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1. Introduction28

The principal aim of this paper is to serve the numerical analysis of the spline
collocation method for a mixed system of Volterra integral equations of the first
and second kind which is known as Integral Algebraic Equations (IAEs). In fact,
the present work is concerned with the semi-explicit system of integral algebraic
equations of index-2 {

y(t) = f(t) + (ν11y)(t) + (ν12z)(t),

0 = g(t) + (ν21y)(t),
(1)
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where the Volterra integral operators νkl are given by,

(νklϕ)(t) =
∫ t

0

Kkl(t, s)ϕ(s)ds, t ∈ I = [0, T ], (k, l = 1, 2),

and y, f : I → R
d1 , z, g : I → R

d2 , Kkk(., .) ∈ L(Rdk), K12(., .) ∈ L(Rd2,

R
d1), K21(., .) ∈ L(Rd1 , Rd2) are continuous functions and L(., .) is the linear trans-

formation space. The system (1) is a special case of the following general form of
IAEs

A(t)X(t) = G(t) +
∫ t

0

K(t, s, X(s))ds, t ∈ I = [0, T ],

where A(t) is a singular matrix with continuous entries (rank(A)≥ 1, det(A) = 0)1

and G(t) is a known free term.2

Such equations and systems frequently arise in many physical and applied prob-3

lems especially in the fields of viscoelastic materials [Janno and Wolfersdorf (1997)],4

dynamic processes in chemical reactors [Kafarov et al. (1999)], identification of mem-5

ory kernels in heat conduction [Wolfersdorf (1994)], evolution of a chemical reaction6

within a small cell [Jumarhon et al. (1996)] and the two dimensional biharmonic7

equation in a semi-infinite strip [Gomilko (2003)]. A primary and general theory of8

IAEs are due to Chistyakov and Gear in 1986–1990, who determined the theory and9

difficulties of these equations [see, for instance Chistyakov (1986) and Gear (1990)].10

A system of IAEs is assigned by a number which is known as index, to measure11

its complexity concerning both theoretical and numerical treatments. Actually, the12

index plays a key role in the solvability and regularity of the solution of IAEs.13

There has been few work on analyzing and numerical methods for the IAEs in14

literature. The existence and uniqueness results of solution for IAEs systems with15

convolutions kernels have been discussed in Bulatov and Chistyakov [1997]. Kauthen16

[2000], applied the polynomial spline collocation method for a semi-explicit IAEs17

with index-1 and established global convergence as well as local superconvergence.18

Brunner [2004] defined the index-1 tractable for a semi-explicit form of IAEs and19

investigated the existence of a unique solution for this type of systems. Recently,20

the authors in Hadizadeh et al. [2011] have defined the index-2 tractable for a new21

class of IAEs and proposed a Jacobi collocation method including the matrix-vector22

multiplication representation of the equation. Most recently, the numerical analysis23

of the two-dimensional integral-algebraic system has also investigated by Bulatov24

and Lima in [2011].25

As we mentioned, the solution of IAEs has been closely related to the definition of26

index. Different definitions of index have been given in the literature, see for instance27

Gear [1990], Brunner [2004], and Hadizadeh et al. [2011]. The “index reduction28

procedure” for IAEs systems has been introduced by Gear [1990], in which if the29

process is terminated, then the index is determined. This means that under suitable30

conditions, there is a solution for the resulting regular system of integral equations.31

Here, our mean about the index for the IAEs system (1), is the minimum number of32
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differentiation of the second equation of (1) with respect to t, in order a system of1

regular VIEs has been reached. Generally, this methodology has several restrictions2

that can causes instability from a numerical point of view. Since the smoothness3

condition of the second equation of (1) is not often satisfied in some applications, we4

may consider the index notion without use of derivative arrays (e.g., the tractability5

index which is due to Brunner [2004] and the authors Hadizadeh et al. [2011]).6

Also, it is worth mentioning that the numerical schemes which are applicable (i.e.,7

convergent) for IAEs of a given index, might not be useful for IAEs of higher index.8

Note that the IAEs with index > 1 are generally hard to solve and are still under9

active research.10

Throughout this paper, we consider the case when the conditions of Theorem 111

in Hadizadeh et al. [2011] be satisfied. Hence, in virtue of the smoothness of the12

given functions, the existence, uniqueness and the regularity results for continuous13

solutions of the IAEs system (1) may be established from the following theorem:14

Theorem 1. (From Hadizadeh et al. [2011]) Let ν ≥ 0 and assume that15

(1) K1l ∈ Cν(D) for l = 1, 2 and D = {(t, s) : 0 ≤ s ≤ t ≤ T },16

(2) K21 ∈ Cν+1(D) and |det(K21(t, t)K12(t, t))| ≥ k0 > 0,17

(3) f ∈ Cν(D), g ∈ Cν+1(D) and g1(0) = 0,18

then the IAEs (1) possesses a unique solution y, z ∈ Cν(I).19

The main aim of this work is to provide the necessary and sufficient conditions20

for convergence of the spline collocation method for the IAEs system (1). For this21

purpose, we first apply the polynomial spline collocation method for the numerical22

solvability of the index-2 system of IAEs (1) in Sec. 2. A critical global convergence23

analysis of the method for two disjoint cases of collocation parameter cm is then24

given in Sec. 3 and finally in Sec. 4, some numerical experiments are reported which25

supporting the theoretical results.26

2. The Spline Collocation Method27

Let ΠN = {0 = t0 < t1 < · · · < tn = T } be a uniform partition of the interval
I = [0, T ] with grid points tn = nh, (n = 0, . . . , N). Also, let h be the stepsize and
Θ is given by:

Θ = {tnj = tn + cjh : 0 < c1 < c2 < · · · < cm ≤ 1, 0 ≤ n ≤ N − 1},
where cj (j = 1, . . . , m) and tnj are the collocation parameters and the collocation
points, respectively. We define the subintervals σn = (tn, tn+1], n = 0, . . . , N − 1,

and the space of piecewise polynomials of degree m − 1 ≥ 0, as follows:

S−1
m−1(ΠN ) = {υ : υ|σn ∈ Πm−1, (0 ≤ n ≤ N − 1)}.

