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Abstract. In this paper, we first extend and analyze the steepest descent method for solving optimal
control problem for systems governed by Volterra integral equations. Then, we present some hybrid methods
based on the extended steepest descent and two-step Newton methods, to solve the problem. The global
convergence results are also established using some mild assumptions and conditions. Numerical results
show that the proposed hybrid methods are more powerful and faster than the extended steepest descent
method.
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1. Introduction

The classical theory of optimal control was originally developed to deal with systems of controlled
ordinary differential equations [9]. A wide class of control systems can be described by Volterra integral
equations instead of ordinary differential equations. It is well-known that Volterra integral equations can be
used to model many classes of phenomena, such as population dynamics, continuum mechanics of materials
with memory economic problems, the spread of epidemics, non-local problems of diffusion and heat
conduction problem. An excellent survey on applications of Volterra integral equation can be found in [6]
and [8] .

The problem of optimal control of systems governed by Volterra integral equations has been studied by
many authors e.g. Vinokurov [10], Medhin [11], Schmidt [13] and Belbas [3, 4, 5]. The methods that are
usually employed for solving this problem are based on the necessary conditions obtained using Pontryagin's
maximum principle. Belbas in [3] presented a method based on discretization of the original Volterra integral
equation and a novel type of dynamic programming in which the Hamilton-Jacobi function is parametrized
by control function. In more recent work of Belbas [4], the controlled Volterra integral equations are
approximated by a sequence of controlled ordinary differential equations and the resulting approximating
problems can then be solved by dynamics programming methods for ODEs controlled systems. The
interested reader may found some references on optimal control of Volterra integral equations by methods
other than dynamic programming in [5,7, 10, 11].

Due to the difficulties in obtaining analytical solution for the problem, the numerical methods have been
usually interested. Belbas in [5] described several iterative schemes for solving Volterra optimal problems
and analyzed the conditions that guarantee the convergence of the methods. Schmidt in [14], proposed some
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direct and indirect numerical methods for solving optimal control problems governed by ODEs as well as
integral equations.

In this paper, we are going to provide some explicit iterative methods based on the necessary conditions
for solving Volterra optimal control problems in which the control variables are not constrained by any
boundaries. We first generalized the Steepest Descent (SD) method for solving the problem and then
hybridize the SD and Two-Step Newton (TSN) methods in order to efficiently solving the Volterra optimal
control problem. The proposed hybrid method integrates the SD and TSN methods to obtain global
convergence results together with fast convergence rate. Our numerical results show that the hybrid schemes
are more powerful and faster than the SD method.

The paper is organized as follows: the Volterra optimal control problem and some elementary related
results are stated in section 2. Section 3 is devoted to describe and analyze the generalized SD and TSN
methods. The new hybrid schemes based on SD and TSN methods are also constructed in this section. The
global convergence of the proposed hybrid methods is analyzed in section 4 and finally some numerical
results are given in section 5 to show the efficiency of the proposed hybrid methods in comparison with the
SD method.

2. Problem Statement

Consider a controlled Volterra integral equation of the form

x(t) = x(a) + j f '[t, s,x(.s':]l,u(s}} ds, (1)

where the continuous real-valued fimctions x(t) and u(t) are the state of the controlled system and the
control function, respectively. It is assumed that the state and control variables are not constrained by any
boundaries. In this paper, we consider the optimal control problem in which the cost functional [ defined by

b
]= j F(t, x(£),u(t))ds, (2)

1s minimized under the Volterra integral equation given by (1). We are locking for the vector (x*,u*) which
solves the following problem

max h=-I (3
5.t x(t) = x(a) + J‘ f{t, s,x(s},ufs}}ds.

It is well kmown that the Pontrvagin maximum principle, or simply maximum principle, gives the
necessary conditions for the optimal vector (x*,u*) of the problem (3), so through out the paper we assumed
that the following conditions are satisfied:

H; : The conditions that guarantee the existence of a umique continuous solution to the integral
equation (4), which include continuity of the function £ for all s, £ with 5 = {, together with its Lipschitz
condition.
H,: The partial derivatives f and f,,existand are continuous, and for all £, 5 with ¢ = 5, f(t,s,x,u) = 0.
H;: F(t,x,u) is a smooth function.

