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Abstract
In voxel-based tropospheric tomography, water vapor is computed for a set of voxels, each covering a specific part of the 
troposphere. The basic assumption is that water vapor is homogenous in any voxel. In this study, the Principal Component 
Analysis (PCA) has been applied to select the horizontal size of voxels. The application of PCA helps determine the hori-
zontal size of voxels while keeping the atmospheric changes and the basic assumption intact. Application of the proposed 
method to a numerical atmospheric model in our case studies shows that the largest horizontal changes in wet refractivity 
( N

w
 ) occurred in layers close to the earth. We also applied this method to tomography models with 30, 40, and 50 km hori-

zontal resolutions. Results were compared using an initial model as a reference. The results indicated that in the lower layers 
of the atmosphere, the 40 km model has the strongest similarity with our reference in terms of scattering after the 30 km 
one. Due to limited changes in N

w
 at the upper layers, the size of voxels was increased to 50 km. N

w
 was reconstructed for 

tomographic models with horizontal resolutions of 40 and 50 km and a hybrid model with a combined horizontal resolution 
in which the model resolution is 40 km in the first seven layers and 50 km in the rest. Validity checks against the radiosonde 
profile show that the hybrid model reduces the bias and increases the redundancy of our model.
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Introduction

An accurate estimate of the three-dimensional distribution 
of water vapor is the main challenge in weather and climatic 
change prediction. Water vapor measurement techniques 
include lidar (Bock et al. 2002; Troller et al. 2002), water 
vapor radiometer (Braun and Rocken 2003), terrestrial sen-
sors (Troller 2004; Lutz 2008), and radiosonde. However, 
the relatively low spatial and temporal resolution of these 
sensors and their high cost are among the shortcomings of 
these technologies. Due to high clarity and accuracy, the 

radiosonde is accepted as the most common technology 
and used as a reference technique for validation purposes 
(Caldas-Alvarez et al. 2021). Today, GNSS is used owing 
to its adequate spatial and diverse temporal resolution (Haji-
Aghajany et al. 2020b; Wang and Dessler 2020).

Three-dimensional tomographic models reflecting the 
spatial changes in water vapor are generated based on the 
permanent GNSS stations in an area (Brenot et al. 2014; 
Haji-Aghajany et al. 2020b). Bevis et al. (1992) first reported 
high-resolution water vapor GPS-tomography. Since then, 
others have tried to improve the GPS-tomographic models; 
for example, Guo et al. (2016) introduced an optimal tomog-
raphy technique based on the weighted equations. Zhao et al. 
(2018) introduced the function-based water vapor tropo-
spheric tomography. Haji-Aghajany et al. (2020a) used NWP 
model outputs and topography of the area to reduce the 
number of unknown parameters and, therefore, the number 
of required constraints. Tomography is an inverse method 
that reconstructs cross-sectional images through penetrating 
rays or waves (Kak et al. 2002). The troposphere is divided 
into several elements known as voxels (Flores et al. 2000). 
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One of the fundamental flaws in GPS tomography is the 
absence or insufficiency of signals in some voxels. This is 
due to limitations in the number of receivers and/or eleva-
tion angle of satellites, resulting in the non-uniqueness of 
the sought solution (Bender et al. 2011; Xia et al. 2013). 
Various methods have been proposed for finding a unique 
solution to this problem (Flores et al. 2000; Bender et al. 
2009). GPS tomography assumes that the water vapor distri-
bution is homogenous across the entire space occupied by a 
voxel (Zhang et al. 2020; Rohm 2013). So, the size of voxels 
should include enough observations and should satisfy this 
requirement. To eliminate voxels with insufficient number 
of observations, the size of voxels is determined only based 
on the number of observations in each voxel or the distance 
between GPS stations on the ground (Adavi and Mashhadi-
Hossainali 2014, Yang et al. 2018).

Since weather condition changes with the height of lay-
ers, initial knowledge on the atmosphere can help set new 
constraints on the size of voxels taking the dynamics of the 
atmosphere into account. With regard to the voxel size, for 
example, Adavi and Mashhadi-Hossainali (2014) determined 
the optimal horizontal voxel size by investigating the resolu-
tion matrix. Yao and Zhao (2016, 2017) suggested increas-
ing the number of voxels using the concept of non-uniform 
symmetrical division of horizontal voxels and eliminating 
the voxels with no intersection or insufficient observations.

This study proposes a method for determining the size 
of voxels based on the adequate number of observations 
and incorporating the dynamics of water vapor in the test 
area. The proposed method is based on PCA as a method in 
Exploratory Data Analysis (EDA) (Komorowski et al. 2016). 
Numerical Weather Prediction (NWP) model outputs have 
as a priori information about the atmosphere. By running 
the PCA on NWP model outputs in every layer of the tomo-
graphic model, it was decided to expand or reduce the voxel 
sizes of the tomographic model. A brief summary of the 
tomographic reconstruction of refractivity ( Nw ) using GPS 
observations and the theoretical background of the applied 
method are explained next. Our method has been applied to 
four tomographic models with different horizontal resolu-
tions. The section on numerical results reports the outcomes 
and discusses this method. Concluding remarks are given in 
the last section.

