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Abstract
GNSS tomography is a method for the three-dimensional reconstruction of wet refractivity ( N

w
 ) in a set of voxels, each 

covering a specific part of the troposphere. The substantial assumption is the homogeneity of atmosphere in each voxel in 
given time intervals, known as the time response of model. Determining the optimal time resolution is one of the exist-
ing challenges in the tomography of the Earth’s atmosphere. We apply Empirical Orthogonal Functions (EOFs) to find an 
optimal time response for our tomographic model. To investigate our method, we compute the EOFs using the numerical 
atmospheric model that is available in our test area as the reference field on an already designed tomographic model. Using 
time resolutions of 30, 45, 60, 75, 90, 105 and 120 min, our EOF based method suggests the time periods of 60 to 75 and 
75 to 90 min as the time response in the two days (a dry and a wet day) of our experiments, respectively According to our 
analysis, because of the quality of our reference field, it is not possible to expect similarities better than 85% for wet day and 
93% for dry days in the scattering of the N

w
 field between the reconstructed images and our reference model.
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Introduction

Water vapor has an obvious role in the hydrological cycle 
and plays a key role in energy transport. Therefore, monitor-
ing and determining its changes and distribution is demand-
ing. However, the low spatiotemporal resolution of water 
vapor sensors and their high cost make it difficult. Bevis 
et al. (1992) explained how to derive Integrated Water Vapor 
(IWV) from the Slant Tropospheric Delays (STD) of the 
GPS signals. Then, Flores et al. (2000) developed a four-
dimensional water vapor map by ground-based GNSS net-
works using voxel-based tomography method.

In voxel-based tomography, troposphere is divided into 
several cubes known as voxels (Flores et al. 2000) and the 
wet refractivity ( Nw ) or water vapor content is computed 
in each voxel over time intervals known as the time reso-
lution or time response of the tomographic model. Nw or 
water vapor content as unknown parameters are assumed 
homogenous and constant in every voxel during the period 
of reconstructing a tomographic image. GNSS signals pass 
through many of the voxels while some voxels may remain 
empty. As the result, GPS-tomography is a mixed deter-
mined inverse problem. This makes the application of addi-
tional constraints and the regularization techniques inevi-
table (Rohm and Bosy 2009; Bender et al. 2011; Trzcina 
and Rohm 2019). Various methods have been proposed for 
finding a unique solution when reconstructing a tomographic 
image (Flores et al. 2000; Bender et al. 2009; Heublein et al. 
2019).

In addition to the size of voxels, the time response of a 
model has an evident role in the uniqueness of the tomo-
graphic solution: Decreasing the time response reduces 
the redundancy of the problem and increases the number 
of empty voxels. In this regard, proposed approaches try to 
minimize the impact of the time resolution on reconstructed 
tomographic images: Yao and Zhao (2016) eliminated the 
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empty voxels from the tomographic model. Adavi and Mash-
hadi-Hossainali (2014) used the concept of Virtual Refer-
ence Station (VRS) to fix the rank deficiency of the problem. 
Some researchers focused on the multi-GNSS tomography, 
i.e. the combination of the GPS, GLONASS and Galileo sys-
tems in reconstructing the tomographic images (Bender et al. 
2011, Dong and Jin 2018, Adavi et al. 2022). Some studies 
also report on the application of the function based approach 
in troposphere tomography (Haji-Aghajany et al. 2020a, b).

Reconstructed tomographic images not only should lay 
out the spatial variations of desired parameter (e.g. water 
vapor) but also, they should include information on the tem-
poral variation of the sought parameter. So far, the proposed 
methods systematically ignore the dynamics of the Earth’s 
atmosphere. Normally, the time resolution for reconstructed 
tomographic images is fixed, one hour for example. There-
fore, water vapor is assumed to change in each voxel hourly 
(Bender et al. 2013; Wang and Dessler 2020). Depending on 
the atmospheric conditions, the time variation of water vapor 
may happen in shorter or longer periods of time. Moreover, 
water vapor may not remain constant in each voxel as well. 
Adavi et al. (2022) proposed a method for the pre-analysis 
of the GNSS tomography solutions. They used the spread of 
the resolution matrix as an indicator to predict the accuracy 
of the tomography model. Since the method does not use 
any reference field (a priori information on the atmosphere) 
it cannot suggest appropriate resolutions for a tomographic 
model both in space and time. Sadeghi et al. (2022) proposed 
a method to determine the optimal resolution of a tomogra-
phy model in space (horizontal size of voxels). The method 
takes the spatial changes of atmosphere into account using 
an initial reference model. As the result, they proposed a 
hybrid tomography model for their test area.

