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Abstract
The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation
(LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster
than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore,
a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations,
estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown.
We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast
of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs
and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction
error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS
of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a
consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results
is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also
reduced by 19.5% for a 5km radius of vicinity. We propose a method using standardized CVEs for classification of dataset
into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated
using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed
for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage
of the proposed method is the reduction in estimated noise levels for those groups with the fewer number of noisy data points.

Keywords Cross-validation errors · Least squares collocation · Statistical tests · Blunder detection · Estimation of noise
variance components

1 Introduction

Least squares collocation is known as an estimation method
introduced by Moritz (1962) and Krarup (1969) for inter-
polation and extrapolation of the Earth gravity field using
observations measured at discrete points. LSC can be gener-
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alized to arbitrary data as a purely analytical approximation
method (Grafarend 1976). Assessment of the quality of pre-
dictions in terms of both accuracy and precision is a major
concern especially when the distribution of data is sparse.
This is seen for example in the application of LSC for
interpolation of vertical crustal deformation using data from
leveling, tide gauges and continuous GPS measurements
(e.g., El-Fiky et al. 1997; Vestøl 2006). The two commonly
used criteria for measuring the quality of prediction by LSC
are the LSC prediction and the cross-validation errors (Dar-
beheshti and Featherstone 2009). The LSC prediction error
is the standard measure to estimate error at the prediction
locations (Moritz 1980, p. 154). Leave-one-out (LOO) cross-
validation error is a criterion to assess the reliability of
prediction around data points, in which one point is omit-
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ted from each LSC prediction before the predicted value at
that point is compared with the observed value. CVEs are not
only used as ameasure to assess the quality of predictionwith
LSC but also employed for some further applications. The
cross-validation technique has been used to improve predic-
tion results by LSC (e.g., Featherstone and Sproule (2006)).
One way to increase the quality of prediction by LSC is the
precise estimation of covariance parameters that is essen-
tial when increased accuracy is required. The usual method
for determination of covariance parameters is to compute
an empirical covariance model from observed data. This is
followed by the inference of covariance model parameters
that fit the empirical covariances based on some criteria such
as weighted least squares (Mikhail and Ackermann 1976, p.
399; El-Fiky et al. 1997; Arabelos et al. 2007).We can briefly
call this method as model fitting to empirical covariances
(MFEC). Jarmołowski (2013) used the LOO cross-validation
technique for estimating the covariance parameters and a pri-
ori noise variance. Accordingly, although the LOOvalidation
is a time-consuming process, the method is very straightfor-
ward and accurate. Jarmołowski (2015) also usedLOOCVEs
for grouping observations when applying a heterogeneous
noise model.

A priori noise variance estimation in LSC can be con-
sidered as or compared to the regularization problem. The
LSC prediction equation is equivalent to the Tikhonov regu-
larization (Koch and Kusche 2002; Kusche and Klees 2002;
Eshagh and Sjöberg 2011). In LSC problems, a priori noise
variance plays the role of regularization factor (Rummel
et al. 1979). This clarifies the importance of precise esti-
mation of a priori noise variance in LSC especially when the
condition number of the covariance matrix of observations
is large. By showing that LSC is equivalent to the special
case of least squares adjustment (LSA), variance of the unit
weight is estimated for the collocation by Koch (1977). This
estimate gives the scale factor for the covariance matrices
being used in the collocation. Koch (1977) also suggests
the methods of testing hypotheses and establishing confi-
dence intervals used for the parameters of LSA to be applied
for the collocation. Schaffrin (2001) also presents a formula
for estimating the variance factor of residuals for random
effects model in which the expected value of trend param-
eters (or random effects vector) is assumed to be known,
the formula may also be used for LSC (Snow 2012, p. 40).
A reliable predication by LSC requires that we do not have
any blunders in the observations. By selecting an appropri-
ate trend for the model together with choosing a suitable
covariance function for the data, the covariance parameters
could be estimated precisely. Statistical testing is one of the
most trustful approaches to ensure such requirements (Wei
1987). The problem of hypothesis testing in relation to LSC
has been studied by Krakiwsky and Biacs (1990). That paper
commences with an overview of the development of LSC

and its relation to LSA. They derived expressions for var-
ious random variables and their corresponding covariance
matrices. However, some of the required covariance matri-
ces are either ambiguously hidden or unavailable (Krakiwsky
and Biacs 1990). Tscherning (1991a, b) introduced a tech-
nique for gross error detection based on some type of CVEs
using neighboring points (e.g., 10 points around the purposed
point). According to Tscherning (1991b) “A comparison of
difference between the observed and the predicted value with
the error estimate may be used to identify a possible gross
error.” He proposes implementing neighboring data points
for the prediction using LSC, in addition to recommending
the trend from the dataset before outlier detection. Referring
to this method, Sadiq et al. (2009) state that: “The validity of
a priori error estimates as well as the occurrence of outliers
maybe investigated by comparing the a posteriori determined
differences between observed and predicted values with the
error estimate of the differences obtained using least squares
collocation.”

Incomplete knowledge of the noise of observations may
occur in many geodetic applications. In such cases the
covariance matrix of observations is only partly known,
while the unknown part needs to be estimated from the
data. Estimating the unknown components of a covariance
matrix of observations is generally referred to the vari-
ance component estimation (VCE). Many VCE methods are
applied in LSA such as minimum norm quadratic unbiased
estimator (MINQUE), best invariant quadratic unbiased esti-
mator (BIQUE) and restricted maximum likelihood (REML)
(Amiri-Simkooei 2007). Someof thesemethods have already
been used in LSC for certain applications. Yang et al. (2009)
introduced an adaptive collocation estimator to balance the
covariance matrices of the signals and the observations. The
corresponding adaptive factor of this method is constructed
by the ratio of the variance components of the signals and
the observations. They also present a simplifiedHelmert-type
estimator of the variance components for the collocation. The
method is reported to be effective in balancing the contribu-
tion of observations and the signals in the collocation model
(Yang et al. 2009). Jarmołowski (2015) estimates a priori
error associated with heterogeneous non-correlated noise in
a dataset. The errors are estimated by the REML, while the
solution is composed of a LOO cross-validation technique
and REML estimation of a priori noise for different data
groups. Jarmołowski (2015) also used the LOOvalidation for
outlier detection. He concludes that group noise estimation
by REML is practically equivalent to the removal of outliers
and states “REML is a helpful tool in the empirical search
of the threshold for outliers and an estimator of sufficiently
large noise for outliers.”

In this paper we derive equations for simultaneous esti-
mation of CVEs and the corresponding covariance matrix in
the trend–signal–noise model of LSC. Moreover, we employ
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a hypothesis test on the quadratic form of CVEs which is
adopted from the global model test in LSA. We suggest two
statistical tests for outlier detection in terms of CVEs which
are also adopted fromBaarda’s data snooping theory (Baarda
1968) and Pope’s outlier detection test (Pope 1976). These
statistical tests can be used to check the validity and reliabil-
ity of the LSC results. Depending on the information about
the existing noise, a homogeneous or a heterogeneous noise
model may be used. For a homogeneous noise model, we
need to estimate the noise variance for all of the observations.
For this purpose, Jarmołowski and Bakuła (2014) proposed
and used the REML method. As an alternative, we present
a simple iterative technique for fast estimation of the noise
variance factor when a priori noise variance of the observa-
tions is unknown. Employing a heterogeneous noise model
requires a priori information to classify observations into dif-
ferent groups. In the case when the required information for
classification of observations is not accessed, we propose
a method using diagram of standardized CVEs to separate
observations into different groups with presumed distinct
noise variances. Finally, we test and validate the methods
discussed in this paper using computed rates of vertical dis-
placements in northern coast of theGulf ofMexico and assess
the results using some various measures indicating accuracy
and precision of LSC predictions.

