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Robustness of interdependent power grid and
communication networks to cascading failures

Abdorasoul Ghasemi and Hermann de Meer

Abstract—We consider the cascading failure process in interdependent power-communication networks, where the power grid
provides the required energy for the communication nodes, and the communication network facilitates the monitoring and controlling
the power networks. The proposed system model considers the flow dynamics in both networks and the failure rollover to study the
cascade process in the system and capture the possible beneficial and adverse effects of interdependency between the networks. We
suggest weak and strong interdependencies models that determine how and to what extent the loss of controllability after failures
impacts the power network and a congestion-aware load balancing scheme that exploits the system state to decrease the density of
severe cascades. The results of the cascading failure processes on data from two power networks are provided and discussed in terms
of the average unserved load in the power network and the number of failed nodes in the communication layer in different scenarios.
We find that increasing the coupling is beneficial in most cases; however, considering the robustness of each network and the nature of
the interdependencies between the two networks, over-coupling can decrease the system’s robustness against failure cascading in
certain scenarios.

Index Terms—Interdependent power-communication network, robustness, cascading failure, coupling coefficient.
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1 INTRODUCTION

Smart grids emerge to provide the ever-increasing demand
for reliable energy using the advances in power systems
and communication network technologies. These networks
rely on communication networks to monitor, control, and
make automatic decision-making in a centralized manner
[1] [2]. On the other hand, the elements in a communication
network, such as Internet routers and switches, are prone
to faults and rely on the energy of the power network
and, therefore, depend on the power grid. Accordingly, the
modern cyber-physical power grids are considered a kind
of interdependent network [3].

Interdependent power-communication networks are ex-
pected to generate, transmit, and distribute energy more
efficiently, relying on the network’s state observability and
controllability provided by the communication network [2].
Nevertheless, the fast-growing coupling between two net-
works is challenging, considering possible adverse effects
on interdependent networks’ robustness and security. The
major blackout of Italy’s power grid in 2003 [4] indicates
an example of the adverse effects of interdependency on
robustness, where the failure rollover between the power
and communications layers led to an extensive cascade. The
cyberattack on the controlling services of power companies
in Ukraine in 2015, which caused a cascading failure, also
demonstrates the security risk of interdependencies [5].

The interconnections help improve the system’s func-
tioning by optimizing the system’s performance using the
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system’s capacity. However, they also open new pathways
for failure propagation after unforeseen stresses and make
the system more brittle if the network state is lost [6] [7]. This
trade-off raises the question of finding the appropriate type
and degree of coupling between power and communica-
tion networks considering possible failure cascading effects.
Since real test on infrastructure networks is not practically
possible, and historical data are rare, different modeling
is suggested to tackle this question; each captures some
peculiarities and details of failure cascading dynamics [8].
Besides, each model provides new insights into designing a
robust interdependent power grid network against possible
cascading and designing a proper mitigation strategy [9]
[10].

Some models focused on structural properties like the
connectivity pattern of interdependent networks and ex-
ploited the mathematical frameworks like percolation the-
ory [11] or sandpile model [6] to investigate the coupling
effects. The authors of [12] have shown that interdependent
networks may be more robust to small failures under certain
conditions and are more vulnerable to large failures than
single-layer networks. Some works conclude that increasing
the coupling between two networks decreases the robust-
ness against random failures [13], [14], [15]. Others found
non-monotone relationships between the degree of coupling
in interdependent networks and their robustness, suggest-
ing that there is an optimal degree for network coupling
[16], [17].

Probabilistic models are another class to describe the
failure unfolding in interdependent networks. The authors
of [18] suggest a generalized probabilistic threshold-based
model for failure propagation in intra-and inter-layer. In
threshold-based modeling, failure propagates to a node
if the number of already affected neighbors exceeds a
threshold. Due to the non-local propagation effect of failure
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cascading in power grid networks [19], this model could
not be applied for the analysis of interdependent power-
communication networks.

The structural and probabilistic models explain some
aspects of failure cascading in interdependent networks.
However, these models overlook the flow of energy and
data in the power and communication networks which are
crucial factors in failure unfolding [20]. The importance of
realistic modeling by considering the nodes’ heterogeneity
in each layer, the physical constraints in and between layers,
and the loading level of the power grid are discussed in
[21] [22] [23]. In [24], the authors show that considering the
dynamical properties in each power and communication
network provides a more accurate cascading failure pre-
diction while incurring the implementation complexities to
capture the precise details of the power and communication
dynamics.

Taking into account the power grid physical properties
[25], [26] as well as the mitigation and controlling role of
the communication layer [20], [27], it is found that more
coupling between power and communication layers may
lead to more robustness against failure events in the cor-
responding considered power network. These studies, how-
ever, do not consider the system constraint due to different
possible architectures that define the dynamics of inter-layer
cascades between power and communication nodes.

This work studies the robustness of interdependent
power-communication networks after an initial random fail-
ure imposed on the power layer by removing a random
set of links. The failure may cascade in the power layer or
roll over to the communication layer degrading the power
network’s control. We consider a system model that captures
the constraints of flow distribution dynamics in the power
and communication networks and considers the impact of
interdependencies on load balancing decision-making at the
control center. The objective is to study how different system
constraints induced by considering more realistic dynamics
and architecture affect the cascading failure process. Using
the developed model, we specifically study how the cou-
pling coefficient and type of inter-dependencies affect the
power grids’ robustness in terms of the cascading failure
size. The main contributions of this study are:

1) The paper introduces and provides the results of
two types of weak and strong interdependency
models. These models capture to what extent the
power network relies on the control center’s de-
cisions, affecting the efficiency of decision-making
and the system’s brittleness in failure cascading.
In strong inter-dependency, a power node will dis-
connect from the network if it loses communica-
tion with the control center. In the weak inter-
dependency, however, the control center cannot con-
trol this node, i.e., for load shedding of a demand
bus or generator tripping of a generator bus, if the
communication path between a power node and the
control center fails.

