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In this research, we give details of a new numerical method for the approximate solution
of a general two-dimensional Volterra integral equation, using the discontinuous wavelet
packets e.g. Walsh functions. The double Walsh approximation we have adopted utilizes
a simple robust numerical scheme for approximate solution of the equations. The two-
dimensional operational matrix of integration for each subinterval [ i−1

m
,

i

m
] is explicitly

constructed, where m is a power of 2. Finally the reliability and efficiency of the proposed
scheme are demonstrated by some numerical results.
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1. Introduction

In recent years, the Walsh theory has been innovated and investigated to various

fields of applied sciences e.g. signal processing, communication and pattern recogni-

tion [18], transform spectroscopy [10], heart rate, optimal linear systems [17], vari-

ational problems [6, 20], etc. The basic properties and notations of Walsh functions

may be found in [18, 21, 9] and references therein. This paper is concerned with the

development of efficient numerical method based on double Wlash transformation
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for the solution of two-dimensional Volterra integral equations of the second kind

u(x, y) = f(x, y) +

∫ x

0

∫ y

0

k(x, y, s, t)u(s, t)dsdt, (x, y) ∈ D, (1.1)

where the known functions f(x, y) and k(x, y, s, t) are defined, respectively, on

D := [0, 1]× [0, 1] and S := {(x, y, s, t) : 0 ≤ s ≤ y ≤ 1, 0 ≤ t ≤ x ≤ 1} and u(x, y)

is a solution to be determined. This equation may arise from certain hyperbolic dif-

ferential equations (see [8], for an equivalent formulation of the Darboux problem).

Actually, a few approximate methods for (1.1) are known. Beltyukov et al. in [1]

proposed a class of explicit Runge-Kutta type methods of order 3. Bivariate cubic

spline functions method was obtained by Singh in [23]. In [4] an exhaustive analysis

of polynomial spline collocation and iterated methods was given by Brunner and

Kauthen. The asymptotic error expansion of collocation and iterated collocation as

well as Galerkin and iterated Galerkin solutions for two-dimensional linear and non-

linear Volterra integral equations were obtained by Guoqiang et al. in [14, 13]. Here,

we restrict our attention to the approximate solution of the linear two-dimensional

Volterra integral equations by the Walsh function spectral approach. There has

been considerable interest in solving integral equations using techniques which in-

volve Walsh functions. A summary of the historical developments of the Walsh

approximation for integral equations may be found in [15, 3] where an excellent

bibliography on Walsh functions and its applications is also given in [9]. One of the

motivations for these developments is that these methods usually involve the use

of fast Walsh Fourier transform, which is faster than the corresponding transforms

such as the trigonometric fast Fourier transform. Also, Walsh functions appear to

be easily incorporated into a wide variety of robust general purpose algorithms.

2. Preliminaries and Basic Idea

Let f ∈ L2[0, 1), then f(x) can be expanded as a series of Walsh functions f(x) =∑
∞

i=0
ciWi(x), where ci =

∫ 1

0
f(x)Wi(x)dx. It is well known that its integral from

0 to x have Walsh series with coefficients of bi, where
∫ x

0
f(t)dt =

∑
∞

i=0
biWi(x). If

we truncate to m = 2n terms and use to obvious vector notation, then integration

is performed by matrix multiplication b = P t
mc, where

P t
m =




Pm

2

1

2m
Im

2

−1

2m
Im

2
Om

2



 , P t
2 =




1

2

1

4

−1

4
0



 ,

and Im and Om are the unit matrix and zero matrix of order m, respectively. (For

details see [6, 2].) Now, if f(x, y) has a Walsh series with coefficients cij and its

integral has a truncated Walsh series with coefficients of bij , such that

∫ x

0

∫ y

0

f(t, s)dtds =

∫ x

0

∫ y

0

m−1∑

i=0

m−1∑

j=0

cijWi(t)Wj(s)dtds =

m−1∑

i=0

m−1∑

j=0

bijWi(x)Wj(y),
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we will show that the integration is performed by system of equations b = P′

mc.

The solution process of this equation leads to a linear system in which the solution

at the dyadic grid points is recovered by a method which requires as an input the

initial value and average value of the function over the subintervals [ i−1

m
, i
m
] and

[ j−1

m
, j

m
] and gives the approximate values of the solution at the grid points. In the

next section, the two-dimensional operational matrix of integration is constructed.

2.1. Operational matrix

Before giving a more details of the Walsh approximation for two-dimensional in-

tegral equations, we obtain a general formula for integration of two-dimensional

Walsh functions. The integration process of a step function is defined as:∫ ∫
W0(t)W0(s)dtds. We will show that, the function f can be expressed by a Walsh

series. However, the coefficients ci of the Walsh series for the function f(x) are given

by cm = 1

m
Wmfm, and so for the function f(x, y), the double Walsh coefficients

are:

cm =
1

m2
WmfmWm.

