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Abstract. In this paper, we compute piecewise constant bounds on the solution of mixed

nonlinear Volterra-Fredholm integral equations. The enclosures are in the form of intervals which

are guaranteed to contain the exact solution considering all round-off and truncation errors, so

the width of interval solutions allows us to control the error estimation. An iterative algorithm to

improve the accuracy of initial enclosures is given and its convergence are also investigated. Our

numerical experiments show that the precision of interval solutions are reasonable in comparison

to the classical methods and the obtained conditions and initial enclosure of the proposed algorithm

are not restrictive.
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1 Introduction

During the last three decades, the role of enclosure methods in numerical solution

of operator equations has continuously increased. In many cases computers are

not perfect tools in scientific calculations, specially when using floating point

arithmetic, the solutions are affected by rounding errors and this may led to

completely wrong results (see e.g. [17]). This is more important when increasing
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2 SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

the speed of computers and for complicated equations, but its impossible to verify

the accuracy of the results by classical schemes. Interval enclosure methods are

able to compute guaranteed error bounds including all discretization and round-

off errors in the computation. These methods are used in many applied areas

e.g. fuzzy set theory, engineering problems with interval valued parameters or

interval initial values, robust control, robotics, multimedia architectures [12],

economics, beam physics, global optimization, signal processing and computer

graphics [11] (see also [1] for a survey on enclosure methods).

Here, we restrict our attention to the computation of guaranteed bounds for

the solution of the following nonlinear Volterra-Fredholm integral equation of

mixed type

u(x, t) = f (x, t) +
∫ t

0

∫

�

k(x, t, ξ, τ, u(ξ, τ )) dξdτ,

(x, t) ∈ [0, χ ] × �,

(1.1)

where u(x, t) is an unknown function, and f (x, t) and k(x, t, ξ, τ, u(ξ, τ )) are

known analytic functions defined on

D := [0, χ ] × � and S × R

(where S := {(x, t, ξ, τ ) : 0 ≤ τ ≤ t ≤ χ; (x, ξ) ∈ � × �}), with k(x, t,

ξ, τ, u) nonlinear in u and � is closed subset of Rd(d = 1, 2, 3).

These equations play an important role for abstract formulation of many ini-

tial or boundary value problems of perturbed differential equations, nonlinear

parabolic partial differential equations and partial integro-differential equations

which arise in various applications like the mathematical modeling of chemical

reaction kinetics, population dynamics [25], heat-flow in material with memory,

electromagnetics [10], viscoelastic and reaction diffusion problems.

There has been much work on analyzing and numerical methods for the mod-

els consisting of Volterra-Fredholm integral equations. Diekmann and Thieme

described and developed some of these models in [7, 24]. The existence and

uniqueness of the global solution of the equations have been investigated by

Burton [4] and Dhakne et al. [6]. Also some of the schemes which have con-

sidered the solution of the linear and nonlinear cases of (1.1) numerically are

projection methods, continuous time and discrete time spline collocation method
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[2, 16], Euler Nystrom and trapezoidal Nystrom methods [13], the Adomian de-

composition method [18], the time-stepping methods by a certain choice of direct

quadrature (DQ) [3] and Sinc collocation method based on DE transformation

in [14]. Generally, all of these classical methods are efficient and effective, but

in many cases most of them are unable to control the truncation and round off

errors in numerical computations. Here, our aim is to use an interval scheme

which considers such these apparent errors.

As we know, there are not any considerable interval based works in solving

mixed Volterra-Fredholm integral equations. Moore [19] has introduced an iter-

ative algorithm for nonlinear integral equations based on the definition of interval

integration. Caprani et al. [5] and Dobner [9] proposed several papers on solv-

ing Fredholm integral equations using enclosure methods. Recently, Murashige

and Oishi [21] presented numerical verification of solutions of periodic integral

equations with a singular kernel and Nekrasov’s integral equation. In compar-

ison to Fredholm type, there are a few enclosure methods on solving Volterra

integral equations especially in the nonlinear form [8, 15].

In the present work, we propose an algorithm to provide piecewise constant

bounds for the solution of nonlinear Volterra-Fredholm integral equations. Our

algorithm is based on the early idea of Moore [19] for Volterra integral equa-

tions. The organization of this paper is as follows: In section 2, we give basic

notation, definitions and a summary on the principles of interval arithmetic. A

new enclosure is constructed from an initial bound and its properties are studied

in section 3 and then an iterative algorithm for the computation of piecewise

constant bounds including its convergence conditions is presented. Finally, nu-

merical experiments and a full discussion on initial enclosure, the algorithm

conditions and also the number of iterations are reported to clarify the efficiency

of the method.

