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This paper is concerned with new algorithms which provide the sharp bounds that are
guaranteed to contain the exact solutions of nonlinear Volterra integral equations. We
develop new enclosure algorithms based on the interval methods which was first intro-
duced by Moore in [24] together with the Taylor polynomials to improve the accuracy of
the scheme by reducing the width of interval solutions. The modified methods calculate
a priori bound automatically in parallel with the computation of solutions of integral equa-
tions. We will show that the accuracy of the proposed algorithms is dependent on the num-
ber of interval subdivisions. Some numerical experiments are also included to demonstrate
the validity and applicability of the scheme and showing a marked improvement in com-
parison with the recent existing numerical results.
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1. Introduction

In recent years, enclosure methods have been used widely in numerical solution of many operator equations (see e.g. [1–
5]). These methods usually start with an interval vector which contains a solution and improve this inclusion iteratively. In
comparison to classical numerical schemes which only provide the approximate values of the solutions and they rarely
determine the precise error bounds, interval enclosure methods enable us to compute guaranteed error bounds including
all discretization and round off errors. It is known that truncation and round off errors corresponding to the problem are
usually negligible but they may cause some serious problems (see e.g. [6]). This makes computation with guaranteed error
bounds a useful tool in applied problems in science and technology. Today many generalized models of uncertainty are clo-
sely connected with interval analysis e.g. fuzzy set theory and engineering problems with interval valued parameters or
interval initial values [4], so interval algorithms are powerful tools for analyzing such problems. Some applications of inter-
val methods in robust control, robotics, multimedia architectures and other engineering problems may be found in [7–9].
(see also [1] for a survey on enclosure methods).

On the other hand, nonlinear integral equations usually originate from mathematical descriptions of natural phenomena
such as elastic systems, optical systems and the theory of biological and population growth [10–12]. Here, we focus on com-
putation of the guaranteed bounds for the solutions of the following nonlinear Volterra integral equation
uðxÞ ¼ f ðxÞ þ
Z x

0
kðx; t; uðtÞÞdt; x 2 ½0;X�; ð1:1Þ
where f and k are given continuous functions on ½0;X� and S� R (where S ¼ fðx; tÞ : 0 6 t 6 x 6 Xg, respectively and u(x) is a
solution to be determined.
. All rights reserved.

deh).
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Some commonly used methods that are often used to determine numerical approximations to (1.1) may be found in
[13–15]. There are also some considerable interval based works in solving Fredholm and Volterra integral equations. Moore
has introduced an iterative algorithm for nonlinear integral equations based on the definition of interval integration, how-
ever this method is not so efficient and has a slow rate of convergence [24, pp. 88]. Caprani et al. in [16] presented a similar
method to solve the general form of Fredholm integral equations by defining a nested sequence of function intervals with the
contraction property of the integral operator using the mean value form of the operator. Dobner published several papers on
solving Fredholm integral equations using enclosure methods [17,18]. In 2003, Berz and Makino [19] employed a new ver-
sion of the method called Taylor model. Recently, Murashige and Oishi in [20,21] presented numerical verification of solu-
tions of periodic integral equations with a singular kernel and Nekrasovs integral equation. In comparison to Fredholm
type, there are only few methods for solving Volterra integral equations, especially when they are nonlinear [22,23].

In the present work, we provide high order guaranteed bounds for the solutions of nonlinear Volterra integral equations
of the second kind. Our aim is applying the Taylor polynomials with bounded remainder to enclose the integral kernel and
other functions (instead of integral operator) and also computing the enclosures for partial derivatives based on initial inter-
vals. We develop new enclosure algorithms based on Moore’s interval method [24] together with the Taylor polynomials to
increase the accuracy of the scheme and reducing the width of interval solutions.

It is worth noting that the algorithms of this paper can be employed to solve any nonlinear problems (whether the non-
linearity be algebraic, exponential and etc.) that may arise in practice.

The organization of this paper is as follows. We first summarize the principles of interval arithmetic and some relevant
topics. Some modified enclosure algorithms including the Taylor polynomials to improve the accuracy of the scheme and the
convergence conditions of the iterations are given in Section 3. Finally, in the last section some numerical experiments are
reported to clarify the method and a few comparisons are made with existing classical methods in the literature.