In this study we apply a method to determine a lower 
bound limit for the time resolution of tropospheric tomogra-
phy which not only considers the adequacy of observations, 
but also incorporates the dynamics of water vapor in the 
study area. Our proposed method is based on the Empirical 
Orthogonal Functions (EOFs) constructed using the Weather 
Research and Forecasting (WRF) model as a priori informa-
tion on the dynamics of atmosphere. The time resolution of 
our tomographic model is determined by using the EOFs 
in each layer of the model.. Moreover, we apply the recon-
structed images for the validation of the proposed method.

A short theory on GNSS tomography and the estima-
tion of EOFs are explained in the next section. Our method 
for the determination of time response follows the theoreti-
cal considerations. Then, we apply our approach to GPS 
measurements in two days, a day with high humidity and 
a day with low humidity. The section of numerical results 
reports the outcomes and discusses on the pros and cons of 
the proposed method. Concluding remarks are given in the 
last section.

Methodology

In this paper, the Empirical Orthogonal Functions (EOFs) 
method for constructing an optimal time response of a tomo-
graphic model has been applied. Therefore, a concise review 
on the GPS tomography is given first. Then,the EOFs and 
its application for estimating the optimal time response of a 
tomographic model is discussed.

GPS tomography, theory and method

The Nw which is mainly due to the water vapor, is a byprod-
uct of the GNSS data processing algorithms. The recon-
struction of the Nw is based on the formulation of the GPS 
signals wet delay in terms of the refractivity in the Earth’s 
atmosphere. This gives a Fredholm Integral Equation (FIE) 
of the first kind as the mathematical model for this problem 
(Flores et al. 2000):

Here, ��� stands for the Slant Wet Delay and s is the 
signal path between a satellite and a receiver. The continu-
ous integral Eq. (1) is changed to a simultaneous system of 
linear equations by replacing the Earth’s atmosphere using a 
3D-mesh of cubes (known as voxels or the model elements) 
in which the refractivity is assumed to change only between 
such elements (Flores et al. 2000).

Here, j represents the jth voxel and i is ith GPS line of 
sight path with the length of Δsj in this voxel (Rohm and 
Bosy 2009). Therefore, the lengths of the GPS signal seg-
ments in each voxel construct the rows of the design or 
coefficient matrix A. Then, GPS-tomography is a mixed 
determined inverse problem with a non-unique solution. To 
come up with a unique solution, the simultaneous system of 
observation equations is changed to a constrained system 
of equations.

A group of studies have focused on the application of 
different methods for constraining this problem: Some 
researchers used Meteorological observations (Hirahara 
2000). Rohm and Bosy (2011) introduced additional param-
eters that obtained from the air flow analysis of radiosonde 
data and the COAMPS weather prediction model. Adavi 
and Mashhadi-Hossainali (2014) applied the observations 
of VRS to fix the rank deficiency of the problem.. We use 
the method of VRS in this study.The distribution of VRS 

(1)��� = 10−6 ∫
s

Nw ds

(2)SWDi = 10−6
n
∑

j=1

Nwj Δsj

(3)��� = � Nw
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stations as well as the horizontal resolution of the model has 
been selected using the concept of model space resolution 
matrix (Adavi and Mashhadi-Hossainali 2014).

The total number of rows in A depends on the sampling 
rate of GNSS measurements and the time period in which 
our assumption on, the refractivity parameters is valid. This 
period of time is known as the time response of tomography. 
Selecting the appropriate value for this parameter is another 
challenge in GPS tomography: inappropriate time response 
results in the reconstructions that are not compatible with the 
dynamics of water vapor in the Earth’s atmosphere. Moreo-
ver, small time responses not only increase the instability 
of the solution but also increase the number of the required 
constraints for computing a unique solution.