2 Notations and auxiliary results of the interval theory

2.1 Interval arithmetic

We first introduce some basic properties of interval arithmetic from [20, 22, 23].

The set of compact real intervals is denoted by

IR =
{
x = [x, x] | x, x ∈ R, x ≤ x

}
.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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4 SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

Through out of this paper, using the notation of [23], intervals are denoted by

boldface and lowercase letters are used for denoting scalars and vectors. A real

number x is identified with a point interval x = [x, x]. The quality of interval

analysis is measured by the width of the interval results, and a sharp enclosure

for the exact solution is desirable. The midpoint and the width of an interval x

are denoted by

m(x) := (x + x)/2 and w(x) := x − x,

respectively. The width of an interval vector x = (x1, . . . , xn) is the largest of

the widths of any of its component intervals

w(x) = max w(xi ), i = 1, . . . , n.

Considering |x| = max{|x |, |x |}, for any x, y ∈ IR and a, b ∈ R, we get the

following properties:

w(ax + by) = |a|w(x) + |b|w(y), (2.1)

w(xy) ≤ |x|w(y) + |y|w(x). (2.2)

The four elementary operations of real arithmetic can be extended to intervals.

Operations over intervals � ∈ {+, −, ∗, /} are defined by the general rule

x � y =
{

x � y|x ∈ x, y ∈ y
}
.

It is easy to see that the set of all possible results when applying an operator �

to x and y, forms a closed interval (for 0 /∈ y in the case of division) and the end

point can be calculated by

x � y =
{

min(x � y), max(x � y)
}
, for � ∈ {+, −, ∗, /}.

The following lemma gives an important property which is used frequently in

this paper:

Lemma 1. Let k = [k, k] and y = [0, y], also there exists a constant α > 1,

such that |k| ≤ αw(k), then

w(ky) ≤ αw(k)y.
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Proof. We consider the following three cases:

Case 1. If k ≤ 0 ≤ k, then w(ky) = w([ky, ky]) = y(k − k) ≤ αw(k)y.

Case 2. If k ≤ k ≤ 0, then w(ky) = w([ky, 0]) = |k|y ≤ |k|y ≤ αw(k)y.

Case 3. If 0 ≤ k ≤ k, then w(ky) = w([0, ky]) = |k|y ≤ |k|y ≤ αw(k)y,

and the proof is complete. �

2.2 Preliminaries

Most of the following information regarding the interval functions may be found

in [20], but here we recall certain points that are important for establishing and

analyzing the accuracy of our new enclosures from [23] and [19]:

Let f be a real valued function of several variables, we can define set image

or the united extension of f as:

f (x1, . . . , xn) =
{

f (x1, . . . , xn) : x1 ∈ x1, . . . , xn ∈ xn
}
.

Functions of interval variables are often computed by substituting the given

interval x for x in f (x) and then evaluating the function using interval arithmetic.

An interval extension of f is an interval valued function F of n interval variables

x1, . . . , xn such that for real arguments x1, . . . , xn we have

F(x1, . . . , xn) = f (x1, . . . , xn).

This natural interval extension is sometimes wider than the actual range of

function values, though it always includes the actual range e.g. let f (x) =

x/(1 + x), then f ([1, 2]) = [1/2, 2/3], but natural interval extension of f is

F([1, 2]) = [1/3, 1] which is wider than [1/2, 2/3]. To overcome this difficulty

so called dependency effect, some alternative schemes such as mean value form

and Taylor enclosures are proposed in [20] and [5].

Definition 1. [20] An interval extension F is said to be Lipschitz interval ex-

tension in x0, if there is a constant L , such that w(F(x)) ≤ Lw(x), for every

x ⊆ x0.

Therefore, the width of F(x) approaches zero at least linearly with the width

of x. Here x may be an interval or an interval vector.
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Definition 2. [20] An interval valued function F(x1, . . . , xn) is called inclusion

isotonic, if for yi ⊆ xi , i = 1, . . . , n we have

F(y1, . . . , yn) ⊆ F(x1, . . . , xn).

Definition 3. [20] A rational interval function is an interval-valued function

whose values are defined by a specific finite sequence of interval arithmetic

operations.

