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Heat transfer phenomena play a vital role in many problems, such as transport of flow through a porous medium.
In this article, a singular perturbation method and Laplace transform are used to solve the one-dimensional heat
transfer problem in semi-infinite porous media divided into inner and outer solutions. To prevent the mistakes of other
researchers’ analyses, a new approach for outer and inner matching boundary conditions is suggested. In addition, the
boundary condition of the third kind (Robin boundary condition) at y = 0 is changed into first kind by means of a
novel structure. This approach shows a good accuracy with direct use of the first kind of boundary condition. However,
when the slop value at y = 0 requires high accuracy of measurement, applying such an approach is not recommended.
On the other hand, by applying the new matching idea, results of an asymptotic solution show good agreement with a
numerical solution.

KEY WORDS: perturbation method, boundary layer, small thermal conductivity, Robin boundary condi-
tion

1. INTRODUCTION

Packed beds are often used to store heat energy and also in chemical industry. These important applications explain the
permanent interest in transport phenomena in packed beds for analytical and numerical investigations. Heat transfer
analysis during the past two decades has been developed on numerical solutions. However, approximate analytical
methods have continued to develop useful solutions to a variety of problems (Caldwell and Kwan, 2003). Nusselt
(1911, 1930) obtained the analytical solution for the problem of heat transfer in plug flow heat exchangers when the
axial heat conduction is neglected. The same solution was discovered by Anzelius (1926), Schumann (1929), and
Furnas (1930) for the heating or cooling one-dimensional porous media by passing hot or cool fluid. Most analytical
studies were concentrated on the Schumann model of a porous medium suggested in Furnas. This model ignores the
thermal conduction terms in both fluid and solid phase energy equations. Kuznetsov (1996) presented an analytical
solution for heating a rectangular sensible heat storage packed bed with a constant temperature at the walls by a
nonthermal equilibrium flow of incompressible fluid.

Cheng (1977) investigated the mixed convection adjacent to inclined surfaces embedded in a porous medium
using the boundary layer approximation. Similar solutions have been obtained for the situation where the free stream
velocity and the surface temperature distribution vary according to the same power function of the distance along the
surface. The separation in mixed convection flow was first discussed by Merkin (1969), who examined the effect of
opposing buoyancy forces on the boundary layer flow on a semi-infinite vertical flat plate at a constant temperature in
a uniform free stream. Furthermore, this problem was studied by Wilks (1973, 1974) and Hunt and Wilks (1980), who
also considered the case of uniform flow over a semi-infinite flat plate but heated at a constant heat flux rate. Merkin
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NOMENCLATURE

A area
C specific heat capacity (J/kgK)
Cp specific heat capacity at constant

pressure (J/kgK)
D diffusivity tensor
F initial solution function
G Green’s function
H Heaviside function
h heat transfer coefficient [W/((m3/m2) m2 K)]
hb heat transfer coefficient at the

boundary [W/(m2 K)]
k coefficient of thermal conductivity (W/mK)
Nu Nusselt number
O order
Pe Peclet number
Pr Prandtl number
q′′ heat generation per unit volume (W/m2)
Re Reynolds number
t time (s)
T temperature (◦C)
u velocity (m/s)

v velocity of the fluid phase
V volume
x channel length (M)
X nondimensionl temperature of the solid phase
y nondimensional length
⟨⟩ average volume
ˆ Laplace transform

Greek Symbols
α thermal diffusivity coefficient
ε porosity
∈ nondimensionl temperature of the fluid phase
ν kinematic viscosity (m2/s)
τ nondimensionl time
δ Dirac delta function

Subscripts
eff effective characteristic
f fluid phase
m mean value
s solid phase

and Pop (2002) obtained similar equations for mixed convection boundary layer flow over a vertical semi-infinite flat
plate in which the free stream velocity is uniform and the wall temperature is inversely proportional to the distance
along the plate. Aly et al. (2003) have investigated a vertically flowing fluid in a fluid-saturated porous medium
maintained at a constant temperature,T∞, passing a thin vertical fin, which is modeled as a fixed and semi-infinite
vertical surface (Nusselt, 1911).

Javeri (1978) has investigated the influence of the temperature boundary condition of the third kind on the laminar
forced convection heat transfer in the thermal entrance region of a rectangular channel; the energy equation was solved
by applying the Galerkin–Kantorowich method of variation calculus. Davis and Brenner (1997) have modeled steady
state heat conduction through an insulating layer separating the surface of a rough, isothermal body (e.g., a sphere)
from an isothermal semi-infinite region bounded by a rough plane by employing the Robin boundary condition with
a “slip” coefficient on the smoothed body surface and plane.

