
Chapter 12 includes a general introduction to MATLAB functions, selected topics in linear algebra with MATLAB, and a collection of finite element programs for: trusses (Chapter 2), general one-dimensional problems (Chapter 5), heat conduction in 2D (Chapter 8) and elasticity in 2D (Chapter 9). This Chapter is published electronic format only for several reasons:

1. the data structure of the finite element program will be periodically updated to reflect emerging finite element technologies and MATLAB syntax changes;

2. to allow the course instructors to use their own MALAB or other finite element codes. 

3. to create a forum where students and instructors would exchange ideas and place alternative finite element program data structures. The forum is hosted at

                                       http://1coursefem.blogspot.com/ 

12.1 Using MATLAB for FEM
 

12.1.1 The MATLAB Windows

Upon opening MATLAB you should see three windows: the workspace window, the command window, and the command history window as shown in Figure 12.1. If you do not see these three windows, or see more than three windows you can change the layout by clicking on the following menu selections: View → desktop layout → default.


[image: image1.emf] 


Figure 12.1: Matlab Windows

12.1.2 The Command Window 

If you click in the command window a cursor will appear for you to type and enter various commands.  The cursor is indicated by two greater than symbols (>>).
12.1.3 Entering Expressions 

After clicking in the command window you can enter commands you wish MATLAB to execute.  Try entering the following: 8+4.  You will see that MATLAB will then return: ans = 12.

12.1.4 Creating Variables 

Just as commands are entered in MATLAB, variables are created as well. The general format for entering variables is: variable = expression.  For example, enter y = 1 in the command window.  MATLAB returns: y = 1.  A variable y has been created and assigned a value of 1.  This variable can be used instead of the number 1 in future math operations.  For example: typing y*y at the command prompt returns: ans = 1.  MATLAB is case sensitive, so y=1, and Y=5 will create two separate variables.

12.1.5 Functions 

MATLAB has many standard mathematical functions such as sine (sin(x)) and cosine (cos(x)) etc.  It also has software packages, called toolboxes, with specialized functions for specific topics. 

12.1.6 Getting Help and Finding Functions 

The ability to find and implement MATLAB’s functions and tools is the most important skill a beginner needs to develop.  MATLAB contains many functions besides those described below that may be useful. 

There are two different ways obtain help: 

• Click on the little question mark icon at the top of the screen.  This will open up the help window that has several tabs useful for finding information.  

• Type “help” in the command line: MATLAB returns a list of topics for which it has functions.  At the bottom of the list it tells you how to get more information about a topic. As an example, if you type “help sqrt” and MATLAB will return a list of functions available for the square root. 
12.1.7 Matrix Algebra with MATLAB

MATLAB is an interactive software system for numerical computations and graphics. As the name suggests, MATLAB is especially designed for matrix computations. In addition, it has a variety of graphical and visualization capabilities, and can be extended through programs written in its own programming language. Here, we introduce only some basic procedures so that you can perform essential matrix operations and basic programming needed for understanding and development of the finite element program.

12.1.8 Definition of matrices 

A matrix is an mxn array of numbers or variables arranged in m rows and n columns; such a matrix is said to have dimension mxn as shown below
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Bold letters will denote matrices or vectors.  The elements of a matrix a are denoted by
[image: image3.wmf]ij

a

, where i is the row number and j is the column number.  Note that in both describing the dimension of the matrix and in the subscripts identifying the row and column number, the row number is always placed first.

An example of a 3x3 matrix is:
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The above matrix a is is an example of a square matrix since the number of rows and columns are equal. 

The following commands show how to enter matrices in MATLAB (>> is the MATLAB prompt; it may be different with different computers or different versions of MATLAB.)



[image: image5.wmf]>> a = [1 2 3; 4 5 6; 7 8 0]

a =

     1     2     3

     4     5     6

     7     8     0


Notice that rows of a matrix are separated by semicolons, while the entries on a row are separated by spaces (or commas). The order of matrix 
[image: image6.wmf]a

can be determined from 
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The transpose of any matrix is obtained by interchanging rows and columns.  So for example, the transpose of a is:
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In MATLAB the transpose of a matrix is denoted by an apostrophe (‘). 

 If  
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, the matrix 
[image: image10.wmf]a

 is symmetric.  

A matrix is called a column matrix or a vector if n=1, e.g.
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In MATLAB, single subscript matrices are considered row matrices, or row vectors. Therefore, a column vector in MATLAB is defined by 



[image: image12.wmf]>> b = [1  2  3]'

b =

     1

     2

     3


Note the transpose that is used to define b as a column matrix. The components of the vector b are 
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.  The transpose of b is a row vector
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or in MATLAB



[image: image15.wmf]>> b  = [1  2  3]

b =

     1     2     3


A matrix is called a diagonal matrix if only the diagonal components are nonzero, i.e., 
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. For example, the matrix below is a diagonal matrix:
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A diagonal matrix in MATLAB is constructed by first defining a row vector b = [1 5 6], and then placing this row vector on the diagonal



[image: image19.wmf]>> b = [1 5 6];

>> a = diag (b)

a =

     1     0     0

     0     5     0

     0     0     6


A diagonal matrix where all diagonal components are equal to one is called an identity or unit matrix and is denoted by I.  For example, 
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identity matrix is given by
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The MATLAB expression for an order n unit matrix is
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Thus, the MATLAB expression 
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 gives the above matrix. 

