95 3.92

h0/16 1.98 3.97 2.00 4.00

h0/32 1.99 3.98 1.98 3.98

with the exact solution:

y(t) =

⎧
⎪⎨

⎪⎩

t + 1, 0 ≤ t ≤ √
2 − 1

4
√

2
√

t + 1.
√

2 − 1 ≤ t ≤ (2
√

2−1)2√
2

− 1
(5.2)

Here, the singular points are Z1 = √
2−1 ≈ 0.4142136 and Z2 = (2

√
2−1)2√

2
−1 ≈

1.3639610. This problem is solved with the second and fourth order of the pro-

Fig. 3 Point-wise absolute errors for p = 2, and different values of h in Example 2
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Fig. 4 Point-wise absolute errors for p = 4, and different values of h in Example 2

posed method. Our numerical results show that the orders of convergence 2 and 4
are achieved, respectively. In Tables 3 and 4, we have presented the overall maxi-
mum errors and the convergence orders for different values of h with h0 = 0.25
and p = 2, 4. Also, Figures 3 and 4 represent the error behaviors versus the grid
points.

Example 3

⎧
⎨

⎩

y(t) = exp(−t) − t +
∫ t

t+y(t)−exp(−t )−ln(2)

exp(s)y(s)ds, 0 ≤ t ≤ 1

y(t) = 0, t < 0
(5.3)

Table 5 The errors |Z1 − Zh1|
and ‖y − u‖[0,1]∞ in Example 3 h |Z1 − Zh1| ‖y − u‖[0,1]∞

p = 3 p = 4 p = 3 p = 4

h0 7.74E−06 2.67E−07 3.28E−04 4.47E−06

h0/2 5.26E−07 1.86E−08 4.26E−05 2.98E−07

h0/4 1.96E−08 1.20E−09 5.48E−06 1.94E−08

h0/8 1.08E−09 7.86E−11 6.94E−07 1.23E−09

h0/16 6.70E−11 4.98E−12 8.73E−08 7.76E−11
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Table 6 Convergence orders of
|Z1 − Zh1| and ‖y − u‖[0,1]∞ in
Example 3

h |Z1 − Zh1| ‖y − u‖[0,1]∞

p = 3 p = 4 p = 3 p = 4

h0 3.84 3.84 2.94 3.90

h0/2 4.75 3.96 2.96 3.95

h0/4 4.18 3.93 2.98 3.98

h0/8 4.00 3.98 2.99 3.99

h0/16 3.99 3.98 3.00 3.99

with the exact solution

y(t)=
{

exp(−t) 0 ≤ t ≤ ln(2)
1
2μ(t)

[
2 exp

(
−t − 1

2 exp(t)
)

+E1(1)+E1

(
1
2 exp(t)

)]
, ln(2) ≤ t ≤ 1

where μ(t) = exp
(
− 1

2 exp(t)
)

and

E1(x) =
∫ ∞

1

e−xt

t
dt = 	(0, x), x > 0,

such that 	(0, x) is the generalized Gamma function [26]. Here, the collocation
parameters ci’s are considered as Gauss Lobatto points, i.e. the zeros of s(s −
1)P

′
m−1(2s − 1), where Pm−1(s) is the Legendre polynomial of degree m − 1 (see

e.g. [6]), also Z1 = ln(2) ≈ 0.6931472. The maximum error ‖y − u‖[0,1]∞ and the
absolute error |Z1 −Zh1| are tabulated for different values of p and h with h0 = 0.25
in Tables 5 and 6.

Figures 5 and 6 show the point-wise error behaviors |y(t) − u(t)| in the colloca-
tion points tn,i , for different values of h and p = 3, 4. As can be seen, there is a
jump at the singular point Z1 ≈ 0.6931472.

Example 4 (From [27]) The following problem has been considered as an optimal
replacement model in mathematical economics in [27]:

Table 7 The obtained
numerical results in Example 4.
with different values of h

h ‖y − u‖[1,2]∞ Order of convergence

p = 2 p = 4 p = 2 p = 4

h0 7.55E−05 1.72E−12 1.93 3.86

h0/2 1.98E−05 1.19E−13 1.99 4.04

h0/4 4.97E−06 7.19E−15 1.98 3.96

h0/8 1.26E−06 4.62E−16 2.00 4.01

h0/16 3.15E−07 2.86E−17 2.00 4.01

h0/32 7.89E−08 1.78E−18 2.00 4.00
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Fig. 5 Point-wise absolute errors for p = 3, and different values of h in Example 3

Fig. 6 Point-wise absolute errors for p = 4, and different values of h in Example 3



Numer Algor

Fig. 7 Point-wise absolute errors for p = 2, and different values of h in Example 4

⎧
⎪⎪⎨

⎪⎪⎩

∫ y−1(t)

t

e−rτ [β(t, τ ) − β(y(τ), τ )]dτ = e−rtγ (t), t ∈ [1, ∞)

y(t) = 1 − √
2, t ∈ [0, 1)

(5.4)

where y−1(t) is the inverse of y(t) as a solution and the constant r > 0 is the industry-
wide discount rate. The unknown function y(t) in the integrand and the upper limit
of integration essentially complicates the analysis of this problem.

We work with the same conditions as [27]. For instance, for the restricted case
β(t, τ ) ≡ β(τ) = τ, γ (t) = 1 and r = 0.01, the solution of (5.4) is y(t) = t − A,
where A ≈ √

2 and t ∈ [1, ∞). Following [21, 27], we also focus on constructing
the solutions y(t) of (5.4) for some bounded interval [t0, T ] such that y(t) < t .
However, the condition T � t0, may be considered as an applied problem which has
investigated theoretically in [27] and numerically as well in [21]. Here, Z0 = t0 = 1
and z0 = 1.

Because of the solution is smooth at the initial point t = 1, propagation of the sin-
gular points can not be seen. Our numerical experiments give relatively satisfactory
errors when compared with the solution [27]. In Table 7, we have presented the over-
all maximum errors and order of convergence for different values of h with h0 = 0.25
and p = 2, 4.

Figures 7 and 8 show the point-wise absolute errors |y(t)−u(t)| in the collocation
points tn,i , for p = 2, 4 and different values of h.
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Fig. 8 Point-wise absolute errors for p = 4, and different values of h in Example 4

6 Conclusion

This work is concerned with the extension of the piecewise collocation method to a
class of state-dependent delay integral equations. Since obtaining the singular points
of this equations involves a nonlinear equation to be solved, the dense-output solu-
tions (such as piecewise collocation) are suitable for their numerical analysis. We
analyzed the convergence properties of the method and included the propagated dis-
continuities in the set of the mesh points. We have implemented our approach as an
experimental Maple� code and carried out numerical experiments over some test
problems. One of the possible extensions of the method given here is to investigate
the approximate solution of state-dependent delay intgero-differential equations.
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