Since tomography is a large scale problem, recursive 
methods are normally used to acquire a regular solution 
(Elfving et al. 2010). We use the Landweber method, as a 
classic iterative regularization technique, for computing the 
solution. For the simultaneous equations ��� = �Nw the 
Landweber solution is computed by (Elfving et al. 2010):

where, is the relaxation parameter and is subjected to  in 
order to guarantee the convergence of solution. Here,  is 
the largest eigenvalue of A (Aster et al. 2018). We used the 
modified Ψ2 strategy for computing relaxation parameter 
(Elfving et al. 2010).

Due to high accuracy, radiosonde is accepted as a refer-
ence for evaluating reconstructed images (Caldas-Alvarez 
et al. 2021, Adeyemi and Joerg 2012). Statistical quanti-
ties including Bias, Root Mean Square Error (RMSE) and 
Standard Deviation(Std) are the accepted and commonly 
used measures in this respect (Guerova 2003).

Empirical orthogonal functions

EOFs are analytic tools to understand the relationship of 
samples and variables. By determining the most important 
variabilities, EOFs help us link such variables to physical 
processes (Natali and Meza 2017).Basically, EOFs map an 
observation matrix (X) of p variables and n measurements 
onto a new orthogonal space. The new axes are toward the 
largest variances in the data (Fodor 2002). If S and U are 
score and loading matrix of X, respectively and r is the num-
ber of independent columns in X columns of U determine 
the directions of maximum variance in dataset. Then, S 
transforms original matrix to the new r-dimensional space. 
The dimension of the target space is reduced by constructing 
the transformation matrix S using the first k ( k ≪ n ) EOFs. 
The key parameter k is determined through examining the 
input data (Fodor 2002).

(4)N
s+1
w

= N
s
w
+ �s�

T
(

��� − �N
s
w

)

EOFs are computed in either Q or R-modes. In the 
Q-mode, loading and score matrices are used to identify 
important samples and clusters of the variables. The R-mode 
is used in the classification of samples by discovering the 
relation of variable: The goal is identifying the important 
variables among the rest (Lee et al. 2017). Considering the 
aim of this study and the type of our data, R-mode has been 
applied for our analyzing in this research.

Datasets are classified into two major classes: non-spatial 
or typical versus spatial data. Non-spatial data incorporate 
the mere measurement of variables or their properties. 
Spatial data refer to data determined by a certain space or 
location attributed to the respective measurement (Dem̌sar 
et al. 2013). SWDs are of spatial data kind. Therefore, we 
analyze EOFs using a certain analysis type which is suitable 
for spatial data.

Two analysis approaches can be applied on spatial data: 
The so-called standard method avoids spatial challenges 
altogether while in the second approach spatial effects such 
as spatial heterogeneity or autocorrelation are taken into 
account (Dem̌sar et al. 2013). Based on our considerations 
for the selection of the R-mode, we prefer the standard anal-
ysis approach. This method is explained in the next section 
of this manuscript.

Non spatial analysis of spatial data

We use raster data analysis method for our investigations 
because it focuses on clustering, classification, change iden-
tification and tracking of specifications and properties. The 
method is only applied on spatial attribute(s). In other words, 
geographic effects are ignored. Moreover, an important 
assumption is that the cell sizes across the entire network 
are equal (Dem̌sar et al. 2013).

Our Raster dataset is the data matrix in which the total 
number of columns and rows are equal to the number of 
measured variables and the number of cells in the network 
under study, respectively. Measured variables in each cell 
of every layer take up one column of the data matrix (seen 
Fig. 1).

Comparison of datasets

The comparison of the EOFs derived from multivariate 
samples helps discovering the similarities and differences 
of measured variables. For this comparison, we use the ana-
lytical method developed by (Krzanowski 1979).

Assuming multivariate samples A and B with transposed 
loading matrices L and M, respectively, which include p 
values of the same variables ( x1, ... , xp ) each measured n1 
and n2 times, we have:
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Here, yi and zi are the EOFs of datasets A and B, respec-
tively. Dimensional reduction is done by keeping the first 
k EOFs, i.e. first k rows of matrices L and M. Transferred 
data are in the new k dimensional space with orthogonal axes 
y1, ... , yk and z1, ... , zk.