A matrix in which all components are zero is called a zero matrix and is denoted by 0. In MATLAB, B = zeros (m, n) creates 
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 matrix B of zeros. A random 
[image: image25.wmf]mn
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 matrix can be created by rand (m,n). 

In finite element method, matrices are often sparse, i.e., they contain many zeros. MATLAB has the ability to store and manipulate sparse matrices, which greatly increases its usefulness for realistic problems. The command sparse (m, n) stores an 
[image: image26.wmf]mn

´

zero matrix in a sparse format, in which only the nonzero entries and their locations are sorted. The nonzero entries can then be entered one-by-one or in a loop.



[image: image27.wmf]>> a = sparse (3,2)

a =

   All zero sparse: 3-by-2

>> a(1,2)=1;

>> a(3,1)=4;

>> a(3,2)=-1;

>> a      

a =

   (3,1)        4

   (1,2)        1

   (3,2)       -1


Notice that the display in any MATLAB statement can be suppressed by ending the line with a semicolon.

The inverse of a square matrix is defined by



[image: image28.wmf]11

--

==

aaaaI


if the matrix 
[image: image29.wmf]a

is not singular. The MATLAB expression for the inverse is 
[image: image30.wmf]()

inva

. Linear algebraic equations can also be solved by using backslash operator as shown in Section 1.3.10, which avoids computations of the inverse and is therefore faster. 


The matrix 
[image: image31.wmf]a

is nonsingular if its determinant, denoted by 
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, is not equal to zero. A determinant of a 2x2 matrix is defined by 
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 The MATLAB expression for the determinant is 



[image: image34.wmf]det()
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For example,



[image: image35.wmf]>> a = [1 3; 4 2];

>> det (a)

ans =

   -10


12.1.9 Operation with matrices

Addition and Subtraction
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An example of matrix addition in MATLAB is given below: 



[image: image37.wmf]>> a = [1 2 3;4 5 6;7 8 9]; 

>> a = [1 1 1;2 2 2;3 3 3];

>> c = [1 2;3 4;5 6];

>> a+b

ans =

     2     3     4

     6     7     8

    10    11    12

>> a+c

??? Error using ==> +

Matrix dimensions must agree


Multiplication

1. Multiplication of a matrix by a scalar
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2. Scalar product of two column vectors
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In MATLAB the scalar product as defined above is given by either 
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or 
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The length of a vector a is denoted by |a| and is given by
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The length of a vector is also called its norm.

3. Product of two matrices

The product of two matrices a 
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and b 
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is defined as   
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Alternatively we can write the above as
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Note the the i,j entry of c is the scalar product of row i of a and column j of b.

The product of two matrices a and b c is defined only if the number of columns in a equals the number of rows in a.  In other words, if a is an 
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 matrix, then b must be an 
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 matrix, where k is arbitrary.  The product c will then have the same number of rows as a and the same number of columns as b, i.e. it will be an 
[image: image49.wmf]mn
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 matrix. 

An important fact to remember is that matrix multiplication is not commutative, i.e. 
[image: image50.wmf]¹
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 except in unusual circumstances.

The MATLAB expression for matrix multiplication is
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Consider the same matrices a and c as before. An example of matrix multiplication with MATLAB is:



[image: image52.wmf]>> a*c

ans =

    22    28

    49    64

    76   100

>> c*c

??? Error using ==> *

Inner matrix dimensions must agree.


4.   Other matrix operations

a) Transpose of product: 
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b) Product with identity matrix: 
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c) Product with zero matrix:
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12.1.10 Solution of system of linear equations

Consider the following system of n equations with n unknowns, 
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We can rewrite this system of equations in matrix notation as follows:


[image: image59.wmf]=

Kdf


where
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The symbolic solution of the above system of equation can be found by multiplying both sides with inverse of K, which yields
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MATLAB expression for solving the system of equations is
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or
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An example of solution of system of equations with MATLAB is given below:



[image: image64.wmf]>> A = rand (3,3)

A =

    0.2190    0.6793    0.5194

    0.0470    0.9347    0.8310

    0.6789    0.3835    0.0346

>> b = rand (3,1)

b =

    0.0535

    0.5297

    0.6711

>> x = A\b

x =

 -159.3380

  314.8625

 -344.5

078


As mentioned before, the backslash provides a faster way to solve equations and should always be used for large systems. The reason for this is that the backslash uses elimination to solve with one right hand side, whereas determining the inverse of an nxn matrix  involves solving the system with n right hand sides. Therefore, the backslash should always be used for solving large system of equations.

12.1.11 Strings in MATLAB

MATLAB variables can also be defined as string variables. A string character is a text surrounded by single quotes. For example:


[image: image65.wmf]>> str='hello world'

str =

hello world


It is also possible to create a list of strings by creating a matrix in which each row is a separate string. As with all standard matrices, the rows must be of the same length. Thus: 


[image: image66.wmf]>> str_mat = ['string A' ; 'string B']

str_mat =

string A

string B


Strings are used for defining file names, plot titles, and data formats. Special built-in string manipulation functions are available in MATLAB that allow you to work with strings. In the MATALB codes provided in the book we make use of strings to compare functions. For example the function strcmpi compares two strings 


[image: image67.wmf]>> str = 'print output';

>> strcmpi(str,'PRINT OUTPUT')

ans =

     1


A true statment results in 1 and a false statement in 0. To get a list of all the built-in MATLAB functions type


[image: image68.wmf]>> help strfun


Another function used in the codes is fprintf. This function allows the user to print to the screen (or to a file) strings and numeric information in a tabulated fasion. For example


[image: image69.wmf]>>fprintf(1,'The number of nodes in the 

mesh is %d \n',10)

The number of nodes in the mesh is 10 


The first argument to the function tells MATLAB to print the message to the screen. The second argument is a string, where %d defines a decimal character with the value of 10 and the \n defines a new line.  To get a complete description type


[image: image70.wmf]>> help fprintf


12.1.11 Programming with MATLAB

MATLAB is very convenient for writing simple finite element programs. It provides the standard constructs, such as loops and conditionals; these constructs can be used interactively to reduce the tedium of repetitive tasks, or collected in programs stored in ''m-files'' (nothing more than a text file with extension ``.m'').