2) We suggest a congestion-aware load balancing
scheme that considers lines’ congestion at the con-
trol center for load balancing. Using this scheme,
the control center considers the immediate load

shedding and the power lines’ congestions to select
a load balancing strategy according to the current
controllability state. We show that by consider-
ing the power lines’ boundaries, one can decrease
the average unserved load ratio in both strong
and weak models while the density of small and
medium cascades increases and the density of se-
vere ones decreases.

3) We show that depending on the interdependency
model and the robustness of each network, there
are scenarios in which the adverse effects of inter-
dependency may be dominant, making the interde-
pendent system less robust to random failure.

In the following, Section 2 presents the system model
of the interdependent power-communication network. Sec-
tion 3 describes how failures cascade within each layer. In
Section 4, we first explain the inter-layer failure cascading
and introduce strong and weak interdependency models.
Here, we also present the congestion-aware load balancing
scheme at the control center. Section 5 defines the metrics
used for evaluating the performance of the interdependent
system after initial random failures. In Section 6, we sim-
ulate the cascading failure process on the interdependent
power network based on the introduced system model and
load balancing strategy for diverse cascading scenarios and
discuss the results for robustness evaluation. Finally, the
paper is concluded in Section 7.

2 SYSTEM MODEL

We consider a two-layer interdependent power-
communication network that uses a control center to
monitor and control the power buses via receiving and
sending control signals for proper load balancing after
possible failures. See Fig. 1.

Let GP = (VP , EP ) describe the power network, where
VP is the set of power nodes or buses, and EP is the set
of power edges or lines. We use the terms buses and lines
to refer to the power graph in the rest. We denote the
total number of buses and lines of GP by nP and mP ,
respectively. The power demand and generation vectors
are denoted by pD and pG. We use the DC power flow
distribution model described in section 3.2 to calculate the
flow, fij on line e = (i, j).

The control center monitors and controls the power
grid’s nodes via the communication network in a central-
ized manner. The communication layer C consists of several
routing nodes, where we assume that the routing node with
the highest betweenness centrality is directly connected to
the control center [28]. We describe the communication
network by graph GC = (VC , EC), where VC is the set of
communication nodes and EC is the set of communication
links between the communication nodes. We use the terms
nodes and links to refer to the communication graph in
the rest. We use the Motter-Lai model for the data flow
distribution in the communication network, as we explain
in Section 3.1. The communication network has the same
number of nodes as the power network, and its topology
is synthesized based on the corresponding power network’s
topology as explained in section 6.
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Fig. 1: The structure of the interdependent power-
communications network is shown. The power grid consists
of power-generating buses (square) and power-consuming
buses (circle). A cyber bus connects to the control center via
a communication node, and a coupled communication node
gets electrical energy from the corresponding bus.

A subset of buses is selected randomly and uniformly ac-
cording to the coupling coefficient, q, and couples the power
network to the communication network. We considered a
one-to-one interdependency model, in which each bus is
only connected to a single corresponding node in the com-
munication layer and vice versa. We refer to coupled buses
as cyber buses. The rationale for using this interdependency
model is that the power networks and the corresponding
communication layer are typically co-evolved over time, i.e.,
when a should-be observable or controllable bus is added to
the power network, the corresponding communication node
is also created.

Let i be a cyber bus. The Control center can monitor and
send actuating signals to i if there is a route from the control
center to the corresponding communication node of i. Also,
the coupled node j in the communication layer relies on
the energy and functions if the corresponding bus remains
connected to the power network. Therefore, the number of
codependent performance buses or nodes in each layer is
q × nP .

The control center in this interdependent system at-
tempts to rebalance the network’s power supply and de-
mand after a failure. The failure is imposed in the transmis-
sion lines and may cascade through the power network, dis-
connect the network’s topology, and propagate to the com-
munication layer. The failure propagation models within
the power and communications networks are discussed in
detail in Section 3, and the interlayer cascading model is
presented in 4.1. To ensure the load balancing and mitigate
the cascade, the control center may shut down some power
nodes relying on the communication network to send ap-
propriate control signals, as discussed in subsection 4.2.

3 CASCADING FAILURE PROCESS

The cascading failure process in an interdependent power
network consists of three sub-processes: (i) cascading within
the Power grid, (ii) cascading within the communication
layer, and (iii) inter-layer cascading. The process starts with

a random initial line failure in the power network. Accord-
ing to the flow redistribution model, the initial failure leads
to flow changes on other lines. The failure may propagate
to the communication layer if a coupled node loses its
connection to the power network, i.e., the corresponding
coupled bus in the power network is isolated. The flow
redistribution at the communication layer may lead to con-
secutive failures if a node’s load exceeds its capacity. Hence,
a coupled communication node may fail either by losing its
connection to the power network or possible overloading
after a rerouting.

We use flow redistribution models to study how cas-
cades unfold in the power and communication networks.
The flow-redistribution models capture the cascading pro-
cess’s main features and are proper models for describing
the cascading failure process in flow networks such as
power grids and communication networks [8]. In flow-
redistribution models, the failure of a fraction of lines (in the
power network) or nodes (in the communication network)
redistributes the flow of energy or data to other lines or
nodes, which puts the system in a new state. If the load on
a line or a node exceeds its capacity, it will fail, causing
another redistribution of loads in the corresponding net-
work. The process will continue until the system reaches a
steady state and no more failure happens. In the following,
we provide the details of the adopted model for each sub-
process.

3.1 communication layer
The data flow between the coupled nodes and the control
center may change after a node failure in the communication
layer. This initial failure may occur accidentally, due to a
lack of power source, or even due to cyber attacks [9],
[29]. We use the Motter-Lai flow redistribution to model
node failure cascading in the communication layer [30].
Here, the initial node failure event is imposed on the
communication network after a coupled bus failure in the
power network. The initial failure changes the shortest paths
between coupled nodes and the control center, altering the
data flow distribution and may cause subsequent secondary
node failures. Secondary node failures are because of possi-
ble congestion after flow redistribution. When the offered
load exceeds the node’s capacity, the traversing packets
incur excessive delay, making communications nonfunc-
tional. Therefore, the routing strategy does not consider
the congested nodes in pathfinding. The failure cascading
unfolds until no more nodes is failed.