2 Simultaneous estimation of CVEs

The trend–signal–noisemodel or so-calledgeneralizedmodel
of LSC is given by (Moritz 1980, p. 111)

y = Ax + s + n (1)

where y is a m × 1 vector of known observations, x is the
u × 1 vector of unknown trend parameters, A is a given
design matrix of the trend, s is a zero-mean signal vector at
observation points, and n is a zero-mean noise vector which
represents the measuring error. s and n are uncorrelated ran-
dom variates and so is y. Equation (1) may also be written as
the linear form of the Gauss–Markov model

y = Ax + w (2)

where w = s + n is the vector of de-trended observations or
residuals which is actually unknown and we can estimate it
by

ŵ = y − Ax̂ = P⊥
Ay (3)

where x̂ denotes the vector of estimated parameters and P⊥
A

projects y into the left null space ofA thatwould be computed
as follows

P⊥
A = Im − A

(
ATC−1

wwA
)−1

ATC−1
ww (4)

whereCww = Css+Cnn denotes the auto-covariance matrix
of residuals, Css is the auto-covariance matrix of signals,
and Cnn represents the noise covariance matrix. Leave-one-
out cross-validation error (LOO-CVE) is defined by (e.g.,
Darbeheshti and Featherstone 2009)

ε̂i = yi − ŷi,−i ∀i = 1, 2, . . . ,m (5)

where yi is i th observation and ŷi,−i is prediction of the i th
observation by removing it from the vector of observations.
If we assume that the i th observation is already used in esti-
mation of unknown trend parameters, then ŷi,−i is predicted
by

ŷi,−i = ai x̂ + ŵi,−i (6)

ai is the i th row of the design matrix and ŵi,−i is prediction
of the i th residual using the rest of residuals. Replacing ŷi,−i

from Eq. (6) into Eq. (5) yields

ε̂i = yi − ai x̂ − ŵi,−i (7)

By using Eq. (3), we can simply see that ŵi = yi − ai x̂;
therefore, the LOO-CVE can be written in terms of residuals

ε̂i = ŵi − ŵi,−i (8)

ŵi,−i is computed as follows

ŵi,−i = ci,−iC
−1
−i,−i ŵ−i (9)

where ci,−i denotes the cross-covariance vector between the
signal of the i th observation and the rest of observations.
Moreover, C−i,−i is the auto-covariance matrix of residuals
in which the i th row and i th columns have been removed.
ŵ−i is the vector of residuals which their i th element has
been removed. It also should be noted that if Cnn is a diag-
onal matrix then ci,−i also denotes cross-covariance vector
between the residual of the i th observation and residual of
the rest observations. In other words, ci,−i is the i th row
of Cww that its i th element has been removed. Compu-
tation of the vector of CVEs (ε̂) by Eq. (5) would be a
time-consuming process, especially when a large number of
observation points are concerned (Darbeheshti and Feath-
erstone 2009; Jarmołowski 2015). Here, we show that it is
possible to find a simple relation for efficient calculation of
the LOO predictions. This makes the simultaneous compu-
tation of ε̂ and its covariance matrix feasible. Let’s define
G = C−1

ww and assume that Cnn is a diagonal matrix, in
appendix A it is proved that
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ci,−iC
−1
−i,−i = − 1

gii
gi,−i (10)

where gi,−i denotes the i th row ofGwithout the i th element.
Substituting Eq. (10) in Eq. (9) gives

ŵi,−i = − 1

gii
gi,−i ŵ−i = − 1

gii

∑
j �=i

gi j ŵ j (11)

Replacing Eq. (11) in Eq. (8) yields

ε̂i = ŵi − ŵi,−i= 1

gii
gii ŵi + 1

gii

∑
j �=i

gi j ŵ j= 1

gii

m∑
j=1

gi j ŵ j

(12)

Defining � = diag(G) in which diag(·) represents a diag-
onal matrix with diagonal elements of the input matrix.
Eq. (12) can be generalized to the following vector form

ε̂ = �−1C−1
wwŵ = �−1Ry (13)

whereR = C−1
wwP

⊥
A is usually used for implementation of the

trend (Koch 1986). Considering R = RT and RCwwR = R,
one gets the covariancematrix of CVEs using the law of error
propagation (Koch 1999, p. 99f)

Cε̂ε̂ = �−1R�−1 (14)

Equations (13) and (14) also work in the standard form of
LSC in which no trend is defined. To this end, P⊥

A is removed
and R is replaced by C−1

ww. Using Eq. (13), the cpu time for
computation of CVEs is drastically reduced in contrast with
the element by element computation. This is because instead
of solvingm systems ofm−1×m−1 linear equations (Eq. 9),
it only requires the inversion of one m ×m matrix. Diagonal
elements of Cε̂ε̂ in Eq. (14) simply give variance of CVEs.
Nevertheless, a single CVE variance may also be computed
from ε̂i = ŵi − ŵi,−i using the law of error propagation and
the formula of LSC prediction error, while the covariances
between ŵi and ŵi,−i should also be considered.

3 Quadratic form of CVEs and statistical tests

Substitution of w instead of ŵ in Eq. (13) yields a type of
cross-validation error which is free from the trend estimation
and can be denoted by ε and presented as follows

ε = �−1C−1
www (15)

The covariance matrix of ε is given by

Cε ε = �−1C−1
ww�−1 (16)

By means of the above relation, we present a quadratic form
of CVEs as follows

�̂ = ε̂
TC−1

ε ε ε̂ (17)

Using Eqs. (13) and (16), one can prove that �̂ is equal to
the weighted norm of the vector of estimated residuals

�̂ = ε̂
TC−1

ε ε ε̂ = ŵTC−1
ww�−1�Cww��−1C−1

wwŵ

= ŵTC−1
wwŵ (18)

Employing Eq. (3) also yields

�̂ = yT (P⊥
A )TC−1

wwP
⊥
Ay = yTC−1

wwP
⊥
Ay = yTRy (19)

All estimates x̂, ŵ, ε̂ and �̂ are functions of y and conse-
quently random variates or random vectors. ε which is a
function of w is also a random vector.

3.1 Global test on the quadratic form of CVEs

Assuming that the data obeys the multivariate Gaussian dis-
tribution, i.e., y ∼ N

(
Ax,Cyy

)
, and using Eq. (13), one

concludes ε̂ ∼ N (0,Cε̂ε̂). According to Koch (1999, p.
135), it can be proved that we have �̂ ∼ χ2

d f with d f =
tr(C−1

ε εCε̂ε̂), if and only if C−1
ε εCε̂ε̂ is idempotent. From

Eqs. (14) and (16), one can see that C−1
ε εCε̂ε̂ = �P⊥

A�−1.
Therefore, C−1

ε εCε̂ε̂ is idempotent. Moreover, the degree of
freedom d f is given by

d f = tr(C−1
ε εCε̂ε̂) = tr(P⊥

A) = m − u (20)

where tr(·) is the trace of matrix. Mathematical expectation
of �̂ is (Koch 1999, p. 134)

E
{
ε̂
TC−1

ε ε ε̂
}

= tr(C−1
ε εCε̂ε̂) = m − u (21)

Following LSA a priori variance factor of noises σ 2 in LSC
may be presented as

Cww = σ 2Qww = Css + σ 2Qnn (22)

whereQww is the cofactor matrix of residuals andQnn is the
cofactor matrix of noises which is assumed known. It should
be mentioned that Qww is known only if σ 2 is known. The a
posteriori noise variance factor σ̂ 2 is an unbiased estimator
of a priori noise variance factor σ 2. For the Gauss–Markov
model, it is given by (Koch 1999, p. 162)

σ̂ 2 = yTQ−1
wwP

⊥
Ay

m − u
(23)
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Asexpected, σ̂ 2 is also a randomvariable.ObservingEq. (22)
reveals that in LSC, computation of Qww and consequently
σ̂ 2 is possible only when σ 2 is known. From Eqs. (19), (22)
and (23), one concludes that

�̂ = 1

σ 2

(
yTQ−1

wwP
⊥
Ay

)
= (m − u)σ̂ 2

σ 2 (24)

So if σ 2 is known, then from Eq. (21) we note that

E
{
�̂

}
= m−u; therefore, E

{
σ̂ 2

} = σ 2. In LSC the global

test will be used to examine the compatibility of observa-
tions with the prediction model. Commonly alike LSA the
corresponding hypotheses are

H0 : E
{
σ̂ 2

}
= σ 2 versus Ha : E

{
σ̂ 2

}
�= σ 2 (25)

where σ 2 = 1 is commonly assumed. The test statistic �̂

follows the χ2
m−u distribution. In practice, the realization y

∼

of y is employed and realization of the vector of CVEs ε̂
∼

is

computed by �−1Ry
∼

. In terms of CVEs, the null hypothesis

is accepted if

χ2
α/2;m−u < ε̂

∼

TC−1
ε ε ε̂

∼

< χ2
1−α/2;m−u (26)

Here, α is the significance level. Possible reasons for fail-
ure of this test are: incorrect mathematical modeling, the
covariancematrices are not properly assigned (the covariance
model is not suitable for the data, the covariance parameters
are not correctly estimated, incorrect estimate of the noise
variance of observations), and/or blunders are present in the
data.Wemaynot knowwhichoneof the above reasons causes
the test rejection, and the test does not give any additional
information.Whatever the reason is, it should be investigated
and not ignored. In Sect. 3.3 we confine ourselves to the third
possible cause for the test failure, i.e., blunders in the obser-
vations.