We may set m = 2, therefore:

xy = c00W0(x)W0(y) + c01W0(x)W1(y) + c10W1(x)W0(y) + c11W1(x)W1(y),

where the coefficients cij are calculated as follows:



c00 c01

c10 c11


 =

1

4




1 1

1 −1







1

16

3

16

3

16

9

16







1 1

1 −1


 =




1

4

−1

8

−1

8

1

16


 .

Similarly, we can evaluate the Walsh series coefficients of the integration of

functions W0(s)W1(t),W1(s)W0(t) and W1(s)W1(t). The operational matrix P′

2

with some changes in entries for the integration process
∫ x

0

∫ y

0
Wi(t)Wj(s)dtds, can

be expressed in a block matrix form:

P′

4 =




1

4

1

8
−1

8
0

1

8

1

16
−1

16
0

−1

8

−1

16
1

16
0

0 0

0 0


 =

(
1

8
P t
2

1

4
P t
2

−1

4
P t
2 O2

)

4×4

.

It is straightforward to show that the general form for the operational matrix

P′ of order m2 (which is positive integer power of 2) can be obtained as:

P′

m2 =




1

2
P t
m

. . .

2

m
P

m
2

8

−2

m
P

m
2

8

O
m

2

8

1

m
P

m
2

4

−1

m
P

m
2

4

O
m

2

4

1

2m
P

m
2

2

−1

2m
P

m
2

2

O
m

2

2




m2×m2

,
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where P
m

2

2

and O
m

2

2

are the following matrices:

P
m

2

2

=




P t
m Om . . . Om

Om P t
m . . . Om

...
...

Om Om . . . P t
m




m
2

2
×

m
2

2

, O
m

2

2

=




Om . . . Om

Om . . . Om

...
...

Om . . . Om




m
2

2
×

m
2

2

.

3. The Numerical Analysis of the Scheme

As a consequence of the previous section, here we derive formulas for numerical solv-

ability of linear integral equation (1.1) based on double Walsh approximation and

the two-dimensional operational matrix of integration. The first task is to replace

all functions in (1.1) with their Walsh series as follows:

u(x, y) =
∞∑

i=0

∞∑

j=0

cijWi(x)Wj(y), cij =

∫ 1

0

∫ 1

0

u(x, y)Wi(x)Wj(y)dxdy,

and

f(x, y) =

∞∑

i=0

∞∑

j=0

c′ijWi(x)Wj(x), c′ij =

∫ 1

0

∫ 1

0

f(x, y)Wi(x)Wj(y)dxdy.

The kernel k(x, y, s, t) is approximated by a fourth order Walsh series:

k(x, y, s, t) =

∞∑

i=0

∞∑

j=0

∞∑

m=0

∞∑

n=0

kijmnWi(x)Wj(x)Wm(s)Wn(t),

where

kijmn =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

k(x, y, s, t)Wi(x)Wj(y)Wm(s)Wn(t)dxdydsdt.

Following Fine [9], the m = 2nth partial sum of the Walsh series of a function

f is a piecewise constant, equal to the L1 mean of f on each subinterval [ i−1

m
, i
m
].

In this case the coefficients c′ij and kijmn of the Walsh series are:

c′ij =

m−1∑

i=0

m−1∑

j=0

1

m2
Wij f̃ijWij ,

where f̃ij is the average value of the function f(x, y) in all subintervals and Wij is

the value of the ith Walsh function in the jth subinterval. Also, we get:

Km2 =
1

m4
Wm2K̃m2Wm2 .

Dividing the interval [0, 1) into m subintervals along the x-axis and the y-axis,

respectively, we replace all functions by their Walsh series and integrate them in
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appropriate moments over the grids of the form [ i−1

m
, i
m
) and [ j−1

m
, j
m
). Finally, the

following matrix equation is obtained:

WmCmW ′

m = WmC′

mW ′

m +

m−1∑

l=0

m−1∑

k=0

m−1∑

g=0

m−1∑

h=0

m−1∑

p=0

m−1∑

q=0

kghpqclk

×




W ′

i+1,1a11Wj+1,1 · · · W ′

i+1,1a1mWj+1,m

W ′

i+1,2a21Wj+1,1 · · · W ′

i+1,2a2mWj+1,m

...
...

...

W ′

i+1,mam1Wj+1,1 · · · W ′

i+1,mammWj+1,m


 . (3.1)

Note that in our innovate matrix, the W ′

i+1,t (1 ≤ t < m) is the (i+1, t)th entry

of the Walsh matrix along the x-axis, Wi+.1,t is the (i + 1, t)th entry of the Walsh

matrix along the y-axis and aij (1 ≤ i, j < m) is defined as follows:

WmP1W
′

m =



a11 · · · a1m
...