Exact analytical approaches cannot be applied for many reasons, so either numerical or perturbation methods are
required. The perturbation solutions for the planar solidification of a saturated liquid with convection at the wall have
been found by Pedroso and Domoto (1973) and Huang and Shih (1975).

Fourier series is the only perturbation solution method which is applied by Kuznetsov (1997) for solving a
two-dimensional energy equation in packed beds. Villatoro et al. (2011) obtained an analytical solution for one-
dimensional heat transfer between an inert gas and porous medium based on Laplace transforms using the solid
thermal conductivity as a small parameter.

In the present analysis, the heat transfer between an inert gas and porous medium, proposing a matching method,
is presented. Also, the boundary condition of the third kind is changed into the first kind using a novel approach
(Ahmadi, 2013).
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Studies show that semi-analytical methods [such as homotopy analysis method (HAM), variational iteration
method (VIM), differential transform method (DTM)] can be used in simulation and prediction of thermal perfor-
mance of solar exchangers filled with a porous medium energy harvesting system (Dehghan et al., 2015). The ana-
lytical technique called the Adomian decomposition method is proposed for the solution methodology. Solutions are
validated using a numeric scheme called the finite difference method. The results indicate that the numerical data and
analytical approach are in agreement with each other. The study is further extended to the porous fin in the stationary
condition, and it is found that the porous fin in the moving condition transfers more heat than it does in the stationary
condition (Bhanja et al., 2014).

Ma et al.’s (2016) spectral collocation method is presented to predict the thermal performance of a convective-
radiative porous fin with temperature-dependent convective heat transfer coefficient, fin surface emissivity, and in-
ternal heat generation with an increase in collocation points. The effects of various geometric and thermophysical
parameters on the dimensionless fin temperature, fin efficiency, and heat transfer rate are comprehensively analyzed.
In addition, an optimum design analysis is also carried out.

2. GOVERNING EQUATIONS

Figure 1 shows the geometry of the problem. The fluid phase is considered an incompressible Newtonian fluid, with
negligible viscous dissipation and heat conduction among the fluid particles, and also fluid motion is only in the
axial direction of the solid. The condition is quasi-steady. The solid has a constant porosity and negligible radial
temperature gradient, with only an axial temperature gradient.

Under the assumptions, the set of energy equations can be used as

φρfcf

(
∂Tf

∂t
+ vf

∂Tf

∂x

)
= −h(Tf − Ts) (1)

(1−φ)ρscs
∂Ts

∂t
= h(Tf − Ts) + (1−φ)λs

∂2Ts

∂x2
(2)

whereλs is the thermal conductivity andφ is the connected void fraction of the solid. The subscriptsf ands show
the fluid and solid, respectively, with initial conditions and boundary conditions as

Tf (0, x) = Ts0 (3)

Ts(0, x) = Ts0 (4)

Tf (t, 0) = Tf0 (5)

λs
∂Ts

∂x
(t,0) = hb(Ts(t, 0)− Tf (t, 0)), lim

x→∞
Ts(t, x) = lim

x→∞
Tf (t, x) = 0, (6)

FIG. 1: Geometry of the problem
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To apply the perturbation technique, Eqs. (1)–(7) were brought to a dimensionless form by introducing the fol-
lowing variables:

τ =
ht

(1−φ)ρscs
, y =

nhx

φρfcfvf
(7)

wheren = [φρfcf ]/[(1−φ)ρscs] andX(τ, y) and∈ (τ, y) are defined as follows:

Ts = Ts0 +X(τ, y)(Tf0 − Ts0), Tf = Ts0 + ∈ (τ, y)(Tf0 − Ts0)

Now Eqs. (1)–(7) can be written as

n

(
∂ ∈
∂τ

+
∂ ∈
∂y

)
= X− ∈ (8)

∂X

∂τ
− β2∂

2X

∂y2
=∈ −X (9)

∈ (0, y) = 0, X(0, y) = 0, y > 01 (10)

∈ (τ, 0) = 1 (11)