Consider the IAEs system (1) and approximate the solution (y1, . . . , yd1 ,

z1, . . . , zd2)T by (u,v)T , where u = {ul}d1
l=1, v = {vl}d2

l=1 and each component
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of u and v belongs to S−1
m−1(ΠN ). The collocation solution u,v can be defined by

the following collocation equations

u(t) = f(t) +
∫ t

0

K11(t, s)u(s)ds +
∫ t

0

K12(t, s)v(s)ds, (2)

0 = g(t) +
∫ t

0

K21(t, s)u(s)ds, (3)

where f(t) = {fl(t)}d1
l=1, g(t) = {gl(t)}d2

l=1, Kpq(t, s) = {Kpq(t, s)}dp×dq , (p, q =1

1, 2), 0 = {0}d2×1 and t ∈ Θ.2

Since {ul}d1
l=1, {vl}d2

l=1 ∈ S−1
m−1(ΠN ), (for ρ ∈ (0, 1]), the following relations hold:

u(tn + ρh) =
m∑

j=1

UnjLj(ρ), Unj = u(tn + cjh), (4)

v(tn + ρh) =
m∑

j=1

VnjLj(ρ), Vnj = v(tn + cjh), (5)

where Unj = {Ulnj}d1
l=1,Vnj = {Vlnj}d2

l=1 and Lj(ρ) represents the Lagrange canon-
ical polynomials for the collocation parameters {cj} which is defined as,

Lj(ρ) =
∏
k �=j

(ρ − ck)
(cj − ck)

, j = 1, . . . , m.

Let us set ρ = (s− ti)/h, (i = 0, . . . , n), and insert (4) and (5) into relations (2)
and (3), respectively, then we have

Unj = f(tnj) + h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K11(tnj , ti + ρh)UijLk(ρ)dρ

)

+ h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K12(tnj , ti + ρh)VijLk(ρ)dρ

)

+ h

m∑
k=1

(∫ cj

0

K11(tnj , tn + ρh)UnjLk(ρ)dρ

)

+ h
m∑

k=1

(∫ cj

0

K12(tnj , tn + ρh)VnjLk(ρ)dρ

)
,

(6)

0 = g(tnj) + h

n−1∑
i=0

m∑
k=1

(∫ 1

0

K21(tnj , ti + ρh)UijLk(ρ)dρ

)

+ h

m∑
k=1

(∫ cj

0

K21(tnj , tn + ρh)UnjLk(ρ)dρ

)
.

(7)
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Note that, the integrals in (6) and (7) can not be computed explicitly in general,
and thus one has to use appropriate quadrature rules to approximate them,∫ cj

0

Kpq(tnj , tn + ρh)Li(ρ)dρ ≈
m∑

k=1

Kpq(tnj , tn + ckh)ajk,

∫ 1

0

Kpq(tnj , tn + ρh)Li(ρ)dρ ≈
m∑

k=1

Kpq(tnj , tn + ckh)bk,

where p, q = 1, 2, and the coefficients ajk and bk are defined by:

ajk =
∫ cj

0

Lk(ρ)dρ, bk =
∫ 1

0

Lk(ρ)dρ, j, k = 1, . . . , m.

By inserting the above relations into the equations (6) and (7), we get

Unj = f(tnj) + h

n−1∑
i=0

m∑
k=1

K11(tnj , tik)Uikbk + h

n−1∑
i=0

m∑
k=1

K12(tnj , tik)Vikbk

+ h

m∑
k=1

K11(tnj , tnk)Unkajk + h

m∑
k=1

K12(tnj , tnk)Vnkajk,

0 = g(tnj) + h

n−1∑
i=0

m∑
k=1

K21(tnj , tik)Uikbk + h

m∑
k=1

K21(tnj , tnk)Unkajk.

Now, by substituting Unj and Vnj as solution of the resulting system into (4)1

and (5), we can get the numerical solution of IAEs system (1) for arbitrary ρ ∈ (0, 1].2

3. Convergence Analysis3

In this section, we give the main result of this paper in order to preserve the global4

convergence of the proposed scheme. The analysis employed here is essentially rely-5

ing on the given approach of the polynomial spline collocation method for the system6

of IAEs of index-1 in Kauthen [2000] including some innovations and new initiatives7

in the case cm < 1, which lead to completely different order of convergence results.8

Theorem 2. Assume that u = (u1, . . . , ud1)T and v = (v1, . . . , vd2)T with9

{ul}d1
l=1, {vl}d2

l=1 ∈ S−1
m−1(ΠN ) are the collocation approximations to the solution10

y = (y1, y2, . . . , yd1)T , z = (z1, z2, . . . , zd2)T of the index-2 IAEs system (1) which11

is defined by (4) and (5) and let the hypotheses of Theorem 1 hold. For the collocation12

parameter cm, two following cases can be considered:13

(1) If cm = 1, the collocation approximation (u,v)T converges to the solution
(y, z)T

, and we have

‖y − u‖∞ = O(hm), ‖z − v‖∞ = O(hm−1).