12.1.11.1 Conditional and Loops
MATLAB has a standard if-elseif-else conditional.

	The general form
	An example

	if expression1

   statements1

elseif expression2

   statements2

…

…

…

else

   statements

end
	>> t = 0.76;

>> if t > 0.75

      s = 0;

   elseif t < 0.25

      s = 1;

   else

      s = 1-2*(t-0.25);

   end

>> s

s =

     0


MATLAB provides two types of loops, a for-loop (comparable to a Fortran do-loop or a C for-loop) and a while-loop. A for-loop repeats the statements in the loop as the loop index takes on the values in a given row vector; the while-loop repeats as long as the given expression  is true (nonzero):

	The general form
	Examples

	for index = start:increment:end

    statements

end
	>> for i=1:1:3

      disp(i^2)

   end

     1

     4

     9

	while expression

    statements

end
	>> x=1;

>> while 1+x > 1

      x = x/2;

   end

>> x

x =

   1.1102e-16


12.1.11.2 Functions

Functions allow the user to create new MATLAB commands. A function is defined in an m-file that begins with a line of the following form: 

function [output1,output2,...] = cmd_name(input1,input2,...) 

The rest of the m-file consists of ordinary MATLAB commands computing the values of the outputs and performing other desired actions. Below is a simple example of a function that computes the quadratic function
[image: image71.wmf]2
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. The following commands should be stored in the file fcn.m (the name of the function within MATLAB is the name of the m-file, without the extension) 



[image: image72.wmf]function y = fcn( x )

y=x^2-3*x-1;

Then type command:

>> fcn(0.1)

ans =

   -1.2900


12.1.12 Basic graphics

MATLAB is an excellent tool for visualizing and plotting results. To plot a graph the user specifies the x coordinate vector and y coordinate vector using the following syntax


[image: image73.wmf]>> x=[0:0.01:1];

>> y=x.^2;

>> plot(x,y);


The above will generate 
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Figure 12.2 Typical outpout of plot(x,y) function

Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s is a character string consisting of elements from any combination of the following 3 columns:

b     blue    
 
     
.     point              

-     solid

g     green        


o     circle             

:     dotted

r     red           


x     x-mark             

-.    dashdot 

c     cyan          

+     plus               

--    dashed   

m     magenta       

*     star             

(none)  no line

y     yellow        

s     square

k     black         

d     diamond

To add a title, x and y labels, or a grid, the user should use the following MATLAB functions. Note that the arguments to the functions are strings 


[image: image75.wmf]>> title('circle');

>> xlabel('x');

>> ylabel('y');

>> grid


In the MATLAB Finite Element code provided in the book, we also use two specialized plots. The first plot is the patch function. This function is used to visualize 2D polygons with colors. The colors are interpolated from nodes of the polygon to create a colored surface. The following example generates a filled square. The colors along the x axis are the same while the colors along the y axis are interpolated between the values [0,1].  


[image: image76.wmf]>> x = [0 1 1 0];

>> y = [0 0 1 1];

>> c = [0 0 1 1];

>> patch(x,y,c)
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Figure 12.3 Typical outpout of patch(x,y,c) function

We will use the patch function to visualize temperatures, stresses and other variables obtained at the finite element solutions.   Another specialized plot function is the quiver. This function is used to visualize gradients of functions as an arrow plot. The following example demonstrates the use of quiver function for plotting the gradients to the function y=x2

[image: image78.wmf]>> x=0:0.1:1; y=x.^2;

>> cx=ones(1,11); cy=2*x;

>> plot(x,y); hold on

>> quiver(x,y,cx,cy)
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Figure 12.4 Typical outpout of quiver(x,y,cx,cy) function

The hold on command is used to hold the current plot and all axis properties so that subsequent graphing commands will executed on the existing graph. 

Using the text function, the user can add to a plot a text message. For example


[image: image80.wmf]text(1,1,'flux')


 The first and second arguments define the position of the text on the plot, while the string gives the text. 

12.1.13 Remarks

a) In practice the number of equations n can be very large. PCs can today solve thousands of equations in a matter of minutes if they are sparse (as they are in FEM analysis-you will learn about this later) but sometimes millions of equations are needed, as for an aircraft carrier or a full model of an aircraft; parallel computers are then needed.

b) Efficient solution techniques that take advantage of the sparsity and other advantageous properties of FEM equations are essential for treating even moderately large systems. The issue of how to efficiently solve large systems will not be considered in this course.

c) In this course, we will see that

· The matrix corresponding to the system of equations arising from FEM (denoted as K) is non-singular (often called regular), i.e., 
[image: image81.wmf]1
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exists if the correct boundary conditions are prescribed and the elements are properly formulated.  Furthermore, for good models it is usually well-conditioned, which means it is not very sensitive to roundoff errors.  