Lemma 2. [20] If F is a natural interval extension of a real rational function

with F(x) defined for x ⊆ x0, where x and x0 are intervals or n-dimensional

interval vectors, then F is Lipschitz in x0.

Lemma 3. [20] Let F and G be inclusion isotonic interval extensions with

F Lipschitz in Y0, G Lipschitz in x0, and G(x0) ⊆ Y0, then the composition

H(x) = F(G(x)) is Lipschitz in x0 and be inclusion isotonic.

Lemma 4. [20] If F is a rational interval extension of a real function f , and

(x1, . . . , xn) ∈ (x1, . . . , xn) then f (x1, . . . , xn) ∈ F(x1, . . . , xn).

A well known definition of the interval extension of a real integral has been

introduced by Moore [19] which is defined as follows:
∫ x

a
f (x)dx ∈

∫

[a,x]
f (x)dx = F([a, x])(x − a), (2.3)

where F is interval extension of f .

3 Computation of piecewise constant bounds

In order to compute piecewise constant bounds for the solution of a nonlinear

Volterra-Fredholm integral equation (1.1), we first subdivide the intervals [0, χ ]

and � = [a, b] by points

0 = x0 < x1 < ∙ ∙ ∙ < x px = χ, xi = [xi−1, xi ], i = 1, . . . , px ,

a = t0 < t1 < ∙ ∙ ∙ < tpt = b, t j = [t j−1, t j ], j = 1, . . . , pt ,

where px and pt are number of subdivisions. Now, considering an initial en-

closure u0 = [u0, u0], which is assumed to contain the exact solution of the

equation in whole interval, a new enclosure in each subinterval will be obtained.
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Suppose that the real valued function f (x, t) in (1.1) is continuous and k(x, t,

ξ, τ, u(ξ, τ )) satisfies a Lipschitz condition with respect to u for all (x, t, ξ,

τ, u(ξ, τ )) in S × R, also F(xi , t j ) and K (x, t, ξ, τ, u0)) are natural interval

extensions of f and k. Hence using Lemmas 2 and 3 and considering L F as a

Lipschitz constant, we conclude F(xi , t j ) is Lipschitz in [0, χ ] × �, so

w(F(xi , t j )) ≤ L F Lδ, (3.1)

where Lδ = max{w(xi ), w(t j )}. Also, there exist a Lipschitz constant Lk such

that for all x, ξ ∈ [0, χ ], and t, τ ∈ �, we have

w(K (x, t, ξ, τ, u0)) ≤ Lkw(u0). (3.2)

In the following, we introduce the new enclosure and give some of its impor-

tant properties:

Lemma 5. Let u(x, t) ∈ u0 = [u0, u0] and for x ∈ xi = [xi−1, xi ], ξ ∈

xl, 1 ≤ l ≤ i ≤ px , and t ∈ t j = [t j−1, t j ], τ ∈ tk, 1 ≤ k ≤ j ≤ pt ,

we have f (x, t) ∈ F(xi , t j ), k(x, t, ξ, τ, u(x, t)) ∈ K (xi , t j , xl, tk, u0), then we

can obtain a new enclosure for each u(x, t)|x∈xi ,t∈t j as

u(x, t)|x∈xi ,t∈t j ∈ u1,i, j := F(xi , t j )

+
j−1∑

k=1

px∑

l=1

K (xi , t j , xl, tk, u0) w(xl)w(tk)

+
px∑

l=1

K (xi , t j , xl, t j , u0) w(xl)[0, w(t j )]

(3.3)

Proof. Let us assume x ∈ xi and t ∈ t j in each subinterval, then the equation

(1.1) can be written as

u(x, t) = f (x, t) +
∫ t

0

∫

�

k(x, t, ξ, τ, u(ξ, τ )) dξdτ

= f (x, t) +
j−1∑

k=1

px∑

l=1

∫ tk

tk−1

∫ xl

xl−1

k(x, t, ξ, τ, u(ξ, τ )) dξdτ

+
px∑

l=1

∫ t

t j−1

∫ xl

xl−1

k(x, t, ξ, τ, u(ξ, τ )) dξdτ.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Considering Lemma 4, we get f (x, t) ∈ F(xi , t j ) and k(x, t, ξ, τ, u(x, t)) ∈

K (xi , t j , xl, tk, u0). Now using (2.3) and the assumptions of the lemma, we

replace x and t by xi and t j in each subinterval, respectively, to obtain the

following interval enclosure

u(x, t)|x∈xi ,t∈t j ∈ u1,i, j = F(xi , t j )

+
j−1∑

k=1

px∑

l=1

K (xi , t j , xl, tk, u0) (xl − xl−1)(tk − tk−1)

+
px∑

l=1

K (xi , t j , xl, t j , u0) (xl − xl−1)(t j − t j−1).