3.2 Estimation of the noise variance factor when a
priori noise variance is unknown

In practice when σ 2 is unknown, computations ofQww from
Eq. (22) and consequently σ̂

∼

2 as realization of σ̂ 2 from

Eq. (23) would not be possible. In such a case, one may
use the MFEC method to estimate σ̂

∼

2. This method will be

applied in Sect. 5.1 for the case study of this research. The
alternative is to implement a REMLmethod that is discussed
by Jarmołowski and Bakuła (2014). Here, we propose a fixed
point iterationmethod (Burden and Faires 2011, p. 56) which
is very simple to use. In this method the unknown parame-
ter is written as a function of itself. Derivation of Qww from

Eq. (22) and substituting it in Eq. (23) for the realized obser-
vations y

∼

yields

σ̂
∼

2 =
y
∼

T
(
σ−2Css + Qnn

)−1 P⊥
Ay

∼

m − u
(27)

In the above relation we have two unknowns σ̂
∼

2 and σ 2. We

should also note that σ̂
∼

2 is an estimate of σ 2. By substituting

σ̂
∼

2 with σ 2 on the right hand side of Eq. (27), the required

condition for the fixed point iteration is provided. In order to
use this method, the following formula is employed

σ̂
∼

2

(k)
=

y
∼

TQ−1
ww(k−1)P

⊥
A(k−1)y

∼

m − u
(28)

where k = 1, 2, 3, . . . is the iteration number, σ̂
∼

2

(k)
is our

final estimation of σ̂
∼

2, Qww(k−1) = σ̂
∼

−2

(k−1)
Css + Qnn, and

P⊥
A(k−1) = Im −A (ATQ−1

ww(k−1)A)−1ATQ−1
ww(k−1). For k =

1, Qww(0) is derived from Eq. (22) as follows

Qww(0) =
(

1

σ 2
0

)
Css + Qnn (29)

where σ 2
0 is a starting value for σ̂

∼

2. The iteration process con-

tinuous unless σ̂
∼

2

(k)
− σ̂

∼

2

(k−1)
is less than a specified threshold

value.

3.3 Blunder detection tests

Outliers are a main concern in LSC. Here we adopt Baarda’s
data snooping theory (Baarda 1968). The null hypothesis
assumes that no blunder exists in the observations vector,
while the alternative hypothesis assumes that only one obser-
vation at a time is erroneous

H0 : E {
ŵi

} = 0 versus Ha : E {
ŵi

} = ∇wi �= 0 (30)

The alterative hypothesis can also be written as

Ha : ŵ ∼ N (∇wi ,Cww) (31)

with ∇wi = η∇wi , in which η is an m-dimensional vec-
tor that contains 1 for the i th element, while the rest of the
elements are equal to zero. When the a priori noise variance
factor is known,we can apply theBaarda’s statistic for testing
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transformed residuals for the Gauss–Markov model (Eq. 2)
that is derived as (Teunissen 2000)

T1 = ηTC−1
wwŵ√

ηTC−1
wwCŵŵC

−1
wwη

= ηTQ−1
wwŵ

σ

√
ηTQ−1

wwQŵŵQ
−1
wwη

∼ N (0, 1) (32)

where T1 is the Baarda’s test statistic. In LSC C−1
ww is not a

diagonal matrix. Therefore, the corresponding statistic is not
the standardized residual of the i th element. By substituting
Cŵŵ = P⊥

ACww(P⊥
A )T in Eq. (32), multiplying ��−1 to

C−1
ww and employing Eq. (13) we obtain

T1 = ηT��−1C−1
wwŵ√

ηTC−1
wwP⊥

ACww(P⊥
A )TC−1

wwη
= ηT�ε̂√

ηTRCwwRTη

= λi i√
rii

ε̂i (33)

Using Eq. (14) one concludes that σ 2
ε̂i

= rii/λ2i i , where rii
is the i th diagonal element of R and λi i is the i th diagonal
element of �. Applying this together with Eq. (33) gives

T1 = ε̂i

σε̂i

= êi ∼ N (0, 1) (34)

where êi is the standardized CVE of the i th observation.
By employing Eqs. (14) and (13), the vector of standardized
CVEs is estimated as

ê = (diag(Cε̂ε̂))
−1/2 ε̂ = �1/2�−1/2�1/2ε̂

= �1/2�−1/2�1/2�−1Ry = �−1/2Ry (35)

where � = diag(R). The null hypothesis is accepted if the
computed test statistic êi follows the standard normal distri-
bution at the α0 significance level. In practice, the realized
test statistic ê

∼i
should satisfy the following condition

∣∣∣ ê
∼i

∣∣∣ < N1−α0/2 ∀i = 1, 2, . . . ,m (36)

For the case that σ 2 is unknown and the a posteriori noise
variance factor is used instead, the Pope’s test statistic is
employed (Pope 1976; Koch 1999, pp. 304–305)

T2 = ηTQ−1
wwŵ

σ̂

√
ηTQ−1

wwQŵŵQ
−1
wwη

∼ τ(1,m − u − 1) (37)

where τ denotes Thompsons τ -distribution (Koch 1999). In
a similar manner to Eqs. (33), (37) can also be written as

T2 = ε̂i

σ̂ε̂i

= τi ∼ τ(1,m − u − 1) (38)

The null hypothesis is accepted if

∣∣∣∣τ∼i

∣∣∣∣ < τ1−α0/2,m−u−1 (39)

where τ
∼i

is the realized standardized CVE of the i th obser-

vation. The significance level for outlier test in LSA is
customarily selected as α0 = 0.001, where this value may
also be adopted for LSC. Bonferroni inequality can also
be applied for the computation of the significance level α0

(Vaníček and Krakiwsky 1986, p. 231). This theorem states
that if the residuals are uncorrelated, the probability of type I
error for the entire set of tested residuals will be α. Now if the
residuals are correlated, this probability will be less than α.
In practice α0 can be obtained from α0 = α/m (Koch 1999,
p. 306).

4 Estimation of the noise variance
components using REML

An ultimate generalization of the covariance model of resid-
uals in Eq. (22) is achieved by introducing a variance
component model for noise of the observations which may
be written as

Cww = Css +
p∑

k=1

σ 2
k Qk (40)

where σ 2
1 , σ 2

2 , . . . , σ 2
p are unknown noise variance com-

ponents that are to be estimated and Q1,Q2, . . . ,Qp are
linearly independent and symmetric cofactor matrices that
are assumed to be known. Different NVCs are gathered in the

vector of unknown parameters θ, i.e., θ = [
σ 2
1 σ 2

2 · · · σ 2
p

]T
.