Following [15], using these assumptions, the Pontrvagin maximum principle can be stated as follows :
Suppose that the fimctionu*(t), @ =t =< b, and related state fimction x*(t), solve the problem (3). Then,
there exist a contmuous multiplier function A*(%), and a Hamiltonian H(%, x,1, 1), defined by
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b
H(t,x(t),u(®), A(t)) = F(t,x(®),ult)) - j f(s.t,x(0),u(t))A(s)ds,

such that, for each £,

. u*(t) minimize H(t, x,u, ), ie. £|u=u'(r} = 0, providing that H is differentiable

with respect tou.

2. rH=-2

| u=u" (E)ax=x"(t)-

3. Iterative Methods

In this section, using maximum principle, we present some iterative methods for solving (3). First of all,
we state and analyze an extension of the steepest descent method for solving optimal control of Voltemra
integral equations. We then introduce the Newton and its varietv, the so-called two-step Newton methods
and related convergence results. Finally, a combination of these methods are provided as a new hybrid
method for solving the optimal control of Volterra integral equation.

3.1. Steepest Descent Method

Here, we briefly describe an iteration of the steepest descent method when we apply to solve problem
(3). Letu'? be the control function in the i*™iteration of the steepest descent method. then the stte function
x'9(t). in the i*™iteration is given by

*0 = x(a) + J‘r}" (t, 5,x 0 (5), 1 {3}) ds. (4)

Using maximum principle, the related multiplier 1‘” (), is then provided by

B
A9() = —%(tjx':i}(t},u':a(t}) + j g s, t, x':":'(t:.'hu':i}(t}),l':ijfs}ds. (5)
Letus set o
% — % (t, *@D (1), (D), Aliz'}(t}). (&)

Foragiven € > 0, (x'2(£),u'” (1)) is an £-solution of the problem (3), if

ap @

du

I I’< & (7)

where Il || is the continuous 2-nom defined by

ﬂH':i:' b aHI::}(t}
Zs ———%drt. B
e [ P ®

Otherwise. the new iteration for u"“*¥(t) is computed by
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(i)
u':Hl}(t} — u':i}(t} _ Tagu ! (9)

where T > 0 is the step size which is determined by exact line search rule, i.e.,

A hr':z']'
au

aH . .
t=arglis— | 620000 D -«

(), A2 | (10)

The above procedure is repeated by replacing u'® «— w1 ymtil the stopping criteria (7) is satisfied.

32 Newton Method

Newton method is one of the most attractive iterative method for approximating the solution of a
nonlinear operator system. Let & be a continuous and Frechet differentiable operator defimed on an open
convex subset D of a Banach space X and x* be a unique solution of the svstem

G(x)=0,

then, under some assumptions indicated in the Theorem 1, the Newton iterative scheme
Upsq = Uy — G"(un}_j-{;(unl 1:‘1‘1 = ﬂ} (11}

is well-defined and converges to the unique solution x* with quadratic convergence rate. Now, we recall the
following convergence theorem for the Newton method based on the well-kmown Newton-Kantorovich
hypothesis which its proof can be found in [17]:

Theorem 1. (From [1]) Let X and Y are Banach spaces and G:X — Y be continuously Frechet
differentiable on some open convex subset D © X Asswme that:

al there exista poit Xg © D8, such that

G'(xo)~1 € L(Y, X),
where L(Y, X) is a set of all bounded linear operators from ¥ to X
b there exist a Lipschitz constantL > 0, such that for allx,y € D,
| G (xg) G (x) —G' (WM I=L Il x—y .
c) for some positive constant 1,

hy=2qL <1,
and U(xy,r*) € D, where
: 21

R e —
1+,/1—h,

Then, the Newton iterates {x,, }n=q are well defined, remain in U(xg,7*) and converge to the unique zero
x*of F{x) = 0in U(xg,7%).