Similarities and differences between datasets A and B is 
detected using eigenvalues of the matrix � = ��

T
��

T

(Krzanowski 1979). If �1 is the largest eigenvalues of F, the 
coincidence angle 

�

� = cos−1
√

�1

�

 between two subspaces 
of A and B can be used to find the value of k. The smallest 
angle is seen between a given vector of the first subspace and 
a vector from the second one which is almost parallel to it 
(resulting from its own map on the second subspace). There-
fore, the sum of the eigenvalues of F equals the trace of F and 
equals the sum of the squares of the cosines between each of 
the  kth EOFs of two matrices A and B.

This value is between k and zero. If the sum is equal to k, 
the two spaces are coincident and if zero, they are orthogonal. 
Therefore, this value can serve as a general criterion for the 
similarity of two datasets.

(5)yi =

p
∑

j=1

lijxj , zi =

p
∑

j=1

mijxj (i = 1, ... , k)

(6)
k
∑

i=1

�i = trace � =

k
∑

i=1

k
∑

j=1

cos2 �ij

Numerical result and discussion

To investigate the proposed method, we consider two days 
with different weather conditions. Using the WRF model 
as our initial source of information on atmosphere, we ana-
lyze the EOFs for exploring the time variations of the Nw in 
our study area. To this end, this analysis is done for every 
height layer. The time intervals of this analysis are 30, 45, 
60, 75, 90, 105 and 120 min, respectively. Using a previously 
designed tomographic model and taking these time intervals 
as the time response of this model, Nw images are recon-
structed for each period, separately. Reconstructed images 
have been validated using radiosonde data. Based on the 
comparison of validation results, the optimum time response 
is suggested for our model. Finally, we compare this to the 
time period that our developed method suggests as the opti-
mal time response for this model. This comparison is used to 
validate the efficiency of this method for selecting the time 
resolution in GNSS tropospheric tomography.

Study area and time

For our investigations to estimate optimal time resolu-
tion for a tomographic model using EOFs, GPS observa-
tions, Virtual Reference Station (VRS), radisonde profiles 
and weather parameters extracted from Weather Research 

Fig. 1  Visualizing Raster dataset in space domain. Left: raster visu-
alization of the research area. P1 … PN are the layers of the tomo-
graphic model in this research. Middle: location of the attributes 

assigned to each pixel. Voxels in a tomographic model are the pixels 
and Loc1, Loc2, etc. are the voxel centers in one of the layers in a 
tomographic model. Right: arrangement of Raster dataset
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and Forecasting (WRF) model is required. Therefore, we 
selected an area of 24,000  km2 located in the northwest of 
Iran as our experiment for various reasons including the 
widespread and relatively dense distribution of GPS stations 
as compared to other areas in Iran, its mountainous terrain 

being located in the foothills with diverse climates, and the 
reasonably accurate weather forecasting data availability.

The region includes15 GPS stations of the Iranian Perma-
nent GPS Network (IPGN). Figure 2. shows the study region 
and the location of the applied GPS, VRS and radisonde sta-
tions for our evaluations.. The Bernese GPS software version 
5.2 has been used for processing the GPS observations of the 
study days (i.e. DOYs 300 and 304).

The sounding data observed at UTC 00:00 at the Tabriz 
radiosonde station is used as a reference for evaluating 
reconstructed images in our study. Taking the relative 
humidity (derived from the radiosonde profiles) as the meas-
ure, we consider two distinct days: DOYs 300 and 304 of the 
year 2018 with high and low relative humidity, respectively. 
Figure 3 illustrates the vertical profile of relative humidity 
for both of the study days.

WRF model as a Numerical Weather Prediction (NWP) 
model predicts the 3D structure of the troposphere including 
temperature, specific humidity, pressure, height, etc. for 6, 
12, 18,… to 120 h. In this study, we applied 24 h predic-
tions on DOYs 300 and 304 of the year 2018. The spatial 
resolution of the applied WRF model is 10 km in space and 
15-min in time.