Methodology

Exploratory Data Analysis (EDA) is a way to analyze data 
that use various techniques and summarizes the main speci-
fications of datasets to visualize the relation between the 
samples and variables. One of the most successful EDA 
methods is PCA. PCA is a modeling technique that extracts 

information from data sets by accessing the relation between 
variables (Dem̌sar et al. 2013).

A type of PCA suitable for spatial data has been applied 
in this study. In contrary to non-spatial data that incorpo-
rate the measurement of variables or properties, spatial data 
refer to data determined by space or location attributed to its 
respective measurement. In contrast, typical data, i.e., non-
spatial data, incorporate only the measurement of variables 
or their properties. Two methods of applying PCA to spa-
tial data can be investigated: the standard non-spatial PCA 
and adapted PCA. In the standard non-spatial PCA, spatial 
challenges such as spatial heterogeneity and spatial auto-
correlation are avoided, while the adapted PCA considers 
spatial effects with respect to spatial heterogeneity or auto-
correlation. Because it ignores geographic effects, and PCA 
is only performed on the spatial attribute, we use standard 
non-spatial PCA, which we explain in detail in the section 
on principal component analysis of spatial data.

It is possible to analyze the similarities and differences of 
a group of variables through a comparison of the principal 
components (PCs) if they are measured on several different 
samples (Krzanowski 1979). In this study, PCA is used to 
inspect tomographic models and suggest the one that keeps 
the atmospheric conditions of the test area intact, taking into 
account the inter-distance of GPS stations and other avail-
able or required data. The main objectives are hence: (a) to 
inspect horizontal atmosphere changes in the various height 
layers of the tomographic model, (b) to investigate scattering 
changes in Nw by increasing the horizontal voxel sizes of 
a tomographic model, (c) to develop a hybrid tomography 
model based on the proposed approach.

Principles of GPS tomography

GPS tomography is based on modeling atmospheric delays 
of GPS signals either in terms of the tropospheric refractiv-
ity or electron density in the ionosphere. The relevant math-
ematical model is the Fredholm Integral Equation (FIE) of 
the first kind. When the Slant Wet Delays (SWD) are used as 
the input data, GPS tomography reconstructs the Nw images 
in three or four dimensions (Flores et al. 2000)

 Here, S is the signal path between a satellite and a receiver.
The continuous integral (1) is changed to a discrete form. 

The study region is developed into a series of cubic elements 
or voxels. Water vapor density or Nw are assumed to change 
only from one voxel to another (Bender et al. 2013). If n is 
the number of such elements, then

(1)SWD = 10−6 ∫
s

Nw ds
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 In this equation, j represents the voxel confluence by the 
i th signal with the length of Δsj . In matrix notation (Flores 
et al. 2000):

in which A is the coefficient matrix and includes the signal 
lengths Δsj (Rohm and Bosy 2009). SWD is the vector of 
observations derived from the analysis of GPS measure-
ments (Adavi and Mashhadi-Hossainali 2014).

GPS tomography is a mixed-determined inverse problem 
with no unique solution but is sensitive to perturbations of 
the input (Rohm and Bosy 2009; Bender et al. 2011). For 
a unique solution, the simultaneous system of observation 
equations is changed to a constrained system of equations. In 
this study, the method of virtual reference stations has been 
used (Adavi and Mashhadi-Hossainali 2014). Moreover, a 
regularization method is used to find the solution. Recursive 
methods are used to acquire a regular solution in large-scale 
ill-posed problems. Landweber algorithm is one of the clas-
sical and efficient recursive methods in regularization tech-
niques (Landweber 1951). With this method, the solution 
of the simultaneous equations ��� = ��

�
 is computed by 

(Elfving et al. 2010):

 In this equation, �i is the relaxing parameter. Using 
0 < 𝜆s < 2

/

𝜎
2
max

 , in which �2
max

 is the largest eigenvalue of 
A, ensures solution convergence (Aster et al. 2018). Here, 
the modified Ψ2 strategy (Elfving et al. 2010) has been used 
for computing this parameter. The accuracy and precision of 
the results should be calculated to investigate the effective-
ness of the applied tomographic model. Statistical quanti-
ties including Bias, Root-Mean-Square Error (RMSE) and 
Standard Deviation (STD) are the measures normally used 
for this purpose (Guerova 2003):

 In these equations, Nwm is the reconstructed Nw in voxel m. 
Nwo is the calculated Nw from the radiosonde data, and n is 
the number of voxels.

