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Diversity of structural controllability of complex
networks with given degree sequence

Abdorasoul Ghasemi, Márton Pósfai, and Raissa M. D’Souza

Abstract—We investigate to what extent the degree sequence of a directed network constrains the number of driver nodes. We
develop a pair of algorithms that take a directed degree sequence as input and aim to output a network with the maximum or minimum
number of driver nodes. We find an upper bound for the maximum and a lower bound for the minimum, and show that the algorithms
achieve these bounds for all real and model networks, with few exceptions characterized by tiny system size and heterogeneous
degree distributions. Applying these algorithms to a broad range of real networks, we show the gap between the upper and lower
bounds can vary dramatically across different degree sequences. Thus, we introduce the notion of structural control complexity to
capture how much more difficult it is to control a specific network beyond what is required given its degree sequence, suggesting
additional structure is present. Using model networks, we numerically and analytically investigate how typical features of the degree
distribution affect the range of required driver nodes. We find that the minimum is determined by the number of sources or sinks, while
the maximum is strongly affected by the presence of hubs.

Index Terms—Complex networks, Structural Controllability, Driver nodes
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1 INTRODUCTION

The interface of network science and control theory pro-
vides a means to understand underlying principles of con-
trolling complex systems [1]. Social, biological, and human-
made complex systems are composed of many interacting
parts, and the structure of the networks formed by these
interactions strongly influences their function, behavior, and
resilience. Therefore, it is particularly interesting to seek out
existing methods and to develop new methods of control
theory that leverage the underlying network structure of
dynamical systems [2], [3], [4], [5], [6]. Such methods allow
us to design strategies to influence the behavior of complex
systems and to characterize underlying mechanisms that
inhibit or enhance control.

In this article, we investigate to what extent the degree
sequence of a directed network constrains its controllability.
Specifically, we develop algorithms to identify the maxi-
mum and minimum number of external signals necessary
to control networks with a given degree sequence. Leverag-
ing these algorithms, we introduce the notion of structural
control complexity, a measure of network controllability that
captures the role of additional level of structure, beyond just
the degree sequence, that necessitates a network to need
more control signals beyond what is dictated by the degree
distribution alone. We then use these tools to systematically
analyze a collection of real and model networks.

We rely on the framework of structural controllability
of linear systems [7], which exploits the deep connection
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between graph combinatorics and linear algebra, allowing
us to effectively study some control properties of directed
networks. Specifically, we assume that a directed complex
network with N nodes is governed by linear time-invariant
dynamics

ẋ(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ RN represents the state of the nodes, A ∈
RN×N is the weighted adjacency matrix, u(t) ∈ RM repre-
sents M independent control signals, and B ∈ RN×M is the
matrix that identifies how the control signals are coupled to
the network.

A dynamical system is controllable if it can be driven
in finite time from any initial state x0 to any final state x1
with a suitable choice of inputs u(t). Traditional methods to
determine controllability of a linear systems are impractical
for large complex networks, because they require accurate
knowledge of all link weights and are numerically unsta-
ble [3], [8]. To overcome these difficulties, we turn to the
theory of structural controllability. We say that matrix A
has the same structure as matrix A∗ if A has zero elements
wherever A∗ does while its non-zero elements can have
different values.

A linear system (A∗,B∗) is structurally controllable
if there exists a pair of matrices A and B with, respec-
tively, the same structure as A∗ and B∗ such that (A,B)
is controllable. Importantly, if a network is structurally
controllable, it is controllable for almost all link weight
combinations [7]. Therefore studying structural controlla-
bility of typical weighted directed networks is equivalent
to studying controllability in the original sense. Although
structural control theory was developed for simple directed
networks [3], [7], [9], [10], it has been extended to multi-
plex networks [11], [12], temporal networks [13], [14], link
dynamics [15], and most recently undirected networks [16],
[17].
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The underlying network structure of a complex system
specifies A, while typically many choices of B allow full
control. Often the minimum number of signals necessary for
control is used to quantify the controllability of a network,
i.e., the minimum M such that there exists a B ∈ RN×M

rendering (A,B) controllable [3], [6], [15]. Reference [3]
introduced the concept of driver nodes as a minimal set
of nodes that have to be controlled by independent signals
directly to ensure controllability of the network. The mini-
mum number of independent signals and driver nodes are
equal; therefore, the two are used interchangeably in recent
literature. Following convention, we denote the minimum
number of independent signals or drivers as ND.

Liu et al. mapped the problem of identifying ND of a
directed network to finding the maximum matching in its
bipartite representation [3]. Consider a directed network
G = (V,E), where V is the set of N nodes and E is the
set of L directed links connecting these nodes. To construct
its bipartite representation Ĝ = (V +, V −, Ê), we split each
node vi ∈ V into two copies v+i ∈ V + and v−i ∈ V − and
we add an undirected link (v+i − v−j ) ∈ Ê if there exists
a directed link (vi → vj) ∈ E in the original network. A
maximum matching ÊMM ⊂ Ê is a maximum cardinality set
of links that do not share endpoints. The number of driver
nodes is determined by

ND = max(N − |ÊMM|, 1). (2)

This mapping provides computationally efficient and nu-
merically robust tools to study controllability of large com-
plex networks. See Fig. 1a-b for an example.

The effect of typical structural properties of complex
networks on ND has been thoroughly investigated. Using
a collection of real and model networks, Liu et al. showed
that the degree sequence of networks can largely predict
ND, and that degree heterogeneity inhibits control [3], [18].
The degree sequence of networks, however, does not com-
pletely determine their controllability. For example, Ref. [19]
showed that beyond degree distribution, degree correlations
of connected node pairs also affect ND, while community
structure and short-range loops added via randomized link-
rewiring have little effect on controllability. In addition,
Wang et al. found that strategic addition of links to a
network can drastically reduce ND, while having only little
effect on the overall degree distribution, further demonstrat-
ing that the degree sequence does not uniquely determine
ND of a network [20].

Here, we ask a complementary question: Instead of
investigating how structural properties affect ND, we are
interested in to what extent the degree sequence of a net-
work constrains the maximum and minimum value of ND.
In Sec. 2, we introduce a pair of algorithms that take a
directed degree sequence as input and aim output Gmax and
Gmin, a pair of networks with the maximum and minimum
number of driver nodes with that degree sequence. We show
that these algorithms output demonstrably correct results
for realistic model networks and a diverse collection of real
networks. Identifying the maximum and minimum number
of driver nodes allows us to introduce the notion of struc-
tural control complexity, a measure of controllability that
takes into account the constraints of the degree sequence of

networks.
In Secs. 3 and 4, we apply our algorithms to systemati-

cally investigate the possible range of ND and the structural
control complexity of real and model networks. In Sec. 5,
we discuss the relationship between our results and pre-
vious work. Specifically, we probe the possible structure
of Gmax and Gmin by adding degree correlations through
link rewiring, and we also apply our results to understand
how the degree sequence of a network constrains the control
profile of the network [21], [22]. In this paper, we provide
a range of findings that extend and complement our cur-
rent knowledge on the relation of network structure and
controllability, providing new insights and allowing deeper
understanding of previously established results.

2 MAXIMUM AND MINIMUM DRIVER NODES

In this section, we introduce the problem of constructing
networks with maximum and minimum number of driver
nodes and we develop algorithms to solve them. First,
consider a bi-degree sequence (BDS), i.e., N pairs of integers
(k+1 , k

−
1 ), . . . , (k+N , k

−
N ), where k+i and k−i are the assigned

out- and in-degree of node vi, respectively. A BDS is graph-
ical, if there exists a directed network G = (V,E) with the
given degree sequence, such that it does not contain double
links, while self-loops are allowed. Network G is called a
graphical realization of the BDS.

