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Abstract

In this paper, we first extend and analyze the steepest descent method
for solving optimal control problem for systems governed by Volterra in-
tegral equations. Then, we present some hybrid methods based on the ex-
tended steepest descent and two-step Newton methods to solve the prob-
lem. The global convergence results are also established using some mild
assumptions and conditions. Numerical results show that the proposed
hybrid methods are more powerful and faster than the extended steepest
descent method.
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1 Introduction

The classical theory of optimal control was originally developed to deal with
systems of controlled ordinary differential equations [9]. Due to literature [6, §],
a wide class of control systems can be described by Volterra integral equations
instead of ordinary differential equations. It is well-known that Volterra integral
equations can be used to model many classes of phenomena, such as population
dynamics, continuum mechanics of materials with memory, economic problems,
the spread of epidemics, non-local problems of diffusion and heat conduction.
An excellent survey on applications of Volterra integral equation can be found
in [6] and [8].

The problem of optimal control of systems governed by Volterra integral
equations has been studied by many authors e.g. Vinokurov [10], Medhin [11],
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Schmidt [13] and Belbas [3, 4, 5]. The methods that are usually employed
for solving this problem are based on the necessary conditions obtained using
Pontryagin’s maximum principle. Belbas in [3] presented a method based on
discretization of the original Volterra integral equation and a novel type of dy-
namic programming in which the Hamilton-Jacobi function is parametrized by
control function. In more recent work of Belbas [4], the controlled Volterra
integral equations are approximated by a sequence of controlled ordinary differ-
ential equations and the resulting approximating problems can then be solved
by dynamics programming methods for ODE controlled systems. The inter-
ested reader may found some references on optimal control of Volterra integral
equations by methods other than dynamic programming in [5, 7, 10, 11].

Due to the difficulties in getting analytical solution for the problem, the
numerical methods have been usually interested. Belbas in [5] described sev-
eral iterative schemes for solving Volterra optimal problems and analyzed the
conditions that guarantee the convergence of the methods. Schmidt in [14], pro-
posed some direct and indirect numerical methods for solving optimal control
problems governed by ODEs as well as integral equations.

In this paper, we are going to provide some explicit iterative methods based
on the necessary conditions for solving Volterra optimal control problems in
which the control variables are not constrained by any boundaries. We first
generalized the Steepest Descent (SD) method for solving the problem and
then hybridize the SD and Two-Step Newton (TSIN) methods in order to ef-
ficiently solving the Volterra optimal control problem. The proposed hybrid
method integrates the SD and TSN methods to obtain global convergence re-
sults together with fast convergence rate. Our numerical results show that the
hybrid schemes are more powerful and faster than the SD method.

The paper is organized as follows: the Volterra optimal control problem and
some elementary related results are stated in section 2. Section 3 is devoted to
describe and analyze the generalized SD and TSN methods. The new hybrid
schemes based on SD and TSN methods are also constructed in this section.
The global convergence of the proposed hybrid methods is analyzed in section 4
and finally some numerical results are given in section 5 to show the efficiency
of the proposed hybrid methods in comparison with the SD method.

2 Problem Statement

Consider a controlled Volterra integral equation of the form

#(t) = 2(a) + / £(t,5,2(5), u(s))ds, 1)

where the continuous real-valued functions z(t) and u(t) are the state of the
controlled system and the control function, respectively. It is assumed that the
state and control variables are not constrained by any boundaries. In this paper,
we consider the optimal control problem in which the cost functional J defined
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is minimized under the Volterra integral equation given by (1). We are looking
for the vector (z*,u*) which solves the following problem

max J; =

st / F(t, 5, 3(5), u(s))ds. 3)

It is well known that the Pontryagin maximum principle, or simply maximum
principle, gives the necessary conditions for the optimal vector (z*(t),u*(t)) of
the problem (3), so through out the paper we assumed that the following con-
ditions are satisfied:

H, : The conditions that guarantee the existence of a unique continuous
solution to the integral equation (4), which include continuity of the
function f for all s,t with s < ¢, together with its Lipschitz condition.