(2)SWDi = 10−6
n
∑

j=1

Nwj Δsj

(3)��� = ��
�

(4)�
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w
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w
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w

)
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√

√

√

√

1

n

n
∑

i=1

(Ni
wm

− Ni
wo
)2

(7)STD =

√

RMSE
2 − Bias

2

Principal component analysis of spatial data

The PCA maps the original p-dimensional observation 
matrix (G) of p variables and n measurements onto a new 
r-dimensional orthogonal space, in which the new axes are 
toward the largest variance in the data, also known as PCs 
(Fodor 2002):

 S and U are the score and loading matrix and r = rank(G). 
Columns of U are in the directions of maximum variance of 
the data. Therefore, S transforms the original matrix to the 
new space. These directions correspond to the eigenvectors 
of the covariance matrix �

�
 and they are calculated accord-

ing to (Fodor 2002):

where

and �i is the i th eigenvalue of �
�

.
Dimensionality reduction is made by keeping the first 

k PCs, such that k ≪ n . The k dimensional space contains 
most of the information compatible with certain parameters. 
Choosing the value of k is a key decision and is made by 
studying the data. PCA is done either in the standard or clus-
tering mode. The standard or R-mode is used in classifying 
samples by discovering the relation of variables; its goal is 
to identify the important variables among the remaining. In 
the second method, known as the Q-mode, loading and score 
matrices are used to identify the important samples and clus-
ters of the variables (Lee et al. 2017). Due to the nature of 
the data and the purpose of this study, R-mode PCA is used.

Standard non‑spatial PCA on spatial data

The standard non-spatial PCA has been used to analyze 
data. Four methods are available for this purpose: spatial 
objects PCA, raster data PCA, atmospheric science PCA, 
and PCA on flows (Dem̌sar et al. 2013). The raster data 
PCA has been preferred because its results are used as 
pre-processing for clustering, classification, change the 
identification, and tracking of specifications and proper-
ties. Here, the PCs are calculated for datasets in which data 
elements are cells of raster surfaces or spaces at the center 
of the raster cells with measurements of several variables 
in each space. Geographic effects are ignored and PCA is 
only performed on the spatial attribute. Ordered spatial 
position measurement is essential in this method and the 
analysis of the first few PCs would be sufficient (Dem̌sar 

(8)�n×r = �n×r�r×r

(9)�
�
=

��2

n
, �

�
= �Λ�T

(10)
Λ = diag(�1, �2, ... �r, 0, ... , 0)

�1 ≥ �2 ... ≥ �r ≥ 0
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et al. 2013). In raster data PCA, the data matrix is con-
structed with columns equal to the number of measured 
variables and rows equal to the cell centers in the network 
under study (Fig. 1).

As illustrated in Fig. 1, measured quantities in corre-
sponding cells of all layers make up one column of the 
data matrix. In raster datasets, it is important that the cell 
sizes across the entire network are equal in size.

Comparison of PCs between multivariate samples

Discovering the similarities and differences of samples is 
the focus when the same variables are measured in multi-
ple samples. Comparison of the PCs among groups with 
the same variables is an analytical approach for this pur-
pose. Available methods for this comparison are given in 
the following sections.

Comparison of PCs between two samples

Assuming multivariate samples �
�
 and �

�
 include p val-

ues of the same variable, say x1, ... , xp , each measured n1 
and n2 times having transposed loading matrices L and M, 
respectively, then:

 The symbols yi and zi are the PCs of datasets �
�
 and �

�
 , 

respectively. Dimension reduction is made by keeping the 
first k PCs, i.e., first k rows of matrices L and M. The trans-
ferred data are in the new k dimensional space with orthogo-
nal axes y1, ... , yk and z1, ... , zk.

The coincidence angle between two subspaces can be 
used to find the value of k: the smallest angle between a 
given vector of the first subspace and a vector from the 
second one almost parallel to it (resulting from its own 
map on the second subspace). The angle in question is 
computed as � = cos−1

{

(

�1

)
1

2

}

 in which �1 is the largest 
eigenvalue of the matrix � = ��

T
��

T  (Krzanowski 
1979). Therefore, the sum of the eigenvalues of F equals 
the sum of squares of the cosines between each of the kth 
principal components of two matrices �

�
 and �

�
,

 The sum of the eigenvalues of F is between k and zero. If 
the sum is equal to k, then the two spaces are coincident and 
if zero, they are orthogonal. Therefore, this value can serve 
as a general similarity criterion for two datasets.

Comparison of PCs between more than two samples

Assuming g datasets with p variables, the PCA is per-
formed on each dataset individually. The first k PCs of 
each group are then considered for further analysis. The 
transpose of the loading matrix is specified L(t) with (i, j) 
elements, i.e., L(t)

ij
 corresponds to the jth variables on the 

i th pr incipal  component of t th group so that 
(i = 1, ... , k ; j = 1, ... , p ; t = 1, ... , g ).