2. Preliminaries

We first introduce some basic properties of interval arithmetic from [17,3–5]. An interval number is a closed set in R that
includes the possible range of an unknown real number, where R denotes the set of real numbers. Therefore, a real interval is
a set of the form
X ¼ ½x; �x�;
where x and �x are the lower and upper bounds (endpoints) of the interval number X, respectively. The set of compact real
intervals is denoted by
IR ¼ fX ¼ ½x; �x�jx; �x 2 R; x 6 �xg:
A real number x is identified with a point interval X = [x,x]. The quality of interval analysis is measured by the width of the
interval results, and a sharp enclosure for the exact solution is desirable. The midpoint and the width of an interval X are de-
noted by mðXÞ :¼ ðxþ �xÞ=2 and wðXÞ :¼ �x� x, respectively. Considering jXj ¼ maxfjxj; j�xjg, for any X; Y 2 IR and a; b 2 R we
can conclude that
wðaX þ bYÞ ¼ jajwðXÞ þ jbjwðYÞ; ð2:1Þ
wðXYÞ 6 jXjwðYÞ þ jYjwðXÞ: ð2:2Þ
The four elementary operations of real arithmetic can be extended to intervals. Operations over intervals } 2 {+,�,⁄, /} are
defined by the general rule
X}Y ¼ fx}yjx 2 X; y 2 Yg:
It is easy to see that the set of all possible results when applying an operator } to X and Y, forms a closed interval (for 0 R Y
in the case of division) and the end point can be calculated by
X}Y ¼ fminðx}yÞ; maxðx}yÞg; for } 2 fþ;�; �; =g:
Now, we can define functions of interval variables or inclusion functions of f, in a similar fashion, as
FðXÞ ¼ ff ðxÞjx 2 Xg: ð2:3Þ
Note that when F is an inclusion function of f, then we can directly obtain lower and upper bounds of F over any interval X
within the domain of F just by taking F(X) and FðXÞ, respectively.

Moore in [24] has introduced the interval extension of a real integral as
Z x

a
f ðxÞdx 2 Fð½a; x�Þðx� aÞ; ð2:4Þ
where X is the interval of integration and F is inclusion function of f.
In interval analysis the dependency effect, which is the failure of interval arithmetic to identify different occurrences of the

same variable, usually results in overestimation in computations. For example, the range of f(x) = x/(1 + x) on X = [1,2] is [1/
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2,2/3], but F(X) = [1/3,1]. To overcome this difficulty, some alternative schemes such as centered form and Taylor polynomi-
als are proposed in [1,24,5]. Also during the last 10 years, significant progress has been made in bounding function ranges
and control of the dependency problem of interval arithmetic. This is known as the Taylor model. In this method, a function
is represented using a model consisting of a Taylor polynomial together with an interval remainder bound. For further details
see e.g. [19,25].

Here, we will use the terminology of interval polynomial enclosures and truncated Taylor series together with bounded
remainders to reduce the overestimation.

2.1. Bounding the remainder in Taylor polynomials

Let f have continuous derivatives of any necessary order. It is known that by expanding f(y) about a point x we may write
f ðyÞ ¼ f ðxÞ þ ðy� xÞf 0ðxÞ þ � � � þ ðy� xÞm

m!
f ðmÞðxÞ þ Rmðx; y; nÞ;
where the remainder term in the Lagrange form is
Rmðx; y; nÞ ¼
ðy� xÞmþ1

ðmþ 1Þ! f ðmþ1ÞðnÞ; n 2 ½x; y�:
Hence, if x, y 2 X then n 2 X, so f(m+1)(n) 2 F(m+1)(X) and
Rmðx; y;XÞ ¼
ðy� xÞmþ1

ðmþ 1Þ! Fðmþ1ÞðXÞ;
bounds the remainder for any x, y 2 X. According to [26], we can conclude the following Taylor polynomial enclosures for
x0 2 X and all x 2 X with m = 0,1:
f ðxÞ 2 FT1 ðXÞ :¼ f ðx0Þ þ ðX � x0ÞF 0ðXÞ; ð2:5Þ

f ðxÞ 2 FT2 ðXÞ :¼ f ðx0Þ þ ðX � x0Þf 0ðx0Þ þ
ðX � x0Þ2

2!
F 00ðXÞ: ð2:6Þ
Also, similar relations hold for multidimensional cases. See [26] for more enclosures.