The node’s capacity depends on each node’s normal
operation initial load. To estimate the working load of each
node, we assume that in the normal operation of the com-
munication network, a unit of information communicates
between node pairs at each time step through the shortest
path. Therefore, the load on node j is the total number of
shortest paths that pass through it given by its betweenness
centrality and denoted by Lj . The capacity of node j, Lmax

j ,
is proportional to its initial load, L0

j and is given by

Lmax
j = (1 + β)L0

j , ∀j ∈ VC , (1)

where 0 ≤ β ≤ 1 is the tolerance coefficient, which deter-
mines the tolerance of nodes against overload. The ratio-



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

nale behind this model lies in the non-linear relationship
between the average incurred delay and the load on the
node’s output link, in which if the offered load exceeds a
saturation point, the incurred delay increases abruptly. See
supplementary material for more details about this model.

3.2 power layer

We use the DC model for flow distribution and redistribu-
tion after failure in power grids, which is widely used for
cascading failure analysis in transmission power networks
[25], [31], [32]. This simple model has good stability in
describing overload-based failures and provides a good
estimate of the power flow distribution process, close to
reality [33], [34]. In this model, the voltage phases of the
buses are given by [4], [35]:

Lθ = pG − pD, (2)

where θ = (θ1, . . . , θnp) is the vector of buses’ phases.
Matrix L is the Laplacian matrix of the Gp, i.e., Lij = −bij if
there is a link between i and j, and Lii = −

∑
j bij where bij

is the susceptance of link (i, j). Having the voltage phases,
the flow of link (i, j) is then given by

fij = bij(θi − θj). (3)

Since the total power generation and demand must be
equal, 1T (pG −pD) = 0, there are np − 1 unknown voltage
phases in the linear set of equations (2) and (3). Practically,
the voltage angle of a specific generator bus called the
slack generator is considered zero, and its power generation
adjusts to meet the supply-demand balance in the network.
We select the generator bus with the maximum unused
generating power as the slack bus and index this node by
s. Generators’ maximum possible power generation is also
denoted by pG−max.

For each transmission line e = (i, j) ∈ EP , we define
fe = |fij | = |fji| and fmax

e as the power flow and maxi-
mum flow capacity of the line e respectively. If the power
flow on the line e exceeds its maximum flow capacity, i.e.,
|fe| > fmax

e , the line fails and will be removed from the
network. This failure changes matrix L; consequently, the
voltage phases and lines’ flows change. This alternation of
flows on the transmission lines may cause new overloads,
triggering cascading failures within the power network [36].

See Algorithm 1 for the details of the iterative cascading
failure process. Let St ⊆ EP denote the set of failed edges
in the tth iteration of the cascading process. Also, for t ≥ 1,
S∗t = S∗t−1∪St is the set of failed edges at the end of iteration
t. We assume that before the initial failure events S0 ∈ EP ,
the links are not overloaded, |fe| ≤ fmax

e ,∀e ∈ EP . The iso-
lated nodes and those whose demanding power shut down
during the cascading process are considered failed nodes.
At the end of tth iteration of the cascading process, the set
of failed nodes is denoted by Ut ⊆ VP . Due to the possible
link failure, the network may decompose into several con-
nected components at iteration t. Let k be the number of
connected components after removing the failed edges S∗t .
Also, assume Gt

P = {Gt
0,Gt

1, ...,Gt
k}, k ≤ nP , is the set of

the corresponding components. For connected component
Gt
k = (Vt

k, Et
k), we have Vt

k ⊆ VP and Et
k ⊆ EP \ S∗t .

The process starts with checking the possible power
imbalance in each connected component. If Gt

k contains a
single node or does not include a generator node, all of
the component’s nodes are assumed to be failed and added
to Ut. Next, the load balancing mechanism is called. Here,
the control center helps decide which loads should be shut
down and which generators tripped, relying on the state
information provided by the communication layer. We will
discuss the congestion-based load balancing scheme and the
power-communication interactions shortly.

We add the power nodes that are shut down during
the load balancing process to the failed nodes set Ut. Next,
for a balanced power component, we consider one of its
generators as the slack bus, solve the DC equations (2) and
(3), and compute the power flow on the component edges.
Let fe(S∗t ), e ∈ EP \ S∗t denote the new computed flow of
edges in Gt

P after edge failures S∗t ⊆ EP . We check the
possible transmission link overloads in Gt

P , and if there is an
overload on edge e, this edge is added to the failed edges list
St. The cascading process steps run iteratively until the list
of failed edges St is empty, and the power network reaches
a state with no overloaded link in Gt∞

P .

Algorithm 1 Cascading failure process in power network
Input:
GP (VP , EP ): connected power network
S0 ⊆ EP : initial edge failure events
pG: list of generator nodes
pD : list of consumer nodes
pG−max: list of maximum generations of all power nodes
Output:
Gt∞

P (Vt∞
P , Et∞P ): power network after cascading

Ut ⊆ VP : set of failed nodes
S∗
t∞ = (S0, S1, ..., St∞ ): sequence of failed edges after the initial event S0

1: t← 0 ▷ initial state
2: S∗

0 ← S0 ▷ initial edge failure events
3: while St ̸= 0 do
4: Gt

P = (VP , EP \ S∗
t ) ▷ Apply edge events in St

5: Compute Gt
P = {Gt

0, G
t
1, ..., G

t
k} ▷ find connected components

6: r ← 0

7: for Gt
r, ∀r ≤ k do

8: if |Vt
r| = 1 or no generator in Gt

r then ▷ the component contains no
generator or is a single node

9: Ut ← Ut−1 ∪ Vt
r ▷ component’s nodes are failed

10: else
11: Call load balancing mechanism ▷ interaction with communication

layer
12: Ut ← Ut−1 ∪ {u|p(u)

D = 0, ∀u ∈ Vt
r} ▷ add new shedded nodes

to Ut

13: Compute new flows fe(S
∗
t ), ∀e ∈ E

t
r \ S

∗
t using DC power flow

equations and update (2) and (3)

14: r ← r + 1

15: St+1 = {e|fe(S∗
t ) > fmax

e , e ∈ EP \ S∗
t } ▷ find the set of new edge

failure events
16: S∗

t+1 ← S∗
t ∪ St+1

17: t← t + 1

The load balancing decisions impact the cascade process
and may prevent or mitigate its effects [37], [38], [39]. The
load balancing mechanism uses load shedding and gen-
erator tripping to manage significant power imbalance in
each component [40]. Nevertheless, there might be different
solutions, pushing the system into a new state that might
be less brittle to possible consecutive stresses. Also, the
decision could be made in a decentralized or centralized
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manner [41]. The decentralized schemes operate based on
local information, such as measured DC voltages, and do
not rely on a central control decision.