1250048-5
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(2) If cm < 1, the collocation approximation (u,v)T converges to the solution
(y, z)T for any m ≥ 3, if and only if

−1 ≤ ρm = (−1)m
m∏

i=1

1 − ci

ci
≤ 1.

Furthermore, the following order of convergence holds:

‖y − u‖∞ =

{
O(hm), if ρm ∈ [−1, 1),

O(hm−1), if ρm = 1,

‖z− v‖∞ =


O(hm−1), if ρm ∈ (−1, 1),

O(hm−2), if ρm = −1,

O(hm−3), if ρm = 1,

as h → 0, with Nh ≤ const.1

Proof. Using Peano’s Theorem and Corollary (1.8.2) from Brunner [2004], pp. 43
and 44, the exact solution of the IAEs system (1) can be obtained as:

y(tn + ρh) =
m∑

k=1

YnkLk(ρ) + hmRm,n(ρ), (8)

z(tn + ρh) =
m∑

k=1

ZnkLk(ρ) + hmR′
m,n(ρ), (9)

where Ynk = {Ylnk}d1
l=1 = y(tn + ckh), Znk = {Zlnk}d2

l=1 = z(tn + ckh), and the
Peano remainder and kernel are given by

Rm,n(ρ) =
∫ 1

0

y(m)(tn + xh)Km(ρ, x)dx,

R′
m,n(ρ) =

∫ 1

0

z(m)(tn + xh)Km(ρ, x)dx,

with

Km(ρ, x) =
1

(m − 1)

{
(ρ − x)(m−1)

+ −
m∑

k=1

Lk(ρ)(ck − x)(m−1)
+

}
, ρ ∈ (0, 1].

Suppose that e = y − u and e′ = z − v are the collocation errors, then by
considering the relations (8), (4) and (9), (5), we have the following representations

e(tn + ρh) =
m∑

k=1

EnkLk(ρ) + hmRm,n(ρ), (10)

e′(tn + ρh) =
m∑

k=1

E′
nkLk(ρ) + hmR′

m,n(ρ), (11)

where Enk = Ynk − Unk and E′
nk = Znk − Vnk.2

1250048-6



1st Reading

November 27, 2012 9:36 WSPC/0219-8762 196-IJCM 1250048

On the Convergence Analysis of the Spline Collocation Method for System of Integral Algebraic

Subtracting the first and second equation of (1) from (2) and (3), respectively,
we obtain

e(t) =
∫ t

0

K11(t, s)e(s)ds +
∫ t

0

K12(t, s)e′(s)ds, (12)

0 =
∫ t

0

K21(t, s)e(s)ds. (13)

Let us set ρ = (s − ti)/h, (i = 0, . . . , n), then we will have

e(tnj) = h

n−1∑
i=0

∫ 1

0

K11(tnj,ti+ρh)e(ti + ρh)dρ

+ h

n−1∑
i=0

∫ 1

0

K12(tnj , ti + ρh)e′(ti + ρh)dρ

+ h

∫ cj

0

K11(tnj , tn + ρh)e(tn + ρh)dρ

+ h

∫ cj

0

K12(tnj , tn + ρh)e′(tn + ρh)dρ, (14)

0 = h

n−1∑
i=0

∫ 1

0

K21(tnj , ti + ρh)e(ti + ρh)dρ

+ h

∫ cj

0

K21(tnj , tn + ρh)e(tn + ρh)dρ. (15)

We now rewrite (15) with n replaced by n−1 and j = m, subtract this equation
from (15) and divide by h:∫ cj

0

K21(tnj , tn + ρh)e(tn + ρh)dρ

=
∫ cm

0

K21(tn−1,m, tn−1 + ρh)e(tn−1 + ρh)dρ

−
∫ 1

0

K21(tnj , tn−1 + ρh)e(tn−1 + ρh)dρ

−
n−2∑
i=0

∫ 1

0

K21(tnj , ti + ρh) − K21(tn−1,m, ti + ρh)e(ti + ρh)dρ. (16)

In this position, we employ the Taylor series expansion of the components of
K21 as follows:

K21(tnj , ti + ρh) − K21(tn−1,m, ti + ρh)

= cjh
∂K21

∂t
(tn, ti + ρh) + (1 − cm)h

∂K21

∂t
(tn, ti + ρh) + O(h). (17)

where O(h) = {O(h)}d2×d1 .1

1250048-7
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We have to distinguish between two cases for cm, so let us assume that the1

domain of cm be divided into two disjoint subsets, cm < 1 and cm = 1. We analyze2

these two cases separately as follows:3

Case 1: cm = 1.4

Inserting (17) into (16), and considering the Taylor series expansion of
(K21(tn−1,m, tn−1+ρh)−K21(tnj , tn−1+ρh)), similar to (17), we can rewrite (16) as

∫ cj

0

K21(tnj , tn + ρh)e(tn + ρh)dρ = −
n−1∑
i=0

∫ 1

0

cjh
∂K21

∂t
(tn, ti + ρh)e(ti + ρh)dρ.