H, : The partial derivatives f, and f, exist and are continuous, and for all
t,s, with t <s, f(t,s,2,u) = 0.

Hs : F(t,z,u) is a smooth function.

Following [15], using these assumptions, the Pontryagin maximum principle
can be stated as follows :

Suppose that the function u* (), a < t < b, and related state function z*(¢),
solve the problem (3). Then, there exist a continuous multiplier function A*(t),
and a Hamiltonian H (¢, z,u, ), defined by

H(t,z(t),u(t), \(t)) = F(t,z(t / f(s,t,z(t), u(t))A(s)ds,

such that, for each ¢,

1. u*(t) minimize H (¢, z,u,\), i.e. %M:u*(t) = 0, providing that H is
differentiable with respect to .

2. X (t) = —%|u:u*(t),z:z*(t)'

3 Iterative Methods

In this section, using maximum principle, we present some iterative methods for
solving (3). First of all, we state and analyze an extension of the steepest descent



method for solving optimal control of Volterra integral equations. We then
introduce the Newton and its variety, the so-called two-step Newton methods
and related convergence results. Finally, a combination of these methods are
provided as a new hybrid method for solving the optimal control of Volterra
integral equation.

3.1 Steepest Descent Method

Here, we briefly describe an iteration of the steepest descent method when we
apply to solve problem (3). Let u() be the control function in the i**-iteration of
the steepest descent method, then the state function () (¢), in the i*’-iteration
is given by solving the following integral equation:

29 (t) = x(a) + / £t 5,29 (), u® (5))ds. (4)

Using maximum principle, the related multiplier A9 (¢), is then provided by

. OF ; . bof . ; ;
(D)) — 22 (4) (1) htl (1) (4) (4)
A1) = =200 0) + [ s, N s, 3
Let us set
OHY  9H , , ,
o7 0 _ 27 (4) (2) (4)
o = (1,2 (0),u (0,00 1)), (6)

For a given € > 0, (9 (t),u(? (¢)) is an e-solution of the problem (3), if

oH®
125p < @
where ||.|| is the continuous 2-norm defined by
OHD o o [TOHD ().,
15 2 [ 12 )

Otherwise, the new iteration for u(**1) is computed by

OH )
ou ’

WD = () _

(9)
where 7 > 0 is the step size which is determined by exact line search rule, i.e.,

2120, — a2 ), 20 ), (10)

u

T = argmin
a>0

The above procedure is repeated by replacing u(? <« w(i+1) until the stopping
criteria (7) is satisfied.



3.2 Newton Method

Newton method is one of the most attractive iterative method for approximating
the solution of a nonlinear operator system. Let GG be a continuous and Frechet
differentiable operator defined on an open convex subset D of a Banach space
X and z* be a unique solution of the system

then, under some assumptions indicated in the Theorem 1, the Newton iterative
scheme

Ungt =ty — G (un) " Glupn),  (n>0) (11)

is well-defined and converges to the unique solution xz* with quadratic con-
vergence rate. Now, we recall the following convergence theorem for Newton
method based on the well-known Newton-Kantorvich hypothesis which its proof
can be found in [17]:

Theorem 1. (From [1]) Let X and Y are Banach spaces and G : X — Y be
continuously Frechet differentiable on some open convex subset D C X. Assume
that:

(a) there exist a point o € D, such that

G'(z0) " € LY, X),

where L(X,Y) is a set of all bounded linear operators from'Y to X.
(b)there exist a Lipschitz constant L > 0, such that for all z,y € D,

IG" (20) 7' [G' (2) = G" ()]l < Lilz — yll,
(c)for some positive constant 1,
hrp =2nL <1,
and U(xg,r*) C D, where

. _ 2n
C1+V1—hr

Then, the Newton iterates {x,} n>0 are well defined, remain in U(zo,r*)
and converge to the unique zero z* of F(x) =0 in U(xg, 7).