Under-frequency load shedding (UFLS) and under-
voltage load shedding (UVLS) are two techniques for de-
centralized load balancing [38]. UFLS scheme detects gen-
eration deficiencies within each component and sheds the
minimum load until nominal frequency recovery. The UFLS
scheme is inefficient if voltage collapse occurs within the
island. Voltage instability stems from reasons such as the
overloading of transmission lines and generator failures.
The UVLS scheme restores voltage to its nominal value
by sequentially shedding the low-priority loads whose ob-
served voltage drops below a predefined threshold when
higher thresholds are assigned to high-priority loads [41]. A
common practice in decentralized load balancing schemes
is removing the least significant loads from the network,
based on previously recorded data and preset defaults, to
the extent that the balance between generation and de-
mand is established [40]. Therefore, the low-priority loads,
the voltage thresholds, and the amount of load shedding
are determined based on previous experience or simulated
data. These strategies best suit single-layer power grids
with geographically scattered loads across the network.
Furthermore, these strategies do not consider the possible
consequences of their responses on the whole system and
its robustness to possible future stresses. The centralized
schemes, on the other hand, use the communication layer to
monitor and send appropriate control signals and, looking
ahead, mitigate the possible cascade, as we shall discuss in
Section 4.

4 INTERDEPENDENT POWER-COMMUNICATION
NETWORKS

The communication network facilitates power network
management by observing the network state, finding op-
timal strategies, and sending control signals online [42],
[43]. For example, a centralized load balancing scheme
uses the communicated network’s state in its decision to
compute and send appropriate actuating load shedding or
generator tripping in case of significant disturbances after a
random line failure. The centralized strategy advantages are
high controllability, shedding the optimal loads, and con-
sidering possible secondary failures during the cascading
process [44]. However, the underlying interdependency to
the communication network imposes further constraints on
the system and may adversely affect the whole system’s
robustness. For example, there might be possible failure
propagation between the networks, which leads to inter-
layer failure rollover. Furthermore, it is crucial to determine
to what extent the operation of each layer depends on the
other. That is, how failure propagates from one layer to the
other and how the control center and cyber buses should
respond in the case of partial observability. This section
presents a system model that captures interdependency’s
beneficial and potential adverse effects to draw new insights
for future energy networks.

Fig. 2: The figure shows a cascading failure process in a
strong interdependent power-communication network. The
power nodes’ loads at each time step are listed in the
table below. The cascading process begins with the failure
of the edge between nodes 2 and 3 at t0. Next, node 3
disconnects from the power grid and shuts down. In t1,
node 3 of the communication layer fails, and its connected
edges are removed due to a lack of power source. In t2,
due to the communication node 4 failure and isolation, the
corresponding generator node 4 in the Power layer shuts
down. In t3, the power network load is imbalanced. The
control center could not increase the generation power of
node 1 as it goes beyond its capacity. Consequently, the
control center shuts down the load on node 2 to mitigate
the cascading failure process.

4.1 inter-layer cascading

We start with the dependency model of the communication
network to the power network. Recall that a certain fraction
of communication nodes are coupled in a 1-to-1 manner to
the corresponding cyber buses in the power network. We
assume that a coupled communication node, e.g., a router,
functions appropriately if the corresponding dependent cy-
ber bus in the power layer functions appropriately. If the
corresponding power node fails, the communication node
and the inter-layer edge also fail. We select the node with
the greatest betweenness centrality as the control center in
the communication network and assume that the control
center node is not affected by failures in the power system.
The control center can observe and control a cyber bus if the
corresponding communication node is working and there is
at least one communication path between this node and the
control center.

We consider two models for power-communications in-
terdependency; each imposes different pros and cons. The
first one is called weak dependency, in which the lack
of a communication path between the cyber bus and the
control center makes this bus unobservable. Therefore, the
imperfect operation of the communication layer leads to
partial observability and controllability of the power net-
work; hence, the solution space is limited in finding a load
balancing strategy. Here, the uncontrollable cyber bus func-
tions as a fixed load or generator. Therefore, the decoupled
cyber buses are weakly dependent on the communication
layer but impose more constraints on finding an optimal
strategy in the control center if there are any irregularities.
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The second dependency model is called strong dependency.
In a strong dependency type, however, the cyber bus func-
tion relies entirely on the existence of a communication path
to the control center. The cyber bus is disconnected from the
power network if it does not receive the control signal from
the control center, increasing the immediate load shedding
after failures. On the other hand, the control center may
make a better decision in future steps because it does not
constrain by fixed loads or generations.

The cascading failure process in the interdependent
power network is simulated in consecutive steps. The ini-
tial disturbance is applied by removing a fraction of the
power network edges. In the next step, this failure may
cascade within the power network according to Algorithm
1. Also, the failure may roll over to the communication
network through dependency edges. Note that in Algorithm
1, we use the congestion-based load balancing strategy in
which the control center can control the supply/demand of
the connected nodes through the communication network.
In the case of strong interdependency, the communication
node failure may roll over to the power network and lead
to new failures within the power network, and the process
runs iteratively until no new failure happens in the power
and communication network. If the control center fails to
balance the network using the observable cyber buses, all
buses in the unbalanced component will fail. In figure 2,
we provide an illustrative example of this inter-layer failure
cascading, where a failure in the power network leads
to consecutive failures in the power and communication
networks.

