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Abstract:
The Karhunen-Loeve Expansion (KLE) technique has been recently applied by geophysicists for analyzing the temporal variations of dy-
namic systems such as the ocean-atmosphere interface, crustal deformation and fault systems. The application of this method to tidal
data can provide a direct insight into the efficiency and reliability of this method in reconstructing a periodic signal. The comparison of
the obtained results to those proposed by the least squares harmonic estimation (LSHE) as a newly developed method which is widely
used in geodetic community for analyzing the GPS time series can be of signi cant interest for both geodesists and geophysicists. This
paper applies the KLE method to the tidal time series of the Workington station in United Kingdom and compares the given results to
those suggested by the LSHE method. The detection of the majority of the expected long period constituents and the larger number of
the detected low frequency components by KLE as compared to the least squares harmonic estimation emphasizes on the efficiency and
the predominance of this method to the LSHE technique.
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1. Introduction

Tide which forms a considerable part of sea level variations but
are a system with a well-known mechanism. The response of this
system is typically considered to be the result of the combina-
tion of harmonic terms with known frequencies. The main tidal
constituents are generated from different relative motions of the
Earth with respect to the Moon, Sun and consequently, the corre-
sponding mutual gravitational forces. Earth rotation and revolu-
tion, moon rotation, motion of the lunar perigee, lunar node and
solar precession are the main causing forces of the tide.

The renowned procedures for identifying and analysis of the
known frequency contents of tide can be generally classi ed
into Non-Harmonic and Harmonic methods. The Non-Harmonic
method was initiated by Sir John Lubbock (1831). This method is
based on the direct computation of the tidal potential using as-
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tronomical ephemerides and Kepler-Newtonianmechanics (Long-
man 1959, Munk and Cartwright 1966, Harrison 1971, Merriam
1992). In Harmonic Analysis (whichwas initially developed by Lord
Kelvin and Sir George Darwin in the 1860s), sea level changes for
a point at time t (ζ (t)) can be formulated in terms of the sum of
cosine terms whose frequencies, amplitudes and phases are Ck ,
ωk and θk respectively; i.e., ζ(t) =

∑
k
Ck cos(ωk + θk ). The fre-

quency content in the tidal observations (ωk ) can be determined
through the application of various harmonic decomposition and
spectral analysis techniques. Among the existingmethods, Fourier
Transform, wavelet analysis and recently the Least-Squares Har-
monic Estimation (LSHE) are usually suggested and used (Dood-
son 1921, Tamura 1987, Cartwright and Tayler 1971, Hartmann and
Wenzel, 1995, Roosbeek 1995, Jay and Flinchem 1997, Kudryavt-
sev 2004, Foreman and Cherniawsky 2009, Amiri-Simkooei 2007,
Mousavian and M. Hossainali 2012). For the purpose of tidal anal-
ysis and tidal prediction, computation of the amplitudes (Ck ) and
phases (θk ) of the dominant frequencies is usually sufficient. The
least-squares adjustment of observational errors is used for this
purpose.
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Tide, with the total number of 26753 known frequencies (Kudryavt-
sev 2004) is a dynamic systemwithwell established frequency con-
tent. Some of the known constituents in this phenomenon are
given in Table 1. Therefore, further analysis of this system in the
frequency domain does not seem to be an interesting subject, at
least from an engineering point of view. Nevertheless, the system
provides a valuable measure for the analysis and comparison of
proposed component decomposition and spectral analysis tech-
niques. The idea looks more interesting when the application of
suchmethods for analyzing theGPS coordinate time series is taken
into account. Therefore, the employment of new techniques to
well-known periodic phenomena such as the tide can provide a
reasonable insight into their efficiency in practice. In this paper,
the Karhunen-Loeve Expansion and Least-Squares Harmonic Esti-
mation are applied to the tidal time series for this purpose.