Assuming b is a vector of the original p dimensional 
space and δ is the angle between this vector and the vector 
most nearly parallel to it in the space resulting from the k 
PCs of the group t (t = 1, ... , g) , the vector closest to all 
groups, i.e., the vector for which V =

g
∑

t=1

cos2 �t reaches its 

minimum value, is the result of the eigenvector corre-
sponding to the largest eigenvalue of � =

g
∑

t=1

�T
t
�t 

(Krzanowski 1979). If this vector is known as b, then vec-
tor b is the closest vector to all groups. The angle δ can be 
used as a criterion for describing the degree of separation 
of this vector from the t  th group. This angle is calculated 
using the equation (Krzanowski 1979),

(11)yi =

p
∑

j=1

lijxj , zi =

p
∑

j=1

mijxj (i = 1, ... , k)

(12)
k
∑

i=1

�i = trace � =

k
∑

i=1

k
∑

j=1

cos2 �ij
Fig. 1   Visualizing raster data PCA in space domain. Top left: raster 
visualization of the research area. Top right: raster dataset. R1 … RN 
are the layers of a tomography model in this research. Bottom left: 
location of the attributes assigned to each pixel. Voxels in a tomogra-
phy model are the pixels and Loc1, Loc2, etc., are the voxel centers in 
one of the layers in a tomography model. Bottom right: arrangement 
of raster data in raster PCA
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 Therefore, similarities and differences between groups can 
be determined by analyzing the eigenvector (b) and the sepa-
ration angle (δ) of H. We applied this analytical approach to 
discover the similarities and differences among our tomog-
raphy models.

Numerical results and discussion

Choosing the optimal size for the voxels is a challenging 
task in GNSS tomography. Voxel sizes must be selected in 
a way to include enough observations as well as be ade-
quately homogeneous regarding the desired parameter Nw . 
Here, one of the Numerical Weather Prediction (NWP) 
models has been used to extract initial information on water 
vapor required for selecting voxels with optimal size in our 
problem.

As mentioned earlier, PCA is used in multivariate analy-
sis. An important advantage of this method is that it specifies 
which variable has the greatest variety in the measured sam-
ple in multivariate descriptions. This feature convinced us to 
use PCA to exploit atmospheric changes in the height layers, 
matching layers of tomographic models, and investigate to 
what extent the horizontal voxel sizes of our tomographic 
model can be increased while maintaining the horizontal 
atmospheric changes intact.

Study area

The northwest region of Iran was selected as the study area 
for several reasons, including its mountainous terrain in 
the foothills, a widespread and relatively dense network of 
permanent GPS stations, and reasonably accurate weather 
forecasting data (Fig. 2). Along with permanent GPS sta-
tions, six virtual stations have been used to constrain the 
tomography of this study.

Tomographic models

NWP models predict the 3D structure of the troposphere for 
6, 12, 18,…to 120 h. Predictions are more accurate in shorter 
time lags. The Weather Research and Forecasting model 
(WRF) is one of Iran's most common atmospheric simula-
tion models used for weather prediction. In this study, 24 h 
predictions have been used on DOY 250 (summer) and 300 
(autumn) in 2011 with the resolutions of 10 km and one hour 
in space and time. The required parameters (temperature, 
specific humidity, and height) are calculated at 25 pressure 
levels with pressures of 50, 100, 150,...750, 775,…,975, and 
1000 millibar using the WRF model. The weather condition 

(13)�t = cos−1

{

(

bT
1
�
T
t
�tb1

)
1

2

}

is different for the selected days: According to synoptic data 
in this area, the average relative humidity in DOY 250 and 
300 are 55 and 88%, and the average temperatures are 4.5 °C 
and 19 °C, respectively.

Since the horizontal resolution of the applied WRF model 
is 10 km, it has been considered as the initial or reference 
for the voxel size, assuming that the homogeneity condi-
tion is met. Using the horizontal resolution of 10 km, the 
vertical resolution of 500 m to the height of 4 km and 1 km 
to an approximate height of 10 km from the surface of the 
ground together with a temporal resolution of one hour and 
the existing permanent GPS stations (Fig. 2) the rank defi-
ciency of coefficients matrix A (3) becomes large, i.e., 2020 
for DOY 250 and 2790 for DOY 300. Computing a unique 
solution for this problem will cause the final result to be 
strictly controlled by the constraints rather than the GPS 
observations. This will also happen for a horizontal resolu-
tion of 20 km in which the rank deficiency of coefficients 
matrix reduces to 251 for DOY 250 and 312 for DOY 300.