The reference NWP model and time responses

In GNSS tomography, the time resolution of the model 
is usually a constant parameter (for example, 1  h). In 
other words, tomographic images are reconstructed for or 
from every hour of GNSS measurements. However, wet 

Fig. 2  Location of the investigated GPS stations (triangles),, VRS 
(squares) and the radiosonde station (circle) in the study area. The 
grid illustrates the top view of our tomographic model relative to the 
distribution of GPS stations

Fig. 3  Profiles of relative humidity (RH) from the first to the last layer of the tomographic model
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refractivity ( Nw ) is a time dependent quantity. Therefore, 
in order to correctly capture the time variations of water 
vapor in reconstructed images, a chosen time resolution must 
conform to the ongoing variations of this parameter. In addi-
tion, an inappropriate chosen time response for the recon-
struction of the Nw can increase the computational costs of 
the problem. This study proposes a method for the optimal 
selection of the time response in GNSS tomography. In this 
method pre-knowledge of the atmosphere is inevitable. Such 
information on the Earth’s atmosphere is provided through 
the NWP models.

Assuming that the atmospheric condition can be stable 
during periods of 15 min, we consider this time interval as 
the reference time response. The horizontal resolution of 
our tomographic model is 40 km and the vertical resolution 
is 500 m to the height of 4 km and 1 km to an approximate 
height of 10 km from the surface of the ground. This spatial 
resolution together with the six VRS carefully selected for 
constraining the problem guarantees the uniqueness of our 
tomography solutions (refer to Fig. 2).

We apply time intervals of 30, 45, 60, 75, 90, 105 and 
120 min for both days of our experiment as the time resolu-
tions of our tomographic model. We compare the stability of 
atmospheric condition in each of these periods with the ref-
erence time response. The deesign matrices have been calcu-
lated for analyzing the rank deficiency of the problem using 
different time resolutions. In additional, resolution matrices 
have been calculated for investigating the percentage of the 
model parameters that are poorly resolved by the inverse 
solutions. These parameters are those whose resolution is 
either zero or close to zero (Aster et al. 2018). Tables 1 and 
2 provide an overview on the relevant information.

According to Tables 1 and 2, increasing the temporal res-
olution of the tomographic model directly impacts the rank 
deficiency of the inverse solution. Lower time responses 
result in more poorly resolved parameters. Voxels with 
poorly resolved parameters are usually located in the lower 
layers or the layers that are near to the surface of the Earth. 
Moreover, increasing the time period of observations from 

60 min in the wet and 45 min in the dry days of our experi-
ment; do not reduce the rank deficiency of the problem. 
Based on this criterion only, the chosen time responses for 
our tomographic model could be 60 and 45 min in DOYs 
300 & 304, respectively.

N
w

 scattering in height layers

To use EOFs for computing an appropriate time response for 
our tomographic model, the Nw values are computed at the 
position of the model grid points (Sadeghi et al. 2022). The 
atmospheric parameters for calculating Nw acquired from 
WRF model (Kleijer 2004).

We use the average of Nw values at the voxel grid points 
as the characteristic value in the corresponding voxel. Voxels 
in the same vertical layer are put together in one class as the 
measurements of one variable. This gives rise to a raster 
data set which is represented by a (n × p) matrix in which 
n is the number of measured units (the number of voxels 
in each layer of the model) and p is the number of verti-
cal layers (variables). Since the horizontal resolution of our 
tomographic model is 40 km, it is easily seen that n = 15 
and p = 14 . Computed values of the first EOFs in both days 
and for the time spans of 30, 45, 60, 90, 105 and 120 min 
are illustrated in Fig. 4.

According to this figure, largest coefficients of the first 
EOFs are not seen in the same vertical layers: they are in the 
height layers 5 and 1 in DOYs 300 and 304, respectively. In 
other words, during the first day of our experiment, i.e. when 
the humidity was high, Nw has the highest scattering (in the 
measured units) in height layer 5 of our tomography model. 
This observation is confirmed by the vertical profile of RH 
as reported in Fig. 3. The next layers with highest scatter are 
height layers 4, 6 and 3, respectively.

In DOY 304, i.e. when the humidity is low, the largest 
coefficients of the first EOFs is observed in the first layer 
and therefore, the highest scattering of Nw happens in this 
layer. This observation is confirmed analogously by Fig. 3.