(18)

Substituting (10) into (18), yields

0 = −
m∑

k=1

∫ cj

0

K21(tnj , tn + ρh)EnkLk(ρ)dρ

−
n−1∑
i=0

m∑
k=1

∫ 1

0

cjh
∂K21

∂t
(tn, ti + ρh)EikLk(ρ)dρ

− hm

∫ cj

0

K21(tnj , tn + ρh)Rm,n(ρ)dρ

− hm

n−1∑
i=0

∫ 1

0

cjh
∂K21

∂t
(tn, ti + ρh)Rm,n(ρ)dρ.

(19)

We also rewrite (14), using (11) and (10) as

E(tnj) = h

n−1∑
i=0

m∑
k=1

∫ 1

0

K11(tnj , ti + ρh)EikLk(ρ)dρ

+ h
n−1∑
i=0

m∑
k=1

∫ 1

0

K12(tnj , ti + ρh)E′
ikLk(ρ)dρ

+ h

m∑
k=1

∫ cj

0

K11(tnj , tn + ρh)EnkLk(ρ)dρ

+ h

m∑
k=1

∫ cj

0

K12(tnj , tn + ρh)E′
nkLk(ρ)dρ

+ hm+1
n−1∑
i=0

∫ 1

0

K11(tnj , ti + ρh)Rm,n(ρ)dρ

+ hm+1
n−1∑
i=0

∫ 1

0

K12(tnj , ti + ρh)R′
m,n(ρ)dρ

1250048-8
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+ hm+1

∫ cj

0

K11(tnj , tn + ρh)Rm,n(ρ)dρ

+ hm+1

∫ cj

0

K12(tnj , tn + ρh)R′
m,n(ρ)dρ. (20)

Note that the equations (19) and (20) can be written as a compact matrix
representation:

A1En =
n−1∑
i=0

GEi + C, (21)

where

En =

(
En

E′
n

)
, En = {El,n}d1

l=1 = (Eln1, . . . , Elnm)T ,

E′
n = {E′

l,n}d2
l=1 = (E′

ln1, . . . , E
′
lnm)T ,

and

A1 =

(
Im − hB(1,1)

n −hB(1,2)
n

B(2,1)
n {0}d2×d2

)
,

where B(p,l)
n =

(R cj
0 K11(tnj, tn + ρh)Lk(ρ)dρ

j, k = 1, . . . , m

)
, (p, l = 1, 2) and Im = dig(Im) is d1 × d1

diagonal block matrix,

G =

(
hB(1,1)

n,i hB(1,2)
n,i

−hcjB̃
(2,1)
n,i {0}d2×d2

)
,

C =


hm+1

(
P(1,1)

n + P′(1,2)
n +

n−1∑
i=0

P(1,1)
n,i +

n−1∑
i=0

P′(1,2)
n,i

)

−hmP(2,1)
n − cjh

m+1
n−1∑
i=0

P̃(2,1)
n,i

,

where the meaning of the matrices B(p,l)
n,i , B̃(2,1)

n,i ,P(1,1)
n , . . . is clear.1

Due to the assumptions of Theorem 1, we have

|det(K21(t, t)K12(t, t))| > 0, ∀ t ∈ I,

this shows that A1 is an invertible matrix with the following representation: [see
Bernstein (2005), pp. 44]:

A−1
1 =

(
F−1

1 + F−1
1 F2(F4 − F3F

−1
1 F2)−1F3F

−1
1 −F−1

1 F2(F4 − F3F
−1
1 F2)−1

−(F4 − F3F
−1
1 F2)−1F3F

−1
1 (F4 − F3F

−1
1 F2)−1

)
,

where F1 = Im − hB(1,1)
n , F2 = −hB(1,2)

n , F3 = B(2,1)
n and F4 = {0}d2×d2 .2

1250048-9
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With these notations, A−1
1 is unbounded if h is sufficiently small. Multiply-

ing (21) by A−1
1 , the block matrices A−1

1 G and A−1
1 C may be obtained as

A−1
1 G =

(
{0}d1×d1 {0}d1×d2

D1 D2

)
, A−1

1 C =

(
{O(hm)}d1×1

{O(hm−1)}d2×1

)
,

where

D1 = −h(F4 − F3F
−1
1 F2)−1F3F

−1
1 B(1,1)

n,i − hcj(F4 − F3F
−1
1 F2)−1B̃(2,1)

n,i ,

D2 = −h(F4 − F3F
−1
1 F2)−1F3F

−1
1 B(1,2)

n,i ,

in which h → 0, with nh = T ≤ const.1

Considering the above representations, we conclude

‖En‖1 = O(hm),

where ‖ · ‖1 denotes the matrix (operator) norm induced by the L1-norm, and also

E′
n =

n−1∑
i=0

D2E′
i +

n−1∑
i=0

D1Ei + O(hm−1), (22)

where O(hm−1) = {O(hm−1)}d2×1. So, the Eq. (22) can be written as

E′
n =

n−1∑
i=0

D2E′
i + O(hm−1). (23)

It then follows from the Gronwall′s inequality [Brunner (2004)]

‖E′
n‖1 = O(hm−1), (24)

therefore, the following estimates for (11) and (10) can be obtained

|e(tn + ρh)| ≤ Ωm‖En‖1 + hmMmKm, (25)

|e′(tn + ρh)| ≤ Ωm‖E′
n‖1 + hmM ′

mKm, (26)

where

Mm = ‖y(m)‖∞, M ′
m = ‖z(m)‖∞, Km = max

ρ∈(0,1]

∫ 1

0

|Km(ρ, x)|dx,

and

Ωm = max
j

‖Lj‖∞.