Resolution matrices were also calculated for the 30, 40, 
and 50 km models. For the 30 km model, 13% and 18% 
of the model parameters are resolved poorly by the inverse 
solution in the first epoch of DOY 250 and 300, respectively. 
In other words, the resolution of such parameters is either 
zero or close to zero (Aster et al. 2018). This is 3% and 2%, 
respectively, in 40 and 50 km models in the first epoch of 
DOY 250 and is 6% and 2% in the first epoch of DOY 300. 
The issue is to what extent the voxel size can be increased 
while reducing modeling error and maintaining the atmos-
phere dynamics in each layer simultaneously. PCA has been 
applied here for this purpose.

Fig. 2   Distribution of GPS stations (triangles), virtual stations (rec-
tangles), and radiosonde station (circle)
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Three tomographic models have been developed with 
resolutions of 30, 40, and 50 km (target models). Each tar-
get model is then compared to the initial model in terms of 
homogeneity of the atmospheric conditions and the resolu-
tion of the sought solutions. Figure 3 illustrates the top view 
of the reference and target models.

PCA in tomography models

Coordinates of the grid points were calculated in the coor-
dinate system compatible with the WRF model. Values of 
water vapor pressure and temperature acquired from the 
WRF model were then interpolated at the positions derived 
in the previous step to compute the Nw values through the 
following equation (Kleijer 2004):

 Here, e is the water vapor pressure, T is the air temperature 
in Kelvin, and K3 = 375463 K2/hpa and K2 = 71.2952 K/hpa 
are constants (Kleijer 2004). Each voxel includes eight grid 
points. The average of Nw values at the voxel grid points 

(14)Nw = K2

e

T
+ K3

e

T2

is calculated and saved as the representative value of this 
parameter in the corresponding voxel.

Raster data PCA

Since this study aims to compare the horizontal resolutions 
of tomographic models while taking the horizontal atmos-
pheric changes into account, voxels in the same height layer 
are put together in one class as the measurements of one 
variable. Therefore, our raster data set is a (n × p) matrix 
in which p = 14 is the number of vertical layers (variables) 
in tomographic models, and n is the number of units meas-
ured, i.e., the number of voxels in each layer of the mod-
els. For the horizontal resolutions of 10, 30, 40 and 50 km, 
n = 240, 24, 15, 8 , respectively.

To analyze the variation of Nw across the proposed mod-
els, the PCA has been performed on the reference model, 
i.e., the models with a horizontal resolution of 10 km. When 
climatic changes in terms of Nw scattering with respect to 
the initial model is noticeable, the horizontal voxel sizes 
are expanded from 10 to 30, 40, and 50 km. Figures 4 and 5 

Fig. 3   Tomographic models 
with horizontal resolutions of 
10 km (top left), 30 km (top 
right), 40 km (bottom left) and 
50 km (bottom right)
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illustrate the first PC for the initial and target models in five 
consecutive epochs of DOY 250 and 300.

For the initial model: In DOY 250 (Fig. 4) the largest 
coefficients are seen in height layers 5 and 4 during the first 
three epochs and in height layers 3, 2 and 1during epochs 
4 and 5, respectively. In DOY 300, the largest coefficients 
of the first PC are seen in height layers 2, 1 and 3 during 
the complete time of this experiment (Fig. 5). Accordingly, 
for the experiments, the largest horizontal changes in the 
atmosphere happen in the lower height layers. Therefore, 
increasing the voxel sizes can result in reconstructed images 
lacking information about the ongoing climate variations. 
The horizontal voxel sizes can be increased if the Nw scat-
tering exhibit behaviors similar to the initial model. In other 
words, voxels can be expanded as long as climatic changes 
in a certain height layer can be shown properly.

According to Figs. 4 and 5, the 30 km model closely 
resembles the initial one, and therefore, the largest scatter-
ing in the Nw value is similar to the reference model. In this 
regard, and DOY 250, the 40 km model is different from the 
initial model as far as the order of the height layers is con-
cerned, but in DOY 300, it resembles the reference model. 
There is a remarkable difference between the 50 km and the 
initial model on both days compared to the other models. All 
models illustrate that the highest scattering of the Nw param-
eter occurs in the lower layers. Therefore, the voxel sizes 
cannot be selected arbitrarily to reduce the loss of infor-
mation in reconstructed tomographic images. Finally, the 
application of PCA to our tomographic models and during 
the time interval of this study shows that the largest hori-
zontal changes in the atmosphere happen in the lower height 
layers. Therefore, increasing the voxel sizes in these layers 

Fig. 4   First PC on DOY250 
in five consecutive epochs for 
tomographic models: 10 km 
(top left), 30 km (top right), 
40 km (bottom left), and 50 km 
(bottom right)

Fig. 5   First PCs on DOY 300 
in five consecutive epochs for 
tomographic models: 10 km 
(top left), 30 km (top right), 
40 km (bottom left), and 50 km 
(bottom right)
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is impossible, which can cause a loss of climatic changes in 
the reconstructed tomographic images.