To determine if a BDS is graphical or not, we use the
Havel-Hakimi (HH) algorithm [23], [24]. In addition, if the
BDS is graphical, the HH algorithm constructs the bipartite
representation Ĝ = (V +, V −, Ê) of a graphical realization.
We start with two sets of N unconnected nodes, V + and
V −. We assign k+i out-stubs to each node v+i ∈ V + and
k−i in-stubs to each node v−i ∈ V −. We now pick a node
v+i ∈ V + and we reduce V − by v+i , that is we form links
by connecting the out-stubs of v+i to the k+i nodes in V −

that have the most unused in-stubs. If there are less than
k+i available nodes in V −, the process is unsuccessful. We
repeat this step for all nodes in V +. Generally, we say S ⊆
V − is reducible by R ⊆ V + if we can reduce S by all nodes
in R iteratively. The BDS is graphical if we can reduce V −

by the nodes in V + and there are no unconnected stubs in
V − remaining.

The HH algorithm creates one graphical realization;
generally, however, there are many realizations of a BDS.
We are interested in finding a realization Gmax (Gmin) that
requires the most (least) independent signals for control.
In the following, we develop algorithms to construct Gmax
and Gmin using the HH algorithm as an important building
block. Note that here we allow self-loops in the graphi-
cal realizations. However, the designed algorithms can be
adopted to the case of self-loop free networks using the
machinery developed in Ref. [25].

2.1 Maximum driver node networks

Our goal is to construct Gmax, a graphical realization of a
given BDS that requires the maximum number of control
signals Nmax

D . Due to the mapping between the minimum
control signal and the maximum matching problems, this
is equivalent to finding a realization with the smallest
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maximum matching. We first find NUB, an upper bound for
Nmax

D , i.e., NUB
D ≥ Nmax

D . Then we introduce an algorithm
that aims to construct a network that achieves or approxi-
mates this bound. Although we do not rigorously prove that
the algorithm always finds the optimum, the upper bound
allows us to asses the quality of the solution: ifNmax

D = NUB
D ,

we know that it corresponds to the global maximum.

We start by recalling Kőnig’s theorem, which states that
the size of the maximum matching in a bipartite network
B̂ = (V +, V −, Ê) is equal to the size of its minimum vertex
cover [26]. A minimum vertex cover is a minimum cardinal-
ity subset of nodes Vmvc ⊂ V + ∪ V −, such that each link
e ∈ Ê is adjacent to at least one node v ∈ Vmvc. Therefore to
construct a network with maximum driver nodes, we need
to construct a network with minimum |Vmvc|. To do this, we
color a set of nodes black and the rest of the nodes white,
and we then attempt to construct a graphical network such
that the black nodes form a vertex cover. For the black nodes
to be a vertex cover, we require that all links are adjacent to
at least one black node; therefore, to minimize |Vmvc|, our
strategy is to color high-degree nodes black.

To obtain an upper bound of Nmax
D , we sort the nodes

V + ∪ V − in descending order according to their degrees
and color nodes black until∑

vi∈B+

k+i +
∑
vi∈B−

k−i ≥ L (3)

is satisfied, where B+ and B− are the set of black nodes
in V + and V −, respectively. The remainder of the nodes
are colored white. Clearly, |B+|+ |B−| is a lower bound of
the minimum vertex cover for any realization of the BDS;
and therefore an upper bound for the maximum number of
drivers is

Nmax
D ≤ max(N − |B+| − |B−|, 1) = NUB

D . (4)

If the network has a heterogeneous degree distribution, i.e.,
there exist hubs with a much higher number of connections
than the average degree, a small number of black nodes are
sufficient to satisfy the above inequality. Therefore, Nmax

D is
expected to be high for heterogeneous degree distributions,
and more restrictive for homogeneous distributions.

We now propose an algorithm that aims to construct a
Ĝmax such that the upper bound in Eq. (4) is achieved. The
general idea is to color a set of nodes black following the
same strategy as above, then search for a graphical real-
ization such that each link is adjacent to at least one black
node. If such a realization is not possible, we systematically
increase the number of black nodes until we find one.

To check if a BDS with a given coloring B+ and B− is
graphical, we iteratively apply the HH algorithm. First, we
reduce black nodes B+ by V − \ B−. Note that even if the
step is successful, nodes in B+ may have unconnected stubs
remaining. We then reduce black nodes B− by V + \ B+.
Finally, we connect the leftover stubs by reducing the re-

mainder of B+ by the remainder of B− 1. If all reductions
are successful, the coloring is graphical, i.e., the BDS is
graphical subject to the coloring constraint, and we found
Gmax. If we are unsuccessful, we increase the number of
black nodes. The pseudo-code of this algorithm is provided
in Alg. 1 and Fig.1(c,d) provides an example of applying the
algorithm.

The algorithm consists of repeatedly applying a modi-
fied version of the Havel-Hakimi algorithm until we find
an admissible node coloring. The complexity of the Havel-
Hakimi algorithm is O(N2 logN) and we test at most N
colorings. However, in practice the N repetitions are a very
conservative upper bound. Indeed, in Secs. 3 and 4, we
will see that for real and model complex networks, with
very few exceptions, the algorithm only has to consider one
candidate coloring and therefore is suitable to analyze large-
scale networks. Furthermore, in these cases the solutions
achieve the upper bound in Eq. (4), meaning that Alg. 1
indeed successfully finds Gmax corresponding to the global
optimum. Also, note that the algorithm generates one pos-
sible Gmax; typically, however, there are many realizations
with the same number of driver nodes. In Sec. 5, we will
explore such other realizations by rewiring Gmax such that
the coloring of the nodes is respected.

Algorithm 1 Finding the graphical realization with maxi-
mum control signals for BDS D
Input: Bi-degree Sequence D = {(k+i , k

−
i ), i = 1, . . . , N},

Output: Realization with maximum control signals Gmax.
1: function HH GRAPHICAL(D,B−, B+)
2: if B− is not reducible by V + \ B+ then return false
3: (B−, V + \ B+)← reduce B− by nodes in V + \ B+

4: if B+ is not reducible by V − \ B− then return false
5: (B+, V − \ B−)← reduce B+ by nodes in V − \ B−

6: if B− is not reducible by B+ then return false
7: return true

1: Sort k+ = [k+i ],k− = [k−i ], i = 1, . . . , N , lists in descending order
2: for NB ← 2 to N do
3: for NB+ ← 1 to NB do
4: NB− ← NB −NB+

5: if
∑N

B+
i=1 k+i +

∑N
B−

j=1 k−j ≥ L then
6: B+ = [k+i ], i = 1, . . . , NB+ , B

− = [k−j ], j = 1, . . . , NB−

7: if HH GRAPHICAL(D,B−, B+) then
8: Gmax ← realization of D with B−, B+ coloring constraint
9: return Gmax

2.2 Minimum driver node networks

We now turn our attention to constructing Gmin, a graph-
ical realization of a given BDS that requires the minimum
number of control signals Nmin

D , or equivalently, the real-
ization with the largest maximum matching. Similarly to
the previous section, we first find a simple lower bound for
Nmin

D , then we introduce an algorithm that aims to construct
a realization that achieves this bound.

A matching is a set of links that do not share endpoints;
therefore, in a bipartite network Ĝ = (V +, V −, Ê) a match-
ing cannot be larger than the number of nodes with non-zero

1. Note that in the original HH algorithm without coloring, it does
not matter if we reduce nodes V + by V − or V − by V +. With
coloring, however, we always reduce black nodes B+ by non-black
nodes V − \ B+, because the black nodes may have stubs remaining
after reduction and with this order of reduction the remainder of stubs
are not concentrated on a few nodes.
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Fig. 1. (a) A network with N = 10, L = 11, N−
0 = 1, N+

0 = 2.
(b) The corresponding undirected bipartite representation with a max-
imum matching highlighted in red. Unmatched nodes (blue) on the in-
side are the driver nodes. (c) Applying Alg. 1 to find Gmax. On the out-
side A+, D+, E+, B+ and on the in-side D−, H− are colored black.
The black nodes are reduced by non-black nodes on the other side
and there remains no residual black out- and in-stubs. (d) Gmax requires
Nmax

D = NUB
D = 4. (e) Applying Alg. 2 to find Gmin. Color one stub red

for the first N −max(N+
0 , N

−
0 ) = 8 nodes on both sides and the rest of

the stubs are colored blue, and we form links such that only stubs with
the same color are connected. (f) Gmin requires Nmin

D = NLB
D = 2.

degree in V + or in V −. This means that a lower bound for
the minimum number of drivers is