Table 1  Rank deficiency of coefficient matrix in DOY 300, 2018

Time-Response(min) Number of  
observation

Rank  
deficiency

Poorly 
resolved (%)

30 9809 8 4
45 14,849 5 2.2
60 20,065 4 1.8
75 25,575 4 1.8
90 30,615 4 1.8
105 36,027 4 1.8
120 41,153 4 1.8

Table 2  Rank deficiency of coefficient matrix in DOY 304, 2018

Time-Response(min) Number of 
observation

Rank  
deficiency

Poorly 
resolved (%)

30 9986 9 4
45 15,240 4 1.8
60 20,676 4 1.8
75 25,716 4 1.8
90 30,615 4 1.8
105 36,215 4 1.8
120 41,153 4 1.8
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Estimating time response

By the application of an optimal time response, the recon-
structed tomographic images are expected to include all 
information on the time variations of the Nw parameter. 
Obviously, smaller time responses provide more details on 
the time variation of the desired parameter. In GPS tomog-
raphy, reducing the time interval of reconstructed images 
not only challenges the redundancy of the problem but 
also, increases its rank deficiency and therefore renders the 
accuracy of the solution. In order to infer an optimal time 
response for a tomography model, we propose to check the 
similarity of the model layers in the corresponding layers 
of a reference model. The time response of the reference 

model cannot be better than the temporal resolution of the 
NWP model.

We use EOFs for this comparison. The first challenge is 
finding a convenient dimension (k) for each subspace. This 
is usually done by trial and error: the ratio of the sum of 

k-largest to the total sum of eigenvalues ( 
k
∑

i=1

�i

�

p
∑

i=1

�i ) is 

usually used for this purpose (Dem̌sar et al. 2013). In this 
study, when k = 3, subspaces retain 99% of the total varia-
tions in the original data. Therefor, 3-dimensional subspaces 
have been compared with one another.

Next, using the sum of the eigenvalues of F as a criterion 
to explore the similarity of two subspaces (if the sum is 

Fig. 4  First EOF of the constructed raster data for the tomography model of this study. Time responses of 15 to 120 min, in DOYs 300 (top) and 
304 (bottom), 2018 are used



 Earth Science Informatics

1 3

3, then the two subspaces coincide or are identical, and if 
the sum is 0, the two subspaces are orthogonal) in the time 
domain, various time intervals are taken into account. In 
tropospheric tomography, the time response of tomographic 
model usually is in the range of 30 to 120 min. In near real-
time applications, the time response is 15 min. Therefore, 
we performed this analysis using the time resolutions of 15, 
30, 45, 60, 75, 90, 105 and 120 min. The sum of the three 
largest eigenvalues of F for both days of this study is given 
in Table 3.

According to Table 3, the dissimilarity of scattering in the 
Nw parameter between the WRF model and its subspace of 
15 min is almost zero. Nevertheless, it is not feasible to use 
this time interval as the time response for GPS-tomography 
in our test area. Because, many of the diagonal elements in 
the resolution matrix become either zero or close to zero. 
In other words, Nw will be poorly resolved in a wide area. 
On the other hand, according to Tables 1 and 2 the area 
with poorly resolved unknowns is minimized if the time 
response is 60 and 45 min in the wet and dry days of our 
experiment. Based on Table 3, this would be at the cost of 
6% and 3% dissimilarity between the dynamics of the Nw in 
reconstructed images and the WRF model.

The above outcomes are valid if the accuracy of the 
applied numerical weather model is at least 94% and 97%, 

in the study days of this research. To analyze the accuracy 
of our WRF model, we compared this model with our radio-
sonde profile. Table 4 reports on the relevant results.

Based on radiosonde data and on average; the similarity 
of the Nw derived from the WRF model and radiosonde data 
is not better than 85% in DOY 300. This increases to 93% in 
the dry day of our experiment. Furthermore, Table 3 implies 
that the minimum time response that we can propose for our 
tomographic model is between 75 to 90 min in DOY 300 and 
about 60 to 75 min in DOY 304.

Validation of proposed time responses

The bias and Std of the reconstructed Nw fields are expected 
to be the first minimal values for the proposed time responses 
when the regularization parameter and the initial field used 
for finding the inverse solutions are the same. Based on this 
idea we have reconstructed the Nw field using our radiosonde 
data as the a-priori information that we need for finding the 
inverse solutions.