Similar to themethodof EmpiricalOrthogonal Function (EOF) anal-
ysis developed by Preisendorfer (1988), the method of Karhunen-
Loeve Expansion (KLE) decomposes a dynamic system into its or-
thonormal subspaces. This techniquehasbeenapplied to the anal-
ysis of many nonlinear systems such as ocean-atmosphere inter-
face (e.g. El Niño-Southern Oscillation phenomena), meteorology,
crustal deformation and fault systems (Preisendorfer 1988, Savage
1988, Penland 1993, Rundle et al. 2000, Tiampo et al. 2004). The
great success of the application of this method in previous elds
of research, especially ocean-atmosphere interface analysis, gives
rise to the idea of its application to the tide as a nonlinear system
from its principal components aspect. In this paper, the efficiency
of the KLE method in the extraction of the frequency content of
tidal variations as a phenomenon with a well-known mechanism
is evaluated and the obtained results are compared with the LSHE
method, recently carried out by Mousavian and Hossainali.

2. Material and Methodology

Understanding the pattern evolution in nonlinear systems helps
for characterizing the physics which controls the underlying dy-
namics of a physical phenomenon. In this context, the Karhunen-
Loeve Expansion can be applied to provide a complete and unique
temporal pattern basis set for such systems. Here the tide, as a
considerable part of the sea level variations, is investigated as a
nonlinear system with a well-known physical mechanism. In the
KLE technique, the correlationmatrix of the input stochastic or de-
terministic variables is decomposed to its orthonormal subspaces
known as ”KLEmodes”. The projection of the original input data to
these eigenmodes, also known as Principal Components (PC), can
demonstrate the contributionof eachmode to the variations of the
system. A Discrete Fourier Transform accompanied by a statisti-
cal hypothesis test can be applied for investigating the frequency
content of each principal component. In other words, to extract
the intrinsic features of the corresponding power spectra, onemay
have to investigate each power spectrum against an appropriate
null hypothesis. In this paper, an autoregressive process at 95%
con dence level is used as the background noisemodel for the ex-

Table 1. Dominant tidal Harmonics (Wahr 1995, House 1995).

No. Period (hours) Darwin symbol

Long-period tides
1 163154.3167 N
2 8766.15265 Sa
3 4383.0763 Ssa
4 763.4874 Msm
5 661.3111 Mm
6 354.36706 Msf
7 327.859 Mf
8 219.1904 Mtm
Diurnal tides
9 28.0062 2Q1

10 27.8483 σ1

11 26.8683 Q1

12 26.7230 ρ1

13 25.8193 O1

14 24.8412 M1

15 24.1321 π1

16 24.06588 P1

17 24 S1

18 23.9344 K1

19 23.8044 ϕ1

20 23.09848 J1
21 22.3060 OO1

Semidiurnal tides
22 13.1272 ε2

23 12.905 2N2

24 12.871 µ2

25 12.658 N2

26 12.626 υ2

27 12.4206 M2

28 12.221 λ2

29 12.191 L2

30 12.016 T2

31 12 S2

32 11.983 R2

33 11.967 K2

34 11.606 2SM2

Short-period tides
35 8.3863 2MK 3

36 8.2863 M3

37 8.1771 MK 3

38 6.26917 MN4

39 6.10333 MS4

40 6.02103 M4

41 6 S4

42 4.1404 M6

43 4 S6

44 3.10515 M8
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traction of the dominant constituents in tide.
In univariate KLE analysis of the tidal system, the required input is
the detrended sea levelmeasurements of a tide gauge. To bemore
speci c, thehourly sea levelmeasurements of eachday collaborate
on forming the columns of an input matrix, say T. As the result,
when the tidal data of one year length were to be analyzed, matrix
T would have the dimension of 24×365. The covariance matrix
of the time series (S) is then constructed by the product: TTT.
When this real valued, symmetric matrix is normalized by the vari-
ance vector σ , i.e.,Sij

/(
σiσj

)
, the resulting correlationmatrixC is

derived:

C =





S11
σ1σ1

S12
σ1σ2

... S1p
σ1σp

S21
σ2σ1

S22
σ2σ2

... S2p
σ2σp

.

.
.

.
.
.

...
.
.
.