Nmin
D ≥ max

(
N+

0 , N
−
0 , 1

)
= NLB

D , (5)

where N+
0 is the number of sinks, i.e., nodes with zero out-

degree, and N−0 is the number of sources, i.e., nodes with
zero in-degree. Therefore, networks with a high number
of sources and sinks are expected to restrict the possible
number of driver nodes more, i.e., have high Nmin

D .
We now propose an algorithm that aims to construct

a Ĝmin such that this lower bound is achieved. We again
start with two sets of N unconnected nodes, V + and V −,
and each node is assigned stubs corresponding to their
prescribed degrees. Before attempting to connect the stubs,
we arrange the nodes on both sides in descending order
according to their degrees, and we color one of the stubs
red of the first N − max(N+

0 , N
−
0 ) nodes on both sides,

and the remainder of the stubs are colored blue. Now we
sequentially form links such that only stubs of the same
color are allowed to be connected to each other. If a graphi-
cal realization exists that satisfies this additional constraint,
the set of red links form a matching corresponding to the
bound in Eq. (5). If such a realization is not possible, we
systematically lower the number of red stubs, until we find

one.
To check if a BDS with coloring is graphical, we modify

the HH algorithm. In each step, we pick a node v+i ∈ V +. If
node v+i has a red stub, connect the red stub to the node in
V − that has the most unconnected stubs and has an avail-
able red stub. Then we connect its blue stubs to the nodes
in V − with the most unconnected stubs. We repeat this step
for all nodes in V +. If we successfully connect all stubs, the
BDS with coloring is graphical. If at any step, we run out
of available nodes or if at the end we have unconnected
stubs left over, then we failed to find a graphical realization
with the current coloring and we reduce the number of red
stubs. For this, we pick the red stub that belongs to the node
with the smallest possible degree in both V + and V −, and
we change its color to blue. We repeat this until we find a
graphical coloring. Following this strategy, we have to check
at most N − max(N+

0 , N
−
0 ) ≤ N candidate colorings. We

provide the pseudo-code for the process in Alg. 2 and a
small example in Fig. 1e,f.

In Secs. 3 and 4, we apply Alg. 2 to the BDS of a collection
of real complex networks and power-law distributed model
networks. We find that our algorithm achieves the lower
bound given by Eq. (5) for all real networks and all model
networks with sensibly chosen parameters. This means that
(i) in these cases our algorithm indeed successfully finds
the Gmin corresponding to the global optimum, (ii) the
algorithm only has to consider one candidate coloring and
therefore it terminates quickly, making it suitable to analyze
large-scale complex networks.

Note that this algorithm, similar to the Alg. 1, generates
one possible Gmin; typically, however, there are many real-
izations with the same number of driver nodes. In Sec. 5,
we will explore other realizations by rewiring Gmin such
that the coloring of the nodes is respected.

Algorithm 2 Finding the graphical realization with mini-
mum required control signals for BDS D
Input: Bi-degree Sequence D = {(k+i , k

−
i ), i = 1, . . . , N},

Output: Realization with minimum control signals Gmin.
1: function HH GRAPHICAL(D,M )
2: Sort V +, V − lists in descending order based on their degrees
3: Color one stub of the first M elements of V +, V − as red and the

remaining by blue
4: for each node v+ do
5: if v+ has red out-stub then
6: reduce the first red-stub in V − about v+

7: if v+ has blue stubs then
8: if blue stubs of V − is reducible about blue stubs of v+ then
9: reduce the blue stubs of V − about the blue stubs of v+

10: else
11: return false
12: return true

1: N+
0 ← number of sinks, N−

0 ← number of sources
2: M ← N −max{N+

0 , N
−
0 }

3: while not
(

HH GRAPHICAL(D,M )
)

do
4: M ←M − 1
5: Color one of the stubs red of the first M nodes on both sides
6: Gmin ← realization of D with coloring constraint
7: return Gmin

3 REAL NETWORKS

We now apply our algorithms to analyze a collection of real
networks. For each network, we calculate ND, the number
of driver nodes necessary to control the original network.
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Fig. 2. (a) nD, nmin
D , nmax

D , and nrnd
D for different real networks and their corresponding bounds. (b) The structural control complexity ν for original and

randomized networks. In (a) and (b) the results for the random case are the average of 20 randomizations and the error bars represent the standard
deviation, which may be smaller than the marker sizes.

We then measure Nmax
D and Nmin

D together with their cor-
responding upper and lower bounds provided by Eqs. (4)
and (5). Finally, we randomize each network preserving
their degree distribution and measure N rnd

D , the number
of drivers averaged over 20 independent randomizations.
We summarize these results along with descriptions of the
datasets in Table 1 of the supplementary material.

Figure 2(a) shows the results of the measurements for
each network normalized by the total number of nodes. The
first notable observation is that for all real BDSs Alg. 2 finds
graphical realizations such that nmin

D = Nmin
D /N reaches

its lower bound; and Alg. 1 finds realizations such that
nmax

D = Nmax
D /N is equal to its predicted upper bound for

all but three exceptions. These exceptions are three of the
four food webs: mangwet, baywet, and littlerock. As we will
discuss more in the next section, the reason why nmax

D does
not reach its bound in these cases is rooted in their small
size and their very broad in- or out-degree distributions.

The number of driver nodes needed to control a graphi-
cal realization of a BDS is restricted to the range [nmin

D , nmax
D ].

In Fig. 2, we ordered the networks according to nmax
D − nmin

D

such that networks with the least restrictive BDS are to the
left, and the most restrictive ones are to the right. For some
networks, like the airline or bitcoin networks, there both
exist realizations such that we need considerably more or

considerably fewer driver nodes than the original networks
or their randomized counterparts. While other networks,
like gene transcription networks and some trust networks,
are characterized by a very narrow range [nmin

D , nmax
D ]; and

therefore their BDS largely determines nD.
To understand which features of the BDS affect the range

of possible nD values, recall that in Sec. 2 we showed that
Nmin

D increases with increasing number of sources or sinks,
and Nmax

D is high for networks with large hubs. Sparse
networks with low average degree typically have many
sources and sinks, which narrows the range [nmin

D , nmax
D ]. The

role of heterogeneous degree distribution is less straight for-
ward: heterogeneous networks have large hubs, increasing
nmax
D ; however, heterogeneous networks also typically have

more sources and sinks than homogeneous networks with
the same average degree, increasing nmin

D . Ultimately, the
balance of these two features determines the net effect of
degree heterogeneity on [nmin

D , nmax
D ].

The fraction of driver nodes needed to control a network
is determined by the degree sequence of the nodes and how
these nodes are connected to each other. To quantify the
effect of network structure beyond the degree sequence, we
introduce the structural control complexity of a network as

ν =
ND −Nmin

D

Nmax
D −Nmin

D
. (6)
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Structural control complexity is normalized such that ν = 1
if the network is the hardest and ν = 0 if it is the easiest
to control given its BDS; high ν values indicate richer
internal structure with respect to controllability. Previously,
we showed that Nmax

D and Nmin
D are equal to their upper

and lower bounds for the exceeding majority of networks;
we can, therefore, accurately estimate ν using these bounds.
However, to generate a graphical realization with Nmax

D or
Nmin

D driver nodes, we still have to use Algs. 1 and 2.
On Fig. 2(b), we show ν for the collection of real net-

works. Strikingly, networks that are considered hard to con-
trol with respect to nD, such as transcription, p2p, and some
trust networks, have very low structural control complexity.
This means that most driver nodes in these networks are
either sources or sinks. Other networks, such as electronic
circuits and food webs, have higher ν values than nD,
meaning that the complexity of their structure beyond their
BDS is what makes these networks hard to control.

Interestingly, we find two types of trust networks: some
have high nD and low ν (Slashdot, Napa, Central Coast, and
WikiVote) and others have comparable nD and ν (Prison
Inmate, Advogato, BitcoinOCT, and BitcoinAlpha). In trust
networks a link from individual a to b indicates that b trusts
or seeks advice from a. Networks in the first group rely on a
few highly trusted actors, i.e., the network structure is dom-
inated by star-like patterns. For example, Ref. [27] showed
that the networks representing influence between viticulture
growers (Central Coast and Napa) are centered around a few
disproportionately influential actors. On the other hand,
trust networks in the second group have less centralized
structure. For example, in the networks extracted from
online platforms where Bitcoin users vouch for their peers
(BitcoineAlpha and BitcoinOCT) no central authority exists,
trust is distributed and encoded in the network structure.

