Engineering Optimization

Two Phase Simplex Method

Example 6.11:

minimize $f=-x_{1}-2 x_{2}+2 x_{3}$

$$
\begin{array}{ll}
3 x_{1}+2 x_{2}-2 x_{3}+x_{4}=12 \\
2 x_{1}+3 x_{2}-3 x_{3}-x_{5}=6 \\
x_{i} \geq 0 ; ~ & i=1 \text { to } 5
\end{array} ~ \longrightarrow ~ 2 x_{1}+3 x_{2}-3 x_{3}-x_{5}+x_{6}=6 ~ 子 \begin{aligned}
& \\
& w=x_{6}=6-2 x_{1}-3 x_{2}+3 x_{3}+x_{5}
\end{aligned}
$$

Initial tableau: x_{6} is identified to be replaced with x_{2} in the basic set.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\mathbf{b}	Ratio
x_{4}	3	2	-2	1	0	0	12	$\frac{12}{2}=6$
x_{6}	2	3	-3	0	-1	1	6	$\frac{6}{3}=2$
Cost	-1	-2	2	0	0	0	$f-0$	
Artificial cost	$\mathbf{- 2}$	$-\mathbf{3}$	$\mathbf{3}$	0	$\mathbf{1}$	0	$w-6$	

Second tableau: End of Phase I. Begin Phase II. x_{4} is identified to be replaced with x_{5} in the basic set.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\mathbf{b}	Ratio
x_{4}	$\frac{5}{3}$	0	0	1	$-\frac{2}{3}$	$-\frac{2}{3}$	8	$\frac{8}{2 / 3}=12$
x_{2}	$\frac{2}{3}$	1	-1	0	$-\frac{1}{3}$	$\frac{1}{3}$	2	Negative
Cost	$\frac{1}{3}$	0	0	0	$-\frac{2}{3}$	$\frac{2}{3}$	$f+4$	
Artificial cost	0	0	0	0	$\mathbf{0}$	$\mathbf{1}$	$w-0$	

Third tableau: Reduced cost coefficients in nonbasic columns are nonnegative; the third tableau gives the optimum solution. End of Phase II.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\mathbf{b}
x_{5}	$\frac{5}{2}$	0	0	$\frac{3}{2}$	1	-1	12
x_{2}	$\frac{3}{2}$	1	-1	$\frac{1}{2}$	0	0	6
Cost	$\mathbf{2}$	0	0	$\mathbf{1}$	0	0	$f+12$

$$
\begin{aligned}
& x 5=12, x 2=6, x 1=x 3=x 4=0, \text { and } f=-12 \\
& y 1=0, y 2=6, \text { and } z=12
\end{aligned}
$$

Example 6.12 : Use of Artificial Variables for Equality Constraints

$$
\text { maximize } z=x_{1}+4 x_{2}
$$

$$
x_{1}+2 x_{2} \leq 5
$$

$$
2 x_{1}+x_{2}=4
$$

$$
x_{1}-x_{2} \geq 3
$$

$$
x_{1}, x_{2} \geq 0
$$

$$
\begin{gathered}
\operatorname{minimize} f=-x_{1}-4 x_{2} \\
x_{1}+2 x_{2}+x_{3}=5 \\
2 x_{1}+x_{2}+x_{5}=4 \\
x_{1}-x_{2}-x_{4}+x_{6}=3 \\
x_{i} \geq 0 ; \quad i=1 \text { to } 6
\end{gathered}
$$

Here $x 3$ is a slack variable, $x 4$ is a surplus variable, and $x 5$ and $x 6$ are artificial variables.

Initial tableau: x_{5} is identified to be replaced with x_{1} in the basic set.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\mathbf{b}	Ratio
x_{3}	1	2	1	0	0	0	5	$\frac{5}{1}=5$
x_{5}	2	1	0	0	1	0	4	$\frac{4}{2}=2$
x_{6}	1	-1	0	-1	0	1	3	$\frac{3}{1}=3$
Cost	-1	-4	0	0	0	0	$f-0$	
Artificial cost	$\mathbf{- 3}$	0	0	$\mathbf{1}$	0	0	$w-7$	

Second tableau: End of Phase I.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	\mathbf{b}
x_{3}	0	$\frac{3}{2}$	1	0	$-\frac{1}{2}$	0	3
x_{1}	1	$\frac{1}{2}$	0	0	$\frac{1}{2}$	0	2
x_{6}	0	$-\frac{3}{2}$	0	-1	$-\frac{1}{2}$	1	1
Cost	0	$-\frac{7}{2}$	0	0	$\frac{1}{2}$	0	$f+2$
Artificial cost	0	$\frac{3}{2}$	0	$\mathbf{1}$	$\frac{3}{2}$	0	$w-1$

the artificial cost function is not zero ($w=1$).
Therefore there is no feasible solution to the original problem.
(Infeasible Problem)