The covariancematrix of residuals is also regarded asCθ. The
problem is completely similar to variance component esti-
mation (VCE); therefore, VCE methods may be employed.
REML is a method of variance component estimation for a
Gauss–Markov model when the probability density function
of observations possesses a normal distribution. Koch (1986)
derives an iterative procedure for the maximum-likelihood
estimates of the variance components using the orthogonal
complement likelihood function. This approach is equivalent
to the REML estimation. He also shows that these estimators
are identical to the best invariant quadratic unbiased esti-
mators (BIQUE) of variance components and also to the
minimum norm quadratic unbiased (MINQUE) estimators.
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In statistics, one of themethods applied for estimating spatial
covariances is REML (Kitanidis 1983; Stein 1999, pp. 170–
171). The following negative log-likelihood (NLLF) function
is minimized in REML (Koch 2007; Jarmołowski 2015)

NLLFREML(θ) = 1

2
ln det

(
Cθ

)

+1

2
ln det

(
ATC−1

θ A
)

+ 1

2

(
yTRθy

)
(41)

The third term in the above equation is equal to ε̂
TC−1

ε ε ε̂ (see
Eqs. 18, 19). This implies that the REMLmethod minimizes
the weighted norm of the vector of CVEs. In practice, the
vector of unknown parameters θ is computed using Fisher
scoring (Koch 1986; Grodecki 1999). One of the main chal-
lenges for the problem is how to classify observations into
distinct groups with presumed different NVCs in those cases
which no information about the noise model is available.
Jarmołowski (2015) uses CVEs to split observations in two
groups; one with better and the other with worse NVCs. In
this paper we will use standardized CVEs for classification
of the data into groups with distinct NVCs. The method will
be described in the next section.

5 Application of the theory using a dataset
of vertical displacement rates in northern
coast of the Gulf of Mexico with unknown
noise variances

In order to examine the methods presented in this paper, we
selected a dataset which contains rates of vertical displace-
ment at benchmarks in a part of the northern coast of the
Gulf of Mexico and lower Mississippi valley. The data are
given in NOAA technical report (Shinkle and Dokka 2004).

The selected area contains 1683 NGS benchmarks for which
the rates of vertical displacements are computed by Shin-
kle and Dokka (2004). Computation of the rates of vertical
displacements had been accomplished using first-order level-
ing data collected between 1964 and 1995. The “unadjusted
heights” are used for computation of rates of vertical dis-
placements. These values are derived from precise elevation
differences observed in the leveling survey process. Cor-
rections for known systematic errors (i.e., orthometric, rod,
level, temperature, astronomic, refraction, magnetic) have
been applied automatically to the observations (Shinkle and
Dokka 2004). Figure 1 depicts the spatial distribution of
the benchmarks that comprise the subsidence network in the
study area.

Here, we use a linear trend defined by

A =
⎡
⎢⎣
1 φ1 λ1
...

...
...

1 φm λm

⎤
⎥⎦ (42)

The exponential covariance function is applied for consti-
tution of the covariance model. It is described by

C(d) = C0 exp(−kd) (43)

where the distance between the points is represented with
d. C0 is the signal variance and k is a correlation param-
eter which is reciprocal of the correlation distance d0, i.e.,
d0 = 1/k.As itwill be seen in the next subsection, this covari-
ance function has a proper adaptation with the empirical
covariances of our case study data. We use spherical dis-
tances to determine the covariances between data points. In
order to estimate covariance parameters (C0, k), the MFEC
method was employed. Noise variances of data points are
actually unknown and should be estimated. We tested two

Fig. 1 Plot of the network of benchmarks used for interpolation of rates of vertical displacement in the selected area
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Table 1 Basic statistics for the
dataset of rate of subsidence in
selected region from the
northern coast of the Gulf of
Mexico and its residuals after
de-trending data, unit: mm/a

Dataset Min Max Mean Median SD RMS

Observations − 51.94 2.43 − 9.20 − 9.07 4.87 10.41

Residuals − 42.03 9.64 0.00 0.59 3.88 3.88

Table 2 Estimated trend
parameters using the trend
defined by Eq. 42 and their
estimated SDs

x̂
∼1

(mm/a) σ̂x̂1 (mm/a) x̂
∼2

(mm/a)/rad σ̂x̂2 (mm/a)/rad x̂
∼3

(mm/a)/rad σ̂x̂3 (mm/a)/rad

−361.88 25.10 354.97 11.47 35.37 4.87

different ideas for modeling the noises of data points. At first
we applied a homogeneous noisemodel for the whole dataset
and estimated the a posteriori noise variance. Blunder detec-
tion test was applied and the outliers were removed. Then,
using standardized CVEs for the data points, we divided
the data in three different groups and estimated the noise
variance component of each group by the REML method.
Table 1 shows basic statistics of the dataset and its estimated
residuals using the defined trend, while Table 2 illustrates
the estimated values of trend parameters and their estimated
standard deviations. Here, for computing the trend parame-
ters and the residuals, we have used a unit weight for all of
observations.

5.1 Interpolation and testing, using a homogeneous
noise model

The entire dataset is derived from the precise leveling data.
At first, we assume that noises for all of data points are the
same. We used Eq. (22) for noise modeling in which Qnn is
assumed to be Im , i.e.,

Cww = Css + σ 2Im (44)

Therefore, we have a homogeneous noise model. Using
MFEC method (Mikhail and Ackermann 1976, p. 403),
covariance parameters (C0, k) were estimated for signals.
Figure 2 depicts the computed empirical covariances of resid-
uals which are assigned to equally spaced 5km distances and
the fitted model. In this figure Cw(0) is the variance of resid-
uals andCs(0) is the signal variance. The difference between
these two values is an estimation of the noise variance which
can be derived by the MFEC method (Mikhail and Acker-
mann 1976, p. 399; El-Fiky et al. 1997).

The estimated value of the noise variance is derived by
Cn(0) = Cw(0)−Cs(0)which is actually computed equal to
5.3916 (mm/a)2 for this dataset. Since we assumeQnn = Im ,
the estimated noise variance factor by the MFEC method
would be the same σ̂

∼

2 = 5.3916.On the other hand, a posteri-

ori noise variance factor computedby the equations explained
in Sect. 3.2 is equal to 5.7329. The difference between the

standard deviation of noise computed by these two methods
is only about 3.1% of σ̂

∼

by the proposed method. These two

values do not significantly differ from each other. However,
we need to select one of them to work with, which should be
preferred. Table 3 shows the realization of the quadratic form
of CVEs �̂

∼

from Eq. (18) for each of these two estimates.

As it is seen, �̂
∼

computed using σ̂
∼

2 = 5.7329 by the pro-

posed method is exactly fixed on 1680 which is the degree of
freedom, d f , for this datasetwith 3 trend parameters,while �̂

∼

computed by the other σ̂
∼

2 has a considerable difference with

d f . Regarding Eq. (21) in which we have E
{
�̂

}
= d f , one

concludes that σ̂
∼

2 estimated by the proposed method has a

priority to the other one for this case study. Therefore, we use
σ̂
∼

2 = 5.7329 in the consequent computations.We applied the

outlier detection test on the data set based on Eq. (38). The
significance level has been selected as α = 0.05, and there-
fore, considering the ending explanation in Sect. 3.3 α0 is set
as α0 = 0.05/1683 at the beginning of outlier detection pro-
cess. Accordingly, the rejection level for the maximum value
of standardized CVEs is computed as 4.165. The outliers are
detected by an iterative approach in which each time only
one data point with realized maximum absolute standardized
CVE, max

∣∣ ê
∼i

∣∣, is removed and the covariance parameters

(C0, k) together with σ̂
∼

2 are re-estimated with the rest of

data. Figure 3 depicts the flowchart of outlier detection and
remove algorithm.

Through this process, 26 data points were detected as
outliers and removed. Figure 4 illustrates the computed
empirical covariances and the fitted model in pursuit of
removing blunders. In comparison with Fig. 2 a remark-
able decrease in the estimated value of Cw(0) is observed.
As a result, this indicates that by removing the outliers
the estimated values of residuals decrease. Many computed
empirical covariances are not significantly changed. The
maximum change is 4.123 (mm/a)2 for the zero distance,
while the other notable changed values are 0.74, 0.26, 0.34
and 0.11 (mm/a)2 for the distances of 2.5, 12.5 17.5 and
42.5km, respectively. These changes do not have a serious
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Fig. 2 Empirical covariance of residuals and the fitted exponential covariance model

Table 3 Noise variance factors
computed using MFEC method
and the proposed method in
Sect. 3.2 and the respective
quadratic forms of CVEs

Estimated by the MFEC method Estimated by the proposed method

σ̂
∼

2
�̂
∼

σ̂
∼

2
�̂
∼

5.39 1762.7 5.73 1680

influence on the estimated signal variance and the correla-
tion distance. Because of the extreme reduction in Cw(0)
and the insignificant change ofCs(0), the noise variance fac-
tor derived by the MFEC method is intensely decreased to
1.061. On the other hand, the value of the noise variance fac-
tor computed by the proposed method in Sect. 3.2 is 0.970.
Again, it implies that for the dataset of this case study, there
is not a remarkable difference between outcomes of these
two methods.

