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This paper presents a meshless method using a radial basis function collocation scheme for numerical
solution of mixedVolterra–Fredholm integral equations, where the region of integration is a non-rectangular
domain. We will show that this method requires only a scattered data of nodes in the domain. It is shown
that the proposed scheme is simple and computationally attractive. Applications of the method are also
demonstrated through illustrative examples.
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1. Introduction

The solution of the mixed Volterra–Fredholm integral equations has been a subject of considerable
interest. Consider the following mixed Volterra–Fredholm integral equation

u(x, t) −
∫ t

0

∫
�

K(x, t, ξ , s)u(ξ , s) dξ ds = f (x, t), (x, t) ∈ � × [0, T ], (1)

where u(x, t) is an unknown function, the functions f (x, t) and K(x, t, ξ , s) are continuous on
� × [0, T ] and C((� × [0, T ])2), respectively, and � is a compact subset of R

n(n = 1, 2, 3), with
convenient norm ‖ · ‖. Equation (1) can be written in the abstract form

u − T u = f ,

where the integral operator T : C(� × [0, T ]) → C(� × [0, T ]) is defined as

(T u)(x, t) =
∫ t

0

∫
�

K(x, t, ξ , s)u(ξ , s) dξ ds.
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2 H. Laeli Dastjerdi et al.

Throughout the paper, we suppose that f ∈ C(� × [0, T ]), K ∈ C((� × [0, T ])2), and then
Equation (1) possesses a unique solution (see e.g. [4,13,16] for further details).

This type of equations arises in the theory of parabolic boundary value problems, the mathe-
matical modelling of the spatio-temporal development of epidemic models, and various physical
and biological problems. Detailed descriptions and analysis of these models may be found in
[5,19].

As far as we know, there are no numerical based methods for Equation (1) with dim � ≥ 2.
So, in this paper, we assume � is a bounded two-dimensional region. Actually, few numerical
methods for solving Equation (1) are known when � is a subset of R. Some projection methods
for numerical treatment of Equation (1) are given in [10,11,13]. Kauthen [13] studied continuous
time collocation and time discretization collocation methods, and analysed their global discrete
convergence properties as well as local and global superconvergence. The results of Kauthen
have been extended to nonlinear Volterra–Fredholm integral equations by Brunner [3]. Guoqiang
[9] considered the particular trapezoidal Nystrom method for Equation (1) and gave its asymp-
totic error expansion. Maleknejad and Hadizadeh [14] and Wazwaz [20] used a technique based
on the Adomian decomposition method for the solution of Equation (1). Moreover, Banifatemi
et al. [1] applied two-dimensional Legendre wavelets method to mixedVolterra–Fredholm integral
equations. Recently, Yildirim [21] applied homotopy perturbation method for Equation (1).

For solving Equation (1) on a non-rectangular region, the domain must be segmented to small
triangles and numerical integration over the segments is needed. Triangulations and mesh refine-
ment are major difficulties in these methods. So, by using the meshless methods, we may overcome
these problems. In recent years, meshless techniques have attracted the attention of researchers. In
a meshless method, a set of scattered nodes is used instead of meshing the domain of the problem.
Some well-known meshless schemes have been considered by the authors, for instance, moving
least-square method [22], element-free Galerkin method [2], boundary node method [15], etc.

In this paper, we will use the radial basis function (RBFs) approximation for numerical solution
of mixed Volterra–Fredholm integral equations where � is a non-rectangular region. The remain-
der of the paper is organized as follows: in Section 2, we give a brief survey of RBFs. In Section 3,
the proposed method is introduced and applied on Equation (1), and finally in Section 4, some
numerical and experimental results are reported.