∂X

∂y
(τ,0) = γ(X(τ,0)− ∈ (τ, 0)) (12)

lim
y→∞

X(τ, y) = lim
y→∞

∈ (τ, y) = 0 (13)

where

β2 = (1−φ)λsh

(
n

φρfcfvf

)2

, γ =
hbφρfcfvf

hnλs

To solve Eqs. (8)–(13), the Laplace transform method can be used. Soϵ̂(sy) andX̂(sy) are the Laplace transform
onτ of ϵ(τy) andX(τy), respectively. Then, the governing equations and boundary conditions will be as follows:

n

(
s
⌢∈+

∂
⌢∈

∂y

)
=

⌢

X − ⌢∈ (14)

s
⌢

X − β2∂
2

⌢

X

∂y2
=

⌢∈ −
⌢

X (15)

⌢∈(s, 0) = 1
s

(16)

∂
⌢

X

∂y
(s, 0) = γ(

⌢

X(s, 0)− ⌢∈(τ, 0)) (17)

The solution and the inverse Laplace transform of the current solution cannot be obtained analytically, hence an
approximate asymptotic solution for both gas and solid temperature, consideringβ2 ≪ 1, has been developed; also,
inner and outer solutions have been achieved.

Journal of Porous Media



Novel Method for Changing Boundary Condition 453

3. CHANGE OF BOUNDARY CONDITION FROM THIRD INTO FIRST KIND

In this work, the Robin boundary condition is changed into the first kind and then applied to this problem. Considering
the change of variables, the boundary condition can be written as follows:

∂
⌢

X(i)

∂Y
(s,0) = γβ(

⌢

X(i)(s, 0)− ⌢∈(i)(s, 0)) (18)

⌢∈(i)(s, 0) =
1
s

(19)

⌢

X(i)(s,0)− 1
γβ

∂
⌢

X(i)

∂Y
(s, 0) =

1
s

(20)

The above equation is the first two statements of a Taylor series ofX̂(i) [s,0− 1/(γβ)]. Substituting the inner solution
in this equation, it can be considered as follows:

X̃0

∣∣∣
0−1/(γβ)

+ β X̃1/2

∣∣∣
0−1/(γβ)

+ β2 X̃1

∣∣∣
0−1/(γβ)

+ ... =
1
s

(21)

In this part, the Taylor series of each part in the preceding equation must be written. So(
X̃0

∣∣∣
0
− 1

γβ
X̃ ′

0

∣∣∣
0
+ ...

)
+ β

(
X̃1/2

∣∣∣
0
− 1

γβ
X̃ ′

1/2

∣∣∣
0
+ ...

)
+ β2

(
X̃1

∣∣∣
0
− 1

γβ
X̃ ′

1

∣∣∣
0
+ ...

)
=

1
s

(22)

The order of 1/(γβ) is β, so the preceding equation may be written as(
X̃0

∣∣∣
0
− β X̃ ′

0

∣∣∣
0
+ ...

)
+ β

(
X̃1/2

∣∣∣
0
− β X̃ ′

1/2

∣∣∣
0
+ ...

)
+ β2

(
X̃1

∣∣∣
0
− β X̃ ′

1

∣∣∣
0
+ ...

)
=

1
s

(23)

4. OUTER SOLUTION

It is necessary to consider both inner and outer solutions. A singular perturbation method has been applied to equations
in Laplace space. The outer solution is

⌢∈(o)(s, y) =
⌢∈0(s, y) + β2⌢∈1(s, y) + β4⌢∈2(s, y) +O(β6) (24)

⌢

X(o)(s, y) =
⌢

X0(s, y) + β2 ⌢

X1(s, y) + β4 ⌢

X2(s, y) +O(β6) (25)

Substituting the outer solution into governing equations,

β0 → n

(
s
⌢∈0 +

∂
⌢∈0

∂y

)
=

⌢

X0 −
⌢∈0, s

⌢

X0 =
⌢∈0 −

⌢

X0 (26)

β2 → n

(
s
⌢∈1 +

∂
⌢∈1

∂y

)
=

⌢

X1 −
⌢∈1, s

⌢

X1 −
∂2

⌢

X0

∂y2
=

⌢∈0 −
⌢

X0 (27)

and high-order terms also can be directly determined. The solutions of Eqs. (26) are

⌢∈0 = ce−sy exp

(
−sy

n(1+ s)

)
,

⌢

X0 =
c

1+ s
e−sy exp

(
−sy

n(1+ s)

)
(28)
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and the solutions of Eqs. (27) yield

⌢∈1 = A1 exp

[
−sy

(
1+

1
n(1+ s)

)]
+

c

n(1+ s)2

(
s+

s

n(1+ s)

)2

y exp

[
−sy

(
1+

1
n(1+ s)

)]
⌢

X1 =
A1

1+ s
exp

[
−sy

(
1+

1
n(1+ s)