4.2 centralized congestion-aware load balancing

In an interdependent power-communication network, the
control center is in charge of automatically computing and
making optimal decisions to maintain the network perfor-
mance after disturbances. The most crucial decision is load
balancing, in which the control center decides load shedding
and/or generator tripping in each component if necessary.

The straightforward solution is minimizing the immedi-
ate amount of unserved load after the initial failure, consid-
ering the physical constraints, particularly the capacity limit
of lines. Increasing the coupling coefficient, q, improves the
power network controllability as it provides more degrees of
freedom in the control center to balance the power network.
However, it also provides new pathways for failure prop-
agation between layers that make the system brittle after
random failures affecting the control pathways. Aiming
to minimize the unserved load and meet all constraints,
the control center can not find a feasible solution in some
scenarios, or it may find solutions that utilize the power
lines near their capacities, making them more brittle in the
subsequent flow redistribution.

This section discusses that after an initial failure in the
power layer and its impact on the communication layer,
the control center may have limited degrees of freedom
to find a feasible solution as it may lose access to cyber
buses. In the proposed congestion-aware load balancing,
the control center considers both the immediate shedding
load and congested power lines in load balancing. That is,
instead of considering a hard limit for lines’ capacities that

divides all possible load balancing solutions into feasible or
non-feasible solutions to the optimization problem, we can
distinguish between balancing strategies according to how
they challenge the system boundaries. We show by exten-
sive simulation that by selecting a strategy that considers
slack capacity over lines or extending the solution space to
violate the capacity limits of some lines with proper costs in
the optimization process, we can find balancing strategies
that decrease the frequency of severe cascades and even
improve the average unserved load ratio.

Let Vt
P ⊆ VP denote the set of power nodes with at least

one path to the control center at time step t of the cascading
process. We assume that the control center has the necessary
information about the power nodes and edges to which
it has at least a path through the communication layer.
Define two binary variables Xi and Yj . Xi = 1 indicates
tripping the power generation at node i for i ∈ g − {s}
where g ⊂ Vt

P is the set of observable generators which
are connected to the control center through communication
layer, and s is the index of the slack generator. X is the
vector of corresponding decision variables. Recall that the
power generation at s, p

(s)
G , is a variable used to meet

the constraints of DC power flow equations (2) and (3).
Accordingly, Yj = 1 indicates shedding the load at node
j for j ∈ Vt

P and Y is the corresponding decision vector.
Also, let continuous variable Ze denote the amount of

overload on line e, e ∈ Et
P ⊆ EP , i.e., if the absolute value of

the power flow on the transmission line e, |fe| is greater than
a fraction of its capacity, µ1f

max
e and 0 ≤ Ze ≤ (1 − µ1 +

µ2)f
max
e where 0 < µ1, µ2 < 1 are selected constants. The

overload cost of line e, Ce, is given by:

Ce =

{
P1Ze if 0 < Ze ≤ (1− µ1) f

max
e

P2Ze if (1− µ1) f
max
e < Ze

(4)

where P1, P2 are the costs of approaching the capacities
of the lines beyond the specified threshold µ1f

max
e and

violating the capacity constraint. The control center balances
the power network by control signals X, Y, and tuning the
power generation of the slack bus p

(s)
G considering both the

current demand shedding and the cost of overloaded lines.
The formal optimization problem for load balancing in

the two-layer power-communication network is given in
(5a)-(5o).
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min
X,Y,Z,δ1,δ2,p

(s)
G

∑
j

p
(j)
D Yj +

∑
e

Ce (5a)

subject to

|p(s)G +
∑
i

(1−Xi)p
(i)
G −

∑
j

(1− Yj)p
(j)
D | = 0,

(5b)

p
(s)
G ≤ p

(s)
G−max s ∈ g, (5c)

|fe| − µ1f
max
e ≤ Ze, ∀e ∈ Et

P , (5d)

Ze ∈
[
0, (1− µ1 + µ2)f

max
e

]
, ∀e ∈ Et

P ,
(5e)

Ze − (1− µ1)f
max
e ≤ M(1− δ1e),∀e ∈ Et

P

(5f)

Ce − P1Ze ≥ −M(1− δ1e),∀e ∈ Et
P , (5g)

Ce − P1Ze ≤ M(1− δ1e),∀e ∈ Et
P , (5h)

Ze − (1− µ1)f
max
e ≥ −M(1− δ2e),∀e ∈ Et

P ,
(5i)

Ce − P2Ze ≥ −M(1− δ2e),∀e ∈ Et
P , (5j)

Ce − P2Ze ≤ M(1− δ2e),∀e ∈ Et
P , (5k)

δ1e + δ2e = 1, ∀e ∈ Et
P , (5l)

Xi ∈ {0, 1}, ∀i ∈ g − {s}, (5m)

Yj ∈ {0, 1}, ∀j ∈ Vt
P (5n)

δ1e , δ
2
e ∈ {0, 1},∀e ∈ Et

P , (5o)

where M is a large constant.
The objective function in (5a) minimizes a weighted cost

of the immediate load shedding and the amount of over-
load on lines. Constraint (5b) ensures rebalancing and the
conservation condition. The maximum power generation of
the slack bus generator, p(s)G , is constrained by (5c).

Constraint (5d) is a soft limit for each line capacity,
and Constraint (5e) limits the amount of overload on each
line. (5d) and (5e) ensure that Ze > 0 if and only if
|fe| > µ1f

max
e . δ1e and δ2e are binary auxiliary variables for

each line that show the overload amount. If δ1e = 1 and
δ2e = 0, (5f) ensures that Ze ≤ (1 − µ1)f

max
e and (5g)-(5h)

sets Ce = P1Ze. In this case constraints (5i)-(5k) are inactive.
If δ1e = 0 and δ2e = 1, (5i) ensures that Ze > (1 − µ1)f

max
e

and (5j)-(5k) sets Ce = P2Ze. In this case constraints (5f)-(5h)
are inactive. Finally, (5l)-(5o) show the range of optimization
binary variables.