r

Two modifications of the Newton method are two-step Newton methods
with order of convergence 3 and 4. Let ug € D and a scaler v > 0 be given, the
two-step Newton method with order of convergence 3 generates the iterations
based on the following scheme (See e.g. [2]):

yn = tn—(G'(un))"'G(un),  (n>0) (uo € D)



Untt = Yo = (G'(un)) " G(yn). (12)

This method needs one inverse and two function evaluation at every step.
In [2], it is proven that if the Newton-Kantorvich hypothesis holds, then this
method converges to the unique solution of the system with cubic convergence
rate. Also, following [2], the two-step Newton method with order of convergence
4, generates the iterations based on the following scheme:

yn = un—(G'(un))'Glun),  (n>0) (uo€D)

Unt1 = Yo = (G'(yn)) " G(yn). (13)

Clearly, the computational complexity of this method consist of two inverses
and two function evaluations at every step and the convergence of the proposed
method is also guaranteed using the Newton-Kantorvich hypothesis with rate of
convergence 4. Note that the stopping condition for both methods is |G (u,,)| <

Y.

3.3 Hybrid Methods

In this section, we hybridize the steepest descent method with three kind of
Newton methods, provided in subsection 3.2, in order to solve the optimal con-
trol of Volterra integral equation (3). We note that the steepest descent method
is globally convergent while the Newton methods are not. Therefore, these hy-
bridizations lead us to have globally convergent methods with fast convergence
rate compared to the steepest descent method. In a short view, the new schemes
start and continue the iterates by the SD methods while the Newton-Kantorvich
hypothesis are not satisfied. Otherwise, we follow the iterations by TSN meth-
ods.
The following algorithm summarizes our strategy:

Algorithm 1.

Step 1: Given the precise parameter v > 0, choose an arbitrary control
function u(%) (t), t € [a,b], and set i = 0.

Step 2: Solve the integral equation (4) for z()(t), t € [a,b].

Step 3: Solve the integral equation (5) for A (¢), t € [a, b].

Step 4: Calculate %, by (6).

Step 5: If ||%||2 < 7, then stop. (z(9 and u( satisfies the neces-
sary conditions)

otherwise, if Newton-Kantorvich hypothesists hold, then generate
a new control function given by

ult) = P,y ), (14)
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else, set  ulth) = ) — 7(2H)()

where 7 is given by (10).
Step 6: Set i « i + 1 and go the Step 2.

Remark. Note that in the Step 5 of the proposed algorithm, the operator
P is chosen appropriately according to the Newton’s method that we would like
to use, more precisely:

1. If we use the classic Newton’s method,

52 H () . OH )
Ou? ) ou )-

2. If we use the two-step Newton method (12),

P=ul® _

) o 02HD ~, 0HY
P(u®,y) =y = (55 lumy) (5 lumy), (15)
where y(i) = = (82}:2(1) )_1(818{:) )
3. If we use the two-step Newton method (13),
. . ) 52 (4 OH
Pu® 4@y = 4O _ )= 1
(’U, Y ) Y ( Ou2 |u_u() ou u_y())a ( 6)
where y(l) = u(l) _ (8282[2(1) )71(81(;:))

4 Convergence Analysis

In this section, we first provide the convergence result for the steepest descent
method. To do so, we assume that the conditions H; — Hs together with the
following conditions are satisfied:

H, : The partial derivatives f, and F, exist and are Lipschitz continuous.

Hj; : The conditions that guarantee existence and uniqueness of optimal
control be satisfied. (See e.g. [19, 18]).

The following theorem provides the convergence result for the steepest de-
scent method which is generalized to the Volterra optimal control problem.
Some part of the proof is a repetition of the standard proof of an extremum
principle of Pontryagin’s type for Volterra integral equations which exists in the
literature [15].

Theorem 2. Suppose that the assumptions Hy — Hs are satisfied. Then, the
steepest descent method described in section 3.1 is convergent to the optimal
solution of the problem (3).