)]
+

c

n(1+ s)3

(
s+

s

n(1+ s)

)2

y exp

[
−sy

(
1+

1
n(1+ s)

)]
+

c

n(1+ s)2

(
s+

s

n(1+ s)

)2

exp

[
−sy

(
1+

1
n(1+ s)

)] (29)

5. INNER SOLUTION

The inner approximationŝϵ(i)(sY ) andX̂(i) (s, Y ), whereY = y/β and∂/(∂y) = ∂/(β∂Y ), have been determined.
The results of the numerical simulations suggested the appearance of a boundary layer aty = 0 with a width ofO (β)
(Villatoro et al., 2011):

⌢∈(i)(s, Y ) = ∈̃0(s, Y ) + β∈̃1/2(s, Y ) + β2∈̃1(s, Y ) +O(β3) (30)

⌢

X(i)(s, Y ) = X̃0(s, Y ) + βX̃1/2(s, Y ) + β2X̃1(s, Y ) +O(β3) (31)

For the inner solution, regardingY = y/β, governing equations and boundary conditions will become

β0 → n

(
sβ

⌢∈(i) +
∂

⌢∈(i)

∂Y

)
= β

(
⌢

X
(i)

− ⌢∈(i)

)
, s

⌢

X(i) − ∂2
⌢

X(i)

∂Y 2
=

⌢∈(i) −
⌢

X(i) (32)

B.C


⌢∈(i)(s, 0) = 1/s
⌢

X(i)

(
s,− 1

γβ

)
= 1/s

lim
Y→∞

⌢

X(i)(s, Y ) = lim
Y→∞

⌢∈(i)(s, Y ) = 0

By substituting Eqs. (30) and (31) with (32) and using Eq. (22), equations and boundary conditions ofO(1), O(β),
andO(β2) can be obtained, and the results can be written as follows:

∈̃0(s, Y ) =
1
s

(33)

X̃0(s, Y ) =
1

s(1+ s)
exp(−

√
1+ sY ) +

1
s(1+ s)

(34)

∈̃1/2(s, Y ) = 0 (35)

X̃1/2 =
−1√
1+ s

exp(−
√

1+ sY ) (36)

∈̃1(s, Y ) = 0 (37)

X̃1(s, Y ) = 2exp(−
√

1+ sY ) (38)

These exponential solutions seem to be true due to the zero value of the solution, whenY → ∞.
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6. SUGGESTED MATCHING METHOD

To determine the outer solution, the following relation is used as the matching condition:(
⌢∈(o)

)i
y→0

= (∈̃(i)
)oY→∞ (39)

(
⌢

X(o)
)i
y→0

= (X̃(i))oY→∞ (40)

According to the preceding equations, the inner solution whenY → ∞ is equal to the outer solution wheny → 0,
hence the unknown coefficient in the outer solution can be obtained:

c =
1
s

(41)

A1 = 0 (42)

The values of(X̂1)y→0 and (X̃1)Y→∞ are not equal, which proves the accuracy of the current method. The
solutions to Eqs. (28) and (29) are

⌢∈0 =
1
s
e−sy exp

(
−sy

n(1+ s)

)
(43)

⌢

X0 =
1

s(1+ s)
e−sy exp

(
−sy

n(1+ s)

)
(44)

⌢∈1 =
s

n(1+ s)2

(
1+

1
n(1+ s)

)2

y exp

[
−sy

(
1+

1
n(1+ s)

)]
(45)

⌢

X1 =
s

n(1+ s)3

(
1+

1
n(1+ s)

)2

y exp

[
−sy

(
1+

1
n(1+ s)

)]
+

s

n(1+ s)2

(
1+

1
n(1+ s)

)2

exp

[
−sy

(
1+

1
n(1+ s)

)] (46)

The solution of Eqs. (43) and (46) can be achieved using the Bromwich integral for the inverse Laplace transform
[Javeri, 1978, Eqs. (3) and (5)]; the final solutions is written in Table 1. Furthermore, the Laplace inversion of Eqs. (45)
and (46) can proceed as mentioned by Villatoro et al. (2011); the solution is written in Table 1. The inverse Laplace
transform of solutions of inner approximations are mentioned in Table 2. The main solution is suggested as follows:

∈0= ∈̃(i)
0 + ∈(o)

0 −1
2

[
(∈̃(i)

0 )
(o)
Y→∞ + (∈(o)

0 )
(i)
y→0

]
(47)

∈1= ∈̃(i)
1 + ∈(o)