Now, using (25) and (26) for cm = 1, we get

‖y − u‖∞ = O(hm), ‖z − v‖∞ = O(hm−1).

Case 2: cm < 1.2

In this case, we will make use of the result of Brunner [2004] which gives the
conditions and global order of convergence of the spline collocation method for
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the first kind integral equations. Actually, as stated in Theorem 2.4.2 of Brunner
[2004], pp. 123, we note that the second equation of (1) is a first kind Volterra
integral equation with solution y ∈ C(I). It can be seen that the functions g and
K21 of (1) are satisfy to the hypothesis of the theorem

g ∈ C1(I), g(0) = 0, K21 ∈ C1(D), |det(K21(t, t))| ≥ k0 > 0, t ∈ I,

hence there exists an h > 0, such that for all meshes Ih, with diameter h ∈ (0, h), the
corresponding linear algebraic system arises from the spline collocation equation,
possesses a unique solution and the collocation solution u converges to the exact
solution y, with the error estimation:

‖y − u‖∞ =

{
O(hm), if ρm ∈ [−1, 1),

O(hm−1), if ρm = 1.

Actually, the convergence properties of y to u, in this case may be discussed1

separately from z. So, our claim is obtaining the attainable order of convergence of2

‖z− v‖∞.3

Rewriting the Eq. (16), after inserting (17) and (10) get,

0 =
m∑

k=1

∫ cj

0

K21(tnj , tn + ρh)EnkLk(ρ)dρ

+
m∑

k=1

∫ 1

cm

K21(t(n−1)m, tn−1 + ρh)E(n−1)kLk(ρ)dρ

+
n−1∑
i=0

m∑
k=1

∫ 1

0

(cjh + (1 − cm)h)
∂K21

∂t
(tn, ti + ρh)EikLk(ρ)dρ

+ hm

∫ cj

0

K21(tnj , tn + ρh)Rm,n(ρ)dρ

+ hm

∫ 1

cm

K21(t(n−1)m, tn−1 + ρh)Rm,n(ρ)dρ

+ hm
n−1∑
i=0

∫ 1

0

(cjh + (1 − cm)h)
∂K21

∂t
(tn, ti + ρh)Rm,n(ρ)dρ. (27)

The equations (20) and (27) can be rewritten in the matrix notation

A1En = QEn−1 +
n−1∑
i=0

G′Ei + C′, (28)

where

Q =

(
{0}d1×d1 {0}d1×d2

Q0 {0}d2×d2

)
, Q0 =

−
∫ 1

cm

K21(t(n−1)m, tn−1 + ρh)Lk(ρ)dρ

k = 1, . . . , m

,
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G′ =

(
hB(1,1)

n,i hB(1,2)
n,i

−(cj + (1 − cm))hB̃(2,1)
n,i {0}d2×d2

)
,

C′ =


hm+1

(
P(1,1)

n + P′(1,2)
n +

n−1∑
i=0

P(1,1)
n,i +

n−1∑
i=0

P′(1,2)
n,i

)

hm(Q1 − P(2,1)
n ) − cjh

m+1
n−1∑
i=0

P̃(2,1)
n,i

,

and Q1 =
∫ 1

cm
K21(t(n−1)m, tn−1 + ρh)Rm,n(ρ)dρ.1

Multiplying (28) by A−1
1 , the second equation of the resulting system is obtained

as follows

E′
n = D2E′

n−1 +
n−2∑
i=0

D2E′
i + KQ0En−1 +

n−1∑
i=0

D′
1Ei + O(hm−1), (29)

where K = (F4 − F3F
−1
1 F2)−1.2

Consequently, B(1,2)
n,i may be written as

B(1,2)
n,i =


∫ cm

0

K12(tnj , ti + ρh)Lk(ρ)dρ +
∫ 1

cm

K12(tnj , ti + ρh)Lk(ρ)dρ

k = 1, . . . , m

.

From this, we can write D2 = D3 + D4, such that

D3 = −h(F4 − F3F
−1
1 F2)−1F3F

−1
1


∫ cm

0

K12(tnj , ti + ρh)Lk(ρ)dρ

k = 1, . . . , m

, (30)

D4 = −h(F4 − F3F
−1
1 F2)−1F3F

−1
1


∫ 1

cm

K12(tnj , ti + ρh)Lk(ρ)dρ)

k = 1, . . . , m

. (31)

Using (30) and (31), the Eq. (29) can be written as

E′
n = (D4 + D3)E′

n−1 +
n−2∑
i=0

D2E′
i + KQ0En−1 +

n−1∑
i=0

D′
1Ei + O(hm−1). (32)

Now, we first rewrite B(1,2)
n as

B(1,2)
n =

∫ cj

0

K12(tnj , tn + ρh)Lk(ρ)dρ = K12(tn, tn)
⊗

A + {O(h)}d1×d2 ,

where A =
( R cj

0 Lk(ρ)dρ
k, j = 1, . . . , m

)
and

⊗
is Kronecker product. Also, we have∫ 1

cm

K12(tnj , ti + ρh)Lk(ρ)dρ = K12(ti, ti)
⊗

F + {O(h)}d1×d2 ,

1250048-12



1st Reading

November 27, 2012 9:36 WSPC/0219-8762 196-IJCM 1250048

On the Convergence Analysis of the Spline Collocation Method for System of Integral Algebraic

where F =
(R 1

cm
Lk(ρ)dρ

k = 1, . . . , m

)
. On the other hand

D4 = −(F3F
−1
1 (K12(tn, tn)

⊗
A + {O(h)}d1×d2)

)−1
F3F

−1
1

× (K12(ti, ti)
⊗

F + {O(h)}d1×d2

)
.