2. RBF approximation

RBFs were introduced in [12] and they form a primary tool for multivariate interpolation. They are
also receiving increased attention for solving partial differential equations in irregular domains.
An RBF depends only on the distance to a centre point xj and is of the form φ(‖x − xj‖). The
RBF may also have a shape parameter c. This parameter can be chosen for controlling the shape
of functions. Determination of a reasonable c is still an outstanding research problem. A good
value for the shape parameter can be found using statistical methods such as cross-validation or
maximum-likelihood estimation [6]. Over the last two decades, some progress has been reported

Table 1. Some well-known functions that generate RBFs.

Name of function Definition

Gaussian (GA) φ(r) = exp(−cr2)

Hardy multiquadrics (MQ) φ(r) = (r2 + c2)
1/2

Inverse multiquadrics (IMQ) φ(r) = (r2 + c2)
−1/2

Inverse quadric (IQ) φ(r) = (r2 + c2)−1
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International Journal of Computer Mathematics 3

to select a usable shape parameter. For some new work on optimal choice of this parameter, we
refer the interested reader to the recent papers [7,8,17]. Some of the most popular RBFs are given
in Table 1.

A key feature of an RBF method is that it does not require a grid. The method works with points
scattered throughout the domain of interest, and the RBF interpolant is a linear combination of
RBFs centred at the scattered points xj,

u(x) =
N∑

j=1

λjφ(‖x − xj‖), (2)

where the coefficient λj is usually determined by collocation with given discrete data, such as
function values. Collocating of xj in Equation (2) leads us to the following symmetric linear
system:

A� = U,

where

U = [u(x1), u(x2), . . . , u(xN )],
and the entries of the matrix A and � are given by

akj = φ(‖xk − xj‖), � = [λ1, λ2, . . . , λN ]T, k, j = 1, . . . , N .

The matrix A can be shown to be positive definite and therefore non-singular for distinct
interpolation points for GA, IMQ and IQ by Schoenberg’s theorem [18]. Although the matrix A is
non-singular in the above cases, usually it is very ill-conditioned. Therefore, a small perturbation
in initial data may produce large amount of perturbation in the solution. Using a suitable method
such as truncated singular value decomposition (TSVD) method and more precision arithmetic
in computations, we can overcome this difficulty.

In what follows, we consider some definitions for the convergence on native space [6].

Definition 1 (See [6]) The fill distance of a given set X = {x1, . . . , xn} consisting of pairwise
distinct points in � can be defined as

hX ,� = sup
x∈�

min
xj∈X

‖x − xj‖,

which indicates how well the data in the set X fill out the domain �.

Definition 2 (See [6]) The definition of the native space is

Nφ =

⎧⎪⎨
⎪⎩f ∈ L2(R

s) ∩ C(Rs) :
f̂√
φ̂

∈ L2(R
s)

⎫⎪⎬
⎪⎭ ,

where φ̂ is a Fourier transform of φ.

Theorem (See [6]) Let � ⊆ R
2 and suppose that the points X = {x1, . . . , xn} are distinct.

Denote the interpolate to u ∈ Nφ by un. Then, there is a positive constant C such that for every
x ∈ � and for GA RBF, we have

‖u − un‖L∞(�) ≤ exp

(−C| log hX ,�|
hX ,�

)
‖u‖Nφ

.
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4 H. Laeli Dastjerdi et al.

3. The proposed method

Suppose 0 = t0 < t1 < · · · < tM = T be a scattered set of data in [0, T ] and x0, x1, . . . , xN be a
scattered set of nodes in �. We assume that � has a non-rectangular shape. In the sequel, we
consider the following three cases for �:

(1) A domain of the first kind:

� = {(σ , τ) ∈ R
2 : a ≤ τ ≤ b, v1(τ ) ≤ σ ≤ v2(τ )},

where v1(τ ) and v2(τ ) are continuous functions of τ .

(2) A domain of the second kind:

� = {(σ , τ) ∈ R
2 : c ≤ σ ≤ d, v1(σ ) ≤ τ ≤ v2(σ )},

where v1(σ ) and v2(σ ) are continuous functions of σ .