Table 4 illustrates estimated �̂
∼

for σ̂
∼

2 derived by each of

the discussedmethods.We preferred to workwith σ̂
∼

2 derived

by the method proposed in Sect. 3.2 which yields a more
reliable result for �̂

∼

.

Table 5 shows changes of computed covariance parame-
ters and the root of a posteriori noise variance factor together
with the maximum absolute standardized CVEs and their
RMS values after removing outliers. ê

∼

is computed by

Eq. (35) using y
∼

, the realization of observations vector.

In Table 5 it is seen that due to the omission of detected
gross errors, σ̂

∼

as a measure of data precision or estimated

measurement error for each of the observations is signif-
icantly decreased; about 59%. This implies that removing
outliers will improve precision of the data used for prediction

byLSC.Another estimated quantity to be noted in this table is
standardized CVE. Since we assume êi ∼ N (0, 1) (Eq. 34),
RMS( ê

∼i
) which is equal to the standard deviation of ê

∼i

′s is
expected to be near 1, but in Table 5 we see that after remov-
ing outliers it decreases from 0.97 to 0.95. The reason is not
exactly known but one can guess that it may be because of the
need to employ a heterogeneous noise model for the obser-
vations that will be discussed in the next section. Now we
are interested to see the impact of the elimination of outliers
from the dataset and reduction in estimated noise variance on
LSC prediction results. In order to assess the quality of pre-
diction by LSC, we used three different types of errors and
estimated noise of the observations. The first is CVE which
is computed by Eq. (13). CVEs indicate the accuracy of LSC
predictions at data points and their neighboring area. The
second is the LSC prediction error at data points that may be
called as internal error (see “Appendix B”). Equation (B3) is
applied for computing the internal errors for each of the data
points. Using Eq. (B1), LSC prediction error has also been
computed on a regular grid of 1653 interpolation points with
5′ ×5′ spacing located in between 29.15◦N ≤ φ ≤ 31.50◦N
and 89.10◦W ≤ λ ≤ 93.75◦W. Noise of the observation in
Eq. (1) can be estimated by Eq. (B4) in “Appendix B”. The
estimated noise for each of the observation points gives the
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Fig. 3 Flowchart of the
algorithm used for detection and
removing outliers from dataset
using homogeneous noise model
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Fig. 4 Empirical covariance of residuals and the fitted exponential covariance model after removing outliers
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Table 4 Noise variance factors
computed using MFEC method
and the proposed method and
the respective quadratic forms of
CVEs after removing 26 outliers

Estimated by the MFEC method Estimated by the proposed method

σ̂
∼

2
�̂
∼

σ̂
∼

2
�̂
∼

1.06 1579.5 0.97 1654

Table 5 Changes of standardized CVEs, covariance parameters and estimated noise variance after removing outliers

Status Max
∣∣ ê
∼i

∣∣ RMS ( ê
∼i
) σ̂

∼

Cw(0) (mm/a)2 Cs(0) (mm/a)2 d0 (km)

Before removing outliers 17.92 0.97 2.394 15.071 9.679 24.521

After removing outliers 4.12 0.95 0.985 10.948 9.887 25.042

difference between the observed value and the LSC predic-
tion. The lower noise means better adaptation of predictions
on the observations at the point locations. In Table 6 we
have compared the quality of LSC prediction before and after
removing outliers using statistics for each of these error types
together with the estimated noise of observations.

The comparison of the results for different errors (Table 6)
shows that after removing the detected outliers, theCVEs and
internal errors are significantly decreased, while the RMS
of LSC prediction errors on a regular grid of prediction
points is not considerably affected. We see that RMS( ε̂

∼i
) and

RMS(σŷi ) have been reduced by about 51%and 39%, respec-
tively. This is at the cost of losing 26 data points detected as
the outliers. Nevertheless, RMS(σŷ0) is decreased about 4%
which is not considerable. The reason is related to sparse spa-
tial distribution of data points for this case study. RMS( ε̂

∼i
)

and RMS(σŷi ) can be treated as overall measures of the accu-
racy and precision of LSC predictions at the data points,
respectively. However, their simultaneous reduction is the
result of improvement of our dataset quality. As themeasures
of precision and accuracy, they can be compared with each
other. Their difference before and after elimination of outliers
is 1.53 and 0.61 (mm/a), respectively. This can be interpreted
as improvement of the reliability of LSC prediction at the
data points and around their neighborhood area which is the
natural consequence of omitting outliers. RMS( ε̂

∼i
) can also

be considered as a measure of accuracy of observed data
points from another perspective. Thus, one can compare it
with estimated standard deviation of the noise of observa-
tions. Given the assumption thatQnn = Im , one can directly
compare σ̂

∼

from Table 5 with RMS( ε̂
∼i

) in Table 6. Before

removing outliers, σ̂
∼

is computed as 2.39 while RMS( ε̂
∼i

) is

2.59. After that the outliers are eliminated σ̂
∼

is 0.99 which

is still close to 1.26 derived for RMS( ε̂
∼i

). This comparison

shows that both accuracy and precision of our dataset are
significantly improved by removing outliers. The last row of
Table 6 draws our attention to significant reduction in the
estimated noise of observations in pursuit of omitting blun-

ders. RMS of the noise is reduced by 67% and the noise range
from maximum to minimum values is extremely decreased
which concludes that implementation of the method brings
a better adaptation of LSC prediction with the observations.
This may be considered as the remarkable achievement of
detection and removing outliers that directly affects the LSC
predictions not only at data point locations but also all over
of the interpolation area. According to slight reduction in
LSC prediction errors on regular grid of interpolation points
in Table 6, one concludes that filtering data from gross errors
which improves accuracy and precision of observed data
points do not have an effect on the quality of prediction at dis-
tant (with respect to the correlation distance) points. In order
to assess the accuracy of prediction at those points with sub-
stantial distance to data points, we can use lower cutoff CVEs
for which the neighboring points are also removed in CVE
processes. By this way, during the computation of CVE for
a data point not only the same point is omitted, but also all
of the data points located at a certain distance to that point
are also removed. Therefore, we can have a better judgment
about the quality of prediction for those points located dis-
tantly to our data points. Lower cutoff CVEs can be used
to measure the accuracy of prediction especially for datasets
with sparse distribution of data points like our case study.
From another point of view, in case of heterogeneous distri-
bution of data point locations, one can use the lower cutoff
cross-validation technique in order to simulate homogeneous
resolution of the prediction everywhere in the area. Table 7
displays statistics of computed lower cutoff CVEs for some
different radii of vicinity before and after elimination of the
outliers.

These results indicate that removing outliers can improve
LSCprediction even for those locationswith no data points at
their surrounding area in a certain distance. This type of error
may be treated as a measure of accuracy in those parts of the
prediction area which are far from the observation points. By
increasing the radius of vicinity, the amounts of changes in
RMS of lower cutoff CVEs before and after elimination of
blunders are decreased. Considering different lower cutoff
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Table 6 Comparison of different types of LSC error changes due to removing outliers detected by the proposed technique (unit: mm/a)

Type of error Status No. points Min Max Mean RMS

CVE ( ε̂
∼i
) Before removing outliers 1683 − 46.95 10.27 0.00 2.59

After removing outliers 1657 − 5.72 5.35 0.00 1.26

LSC internal error (σŷi ) Before removing outliers 1683 0.65 1.66 1.05 1.06

After removing outliers 1657 0.32 0.90 0.64 0.65

LSC prediction error on a regular grid of points (σŷ0 ) Before removing outliers 1653 0.88 3.59 2.57 2.65

After removing outliers 1653 0.56 3.62 2.47 2.55

Estimated noise of observations ( n̂
∼i
) Before removing outliers 1683 − 39.22 8.37 0.00 2.12

After removing outliers 1657 − 3.30 2.81 0.00 0.70

Table 7 Comparison of lower cutoff CVEs for different radii of vicinity before and after removing outliers detected by the proposed technique
(unit: mm/a)

Radius of vicinity (km) Status No. points Min Max Mean Mean of absolute value RMS