1 −1
2

[
(∈̃(i)

1 )
(o)
Y→∞ + (∈(o)

1 )
(i)
y→0

]
(48)

X0 = X̃
(i)
0 +X

(o)
0 − 1

2

[
(X̃

(i)
0 )

(o)
Y→∞ + (X

(o)
0 )

(i)
y→0

]
(49)

X1 = X̃
(i)
1 +X

(o)
1 − 1

2

[
(X̃

(i)
1 )

(o)
Y→∞ + (X

(o)
1 )

(i)
y→0

]
(50)
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TABLE 1: Solutions of outer solution for the solid[X(τ, y)] and gas[∈ (τ, y)] temperatures

Zeroth order
∈0 (τ, y) = H(τ− y)e−y/n

{
1+

∫ τ−y

0
exp(−u)I1

(
2

√
yu

n

)√
y

un
du

}
X0(τ, y) = H(τ− y)e−y/n

∫ τ−y

0
exp(−u)I0

(
2

√
yu

n

)
du

First order

∈1(τ, y) =
y

n
H(τ−y)ey−τ−y/n

{
I0(z) +

2− n

gn
I1(z)−

2n− 1
g2n2

I2(z)−
1

g3n2
I3(z)

}

X1(τ, y) = H(τ− y)ey−τ−y/n

{
I0(z) +

2− n+ y

gn
I1(z)−

y

g4n3
I4(z)

+
1+ 2y − n(2+ y)

g2n2
I2(z) +

y − n(1+ 2y)
g3n3

I3(z)

}

TABLE 2: Solutions of inner solution for the solid[X̃(i)(τY )]
and gas[ϵ̃(i)(τY )] temperatures (adapted from Ahmadi, 2013)

Zeroth order
∈̃(i)

0 (τ, Y ) = 1

X̃
(i)
0 (τ, Y ) = e−τerfc

(
Y/2

√
τ
)
+ 1− e−τ

Middle order
∈̃(i)

1/2(τ, Y ) = 0

X̃
(i)
1/2(τ, Y ) =

−e−τ−(Y 2/4τ)

√
π
√
τ

First order
∈̃(i)

1 (τ, Y ) = 0

X̃
(i)
1 (τ, Y ) =

(
e−τ−(Y 2/4τ)Y

)/√
πτ

7. RESULTS

According to the calculations, the final approximate analytical solution for the one-dimensional problem of heat
transfer between an inert gas and a porous semi-infinite medium, including two and three terms for outer and inner
solutions, respectively, is presented in Tables 1 and 2.

Some solutions are presented as functions ofτ, which shows that this approach is an approximate one, but for
β2 ≪ 1, it has a good accuracy. Furthermore, these results show a good agreement with numerical results of the
research done by Villatoro et al. (2011).

Figures 2 and 3 show temperatures of fluid and solid phases. As shown in Fig. 2, the value of gas temperature
ϵ(τy) at (y = 0) is 1, which satisfies the boundary condition aty = 0. The change of boundary condition aty = 0
did not make any difference in temperature due to not using this condition to solve for the gas temperature.

Gas temperature is null wheny > τ, as it was considered in solving the outer solution. Forτ = 1, the curve
of temperature enfolds the smaller range ofy than at other times (Villatoro et al., 2011). Figure 3 shows the solid
temperature. As shown in Fig. 3, a break in slope is occurring in the area near the wall, wherey = 0, due to changing
boundary conditions. Transferring the value of temperature aty = 0−1/(γβ) into y = 0 results in such a difference.

To compare the results of substituting the first kind boundary condition with the third kind, using the Robin
boundary condition directly, Fig. 4 has been drawn. As is shown, the solutions for the two states are completely the
same, except near the wall, which is because of changing boundary conditions.
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FIG. 2: Plots of the analytical solutions∈ (τ, y) for (a, b)β2 = 0 and (c, d)β2 = 0.01 for (a, c)n = 0.5 and (b, d)n = 5. The
abscissa in every plot isy.

According to the expansion of Eq. (22), the small parameter for transferring the third kind of boundary condition
into the first kind is 1/(γβ). On the other hand, the small parameter for the inner perturbation solution wasβ. So
the range of solution accuracy near the wall will depend on 1/γ, and if 1/γ is so much smaller thanβ, the region of
accuracy near the wall will expand more. In other words, if the purpose of solving a problem is to obtain a precise
profile of temperature, applying this approach will not be reasonable.