Finally, on Figs. 3a,b we plot ν against the maximum of
the fraction of sources or sinks p0 = max{N+

0 , N
−
0 }/N and

the degree heterogeneity H = max{H+, H−}, where

H+/− =
1

cN2

N∑
i,j=1

|k+/−i − k+/−j | (7)

and k
+/−
i is the out- or the in-degree of node i [3]. We find

negative correlation between ν and p0, i.e., the presence
of sources and sinks typically reduces structural control
complexity. Networks with a surprising amount of sinks,
such as Slashdot, have very low corresponding structural
control complexity. Figure 3b shows a similar negative cor-
relation between ν and H ; this relationship, however, has
to be interpreted carefully. In the next section, we will see
that increasing degree heterogeneity in model networks in
fact may increase ν. The apparent contradiction is resolved
noticing p0 and H are not independent quantities: heteroge-
neous networks have more sources and sinks than homoge-
neous networks with the same average degree. Indeed, we
observe a positive correlation between p0 and H for the real
networks (Fig. 3c).

4 MODEL NETWORKS

In this section, we systematically investigate how various
characteristics of degree distributions affect nmax

D , nmin
D , and
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Fig. 3. (a) Scatter plot showing the relationship between p0 =
max{N+

0 , N
−
0 }/N and nD and ν for real networks. Increasing the

number of sources and sinks increases the number of driver nodes, yet
typically decreases structural control complexity. (b) The relationship be-
tweenH = max{H+, H−} and nD and ν shows similar pattern. (c) The
similar relationship is explained by the positive correlation between H
and p0.

the structural control complexity ν using model networks.
Also, we demonstrate through simulations and analytical
arguments that nmax

D and nmin
D are equal to their correspond-

ing upper and lower bounds for typical degree sequences,
except for very small and very heterogeneous networks.

For our investigations, we need to generate degree se-
quences (i) that are drawn from a tunable degree distribu-
tion, we are particularly interested in degree heterogeneity
and the presence of sources and sinks, and (ii) that are
graphical even for small samples and highly heterogeneous
degrees. To achieve this, we use a generalized version of
the directed static model [3], [28], [29]. To simplify notation,
we only consider networks with symmetric out- and in-
degree distribution, i.e., pout(k) ≡ pin(k) ≡ p(k); however,
all of our results are easily extended to the general case. To
generate a network, we start with N unconnected nodes,
and we assign a weight wi = i−α/(

∑
j j
−α) to nodes

i = 1, 2, . . . , N −N0 where α ∈ [0, 1), and wi = 0 to nodes
i = (N−N0+1), . . . , N . We then randomly select two nodes
i and j with probability wi and wj , respectively, and if there
is no directed link from node i to j, we connect them. We
repeat this step until L links are added. Setting N0 = 0 we
obtain the original static model [28], [29].

The resulting network has average in- and out-degree
c = L/N , and both its in- and out-degree distributions can
be approximated as a sum of binomial distributions

p(k) =
1

N

N∑
i=1

(
L

k

)
wki (1− wi)L−k. (8)
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For large N , approximating the binomial distributions with
Poisson distributions and substituting integrals for summa-
tions [30], we obtain

p(k) = n0δ0,k+(1− n0)
(c[1− α]/[1− n0])1/α

α
×

×Γ(k − 1/α, c[1− α]/[1− n0])

Γ(k + 1)
,

(9)

where n0 = N0/N , δj,k is the Kronecker delta, Γ(z) is
the gamma function, and Γ(z, a) is the upper incomplete
gamma function. The tail of the distribution decays as a
power-law, i.e.,

p(k) ' (1− n0)
(c[1− α]/[1− n0])

1/α

α
k−(1+1/α) ∼ k−γ ,

(10)
where γ = 1 + 1/α is the degree exponent.

The expected degree of node i is ci = wiL; and i = 1
provides the expected maximum degree in the network:

kmax =
L∑N−N0

j=1 j−α
≈ c

1− n0
(1− α)(N −N0)α, (11)

Note that alternatively, we could use the configuration
model to generate networks, which would allow us to
directly choose the degree distribution p(k). The advantage
of the static model is that it always generates a graphical
degree sequence, while in the case of the configuration
model, this becomes increasingly difficult for heterogeneous
degree distributions, i.e., as degree exponent γ approaches
2. The disadvantage of the static model, however, is that for
γ < 3, the expected number of links between some node
pairs becomes greater than one. Since multiple links are not
allowed, excess links are rewired; and Eq. (8) becomes only
approximate. This effect is the strongest for degree expo-
nents close to 2, but the correction becomes less pronounced
as network size increases. See supplementary material for
more details about the derivations and approximations of
(8) to (10).

4.1 Maximum and minimum driver nodes

We now investigate how average degree, degree hetero-
geneity, and the fraction of sources and sinks affect nmax

D ,
nmin

D , and ν. In addition to numerical measurements, we also
provide analytical formulas for the upper bound of nmax

D and
the lower bound of nmin

D .
In Sec. 2.2, we showed that the lower bound of the

number of driver nodes is simply the maximum of the
number of sources or sinks. Therefore, following Eqs. (8)
and (9) we get

nLB
D = p(0) = n0 + (1− n0)

N−N0∑
i=1

e−cNwi ≈

≈ n0 + (1− n0)
(c[1− α]/[1− n0])1/α

α
×

× Γ(−1/α, c[1− α]/[1− n0]).

(12)

Expanding for large average degree, we get nLB
D − n0 ∼

Exp(−Ac)c−γ , where A = (1− α)/(1− n0).
Obtaining the upper bound nUB

D is less straight forward.
Recall that in Sec. 2.1, we derived the upper bound by

coloring the highest degree nodes black in the bipartite
representation of the network until the number of links
adjacent to black nodes was at least L, and the upper bound
is then NUB

D = N − |B+| − |B+| where B+ and B− are
the sets of black nodes in the two sides of the bipartite
representation. Since we only consider symmetric degree
distributions, we can write

nUB
D = 1− 2nB, (13)

where nB is the expected fraction of black nodes on either
side of the bipartite network. We color the nodes black
starting from the highest degree, meaning that we color all
nodes black with degree larger than some degree k0 and
a q fraction of nodes that have degree k0. We require that
at least half of the links must be adjacent to black nodes;
therefore, for large N , k0 and q must satisfy the equation

k0q +

∞∑
k=k0+1

kp(k) = 0.5 c. (14)

Since the binomial approximation of the degree distribu-
tion in Eq. (8) is more accurate for low k, we numerically
solve k0q′ +

∑k0−1
k=1 kp(k) = 0.5 c; noting that the other half

of the links are connected to non-black nodes. Having k0
and q′, we get nB

nB = q +

∞∑
k=k0+1

p(k) = 1−

(
q′ +

k0−1∑
k=0

p(k)

)
. (15)

We can also obtain an approximate closed-form solution by
using the asymptotic form of p(k) provided in Eq. (10) and
substituting the summation with an integral:

(1− n0)

∫ ∞
k0

[c(1− α)/(1− n0)]
γ−1

α
k−γ+1dk = 0.5c. (16)

Solving the above equation provides k0, which we can use
to calculate the fraction of black nodes

nB ≈
∫ ∞
k0

p(k)dk = [1− n0] 2−
γ−1
γ−2 . (17)

This indicates that as γ approaches 2, a vanishing frac-
tion of nodes will be colored black; and therefore nUB

D
approaches 1. Notably, the solution does not depend on
the average degree; we have to consider, however, that this
solution is expected to well approximate the exact solution
for homogeneous and dense networks. See supplementary
material for more details about the derivations and approx-
imations of equations in this subsection.