Two modifications of the Newton method are two-step Newton methods with order of convergence 3 and
4. Let ug € D and an scalary = 0 be given, the two-step Newton method with order of convergence 3
generates the iterations based on the following scheme (See e.g [2]):
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Vn = Uy — (6" (u,) ™) G(u,), (n = 0)(ug € D)
Ups1 = Vn — (Gf(un}_l}g(}’n}- {12}

This method needs one mverse and two fumction evaluation at every step. In [2], it is proven that if the
Newton-Kantorovich hyvpothesis holds, then this method converges to the unique solution of the svstem with
cubic convergence rate. Also, following[2] , the two-step Newton method with order of convergence 4,
generates the iterations based on the following scheme:

Vo = Uy — (Gf(un}_l} G(‘Mn}, (Tl = ﬂ} (’M,} = Djl

Uns1 = Yo — (6" (3) "DG(). (13)

Clearly, the computational complexity of this method consist of two inverses and two function evaluations
at every step and the convergence of the proposed method is also guaranteed using the Newton-Kantorovich
hypothesis with rate of convergence 4. Note that the stopping condition for both methods is |G{u,)| = y.

33 Hybrid Methods

In this subsection, we hybridize the steepest descent method with three kind of Newton methods,
provided in subsection 3.2, in order to solve the optimal control of Volterra integral equation (3). We note
that the steepest descent method is globally convergent while the Newton methods are not Therefore, these
hvbridizations lead us to have globally convergent methods with fast convergence rate compared to the
steepest descent method. In a short view, the new schemes start and continue the iterates by the 5D methods
while the Newton Kantorovich hyvpothesis are not satisfied. Otherwise, we follow the iterations by TSN
methods. The following algorithm summarizes our strategy:

Algorithm 1.

Step 1: Given the precise parametery = 0, chooze an arbitrary control fimctionu'® (£), £ € [ob], andseti = 0.
Step 2: Solve the ntegral equation (4), for 2@, telasl

Step 3: Solve the integral equation (3), for 9@, t elabl

a

..:I:JI'
"2 defined by (6).

Step 4: Calculate —

Step 5: If | —— I’< ¥, then stop. {x ¥ and u" satisfies the necessary conditions)

ar e
du

otherwise, if Newton-Kantorovich hypothesizes hold, then generate a new control function given by

MGEY :P{u"“,y"u}, (14)

glze, zet
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[
) i aH
i+1) i
g = gl —'1‘,'(
du

where Tis given by (10
Step6: Set i — i + 1 and go to step 2.

Remark. Note that in the step 5 of the proposed algorithm, the operator P is chosen appropriately according
to the Newton's method that we would like to use, more precisely:

1. If weuse the classic Newton's method,

P .
p_ 0 a2HW\ " (aH®
- au? au )

2. Ifwe use the two-step Newton method ({12,

e -1 -
e . [8H® aHw
P{u'~“},}-"~“}} = },U} — (? |u:}_[0) (? |u:}_iﬁ), ('15}

"L r
where ' =yl — (f‘“H-D) (E‘H-D)-

fulz du

3. Ifwe usethe two-step Newton method (13),

- -1 Y
— . [92HW aH'
P(ul®,y®) =y — (W '““‘“) (E '“:f‘*":“)’ &2

where ¥ =0 — (E'“H'TJ)_i (E,IHI:I::I:]I

du? du

4. Convergence Analysis

In this section, we first provide the convergence result for the steepest descent method. To do so, we
assume that the conditions Hy — Hj together with the following conditions are satisfied:
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Hy: The partial derivatives f;. and F. exist and are Lipschitz continuous.

Hg: The conditions that guarantee existence and unigueness of optimal control be satisfied. (See eg
[19,18]).

The following theorem provides the convergence result for the steepest descent method which is
generalized to the Volterra optimal control problem. Some part of the proof is a repetition of the standard
proof of an extremum principle of Pontrvagin's tvpe for Volterra integral equations which exists in the [15].

Theorem 2. Suppose that the assumptions Hy — Hg are satisfied Then, the steepest descent method
described in section 3.1 is convergent to the optimal solution of the problem (3).