Proof. Let u be an arbitrary control function. For all continuous functions
Au(t), the variation of .J; is given by

Au) —
01 (u, Au) = lim i+ eAu) Jl(u),

e—0 €

where € is an arbitrary small number. The computation of this variation yields:

b
[—Fx (t,z(t,u), u)%m(t, u+ €Au)|c—o — Fyu(t, z(t,u), u)Au] dt. (17)

5.1 (u, Au) = / :

a
Now from (1), we have
t

0
&m(t,u + eAu)| =0 = /

a

[fx(t, s,w(s,u),u)%m(s,u + eAu)| =0 + fult, S,m(t,u),u)Au(s)} ds. (18)

Let us assume that

(t,s) := f.(t,s,2(s,u),u(s)),
(tas) = fg(tasam(sau)au(s))a
y(t) = ==t u+ eAu)|=o. (19)

Oe
Substituting (19) into (18), leads us to the following integral equation:

y(0) = [ 1A 9)y(s) + Blt.s)Aus) . (20)

The solution of (20) can be obtained as:

t s t
y(t) :/ r(t,s) [/ B(S,T)Au(T)dT:| ds—l—/ B(t, s)Au(s)ds, (21)
where the resolvent kernel r(t, s) is defined by:
t
r(t,s) = A(t,s) —l—/ r(t,7)A(r, s)dr.

One knows that, for a given continuous function g on the triangular region
a<t1<t<T, we have:

/a ! / gt )t = / ! /t R - (22)

Rewriting (21) by (22), gives rise:

y(t) = /at {B(t,s) + /st r(t, 7)B(T, s)dr} Au(s)ds. (23)



Recalling (19) and substituting (23) into (17) implies that
5.1 (u, Au) = /ab [ —Faltx(tw),u() [/t {B(t,s) + /str(t,T)B(T, s)dr} Au(s)ds]
- Fu(t,a:(t,u),u(t))}Au(t)dt. (24)
Now, applying (22) to (24) yields:
0J1(u, Au) / / —F,(s,z(s,u),u(s)) {B(s,t) + /ts r(s,7)B(T, t)dT] ds
Wt ot w),u(t) f Au()dt. (25)

Let Hy = —H, we will show that

o,

b s
M :/t —Fy(s,z(s,u),u(s)) [B(s,t) +/t T(S,T)B(T,S)dT] ds — Fy(t, z(t,u), u(t)) Au(t)dt, (26)

and therefore by evaluating (25) in u = u(¥, we have

b o, b aH® OH )
(i) (4 _
Au't (t)dt / ( 9 9 )5

60 (D, Aud (1)) = /
aH

7

which concludes that §.J( < 0. Therefore, .J is decreased in each iteration which
implies that the steepest descent method is convergent to optimal solution.

Now, we show that (26) holds. Let us denote the right hand side of (26) by
I. Using (22), this equation can be written as:

b
- [
t

According to Theorem 1 in [15], we know that A(s), defined by

b
_FI(Sax(sau)au(s)) - / FI(T,I‘(T, U),U(T))T(T, S)dT B(sat)ds - Fu(t,x(t,u),u(t)). (27)

b
As) = —F,(s,z(s,u),u(s)) +/ —Fy (1, z(r,u),u(r))r(r, s)dr, (28)
is consistent with

b
A(s) = —F,(s,z(s,u),u(s)) +/ fe(t,z(t,uw), u(t))A(t)dt.

Thus, substituting (28) in (27) will lead us to the following equation:

I = —Fu(t,z(t,u(t) / A(s (29)



Now, applying (19) and (29), we obtain:

OH,

—Fu(t, z(t, u(t) /)\ Vfu(s,z,u,t)ds 8= o

and this completes the proof of the theorem. I

In this part, we establish the main theorem of the paper which is related
to the convergence property of the sequence of control {u(i)}, generated by Al-
gorithm 1. Tt is well-known that C(]0,7],R) is a Banach space and therefore
Theorem 1 can be applied. The following theorem states that the control se-
quence {u(?} generated by Algorithm 1 converges to the point in which the
maximum principle is satisfied:

Theorem 3. Suppose that the assumptions Hy — Hs hold. Let the operator
G= % satisfies the Newton-Kantrovich hypothesis which is stated in Theorem
1. Then, the sequences {uD}, {z(D} and {\D}, that are generated by Algorithm
1, are convergence to the point (u*,z*,\*) in which the mazimum principle
holds.