3. Method and background

Consider the nonlinear Volterra integral equation (1.1) where the following assumptions are satisfied:

(a) the function k(x, t,u(t)) is integrable and bounded in the domain of integration,
(b) the following Lipschitz condition is satisfied by k(x, t,u(t)) within its domain of definition
jkðx; t;u1ðtÞÞ � kðx; t;u2ðtÞÞj 6 Lju1ðtÞ � u2ðtÞj: ð3:1Þ
Under these conditions Eq. (1.1) has a unique solution. Further details regarding existence and uniqueness results may be
found in [27,12]. Throughout this paper, we assume that the above mentioned conditions are satisfied and the functions f
and k are at least two times continuously differentiable on ½0;X�.

3.1. Zero order algorithm

Let Pn be a uniform partition of the interval ½0;X� with grid points
0 ¼ x0 < x1 < � � � < xp ¼ X ;
we define the subintervals
Xl ¼ ½xl�1; xl�; l ¼ 1; . . . ;p:
In order to provide guaranteed bounds for the solution u(x) of (1.1), we present the following lemma:

Lemma 1. Let uðxÞ 2 U0 ¼ ½u0;u0� and for x 2 Xi, t 2 Xl, 1 6 l 6 i 6 p, assume that f(x) 2 F(Xi), k(x, t,u(t)) 2 K(Xi,Xl,U0), then we
can obtain a new enclosure for each uðxÞjx2Xi

as follows
uðxÞjx2Xi
2 U1;i :¼ FðXiÞ þ

Xi�1

l¼1

KðXi;Xl;U0ÞwðXlÞ þ KðXi;Xi;U0Þ½0;wðXiÞ�:
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Proof. From (1.1) and due to the properties of integration, for x 2 Xi, we have
uðxÞ ¼ f ðxÞ þ
Z x

0
kðx; t;uðtÞÞdt ¼ f ðxÞ þ

Xi�1

l¼1

Z xl

xl�1

kðx; t;uðtÞÞdt þ
Z x

xi�1

kðx; t;uðtÞÞdt:
Using (2.4) and the lemma’s hypothesis, we replace x by Xi to obtain an interval enclosure
uðxÞjx2Xi
2 U1;i :¼ FðXiÞ þ

Xi�1

l¼1

KðXi;Xl;U0Þðxl � xl�1Þ þ KðXi;Xl;U0ÞðXi � xi�1Þ; ð3:2Þ
Note that
Xi � xi�1 ¼ ½xi�1; xi� � xi�1 ¼ ½xi�1 � xi�1; xi � xi�1� ¼ ½0;wðXiÞ�; ð3:3Þ
so, the relation (3.2), can be written as
U1;i :¼ FðXiÞ þ
Xi�1

l¼1

KðXi;Xl;U0ÞwðXlÞ þ KðXi;Xi;U0Þ½0;wðXiÞ�; ð3:4Þ
and this proves the lemma. h

It should be noted that since the grid points x0, . . . ,xp interior to ½0;X� are common endpoints of two subinterval Xi and
Xi+1, then
uðxiÞ 2 U1;i \ U1;iþ1:
Now, if we consider U1,i \ U0 as a new approximation for u(x), this can be substituted into the right hand side of (3.4) to
give the next approximation. This process is then repeated to achieve a rigorous solution. Summarizing the above relations,
we produce the following algorithm:

Algorithm 1. Zero order approximation

Input:
Number of subdivisions p;
Number of iterations n;
U0;

begin
For k = 0, . . . ,n:

For i = 0, . . . ,p � 1:
Compute U1,i from (3.4);
U0 U1,i \ U0;

"i, u(xi) 2 U1,i \ U1,i+1;
end.

This confirms the Moore’s algorithm which is given in [24]. In order to investigate the convergence of the iterations, we
make use of some of Moore’s results regarding the conditions for convergence. Actually, as stated in [24, pp. 84] the algo-
rithm is convergent in ½0;X�, if XL < 1, where L is the Lipschitz constant introduced in (3.1).