Sp1
σpσ1

Sp2
σpσ2

... Spp
σpσp





(1)

where the variances, σj , are given by the following equation:

σj =

√√√√ 1
p

p∑

k=1

(
Tkj

)2 (2)

The covariance matrix C is a p × p positive-valued matrix which
can be decomposed as:

C = EΛET (3)

whereE andΛ are the eigenvectorwith orthonormal columns and
the diagonal matrix of the eigenvalues, respectively. The matrix Λ
hask (p > k)nonzerodiagonal eigenvalues{λk}. For real geode-
tic or geophysical data, the rank of matrix C is usually full (k = p)
(Dong 2006). This can be easily veri ed through the number of
nonzero eigenvalues. The corresponding eigenvalues and eigen-
vectors are derived in two steps. First, Householder reduction is
applied as a trireduction technique to reduce the correlation ma-
trix to a symmetric tridiagonal one (Press et al. 1992). Then a QL al-
gorithm is employed to nd the eigenvalues, λj , and eigenvectors,
ej , of the tridiagonal matrix computed in the previous step (Press
et al. 1992). Computed eigenvectors are also called KLE modes.
The projection of the vectorized form of initial data series onto the
eigenvectors of the data correlation matrix leads to the principal
component associated with each particular mode.
The next step is the spectral analysis of the principal components
computed in theprevious step. For this purpose, rstly theDiscrete
Fourier Transform is used for constructing the Fourier power spec-
trum of each principal component. A statistical signi cance test is
then applied to thederived Fourier spectrum inorder to extract the
intrinsic features inherent in the power spectra. This is done in sup-
port of a null hypothesis for the background noise model at 95%
of con dence level. For many geophysical phenomena the red

noise model, i.e. the rst order autoregressive (AR) process is con-
sidered to be an appropriate background noise model (Mann and
Lees 1996, Ghil et al. 2002). According to Allen and Smith (1996),
the presence of periodic effects should be explicitly taken into ac-
count in the AR parameter estimation process. The identi cation
of periodicities and their physical causes seems to be hard formost
geophysical systems. On the other hand, this by itself is the main
aim in the spectral analysis of a time series. To solve this problem,
well-established frequencies are normally used for detrending the
input data. The Principal lunar semidiurnal constituentM2 , Prin-
cipal solar semi diurnal constituent S2 , Solar annual constituent
Sa, Solar semiannual constituentSsa, Lunisolar semi diurnal con-
stituent K2 , Larger lunar elliptic semi diurnal constituent N2 , Lu-
nisolar diurnal constituent K1 , and Lunar diurnal constituent O1

are the periodic components which have been used to t an au-
toregressive process and for estimating the corresponding param-
eters. A univariate lag-1 autoregressive process can be written as:

x0 = 0, xn = αxn−1 + Zn, n = 1, ..., N (4)

where xn is the discrete time series with the initial value of x0 , N
is the number of points in the time series, {Zn} are Gaussian ran-
domvariables, andα is the autoregressive coefficientwhich canbe
computed from the followingequation (Brockwell andDavis 1991):

α =

1
N−1

N−1∑
i=1

(xi − x̄)(xi+1 − x̄)

1
N

N∑
i=1

(xi − x̄)2
(5)

where x̄ is the mathematical expectation of the time series. Tor-
rence and Compo (1998) showed that the probability density func-
tion of the Fourier power spectrum of an autoregressive process
with the coefficient α , de ned by Eq. (5), is as follows:

σ̃ 2(1 − α2)
2N

(
1 + α2 − 2α cos 2πn

N
)χ2

2,0.95 (6)

where σ̃ 2 is the variance of time series, and χ2
2 is the chi-squared

distribution with two degrees of freedom. Equation (6) provides
a measure for identifying the constituents which signi cantly con-
tribute in re-constructing the original time series. For this purpose,
a peak in the Fourier spectrum is taken as a true signal when it lies
above the background noise whose probability density function is
given by this equation. The probability that is assigned to the de-
tected frequencies here is 0.95.

3. Numerical Results

The United Kingdom’s Tide Gauge Network has provided the re-
quired inputs for this study. The tidal time series from sta-
tion Workington has been used for this purpose. This is be-
cause least squares harmonic estimation has been already ap-
plied for analyzing the frequency content at the position of
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Table 2. First Principal Component tidal constituents.