(3.4)

Note that

t j − t j−1 = [t j−1, t j ] − t j−1 = [t j−1 − t j−1, t j − t j−1] = [0, w(t j )],

so the equation (3.4), can be written as

u(x, t)|x∈xi ,t∈t j ∈ u1,i, j = F(xi , t j )

+
j−1∑

k=1

px∑

l=1

K (xi , t j , xl, tk, u0) w(xl)w(tk)

+
px∑

l=1

K (xi , t j , xl, t j , u0) w(xl)[0, w(t j )].

and this proves the lemma. �

In this position, we give an important property of the proposed guaranteed

bounds which implies that u1,i, j is an efficient enclosure in comparison to u0 in

each subinterval (xi , t j ):

Theorem 1. Assume that max{w(xi ), w(t j )} ≤ w(u0) and there exist L F , Lk

such that (
L F + χ(b − a)L K

(
1 +

α

pt

))
< 1,

then the new enclosure presented by (3.3) has less width in comparison to initial

enclosure u0.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Proof. Following (2.1), (2.2) and using (3.3), we find that

w(u1,i, j ) ≤ w(F(xi , t j ))

+
j−1∑

k=1

px∑

l=1

w(K (xi , t j , xl, tk, u0)) w(xl)w(tk)

+
px∑

l=1

w(K (xi , t j , xl, t j , u0)[0, w(t j )])w(xl).

Now, using (3.1), (3.2) and Lemma 1, we have

w(u1,i, j ) ≤ L Fw(u0) +
j−1∑

k=1

w(tk)

px∑

l=1

w(xl)L K w(u0)

+
px∑

l=1

w(xl)αw(u0)w(t j ),

and

w(u1,i, j ) ≤ L Fw(u0) + χ(b − a)L K w(u0) + χ
(b − a)

pt
αL K w(u0),

so

w(u1,i, j ) ≤
(

L F + χ(b − a)L K

(
1 +

α

pt

))
w(u0). (3.5)

Finally the condition

θ = L F + χ(b − a)L K (1 +
α

pt
) < 1, (3.6)

gives

w(u1,i, j ) < w(u0), (3.7)

and the proof is complete. �

Remark. We will show later in Section 4, the condition θ < 1 in (3.6) is not

restrictive in practice and in most cases (3.7) is easily established.

It is well known, in many cases interval initial enclosure may be much wider

than the real solution. In order to construct a narrow interval solution, we apply

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Theorem 1 and consider u1,i, j ∩ u0 as a new approximation for u(x). This can

be substituted in right side of (3.3) for u0 to give the next approximation and the

process is then repeated to achieve a rigorous solution.

Moreover, since the points of subdivision (xi , t j ) for i = 1, . . . , px , j =

1, . . . , pt interior to [a, b] × � are common endpoints of boxes xi × t j , xi ×

t j+1, xi+1 × t j and xi+1 × t j+1, therefore we have

u(xi , t j ) ∈ u(xi , t j ) ⊂ u1,i, j ∩ u1,i+1, j ∩ u1,i, j+1 ∩ u1,i+1, j+1.

The following algorithm summarizes our strategy where the notations px and

pt are the number of subdivisions in [0, χ ] × � and n is number of iterations:

Algorithm: Computation of piecewise constant bounds

INPUT:

n, px , pt ;

u0 such that max
{

b−a
px

,
χ

pt

}
< w(u0) ;

COMPUTE:

for k = 0, . . . , n do

for i = 0, . . . , px − 1, j = 0, . . . , pt − 1 do

u1,i, j from (3.3);

if w(u1,i, j ∩ u0) 6= 0 then

u0 := u1,i, j ∩ u0;

else

Return: “wrong initial enclosure”

end-if

Oi, j := u(k)

1,i, j ∩ u(k)

1,i+1, j ∩ u(k)

1,i, j+1 ∩ u(k)

1,i+1, j+1;

end-for

end-for

OUTPUT:

Oi, j

Noting that, Theorem 1 shows that the new enclosures are more efficient in

comparison to initial bounds, especially when the number of subdivisions is

increased. So, in many cases just a few number of iterations is needed in practice

and the method rapidly reaches the appropriate solutions.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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The convergence of the proposed algorithm can be characterized by the fol-

lowing theorem:

Theorem 2. Under the hypotheses of Theorem 1, the proposed algorithm is

convergent.

