Phase Portrait User Guide

K.N.Toosi University of Technology - ECE Faculty

DR. Hadi Aliakbarian
July 2019

Contents

I. How To lnstall JRE 3
II. About Application 4
III. How To Use The Application 5
IV. AboutUs 12

I. How To Install JRE

For running this application on your desktop computer, you must install JRE (Java Runtime Environment) on your computer.

1. Follow the following steps to install JRE:
2. download the JRE installer.
3. choose appropriate installer for your operating system.

Then install JRE.

II. About Application

We use Drawing Phase Portrait of 2-Dimensial Systems of Equations.
A phase portrait is a plot of multiple phase curves corresponding to different initial conditions in the same phase plane. The solutions to the differential equation are a family of functions. Graphically, this can be plotted in the phase plane like a two-dimensional vector field. Vectors representing the derivatives of the points with respect to a parameter (say time t), that is $\left(\frac{d x}{d t}, \frac{d y}{d t}\right.$), at representative points are drawn. With enough of these arrows in place the system behavior over the regions of plane in analysis can be visualized and limit cycles can be easily identified. The entire field is the phase portrait, a particular path taken along a flow line (i.e. a path always tangent to the vectors) is a phase path. The flows in the vector field indicate the time-evolution of the system the differential equation describes.

$$
\begin{array}{ll}
\frac{\mathrm{d} x}{\mathrm{~d} t}=A x+B y & p=A+D \\
\frac{\mathrm{~d} y}{\mathrm{~d} t}=C x+D y & \quad \Delta=A D-B C \\
\Delta=p^{2}-4 q
\end{array}
$$

III. How To Use The Application

When you run the application, the following figure will be showed to you on the screen.

- Phase Portrait

File Help

a: $\quad-4-3.5-3-2.5-2-1.5-1-0.500 .5111 .522 .5$
b: $\quad-4-3.5-3-2.5-2-1.5-1-0.5000 .511 .5122 .53$

d:

$\mathrm{T}=0.0, \mathrm{D}=0.0$
$\Delta=T^{2}-4 D=0.000000$
$\lambda 1=0.0$
$\lambda 2=0.0$
$e 1=(1.0,0.0)$
$e 2=(0.0,1.0)$

Case : Degenerate

Program takes matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ in $\overrightarrow{x^{\prime}}=A \vec{x}$ by sliders as input.

We also determine range of t , constants $\mathrm{C} 1 \& \mathrm{C} 2$ and Step size.
t from $\square \mathrm{C}: \square \mathrm{C}: \square$ to \square Step Size: \square Draw \square Clear

By calculating Trace (T) \& Determinant (D) of Matrix, we get Δ of $\lambda^{2}-T \lambda+D$, then by solving the equation we get Eigenvalues $\lambda 1 \& \lambda 2$. Having $\lambda 1 \& \lambda 2$, we get Eigenvectors $e 1 \& e 2$ effortlessly.

$$
\begin{gathered}
\mathrm{T}=0.0, \mathrm{D}=0.0 \\
\Delta=\mathrm{T}^{2}-4 \mathrm{D}=0.000000 \\
\lambda 1=0.0 \\
\lambda 2=0.0 \\
\mathrm{e} 1=(1.0,0.0) \\
\mathrm{e} 2=(0.0,1.0) \\
\text { Case : Degenerate }
\end{gathered}
$$

Then by clicking on Draw button, program draws Phase Portrait of the system. You can click on Clear button to clear diagrams.

Example

We set the $A=\left|\begin{array}{ll}1 & -1.75 \\ 2 & -0.75\end{array}\right|$

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

a:

b:

c:

d:

By calculating $\operatorname{trace}(T=0.5)$ and determinant $(D=2.75)$ and delta($\Delta=-10.93)$, we get Eigenvalues and Eigenvectors. We can also determine case of phase portrait.
$T=0.25, D=2.75$
$\Delta=T^{2}-4 D=-10.937500$
$\lambda 1=0.125+\mathbf{i} 1.6535946$
$\lambda 2=0.125-\mathbf{i} 1.6535946$
$e 1=(0.875+\mathbf{i} 1.6535946,2.0)$
$e 2=(0.875-\mathbf{i} 1.6535946,2.0)$
Case $:$ Spiral Source

After determining range of $\mathrm{t}, \mathrm{C} 1 \& \mathrm{C} 2$ and step size click on Draw button to draw Phase Portrait.
t from -10 to 21
C1: $0.25 \quad$ C2: 0.3
Step Size: 0.1
Draw
Clear

Tip: for more precision, pay attention to coordinates on the left panel.

$$
\begin{aligned}
& e 1=(0.875+i 1.6535946,2.0) \\
& e 2=(0.875-i 1.6535946,2.0)
\end{aligned}
$$

Case: Spiral Source

$$
(x, y)=(5.36,-6.07) \longleftrightarrow
$$

More Examples

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

a:

b:

d:

$\mathrm{T}=-1.25, \mathrm{D}=-2.25$
$\Delta=T^{2}-4 D=10.562500$
$\lambda 1=1.0$
$\lambda 2=-2.25$
$e 1=(1.0,2.25)$
$e 2=(-2.25,2.25)$

Case : Saddle

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

a:

b:

c:

d:

$\mathrm{T}=-1.0, \mathrm{D}=16.25$
$\Delta=T^{2}-4 D=-64.000000$
$\lambda 1=\mathbf{- 0 . 5}+\mathbf{i 4 . 0}$
$\lambda 2=-0.5-\mathrm{i} 4.0$
$e 1=(0.0+i 4.0,4.0)$
$e 2=(0.0-i 4.0,4.0)$

Case: Spiral Sink

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

t from -10 to 10 \qquad C2: 2
Step Size: 0.1
Draw Clear

b:

d:

$\mathrm{T}=\mathbf{- 2 . 0}, \mathrm{D}=0.5625$
$\Delta=\mathrm{T}^{2}-4 \mathrm{D}=1.750000$
$\lambda 1=-0.33856216$
$\lambda 2=-1.6614379$
$e 1=(-0.088562176,0.5)$
$e 2=(-1.4114379,0.5)$

Case : Nodal Sink

t from -10 to 10
C1: 0.1
C2: 0.1 Step Size: 0.02
Draw Clear

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

b:

c:

d:

$\mathrm{T}=1.0, \mathrm{D}=0.0625$
$\Delta=T^{2}-4 D=0.750000$
$\lambda 1=0.9330127$
$\lambda 2=0.0669873$
$e 1=(1.1830127,0.5)$
$e 2=(0.3169873,0.5)$

Case : Nodal Source

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

a:

b:

c:

d:

$\mathrm{T}=2.0, \mathrm{D}=0.0$
$\Delta=T^{2}-4 D=4.000000$
$\lambda 1=0.0$
$\lambda 2=0.0$
$e 1=(0.0,2.0)$
$e 2=(0.0,2.0)$

Case : Unstable Saddle-Node

 $\begin{array}{lllllll}\mathrm{t} \text { from } & -10 & \text { to } 10 & \mathrm{C}: & 1 & \mathrm{C}: & 1\end{array}$

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

IV. About us

User guide written by M. M. Kheirmand, Ramin Vasseghi \& Danial Khoshkholg(updated July 15, 2019)

Application developed by Mohammad Hossein Rimaz on 17/6/2016
Under supervision of Dr. Hadi Aliakbarian
K.N.Toosi University of Technology

Computer \& Electrical Engineering Faculty
Copyrights all rights reserved.