(3) A domain of the third kind: If a domain is neither of the first kind nor of the second kind but
could be separated to a finite number of the first or second sub-domains, then it is called a
domain of the third kind.

Here, we propose the method when � is a domain of the first kind. Also the second kind is
similarly straightforward by commuting the order of the variables. We can separate a domain of
the third kind to a finite number of sub-domains of the first or second kinds and then apply the
method in each sub-domain as described earlier. For approximating the solution of Equation (1),
we suppose

uM,N (x, t) =
M∑

j=0

N∑
k=0

ck,jφk(x)ηj(t), (x, t) ∈ � × [0, T ], (3)

as an approximate for the exact solution u(x, t), where

φk(x) = φ(‖x − xk‖), k = 0, . . . , N ,

ηj(t) = φ(|t − tj|), j = 0, . . . , M.

For simplicity, we can write Equation (3) as

u(x, t) ≈
Q∑

μ=1

dμψμ(x, t), (x, t) ∈ � × [0, T ], (4)

where dμ = ck,j, ψμ(x, t) = φk(x)ηj(t) and Q = (M + 1)(N + 1). The index μ is determined by
the equation μ = (N + 1)j + k + 1. Now by replacing Equation (4) in Equation (1), we have

Q∑
μ=1

dμ

[
ψμ(x, t) −

∫ t

0

∫
�

K(x, t, ξ , s)ψμ(ξ , s) dξ ds

]
= f (x, t), (x, t) ∈ � × [0, T ]. (5)

Then, we convert the interval [0, t] to the fixed interval [−1, 1] by using a simple linear
transformation of the form

s(t, θ) = t

2
θ + t

2
,
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International Journal of Computer Mathematics 5

and so Equation (5) takes the following form:

Q∑
μ=1

dμ

[
ψμ(x, t) −

∫ 1

−1

∫
�

t

2
K(x, t, ξ , s(t, θ))ψμ(ξ , s(t, θ)) dξ dθ

]
= f (x, t). (6)

Without loss of generality, we assume that

� = {ξ = (σ , τ) ∈ R
2 : −1 ≤ τ ≤ 1, v1(τ ) ≤ σ ≤ v2(τ )},

and Equation (6) becomes

Q∑
μ=1

dμ

[
ψμ(x, t) −

∫ 1

−1

∫ 1

−1

∫ v2(τ )

v1(τ )

t

2
K(x, t, σ , τ , s(t, θ))ψμ(σ , τ , s(t, θ)) dσ dτ dθ

]
= f (x, t).

(7)
Now the interval [v1(τ ), v2(τ )] is converted to the fixed interval [−1, 1] by the following linear

transformation:

σ(τ , z) = v2(τ ) − v1(τ )

2
z + v2(τ ) + v1(τ )

2
.

So, Equation (7) will become

Q∑
μ=1

dμ

[
ψμ(x, t) −

∫ 1

−1

∫ 1

−1

∫ 1

−1
K1(x, t, σ(τ , z), τ , s(t, θ))ψμ(σ (τ , z), τ , s(t, θ)) dz dτ dθ

]

= f (x, t), (8)

where

K1(x, t, σ(τ , z), τ , s(t, θ)) = t

2

v2(τ ) − v1(τ )

2
K(x, t, σ(τ , z), τ , s(t, θ)).

Assume that Equation (8) holds at the collocation points (xi, tr), i = 0, . . . , N , r = 0, . . . , M.
So, we have

Q∑
μ=1

dμ

[
ψμ(xi, tr) −

∫ 1

−1

∫ 1

−1

∫ 1

−1
K1(xi, tr , σ(τ , z), τ , s(tr , θ))ψμ(σ (τ , z), τ , s(tr , θ)) dz dτ dθ

]

= f (xi, tr). (9)

Using an m-point quadrature formula with the points {θl}, {τp}, {zq} in the interval [−1, 1] and
weights {wl}, {wp}, {wq} for numerical integration in Equation (9), we conclude

Q∑
μ=1

dμ

⎡
⎣ψμ(xi, tr) −

m∑
l=1

m∑
p=1

m∑
q=1

K1(xi, tr , σ(τp, zq), τp, s(tr , θl))ψμ(σ (τp, zq), τp, s(tr , θl))wpwqwl

⎤
⎦

= f (xi, tr). (10)
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6 H. Laeli Dastjerdi et al.