Proof: Letu be an arbitrary control function. For all contimuous functions Au(t), the variation of /; is given
by

811 (u, Au)lim .o e TG

where £ is an arbitrary small number. The computation of this variation vields:

&J1(u =ﬁu}=fﬂb [—F;(t, 2t 1), 1) ix(t,u + gAu)| =g — E,(t, x(t,u), u}ﬁ.u] dt oY)

Now from (1), we have

d

Ex(t’ u + sAu)| =g,
: 8

= j [}Z(t,s,xiisjul w) - x(s,u + £0u) .=
=

+ £, (t, 5, x(t,u), u}ﬁu(s}-‘ ds. (18)

Letus assume that

Alt,5) = f.,_,'[t,s,x(s, u},u(s}l
B(t, s) = fu(t.s, x(s,1), u(s),

y(t) = ix(tj u + gAu)| =g (19)

Substimting (19 into (18, leads us to the following integral equation:
¥(®) = [TA(t, $)y(s) + B(t, 5)du(s)]ds . (20)

The solation of (20) can be obtained as:

y(t) = J‘rr(t, 5) USB(SJ T)Ault)dr|ds + J‘rB(t, s)Au(s)ds, (21)

where the resolvent kemel r(t,5) is defined by:

r(t,5) = A(t,s) + _J"::r"(t, T)A(T,5)dT.

One kmows that, for a given contimuous function g on the riangularregiona =7 =& = T we have:
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J: J: g(t, T)drdt = J:r Lrg (t, T)drdt. (22)

Rewriting (21) by (22), gives rise:

y(t) = J‘r {E(t, 5)+ J‘rr(t, 1) B(T, s}d’.r] Auls)ds. (23)

Recalling (19) and substitutinggﬁ) into (17) implies that
& (u, Au) = j {—F;'[L x(t, u}lu(t}} U [B(L 5+ j r(t, T)B(T, s}dr] f_'l.u(s}ds]

— E,(t, x(t,u),u(t) }}ﬁu{t}dt. (24)

Now, applyving (22) to (24) }'ie;&ds: :
&Jy (u, Au) = j “‘ —F;{.;; x(s, u},u(s}} {B(L 51+ j ris, T)B(T,t) dr] ds

- E_l(t,x(t,u},u(t}}}ﬁ.u(t}dt. (25)

Let Hy = —H_ we will show that
% = _]":' —FJ',;{S, x(s, u},u(s}} [B(t, 5)+ f: r(s, T)B(T, s}dr]ds— Ei{t, (1), u(t}}ﬂu(t}dt=

and therefore by e‘:a.luau'ng (25)mu = u'? we have

. . dH. (@) 5 ay‘ gH® ¥ rag® ?
5 (&) (i — 1 (3] — — -
aly (u JAu (t}) = j —— Au' (t)dt = J; ( (—t }dt = TJ; dt = 0,

(i
which concludes that 8/'Y = 0. Therefore, ] is decreased m each 1tera11'em which implies that the steepest

descent method is convergent to optimal solution. Now, we show that (26) holds. Let us denote the right
hand side of (26) bv I_ Using ( 2), this equation can be wntteﬂ as:

I = J‘ [ {.5' x(s,u), u(s}} j '[T x(T,u), u(ﬂ}r(’r s}dr] B(s,t)ds
—E I[t x(t, 1), u(t}} (27)

According to Theorem 1 m [15], we know that A(5), defined by

A(s) = —F, '[SJ x(s,u), u(s}} +[ j —FE, '[TJ x(t, 5), u(ﬂ}r{z s)dr, (28)

is consistent with
b
A(s) = —F, (s, x(s,w),u(s)) + j fo(tx(tu),u(2)) A(t)dt.
Thus, substituting (28) m (27) will lead us to the following equation:

b
1= —F, (t,x(t v, u(®) +j A)B(s, Dds (29)

Now, applving (19) and (29, we obtain: ,

dH,
_'F:J (I'-J x'[tju(t} }.l u{t}) + J‘ A{S}fu(-s: X, U, I-'}I'.iS = _11
. du

and this completes the proof of the theorem. B
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In this part, we establish the main theorem of the paper which is related to the convergence property of th
sequence of control fuldy senerated by Algorithm 1. It is well known that C([0,T], R) is a Banach spac
and therefore Theorem 1 can be applied, so the following theorem states that the control sequenc
{u'9) generated by Algorithm 1 converges to the point in which the maximum principle is satisfied:

aH

3, Satis fies the

Theorem 3. Suppose that the assumptions H; — H hold. Let the operator G =

Newton-Kantrovich hypothesis which is stated in Theorem 1. Then, the sequences {u'"}, {x')) and
[AY, that are generated by Algorithm I, are convergent to the point(u®,x*,A*) in which the
maximum principle holds.