· K is symmetric, i.e.
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=

KK

.

· K is positive definite, i.e., 
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(meaning for any value of x)

Alternatively, K is said to be positive definite if all the eigenvalues are strictly positive. The eigenvalue problem consists of finding nonzero eigenvectors 
[image: image84.wmf]y

and the corresponding eigenvalues 
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satisfying
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The MATLAB expression for the eigenvalues problem is:


[image: image87.wmf]>> K=[2 -2;-2 4];

>> [y, lamda]=eig(K)

y =

    0.8507   -0.5257

   -0.5257    0.8507

lamda =

    0.7639         0

         0    5.2361


12.2 Finite element programming with MATLAB for trusses

In Chapter 2 the basic structure of the finite element method for truss structures has been illustrated.  In this section we present a simple finite element program using MATLAB programming language.  Since MATLAB manipulates matrices and vectors with relative ease the reader can focus on fundamentals ideas rather than on algorithmic details.

The code is written to very closely follow the formulation given in this chapter.  In order to better understand how the program works Figure 2.8 and Example Problem 2.2 in Chapter 2 have been included as examples solved by the program.  Going through the code along with this guide and the example problems is an effective method to comprehend the program.  

The main routines in the finite element code are:

1. Preprocessing including input data and assembling the proper arrays, vectors, and matrices.

2. Calculation of element stiffness matrices and force vectors

3. Direct assembly of matrices and vectors

4. Partition and solution

5. Postprocessing for secondary variables

Explanation for various MATLAB routines (stored in *.m files) are described as comments within each subroutine. 

12.2.1 Notations and definitions

12.2.1.1 User provided

nsd:
number of space dimension (1 for 1D problems)

ndof:
number of degrees-of-freedom per node 

nnp:
number of nodal points 

nel: 
number of elements

nen:
number of element nodes (2 in this case)

nd:
number of prescribed (known) displacements 
CArea:
cross-sectional area




Area = CArea(element number)
E: 
Young’s Modulus



Young = E(element number)
leng:
element length 



Length = leng(element number)
phi:
angle from 
[image: image88.wmf]x
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axis to x axis for each element specified in degrees.  Remember, 
[image: image89.wmf]x
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always from local node 1 to 2



phi = phi(element number)



IEN:
connectivity information matrix



global node number = IEN (local node number, element number)
d_bar:
prescribed displacement vector - 
[image: image90.wmf]d

 in Eq. Error! Reference source not found.

.  

f_hat:
given force vector - 
[image: image91.wmf]ˆ

f

 in Eq. Error! Reference source not found.

.  

plot_truss:
string for output control: [‘yes’] to plot truss elements

plot_nod:
string for output control: [‘yes’] to plot truss global node numbers

plot_stress:
string for output control: [‘yes’] to plot stresses 

12.1.1.2 Calculated or derived by program

neq:
total number of equations

K:
global stiffness matrix

d:
global displacement vector is stored as:



    for 1-D problems

  for 2-D problems                    
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f:
global force vector (excluding the reactions) is stored as:
             

                      for 1-D problems                for 2-D problems
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e:
element number

ke:
element stiffness matrix

de:
element nodal displacement vector:


             for 1-D problems   

   for 2-D problems
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LM:
 gather matrix



The gather matrix is used to extract the element and local degrees-of-freedom. It has the following structure:


global degree-of-freedom=LM (local degree-of-freedom, element number) 


  When ndof = 1 (see example in Figure 2.8) IEN and LM are defined as follows:
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When ndof = 2 (example Problem 2.2), IEN and LM are defined as:





[image: image100.wmf]}

}

2

1

12

33

e

e

=

=

éù

êú

êú

êú

êú

ëû

 = IEN

[image: image101.wmf]13

24

55

66

éù

êú

êú

êú

êú

êú

êú

êú

ëû

 = LM



In both examples, columns indicate the elements and rows indicate global degrees-of-freedom.

K_E:  

partition of the global stiffness matrix K based on Eq. Error! Reference source not found.


K_EF:

partition of the global stiffness matrix K based on Eq. Error! Reference source not found.


K_F: 
         partition of the global stiffness matrix K based on Eq. Error! Reference source not found.


d_F:
               unknown (free) part of the global displacement vector d based on Eq. Error! Reference source not found.


d_E:
               prescribed (essential) part of the global displacement vector d based on Eq. Error! Reference source not found.


f_E:

         reaction force (unknown) vector based on Eq. Error! Reference source not found.


stress:
         stress  for each element

Remark: In this chapter nodes where the displacements are prescribed have to be numbered first.
12.21.2 MATLAB Finite element code for trusses

truss.m

%%%%%%%%%%%%%%%%%%%%%%

% 2D Truss (Chapter 2)                             %
% Haim Waisman, Rensselaer                  %
%%%%%%%%%%%%%%%%%%%%%% 
clear all;

close all; 
% include global variables
include_flags;  
% Preprocessor Phase 
 [K,f,d]
= preprocessor;

% Calculation and assembly of element matrices
for e = 1:nel
    ke
= trusselem(e);
    K
= assembly(K,e,ke);
end

% Solution Phase
 [d,f_E]
= solvedr(K,f,d);
% Postprocessor Phase 
postprocessor(d)
include_flags.m