Applying the load balancing based on solving optimiza-
tion (5a)-(5k), the control center favors solutions that retain
enough slack capacity on lines for possible future stresses.
Also, by allowing us to go beyond the line capacity, it tries to
decrease the infeasible scenarios as we have to shed all loads
and trip all generators in the corresponding component in
infeasible scenarios.

Note that as a special case, if we set µ1 = 1, µ2 = 0 we
have Ze = 0 and hence Ce = 0, reducing the problem to
the classic optimization of minimizing the immediate load
shedding. Also, the auxiliary variables δ1e , δ

2
e for line e allow

having different penalties for overloads that are still below
the line capacities and the cost of violating the line e capac-
ities and accepting its failure. However, it also increases the
number of decision variables in the optimization problem,

which makes it more time-consuming.

5 PERFORMANCE METRICS

There are different metrics to measure the interdependent
power network robustness in the cascading failure pro-
cesses. The most important metric for evaluating the cascade
effect on the power network is the ratio of unserved load to
the network’s total load in regular operation as [45]:

ULRf = 1−

∑
i
p
(i)
D−end∑

i∈VP
p
(i)
D−0

, (6)

where
∑
i
p
(i)
D−0 is the total demanding power of all con-

sumers before the initial failure and
∑
i
p
(i)
D−end is the total

demanding power load, served at the end of the cascading
failure process. ULRf determines the relative size of the
power lost due to the initial failure of a fraction f ∈ [0, 1] of
power grid edges.

Giant component size is the ratio of the number of nodes
in the final remaining connected giant component, nGC ,
to the total number of nodes, P∞ = nGC/nP [3]. This
metric reflects the cascade effects on the connectivity of
the network. The size of the giant component is the main
objective in structural cascading failure analysis.

We measure the cascade effect on the communica-
tion layer by the ratio of failed communication nodes
Cf
∞ = nfailed

C /nC , where nfailed
C is the total number of

failed nodes within the communication layer at the end of
the cascading failure process.

We measure the power to communication failure rollover
ratio PCR by finding the ratio of the number of failed
communication nodes due to the failure of the correspond-
ing node in the power layer during the interdependent
cascading process, ndf

C , by

PCR = ndf
C /nC , (7)

In the case of strong interdependency, we also find the
communication to power failure rollover ratio CPR, which
determines the ratio of the number of shutting down buses,
ndf
P , due to the loss of communication with the control center

during cascading failures by

CPR = ndf
P /nP , (8)

PCR and CPR metrics depend highly on the q because they
only measure the dependent failed nodes’ ratio.

6 SIMULATION RESULTS AND DISCUSSIONS

We first study how considering the lines’ congestion in load
balancing can help find better solutions and decrease the
unserved load ratio in the interdependent system model.
Next, we discuss the impact of power network observability
on the robustness of the interdependent power network in
strong and weak models for different fractions of random
line failures and compare it to the full observable scenario.
Finally, considering different interdependency types, we
investigate the coupling effect on the final cascade size.
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We simulate and present the results on IEEE-118-Bus and
IEEE-300-Bus transmission networks. The required data,
including the network connectivity, the lines’ capacities,
and the maximum generators’ powers, are available in [46].
Due to the high lines’ reactance to resistance ratio values,
we can use DC power flow to compute the lines’ flows.
The basic statistics of these networks are summarized in
table 1. These data sets also provide the admittance values
and the maximum transmitting power of the transmission
lines. We have generated different instances of the original
power network for simulation purposes by modifying the
original power generation and demand values to consider
the demand variations over time.

TABLE 1: Basic statistics of the studied power networks:
total number of nodes nP ; the total number of edges mP ;
mean degree ⟨k⟩; mean distance between connected node
pairs ⟨l⟩; clustering coefficient C and network’s diameter d.

Networks nP mP ⟨k⟩ ⟨l⟩ C d
118-Bus 118 179 3.034 6.26 0.136 14
300-Bus 300 409 2.72 9.90 0.096 24

In each simulation setup and to consider load variations,
we generate new instances of the corresponding power
network from the reference data. For this purpose, we
calculate the demanding load ratio to the maximum possible
generating load in the reference sample of each network.
We generate a new instance by randomly increasing the
generation and demanding loads in different nodes so that
the resulting scenario is balanced and no transmission line
is overloaded.

The corresponding communication network for each
power network instance has the same number of nodes, and
its topology is generated by randomly rewiring 10% of the
power network and randomly adding 10% more edges to
this graph. The capacity of each node in communication
networks is determined using the Motter-Lai equation (1),
according to the initial load on it and the tolerance parame-
ter β of the network. Other details of each simulation setup
are given in the corresponding subsection.

6.1 Congestion aware load balancing

We first discuss the importance of considering line con-
gestion in the centralized load balancing scheme using
penalties P1 = 1 and P2 = 10 in optimization problem
(5a)-(5o). We generate 5 instances of the IEEE-118 power
network, consider 5 random rewiring between the layers,
and measure the unserved load ratio for a pre-determined
100 random line failure scenarios with q = 0.5, β = 0.3, and
f = 0.05.

We perform extensive simulations and study the behav-
ior of the cascading process on the interdependent power-
communication network for different values of µ1 and µ2.
Fig. 3 shows the density function of the corresponding ULR
for congestion aware load balancing (µ1 = 0.8, µ2 = 0.4)
against the scenario which does not consider lines’ conges-
tions (µ1 = 1.0, µ2 = 0) for strong and weak interdependent
models. In both models considering the lines’ congestions
in the load balancing decreases the average unserved load

by decreasing the density of severe cascades. Here for the
strong model, the ULR is decreased from 0.35 to 0.31, and
for the weak interdependency model, from 0.30 to 0.25.

We perform this simulation over different random initial
failure sets, inter-layer rewiring, different values of β and
q, and observe the same behavior for both weak and strong
interdependency models. The average unserved load ratio
decreases while the density of low to medium cascades
increases, and the density of severe cascades decreases. We
also observe the same trend for the IEEE-300-Bus network.
See Fig. S1 in the supplementary material file.