Solving Equation (10) using a method such as TSVD leads to the quantities dμ, and then the
values of u(x, t) at any point of � × [0, T ] can be approximated by

u(x, t) ≈
Q∑

μ=1

dμψμ(x, t), (x, t) ∈ � × [0, T ].

In the case � is a domain of the third kind, we can write � = �1 ∪ �2 ∪ · · · ∪ �d , where �i, 1 ≤
i ≤ d, are disjoint domains of the first or second kind. So, we have

Q∑
μ=1

dμ

⎡
⎣ψμ(xi, tr) −

d∑
e=1

m∑
l=1

m∑
p=1

m∑
q=1

K1(xi, tr , σe(τp, zq), τp, s(tr , θl))ψμ

(σe(τp, zq), τp, s(tr , θl))wpwqwl

]
= f (xi, tr), (11)

where

σe(τ , z) = v2,e(τ ) − v1,e(τ )

2
z + v2,e(τ ) + v1,e(τ )

2
. (12)

As we mentioned, v1,e and v2,e are continuous functions relative to the sub-domain �e.
We emphasize that this transformation is only considered for integration in (ξ , s) domain, and

so the variables (x, t) are not changed, and the pseudospectral methods cannot be used.

4. Numerical examples

In this section, we present some numerical examples where � is a bounded domain in R
n (n =

1, 2). Due to the restrictions of the optimal choice for the shape parameter c, we have selected the
parameter in all the examples experimentally. Tables 2–7 show the estimation of the parameter
c for different values of M and N . It is shown that the maximum absolute errors are completely
dependent on the values of M, N , and c.As the RBF shape parameter becomes smaller, correspond-
ing to flat RBFs, the accuracy will be better, but the interpolation matrix becomes ill-conditioned.
Also, we have used the five-point Gauss–Legendre quadrature rule for numerical integration. All
calculations were supported by the Maple 13.

Example 1 (See [14]) Consider the equation

u(x, t) −
∫ t

0

∫
�

K(x, t, ξ , s)u(ξ , s) dξ ds = f (x, t), (x, t) ∈ � × [0, 2],

with � = [0, 2] and

K(x, t, σ , s) = − cos(x − σ) exp(−(t − s)),

f (x, t) = exp(−t)(cos(x) + t cos(x) + 1
2 t cos(x − 2) sin(2)).

The exact solution is u(x, t) = exp(−t) cos(x). The absolute errors for different values of M and N
and c = 0.01 are shown in Figure 1. Moreover, the maximum absolute errors for different values
of M, N , and c are given in Table 2. From Figure 1 and Table 2, it can be seen that the present
method very well coincides with the exact solution. In fact, as M and N increase and the shape
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International Journal of Computer Mathematics 7

Figure 1. The absolute errors of Example 1 for c = 0.01. (a) M = N = 3, (b) M = N = 4, (c) M = N = 5, and (d)
M = N = 7.

Table 2. Maximum absolute errors for different values of M, N , and c.

M, N c = 0.8 c = 0.1 c = 0.01

3, 3 5.0 × 10−2 7.0 × 10−3 6.0 × 10−3

5, 5 6.0 × 10−3 2.0 × 10−4 4.0 × 10−5

7, 7 6.0 × 10−4 5.0 × 10−6 6.0 × 10−7

parameter becomes smaller, the absolute errors decrease significantly and the results will rapidly
tend to the exact values.