No. Frequency (hour−1) symbol No. Frequency (hour−1) symbol

1 0.0001141 Sa 21 0.0820776 NKM2

2 0.0002283 Ssa 22 0.0831050 2SK 2

3 0.0005707 23 0.0833333 S2

4 0.0012557 24 0.0835616 K2

5 0.0014840 Mm 25 0.0840182
6 0.0030821 Mf 26 0.0842465
7 0.0372146 Q1 27 0.0848173 MSN2

8 0.0386986 O1 28 0.0861872 2SM2

9 0.0415525 P1 29 0.0864155 SKM2

10 0.0417808 K1 30 0.1207762 M3

11 0.0759132 OQ2 31 0.1579908 N4

12 0.0761415 ε2 32 0.1594748 MN4

13 0.0773972 2N2 33 0.1610730 M4

14 0.0777397 34 0.1623287 SN4

15 0.0779680 35 0.1625570 NK 4

16 0.0786529 36 0.1638127 MS4

17 0.0789954 N2 37 0.1640410 MK 4

18 0.0792237 υ2 38 0.2415525 M6

19 0.0804794 M2 39 0.2444063 2MS6

20 0.0817351

this tidal station. The corresponding time series of this station
is available at https://www.bodc.ac.uk/data/online_
edelivery/ntslf/processed/. One year of equi-spaced
hourly tidal records of this station has been incorporated in the in-
put matrix T.

At rst, the correlation matrix (1) is computed from the input ma-
trix T. Using the QL algorithm the reduced tridiagonal form of
the correlation matrix is then transformed to the corresponding
eigenspace. This process leads to the eigenmodes of interest. The
constructed eigenmodes establish an empirical orthonormal basis
which can be used for the decomposition and further analysis of
the original data. Therefore, the tidal time series is projected onto
theprincipal directionde nedby theempirical basis above. Apply-
ing Fourier transform to the projected time series results in the cor-
responding power spectrawhich are further used for detecting the
tidal constituents. Fitting an autoregressive process to each power
spectrumprovides a statisticalmeasure for selecting the dominant
frequencies. Figure 1 illustrates the corresponding results for the
rst eingenmode of this research. Accepted frequencies are listed

in Table 2.

The contribution of the rst eigenmode in the total sea level varia-
tions at this station is 84.49 precent of the total sea level variations
inherent in the adopted time series. Therefore, the rst eigenmode
is expected to contain most of the dominant frequencies in a tidal
time series. This can be seen in Fig. 1. In this gure, the rst three
prominent amplitudes belong to the principal lunar semidiurnal
component (M2), principal solar semidiurnal constituent (S2), and
larger lunar elliptic semidiurnal component (N2) respectively.

(a)

(b)

Figure 1. Fourier power spectrum of first PC normalized by N/2σ2

(blue) with respect to frequency (top) and period (bottom)
as well as the background noise model at 99% confidence
level (red).

Figure 2. Fourier power spectrum of second PC normalized by
N/2σ2.

The Fourier power spectrum of the second principal component
and the correspondingly detected frequencies are illustrated and
reported in Fig. 2 and Table 3, respectively. The Lunisolar synodic
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Table 3. Second Principal Component tidal constituents.

No. Freqency (hour−1) symbol No. Freqency (hour−1) symbol

1 0.0002283 Ssa 39 0.1206621 M3

2 0.0013698 Msm 40 0.1221461 MS3

3 0.0028538 Msf 41 0.1250000 S3

4 0.0041095 Sυ2 42 0.1278538
5 0.0043378 SN 43 0.1293378
6 0.0055936 2SM 44 0.1567351
7 0.0058219 MSqm 45 0.1582191 3MS4

8 0.0343607 α1 46 0.1623287 SN4

9 0.0345890 47 0.1638127 MS4

10 0.0360730 48 0.1666666 S4

11 0.0373287 ρ1 49 0.1695205 3SM4

12 0.0384703 50 0.1710045
13 0.0388127 MS1 51 0.2027397 2MK 5

14 0.0390410 τ1 52 0.2039954
15 0.0400684 β1 53 0.2054794 MSP5

16 0.0416666 S1 54 0.2083333
17 0.0445205 55 0.2111872
18 0.0460045 56 0.2471461 2SM6

19 0.0731735 57 0.2500000 S6

20 0.0746575 2NS2 58 0.2528538
21 0.0761415 ε2 59 0.2873287
22 0.0777397 60 0.2888127
23 0.0787671 SNK 2 61 0.2916666
24 0.0792237 υ2 62 0.2945205
25 0.0802511 γ2 63 0.3304794 3SM8