3.2. The modified algorithm

Following the results of [24,28], the method described in previous section is not convergent in large domains and has a
slow rate of convergence that does not yield sharp bounds for the solutions. The major cause of these difficulties is the depen-
dency problem which makes an overestimation. Here, in order to increase the approximation order derived from the method
and to reduce any overestimation, we will provide the modified algorithms consisting the interval polynomial enclosures
and truncated Taylor series with bounded remainders. We first need to introduce some relevant definitions and pertinent
results as follows:
F 0ðXiÞ :¼ ff 0ðxÞjx 2 Xig; F 00ðXiÞ :¼ ff 00ðxÞjx 2 Xig;
and for multidimensional case
KxðXi;Xl;U0Þ :¼ d
dx

kðx; t;uðtÞÞjx 2 Xi; t 2 Xl; uðtÞ 2 U0

� �
;

KtðXi;Xl;U0Þ :¼ d
dt

kðx; t; uðtÞÞjx 2 Xi; t 2 Xl; uðtÞ 2 U0

� �
;
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KxxðXi;Xl;U0Þ :¼ d2

dx2 kðx; t;uðtÞÞjx 2 Xi; t 2 Xl; uðtÞ 2 U0

( )
;

KttðXi;Xl;U0Þ :¼ d2

dt2 kðx; t; uðtÞÞjx 2 Xi; t 2 Xl; uðtÞ 2 U0

( )
;

KxtðXi;Xl;U0Þ :¼ d2

dxdt
kðx; t;uðtÞÞjx 2 Xi; t 2 Xl; uðtÞ 2 U0

( )
:

We can now state the following theorem which gives new interval enclosures:

Theorem 1. Under the stated notations and assumptions of the Lemma 1, we can obtain a new enclosure for each uðxÞjx2Xi
as
uðxÞjx2Xi
2 Uc

1;i :¼ Fc
i þ

Xi�1

l¼1

Kc
ijwðXlÞ þ Kc

ii½0;wðXiÞ�; c ¼ 1;2; ð3:5Þ
where
F1
i :¼ f ðxi�1Þ þ ½0;wðXiÞ�F 0ðXiÞ;

K1
ij :¼ kðxi�1; tl�1;u0Þ þ ½0;wðXiÞ�KxðXi;Xl;U0Þ þ ½0;wðXlÞ�KtðXi;Xl;U0Þ;
and
F2
i :¼ f ðxi�1Þ þ ½0;wðXiÞ�f 0ðxi�1Þ þ

1
2
½0;wðXiÞ�2F 00ðXiÞ;

K2
ij :¼ kðxi�1; tl�1;u0Þ þ ½0;wðXiÞ�

d
dx

kðxi�1; tl�1;u0Þ þ ½0;wðXlÞ�
d
dt

kðxi�1; tl�1;u0Þ þ
1
2
½0;wðXiÞ�2KxxðXi;Xl;U0Þ

þ 1
2
½0;wðXlÞ�2KttðXi;Xl;U0Þ þ ½0;wðXiÞwðXlÞ�KxtðXi;Xl;U0Þ:
Proof. We first apply Taylor polynomial enclosures to f(x) and k(x, t,u(x)) which were introduced in (2.5) and (2.6):
f ðxÞjx2Xi
2 F1

i :¼ f ðxi�1Þ þ ðXi � xi�1ÞF 0ðXiÞ;

kðx; t;uðtÞÞjx2Xi ;t2Xl
2 K1

ij :¼ kðxi�1; tl�1; u0Þ þ ðXi � xi�1ÞKxðXi;Xl;U0Þ þ ðXl � xl�1ÞKtðXi;Xl;U0Þ;
and
f ðxÞjx2Xi
2 F2

i :¼ f ðxi�1Þ þ ðXi � xi�1Þf 0ðxi�1Þ þ
1
2
ðXi � xi�1Þ2F 00ðXiÞ;

kðx; t;uðtÞÞjx2Xi ;t2Xl
2 K2

ij :¼ kðxi�1; tl�1; u0Þ þ ðXi � xi�1Þ
d
dx

kðxi�1; tl�1;u0Þ þ ðXl � xl�1Þ
d
dt

kðxi�1; tl�1; u0Þ

þ 1
2
ðXi � xi�1Þ2KxxðXi;Xl;U0Þ þ

1
2
ðXl � xl�1Þ2KttðXi;Xl;U0Þ þ ðXi � xi�1ÞðXl � xl�1ÞKxtðXi;Xl;U0Þ:
Then from (3.3) we get
F1
i :¼ f ðxi�1Þ þ ½0;wðXiÞ�F 0ðXiÞ;
K1
ij :¼ kðxi�1; tl�1;u0Þ þ ½0;wðXiÞ�KxðXi;Xl;U0Þ þ ½0;wðXlÞ�KtðXi;Xl;U0Þ;
and
f ðxÞjx2Xi
2 F2