...
...

am1 · · · amm


 .

For computing the above matrix, we need to calculate:
∫ x

0

∫ y

0

Wl(s)Wk(t)Wp(s)Wq(t)dsdt.

Following [11, p. 1159], using the multiplication rule of two-dimensional Walsh

series, we take z = l
⊗

p and v = k
⊗

q, then we must compute the double integral∫ x

0

∫ y

0
Wz(s)Wv(t)dsdt. Note that one of the columns of operational matrix P′ for

l, k, p, q = 0, . . . ,m− 1 is each of integration process. Changing each m2 entries of

column of operational matrix to the m×m matrix, the matrix P1 is obtained.

Finally, we obtain a linear system of m2 equation with m2 unknown coefficients,

which gives the Walsh coefficients. The reliability and efficiency of the proposed

scheme are demonstrated by some numerical experiments, in the next section.

4. Numerical Experiments

Test problem 1. Consider the following two-dimensional Volterra integral

equation:

u(x, y) = x2 + y2 −
y3

3
x−

x3

3
y +

∫ x

0

∫ y

0

u(t, s)dtds, (x, y) ∈ [0, 1]× [0, 1],

with the exact solution u(x, y) = x2 + y2. Let uN (x, y) be the approximate solution

of the equation which is approximated by the truncated double Walsh series:

uN (x, y) =

m−1∑

i=0

m−1∑

j=0

cijWi(x)Wj(y).
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m h Max error

2 1

2
2.00× 10−3

4 1

4
1.10× 10−5

8 1

8
6.80× 10−9

We choose a uniform partition of the unit interval [0, 1) and set h = 1

m
for m =

2, 4, 8, .... The m2 Walsh coefficients of approximate solution have been obtained

using the linear system of equation (3.1). All computations were carried out in

double precision arithmetic with Mapler software. The maximum errors of the

scheme are given in Table 1.

However, better approximation is expected by choosing a larger values of m.

Test problem 2. (From [16]) Consider the first kind of Volterra integral

equation:

f(x, y) =

∫ x

0

∫ y

0

(sin(x + t) + sin(y + s) + 3)u(t, s)dtds, (x, y) ∈ [0, 1]× [0, 1],

and choose f(x, y) such that the exact solution is u(x, y) = cos(x+ y).

The L∞ errors in some subintervals for m = 4 are of special interest and can

be compared with those obtained by previous work [16]. The matrix form of above

equation for m = 4 is as follows:

W4C4W
′

4 = W4C
′

4W
′

4 +

3∑

l=0

3∑

k=0

3∑

i=0

3∑

j=0

3∑

p=0

3∑

q=0

kijpqclk

×




W ′

i+1,1a11Wj+1,1 W ′

i+1,1a12Wj+1,2 W ′

i+1,1a13Wj+1,3 W ′

i+1,1a14Wj+1,4

W ′

i+1,2a21Wj+1,1 W ′

i+1,2a22Wj+1,2 W ′

i+1,2a23Wj+1,3 W ′

i+1,2a24Wj+1,4

W ′

i+1,3a31Wj+1,1 W ′

i+1,3a32Wj+1,2 W ′

i+1,3a33Wj+1,3 W ′

i+1,3a34Wj+1,4

W ′

i+1,4a41Wj+1,1 W ′

i+1,4a42Wj+1,2 W ′

i+1,4a43Wj+1,3 W ′

i+1,4a44Wj+1,4


 .

We take h = 0.25, and mi = [ i−1

m
, i
m
], nj = [ j−1

m
, j

m
], so, the results for different

values of i = j = 1, 2, 3, 4 are obtained.

i(= j) h = 0.25

1 9.21× 10−4

2 7.19× 10−4

3 3.02× 10−3

4 1.71× 10−5

‖e(h)‖∞ 3.02× 10−3
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For the Walsh approximation scheme, the errors on the subintervals are mainly

less than the corresponding errors at the other grid points for the Euler and trape-

zoidal methods. (For details see [16].)

5. Conclusion

The intent of this note was to confirm the Walsh approximation for numerical

solution of general two-dimensional Volterra integral equations. The reliability and

efficiency of the scheme are demonstrated by some numerical experiments. Due to

the nature of Walsh functions, the process of solution mainly depends on m, where

for the larger values of m, we have some restrictions dealing with large matrices.

However, following [19], using the generalization of the single-term Walsh series

strategy we can address this problem in the proposed scheme that will be addressed

in an upcoming paper.
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