% file to include global variables
global
nsd ndof nnp nel nen neq nd
global
CArea E leng phi
global
plot_truss plot_nod plot_stress
global
LM IEN x y stress
preprocessor.m

% preprocessing– read input data and set up mesh information
function  [K,f,d]
= preprocessor;
include_flags;
% input file to include all variables 
input_file_example2_2;

%input_file_example2_8;

% generate LM array 
for e = 1:nel
    for j = 1:nen
        for m = 1:ndof
            ind = (j-1)*ndof + m;
            LM(ind,e) = ndof*IEN(j,e) - ndof + m;
        end
    end
end
input_file_example2_2.m

% Input Data for Example 2.2 
nsd 
= 2;
% Number of space dimensions 
ndof 
= 2;     
% Number of degrees-of-freedom per node
nnp 
= 3;    
% Number of nodal points
nel 
= 2;     
% Number of elements
nen 
= 2;     
% Number of element nodes
neq 
= ndof*nnp;
% Number of equations
f 
= zeros(neq,1);  % Initialize force vector
d 
= zeros(neq,1);  % Initialize displacement matrix
K 
= zeros(neq);     % Initialize stiffness matrix
% Element properties
CArea 
= [1       1   ];   
% Elements area  
leng  
= [1    sqrt(2)];   
% Elements length
phi   
= [90      45  ];   
% Angle
E     
= [1       1   ];   
% Young’s Modulus 
% prescribed displacements
% displacement     d1x    d1y    d2x    d2y
d           = [0      0      0      0]';
nd 
= 4; 
% Number of prescribed displacement degrees-of-freedom
% prescribed forces
f(5)
= 10;
% Force at node 3 in the x-direction
f(6)
= 0;       % Force at node 3 in the y-direction
% output plots
plot_truss 
= 'yes';
plot_nod
= 'yes';
% mesh Generation
truss_mesh_2_2;
truss_mesh_2_2.m

% geometry and connectivity for example 2.2

function  truss_mesh_2_2
include_flags;
% Nodal coordinates   (origin placed at node 2) 
x
=  [1.0  0.0  1.0  ];     % x coordinate  
y
=  [0.0  0.0  1.0  ];     % y coordinate
% connectivity array
IEN =  [1    2    

            3    3];    
% plot truss
plottruss;
input_file_example2_8.m

% Input Data from Chapter 2 Figure 2.8
nsd
= 1;     % Number of spatial dimensions 
ndof
= 1;     % Number of degrees-of-freedom per node
nnp
= 3;     % Total number of global nodes
nel
= 2;     % Total number of elements
nen
= 2;     % Number of nodes in each element
neq
= ndof*nnp;
% Number of equations
f
= zeros(neq,1);
% Initialize force vector
d
= zeros(neq,1);
% Initialize displacement vector
K
= zeros(neq); 
% Initialize stiffness matrix
% Element properties 
CArea
= [.5       1];   
% Elements cross-sectional area  
leng 
= [2        2];   
% Elements length
E        
= [1        1];   
% Young’s Modulus

% prescribed displacements
d(1)
= 0;
nd
= 1;         
% Number of prescribed displacement degrees of freedom
% prescribed forces
f(3)
= 10;      
% force at node 3 in the x-direction
% output controls
plot_truss  = 'yes';
plot_nod    = 'yes';

% mesh generation
truss_mesh_2_8;
truss_mesh_2_8.m

% geometry and connectivity for example problem in Figure 2.8

function  truss_mesh_2_8;
include_flags;
% Node coordinates   (origin placed at node 1) 
x
=  [0.0  1.0  2.0  ];     % x coordinate  
y
=  [0.0  0.0  0.0  ];     % y coordinate
% connectivity array
IEN =  [1    2    

            2    3];   
% plot truss
plottruss;
Plottruss.m

% function to plot the elements, global node numbers and print mesh parameters
function plottruss;
include_flags;
% check if  truss plot is requested
if strcmpi(plot_truss,'yes')==1;  
    for i = 1:nel
        XX = [x(IEN(1,i)) x(IEN(2,i)) x(IEN(1,i)) ];
        YY = [y(IEN(1,i)) y(IEN(2,i)) y(IEN(1,i)) ];
        line(XX,YY);hold on;
        % check if node numbering is requested
        if strcmpi(plot_nod,'yes')==1;   
            text(XX(1),YY(1),sprintf('%0.5g',IEN(1,i)));
            text(XX(2),YY(2),sprintf('%0.5g',IEN(2,i)));
        end
    end
    title('Truss Plot');
end
% print mesh parameters
fprintf(1,'\tTruss Params \n');
fprintf(1,'No. of Elements  %d \n',nel);
fprintf(1,'No. of Nodes     %d \n',nnp);
fprintf(1,'No. of Equations %d \n\n',neq);
trusselem.m

% generate the element stiffness matrix  for each element
function ke = trusselem(e)
include_flags;
const = CArea(e)*E(e)/leng(e);    % constant coefficient within the truss element
if ndof == 1
    ke = const * [1   -1 ;        % 1-D stiffness   
                        -1    1];          
elseif ndof == 2
    p = phi(e)*pi/180;       % Converts degrees to radians
    s   = sin(p);        c  = cos(p);
    s2  = s^2;           c2 = c^2;
    ke = const*[c2      c*s    -c2     -c*s;       % 2-D stiffness
        
         c*s      s2     -c*s    -s2;
                     -c2      -c*s     c2      c*s;
                     -c*s     -s2      c*s     s2];
end
assembly.m