i :¼ f ðxi�1Þ þ ½0;wðXiÞ�f 0ðxi�1Þ þ
1
2
½0;wðXiÞ�2F 00ðXiÞ;

kðx; t;uðtÞÞjx2Xi ;t2Xl
2 K2

ij :¼ kðxi�1; tl�1; u0Þ þ ½0;wðXiÞ�
d
dx

kðxi�1; tl�1; u0Þ þ ½0;wðXlÞ�
d
dt

kðxi�1; tl�1;u0Þ

þ 1
2
½0;wðXiÞ�2KxxðXi;Xl;U0Þ þ

1
2
½0;wðXlÞ�2KttðXi;Xl;U0Þ þ ½0;wðXiÞwðXlÞ�KxtðXi;Xl;U0Þ:
Substituting F1
i ; K1

ij; F2
i and K2

ij for F, K in (3.4), we obtain U1
1;i and U2

1;i, respectively as new enclosures for (3.2). h
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From this standpoint, we study an important property of these new enclosures:

Theorem 2. The width of interval enclosures Uc
1;i; c ¼ 1;2 in (3.5) tends to zero as the number of subintervals increases.
Proof. Since f and k and their derivatives are continuous on closed subintervals, so they are bounded and attain their max-
imum and minimum. Here ci’s denote the maximums and the widths of bounded real and interval functions and Ci’s denote
constants. Let d ¼ wðXiÞ ¼ v

p ; i ¼ 1; . . . ; p, where p is the number of subdivisions, then by the definition of F1
i ; K1

ij and using
(2.1) and (2.2), we may write
wðF1
i Þ ¼ wð½0;wðXiÞ�F 0ðXiÞÞ 6 j½0;wðXiÞ�jwðF 0ðXiÞÞ þwð½0;wðXiÞ�ÞjF 0ðXiÞj 6 dc1 þ dc2 ¼ dðc1 þ c2Þ ¼ dC1; ð3:6Þ

wðK1
ijÞ ¼ wð½0;wðXiÞ�KxðXi;Xl;U0ÞÞ þwð½0;wðXlÞ�KtðXi;Xl;U0ÞÞ
6 j½0;wðXiÞ�jwðKxðXi;Xl;U0ÞÞ þwð½0;wðXiÞ�ÞjKxðXi;Xl;U0Þj þ j½0;wðXlÞ�jwðKtðXi;Xl;U0ÞÞÞ
þwð½0;wðXlÞ�ÞjKtðXi;Xl;U0ÞÞj

6 dðc3 þ c4 þ c5 þ c6Þ ¼ dC2: ð3:7Þ
Similar results can be obtained for F2
i and K2

ij:
w F2
i

� �
6 dc7 þ

1
2

d2c8 þ d2c9
� �

¼ dC3;

w K2
ij

� �
6 dðc10 þ c11Þ þ d2

X15

i¼12

1
2

ci þ d2ðc16 þ c17Þ ¼ dC4: ð3:8Þ
Also from (3.5), for c = 1,2, we have
wðUc
1;iÞ 6 wðFc

i Þ þ
Xi�1

l¼1

wðKc
ijwðXlÞÞ þwðKc

ii½0;wðXiÞ�Þ 6 wðFc
i Þ þ d

Xi

l¼1

wðKc
ijÞ þ djKc

iij:
Substituting (3.6), (3.7) and (3.8) into the above relation, we get
wðU1
1;iÞ 6 dC1 þ d2

Xi

l¼1

C2 þ d2C5 ¼ dC7;

wðU2
1;iÞ 6 dC3 þ d2

Xi

l¼1

C4 þ d2C6 ¼ dC8:
As d ¼ v
p, we conclude that
lim
p!1

d ¼ 0;
so wðU1
1;iÞ ! 0 and wðU2

1;iÞ ! 0 by increasing the number of subdivisions and this completes the proof. h

Now, we substitute U0 with Uc
1;i; c ¼ 1;2 in (3.5), and get the next approximation Uc

2;i; c ¼ 1;2. This process can be done
continually yielding a nested sequence of intervals with the following property:

Corollary 1. The iterated sequences of intervals using the new enclosure introduced in (3.5) has at least superlinear rate of
convergence i.e. Uc

n;i ¼ OðdÞ, with c = 1,2.
3.3. Practical computation of partial derivatives

In order to construct an algorithm for the method, we need to calculate the partial derivatives of Kx(Xi,Xl,U0), Kt (Xi,Xl,U0)
and Kxt(Xi,Xl,U0). We have
d
dt

kðx; t;uðtÞÞ ¼ @

@t
kðx; t;uðtÞÞ þ @

@u
kðx; t; uðtÞÞu0ðtÞ;
where @
@t is a partial derivative respect to t. In order to compute the derivatives of the unknown function u(t) respect to t, we

need initial enclosures for u0(t) and u00(t), namely U00 and U000. Hence differentiating equation (1.1) yields
u0ðtÞ ¼ f 0ðtÞ þ d
dt

Z t

0
kðt; s;uðsÞÞds ¼ f 0ðtÞ þ

Z t

0

@

@t
kðt; s;uðsÞÞdsþ kðt; t;uðtÞÞ: ð3:9Þ
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Let KðtÞðXi;Xi;U0Þ :¼ f @
@t kðx; t;uðtÞÞjx; t 2 Xi;uðtÞ 2 U0g. From the concept of interval integration, the following enclosure

can be obtained
u0ðxÞjx2Xi
2 U01;i :¼ F 0ðXiÞ þ KðtÞðXi;Xi;U0Þ½0;wðTiÞ� þ KðXi;Xi;U0Þ:
Consequently if KðttÞðXi;Xi;U0Þ :¼ f @2

@t2 kðx; t;uðtÞÞjx; t 2 Xi;uðtÞ 2 U0g; then the interval extension of the second derivatives
can be easily obtained as follows:
u00ðxÞjx2Xi
2 U001;i :¼ F 00ðXiÞ þ KðttÞðXi;Xi;U0Þ½0;wðTiÞ� þ 2KðtÞðXi;Xi;U0Þ þ KðsÞðXi;Xi;U0Þ þ KðuÞðXi;Xi;U0ÞU00: ð3:10Þ
Similarly, other derivatives and enclosures for the next iteration can be obtained in a similar manner.
Using these notations, we can summarize the procedures in the following algorithm:

Algorithm 2. First and second order approximation

Input:
Number of subdivisions p;
Number of iterations n;
U0;

begin
For k = 0, . . .,n:

For i = 0, . . .,p � 1:
Compute Uc

1;i; c ¼ 1;2: from (3.5);

Compute U01;i and U001;i from (3.9) and (3.10);

U0  U1;i \ U0;U
0
0  U01;i; \ U00; U000  U001;i \ U000;

"i, u(xi) 2 U1,i \ U1,i+1;
end.

Due to the properties of the modified algorithm like superlinear convergence, new enclosures Uc
1;i; c ¼ 1;2 are consider-
ably better in comparison to Uc
0;i; c ¼ 1;2, especially when the number of subdivisions is increased, so in many cases just a

few iterations (usually n = 3 as in our numerical experiments) is needed in practice and the method rapidly converges to the
appropriate solutions. It is clear, the same process can be applied with more terms of Taylor expansion to achieve higher
precision.

4. Numerical experiments and discussions

To illustrate the above algorithms, we consider three test problems taken from [29,30,15]. We apply zero, first and second
order approximations to the examples so that comparisons can be made numerically with the existing results. All the com-
putations are calculated by using the symbolic manipulation software Mathematica�.
uðxÞ ¼ �x3ð�1þ esin xÞ þ sin xþ
Z x

0
x3 cos teuðtÞdt; x 2 ½0;1�;

uðxÞ ¼ sin x;
ð4:1Þ

uðxÞ ¼ ex � 1
3

e3x þ 1
3
þ
Z x

0
u3ðtÞdt; x 2 ½0;1�;

uðxÞ ¼ ex;

ð4:2Þ

u0ðxÞ ¼ 1þ x
2� ex � xe�x2

2 þ euðxÞ �
R x

0 xte�u2ðtÞdt; x 2 ½0;1�;
uð0Þ ¼ 0;

(

uðxÞ ¼ x:

ð4:3Þ
We select U0 = [0,1] in the test problems (4.1), (4.3) and U0 = [1,2] in the problem (4.2), respectively. The solutions of Eq.
(4.1) for 100 subdivisions based on the second order scheme is summarized in Tables 1 and 2 shows the results of numerical
verification for three iterations in [0,0.5]:

It can easily be verified that the exact solutions are enclosed in interval results of the algorithm. The diameter of interval
solutions is increasing due to the accumulation of truncation and round off errors. Despite this fact, the results of our ver-
ification algorithm is better than non-guaranteed methods such as those given in [29]. Eq. (4.1) was solved in [29] using eight
terms of the classical Taylor polynomials (N = 8) and the maximum absolute error is Oð10�5Þ in [0,0.5].