26 0.0807077 MKS2 64 0.3333333 S8

27 0.0818493 λ2 65 0.3361872
28 0.0820776 NKM2 66 0.3721461 NK 1

29 0.0833333 S2 67 0.3750000
30 0.0835616 K2 68 0.3778538
31 0.0848173 MSN2 69 0.4138127
32 0.0861872 2SM2 70 0.4166666
33 0.0869863 71 0.4195205
34 0.0874429 2Sυ2 72 0.4554794
35 0.0876712 2SN2 73 0.4583333
36 0.0891552 74 0.4611872
37 0.1178082 NO3 75 0.4971461
38 0.1194063 2MS3

fortnightly constituent (Msf ), principal solar semidiurnal compo-
nent (S2), and variational constituent (µ2) possess the predom-
inant amplitudes in the data series projected onto the second
mode.

In spite of the orthogonality of the principal components or the
base vectors of the eigenspace, each of the PCs may be contami-
nated by the others (Ji 2011). This results in the presence of similar
constituents in the frequency contents of various principal com-
ponents. The commonly detected frequencies for eigenmodes 3
to 10 are given in Table 4. These modes contain signals on shorter
temporal scales than the rst two ones.

To come upwith an idea about the efficiency of the KLEmethod in

Table 4. The commonly detected frequencies for eigenmodes three
through ten.