In order to describe the key ideas without having to resort to complex notation
for D4, using properties of the Kronecker product we obtain

D4 � D5

⊗
A−1F,

where D5 is an identity d2×d2 matrix. According to Lemma 2.4.3 of Brunner [2004],
we know that A−1F has a nontrivial eigenvalue as

λ = ρm = (−1)m
m∏

i=1

1 − ci

ci
.

It follows from the elementary theory of the difference equations [see Elaydi1

(1999)] that the solutions of the system of the first-order difference Eq. (32) remain2

uniformly bounded, if and only if |λ| = |ρm| ≤ 1. [For further details see Brunner3

(2004), pp. 126]4

Now, if ρm = [−1, 1) then by considering Theorem 2.4.2 from Brunner [2004],
we conclude ‖En‖1 = O(hm), (n = 0, . . . , N − 1) so, the Eq. (32) can be written as:

E′
n = (D4 + D3)E′

n−1 +
n−2∑
i=0

D2E′
i + O(hm−1). (33)

Since A−1F is diagonalizable, there exists a nonsingular matrix P such that
D4 � D5

⊗
PDλP−1 where Dλ = diag(λ, 0, . . . , 0). Multiplying (33) by P̂d2×d2 =

diag(P−1, P−1, . . . , P−1) and defining Zn = P̂E′
n, we obtain

Zn =
(
D5

⊗
Dλ

)
Zn−1 + P̂D3P̂

−1
Zn−1 +

n−2∑
i=0

P̂D2P̂
−1

Zi + O(hm−1). (34)

Taking norms, we arrive at inequality of the form

‖Zn‖ ≤ |λ|‖Zn−1‖ + γ3‖Zn−1‖ + γ2

n−2∑
i=0

‖Zi‖ + O(hm−1). (35)

Repeated insertion of this formula and considering the Lemma 6 of Hairer et al.
[1983] give

‖Zn‖ ≤ |λ|n‖Z0‖ +
n∑

i=1

|λ|n−iO(hm−1) + O(hm−1). (36)

If |λ| < 1, then ‖Zn‖ = O(hm−1), and

‖E′
n‖1 = O(hm−1). (37)
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If |λ| = 1, then ‖Zn‖ = O(hm−2), and

‖E′
n‖1 = O(hm−2). (38)

In the case of ρm = 1, by considering Theorem 2.4.2 from Brunner [2004], we
have ‖En‖ = O(hm−1), (n = 0, . . . , N − 1) and the Eq. (32) can be written as

E′
n = (D4 + D3)E′

n−1 +
n−2∑
i=0

D2E′
i + O(hm−2). (39)

Using a similar procedure as outlined for (34), (35) and (36), the following result
can be obtained for the relation (39)

‖E′
n‖1 = O(hm−3). (40)

Now, (37) and (26) for cm < 1 and ρm = (−1, 1), give

‖z− v‖∞ = O(hm−1).

Also, (38) and (26) for cm < 1 and ρm = −1 (m is odd), yield

‖z− v‖∞ = O(hm−2).

Finally, using (40) and (26) for cm < 1, and ρm = 1 (m is even), we conclude

‖z− v‖∞ = O(hm−3),

which leads to the stated estimates of the theorem.1

We must emphasize that, the convergence orders in Theorem 2 are completely2

different from the analogous one for index-1 IAEs in Kauthen [2000]. It is interesting3

to note that for the index-2 IAEs (1) in the case of cm < 1, the orders of convergence4

O(hm−2) and O(hm−3) are attained for z-component, if m is odd (ρm = −1) and5

even (ρm = 1), respectively. However, following kauthen [2000], for IAEs of index-16

the global convergence orders O(hm) and O(hm−1) for z have been obtained while7

−1 ≤ ρm < 1 and ρm = 1, respectively.8

4. Numerical Results and Discussions9

To illustrate the theoretical findings of the preceding sections, we will present some10

numerical results of the proposed method for the considered IAEs systems of index-11

2 from Hadizadeh et al. [2011]. Let u = (u1, . . . , ud1)
T and v = (v1, . . . , vd2)

T
12

with {ul}d1
l=1, {vl}d2

l=1 ∈ S−1
m−1(ΠN ) be the collocation solution. We consider the13

collocation parameters in two cases, cm = 1 and cm < 1. For cm = 1, we choose14

the Radau II points (i.e., the zeros of Pm−1(2s − 1) − Pm(2s − 1)) as collocation15

parameters and for the case cm < 1, we apply the zeros of Pm(2s − 1) as the16

collocation parameters in which Pm denotes the Legendre polynomial of degree m.17

The accuracy of the proposed method is measured by computing the difference
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between the exact and the numerical solution at each gridpoints. We also report1

the observed order of convergence from the maximum errors ‖y−u‖∞ and ‖z−v‖∞2

at the gridpoints. All the calculations were supported by the Mathematica�.3

Example 1. [from Hadizadeh et al. (2011)] Consider the following system of linear
semi-explicit index-2 IAEs of the Hessenberg form:

AX(t) = G(t) +
∫ t

0

K(t, s)X(s)ds, t ∈ [0, 1],

where

A =

(
1 0

0 0

)
, K(t, s) =

(
et+s (s + 1)2

s + t + 2 0

)
,

X(t) = (y(t), z(t))T , G(t) = (f(t), g(t))T ,

and

f(t) = sin t − 1
2
et(1 + et(− cos t + sin t))

− 1
4
(−2 + 2(1 + t) cos 2t + (1 + 4t + 2t2) sin 2t),

g(t) = −(2 + t) + 2(1 + t) cos t − sin t.