Proof. From (3.5), we get

w(u1,i, j ) ≤
(

L F + χ(b − a)L K

(
1 +

α

pt

))
w(u0). (3.8)

Substituting u0 by u1,i, j in (3.3) and using Theorem 1 and relation (3.8), the

next enclosure u2,i, j will be obtained as

w(u2,i, j ) ≤
(

L F + χ(b − a)L K

(
1 +

α

pt

))
w(u1,i, j )

≤
(

L F + χ(b − a)L K

(
1 +

α

pt

))2

w(u0).

Continuing the process, we get

w(un,i, j ) ≤
(

L F + χ(b − a)L K

(
1 +

α

pt

))n

w(u0). (3.9)

Now, according to
(

L F + χ(b − a)L K

(
1 + α

pt

))
< 1, we conclude

lim
n→∞

w(un,i, j ) = 0,

and this indicates the convergence of interval solutions to a real number in each

subinterval. �

4 Numerical experiments and discussions

Here, we consider two test problems and report the numerical results by the

proposed method. Moreover, an adequate discussion on the efficiency of the

algorithm is presented. Our discussion includes features and limitations of the

scheme e.g. the problem of selecting initial enclosure, the number of iterations

and subdivisions. All computations are performed by using the symbolic calcu-

lations software Mathematicar.

Comp. Appl. Math., Vol. 31, N. 2, 2012
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Example 1. [18] Consider the following nonlinear Volterra-Fredholm integral

equation

u(x, t) = f (x, t) +
∫ t

0

∫

�

G(x, t, ξ, τ )(1 − exp(−u(u(ξ, τ )))) dξdτ,

(x, t) ∈ [0, 1] × �,

G(x, t, ξ, τ ) =
x(1 − ξ 2)

(1 + t)(1 + τ 2)
,

f (x, t) = − log
(

1 +
xt

1 + t2

)
+

xt2

8(1 + t)(1 + t2)
,

where � = [0, 1] and the exact solution is

u(x, t) = − log
(

1 +
xt

1 + t2

)
.

We analyze the problem in three main parts. At first, we compute piecewise

bounds on the solution and a comparison is made between the widths of interval

solutions and the results of existing classical methods. Then, we show that the

conditions of the algorithm and the initial enclosure are not restrictive.

1. Computing piecewise constant bounds: Solution of the equation based

on the proposed algorithm for u0 = [−1, 1] and px = pt = 16 is summarized

in Table 1 and Figures 1, 2 for just two iterations. Also, a comparison is made

with the numerical results obtained in [18].

(x, t)
Exact Piecewise Diam of Results of

solution bounds enclosures [18]

(0.0625, 0.0625) –0.00388 [–0.00390, –0.00377] 6.65 E –5 1.77 E –5

(0.125, 0.125) –0.01526 [–0.01545, –0.01477] 3.42 E –4 5.84 E –5

(0.25, 0.25) –0.05715 [–0.05932, –0.05500] 2.15 E –3 –5.39 E –4

(0.5, 0.5) –0.18232 [–0.23766, –0.16935] 3.41 E –2 –1.22 E –2

Table 1 – Numerical results of example 4.1 for n = 2 and px = pt = 16.

The reported results in Table 1 show that since these enclosures include all

round-off errors in the computation, interval methods are valuable tools in com-

parison to classical schemes. Figure 1 indicates that increasing the number of

subdivisions led to better numerical results.
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Figure 1 – Exact solution of example 4-1 (black sheet) is enclosed in piecewise constant

bounds.
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Figure 2 – Exact solution of example 4-1 (black dots) is enclosed in piecewise constant

bounds (Gray circles).
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5 Discussion on the convergence conditions

The following table gives an approximation for Lk and L F in (3.1) and (3.2):

(x, t) u0 w(K (u0)) L F L K α
θ = L F + χ(b − a)

L K

(
1 + α

pt

)

([0.0,0.1], [0.0,0.1]) [–0.1,0.1] 0.020 0.10 0.10 0.52 0.20

([0.3,0.4], [0.2,0.3]) [–0.1,0.1] 0.040 0.58 0.20 0.52 0.79

([0.2,0.3], [0.1,0.2]) [–1.0,1.0] 0.037 0.39 0.18 0.73 0.58

([0.4,0.5], [0.4,0.5]) [–0.5,0.5] 0.260 0.66 0.260 0.62 0.87

Table 2 – Approximating Lipshitz constants and θ in (3.6).