Figure 4 shows results for model networks. We generate
instances of BDSs and we calculate nD, nmin

D , nmax
D , nLB

D , and
nUB

D , while systematically changing the degree exponent γ,
the average degree c, and the parameter n0. The symbols
are numerical measurements and continuous lines are ana-
lytical results. The numerical measurements and theory are
in great agreement, except for very heterogeneous degree
distributions where finite size effects become non-negligible.
We observe that similarly to real networks, the lower bound
nLB

D and the upper bound nUB
D are exactly equal to the nmin

D
and nmax

D , respectively. In the next section, we will show that
the lower and upper bounds are not reached only for very
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small and heterogeneous networks.
The minimum fraction of driver nodes nmin

D is equal to
the fraction of zero-degree nodes, the parameter n0 tunes
the number of sources and sinks; therefore, increasing n0
increases nmin

D (Fig. 4c). Decreasing the average degree c
or the degree exponent γ indirectly increase the number of
sources and sinks, therefore also increase nmin

D (Figs. 4a-b).
The maximum fraction of driver nodes nmax

D depends on
high-degree nodes; therefore the degree exponent γ has the
strongest, while c and n0 have a weaker effect on nmax

D . In
fact, we showed in Eq. (17) that nUB

D , and therefore nmax
D ,

is approximately independent of c, which is supported by
numerical results (Fig. 4b). The fraction of driver nodes nD
for the static model is typically closer to its minimum than
its maximum; and approaches nmin

D as γ, c, or n0 increases.
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γ
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0.6
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n D
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nmax
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D

1 2 3 4 5 6 7
c
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(c)

Fig. 4. (a) nD for power-law networks generated by static model with
N = 1000, N0 = 0 nodes and E = 3000 links for different values of γ.
(b) nD for model networks with N = 1000, N0 = 0, γ = 2.7 where the
average degree is changing from 1 to 7. (c) nD for model networks with
N = 1000, γ = 2.7 where N0 is changing from 0 to 0.7N . Numerical
results are the average of 20 independent networks, and the error bars
indicate the standard deviation, typically smaller than the marker size.

Next, we examine the structural control complexity ν of
model networks. Figure 5 shows ν as a function of the de-
gree exponent γ and the parameter n0 for various values of
average degree c. The continuous lines represent analytical
results; since we found that nmin

D = nLB
D and nmax

D = nUB
D ,

we calculate ν using the analytical solution of nLB
D and nUB

D
provided in Eqs. (12) and (13), respectively. We find that
similarly to the fraction of driver nodes nD [3], structural
control complexity ν is increased by degree heterogeneity;

however, unlike nD, increasing average degree c decreases
ν. We also increase the fraction of sources and sinks by
increasing the parameter n0, Fig. 5b shows that this leads
to low ν even for very heterogeneous networks. This is in
line with what we found for real networks: in Fig. 2, we
found a group of networks that are characterized by high
nD yet low ν, and these networks had a very high fraction
of sources or sinks.

4.2 Effectiveness of the upper and lower bound

We previously shown that nUB
D and nLB

D rigoroulsy provide
bounds for the number of driver nodes. Applying Alg. 1 and
2 to degree sequences of real and realistic model networks,
we observed that the maximum fraction of driver nodes
nmax

D is equal to its upper bound nUB
D (with the exception

of a few food webs) and that the minimum fraction of
driver nodes nmin

D is equal to its lower bound nLB
D always.

This prompts the question, what properties of the degree
sequences allow nUB

D and nLB
D to be tight bounds? In this

section, we use numerical simulations and analytical argu-
ments to show that nmax

D and nmin
D are not equal to their

respective bounds only for very small and heterogeneous
networks.

We generate BDSs while systematically changing the
number of nodes N and the degree exponent γ, and we
compare the nmax

D to its corresponding upper bound nUB
D .

Figure 6a shows the probability that nmax
D = nUB

D , we find
that the chance that equality does not hold increases for very
small or very heterogeneous networks. Finding nmax

D 6= nUB
D

means that Alg. 1 fails when attempting to create a graphical
realization corresponding to the equality. Recall that the
algorithm works by taking the bipartite representation of
the BDS and coloring a set of the highest degree nodes black
such that NUB

D = N − |B+| − |B+| where B+ and B− are
the sets of black nodes on the two sides of the bipartite rep-
resentation, the rest of the nodes are colored white. Then it
attempts to create a graphical realization with the additional
requirement that each link is adjacent to at least one black
node. Through numerical investigations of the static model,
we found that if nmax

D 6= nUB
D , Alg. 1 fails at connecting the

highest degree non-black node. Using Eq. (14), we found for
large enough networks that the maximum degree of non-
black nodes k0 is constant, e.g., it becomes independent of
N . To connect this non-black node without creating double
links, we require at least k0 black nodes on the other side
of the bipartite BDS. On the other hand, using Eq. (15), we
found that the number of black nodes is

NB ∝ N. (18)

The algorithm fails if k0 > NB; since k0 does not depend
on system size, we expect this to happen only for small
networks, and nmax

D = nUB
D holds true for large networks

always.
Figure 6b shows the probability that nmin

D = nLB
D . We find

that it is even less likely that equality does not hold than
for the maximum driver node case and the region where
it happens is restricted to even smaller and more hetero-
geneous networks. The fact that nmin

D 6= nLB
D means that

Alg. 2 fails when attempting to wire a graphical realization
corresponding to the lower bound. Recall that Alg. 2 does
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Fig. 5. (a) Structural control complexity ν as a function of degree exponent γ for different values of average degree c, (b) ν as a function of n0

for different values of γ. Lines provide the analytical solution, symbols show numerical results for an average of 20 independent networks with
N = 1000 nodes, and error bars indicate the standard deviation.

this by taking the bipartite representation of the BDS, and
coloring one stub red of each of theN−max(N+

0 , N
−
0 ) high-

est degree nodes while coloring the rest of the stubs blue,
where N+

0 , N−0 is the number of nodes with zero-degree
on the two sides of the BDS. The algorithm then attempts
to connect the blue stubs to blue stubs and red stubs to
red stubs. Through our numerical measurements, we found
that when nmin

D 6= nLB
D , the algorithm most frequently fails

at connecting the blue stubs of the highest degree node.
Following Eq. (11), the highest expected degree is

kB
max = kmax − 1 ∝ Nα, (19)

for large networks. To connect these stubs without creat-
ing double links, we require at least as many nodes with
nonzero blue stubs on the other side of the bipartite repre-
sentation. In model networks with symmetric in- and out-
degree distributions, we color one stub red for each node;
therefore the number of nodes with at least one blue stub is

NB
nz = (1− p(0)− p(1))N. (20)

The algorithm fails if kB
max > NB

nz; since α < 1 we only
expect this to happen for very small networks, and nmin

D =
nLB

D holds true for large networks always.

5 RELATION TO PREVIOUS WORK

In this section, we discuss the relationship between our
work and previous work on network control, and we show
that understanding how the degree sequence constrains
the number of driver nodes allows us to better interpret
established results. We focus on two main findings, the role
of degree correlations between connected node pairs and
the so-called control profile of complex networks [19], [21].

5.1 Degree correlations
Reference [19] investigated how higher order structural
features beyond the degree distribution affect the fraction

of driver nodes nD needed to control complex networks.
The authors found that out-in degree correlations, i.e., cor-
relations between the out-degree of the source node and the
in-degree of the target node at the two ends of a directed
link, have a strong effect on nD. Specifically, they added
correlations via randomized rewiring of networks while
keeping the degree distribution fixed, and they showed that
negative out-in degree correlation increased, while posi-
tive correlation decreased nD. Here, we explore a comple-
mentary question: what structural patterns characterize the
maximum and minimum driver node networks for a given
degree sequence? Taking a network produced by Algs. 1 or
2 and measuring its degree correlations, however, would be
misleading, since these algorithms provide only one out of
many possible realizations of maximum or minimum driver
node networks. Instead, we investigate the range of possible
realizations using link rewiring algorithms that preserve
both the degree distribution of the network and the number
of driver nodes.