The exact solution of the system is:

y(t) = sin t, z(t) = cos 2t.

The maximum errors have been shown for different values of m and N at the4

gridpoints in the Tables 1, 2, 5, and 6. Also, the orders of convergence from the5

maximum errors at the gridpoints have been reported in Tables 3, 4, 7, and 8 which6

they confirm the theoretical results of the Theorem 2.7

Example 2. [from Hadizadeh et al. (2011)]

AX(t) = G(t) +
∫ t

0

K(t, s)X(s)ds, t ∈ [0, 1],

Table 1. Maximum errors ‖y − u‖∞ and ‖z − v‖∞ with cm = 1 in Example 1.

‖y − u‖∞ ‖z − v‖∞
m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

2 4.00E − 4 1.04E − 4 2.65E − 5 2.69E − 2 1.68E − 2 9.38E − 3
3 4.11E − 6 5.16E − 7 6.46E − 8 4.63E − 4 1.13E − 4 2.78E − 5
4 2.73E − 8 1.76E − 9 1.11E − 10 6.58E − 6 9.82E − 7 1.33E − 7
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Table 2. Maximum errors ‖y − u‖∞ and ‖z − v‖∞ with cm < 1 in Example 1.

‖y − u‖∞ ‖z − v‖∞
m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

3 6.75E − 6 8.38E − 7 1.04E − 7 4.10E − 3 2.00E − 3 9.95E − 4
4 3.69E − 7 4.65E − 8 5.83E − 9 7.24E − 4 3.65E − 4 1.82E − 4

Table 3. Orders of convergence of u and v with cm = 1 in
Example 1.

u v

m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

2 1.87 1.96 1.97 0.36 0.67 0.84
3 2.98 2.99 2.99 2.05 2.03 2.02
4 3.90 3.95 3.98 2.79 2.79 2.88

Table 4. Orders of convergence of u and v with cm < 1, ρm = −1
and ρm = 1 in Example 1.

u v

m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

3 3.02 3.00 3.00 1.10 1.03 1.00
4 2.97 2.98 2.99 0.94 0.98 1.00

Table 5. Maximum errors ‖y1 − u1‖∞, ‖y2 − u2‖∞ and ‖z1 − v1‖∞ with cm = 1 in Example 2.

‖y1 − u1‖∞ ‖y2 − u2‖∞ ‖z1 − v1‖∞
m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

2 6.08E − 3 1.54E − 3 3.89E − 4 3.08E − 3 7.79E − 4 1.95E − 4 2.79E − 1 1.45E − 1 7.42E − 2
3 7.93E − 5 1.01E − 5 1.28E − 6 3.96E − 5 5.07E − 6 6.40E − 7 3.82E − 3 9.75E − 4 2.46E − 4
4 6.06E − 7 3.86E − 8 2.44E − 9 3.03E − 7 1.93E − 8 1.22E − 9 9.70E − 5 1.23E − 5 1.56E − 6

Table 6. Maximum errors ‖y1 − u1‖∞, ‖y2 − u2‖∞ and ‖z1 − v1‖∞ with cm < 1 in Example 2.

‖y1 − u1‖∞ ‖y2 − u2‖∞ ‖z1 − v1‖∞
m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

3 7.93E − 5 1.04E − 5 1.33E − 6 4.89E − 5 6.76E − 6 8.89E − 7 8.15E − 2 4.08E − 2 2.04E − 2
4 1.93E − 5 2.47E − 6 3.13E − 7 1.27E − 5 1.65E − 6 2.10E − 7 3.47E − 2 1.78E − 2 9.06E − 3
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Table 7. Order of convergence of u1, u2, and v1 with cm = 1 in Example 2.

u1 u2 v1

m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

2 1.94 1.98 1.98 1.96 1.98 1.99 0.88 0.94 0.96
3 2.93 2.97 2.98 2.93 2.96 2.98 1.94 1.97 1.98
4 3.94 3.97 3.98 3.93 3.97 3.98 2.93 2.97 2.98

Table 8. Orders of convergence of u1, u2, and v1 with cm < 1, ρm = −1 and ρm = 1 in Example 2.

u1 u2 v1

m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

3 2.86 2.93 2.96 2.73 2.85 2.92 0.99 0.99 1
4 2.93 2.96 2.98 2.90 2.94 2.97 0.92 0.96 0.97

where

A =

1 0 0

0 1 0

0 0 0

, K(t, s) =


3 − 2s

2 − s

3 − s

2 − s
2(2 − s)

−1
s − 2

−1 1

s + 2 s2 − 4 0

,

X(t) = (y1(t), y2(t), z1(t))T , G(t) = (1, 2et − 1,−1 + et(−t2 + t + 1))T ,

with the exact solution:

y1(t) = y2(t) = et, z1(t) = − et

2 − t
.