Proof: Using condition H5 and Theorem 2, we conclude that the steepest
descent method is globally convergent to the unique control w*. Thus, after
n, iteration of steepest descent method, the control (™), and therefore z(™1)
and A(™) gatisfies the Newton-Kantorvich hypothesis stated in Theorem 1.
Hence, from the nq-th iteration on, we can use the Newton (or two-step Newton)
method to get close to the unique control u* and related z* and \*, as desired.
This completes the proof of the theorem. O

5 Numerical Experiments and Discussions

We illustrate the performance of the proposed hybrid methods and steepest
descent method for Three test problems in order to compare the number of
iterations and convergence rate that are required for reaching the accuracy of
e = 107%. In all of the test problems, the initial control has been set to zero. All
the calculations have been done with Maple® software. For ease of reference,
we use the following notations in the Tables and Figures:
SD: Steepest Descent method
SDN: Hybridization of Steepest Descent and Newton method
SDN1: Hybridization of Steepest Descent and two-step Newton method stated
n (13)
SDN2: Hybridization of Steepest Descent and two-step Newton method stated
n (12)

Example 1. Consider the minimization of the functional

1
J = / te(t) — u(t) + 2 Wdt,
0

10
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Figure 1: The error behaviours of SD and three hybrid methods for Example 1.

subject to the integral equation
t
() = / ta(s) + tu(s)ds. (30)
0
The Hamiltonian function can be stated as:

H = tat) — u(t) + e24(0) — /t A(s)(s2(2) + su(t))ds.

Let us suppose that u* minimize H. Using the maximum principle, we
express the necessary conditions for optimality as:

M) = —%—f S +/t 57" (s)ds, (31)
2e2w (1) 1 — /1 sA*(s)ds =0, (32)
o (1) = /0 £ (s) + tu* (s)ds. (33)

The analytical solution of the integral equation (31) may be obtained as:

M) =t+eTled - %ﬂzw)erf(‘/;) P %\/ﬁerf(‘/gt)],

11



where
f(z) 2 /Z et dt
er =— .
VT Jo
So, from (32), we have

1 o1 1/t
u*(t) = 5111 {5 + §/t s)\*(s)ds] ,

and finally the optimal state variable z* can be obtained from the linear Volterra

integral equation (33).

Ttr. SD SDN SDN1 SDN2
1 0.1859946121 x 10 ! 0.1859946121 x 10 | 0.1859946121 x 10 ' 0.1859946121 x 10 '
2 0.2925847721 x 10 ° 0.2925847721 x 10 © | 0.2925847721 x 10 ° 0.2925847721 x 10 °
3 0.9784994009 x 10~! | 0.9784994009 x 10~' | 0.9784994009 x 10~" 0.9784994009 x 10!
4 0.8384725880 x 102 | 0.8384725880 x 10~2 | 0.8384725880 x 102 0.8384725880 x 102
5 0.7087285864 x 1072 | 0.2552562216 x 1072 | 0.4619949629 x 10~° 0.7967148802 x 103
6 0.1242925606 x 107> | 0.4619935163 x 10~° | 0.2118656096 x 10~ 0.6016323984 x 10710
7 0.6926905693 x 10~7 | 0.2702143061 x 10~

8 0.9855703048 x 107!

Table 1. Numerical results of Example 1 for SD and three hybrid methods.

method [la — u*||
SD 0.221493 x 10~

SDN 0.479730 x 1078
SDN1 0.103910 x 1010
SDN?2 0.230914 x 107°

Table 2. The errors of the actual and numerical control for Example 1.