5 Before removing outliers 1683 −43.58 14.47 0.08 2.38 3.45

After removing outliers 1657 −14.64 18.99 0.07 1.92 2.78

15 Before removing outliers 1683 −42.26 12.19 0.09 3.06 4.19

After removing outliers 1657 −20.17 12.86 0.06 2.66 3.69

25 Before removing outliers 1683 −40.43 14.21 0.02 3.39 4.53

After removing outliers 1657 −20.99 17.42 − 0.03 3.01 4.04

CVEs in Table 7, we see that RMS of the error is reduced
by 19.5, 11.9 and 10.8% for 5, 15 and 25km cutoff val-
ues, respectively. Comparing lower cutoff CVEs in Table 7
with prediction errors at grid points in Table 6 in terms of
RMS shows that after removing outliers the 5km lower cut-
off CVEs (2.78mm/a) as a measure of accuracy corresponds
better with prediction errors at grid points (2.55mm/a) which
is usually treated as the measure of precision for prediction
over the area. These two values may also be expected to be
close to estimated noise standard deviation of data points
which is actually computed as 0.985 (mm/a), but some fac-
tors can probably disturb that. One of the impressive factors
is the spatial distribution of data points. For this case study,
the data points are heterogeneously distributed over the pro-
posed prediction area which is covered by the regular grid of
interpolation points. This is probably the main factor caus-
ing a significant difference between the prediction accuracy
(RMS of 5km lower cutoff CVEs) and estimated standard
deviation of the noise of observations. As another result of
our analysis, we can also conclude that due to removing out-
liers while the accuracy is improved about 19.5% (from the
first row of Table 7) the precision changed about 4% (from
the third row of Table 6) for this case study. Figure 5 illus-
trates the variation of max

∣∣ ê
∼i

∣∣ and estimated noise variance

factor σ̂
∼

2 through the detection and removal of outlying data.

It is seen that by removing each of the detected outliers the
value of σ̂

∼

2 is decreased.

In Fig. 5, after rapid fall around 5 outliers, we see a
systematic decrease for these two quantities until max

∣∣ ê
∼i

∣∣
reaches the rejection level. Slight reduction rate of max

∣∣ ê
∼i

∣∣
and σ̂

∼

2 from outlier 6 to outlier 26 reminds us that all these

detected observations may not essentially hold blunders in
them.Therefore,we think about a heterogeneous noisemodel
for the observations. In fact, we assume that observations
can be divided into at least two groups with different noise
variances. If we have two groups of observations where the
variance of the noise for one of them is larger than that from
the other, and we estimate a homogeneous noise model for
them. Then, we should expect to detect some of the observa-
tions from the group with larger noise as outliers while they
are not real outliers, and the reason of larger value for

∣∣ ê
∼i

∣∣
is that noise variance of these observations is larger than the
overall noise variance of total observations.

5.2 Interpolation using a heterogeneous noise
model

Here we divide the dataset into distinct groups and assume
different NVCs for each of them. In order to compute Cww,
Eq. (40) is employed. Assuming p groups of data points in
which the number of elements for the kth group is nk , Qk is
anm×mmatrix with only nk nonzero elements. The nonzero
elements are equal to 1. They are the diagonal elements that
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Fig. 5 The impact of removing outliers on a maximum absolute value of realized standardized CVEs and b realized estimated noise variance by
the proposed method
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start from n1 + n2 + · · · + nk−1 and end at nk+1 + · · · + n p.
Cnn is then modeled as :

Cnn =
p∑

k=1

σ 2
k Qk =

⎡
⎢⎢⎢⎣

σ 2
1 In1 0 · · · 0
0 σ 2

2 In2 0
...

. . .
...

0 0 · · · σ 2
pIn p

⎤
⎥⎥⎥⎦ (45)

To organize the data points into distinct groups, a priori
information about the measurement errors is required. Such
information is not available for the dataset of this research.
To come up with a systematic procedure for organizing the
data points within separate groups, this study proposes

∣∣ ê
∼i

∣∣
as the required measure. If we have at least two groups of
observations with different noise variance components and
assume a single noise variance for the total observations, then
by employing one estimated noise variance to all of obser-
vations leads to larger

∣∣ ê
∼i

∣∣ for some of those observations

that belong to the group with larger noise variance. In other
words, the number of observations with large values of

∣∣ ê
∼i

∣∣
in the groupwith larger noise variance would be significantly
more than the other group. According to this assumption, we
removed only the first 5 observation which certainly hold
blunders (Fig. 5) and then we computed

∣∣ ê
∼i

∣∣ for rest of the
observations and separated thosewith

∣∣ ê
∼i

∣∣ > 1.96whichmay

be called as the noisy observations. In Fig. 6, we havemarked
those noisy observations after removing 5 outliers. Accord-
ing to unbalanced spatial distribution of the noisy observation
points in the interpolation area, we conclude that there is a
probability of having some different populations of obser-
vations with distinct noise variances. In Fig. 6 we see an
aggregation of noisy data points in the southeastern part of
the area, while the spatial distribution of these points in the
southwestern part is approximately balanced. On the other
hand, at the northern part of the study area we have smaller
number of noisy observations. Accordingly, we decided to
depart the data into three groups assuming to belong to three
statistical populations with different noise variances.

Figure 7 displays the data groups that were distinguished
via considering the spatial distribution of noisy data points
on the leveling lines. In this figure red, blue and green points
belong to those groupswith larger, medium and smaller num-
ber of noisy data points, respectively.

Table 8 gives information about the number of total data
points and noisy data points which stand in each of the dis-
tinguished data groups. We assume, êi ∼ N (0, 1), where for
such a distribution only 5% of standardized CVEs lie out of
±1.96 limits. As we do not expect to see an inordinate dif-
ference between NVCs of data points, we had to take more
data points for the first group in comparison to the others.

After grouping data points, the NVCs can be computed
using the REML method. But, this will not be end of the
job; we should continue detection and removing outliers to
make sure about accuracy of the final results. We do this
by using NVCs estimated by the REML method each time
after removing one outlier. In Fig. 8 we have presented a
flowchart which has been employed for estimating the NVCs
and removing outliers from the dataset.

The REML method was applied for estimating the noise
variance components. The Fisher scoring technique was
also used for numerical computations. For details, the inter-
ested reader is referred to Jarmołowski and Bakuła (2014)
and Jarmołowski (2015). Table 9 illustrates the estimated
noise standard deviations for each of the identified groups
employing the REMLmethod before and after detection and
removing outliers. The used algorithm for elimination of out-
liers is the same as that performed by the flowchart in Fig. 8.

Estimated values of σ̂
∼

for the identified groups are

completely different from each other. This difference is con-
siderably increased after removing outliers. By taking a look
at Table 8, we see that ratio of the number of noisy data points
to total points in group I is significantly larger than that of
the other groups. Therefore, we expect to see a larger σ̂

∼

for

this group which holds more noisy data points which is due
to the estimation of noise variances by the REML method.
Removing gross errors also has an impressive impact on esti-
mated noise variances. They are reduced about 29.5%, 46 and
62% for the three groups, respectively. Table 10 shows the
changes of standardized CVEs and covariance parameters
due to removing outliers by the proposed method which is
depicted in Fig. 8.

From Table 10, it is seen that by removing outliers,Cw(0)
is reduced and Cs(0) is not significantly changed. The cor-
relation distance has slightly increased about 0.66km which
is a consequence of removing outliers. In comparison with
Table 5, we see that RMS ( ê

∼i
) has reached to 0.99 and 1.00

for the two cases which is related to employing the hetero-
geneous noise model that better fits to our dataset. Table 11
illustrates estimated values for CVEs, LSC internal errors
and LSC prediction errors on a regular grid of interpolation
points after employing a heterogeneous noise model for data
points and removing outliers using the proposed methods. In
comparison with those errors, after removing outliers for the
homogeneous noise model in Table 6, all statistical measures
in Table 11 reduce. The RMS of these three types of errors
decreases about 4, 14 and 2%, respectively. LSC internal
error reduces more than the two other errors because of the
significant reduction in estimated NVCs for the groups II and
III in comparison with noise variance of the homogeneous
model.