However, the reason for the decline of the components of 
the first PC from height layer 7 upwards needs to be stud-
ied. The average specific humidity for the height layers of 
the tomographic models is then calculated using the WRF 
model at hour 0 UTC of both days (Fig. 6).

According to Fig. 6, the average specific humidity from 
height layer 7 upwards declined below of 2 (g/kg). There-
fore, scattering in the value of Nw declined from height layer 
7 upwards.

Although the computed PCs provide an overview of how 
each of the four models represents the climatic changes, the 
comparative analysis of the initial and target models inevi-
tably reveals a horizontal resolution that keeps the atmos-
pheric changes intact.

Inter‑models comparison of PCs

The comparison of tomographic models in terms of the PCs 
may be made either by comparing the models against each 

other in pairs or simultaneously, i.e., comparing all models 
at the same time. The first approach helps study the scat-
tering of Nw in each of the target models against the initial 
one. In other words, the similarity of the target models to 
the reference model is analyzed in every layer. The extent 
of this general resemblance to the initial model can be esti-
mated too. But the second approach explains which of the 
models under study is different from the others in terms of 
the scattering of Nw values and in which of the height layers 
this occurs. The outcome of the second approach can be used 
to form a hybrid tomographic model.

Two‑by‑two analysis of models

The two-by-two analysis approach is based on compar-
ing each tomographic model separately with the reference 
model. This helps determine which height layer in a target 
model the scattering of Nw values shows the most resem-
blance with the initial model.

The coincidence angle (θ) and the total sum of the eigen-

values are the measures that are used in this comparison. 
Finding appropriate dimensions (k) for the relevant sub-
spaces is the first challenge. That is normally done by trial 
and error (Dem̌sar et al. 2013). The numerical value of k 
is not large in Raster PCA. Usually, small subspaces ade-
quately represent the original space (Dem̌sar et al. 2013).

The smallest coincidence angle has been used to find the 
adequate dimensions for the subspaces under the compari-
son. We calculated the coincidence angle between subspaces 
of one to six dimensions in each of the three comparison 
groups of the first epoch for both days to find the appropri-
ate dimensions. The resulting values are shown in Table 1.

According to the given results, coincidence angles are 
significant in all groups when the dimension of subspaces 
is one. Moreover, they decrease when the subspace dimen-
sion changes to 2 and 3 for both days. When the subspace 
dimensions are set to higher than 3, the coincidence angles 
reduce to less than 1 degree. This represents an increasing 
coincidence between the axes of the corresponding spaces. 
Therefore, spaces with four dimensions and more are fit for 

Fig. 6   Average specific humidity to the height layers of the tomo-
graphic models obtained from the WRF model in DOY 250 and 300, 
2011

Table 1   Coincidence angles 
between subspaces of 
dimensions 1–6

DOY Coincidence angles in Degrees K

1 2 3 4 5 6

250 Between 10 and 30 km subspaces 13.45 5.84 0.57 0.26 0.07 0.01
Between 10 and 40 km subspaces 29.15 2.31 1.48 0.27 0.10 0.03
Between 10 and 50 km subspaces 9.77 5.07 2.59 0.43 0.10 0.04

300 Between 10 and 30 km subspaces 9.69 2.09 1.08 0.37 0.14 0.02
Between 10 and 40 km subspaces 4.84 4.05 0.94 0.83 0.42 0.02
Between 10 and 50 km subspaces 11.98 6.63 3.87 0.91 0.81 0.04
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comparison. Since k must be the smallest number among 
the selected dimensions (Krzanowski 1979), it is concluded 
that the four-dimensional subspaces can be chosen as the 
appropriate ones for our comparison.

Using k = 4, the coincidence angles have been calculated 
for each of the three groups in comparison. Corresponding 
results for the five epochs of DOY 250 and 300 are given 
in Table 2. According to these results, subspaces relevant 
to the 10 and 30 km models have the smallest separation 
angle on both days. The next smaller value belongs to the 
subspaces of 10 and 40 km models. The largest separation 
angle belongs to the 10 and 50 km models. This analysis 
demonstrates that surface climatic changes will not be prop-
erly maintained when the horizontal resolution of the tomo-
graphic model decreases from 10 to 50 km. This conforms 
to the observed largest surface climatic changes in the lower 
atmosphere (Figs. 4 and 5).

The total sum of the eigenvalues of F can be considered 
a criterion to explore the general similarity of the two data-
sets. In this study, four-dimensional subspaces have been 
compared with one another using this measure as well. If 
the sum is 4, then the two subspaces coincide completely, 
and if the sum is 0, the two subspaces are orthogonal. This 
sum has been calculated in all three comparison groups for 
both days. In addition, the average percentage of similarity 
for subspaces in comparison has been calculated. The results 
are shown in Table 4.