Reconstructing �
�

 filed

To compare the impact of different time responses on recon-
structed images, Nw  has been also reconstructed using the 
time intervals of 30, 45, 60, 75, 90, 105 and120 minutes in 
our study area and for DOYs 300 and 304. The spatial reso-
lution of the model is as before. Reconstructed images have 
been validated using the Nw profiles that we derived from 
radiosonde data. Figure 5 demonstrates the reconstructed 
and validation profiles. The statistical quantities of Bias, 
RMSE, and Std have been used to validate the reconstructed 
images. Corresponding results are given in Table 5.

Table 5 also shows that the quality of the reconstructed 
model parameters depends on the time resolution of the 
model. Moreover, since the validation is done in a certain 
column of our model, the reported parameters (i.e. the bias 
and standard deviation) are representatives for the quality of 
reconstructed images in this part of the model.

Based on previous discussion, in DOY 300; the maximum 
overall similarity of the reference and tomographic mod-
els is about 85%. This similarity is expected when the time 

Table 3  Sum of the eigenvalues of F in 3D subspaces and the per-
centage of similarity of subspaces with the reference model

Temporal Resolution DOY 300 DOY 304
3
∑

i=1

�
i

Coincident 
percentage

3
∑

i=1

�
i  

  Coin-
cident 
percentage

0–15 min 2.97 99 2.99 ≈100
0–30 min 2.92 97 2.95 98
0–45 min 2.87 96 2.91 97
0–60 min 2.81 94 2.83 95
0–75 min 2.65 88 2.80 94
0–90 min 2.49 83 2.78 93
0–105 min 1.99 66 2.77 92
0–120 min 2.34 78 2.78 93

Table 4  Statistics for the WRF 
N
w
 profile as compared to the 

radiosonde profile

DOY Statistical 
measures

Time Resolution (min)

30 45 60 75 90 105 120

300 Bias -3.81 -3.69 -3.48 -3.2 -3.03 -3.52 -3.10
RMSE 5.08 5.04 5.02 4.70 4.22 4.86 4.60
Std 3.36 3.44 3.61 3.40 2.94 3.35 3.39

304 Bias 0.55 0.33 0.59 0.14 0.32 0.27 0.08
RMSE 1.38 1.22 1.62 0.93 0.83 1.24 0.93
Std 1.27 1.17 1.51 0.92 0.77 1.21 0.93
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resolution of the model is between 75 and 90 min. According 
to Table 5, in DOY 300; the bias and standard deviations are 
almost equal when the time resolution of the model is 75, 
90 or even 105 min. Moreover, the very first inverse solu-
tions with minimal bias and minimal Std are obtained for 

the time responses of 75 and 90 min in the wet day of this 
study. Furthermore, Table 5 shows that the very first inverse 
solutions with minimal bias and minimal Std are obtained 
for the time responses of 60 to 75 min in the dry day of this 
study. This confirms that the proposed method can provide 

Fig. 5  N
w
 profiles reconstructed by tomographic model and derived from radiosonde data (non-solid versus stars) for the time intervals: 30, 45, 

60, 75, 90, 105 and 120 min of DOYs 300 (top) and 304 (bottom), 2018
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initial information on the minimum required time period as 
the time response of our tomographic model.

Conclusion

This study introduces a method for determining the time 
response of a tomographic model. Proposed method is based 
on the analysis of EOFs. The method is used for reconstruct-
ing the Nw in Northwest of Iran. This study area was selected 
to test the efficiency of this method due to mountainous ter-
rainand the relatively dense GPS network. Virtual reference 
stations have been used for computing a unique solution to 
the problem. Two days with different relative humidity have 
been studied for analyzing the efficiency of the proposed 
method i.e. DOY 300 and 304 of 2018 with high and low 
relative humidity, respectively. The WRF model with spa-
tiotemporal resolutions of 10 km and 15 min were used as 
the initial information on the atmosphere in our test area. 
The time resolutions: 30, 45, 60, 75, 90, 105 and 120 min 
have been taken as the time response of a previously deigned 
tomographic model in this area. Based on the analysis of 
EOFs, using the time responses of 60 to75 and 75 to 90 min; 
the similarity of the scattering between the reconstructed 
images and the reference model are expected to be 85% and 
93% for the wet and dry days in our experiments. Since pro-
posed time responses are computed only using a reference 
field, our method can be used as a pre-analysis tool for not 
only determining the time resolution in GPS tropospheric 
tomography, but also provides information on the atmos-
pheric dynamics that could be expected in reconstructed 
images.
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