% assemble element stiffness matrix
function K = assembly(K,e,ke)
include_flags;
for loop1 = 1:nen*ndof
    i = LM(loop1,e);
    for loop2 =  1:nen*ndof
        j = LM(loop2,e);
        K(i,j) = K(i,j) + ke(loop1,loop2);
    end
end
solvedr.m

% partition and solve the system of equations
function [d,f_E] = solvedr(K,f,d)
include_flags;
% partition the matrix K, vectors f and d
K_E
= K(1:nd,1:nd);                     
       % Extract K_E matrix 
K_F
= K(nd+1:neq,nd+1:neq);                   % Extract K_E matrix
K_EF    = K(1:nd,nd+1:neq);                           % Extract K_EF matrix
f_F  
= f(nd+1:neq);                                    % Extract f_F vector
d_E  
= d(1:nd);                                           % Extract d_E vector
% solve for d_F
d_F
=K_F\( f_F - K_EF'* d_E);
% reconstruct the global displacement d
d = [d_E             

       d_F];                
% compute the reaction r
f_E = K_E*d_E+K_EF*d_F;
% write to the workspace
solution_vector_d
= d
reactions_vector 
= f_E
postprocessor.m

% postprocessing function 
function postprocesser(d)
include_flags;
% prints the element numbers and  corresponding stresses
    fprintf(1,'element\t\t\tstress\n');
    % compute stress vector 
    for e=1:nel   
        de

= d(LM(:,e));    
% displacement at the current element
        const 
= E(e)/leng(e);  
% constant parameter within the element 
        if ndof == 1     % For 1-D truss element
            stress(e) = const*([-1 1]*de);
        end
        if ndof == 2     % For 2-D truss element
            p = phi(e)*pi/180;                             % Converts degrees to radians
            c = cos(p);    s = sin(p);          
            stress(e) = const*[-c -s c s]*de;              % compute stresses
        end
        fprintf(1,'%d\t\t\t%f\n',e,stress(e));
    end
12.3 Shape functions and Gauss quadrature with MATLAB


In Chapter 2 the basic finite element programming structure was introduced for one- and two-dimensional analysis of truss structures.  In this section we give the functions for the construction of element shape functions in one-dimension and their derivatives.   The shape functions are defined in the physical coordinate system.

12.3.1 Notations and definitions

xe:
element nodal x-coordinates

xt:
x coordinate at which the functions are evaluated

N:
array of shape functions

B:
array of derivatives of the shape functions

gp:
array of position of Gauss points in the parent element domain - 
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W:         array of weights - 
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12.3.2 MATLAB code for shape functions and derivatives

Nmatrix1D.m

% shape functions computed in the physical coordinate - xt
 function N = Nmatrix1D(xt,xe)
include_flags;
    if nen == 2         % linear shape functions       
        N(1) = (xt-xe(2))/(xe(1)-xe(2));
        N(2) = (xt-xe(1))/(xe(2)-xe(1));
    elseif nen == 3     % quadratic shape functions
        N(1)=(xt-xe(2))*(xt-xe(3))/((xe(1)-xe(2))*(xe(1)-xe(3)));
        N(2)=(xt-xe(1))*(xt-xe(3))/((xe(2)-xe(1))*(xe(2)-xe(3)));
        N(3)=(xt-xe(1))*(xt-xe(2))/((xe(3)-xe(1))*(xe(3)-xe(2)));
    end
Bmatrix1D.m

% derivative of the shape functions computed in the physical coordinate - xt 
 function B = Bmatrix1D(xt,xe)
include_flags;
    if nen == 2       % derivative of linear shape functions (constant)
        B =  1/(xe(1)-xe(2))*[-1 1];
    elseif nen == 3   % derivative of quadratic shape functions
        B(1)=(2*xt-xe(2)-xe(3))/((xe(1)-xe(2))*(xe(1)-xe(3)));
        B(2)=(2*xt-xe(1)-xe(3))/((xe(2)-xe(1))*(xe(2)-xe(3)));
        B(3)=(2*xt-xe(1)-xe(2))/((xe(3)-xe(1))*(xe(3)-xe(2)));
    end
12.3.3 MATLAB code for Gauss quadrature 

gauss.m

% get gauss points in the parent element domain [-1, 1] and the corresponding weights
function [w,gp] = gauss(ngp)
    if ngp == 1
        gp = 0;
        w  = 2;
    elseif ngp == 2
        gp = [-0.57735027, 0.57735027];
        w  = [1,           1];
    elseif ngp == 3
        gp = [-0.7745966692,  0.7745966692,  0.0];
        w  = [0.5555555556,   0.5555555556,  0.8888888889];
    end
12.4  Finite element programming in 1D with MATLAB

 In Section 12.2 the basic finite element programming structure was introduced for one- and two- dimensional analysis of truss structures.  In 12.3, the program functions for the calculation of the element shape functions, their derivatives and Gauss quadrature in one-dimension were introduced.  In this section we introduce a more general finite element program structure for one-dimensional problems that in principle is similar to that in multidimensions to be developed in Sections 12.5 and 12.6 for heat conduction and elasticity problems, respectively. 