We also perform this simulation when we set P1 = P2

and observe the same behavior while the improvement in
the average unserved load ratio is decreased. That is, by
removing the δ1, δ2 vector variables from the optimization,
we can still find a better solution compared to the case that
we do not consider lines’ congestions.

These results suggest that interdependent power-
communication networks can take advantage of network
observability and controllability for automatic decision-
making of load balancing at the control center. Also, by con-
sidering the lines’ congestions, decisions can be made such
that we can avoid the possible brittleness due to underlying
interdependency consequences in random failures.

6.2 Robustness against random failures

This section evaluates the robustness of interdependent
power-communication networks against random failure
cascading. Here, to run the simulations over enough sam-
ples timely, we set P1 = P2. We simulate the cascading
failure process by randomly removing a fraction f of lines in
the power network and measuring the ULR. We also report
the size of the giant component P∞.

The result for each f is the average of running the pro-
cess for 5 instances of power network at different loads and
5 instances for the corresponding communication network.
We randomly chose 5 distinctive sets of couplings between
the nodes of two layers for each pair of these power and
communication networks according to the coupling coef-
ficient q to construct the interdependent network. Finally,
we simulate the process 10 times by randomly removing a
fraction f of lines. Accordingly, the results are the average of
1250 distinct scenarios with different loads, communication
network topologies, coupling patterns, and failure scenarios
for each point. We find that this sample size provided a
reasonable tradeoff between the confidence interval and
required computational time, which is significant given the
details of our model.

We provide the corresponding results of a fully observ-
able network in which all buses are considered cyber buses
and observable by the control center. The gap between an
interdependent and the full observable scenario shows the
adverse effect of interdependency and controllability loss in
the strong model and controllability loss impact in the weak
model.

Fig. 4 show the unserved load ratio and giant component
size for the strong and weak models for β = 0.3 and
different values of coupling coefficients. We first note that
the full controllability of the power network, as expected,
helps in optimal decision-making, and losing that degrades
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Fig. 3: The density function of the unserved load ratio without (µ1 = 1.0, µ2 = 0) and with (µ1 = 0.8, µ2 = 0.4)
consideration of lines congestions for (a) strong interdependency and (b) weak interdependency models.
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Fig. 4: The average and the corresponding 95% confidence interval of (a) ULR and (b) giant component size P∞, against
the fraction of randomly failed edges for the IEEE-118-Bus for β = 0.3. The dashed lines are for the weak model, and the
solid lines are for the strong model.

the desired performance metrics, especially in the strong de-
pendency model. Also, Fig. 4a shows that the ULR increases
rapidly if the coupling coefficient decreases, especially in
the strong interdependency model. Furthermore, Fig. 4b
shows that the size of the giant component does not change
in different scenarios. We observe the same trend for the
IEEE-300-Bus network. See Fig. S2 in the supplementary
material file. This result suggests that strong and weak
dependency may degrade the robustness by more interlayer
failure propagation and decrease the control center’s ability
to mitigate cascade effects.

We also note that increasing the coupling coefficient is
beneficial when the fraction of lost lines f is large enough,
f > 0.05. We investigate the impact of the coupling coeffi-
cient for small values of f in the following subsection.

6.3 The effect of coupling coefficient

We simulate and measure the ULR for the IEEE-118-Bus
network to investigate the impact of the coupling coefficient
on the interdependent power for small values of f .

Fig. 5a shows the ULR metric after removing a fraction
f = 0.05 of edges in the IEEE-118-Bus grid for different
values of q and β = 0.1, 0.3. In the weak model, depicted by
dash lines, we see a monotonic decrease in the ULR as the
coupling between the two networks increases suggesting
that the power network’s robustness increases. The reason
is that with the increase in the number of edges between the
two networks, the power network controllability through
the communication network is increased; therefore, the con-
trol center better mitigates the effects of the cascade. In
contrast, in the strong interdependency model depicted by
solid lines, we observe that increasing the coupling beyond a
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threshold is not beneficial or increases the ULR. This feature
is highlighted more for smaller values of β, i.e., when the
communication layer is not robust enough. The reason roots
in the adverse effect of communication on power failure
rollovers. See Fig. 5b. We observe the same pattern for the
IEEE-300-bus network. See Fig. S3 in the supplementary
material file.

In the strong interdependency model, by increasing q,
the CPR may increase rapidly, canceling the gain of increas-
ing controllability, especially for low values of β. This result
is consistent with previous results for pure structural mod-
els, which suggested that increasing the coupling coefficient
beyond a threshold has an adverse effect and decreases the
system’s robustness.

This result suggests that the interdependent power net-
work’s robustness may decrease beyond a coupling coeffi-
cient threshold consistent with the pure topological models.
This threshold depends on the β, as for large values of β,
the number of communication to power rollovers decreases
significantly.

Finally, Fig. 6 shows the effect of the coupling coeffi-
cient on the robustness of the communication layer against
failure cascading in the interdependent power grid. Fig. 6a
and Fig. 6b show, respectively, the total fraction of failed
communication nodes and the fraction of failed nodes due
to the failure rollover from the power network.

We note that by increasing q, more communication nodes
are susceptible to failure as their corresponding cyber bus
may fail. On the other hand, by increasing q, we expect
an increase in the power network controllability that better
mitigates the initial failure effects by the control center.

Fig. 6a and Fig. 6b show that for β = 0.1, the total
fraction of failed communication nodes and the fraction
of power to communication failure rollovers increases in
both weak and strong interdependency models. However,
for β = 0.3, increasing the coupling coefficient beyond a
threshold, i.e., q > 0.4, is beneficial as the total number and
the fraction of power to communication failure rollovers de-
crease. From the communication layer perspective, increas-
ing the coupling is beneficial when this network robustness
is sufficiently large. See Fig. S4 for the results of the IEEE-
300-bus network.

These results suggest that interdependency could ben-
efit interdependent power-communication networks under
certain conditions. The main factors that impact different
system performance metrics are the interdependency model,
the interdependent decision-making load balancing, the ro-
bustness of each layer, and the coupling coefficient.