8. CONCLUSION

In this article, a novel asymptotic solution for heat transfer between gas and solid phases in a porous medium with
small thermal conductivity is presented. The main goal of this article is to develop an approximate asymptotic solution
for both the gas and the solid temperatures whenβ2 ≪ 1. According to the singular perturbation method, the solution
is divided into inner and outer solutions. A novel suggested matching method is proposed for matching inner and
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FIG. 3: Plots of the analytical solutionsX (τ, y) for (a, b)β2 = 0 and (c, d)β2 = 0.01 for (a, c)n = 0.5 and (b, d)n = 5. The
abscissa in every plot isy.

FIG. 4: Plots of the analytical solutionsX (τ, y) for (a) β2 = 0 and (b)β2 = 0.01 and forn = 0.5 and comparing with the
solution using Robin B.C (+). The abscissa in every plot isy.
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outer solutions. According to the new idea, the Robin boundary condition aty = 0 changed into the first kind. This
method has good agreement with the solution obtained using the third kind boundary condition. In cases that the slope
near the wall is important, using this method does not give an exact solution near the wall; however, this method is
suitable for making problems easier.

The singular perturbation method used in this article is a superior method compared to the other methods already
in use in the analysis of heat transfer in a porous medium because of applying the first kind of boundary condition
instead of the third kind and also because of the suggested novel form of inner and outer condition matching. These
contributions decrease computational time and give a closed-form solution.

This method has good agreement with solutions obtained using the third kind boundary condition. In cases that
slope near the wall is important, using this method loses accuracy near the wall, but this method is suitable for making
problems easier.
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Anzelius, A.,Über Erẅarmung vermittels durchströmender Medium,ZAMM Z. Angew. Math. Mech., vol. 6, pp. 291–294, 1926.

Bhanja, D., Kundu, B., and Aziz, A., Enhancement of heat transfer from a continuously moving porous fin exposed in convective-
radiative environment,Energy Convers. Manage., vol. 31, no. 88, pp. 842–853, 2014.

Caldwell, J. and Kwan, Y.Y., On the perturbation method for the Stefan problem with time dependent boundary conditions,Int. J.
Heat Mass Transfer, vol. 46, pp. 1497–1501, 2003.

Cheng, P., Combined free and forced convection flow about inclined surfaces in porous media,Int. J. Heat Mass Transfer, vol. 20,
pp. 807–814, 1977.

Davis, A.M.J. and Brenner, H., Use of boundary conditions of the first kind to model heat conduction between two proximate
rough surfaces separated by an insulator,Int. J. Heat Mass Transfer, vol. 40, pp. 1459–1465, 1997.

Dehghan, M., Rahmani, Y., Ganji, D.D., Saedodin, S., Valipour, M.S., and Rashidi, S., Convection-radiation heat transfer in solar
heat exchangers filled with a porous medium: Homotopy perturbation method versus numerical analysis,Renewable Energy,
vol. 28, no. 74, pp. 448–455, 2015.

Furnas, C.C., Heat transfer from a gas stream to a bed of broken solids,Trans. Am. Inst. Chem. Eng., vol. 24, pp. 142–193, 1930.

Huang, C.C. and Shih, Y.P., Perturbation solution for planar solidification of a saturated liquid with convection at the wall,Int. J.
Heat Mass Transfer, vol. 18, pp. 1481–1483, 1975.

Hunt, R. and Wilks, G., On the behavior of the laminar boundary-layer equations of mixed convection near a point of zero skin
friction, J. Fluid Mech., vol. 101, pp. 377–391, 1980.

Javeri, V., Laminar heat transfer in a rectangular channel for the temperature boundary condition of the third kind,Int. J. Heat
Mass Transfer, vol. 21, pp. 1029–1034, 1978.

Kuznetsov, A.V., A perturbation solution for heating a rectangular sensible heat storage packed bed with a constant temperature at
the walls,Int. J. Heat Mass Transfer, vol. 40, pp. 1001–1006, 1997.

Ma, J., Sun, Y., Li, B., and Chen, H., Spectral collocation method for radiative-conductive porous fin with temperature dependent
properties,Energy Convers. Manage., vol. 1, no. 111, pp. 279–288, 2016.

Merkin, J.H., The effect of buoyancy forces on the boundary-layer over a semi-infinite vertical flat plate in a uniform free stream,
J. Fluid Mech., vol. 35, pp. 439–450, 1969.

Merkin, J.H. and Pop, I., Mixed convection along a vertical surface: Similarity solutions for uniform flow,Fluid Dyn. Res., vol.
30, pp. 233–250, 2002.
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