Table 12 illustrates the lower cutoff CVEs after imple-
mentation of the proposed method for heterogeneous noise
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Fig. 6 Spatial distribution of data points with
∣∣ ê
∼i

∣∣ > 1.96 assuming a homogeneous noise model

Fig. 7 Separation of data points into three groups: group I (red), group II (blue) and group III (green)

Table 8 Information about the
number of data points in groups
separated based on the number
of noisy points distributed on
the leveling lines

Data group No data points No noisy data points Percent of noisy data points

Group I 754 47 6.23

Group II 530 23 4.34

Group III 394 13 3.3

Table 9 Noise standard
deviations for a heterogeneous
noise model estimated by the
REML method, unit: mm/a

Data group No data points
before removing
outliers

No data points after
removing outliers

Estimated noise
standard deviation
σ̂
∼

before removing

outliers

Estimated noise
standard deviation
σ̂
∼

after removing

outliers

Group I 754 743 1.46 1.03

Group II 530 520 1.41 0.76

Group III 394 386 1.06 0.40
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Fig. 8 Flowchart of computing NVCs together with detection and removing outliers from the dataset
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Table 10 Standardized CVEs and covariance parameters before and after removing outliers using the proposed method for employing a heteroge-
neous noise model

Status No data points Max
∣∣ ê
∼i

∣∣ RMS ( ê
∼i
) Cw(0) (mm/a)2 Cs(0) (mm/a)2 d0 (km)

Before removing outliers 1678 7.79 0.99 11.85 10.08 24.673

After removing outliers 1649 4.15 1.00 10.91 10.18 25.334

Table 11 Computed statistics
for CVEs, LSC prediction errors
and LSC internal errors after
using heterogeneous noise
model and removing outliers,
units: mm/a

Type of error No. points Min Max Mean RMS

CVE ( ε̂
∼i
) 1649 − 5.56 4.70 0.00 1.21

LSC internal error (σŷi ) 1649 0.24 0.94 0.54 0.56

LSC prediction error on a regular grid of points (σŷ0 ) 1653 0.41 3.53 2.39 2.50

model. In comparison with Table 7 it results that this method
may not be very effective on improving the overall accuracy
in the prediction area for our case study. The results are a
little better than the homogeneous noise model.

Our experience for this case study showed that in cases
which data classification for grouping observations with dif-
ferent NVCs is unsuitable, lower cutoff CVEs comparedwith
the homogeneous noise model, not only do not decrease but
also increase for many of the observations. Therefore, these
types of errors can be applied to check the correctness of
our decision regarding the classification of observations into
groups with distinct noise variances. Comparing the overall
results illustrated in Tables 11 and 12 with the corresponding
items for the homogeneous noise model in Tables 6 and 7
(after removing outliers), one may deduce that employing
even a suitable heterogeneous noise model may not signifi-
cantly improve the quality of prediction by LSC. Responding
to this idea we compared the estimated noise of observations
n̂ and LSC internal errors separately for each of the data
groups for homogeneous and heterogeneous noise models in
Table 13. The estimated noise of observations for the first
group is not changed, while for the second and third groups
it is obviously decreased. The RMS of the noise is reduced
by 25 and 56% for the second and third groups, respec-
tively. Maximum and minimum values are also significantly
deceased. Reduction in the estimated noise of observations
for these two groups indicates that we have been able to
get a better adaptation between the LSC predictions and the
observed values by applying the heterogeneous noise model
for those areas covered by the observations of groups II and
III.We also see that theRMSof internal errors is decreased by
15 and 51%, respectively, for these two groups. This implies
that one can achieve a better precision of LSC prediction at
observation points for these two groups. As an overall result,
it concludes that implementation of a suitable heterogeneous
noise model improves the regional precision of LSC predic-
tion around the observation points.

Figure 9 depicts the interpolated rate of vertical displace-
ments in the computation area employing a heterogeneous
noise model and using estimated covariance parameters with
estimated noise standard deviations listed in Tables 9 and 10
after removing outliers by running the flowchart depicted in
Fig. 8.

It is obvious that rate of subsidence is increasing from
north to south. In the southern region, one can recognize high
rate local subsidence areas. Some of these are located at the
neighborhood of the Mississippi river. Others are scattered
through the southern part of this area from east to the west.
According to Dokka (2011) subsidence in this area is due to
the compaction of sediments from Mississippi river, oil and
gas extraction, drainage projects and sea-level rise. Figure 10
illustrates the LSC prediction error which is computed on a
regular grid of points with spacing 5′ × 5′. A buffer area in
green color, where the prediction error is less than 1.46mm/a,
is remarkable. In most parts of the interpolation area that is
placed in between leveling lines, the error is estimated to be
less than 2.5 mm/a, which could be accepted as the overall
LSC precision in the region. Since the LSC prediction errors
around the observation points of groups II and III are reduced
with a heterogeneous noise model, the results achieved from
the heterogeneous model are more precise than the homo-
geneous model for the areas covered by these data points.
The precision is also strongly impressed by the amount of
aggregation of data points. In those areas which are covered
by the dark green color, we have a higher density of data
points compared to the areas covered by dark brown and the
following colors that suffer from the lack of data points.

Figure 11 displays the effect of employing a heteroge-
neous noise model versus the homogeneous one on the
prediction results. Difference of the referred predictions is
used for this purpose. The differences in predictions vary
from −1.51 to 1.22 mm/a. Observed differences are notable
in many parts of the prediction area especially in areas cov-
ered by the leveling lines of groups II and III of observations.
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Table 12 Lower cutoff CVEs
for different radii of vicinity
after employing a heterogeneous
noise model and removing
outliers detected by the
proposed technique (unit: mm/a)

Radius of vicinity (km) Min Max Mean Mean of absolute value RMS

5 −14.64 18.75 0.06 1.89 2.75

15 −20.01 12.57 0.03 2.64 3.68

25 −21.12 12.97 − 0.05 3.00 4.09

Table 13 Comparison of estimated noise of observations and LSC internal errors for homogeneous and heterogeneous noise models estimated by
the proposed methods (unit: mm/a)

Estimated quantity Status Data group No. points Max Min RMS

Estimated noise of observations ( n̂
∼i
) Homogeneous noise model Group I 743 2.72 − 2.85 0.79

Group II 523 2.81 − 3.30 0.70

Group III 391 2.39 − 2.39 0.52

Heterogeneous noise model Group I 743 2.72 − 2.85 0.79

Group II 520 1.78 − 2.17 0.52

Group III 386 0.59 − 0.56 0.23

LSC internal error (σŷi ) Homogeneous noise model Group I 743 0.90 0.32 0.64

Group II 523 0.85 0.43 0.65

Group III 391 0.89 0.45 0.66

Heterogeneous noise model Group I 743 0.94 0.34 0.67

Group II 520 0.70 0.37 0.56

Group III 386 0.40 0.24 0.32

Fig. 9 Rate of vertical displacement in northern coast of the Gulf of Mexico interpolated by LSC after removing outliers and estimation of NVCs
using the proposed method depicted in Fig. 8

This figure supports the influence of the heterogeneous noise
model in LSC predictions for the case study of this research.

6 Conclusions

Leave-one-out cross-validation errors plays a key role in
assessment of the quality of prediction by LSC.We presented
two formulae for estimating the CVEs for LSC in vector

form and the corresponding covariance matrix (Eqs. 13, 14).
Application of these formulae extremely decreases the com-
putation time of the CVEs and their variance–covariance
information. This is especially noticeable when a massive
dataset is concerned. We use the CVEs for statistical testing
in LSC.We propose a global test on the quadratic form of the
CVEs in order to check the reliability of the mathematical
model together with the covariance parameters and observa-
tional noises. This hypothesis test, however, fails if blunders
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Fig. 10 LSC prediction error after removing outliers and estimation of NVCs

Fig. 11 Difference between predictions of the rate of vertical displacements using homogeneous and heterogeneous noise models

are present in the dataset. In order to detect blunders, statis-
tical tests of LSA, i.e., Pope and Baarda’s hypothesis tests,
are applied in LSC using the CVEs. The presented statistics
may be compared with the criterion proposed by Tscherning
(1991a, b). However, in contrast to the Tscherning’s scheme,
instead of the neighboring points, we use all of the data points
for computing theCVEs,where the denominator of the statis-
tic is different in comparison to that used by Tscherning. As
a side result, one can deduce that the proposed outlier detec-
tion tests are an improved version of the Tscherning’s scheme
for detecting the gross errors using LSC. We also proposed
an iterative method for estimating a posteriori noise variance
factor of the observations. By employing this method, we
have computed the realized value of a posteriori noise vari-
ance for the rates of vertical displacement in the northern

coast of the Gulf of Mexico. In addition, we state that the
realized noise variance estimated by the MFEC method in
this case study shows only about 6% difference in respect
to the value estimated by the method proposed in Sect. 3.2.
The results indicate that the realized value of the estimated
quadratic form of the CVEs exactly matches on the degree of
freedom of the LSC problem using realized noise variance
factor estimated by the proposed method in Sect. 3.2 for the
case study of this research.