In Chapter 2 we discussed various methodologies for imposing boundary conditions.  In the partition-based approach, the so-called E-nodes (where displacements are prescribed) are numbered first.  In general, however, node and element numberings are initially defined by mesh generators and subsequently renumbered to maximize efficiency of solving a system of linear equations. In our implementation we tag nodes located on the natural boundary or essential boundary. Nodes on a natural boundary are assigned flag=1, while nodes on an essential boundary are tagged as flag=2. Subsequently, nodes are renumbered by the program so that E-nodes are numbered first. This is accomplished by constructing the ID and LM arrays in the function setup_ID_LM. With some minor modifications the program for the one-dimensional elasticity problems can be modified to analyze heat conduction problems. 

Explanation for various MATLAB routines is given as comments within each function. 

Only the nomenclature and definitions which have been modified from the previous chapters are included below.  Much of the code is either identical or very similar to the code developed in Section 12.2. An input file for the Example 5.2 in Chapter 5 modeled with two quadratic elements is given below. Additional input files for one quadratic element mesh and four quadratic elements mesh are provided in the disk.

12.4.1 Notations and definitions

User provided

nd:
number of nodes on the essential boundary (E-nodes)

ngp:
number of Gauss points

body:
vector of values of body forces – defined at the  nodes and then interpolated using shape functions

E:     
vector of nodal values of Young’s modulus 
CArea:  vector of nodal values of cross-sectional area 

flags:
Flag array denoting essential and natural boundary conditions


    flags(Initial global node number) = flag value

                Flag values are:  1 – natural boundary;  2 – essential boundary 

x:
vector of nodal x-coordinates

y:
vector of nodal y-coordinates (used for the plots only) 

e_bc:
vector of essential boundary conditions (displacements or temperatures)

n_bc:
vector of natural boundary conditions (tractions or boundary fluxes)

P:
vector of point forces (point sources in heat conduction)

xp:
vector of the x-coordinates where the point forces are applied
np:
number of point forces (point sources in heat conduction)

nplot:
number of points used to plot displacements and stresses (temperatures and fluxes in heat conduction) 

IEN:    location matrix

            The location matrix relates initial global node number and element local node 

             numbers. Subsequently nodes are renumbered (see setup_ID_LM.m) so that

             E-nodes are numbered first. IEN matrix has the following structure:
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LM: Location matrix
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Note that LM matrix is related to IEN matrix by
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12.4.2 MATLAB Finite element code for one-dimensional problems

bar1D.m

%%%%%%%%%%%%%%%%%%

% 1D FEM Program (Chapter 5)    %
% Haim Waisman, Rensselaer      %
%%%%%%%%%%%%%%%%%%

clear all;
close all; 
% include global variables
include_flags;  
% Preprocessing
 [K,f,d] = preprocessor;
% Element matrix computations and assembly 
for e = 1:nel
    [ke,fe] = barelem(e);
    [K, f]  = assembly(K,f,e,ke,fe);
end
% Add nodal boundary force vector
f  = NaturalBC(f);
% Partition and solution 
[d,f_E] = solvedr(K,f,d);
% Postprocessing
postprocessor(d);
% plot the exact solution
ExactSolution; 
include_flags.m

% Include global variables
global nsd ndof nnp nel nen neq nd CArea E 
global flags ID IEN LM body x y
global xp P ngp xplot n_bc e_bc np
global plot_bar plot_nod nplot
preprocessor.m

% preprocessing– reads input data and sets up mesh information
function  [K,f,d] = preprocessor;
include_flags;
% input file to include all variables 
input_file5_2_2ele;

%input_file5_2_1ele;

%input_file5_2_4ele;
% generate LM and ID arrays  
d = setup_ID_LM(d);
input_file5_2_2ele.m

% Input Data for Example 5.2 (2 elements)
nsd
= 1;  
% number of space dimensions 
ndof 
= 1;     
% number of degrees-of-freedom per node
nnp 
= 5;     
% number of nodal points
nel 
= 2;     
% number of elements
nen 
= 3;     
% number of element nodes
neq = ndof*nnp; 
% number of equations
f 
= zeros(neq,1);  % initialize nodal force vector
d 
= zeros(neq,1);  % initialize nodal displacement vector
K 
= zeros(neq);
% initialize stiffness matrix
flags 
= zeros(neq,1);
% initialize flag vector
e_bc 
= zeros(neq,1); 
% initialize vector of essential boundary condition
n_bc 
= zeros(neq,1);  % initialize vector of natural boundary condition
% element and material data (given at the element nodes)
E      
=  8*ones(nnp,1);                  % nodal values Young's modulus
body   
=  8*ones(nnp,1);                  % nodal values body forces
CArea  
=  [4     7    10    11    12]';     % nodal values of cross-sectional area 
% gauss integration
ngp      = 2;         % number of gauss points
% essential boundary conditions
flags(1) = 2;     
% flags to mark nodes located on the essential boundary
e_bc(1) = 0;     
% value of essential B.C
nd      
= 1;      
% number of nodes on the essential boundary
% natural boundary conditions
flags(5) = 1;      
% flags to mark nodes located on the natural boundary
n_bc(5) = 0;      
% value of natural B.C
% point forces
P        
= 24;   
% array of point forces  
xp       
= 5;      
% array of  coordinates where point forces are applied
np       
= 1;      
% number of point forces
% output plots
plot_bar  
= 'yes';
plot_nod    
= 'yes';
nplot   
= nnp*10;    % number of points in the element to plot displacements and stresses
 % mesh generation
bar_mesh5_2_2ele;
bar_mesh5_2_2ele.m

function  bar_mesh5_2_2ele
include_flags;
% Node:  1    2    3    4    5      
x   =  [2.0  3.5  5.0  5.5  6.0  ];        % x coordinate  
y   =  2*x;                                        % y is used only for the bar plot 
% connectivity array
IEN 
=  [ 1    3
      