Analyzing the results of Table 2 shows that the conditions (3.7) and (3.9) are

easily established. In some cases, due to the dependency effect the width of F

and K may be wider than usual, so as previously mentioned, we can use mean

value form or other Taylor enclosures for F and K . For example in Table 2,

L F = 0.66 for ([0.4, 0.5], [0.4, 0.5]) is obtained by using the mean value form

of F . (For more detail see e.g. [20]).

6 Discussion on u0 and number of iterations

The problem of choosing initial enclosure u0 seems to be another restrictive

difficulty. Table 3 illustrates the piecewise bounds obtained by choosing various

initial enclosures and number of iterations:

(x, t)
u0 = [−2, 2] u0 = [2, 3] u0 = [−5, 5]

n = 2 n = 10 n = 2 n = 5 n = 2 n = 10

(0.0625, 0.0625) 7.44 E –5 6.19 E –5 0 0 3.23 E –4 6.19 E –5
(0.125, 0.125) 4.55 E –4 2.21 E –4 0 0 5.78 E –3 2.85 E –4
(0.250, 0.25) 3.71 E –3 1.45 E –3 0 0 3.72 E –2 1.45 E –3

(0.5, 0.5) 5.50 E –2 9.47 E –3 0 0 2.41 E 0 5.84 E –1

Table 3 – Diameter of solutions of example 4.1 for px = pt = 16.

Our experimental results in Table 3, show:

(i) If the computed interval is empty (as for u0 = [2, 3]), it implies that we

choose an inaccurate u0 which does not contain exact solution.
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(ii) If we choose a proper u0 just a few iteration is needed to achieve rig-

orous solutions, moreover increasing the number of iterations can offset

inappropriate u0.

Example 2. [14]

u(x, t) = f (x, t) +
∫ t

0

∫

�

G(x, t, ξ, τ ) sin(u(ξ, τ )) dξdτ,

(x, t) ∈ [0, 1] × �,

G(x, t, ξ, τ ) = xt (ξ + τ),

f (x, t) = −t (x2 − sin(x) − x sin(x)),

where � = [0, 1] and u(x, t) = xt.

Solution of the equation using the proposed scheme is enclosed in intervals

as we show in Table 4 and Figures 3, 4. The following experiments are also

observed:

(i) Similar to the previous example, for an inaccurate u0 = [−2, −1] the

computed interval is empty.

(ii) In many cases, increase the number of iterations does not affect the accu-

racy of the results, therefore to increase the accuracy we need to increase

the number of subdivisions (see e.g. Figure 4).

(x, t)
u0 = [0, 1] u0 = [−2, −1]

n = 2 n = 10 n = 2 n = 5

(0.0625, 0.0625) 2.44 E –4 2.44 E –4 0 0
(0.125, 0.125) 9.77 E –4 9.77 E –4 0 0
(0.250, 0.25) 3.94 E –3 3.94 E –3 0 0

(0.5, 0.5) 2.24 E –2 2.24 E –2 0 0

Table 4 – Diameter of solutions of example 4.2 for px = pt = 16.

7 Conclusion

Nonlinear Volterra-Fredholm integral equations have many applications in sci-

ence and engineering, but in many cases, accumulation of truncation and round-

off errors prevent the numerical methods to converge to the exact solution. In this
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Figure 3 – Exact solution of example 4-2 (black dots) is enclosed in piecewise constant

bounds (gray circles).
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Figure 4 – Exact solution of example 4-2 (black sheet) is enclosed in piecewise constant

bounds.
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paper, we consider an initial enclosure and obtain a new guaranteed bounds for

the solution of these equations including all round-off and truncation errors. We

also clarify that the algorithm initial enclosures and conditions are not restrictive

in practice. Our numerical experiments show that the exact solution is enclosed

in intervals where the width of intervals gives the accuracy of the numerical re-

sults. This is of great importance, especially when the equations are complicated

and the solution is not determined analytically or numerically.
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