Using standardized CVEs computed with accurately esti-
mated noise variance, the dataset is tested for detection
and removing outliers. According to the obtained results in
Sect. 5, removing outliers by the proposedmethod illustrated
by Fig. 3 significantly improves precision of the data used
for the LSC prediction due to reduction in the noise variance
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of observations. As a measure of precision, the estimated
noise standard deviation of the dataset is reduced by 59%.
There is no doubt that the accuracy of the entire dataset
is also improved via the elimination of the gross errors. It
has a significant influence on the estimated trend parameters
which results in the reduction in the estimated residuals. In
Table 5 we see that the estimated variance for the residuals
is decreased about 27%. As an overall result, one concludes
that the method improves the reliability of the data used for
prediction by LSC.

In order to investigate the influence of filtering out blun-
ders from the observations on precision and accuracy of LSC
predictions, we computed different types of LSC errors. The
CVEs and internal errors were used for assessing the accu-
racy and precision of theLSCprediction at the data points and
their neighborhood area. However, by removing the detected
outliers, a considerable reduction in the various statistics
regarding the LSC internal errors is observed. As an over-
all measure, the RMS of CVEs and internal errors decreases
51 and 39%, respectively. Despite this, the RMS of the LSC
prediction error on the regular grid of interpolation points
slightly reduces with an amount of about 4%. This is a con-
sequence of the sparse distribution of the data point locations
in this case study. Note that the LSC prediction error is less
decreased at the points further away from the data points
compared with the near points. Anyway, we can expect more
reduction in the RMS of the LSC prediction error for those
datasets with a regular spatial distribution of observation
points. Lower cutoff CVEs can be treated as reliable mea-
sures of accuracy for interpolation points which are distantly
located from data points. Through this type of errors, we can
have a fair judgment on the improvement of LSC accuracy
after removing outliers. The results illustrated in Table 7 also
indicate that by removing the gross errors causes a reduced
RMS for lower cutoff CVEs by 19, 12 and 11% for different
radii of vicinity. As an overall conclusion, we showed that the
precision of LSC prediction for interpolation points distantly
located from the data points is not significantly affected by
removing outliers where the accuracy of the LSC prediction
is more influenced. The other achievement of eliminating
outliers is the considerable reduction in the estimated noise
of observations. In Table 6 we showed that due to the imple-
mentation of the proposed method for the case study, the
RMS of the estimated noise of observations is reduced from
2.12 to 0.70 (mm/a). This leads to a better adaptation of LSC
predictions to data points. According to the better precision
of data points, the smoothing property of LSC is somehow
regularized in a way to give predictions which are closer to
the observed values.

For the case study of this research in which a priori
information on the noise variance of data points was not
available, we showed that spatial distribution of the obser-

vations with large standardized CVEs (i.e.,
∣∣ ê
∼i

∣∣ > 1.96) that

may be called as noisy observations, can be an appropri-
ate criterion for deciding over how to divide a dataset into
subsets with expected different noise variances. We could
distinguish three groups of observations via checking the
number of noisy data points compared to the total num-
ber of data points in each of the groups. Implementation of
the REML method by the fisher scoring technique together
with elimination of outliers revealed distinct values of the
NVCs for each of the groups. In comparison with the homo-
geneous noise model, we found 8 more outliers that lead
to a better precision and accuracy of the data points. How-
ever, the RMS of CVEs and the LSC prediction error on a
regular grid of interpolation points as the overall measures
are decreased only 4 and 2% which is not considerable. In
order to reveal the advantage of employing a heterogeneous
noise model for the case study, the noise of observations
and internal errors was estimated separately for each of the
data groups by employing the heterogeneous noise model
and compared with those of the homogeneous model. The
results indicate significant reduction in the noise for two
of the groups with lower level of NVCs. Therefore, one
concludes that the application of a suitable heterogeneous
noise model for a dataset which obviously improves preci-
sion of classified data points leads to a better quality of LSC
predictions via the reduction in estimated noise of obser-
vations that implies a better adaptation of LSC predictions
to observations. This is remarkable only for those observa-
tion points that lie in groups with lower NVCs contrasted
with the unique noise variance of the homogeneous model.
As an overall conclusion, in cases of unbalanced spatial dis-
tribution of noisy observations, employing an appropriate
heterogeneous noise model based on a logical separation of
data points would be an effective approach to achieve more
reliable LSC predictions in comparison with homogeneous
noise models. Finally, according to the discussed subjects,
detection and removing outliers based on the statistical tests
described in Sect. 3 is strongly recommended for any LSC
prediction. Monitoring changes of various assessment mea-
sures, before and after application of any method discussed
in this paper is also recommended.
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Appendix A

A lemma in linear algebra

Notation For an arbitrary matrix D = {
di j

}
, di,−i is the i th

row of D whose i th element is removed and D−i,−i is the
same matrix whose i th row and column are removed.

Lemma If A represents an arbitrary symmetric positive def-
inite matrix and B = A−1, then

ai,−iA
−1
−i,−i = − 1

bii
bi,−i (A1)

Proof we define the vector d(i) by

d(i) = biA (A2)

where bi is the i th row of B, the kth element of d(i) is simply
derived

d(i)
k =

∑
j

bi j a jk = δik (A3)

where δik is the Kronecker delta. Considering the arbitrary
vector e(i) that is defined by

e(i) = bi,−iA−i,−i (A4)

and using Eq. (A3), one can conclude that:

e(i)
k =

∑
j �=i

bi j a jk = d(i)
k − bii aik

= −bii aik ∀k �= i (A5)

Finally, the following relations are deduced from Eq. (A5)

aik = −1

bii
e(i)
k

= −1

bii

∑
j �=i

bi j a jk ∀k �= i (A6)

Therefore,

ai,−i = − 1

bii
bi,−iA−i,−i (A7)

It has to be mentioned here that any principal submatrix of
a positive definite matrix is also positive definite (Harville
1997, p. 214). Therefore, for the positive definite matrix A,
A−i,−i is always invertible. ��

Appendix B

LSC prediction errors and noise estimation

LSC prediction error at an unobserved point p0 is computed
by (Moritz 1972, p. 47; Mikhail and Ackermann 1976, p.
422)

σ 2
ŷ0

= cs0s0 − cs0sC
−1
wwc

T
s0s

+
(
cs0sC

−1
wwA − a0

)
Cx̂x̂

(
cs0sC

−1
wwA − a0

)T
(B1)

where ŷ0 is prediction of y at p0 and cs0s0 is the signal vari-
ance, cs0s is the cross-covariance vector of the predicted point
and the vector of data points, a0 is the vector of trend for
predicted point, and Cx̂x̂ denotes the covariance matrix of
estimated trend parameters which is computed by the fol-
lowing formula

Cx̂x̂ =
(
ATC−1

wwA
)−1

(B2)

LSC internal error (adopted from Darbeheshti and Feather-
stone 2009) is LSC prediction error at an observed point pi

σ 2
ŷi

= csi si − csi sC
−1
wwc

T
si s

+
(
csi sC

−1
wwA − ai

)
Cx̂x̂

(
csi sC

−1
wwA − ai

)T
(B3)

where ŷi is prediction of y at pi and csi si is the signal variance,
csi s is the cross-covariance vector of the predicted point and
the vector of data points, ai is the i th row of A.

Noise of the observations in Eq. (1) is always unknown.
It can be estimated by the following formula (Moritz 1980,
p. 119)

n̂ = CnnC−1
ww

(
y − Ax̂

)
(B4)
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