We first map out the range of possible degree correla-
tions for the maximum driver node realizations of the real
networks listed in Table 1 of the supplementary material.
For each network, we start by generating a bipartite repre-
sentation of a maximum driver node network using Alg. 1
with its corresponding node coloring. We then rewire the
network to maximize the out-in degree correlation mea-
sured by the Pearson coefficient r, while preserving the
degree distribution and the number of driver nodes. For
this, we randomly select two links (v+, v−) and (w+, w−)
and rewire them creating links (w+, v−) and (v+, w−) if
(i) they increase the out-in correlation, (ii) the new links
do not create double links, and (iii) they do not violate
the coloring, i.e., they do not connect two non-black nodes.
The last condition ensures that the number of driver nodes
does not change. We repeat this step until r reaches a
stationary value rmax. We then similarly find the minimum
possible correlation rmin. And finally, we apply a very sim-
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Fig. 6. (a) The probability of nmax
D = nUB

D for networks with c = 15 generated using the static model. (b) The probability of nmin
D = nLB

D for networks
with c = 2 generated using the static model. The probabilities were estimated using 1000 independent realizations.

ilar rewiring procedure to study the minimum driver node
realization of the network produced by Alg. 2.

Figure 7 shows the range of degree correlations of the
maximum and minimum driver node realizations of real
networks. Overall we find consistent results with Ref. [19]:
maximum driver node networks are typically characterized
by lower, while minimum driver node networks by higher
out-in degree correlations. However, mapping out the range
of possible correlations reveals that there is room for de-
viation from this pattern. For some networks, such as the
Little Rock food web or the E. coli and yeast transcrip-
tion networks, the possible correlation coefficient values
for the maximum and minimum driver node realizations
significantly overlap; therefore, some maximum driver node
realizations have weaker or more negative in-out correlation
than some minimum driver node realizations. Our results
show that using a simple correlation coefficient to summa-
rize degree correlations in some cases may not be sufficient
to predict the controllability of networks.

Note that our method to map out possible correlations
is not exhaustive and may underestimate the range of co-
efficient values because (i) the rewiring scheme itself is a
heuristic and (ii) we fix the coloring of the networks and
other realizations with the same number of driver nodes
may exist that do not correspond to that particular coloring.

5.2 Control Profile
The control profile of networks was introduced to char-
acterize the origin of driver nodes [21]. It classifies the
driver nodes into three categories: (i) Sources, drivers that
correspond to nodes with zero in-degree; the number of
sources is, therefore, Ns = N−0 . (ii) External dilations,
drivers that are required if there is an excess of sinks
compared to sources; the number of external dilations is
Ne = max(0, N+

0 −N
−
0 ). And (iii) internal dilations, driver

nodes that cannot be explained by the presence of sources
or sinks, and are needed due to bottlenecks in the internal
structure of the network; the number of internal dilations is
Ni = ND − Ns − Ne. The control profile is then defined as
(ηs, ηe, ηi) = (Ns/ND, Ne/ND, Ni/ND), where ηs+ηe+ηi = 1.

In Ref. [22], using degree preserved randomizations the
authors demonstrated that the degree sequence of networks
does not completely determine their control profile. Here,
using Algs. 1 and 2 we precisely determine the range of the
control profile where networks with given degree sequence
are constrained to.

Figure 8 shows the ternary plots of the control profiles of
a selection of real networks. The control profile of a network
is ultimately determined by three quantities: the number
of sources N−0 , the number of sinks N+

0 , and the number
of driver nodes ND. The number of sources and sinks is
determined by the degree sequence; therefore, under degree
preserving rewiring the control profile can only change
through changes in ND. This also means that the possi-
ble control profiles accessible through degree preserving
rewiring are confined to a one dimensional segment (dashed
line in Fig. 8). One end of the segment corresponds to the
minimum driver node realization of the network, indicated
by a blue cross in Fig. 8. We showed that for all real and
all reasonable model networks Nmin

D = max(1, N−0 , N
+
0 );

therefore the control profile can always reach a point where
ηi = 0. The other end of the segment corresponds to the
maximum driver node realization of the network at

(ηs, ηe, ηi) =

=(Ns/N
max
D , Ne/N

max
D , 1−max(N−0 , N

+
0 )/Nmax

D ) =

=(Ns/N
max
D , Ne/N

max
D , 1−Nmin

D /Nmax
D ),

(21)

indicated by a red cross in Fig. 8. Networks with ηi ≈ 1 are
called internal dilation dominated, and a network can be
rewired to be internal dilation dominated if Nmax

D is much
larger than Nmin

D , for example, the mangwet food web or
the E. coli metabolic network. Previously, it was demon-
strated through random rewiring that the degree sequence
of a network does not completely determine their control
profile [22]. Here, we showed that our results allow us to
exactly identify the range of profiles accessible through such
rewiring.
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Fig. 8. Control profiles of a selection of real networks. We show the
control profile of the original network (green dot), the maximum driver
node realization (red cross), and the minimum driver node realization
(blue cross). The dashed line indicates the region accessible by degree
preserving rewiring.

6 CONCLUSION

By relying on the concept of graphicality, our work intro-
duces a novel set of tools for studying the controllability of
complex networks. We developed algorithms and analytical
methods to investigate to what extent the degree sequence
of a directed network constrains the number of driver nodes
necessary to control the network. We used these results to

introduce structural control complexity, a measure of how
much more difficult it is to control a network beyond what
is required given its degree sequence, and we applied our
tools to study real and model networks. We showed, for
example, that there exist networks that are characterized
by a high number of driver nodes, yet have low structural
control complexity. Furthermore, we demonstrated that our
approach complements our existing knowledge and helps
us better understand established results, such as the role
of degree correlations in network controllability and the
control profile of complex networks. Future work may
extend our approach to other notions of network control.
For example, it was demonstrated that control through
minimum driver node sets may have prohibitively high
energy requirements [31], [32], [33]. Therefore, it would be
interesting to understand how degree sequence constrains
such control energy. Also, this article focused on linear
dynamics, future work should investigate scenarios where
nonlinearity has to be taken into account, for example, when
the goal of control is to switch between stable attractors [5],
[34].
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S.1 MODEL NETWORKS: DERIVATIONS AND APPROXIMATIONS

In this section, we provide more details about the modified static model with a controlled fraction of unconnected nodes.
We use this model to systematically investigate the effects of the fraction of sources and sinks on nD, nmin

D , and nmax
D .

We start by discussing how well the binomial distribution approximates the degree distribution of the static model or its
modified version. Note that we use the binomial approximation in Eq. (8) to respectively calculate the fraction of non-black
and zero-degree nodes in Sec. 4 of the main text to numerically find the lower and upper bounds for the modified static
model. Next, we discuss the tail of the degree distribution of the generated networks with the modified static model using
the approach of Ref. [S1], and we show that it has power-law tail property. Finally, we provide more details about the
derivations and asymptotic behavior of lower- and upper-bounds.

S.1.1 Degree distribution of modified static model

Recall the modified static model in which we assign a weight wi = i−α/(
∑
j j
−α) to nodes i = 1, 2, . . . , N − N0 where

α ∈ [0, 1), and wi = 0 to nodes i = (N −N0 + 1), . . . , N . To generate a network, we start with N unconnected nodes, and
we randomly select two nodes i and j with probability wi and wj , respectively, and if there is no directed link from node i
to j, we connect them. We repeat this step until L links are added.

Take node i, if we assume that the consecutive trials of adding links are independent, i.e., we allow multiple links
between a pair, the out-degree (in-degree) of node i follows a binomial distribution given by

(
L
k

)
wki (1 − wi)

L−k. Therefore,
the fraction of nodes with out-degree (in-degree) k is given by

p(k) =
1

N

N∑
i=1

(
L

k

)
wki (1− wi)L−k. (S1)

However, since multiple links between two nodes are not allowed, the consecutive additions of links are not indepen-
dent, and the binomial distribution provides an approximation. In the following we calculate the expected total number of
multi-links in the generated networks and we show that for networks with γ > 3 the expected number of multi-links per
node, i.e., the density of muti-links [S2], vanishes as 1

N where N is the number of nodes, and hence its impact on the degree
distribution is negligible. For 2 < γ ≤ 3, the expected density of multi-links vanishes more slowly than 1

N as the network
size is increased and affects the degree distribution of the networks making Eq. (S1) an approximation. Nevertheless, the
density of multi-links is not uniform across different degrees and affects the high degree nodes more strongly, making the
approximation error higher for large k whereas the density of multi-links between low degree nodes is negligible. Note that
we, respectively, need to numerically calculate the fraction of low degree non-black nodes and the fraction of zero in- and
out-degree nodes in Sec. 4 of the main text to compute the upper and lower bounds. Therefore, the binomial approximation
works well for computing both bounds.

