	Amir Pasha Zamani
	I was born in March 1988, Shiraz, Iran. I have my M.Sc. degree in control engineering (Shahid Rajaee University of Tehran, Iran), and my bachelor's degree in electronics engineering. After my graduation, as I was strongly interested in neuroscience I started participating in some online related courses and working as a researcher in computational neuroscience.
Research interest	Neural dynamics & Single neuron modelling Neuroeconomics & Decision making Computational Models of Visual Cortex Computational Models of olfactory system System Identification Neural Networks

My current work is on identifying the decision making structure of rat brain, based on different brain areas related to goal directed behaviors and reward based decision-making.

These areas include Ventral Tegmental Area (VTA), Nucleus Accumbens (NAc), Dorsolateral Prefrontal Cortex (DLPFC), Ventromedial prefrontal cortex (VMPFC) and Anterior Cingulate Cortex (ACC), each engage in encoding different values.

Reinforcement Learning algorithms and neuro population models are the methods used in this project.

An appropriate collaboration is also available to use the data obtained from the famous T-maze task for rats.

Supervisor:	Dr. Mahdi Aliyari Shoorehdeli
Contact:	Zamani.ap@gmail.com Phone: +98 919 0688913