Example 6.13: Use of Artificial Variables

$$
\begin{array}{cc}
\operatorname{maximize} \\
z=3 x_{1}-2 x_{2} & \text { minimize } f=-3 x_{1}+2 x_{2} \\
\text { subject to } x_{1}-x_{2} \geq 0, & -x_{1}+x_{2}+x_{3}=0 \\
x_{1}+x_{2} \geq 2, & x_{1}+x_{2}-x_{4}+x_{5}=2 \\
x_{1}, x_{2} \geq 0, & x_{i} \geq 0 ; \quad i=1 \text { to } 5
\end{array}
$$

where $x 3$ is a slack variable, $x 4$ is a surplus
variable, and $x 5$ is an artificial variable

Initial tableau: x_{5} is identified to be replaced with x_{1} in the basic set.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	\mathbf{b}	Ratio
x_{3}	-1	1	1	0	0	0	Negative
x_{5}	1	1	0	-1	1	2	$\frac{2}{1}=2$
Cost	-3	2	0	0	0	$f-0$	
Artificial cost	$\mathbf{- 1}$	$\mathbf{- 1}$	0	$\mathbf{1}$	0	$w-2$	

$$
x 3=0 \text { and } x 5=2
$$

degenerate basic feasible solution

Second tableau: End of Phase I. End of Phase II.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	b	Ratio
x_{3}	0	2	1	-1	1	2	Negative
x_{1}	1	1	0	-1	1	2	Negative
Cost	0	$\mathbf{5}$	0	$-\mathbf{3}$	$\mathbf{3}$	$f+6$	
Artificial cost	0	0	0	0	$\mathbf{1}$	$w-0$	

$x 1=2, x 3=2$, and other variables are zero
the reduced cost coefficient $c 4$ is negative, but the pivot element cannot be determined,

Problem is unbounded

Example 6.14: Implications of Degenerate Basic Feasible Solution

$$
\begin{gathered}
\operatorname{maximize} z=x_{1}+4 x_{2} \\
x_{1}+2 x_{2} \leq 5 \\
2 x_{1}+x_{2} \leq 4 \\
2 x_{1}+x_{2} \geq 4 \\
, x_{1}-x_{2} \geq 1 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

where $x 3$ and $x 4$ are slack variables, $x 5$ and $x 6$ are surplus variables, and $x 7$ and $x 8$ are artificial variables

Initial tableau: x_{8} is identified to be replaced with x_{1} in the basic set.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	\mathbf{b}	Ratio
x_{3}	1	2	1	0	0	0	0	0	5	$\frac{5}{1}=5$
x_{4}	2	1	0	1	0	0	0	0	4	$\frac{4}{2}=2$
x_{7}	2	1	0	0	-1	0	1	0	4	$\frac{4}{2}=2$
x_{8}	1	-1	0	0	0	-1	0	1	1	$\frac{1}{1}=1$
Cost	-1	-4	0	0	0	0	0	0	$f-0$	
Artificial	$-\mathbf{3}$	0	0	0	$\mathbf{1}$	$\mathbf{1}$	0	0	$w-5$	

Second tableau: x_{7} is identified to be replaced with x_{2} in the basic set.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	\mathbf{b}	Ratio
x_{3}	0	3	1	0	0	1	0	-1	4	$\frac{4}{3}$
x_{4}	0	3	0	1	0	2	0	-2	2	$\frac{2}{3}$
x_{7}	0	3	0	0	-1	2	1	-2	2	$\frac{2}{3}$
x_{1}	1	-1	0	0	0	-1	0	1	1	Negative
Cost	0	-5	0	0	0	-1	0	1	$f+1$	
Artificial	0	-3	0	0	$\mathbf{1}$	$\mathbf{- 2}$	0	$\mathbf{3}$	$w-2$	

Third tableau: x_{4} is identified to be replaced with x_{5} in the basic set. End of Phase I.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	\mathbf{b}	Ratio
x_{3}	0	0	1	0	1	-1	-1	1	2	$\frac{2}{1}=2$
x_{4}	0	0	0	1	1	0	-1	0	0	$\frac{0}{1}=0$
x_{2}	0	1	0	0	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{2}{3}$	Negative
x_{1}	1	0	0	0	$-\frac{1}{3}$	$-\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{5}{3}$	Negative
Cost	0	0	0	0	$-\frac{5}{3}$	$\frac{7}{3}$	$\frac{5}{3}$	$-\frac{7}{3}$	$f+\frac{13}{3}$	
Artificial	0	0	0	0	0	0	1	1	$w-0$	

Final tableau: End of Phase II.

Basic \downarrow	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	\mathbf{b}
x_{3}	0	0	1	-1	0	-1	0	1	2
x_{5}	0	0	0	1	1	0	-1	0	0
x_{2}	0	1	0	$\frac{1}{3}$	0	$\frac{2}{3}$	0	$-\frac{2}{3}$	$\frac{2}{3}$
x_{1}	1	0	0	$\frac{1}{3}$	0	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{5}{3}$
Cost	0	0	0	$\frac{5}{3}$	0	$\frac{7}{3}$	0	$-\frac{7}{3}$	$f+\frac{13}{3}$

basic variables:
nonbasic variables:
$x_{1}=\frac{5}{3}, x_{2}=\frac{2}{3}, x_{3}=2, x_{5}=0$
optimum cost function: $f=-\frac{3}{13}$ or $z=\frac{13}{3}$

It is theoretically possible for the Simplex method to fail by cycling between two degenerate basic feasible solutions.
in practice this usually does not happen.