We compare the results obtained by the presented method with those obtained1

by Jacobi spectral method in Hadizadeh et al. [2011]. However, we note that, spec-2

tral methods are global methods such that the computation at any given point3

depends not only on information at neighboring points, but on information from4

the entire domain. Due to completely smoothness of the exact solutions for two pre-5

vious examples, the results obtained using Jacobi spectral method Hadizadeh et al.6

[2011] is more accurate than the spline collocation method in this case. The error7

behaviors obtained by the spline collocation and Jacobi spectral methods for the8

special values of m and N in Examples 1, 2 are shown in Figs. 1 and 2, respectively.9

In this position, for the better comparison purpose, we present the following test10

problem:11

Example 3. Consider the following IAEs system:

AX(t) = G(t) +
∫ t

0

K(t, s)X(s)ds, t ∈ [0, 1],
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Fig. 1. On the left we show the numerical results of the spline collocation method with N = 14,
cm = 1, and m = 7 in Example 1. On the right we show the numerical results of the same problem
using Jacobi spectral method for N = 14.

0.0 0.2 0.4 0.6 0.8 1.0

−15

−10

−5

0

L
o
g
1
0
 
(E
r
r
o
r

)

L
o
g
1
0
 
(E
r
r
o
r

)

m=6,N=14

−1.0 −0.5 0.0 0.5 1.0

−15

−10

−5

0
N=14

Log10 |z
1
−v

1
|

Log10 |y
2
−u

2
|

Log10 |y
1
−u

1
|

Fig. 2. On the left we show the numerical results of the spline collocation method with N = 14,
cm = 1 and m = 7 in Example 2. On the right we show the numerical results of the same problem
using Jacobi spectral method for N = 14.

where

A =

(
1 0

0 0

)
, K(t, s) =

(
t + s2 (s + t2 + 1)

s2 + t4 + 4 0

)
,

X(t) = (y(t), z(t))T , G(t) = (f(t), g(t))T ,
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and f, g such that the exact solution is

y(t) =
t

t4 + 1
, z(t) = arctan (t2 + 1).

The problem is solved by the Jacobi collocation method Hadizadeh et al. [2011],1

with α = 1
2 , β = 1

3 and then the L2
wα,β errors for different values of N = 6, 8, . . . are2

reported in Table 9. Again, it is solved by the spline collocation method and the3

maximum errors and order of convergence for different values of m and N at the4

gridpoints are shown in Tables 10–13. Figure 3 shows a comparison between the5

spline collocation scheme with m = 6, N = 14 and the Jacobi spectral method for

Table 9. L2
wα,β errors for Example 3.

N ‖y − u‖L2
wα,β

‖z − v‖L2
wα,β

6 6.41E − 4 7.02E − 3
8 4.84E − 5 6.60E − 4
10 1.97E − 6 2.59E − 5
12 2.13E − 7 1.24E − 5
14 5.70E − 8 3.03E − 6

Table 10. Maximum errors ‖y − u‖∞ and ‖z − v‖∞ with cm = 1 in Example 3.

‖y − u‖∞ ‖z − v‖∞
m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

2 1.18E − 3 2.97E − 4 7.46E − 5 4.90E − 2 2.53E − 2 1.28E − 2
3 2.65E − 5 3.41E − 6 4.28E − 7 1.55E − 3 3.78E − 4 9.45E − 5
4 8.70E − 7 5.48E − 8 3.44E − 9 1.18E − 4 1.52E − 5 1.94E − 6

Table 11. Maximum errors ‖y − u‖∞ and ‖z − v‖∞ with cm < 1 in Example 3.

‖y − u‖∞ ‖z − v‖∞
m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

3 3.66E − 5 4.48E − 6 5.56E − 7 1.30E − 2 6.18E − 2 3.03E − 3
4 5.99E − 6 7.49E − 7 9.40E − 8 1.21E − 2 6.07E − 3 3.04E − 3

Table 12. Orders of convergence of u and v with cm = 1 in Example 3.

u v

m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

2 1.97 1.99 1.99 0.87 0.95 0.98
3 2.90 2.95 2.99 2.08 2.03 2.00
4 3.91 3.98 3.99 2.75 2.95 2.96
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Table 13. Orders of convergence of u and v with cm < 1, ρm = −1
and ρm = 1 in Example 3.

u v

m N = 16 N = 32 N = 64 N = 16 N = 32 N = 64

3 3.08 3.03 3.01 1.22 1.07 1.02
4 3.01 2.99 2.99 1.00 0.99 1.00
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Fig. 3. On the left we show the numerical results of the spline collocation method with N = 14,
cm = 1 and m = 7 in Example 3. On the right we show the numerical results of the same problem
using Jacobi spectral method for N = 14.
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Fig. 4. Numerical results of the spline collocation method with N = 64, cm = 1, and m = 6 in
Example 3.
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N = 14. As it can be seen from Fig. 3, the spline collocation method is superior in1

accuracy to the Jacobi spectral method in this case.2

Noting that, increasing m in the spline collocation method improve the accuracy,
e.g., for m = 6 and N = 64, we have

‖y − u‖∞ = 8.63E − 13, ‖z − v‖∞ = 7.26E − 10.

Figure 4, represents the error behavior for these values of m and N .3

5. Conclusion4

In this paper, we performed a polynomial spline collocation method for the numeri-5

cal solution of system of semi-explicit IAEs of index-2. The most important novelty6

of this work is obtaining the necessary and sufficient conditions for convergence of7

discontinuous collocation approximate solution for the IAEs system. We emphasize8

that in the case of IAEs of index-1, it has shown that the superconvergence occurs9

when the collocation parameters cj are the Radau Π points for (0,1] [see Kauthen10

(2000) for further details], however our numerical experiments show that for the11

system of IAEs of index-2, this property does not occur in these points. More inves-12

tigation of the superconvergence results for the IAEs of index-2 will be the subject13

of our future work.14
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