Example 2 Now consider the Volterra–Fredholm integral equation (1) which is defined on a
non-rectangular domain � with

� =
{
(σ , τ) ∈ R

2 : 0 ≤ σ ≤ π

4
, sin(σ ) ≤ τ ≤ cos(σ )

}
, T = 1,

and

K(x, y, t, σ , τ , s) = 1 + sin(x) + y,

with the exact solution u(x, y, t) = x + t, and define f (x) accordingly. Figure 2 shows the absolute
errors for various values of M, N , and c = 0.001 with t = 0.5. Also, the numerical results are
presented in Table 3 in terms of maximum absolute errors at different values for M, N , and c.
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8 H. Laeli Dastjerdi et al.

Figure 2. The absolute errors of Example 2 for t = 0.5 and c = 0.001. (a) M = 2, N = 3 and (b) M = 3, N = 10.

Table 3. Maximum absolute errors for different values of M, N ,
and c with t = 0.5.

M, N c = 0.2 c = 0.02 c = 0.001

3, 3 6.0 × 10−2 6.0 × 10−3 3.0 × 10−4

3, 10 7.0 × 10−4 8.0 × 10−6 2.0 × 10−8

Table 3 is considered to illustrate the effect of M, N , and the shape parameter c on RBF solutions.
This table shows that by increasing M and N and reducing c, the absolute errors decrease rapidly.

Example 3 In this example, we consider the Volterra–Fredholm integral equation (1), where

K(x, y, t, σ , τ , s) = 1 + x + sin(y),

f (x, y, t) = xt − 7
24 t2 − 7

24 t2x − 7
24 t2 sin(y),

with the exact solution u(x, y, t) = xt. We consider the region � as follows:

� = {(σ , τ) ∈ R
2 : −1 ≤ τ ≤ 1, v1(τ ) ≤ σ ≤ v1(τ )}, T = 1,

where

v1(τ ) =
{

0, −1 ≤ τ ≤ 0,

−√
τ − τ 2, 0 ≤ τ ≤ 1,

and

v2(τ ) =
√

1 − τ 2.

The traditional methods have some difficulties with regard to the numerical solution of this problem
due to the irregularity of its domain. But using some nodes scattered over the �, this problem
could be solved using the meshless method proposed in this paper. The graphs of the absolute
errors are presented in Figure 3 for different values of M and N and c = 0.001 with t = 0.5, and
the maximum absolute errors are given in Table 4.
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International Journal of Computer Mathematics 9

Figure 3. The absolute errors of Example 3 for t = 0.5 and c = 0.001. (a) M = N = 4 and (b) M = 5, N = 34.

Table 4. Maximum absolute errors for different values of M, N , and c
for t = 0.5.

M, N c = 0.9 c = 0.1 c = 0.001

3, 3 4.0 × 10−1 1.2 × 10−1 1.5 × 10−3

4, 9 4.0 × 10−1 8.0 × 10−2 9.0 × 10−4

4, 34 2.0 × 10−1 1.4 × 10−3 1.4 × 10−9

Example 4 Consider the following mixed Volterra–Fredholm integral equation:

u(x, t) −
∫ t

0

∫
�

K(x, t, ξ , s)u(ξ , s) dξ ds = f (x, t), (x, t) ∈ � × [0, T ],

where

K(x, y, t, σ , τ , s) = t2 cos(x),

f (x, y, t) = sin(xt) − 1
2 t2 cos(x) + cos(x) − cos(x) cos(t),

� = {(σ , τ) ∈ R
2 : 0 ≤ σ ≤ 1, σ 2 ≤ τ ≤ σ }, T = 1.

The exact solution of this equation is u(x, y, t) = sin(xt).
Figure 4 shows the absolute errors for the RBF collocation method for different values of M

and N and c = 0.001 with t = 0.5, and the maximum absolute errors are reported in Table 5.