The probability of adding a specific directed link from i to j is pij = wiwj . Let Xij denote the random variable
corresponding to the number of directed links between i and j. The probability of having multi-links, i.e., at least two
directed links between i and j is given by

Pr[Xij ≥ 2] = 1− Pr[Xij = 0]− Pr[Xij = 1] = 1− (1− pij)L − Lpij (1− pij)L−1
. (S2)
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Summing this probability over all node pairs, we can compute the expected total number of multiple links as

M =

N∑
i,j=1

Pr[Xij ≥ 2]. (S3)

S.1.1.1 Exponent 2α < 1

For 2α < 1 (corresponding to γ > 3), we can simplify (S2) to find an upper bound for M using (1− pij)L ≈ 1− Lpij for
pij = wiwj < 1 and Lpij � 1. Since wi gets its maximum value for i = 1, we need to have

L
i−αj−α[∑N−N0

k=1 k−α
]2 ≤ L (1− α)2[

(N −N0 + 1)
1−α − 1

]2 ≈ c

1− n0
× (1− α)2

(N −N0)1−2α
� 1, (S4)

which holds if 2α < 1 as N − N0 increases. In (S4), c = L
N is the average degree of network and we use the fact that for

decreasing function j−α

(N + 1)
1−α − 1

1− α
=

∫ N+1

1

j−αdj ≤
N∑
j=1

j−α ≤
∫ N

0

j−α dj =
N1−α

1− α
, 0 < α < 1. (S5)

Therefore, in this regime we can use the approximation Pr[Xij ≥ 2] ≈ L(L− 1)p2
ij . We have

N∑
i,j=1

p2
ij =

N−N0∑
i,j=1

w2
iw

2
j =

[
N−N0∑
i=1

w2
i

]2

=

N−N0∑
i=1

i−2α(∑N−N0
j=1 j−α

)2


2

≤ (1− α)
4[

(N −N0 + 1)
1−α − 1

]4
[
N−N0∑
i=1

i−2α

]2

. (S6)

By applying the right hand side of (S5) in (S6) for 2α < 1 we have

M ≈ L(L− 1)

N∑
i,j=1

p2
ij ≤

L(L− 1) (1− α)
4[

(N −N0 + 1)
1−α − 1

]4 (N −N0)
2−4α

(1− 2α)
2 ≈ (1− α)

4

(1− 2α)
2

(
L

N −N0

)2

≈ (1− α)
4

(1− 2α)
2

(
c

1− n0

)2

.

(S7)
That is, for γ > 3, M is bounded by a constant and is independent of N . Therefore, the density of multi-links, MN , vanishes
asN−N0 increases; hence, its impact on binomial approximated degree distribution is negligible as it is shown in Fig. S1(a).

S.1.1.2 Exponent 2α > 1

If the exponent α satisfies 2α > 1 (corresponding to 2 < γ ≤ 3), the expected number of links between some pairs of nodes
will diverge with network size as (N −N0)β , where β > 0. For example, the expected number of links between node i = 1
and j = 2 is

Lp12 = L
2−α[∑N−N0

k=1 k−α
]2 ≈ 2−αc(1− α)2

1− n0
(N −N0)2α−1. (S8)

Using the approximation (1− pij)L ≈ Exp(−Lpij) we see that the probability that no or only a single link exists between
such node pairs decays exponentially; therefore counting the pairs of nodes for which Lpij > 1 allows us to estimate the
density of multi-links in leading order of N . The condition for this can be written as

1 < cN
(ij)−α∑N−N0

k=1 kα
≈ c(1− α)2

1− n0

(ij)−α

(N −N0)1−2α
(S9)

j <
1

i

(
(1− n0)(N −N0)1−2α

c(1− α)2

)−1/α

=
A

i
, (S10)

where we introduced A to simplify equations. Therefore, the number of multi-links is

M =
∑

Lpij>1

1 ≈
∫ N−N0

1

di

∫ A/i

1

dj ∼ ln(N −N0)(N −N0)1− 1
α = ln(N −N0)(N −N0)3−γ , (S11)

this means that the density of multi-links for this case also decays to zero as the network size is increased, albeit slower
than for the 2α < 1 case. See Fig. S1(b). The decay is particularly slow, for degree exponents close to 2, indeed we find the
most discrepancy between theory for γ ≈ 2, see Figs. 4 and 5 in the main text.

Therefore, for 2 < γ ≤ 3 the number of multiple links and hence the induced error in binomial approximated degree
distribution is increased. However, in this regime, the high degree nodes appear, and the density of multi-links is higher
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Fig. S1: (a) The density of multi-links against γ for networks with N −N0 = 1000, 500 nodes and c = 4. Numerical results
are the average of 20 independent realizations for each scenario, and error bars indicate the standard deviation. (b) The
density of multi-links against N for c = 4, γ1 = 2.7, and γ2 = 3.3. The density of multi-links for γ2 > 3 vanishes as 1

N
and the total expected number of links is bounded by a constant independent of N . The density of multi-links for γ1 < 3
vanishes more slowly than 1

N . Numerical results are the average of 20 independent realizations for each N .

for these nodes. That is, the occurrence of multi-links is more probable between high degree nodes and the probability of
multi-links between low degree nodes is negligible, as it is shown in Fig. S2. Therefore, the binomial distribution provides
a good approximation for the fraction of low degree nodes as we need to find the lower and upper bounds. Recall that
the maximum degree of non-black nodes k0 is constant and independent of N in finding the upper bound, and to find the
lower bound, we need the fraction of zero degree nodes.
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Fig. S2: The degree distribution of empirical constructed networks, approximated by the binomial distribution with
γ = 2.7, c = 4, and (a) N −N0 = 1000 nodes and (b) N −N0 = 500 nodes. The gamma distribution approximates the tail
of the distribution. Numerical results are the average of 200 independent networks, and shaded areas show the standard
deviation.
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S.1.1.3 Tail of degree distribution

Next, we show that as in the static model, the tail of the modified static model also follows the power-law distribution. We
start using the fact that the binomial distribution can be approximated by Poisson distribution for sufficiently large values
of L as (

L

k

)
wki (1− wi)L−k ≈

λki e
−λi

k!
, λi = Lwi. (S12)

Note that using wi ≈ (1−α)
N−N0

(
i

N−N0

)−α
, we have λi = Lwi ≈ c(1−α)

1−n0

(
i

N−N0

)−α
which remains constant as L

increases; making (S12) a reasonable approximation. We have:

p(k) ≈ n0δ0,k +
1

N

∫ N−N0

0

e−λiλi
k

k!
di ≈ n0δ0,k +

1

N

∫ c(1−α)
1−n0

∞

e−λiλi
k

k!

[
1− n0

c(1− α)

]−1
α

(N −N0)

(
−1

α

)
λ

−1
α −1
i dλi =

(S13)

= n0δ0,k + (1− n0)
(c[1− α]/[1− n0])

1/α

αΓ(k + 1)

∫ ∞
c(1−α)
1−n0

e−λiλi
k− 1

α−1 dλi =

= n0δ0,k + (1− n0)
(c[1− α]/[1− n0])

1/α

α
× Γ(k − 1/α, c[1− α]/[1− n0])

Γ(k + 1)
,

where Γ(a, x) is upper incomplete gamma function and is given by Γ(a, x) =
∫∞
x
e−tta−1 dt.

Since Γ(a, x)→ Γ(a) for a→∞, we find that the asymptotic behavior of the degree distribution for large k is:

p(k) ≈ (1− n0)
(c[1− α]/[1− n0])

1/α

α
× Γ(k − 1/α)

Γ(k + 1)
∝ k−(1+ 1

α ), (S14)

where we use Γ(k+a)
Γ(k+b) ∝ ka−b

(
1 +O( 1

k )
)

for k → ∞. Therefore, the tail of the degree distribution of the modified static
model has power-law property. See Fig. S2.