Example 2.

1
min J = / te(t) — u?(t) + 2 Wdt,
0

s.t. :U(t):/o tx(s) + tu(s)ds.

Example 3.
1
min J:/ tz(t) — ut(t)dt,
0

s.t. :U(t):/o tx(s) + tu(s)ds.

12
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Figure 2: The error behaviours of SD and three hybrid methods for Example 2.

In order to compare the number of iterations and convergence behaviour
of the steepest descent and three hybrid methods, we solved the test problems
for the same conditions. It turned out for given conditions, all of the methods
produced almost the same accuracies in the first two or four iterations of the
algorithms. The number of iterations for reaching the given accuracy is also
reported. In Tables 1,3 and 4 we have compared the optimal control governed
from the maximum principle with the numerical solutions which are obtained

from the proposed hybrid methods. The value of ||%:)||2 produced at each
iterations together with the corresponding iteration number of the algorithms
are also listed in these Tables. The error behaviours of the methods has also
been shown in Figures 1-3. It is worth mentioning to indicate that the vertical
axis in the Figures provides the log,, (error) which in fact is log;, (| alg:) 12).

Table 2 provides the errors between the exact solution u* of the Example
1 and the numerical solution @, which is obtained from the iterative methods,
with the following formula:

b
||@ —w™| =/ |a(t) —u”(#)|dt. (34)

It is seen that among all of the proposed iterative methods, combination of
steepest descent and two-step Newton methods has the best rate of convergence
for reaching accuracy of 10~8. However, considering SDN1 and SDN2, the first
one gives the better convergence results.

13
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Figure 3: The error behaviours of SD and three hybrid methods for Example 3.

Itr. SD SDN SDN1 SDN2
1 0.3454434515 x 10! 0.3454434515 x 10 * 0.3454434515 x 10 * 0.3454434515 x 10 *
2 0.2857226457 x 10* 0.2857226457 x 10 * 0.2857226457 x 10 * 0.2857226457 x 10 *
3 0.1879981725 x 10* 0.1736043618 x 10 ° 0.4112858151 x 1073 0.4342500110 x 107!
4 0.1575350571 x 10' 0.4112858151 x 1073 0.1217571429 x 10~'8 0.9061416335 x 107
5 0.1147397014 x 10' 0.2617783088 x 10~® 0.1390000000 x 10~ *° 0.1199313600 x 10~ 15
6 0.9719095619 x 10° 0.1134238095 x 10~ '®
7 0.7451515862 x 10°
8 0.6355515219 x 10°

Table 3. Numerical results of Example 2 for SD and three hybrid methods.
Itr. SD SDN SDN1 SDN2
1 0.22672043 x 10~ * 0.22672043 x 10~ * 0.22672043 x 10~ * 0.22672043 x 10~ *
2 0.18011528 x 10~* 0.18011528 x 10~ * 0.18011528 x 10~* 0.18011528 x 10~ *
3 0.10679386 x 10~" 0.10679386 x 10~* 0.10679386 x 10~" 0.10679386 x 10~*
4 0.18461411 x 1072 0.23153650 x 1072 0.13304686 x 10~7 0.98134423 x 107°
5 0.28322386 x 1073 0.13304686 x 10~ 7 0.13900000 x 10~'° 0.11993136 x 10~'°
6 0.48104292 x 10~ *

Table 4. Numerical results of Example 3 for SD and three hybrid methods.

14




6 Conclusion

In this paper, an extension of steepest descent method for solving optimal con-
trol problem of Volterra integral equations is presented. The method is restricted
to a special class of optimal control problems. Then, with notice of the impor-
tance of Newton and two-step Newton methods, SD method is hybridized with
these methods. These hybrid methods in comparison with SD are faster and
their accuracy is better. The convergence analysis of these methods are also
established under some mild assumptions and conditions. One possible future
work is to extend this research to optimal control problem with constrained
control variables, or use multi-step method with faster rate of convergence.
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