7 CONCLUSION

We proposed a system model for analyzing the cascading
failure process on an interdependent power-communication
network that reflects interdependency’s beneficial and ad-
verse effects. We consider the nature of flow distribution in
the layers and the structure and constraints of each network.
We suggest an automatic load balancing mechanism that
relies on facilitated controllability by the communication
layer to switch off loads and generations. This scheme
mitigates the density of severe cascading scenarios resulting
from controllability loss after random failures, considering

the immediate shedding load and lines’ congestions. We
investigate the effect of weak and strong interdependen-
cies, the robustness of the communication network, and
the coupling coefficient in different scenarios. We find that
interdependency’s beneficial and adverse effects vary in
these scenarios, concluding that interdependency is bene-
ficial under certain conditions.
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S.1 FAILURE CASCADING IN COMMUNICATION LAYER

This section provides more details about the failure cascading model in the communication layer. We start by discussing
how to generate topology and find the nominal load of each node. Then, we explain adjusting the nodes’ capacities
according to their nominal load by discussing how a source and destination could effectively communicate in a timely
manner.

We do not have the actual topology and the nodes’ capacities of the communication network. We assume that the
communication network has the same number of nodes as the corresponding power network. Its topology is generated by
randomly rewiring 10% of the power network and randomly adding 10% more edges to this graph. The reason is that the
communication network typically co-evolves with the power layer.

To determine the capacity of the nodes more realistically, we first find the nominal load of each node and then consider
the node capacity proportional to it. We find the number of shortest paths passing through each node to estimate its
nominal load, i.e., the node’s betweenness centrality measure. Using the betweenness centrality measure is effectively the
same as assuming some background communications between the other node pairs, i.e., there is a one-unit information
exchange between nodes. Note that we use this assumption to find the capacity of each node where a coupled bus is
observable if there is a congestion-free path between the control center and the corresponding coupled node.

In packet-switched networks, routing protocol determines the path packets traverse to reach their destination. We use
the shortest path as the routing protocol, and the destination is the control center. Consider a node in the path of a given
source node to the control center. The arrived data packets are queued in each intermediate node’s output buffer to forward
to the next hop on the path. The observed average queueing delay, T , generally depends on packets’ arrival and service
rates stochastic processes. For example, in the M/M/1 queueing model, packets arrive according to the Poisson process with
the rate λ and the probability distribution of service time, i.e., the ratio of random packet length to the output link rate, is
exponential with mean 1/µ sec we have T = 1

µ−λ = ρ
λ(1−ρ) , where ρ = λ

µ . The average delay tends to infinity if the link’s
utilization tends to one. The corresponding output buffer will be congested if the offered load to an output link exceeds a
certain threshold. In regular operation, the load of each link is far away from the congestion region. Therefore, as in Equ.
(1) of the main text, we could consider a tolerance coefficient to consider the excessive load the link node can forward
without excessive delay.

S.2 SIMULATION RESULTS FOR IEEE-300-BUS NETWORK

This section provides the simulation results for the robustness evaluation of the interdependent IEEE-300-bus network.

S.2.1 Congestion aware load balancing

We generate 5 instances of the IEEE-300 bus transmission power network, consider 5 random rewiring between the layers,
and measure the unserved load ratio for a pre-determined 100 random line failure scenarios with q = 0.5, β = 0.3, and
f = 0.01. We set P1 = 1 and P2 = 10 in congestion-aware load balancing.

Fig. S1 shows the density function of the corresponding ULR for congestion-aware load balancing (µ1 = 0.8, µ2 = 0.4)
against the scenario which does not consider lines’ congestions (µ1 = 1.0, µ2 = 0) for strong and weak interdependent
models. In both models considering the lines’ congestions in the load balancing decreases the average unserved load by
decreasing the density of severe cascades. Here for the strong model, the ULR is decreased from 0.43 to 0.4, and for the
weak interdependency model, from 0.34 to 0.27.
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Fig. S1: The density function of the unserved load ratio without (µ1 = 1.0, µ2 = 0) and with (µ1 = 0.8, µ2 = 0.4)
consideration of lines congestions for (a) strong interdependency and (b) weak interdependency models in IEEE-300 Bus
network.

S.2.2 Robustness against random failures

Here we provide the results of IEEE-300-bus network robustness against random failure cascading. The result for each f is
the average of running the process for 5 instances of power network at different loads and 5 instances for the corresponding
communication network. We randomly chose 5 distinctive sets of couplings between the nodes of two layers for each pair of
these power and communication networks according to the coupling coefficient q to construct the interdependent network.
Finally, we simulate the process 5 times by randomly removing a fraction f of lines. Accordingly, the results are the average
of 625 distinct scenarios with different loads, communication network topology, coupling patterns, and failure scenarios
for each point. Fig. S2 shows the corresponding unserved load ratio and giant component size against different values of
f .
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Fig. S2: The average and the corresponding 95% confidence interval of ULR and giant component size P∞ against the
fraction of randomly failed edges for the IEEE-300-Bus for β = 0.3. The dashed lines are for the weak model and the solid
lines are for the strong model.

S.2.3 The effect of coupling coefficient

This section provides the results of robustness metrics against the coupling coefficient. We use the same simulation setup
in subsection S.2.2 and assume f = 0.01 fraction of lines are randomly failed.
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Fig. S3 shows the ULR and CPR metrics. Fig. S4(a) and Fig. S3(b) show, respectively, the total fraction of failed
communication nodes and the fraction of failed nodes due to the failure rollover from the power network.
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Fig. S3: The average and the corresponding 95% confidence interval of ULR and the CPR metric against the coupling
coefficient for β = 0.1, 0.3 for the IEEE-300-Bus. The dashed lines are for the weak model and the solid lines are for the
strong model.
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Fig. S4: The average and the corresponding 95% confidence interval of PCFN and PCR metrics against the coupling
coefficient for β = 0.1, 0.3 for the IEEE-300-Bus. The dashed lines are for the weak model and the solid lines are for the
strong model.