S.1.2 Lower bound

The lower bound nLB
D is equal to the fraction of zero-degree nodes, from equation (S13) we get

nLB
D = p(0) ≈ n0 + (1− n0)

(c[1− α]/[1− n0])1/α

α
× Γ(−1/α, c[1− α]/[1− n0]). (S15)

We can use the asymptotic behavior of Γ(a, x) to find the asymptotic behavior of nLB
D in different scenarios. Specifically,

we have [S3]:

Γ(a, x) = xa−1e−x (1 +O(1/x)) asx→ ∞. (S16)

Therefore for large values of c, the asymptotic behavior of the nLB
D is given by:

nLB
D − n0 = (1− n0)

(Ac)1/α

α
Γ(−1/α,Ac) ≈ (1− n0)

(Ac)1/α

α
(Ac)

−1/α−1
e−Ac = (1− n0)

e−Ac

αAc
, (S17)

where A = (1− α)/(1− n0). That is, nLB
D → n0 for large values of c as we see in Fig. 4 (b) of the main text.

To investigate the asymptotic behavior of nLB
D as γ → 2+ (corresponding to α→ 1−), we use the fact that:

Γ(a, x) ≈ −x
a

a
, a < 0 as x→ 0+. (S18)

Let B = c/(1− n0), we have:

nLB
D − n0 ≈ (1− n0)

(B[1− α])
1/α

α
Γ(−1/α,B[1− α]) ≈ (1− n0)

(B[1− α])
1/α

α
× − (B[1− α])

−1/α

−1/α
= 1− n0. (S19)

Therefore, nLB
D → 1 as γ → 2.
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Similarly, nLB
D → n0 for large values of γ (corresponding to α→ 0+). The reason is that we have [S3]:

Γ(a, x) ≤ e−x x
a

−a
, a < 0. (S20)

Therefore, the upper bound of nLB
D is given by:

nLB
D − n0 ≈ (1− n0)

(B[1− α])
1/α

α
Γ(−1/α,B[1− α]) ≤ (1− n0)

(B[1− α])
1/α

α

(B[1− α])
−1/α

1/α
e−B[1−α] (S21)

= (1− n0)e−B[1−α],

where for small values of α and sufficiently large values of B we have nLB
D → n0.

S.1.3 Upper bound

To find the closed form solution and the asymptotic behavior of nUB
D , recall that we color all nodes black with degree larger

than some degree k0 and a q fraction of nodes that have degree k0 and we require that at least half of the links must be
adjacent to black nodes. Let A = (1− n0) (c[1−α]/[1−n0])1/α

α in (S13), k0 is given by:∫ ∞
k0

Ak−γ+1 dk = 0.5c = 0.5

∫ ∞
1

Ak−γ+1 dk. (S22)

Solving (S22), we have k0 = 2
−1
γ−2 . Next, the fraction of black nodes is given by:

nB ≈
∫ ∞
k0

pk dk =
A

γ − 1
kγ−1

0 = (1− n0)2−
γ−1
γ−2 , (S23)

where A = (γ − 1)(1− n0) noting that we have n0 +
∫∞

1
Ak−γ dk = 1. Therefore, as γ approaches 2 a vanishing fraction

of nodes will be colored black and nUB
D approaches 1.
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S.2 DATA SETS

The descriptions of the datasets and the results for the minimum (lower bound) and maximum (upper bound) number of
driver nodes for each network are summarized in Table 1.

TABLE 1: Real networks and their properties. N,N−0 , N
+
0 : number of nodes, sources, and sinks, L: number of links,

ND, N
rand
D (std): number of drivers for original network and its average (standard deviation) for random rewired networks,

Nmin
D (NLB

D ): min. number of driver (lower bound), Nmax
D (NUB

D ): max. number of driver (upper bound).

Data Set Network N,N−0 , N
+
0 L ND N rand

D (std) Nmin
D (NLB

D ) Nmax
D (NUB

D ) Ref.
Food Web mangwet 97, 1, 2 1492 22 3.9 (1.2) 2 (2) 50 (54) [S4]

baywet 128, 1, 2 2106 30 7.5 (1.7) 2 (2) 69 (70) [S5]
littlerock 183, 1, 1 2476 99 46.6 (3.5) 1 (1) 120 (123) [S6]
ythan 135, 52, 1 597 69 61.4 (1.9) 52 (52) 100 (100) [S7]

Electric Circuit s208 122, 10, 1 189 29 24.1 (2.7) 10 (10) 53 (53) [S8]
s420 252, 18, 1 399 59 49.1 (3.8) 18 (18) 110 (110) [S8]
s838 512, 34, 1 819 119 100.5 (4.5) 34 (34) 224 (224) [S8]

Transcription E. Coli-TRN 418, 76, 312 519 314 315.3 (1.6) 312 (312) 356 (356) [S8]
Yeast-TRN 688, 96, 557 1079 565 558.2 (1.0) 557 (557) 605 (605) [S8]

Metabolic C.Elegans-metab. 1173, 40, 37 2864 354 236.4 (6.8) 40 (40) 599 (599) [S9]
E.Coli-metab. 2275, 53, 65 5763 870 505.1 (11.1) 65 (65) 1262 (1262) [S9]
Yeast-metab. 1511, 43, 40 3833 497 316.5 (8.6) 43 (43) 825 (825) [S9]

Social Prison inmate 67, 4, 7 182 9 9.7 (1.2) 7 (7) 30 (30) [S10]
UCIrvine 1899, 37, 549 20296 614 610.8 (6.7) 549 (549) 1525 (1525) [S11]
slashdot-friends-rev1 11227, 10559, 9 30914 10577 10563.9(2.2) 10559 (10559) 10942 (10942) [S12]

Web of Trust
(Social Influence) Central Coast2 943, 718, 152 1127 721 719.4 (0.86) 718 (718) 792 (792) [S13]

Napa2 646, 500, 88 926 500 500.3 (0.48) 500 (500) 541 (541) [S13]
bitcoinAlpha-rev3 3683, 411, 51 22650 1738 1485.8 (15.9) 411 (411) 3251 (3251) [S14]
bitcoinOCT-rev3 5573, 805, 76 32029 2883 2456 (18.1) 805 (805) 5012 (5012) [S14]
Advogato-rev4 5145, 1148, 729 46998 1763 1759.3 (12.8) 1148 (1148) 4362 (4362) [S15]
WikiVote-rev5 10037, 689, 7001 139311 7097 7038.3 (5.7) 7001 (7001) 8906 (8906) [S16]

Airports US-airport-2010 1574, 96, 70 28236 581 556.4 (8.9) 96 (96) 1385 (1385) [S17]
intl.-airport 2939, 18, 21 30501 872 898.4 (14.0) 21 (21) 2547 (2547) [S17]

Web polblogs-rev 1224, 160, 234 19022 436 354.2 (6.9) 234 (234) 992 (992) [S18]
Power grid Texas grid 4889, 379, 1087 5855 1588 1422.4 (12.11) 1087 (1087) 2429 (2429) [S19]

Neural C.Elegans 297, 27, 3 2345 49 28.7 (1.2) 27 (27) 179 (179) [S20]
p2p gnutella04 10876, 20, 5941 39994 6004 5994.8 (6.61) 5941 (5941) 7334 (7334) [S21]

gnutella05 8846, 118, 4996 31839 5111 5032.8 (5.4) 4996 (4996) 6074 (6074) [S21]
gnutella06 8717, 79, 4978 31525 5033 5006.0 (4.56) 4978 (4978) 5961 (5961) [S21]

1 This is a fraction of slashdot network named as slashdot-small. We extract friends relationships and reverse the direction to reflect
the influence.

2 The nodes in these networks are growers and advisors in viticulture regions and the link between i and j shows that i communicate
with j for viticulture advise. The link directions are reversed.

3 This network is a signed directed network in which the link between i and j shows the rate of trust (-10: total distrust and +10: total
trust) of i to j. We extract all positive or trust relations and reverse the link direction.

4 The directed link between two developers in the Advogato online community platform of free software, shows a trust. We remove
the self-loops and reverse the link directions.

5 Positive votes are extracted and the direction of links are reversed.
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