The coincidence of two subspaces implies that the two 
spaces are identical. According to Table 3 for DOY 250, 
the 40 km model, on average, maintains surface Nw changes 

to 93. 5%. This is 1 and 1.5% more than the 30 and 50 km 
models, respectively. Assuming similar results for the other 
epochs, small differences in the coincidence angles together 
with the inter-distance of GPS stations imply that the hori-
zontal resolution of the tomographic model can be 40 or 
even 50 km in DOY 250. In DOY 300, the average percent-
age of similarity for the 30 km model is almost the same 
as the 40 km one, while it is 17% higher than the 50 km 
model. For the resolution matrix of the 30 km model, 18% 
of the model parameters are resolved poorly by the inverse 
solution. This number is 2.7% and 1.8% in DOY 250 and 
6% and 2% in DOY 300 for the 40 km and 50 km models. 
Based on this discussion, the 40 km model is suggested as a 
good substitute for the reference model for both days due to 
the high coincidence of this model with the reference and its 
remarkable resolution compared to the 30 km. This model 
can be a good substitute for the initial model.

Simultaneous analysis of models

Here, the initial and target models are compared simulta-
neously. This provides a measure for analyzing the over-
all similarity of the model performances in reconstructing 
the Nw values in our test area. For this purpose, the closest 
vector to all subspaces is computed. Since the first prin-
cipal component is in the direction of maximum changes, 
the results obtained from the comparison of models when 
k = 1 can expose the majority of similarities and differences. 
Therefore, with the consideration of k = 1 , the closest vector 

Table 2   Coincidence angles 
between 4D subspaces of 
the initial model and target 
tomographic models

DOY Coincidence angles in Degrees Epoch

1 2 3 4 5

250 Between 10 and 30 km subspaces 0.26 0.14 0.35 0.33 0.17
Between 10 and 40 km subspaces 0.27 0.23 0.44 0.69 0.17
Between 10 and 50 km subspaces 0.43 0.49 0.44 0.87 0.98

300 Between 10 and 30 km subspaces 0.37 0.31 0.13 0.17 0.16
Between 10 and 40 km subspaces 0.83 0.88 0.34 0.82 0.74
Between 10 and 50 km subspaces 0.91 0.61 0.69 0.90 1.07

Table 3   Total sum of the 
eigenvalues of F in 4D 
subspaces and the average 
percentage of similarity for 
subspaces in comparison

DOY 4
∑

i=1

�i =

4
∑

i=1

4
∑

j=1

cos2 �ij

Epoch Average (%)

1 2 3 4 5

250 10 and 30 km spaces 3.97 3.98 3.56 3.33 3.66 92.5
10 and 40 km spaces 3.91 3.74 3.36 3.86 3.82 93.5
10 and 50 km spaces 3.88 3.93 3.77 2.98 3.84 92.0

300 10 and 30 km spaces 3.98 3.97 3.98 3.97 3.93 99.2
10 and 40 km spaces 3.97 3.96 3.97 3.95 3.89 98.7
10 and 50 km spaces 3.56 3.37 2.95 3.22 3.28 81.9
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to all models in the five temporal epochs was computed for 
studied days. The results are shown in Fig. 7.

The largest vectors components are obtained in the lay-
ers where the scattering of Nw is maximum, i.e., the lower 
layers in all models. This shows that the four tomographic 
models share the highest scattering similarity in these lay-
ers and for both studied days. The angular separation of 
each vector resulting from the spaces being studied must 
now be calculated. The model with the lowest similarity 
to the other ones is determined using angular separation. 
For this purpose, the angle δ was calculated for each of the 
five epochs in the studied days. Table 4 shows the results.

According to the results in Table 4, the 50 km model 
has the largest average of angular separation on both days. 
This shows that the 50 km model has the lowest similarity 
to the other ones in the lower atmospheric layers. Analysis 
of the first PCs concludes that the highest scattering in the 
values Nw is in the lower layers of the atmosphere, which 
happened to have higher humidity. The scattering of Nw 
values decreases in the higher layers. Therefore, voxels 
with a larger size can be a homogeneous representative of 
the Nw in higher layers. These findings lead to the idea of 
forming a hybrid tomography model with smaller voxel 
sizes in lower layers and larger ones in the upper parts of 
the model.

Tomographic reconstruction of N
w

In order to check the performance of the outlined theory, 
Nw values have been reconstructed using three tomographic 
models with the horizontal resolutions of 40, 50 km, and 
hybrid tomographic models with the horizontal resolution 
of 40 km for the seven layers closer to earth and 50 km 
elsewhere.