Example 5 In this example, we consider the mixed Volterra–Fredholm integral equation

u(x, y, t) −
∫ t

0

∫
�

sσ 2 exp(5iσ)u(σ , τ , s) dσ dτ ds = f (x, y, t), (x, y, t) ∈ � × [0, 1],

where � = [0, 1] × [0, 1] and define f (x, y, t) accordingly. The exact solution of this equation
is u(x, y, t) = x cos(y) and the kernel is oscillatory kernel. For this example, we have used the
following regular points: {(

i

n − 1
,

j

n − 1

)∣∣∣∣ 0 ≤ i, j ≤ n − 1

}
,

and Halton points which are random points in � [6]. Tables 6 and 7 show the maximum absolute
errors for different values of M, N , and c for regular points and Halton points. Also, the absolute
errors are shown in Figure 5 for M = 3, N = 15 at y = 0.4 and c = 0.1.
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10 H. Laeli Dastjerdi et al.

Figure 4. The absolute errors for Example 4 for t = 0.5 and c = 0.001. (a) M = N = 2 and (b) M = 3, N = 5.

Table 5. Maximum absolute errors for different values of M, N , and c for t = 0.5.

M, N c = 1.5 c = 0.1 c = 0.001

2, 2 9.0 × 10−2 3.0 × 10−2 7.0 × 10−3

5, 5 2.0 × 10−2 1.8 × 10−3 9.0 × 10−4

Table 6. Maximum absolute errors for different values of M and N with c = 0.1.

Halton points Regular points

y M = N = 3 M = 3, N = 15 M = N = 3 M = 3, N = 15

0 6.0 × 10−2 7.0 × 10−4 1.0 × 10−2 1.0 × 10−4

0.2 3.0 × 10−2 3.0 × 10−4 5.0 × 10−2 8.0 × 10−4

0.4 1.0 × 10−2 1.8 × 10−4 8.0 × 10−2 1.0 × 10−4

0.6 3.0 × 10−2 1.6 × 10−4 8.0 × 10−2 9.0 × 10−4

0.8 1.0 × 10−1 1.4 × 10−4 5.0 × 10−2 5.0 × 10−4

1.0 2.0 × 10−1 1.0 × 10−3 1.0 × 10−2 5.0 × 10−4

Table 7. Maximum absolute errors for different values of M and N with c = 0.8.

Halton points Regular points

y M = N = 3 M = 3, N = 15 M = N = 3 M = 3, N = 15

0 1.0 × 10−1 2.0 × 10−2 8.0 × 10−2 1 × 10−3

0.2 1.2 × 10−1 8.0 × 10−3 9.0 × 10−2 8 × 10−3

0.4 1.4 × 10−1 4.0 × 10−3 8.0 × 10−2 1 × 10−3

0.6 1.6 × 10−1 6.0 × 10−3 6.0 × 10−2 9 × 10−3

0.8 1.4 × 10−1 5.0 × 10−3 4.0 × 10−2 5 × 10−3

1.0 1.0 × 10−1 5.0 × 10−3 4.0 × 10−2 5 × 10−3

As it is seen in Tables 6 and 7, since the Halton points are uniformly distributed in �, there is
no significant differences between the use of these points and the regular points.
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Figure 5. The absolute errors for Example 5 with M = 3, N = 15 at y = 0.4 for c = 0.1. (a) Regular points and (b)
Halton points.

5. Conclusion

In this paper, a collocation method based on RBFs for numerical solution of mixed Volterra–
Fredholm integral equations is presented. The proposed method is a meshless method which
needs only a scattered set of nodes in the domain instead of a mesh. Also, the geometry of the
domain does not play an important role in the presented method. These are significant advantages
of the method.

References

[1] E. Banifatemi, M. Razzaghi, and S. Yousefi, Two-dimensional Legendre wavelets method for the mixed Volterra–
Fredholm integral equations, J. Vib. Control 13 (2007), pp. 1667–1675.