Proof: Using condition Hy and Theorem 2, we conclude that the steepest descent method is globall
convergent to the unique control u®. Thus, after n, iteration of steepest descent method, the control ul™d
and therefore x‘™~ and A"2)_satisfies the Newton-Kantorvich hvpothesis stated in Theorem 1. Hence, fron
the n4-th iteration on, we can use the Newton (or two-step Newton) method to get close to the unique contrc
u® and related x* and A, as desired and this completes the proof. m

5. Numerical Experiments and Discussions

We illustrate the performance of the proposed hvbrid methods and steepest descent method for Three test
problems in order to compare the number of iterations and convergence rate that are required for reaching the
accuracy of € = 1072 In all of the test problems, the initial control has been set to zero. All the
computations have been done with Maple® software. For ease of reference, we use the following notations
in the Tables and Figures:

5D: Steepest Descent method

SDN: Hybridization of Steepest Descent and Newton method

SDN1: Hybridization of Steepest Descent and two-step Newton method stated in (13)
SDN2: Hybridization of Steepest Descent and two-step Newton method stated in (12)

Example 1. Consider the minimization of the functional

J =[] tx(e) —u(e) + e gy

subject to the integral equation

t

(1) = L £x(s) + tu(s)ds. 30)

The Hamiltonian function can be stated as

H = tx(t) —u(t) + e —j A(s) (sx () + su(t) )ds.

13

Let us suppose that U* minimize H. Using the maximum principle, we express the necessary conditions
for optimality as:
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1

2(2) = —g _ —Hfr sA(s)ds, (31)
1
2e2we) — 1 — j 54*(s)ds = 0, (32)
x*(t) = j tx*(s) + tu*(s)ds. (33)
o

The analytical sclution of the integral equation (31) may be obtained as:
() =t + ole3 -1 2r r-fpfz) t __r:+1 2n f(ﬂ"zr)
e = gl |le Z—-vime —|—te 2 VLW ert| — i
o 2 2 2 2

where

So, from (327, we have
RS T O ‘,,[,}.
ust —E]n E+§ X sAT(s)ds|,

and finally the optimal state vanable x" can be cbtained from the linear Volterra mtegral equation (33).

Table 1: Mumerical result of Exanple 1 for SD and three hvbrd methods

1 0.185994612 x 10* 0.185994612 x 10° 0.185994612 x 10° 0.185994612 x 10°
2 0.292584772 x 10° 0.292584772 x 10° 0.292584772 x 10° 0.292584772 x 10°

3 0.978499400 x 10~° 0.292584772 x 10° 0.978499400 x 10~ 0.978499400 x 10~
4 0838472588107 0.838472588 x 107> 0.838472588 x 10™>  0.838472588 x 107*
3 0708728586 x 10°° 0.838472588 x 107 0461994962 x 10~* 0.796714880 x 10~
6 0.124292560 x 10~ 0461993516 % 10~°  0.2118656096 x 10~  0.601632398 x 107"
T 0692690569 x 10~ 0.270214306 x 10~

8  0.985570304 x 10~

Table 2: The errors of the actual and num etical contrel for Example 1.