No. Freqency (hour−1) symbol No. Freqency (hour−1) symbol

1 0.0044520 48 0.2025114 MSO5

2 0.0060502 Mqm 49 0.2026255 2MS5

3 0.0071917 2SMN 50 0.2053652 MSP5

4 0.0359589 σ1 51 0.2084474 2SK 5

5 0.0374429 υK1 52 0.2369863 3MNK 6

6 0.0431506 53 0.2372146 3NKS6

7 0.0446347 SO1 54 0.2402968 2Mυ6
8 0.0748858 2NK 2S2 55 0.2428082 MSN6

9 0.0763698 2ML2S2 56 0.2430365 4MN6

10 0.0772831 2MS2K2 57 0.2441780 2MSK 6

11 0.0776255 µ2 58 0.2442922 2MT 6

12 0.0788812 NA2 59 0.2456621 2SN6

13 0.0791095 NB2 60 0.2457762 2MSK 6

14 0.0794520 2KN2S2 61 0.2470319 MST 6

15 0.0799086 62 0.3190639 2MN8

16 0.0803652 α2 63 0.3203196 3MSNK 8

17 0.0805936 KO2 64 0.3205479 3MN8

18 0.0825342 65 0.3207762 3Mυ8

19 0.0832191 T2 66 0.3220319 M8

20 0.0834474 R2 67 0.3222602 4MKS8

21 0.0839041 68 0.3248858 3MS8

22 0.0844748 69 0.3261415 2SMN8

23 0.0853881 2KMSN2 70 0.3263698 2MSL8

24 0.0863013 2MS2N2 71 0.3275114 2MST 8

25 0.0871004 72 0.3276255 2MS8

26 0.0889269 3S2M2 73 0.3279680 2MSK 8

27 0.0892694 2SK 2M2 74 0.3289954 3SN8

28 0.1192922 MO3 75 0.3995433 3M2N10

29 0.1220319 SO3 76 0.4010273 4MN10

30 0.1251141 SK 3 77 0.4023972 5MSK 10

31 0.1279680 2SO3 78 0.4038812 3MSN10

32 0.1551369 79 0.4053652 4MS10

33 0.1553652 4M2S4 80 0.4066210 2MSN10

34 0.1566210 2MNS4 81 0.4082191 3M2S10

35 0.1597031 Mυ4 82 0.4097031 2SMKN10

36 0.1607305 2MSK 4 83 0.4110730 3S2M10

37 0.1609589 MA4 84 0.4813926 5MSNK 12

38 0.1611872 2MRS4 85 0.4828767 3M2SN12

39 0.1613013 2MKS4 86 0.4843607 4MSN12

40 0.1636986 M2SK 4 87 0.4857305 5MT 12

41 0.1639269 MR4 88 0.4861872 5MK 12

42 0.1668949 SK 4 89 0.4872146 3M2SN12

43 0.1982876 2MQ5 90 0.4874429 6MSN12

44 0.1984018 2NKMS5 91 0.4886986 4M2S12

45 0.1998858 3MS5 92 0.4889269 4MSK 12

46 0.2012557 M5 93 0.4915525 3MS12

47 0.2013698 MB5
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Table 5. The frequency content of tidal data as suggested by the
application of LSHE technique (Mousavian and Hossainali,
2012).

No. Frequency (hour−1) symbol

1 0.080489 M2

2 0.083340 S2

3 0.079020 N2

4 0.083514 K2

5 0.080775 MKS2

6 0.080205
7 0.080089
8 0.083222 T2

9 0.079201 υ2

10 0.079980
11 0.081004
12 0.082034 L2

13 0.038731 O1

14 0.079872
15 0.041771 K1

16 0.161004 MN4

17 0.078864

reconstructing a periodic signal such as the tide, the constituents
above are compared with those detected by the application of the
LSHEmethod. Table 5 reports on the frequencies suggested by the
latter technique. According to Table 5, constituents detected by
least squares harmonic estimation is restricted to high frequency
oneswhereasboth lowandhigh frequency constituentshavebeen
efficiently identi ed here.

4. Conclusions

In this paper, the Karhunen-Loeve Expansion has been applied for
investigating the tide as a non-linear system. For this purpose, an
autoregressive process is used as the background noise model for
the power spectra of each principal component. According to the
obtained results, the rst principal component includes most of
the predominant frequencies inherent in the tidal data. While the
higher order KLEmodesmainly include the corresponding shallow
water ones.

Moreover, the efficiency of this method is compared with the re-
sults of LSHE recently carried out for the identi cation of the tidal
frequencies at the same station and using the same period of time.
Similar to the LSHE method, frequency analysis using the applied
technique is sensitive to the adoptedbackgroundnoise. Neverthe-
less, the comparison of the obtained results to those reported for
the application of least squares harmonic estimation clearly proves
the prominence of the applied method in this research.

From the total number of expected long period constituents (see
appendix A) 73.3 percent have been successfully detected by the
KLEwhereasnoneof these frequencies are seenwhen least squares

harmonic estimation is used. In thehigh frequencydomain, includ-
ing diurnal, semidiurnal and short periods, 44.3 percent of the total
number of the expected constituents (which are partially listed in
appendix B) have been identi ed in this research. The higher suc-
cess rate in the detection of tidal frequencies obviously results in
a more reliable reconstruction for the tidal time series when com-
pared to the least squares harmonic estimation technique.

Appendix A

The List of long period constituents according to the stan-
dard list of tidal harmonic constituents published on the
International Hydrographic Organization (IHO) website at
http://www.iho.int/mtg_docs/com_wg/IHOTC/

IHOTC_Misc/TWLWG_Constituent_list.pdf.

No. Frequency (hour−1) symbol

1 0.0001140 Sa
2 0.0002281 Ssa
3 0.0003422 Sta
4 0.0013097 MSm
5 0.0015121 Mm
6 0.0028219 MSf
7 0.0030500 Mf
8 0.0041317 Sυ2

9 0.0043340 SN
10 0.0043598 MStm
11 0.0045622 Mfm
12 0.0056438 2SM
13 0.0058720 MSqm
14 0.0060743 Mqm
15 0.0071560 2SMN

Appendix B

The List of diurnal, semidiurnal and short periods constituents ac-
cording to the standard list of tidal harmonic constituents pub-
lished on the International Hydrographic Organization (IHO) web-
site (similar to Appendix A).