      2    4
        
      3    5];
plotbar;
setup_ID_LM.m

% setup ID and LM arrays
function  d = setup_ID_LM(d);
include_flags;
count = 0; count1 = 0;   
for i = 1:neq
    if flags(i) == 2                % check if essential boundary   
        count   = count + 1;    
        ID(i)   = count;           % number first the nodes on essential boundary 
        d(count)= e_bc(i);      % store the reordered values of essential B.C
    else
        count1 = count1 + 1;
        ID(i) = nd + count1;    
    end
end
for i = 1:nel
    for j = 1:nen
        LM(j,i)=ID(IEN(j,i));   % create the LM matrix 
    end
end
barelem.m

% generate element stiffness matrix and element nodal body force vector
function [ke, fe] = barelem(e);
include_flags;
IENe    
= IEN(:,e);               
% extract local connectivity information
xe        
= x(IENe);                
% extract element x coordinates 
J         
= (xe(nen) - xe(1))/2;    
% compute Jacobian 

[w , gp] 
= gauss(ngp);             
% extract Gauss points and weights 
ke 
= zeros(nen,nen);        
% initialize element stiffness matrix
fe 
= zeros(nen,1);            
% initialize element nodal force vector
for i = 1:ngp  
  xt   
= 0.5*(xe(1)+xe(nen))+J*gp(i);   
% Compute Gauss points in physical coordinates
  N    
= Nmatrix1D(xt,xe);      
% shape functions matrix 
  B    
= Bmatrix1D(xt,xe);     
% derivative of shape functions matrix
  Ae   
= N*CArea(IENe);    
% cross-sectional area at element gauss points 
  Ee   
= N*E(IENe);    

% Young's modulus at element gauss points
  be   
= N*body(IENe);           
% body forces at element gauss points  
  ke
= ke + w(i)*(B'*Ae*Ee*B);          
% compute element stiffness matrix
  fe 
= fe  + w(i)*N'*be;                 
% compute element nodal body force vector
end
ke 
= J*ke;                              
fe 
= J*fe;
% check for point forces in this element
for i=1:np             
% loop over all point forces
    Pi  
= P(i);           
% extract point force
    xpi 
= xp(i);          
% extract the location of point force within an element
    if xe(1)<=xpi &  xpi<xe(nen)             
        fe 
= fe + Pi*[Nmatrix1D(xpi,xe)]';     % add to the nodal force vector
    end
end
assembly.m

% assemble element stiffness matrix and nodal force vector 
function [K,f] = assembly(K,f,e,ke,fe)
include_flags;
for loop1 = 1:nen
    i = LM(loop1,e);
    f(i) =  f(i) + fe(loop1);   % assemble nodal force vector
    for loop2 = 1:nen
        j = LM(loop2,e);
        K(i,j) = K(i,j) + ke(loop1,loop2);  % assemble stiffness matrix
    end
end
naturalBC.m

% compute and assemble nodal boundary force vector 
function f = naturalBC(f);
include_flags;
for i = 1:nnp
    if flags(i) == 1
        node     = ID(i); 
        f(node) = f(node) + CArea(node)*n_bc(node);
    end
end
postprocessor.m

% postprocessing 
function postprocessor(d)
include_flags;
    fprintf(1,'\n         Print stresses at the Gauss points \n')
    fprintf(1,'Element\t\t x(gauss1) \t\t x(gauss2) \t\t stress(gauss1) \t\t stress(gauss2)\n')
    fprintf(1,'--------------------------------------------------------------------------------- \n')
    % loop over elements to compute the stresses
    for e = 1:nel    
    % compute stresses and displacements for the current element    
        disp_and_stress(e,d);             
    end
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_1169269223.unknown

_1169196794.unknown

_1169196242.unknown

_1169196367.unknown

_1169196666.unknown

_1169196680.unknown

_1169196420.unknown

_1169196454.unknown

_1169196503.unknown

_1169196391.unknown

_1169196299.unknown

_1169196330.unknown

_1169196270.unknown

_1169188945.unknown

_1169192841.unknown

_1169195893.unknown

_1169196227.unknown

_1169192997.unknown

_1169193100.unknown

_1169192873.unknown

_1169189244.unknown

_1169189875.unknown

_1169189903.unknown

_1169189714.unknown

_1169188996.unknown

_1169188427.unknown

_1169188501.unknown

_1169188933.unknown

_1169188481.unknown

_1169188311.unknown

_1169188336.unknown

_1169188285.unknown

_1169188263.unknown

_1169185849.unknown

_1169186433.unknown

_1169186776.unknown

_1169187791.unknown

_1169188113.unknown

_1169187861.unknown

_1169186970.unknown

_1169187331.unknown

_1169187709.unknown

_1169187175.unknown

_1169186912.unknown

_1169186590.unknown

_1169186616.unknown

_1169186323.unknown

_1169186336.unknown

_1169186076.unknown

_1169183111.unknown

_1169184330.unknown

_1169185570.unknown

_1169184243.unknown

_1167198803.unknown

_1169180021.unknown

_1169180610.unknown

_1169179846.unknown

_1167198880.unknown

_1167155691.unknown

_1167198715.unknown

_1142420532.unknown

_1142420534.unknown

_1142420512.unknown