Note that, the maximum error of the proposed method for the zero order algorithm is not affected by the number of sub-
divisions but the first and second order methods are completely dependent on the number of divisions. Also as we pointed
out, Taylor polynomials of higher order can be applied to improve the numerical results.
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Consequently, the solutions of the test problem (4.2) will be approximated by the algorithm for three iterations in [0,0.5]
and the maximum absolute errors are given in Table 3.

The classical Taylor polynomial method in [15], gives the maximum absolute error Oð10�6Þ for N = 6 in [0,0.5]. Looking at
Table 3, we can observe that there is an improvement in the accuracy for N = 2 compared to the method given in [15].

Finally, the results of the method for the integro–differential equation (4.3) with three iterations in [0,0.5] is illustrated in
Table 4:
Table 1
Numerical results for Eq. (4.1) for n = 3 and p = 100.

xi Exact solution Results of Alg. 2 Diam of the interval

0.01 0.00999983 [0.00999983, 0.00999991] 8.52 � 10�8

0.02 0.01999866 [0.01999866,0.01999889] 2.25 � 10�7

0.03 0.02999550 [0.02999549,0.02999588] 3.81 � 10�7

0.04 0.03998933 [0.03998932,0.03998988] 5.54 � 10�7

0.05 0.04997916 [0.04997915,0.04997989] 7.44 � 10�7

..

. ..
. ..

. ..
.

Table 2
Width of interval results of (4.1) for n = 3 and x 2 [0,0.5].

Order (N) Divisions (p) Max error

0 50 6.78 � 10�4

100 6.66 � 10�4

200 8.22 � 10�4

400 6.53 � 10�4

1 50 3.79 � 10�5

100 5.70 � 10�5

200 5.38 � 10�6

400 2.68 � 10�6

2 50 2.61 � 10�5

100 4.60 � 10�6

200 7.72 � 10�7

400 9.08 � 10�8

Table 3
Width of interval results of (4.2) for n = 3 and x 2 [0,0.5].

Order (N) Divisions (p) Max error

0 50 1.91 � 10�2

100 7.19 � 10�2

200 1.21 � 10�2

400 1.96 � 10�2

1 50 1.31 � 10�2

100 9.52 � 10�3

200 3.05 � 10�3

400 9.72 � 10�4

2 50 4.59 � 10�4

100 4.60 � 10�5

200 3.09 � 10�6

400 9.08 � 10�7

Table 4
Width of interval results of (4.3) for n = 3 and x 2 [0,0.5].

Order (N) Divisions (p) Max error

0 50 4.60 � 10�2

100 3.25 � 10�2

200 3.82 � 10�2

400 4.24 � 10�2

1 50 7.76 � 10�3

100 4.36 � 10�3

200 1.72 � 10�3

400 6.61 � 10�4

2 50 5.03 � 10�3

100 1.77 � 10�3

200 7.16 � 10�4

400 2.48 � 10�4
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The maximum error bounds of the collocation method in [30] are Oð10�4Þ and Oð10�6Þ for N = 4,16, respectively. The re-
sults of [30] seems to be better in comparison to our results but it should be noted that the interval enclosure algorithms of
this paper are able to compute guaranteed error bounds including all discretization and round-off errors in comparison with
most classical numerical methods. Despite this situation, more terms of Taylor expansion or other efficient methods e.g. Tay-
lor model can be applied to achieve higher precision which will be the subject of future works.

5. Conclusion

In this paper, a verification method was applied to nonlinear Volterra integral equations which enables us to compute
guaranteed error bounds for the equation. We use interval polynomial enclosures using truncated Taylor series together with
bounded remainders to increase the accuracy of the scheme while reducing the width of interval solutions. We have also
compared the efficiency of our algorithm with classical numerical methods.
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