Authenticated | yousefi67@yahoo.com author's copy
Download Date | 4/13/13 3:43 PM

http://www.iho.int/mtg_docs/com_wg/ IHOTC/IHOTC_Misc/TWLWG_Constituent_list.pdf
http://www.iho.int/mtg_docs/com_wg/ IHOTC/IHOTC_Misc/TWLWG_Constituent_list.pdf


Journal of Geodetic Science 7

No. Freqency (hour−1) symbol No. Freqency (hour−1) symbol

1 0.0357063 2Q1 61 0.0846431 MSυ2

2 0.0359087 σ1 62 0.0848454 MSN2

3 0.0372185 Q1 63 0.0850736 η2

4 0.0374208 ρ1 64 0.0853018 2KMSN2

5 0.0387306 O1 65 0.0861552 2SM2

6 0.0388447 MS1 66 0.0863576 2MS2N2

7 0.0389588 τ1 67 0.0874650 2Sυ2

8 0.0402428 M1B 68 0.0876674 2SN2

9 0.0402557 M1 69 0.0878955 SKN2

10 0.0402685 M1A 70 0.0889772 3S2M2

11 0.0402685 M1 71 0.0892053 2SK 2M2

12 0.0404709 χ1 72 0.1177299 MQ3

13 0.0414385 π1 73 0.1192420 MO3

14 0.0415525 P1 74 0.1192678 2NKM3

15 0.0416666 S1 75 0.1193561 2MS3

16 0.0417807 K1 76 0.1194702 2MP3

17 0.0418948 ψ1 77 0.1207671 M3

18 0.0420089 ϕ1 78 0.1207799 NK 3

19 0.0430905 θ1 79 0.1220639 SO3

20 0.0432928 MQ1 80 0.1221780 MS3

21 0.0443745 2PO1 81 0.1222921 MK 3

22 0.0446026 SO1 82 0.1222921 MK 3

23 0.0448308 OO1 83 0.1236019 NSO3

24 0.0463429 υ1 84 0.1238043 2MQ3

25 0.0733553 2MN2S2 85 0.1248859 SP3
26 0.0746393 3MKS2 86 0.1250000 S3

27 0.0746651 2NS2 87 0.1251140 SK 3

28 0.0748675 3MS2 88 0.1253422 K3

29 0.0748933 2NK 2S2 89 0.1279360 2SO3

30 0.0759491 OQ2 90 0.1553789 4M2S4

31 0.0761773 ε2 91 0.1564605 2MNK 4

32 0.0763796 Mυ2S2 92 0.1566887 2MNS4

33 0.0764054 MNK 2S2 93 0.1568910 2MυS4

34 0.0772331 2MS2K2 94 0.1579727 3MK 4

35 0.0774613 O2 95 0.1579984 N4

36 0.0774870 2N2 96 0.1582008 3MS4

37 0.0776894 µ2 97 0.1592824 MSNK 4

38 0.0787710 SNK 2 98 0.1595106 MN4

39 0.0788851 NA2 99 0.1597130 Mυ4

40 0.0789992 N2 100 0.1597388 MNKS4

41 0.0791133 NB2 101 0.1607946 2MSK 4

42 0.0792016 υ2 102 0.1609087 MA4

43 0.0794555 2KN2S2 103 0.1610228 M4

44 0.0802832 MSK 2 104 0.1611368 2MRS4

45 0.0803090 γ2 105 0.1612509 2MKS4

46 0.0803973 α2 106 0.1623325 SN4

47 0.0805114 M2 107 0.1625349 3MN4

48 0.0806254 MSP2 108 0.1625607 NK 4

49 0.0807395 δ2 109 0.1636165 M2SK 4

50 0.0809677 2KM2S2 110 0.1637306 MT 4

51 0.0815930 2SNMK 2 111 0.1638447 MS4

52 0.0818211 λ2 112 0.1639588 MR4

53 0.0820235 L2 113 0.1640728 MK 4

54 0.0820493 L2B 114 0.1651545 2SNM4

55 0.0820493 NKM2 115 0.1653568 2MSN4

56 0.0831051 2SK 2 116 0.1655850 2MKN4

57 0.0832192 T2 117 0.1665525 ST 4

58 0.0833333 S2 118 0.1666666 S4

59 0.0834474 R2 119 0.1668948 SK 4

60 0.0835614 K2 120 0.1671229 K4
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