[2] T. Belytschko, Y.Y. Lu, and L. Gu, Element-free Galerkin methods, Int. J. Numer. Methods Eng. 37 (1994),
pp. 229–256.

[3] H. Brunner, On the numerical solution of nonlinear Volterra–Fredholm integral equations by collocation methods,
SIAM J. Numer. Anal. 27(4) (1990), pp. 987–1000.

[4] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge University
Press, Cambridge, 2004.

[5] O. Diekman, Thresholds and traveling waves for the geographical spread of infection, J. Math. Biol. 6 (1978),
pp. 109–130.

[6] G.E. Fasshauer, Meshfree Approximation Methods with Matlab, World Scientific Publishing, Singapore, 2007.
[7] G.E. Fasshauer and J.G. Zhang, On choosing optimal shape parameters for RBF approximation, Numer. Algorithms

45 (2007), pp. 346–368.
[8] B. Fornberg and C. Piret, On choosing a radial basis function and a shape parameter when solving a convective

PDE on a sphere, J. Comput. Phys. 227 (2008), pp. 2758–2780.
[9] H. Guoqiang, Asymptotic error expansion for the Nystrom method for a nonlinear Volterra–Fredholm integral

equations, J. Comput. Appl. Math. 59 (1995), pp. 49–59.
[10] H. Guoqiang and Z. Liqing, Asymptotic expansion for the trapezoidal Nystrom method of linear Volterra–Fredholm

equations, J. Comput. Appl. Math. 51(3) (1994), pp. 339–348.
[11] L. Hacia, On approximate solution for integral equations of mixed type, ZAMM Z. Angew. Math. Mech. 76 (1996),

pp. 415–416.
[12] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76 (1971),

pp. 1905–1915.
[13] P.J. Kauthen, Continuous time collocation methods for Volterra–Fredholm integral equations, Numer. Math. 56

(1989), pp. 409–424.
[14] K. Maleknejad and M. Hadizadeh, A new computational method for Volterra–Fredholm integral equations, Comput.

Math. Appl. 37 (1999), pp. 1–8.
[15] Y.X. Mukherjee and S. Mukherjee, The boundary node method for potential problems, Int. J. Numer. Methods Eng.

40 (1997), pp. 797–815.
[16] B.G. Pachpatte, On mixed Volterra–Fredholm type integral equations, Indian J. Pure Appl. Math. 17 (1986),

pp. 488–496.

D
ow

nl
oa

de
d 

by
 [

M
ah

m
ou

d 
H

ad
iz

ad
eh

] 
at

 2
2:

28
 1

8 
Se

pt
em

be
r 

20
12

 



12 H. Laeli Dastjerdi et al.

[17] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Adv.
Comput. Math. 11 (1999), pp. 193–210.

[18] I.J. Schoenberg, Metric spaces and completely monotone functions, Ann. Math. 39 (1938), pp. 811–841.
[19] H.R. Thieme, A model for the spatio spread of an epidemic, J. Math. Biol. 4 (1977), pp. 337–351.
[20] A.M. Wazwaz, A reliable treatment for mixed Volterra–Fredholm integral equations, Appl. Math. Comput. 127

(2002), pp. 405–414.
[21] A. Yildirim, Homotopy perturbation method for the mixed Volterra–Fredholm integral equations, Chaos Solitons

Fractals 2 (2009), pp. 2760–2764.
[22] C. Zuppa, Error estimates for moving least square approximations, Bull. Braz. Math. Soc. New Series 34(2) (2003),

pp. 231–249.

D
ow

nl
oa

de
d 

by
 [

M
ah

m
ou

d 
H

ad
iz

ad
eh

] 
at

 2
2:

28
 1

8 
Se

pt
em

be
r 

20
12

 


	Introduction
	RBF approximation
	The proposed method
	Numerical examples
	Conclusion