Nw images are reconstructed by using each of the three 
models in the first epoch of both days of this experiment. To 
validate reconstructed images, we compared the Nw profile 
resulting from each of the three models with the radiosonde 
profile. The statistical measures of Bias, RMSE, and STD 
are used. Corresponding results are reported in Table 5 and 
also the Nw profiles are given in Figs. 8 and 9.

According to the findings outlined in Table  5, the 
hybrid model has the lowest value of RMSE and STD as 
compared to the other models. The 40 and 50 km models 
are in the second and third ranks, respectively, based on 
these measures. Moreover, the principal component com-
parison of the models proves that the 40 km model is most 
similar to the reference model. In addition, this approach 
to model analysis shows from the 8th layer upward that 
the similarity of the 50 and 40 km models to the reference 

Fig. 7   Direction closest to each 
subspace in the first five epochs 
in DOY 250 (left) and DOY 
300 (right), 2011. The value of 
the components is between zero 
and one

Table 4   Minimum angular 
separation of each subspace 
with the direction of the closest 
vector in the first five temporal 
epochs in DOY 250 and 300, 
2011

DOY Tomography models Epoch Average

1 2 3 4 5

250 Reference Model 2.7 1.2 1.8 1.7 2.3 1.9
Model 30 km 1.4 2.7 1.7 3.4 1.3 2.1
Model 40 km 3.1 2.1 4.9 2.9 3.7 3.3
Model 50 km 3.2 4.4 4.3 3.3 6.1 4.3

300 Reference model 4.7 8.3 9.2 10.6 9.9 8.5
Model 30 km 6.9 5.8 5.2 3.9 3 5.0
Model 40 km 3.4 7.5 6.5 7.6 7.3 6.5
Model 50 km 9.5 19.8 19.3 20.2 17.7 17.3
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model is the same. Increasing voxel sizes to 50 km in this 
part of the model reduces the number of unknowns by 64.

However, the hybrid model has the lowest value of 
RMSE and STD. Moreover, the number of unknowns is 
also less than the 40 km model. Therefore, the 40 km 
model is no more superior to the hybrid model when the 
RMSE, STD, and similarity measures are all considered. 
Considering that the Nw parameters exhibit sharp reduc-
tion from the medium to top layers; here, from 1.8 to 0.02 
and 3.4 to 0.2 for the 9th to the last layer in DOY 250 and 
300, respectively, and that increasing the voxel size can 
considerably decrease the computation time, the higher 
accuracy and redundancy of the hybrid model is remark-
able. Moreover, for the test area of this research, there is 
not a remarkable difference between the precision of the 
two models.

Conclusion

Based on PCA, we propose a new method for determining 
the horizontal resolution of a GPS tomography model. The 
method is used for reconstructing wet refractivity in Iran. 
Northwest of Iran was selected to test the performance of 
this method because it is mountainous, and the density of 
GPS stations is the highest in Iran. WRF forecasts with spa-
tiotemporal resolutions of 10 km and 1 h were used as the 
initial information on the atmosphere in our test area. Our 
experiment includes five successive epochs (totaling 5 h). 
Taking the model with a horizontal resolution of 10 km as 
the initial or reference model, the similarity analysis of this 
research shows that in terms of scattering in Nw parameter, 
the performance of the hybrid model with a horizontal reso-
lution of 40 km at lower and 50 km at upper layers is similar 
to the applied reference in the test areas of this research. 
Considering that the number and distribution of GPS sta-
tions, i.e., the geometry of the imaging system, has a key 
role in the accuracy of reconstructed images, the model reso-
lution, the angular distance of subspaces constructed by the 
PCs, and the bisector as the key measures have been used for 
deciding on the size of voxels in our experiments.

Application of the proposed method in our test areas 
suggests a hybrid model with the horizontal resolution of 
40 km for layers 1…7 and 50 km for the remaining layers of 
the model, as the most accurate with reasonable precision 
for reconstructing Nw in our study area. The hybrid model 
also reduces the computation time. Therefore, its application 

Table 5   Bias, RMSE and STD for reconstructed N
w
 images

DOY Tomography 
Models

Bias (ppm) RMSE (ppm) STD (ppm)

250 40 km model 0.76 2.66 2.54
50 km model 1.72 3.21 2.71
Hybrid model 0.97 2.49 2.29

300 40 km model 0.61 4.20 4.15
50 km model 2.58 5.79 5.19
Hybrid model 1.73 2.44 1.46

Fig. 8   Wet refractivity profiles reconstructed by tomographic models 
and derived from radiosonde data (non-solid versus solid circles) at 
the first epoch of DOY 250, 2011

Fig. 9   Wet refractivity profiles reconstructed by tomographic models 
and derived from radiosonde data (non-solid versus solid circles) at 
the first epoch of DOY 300, 2011
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helps (near) real-time GNSS tomography, especially when 
the study area is large.
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