methods Errors

SD 022149 x 1072
SDN 047973 x 107
SDNI 0.10391 x 1071
SDN2 023001 x 1072
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W=
10-2 e
~ ey
Ty '\1
1074 k \'x
\ ",
LY
1079 1IL,|l \
*
ot L\ N e
107% o \ Ay SN
\ \ ]|=-—sb
1010 \
10-"*
1071
T T T T T T T
1 2 3 4 3 6 7
Fig. 1: The error behaviours of SD and three hybrid methods of Example 1.
Example 2.
1
min] = j tx(t) —u2(t) + e2ultd gg,
o
t
st x(t) = j tx(s) + tuls)ds.
o
Example 3. .
min | = j tx(t) —u*(t)dt,
0
st x(l)= f; tx(s) + tuls)ds.
Table 3: Numerical result of Example 2 for SD and three hybrid methods
lter sD SDIM SDN1 SDN2
1 0.226720 x 107} 0.226720 x 107! 0.226720% 1071 0.22672 x 107¢
2 0.180115 x 1071 0.180115 x 1071 01g0115% 1071 0.18011 x 1071
3 0.106793 x 107} 0.106793 x 107! 0106793% 107 0.10679 x 107t
4 0.184614 x 1072 0.231536 x 10~° 0.133046 x 1077 0.98134 x 107
5 0.283223 x 10~° 0.133046 x 107 0.139000% 10717 0.1199 x 107
6 0.481042 x 10~*

In order to compare the number of iterations and convergence behaviour of the steepest descent and three
hvbrid methods, we solved the test problems for the same conditions. It tumed out for given conditions, all of
the methods produced almost the same accuracies in the first two or four iterations of the Algoritim. The
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number of iterations for reaching the given accuracy is also reported. In Tables 1, 3 and 4 we have compared
the optimal control govemed from the maximum primﬁglle with the numerical solitions which are obtained
from the proposed hyvbrid methods. The valie of |l uﬂ_'_- I? produced at each iterations together with the
corresponding iteration number of the algorithms are also listed in these Tables. The error behavior of the
methods has also been shown in Figures 1-3. It is worth mentioning to indicate that the vertical axis in the
figures provides thelogyy error which in fact islogyg {II m: 112 ] Table 2 provides the errors between the
exact solution u* of the Example 1 and the numerical solution i, which is obtained from the iterative

methods, with the following formula:

& - = f [a(6) —u(D)ldt. (39)

It is seen that among all of the proposed iterative methods, combination of steepest descent and two-step
Newton methods has the best rate of convergence for reaching accuracy of 1072, However. considering
SDN1 and SDN2, the first one gives the better convergence results.

Table 4., Numerical results of Exa.mile 3 for SD and three hi'brid methods.

1 0.3454434 x 10° 0.3454434 x 10° 0345443 X 10 0.3454434 x 10°
2 0.2857226 x 10 0.2857226 = 10t 0.285722 % 10} 0.2857226 x 10
3 0.1879981 x 10* 0.1736043 x 10° 041128 X 1073 0.4342500 x 107*
4 0.1575350 x 10 0.411285 x 1073 0.12175 x 107¥  0.9061416 x 10~’
5 0.1147397 x 10 0.261778 x 10°% 0.130000x107% 0.1199313% x 10~ %%
6 0.9719095 x 10° 0.113420 x 107®
7 0.7451515 x 10°
8 0.6355515 x 10°
.
107 e B
] M
hY
| \
1079 \
) \
\
y \
105 - \
1 \ SDN1
Iugm{emr] ‘.. — — SDN2
- \ SDN
—-— 8D
; \
!
10716 - :
10720+

Fig2: The error behaviours of SD and three hybrid methods of Example 2.
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log, , (error)

265

.I="‘-—.
10-% "%

] 5 \

Vo,
1{1'3-: \
b

1074 \ .

; \ \

1‘\ N SDN1

10-5 - — — SDN2

] SDN

, —-— 8D

105 \-

] A)

\-

10-74 *

] \.

™,
.
1 1 1 | U -I
1 3 5 . 9 11

Fig. 3: The errors behaviours of SD and three hybrid methods of Example 3.

3. Conclusion

4,
[1]

(2]
(3]

[4]

(5]

6]
[7]

8]
[9]

In this paper, an extension of steepest descent method for solving optimal control problem of Volterra
integral equations is presented. The method is restricted to a special class of optimal control problems. Then,
with notice of the importance of Newton and two-step Newton methods, SD method is hybridized with these
methods. These hybrid methods in comparison with SD are faster and their accuracy is better. The
convergence analysis of these methods are also established under some mild assumptions and conditions.
One possible future work is to extend this research to optimal control problem with constrained control
variables, or use multi-step method with faster rate of convergence.
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