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Abstract— Driver Drowsiness is one of the leading causes of 
road accidents. Electroencephalography (EEG) is highly affected 
by drowsiness; hence, EEG-based methods detect drowsiness with 
the highest accuracy. Developments in manufacturing dry 
electrodes and headsets have made recording EEG more 
convenient. Vehicle-based features used for detecting drowsiness 
are easy to capture but do not have the best performance. In this 
paper, we investigated the performance of EEG signals recorded in 
4 channels with commercial headsets against the vehicle-based 
technique in drowsiness detection. We recorded EEG signals of 50 
volunteers driving a simulator in drowsy and alert states by 
commercial devices. The observer rating of drowsiness method 
was used to determine the drowsiness level of the subjects. The 
meaningful separation of vehicle-based features, recorded by the 
simulator, and EEG-based features of the two states of drowsiness 
and alertness have been investigated. The comparison results 
indicated that the EEG-based features are separated with lower p-
values than the vehicle-based ones in the two states. It is 
concluded that EEG headsets can be feasible alternatives with 
better performance compared to vehicle-based methods for 
detecting drowsiness. 
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I. INTRODUCTION 

Numerous studies have identified driver drowsiness as one 
of the leading causes of road accidents [1, 2]. Devastating 
crashes result in high fatality rates since drowsy drivers lose 
their ability to recognize danger and act accordingly [3]. 
Fuletra et al. have claimed that 30% of all road accidents 
happen due to driver drowsiness [1]. Driver drowsiness is 
often caused by four main factors: sleep, work, time, and 
individual fitness. Most people suffer from a lack of sleep due to 
work overload resulting in staying awake by consuming 
caffeine or other stimulants. The lack of sleep increases over 
several days until the body can no longer withstand this stress, 
and the person falls asleep involuntarily. The time of 
occurrence also affects this phenomenon. According to its 
biological clock, the human brain considers some hours of the 
day as sleeping time, which is often associated with sunrise and 
sunset. For example, the brain considers the time between 2 am 
and 6 am as sleeping time. Prolonged waking time is harmful 
to the body. Some people use drugs that induce 

drowsiness or have physical diseases that cause drowsiness. 
Obesity, physical weakness, or emotional stress can also cause 
drowsiness. Monitoring the driver before the onset of 
drowsiness and alerting them in the right time frame is a 
solution to prevent such drowsiness-related events [4]. Hence, 
drowsiness detection techniques have gained significant 
attention in recent years. Driver drowsiness detection 
techniques are divided into three main categories: 
(1) psychological methods, (2) video-based methods (3) and 
physiological methods. 

In psychological methods, questionnaires or tests are used to 
detect the level of sleepiness. These methods are time- 
consuming and have a direct relationship with the individual's 
assessment of their sleepiness. Therefore, these approaches are 
unsuitable for diagnosing driver drowsiness online, and their 
results cannot be relied upon. 

Video methods are divided into two sub-categories: 1) 
Behavior-based methods, in which the driver's behavior, such as 
yawning, closing eyes, blinking, and head position, is monitored 
through the camera, and the driver is warned if signs of 
drowsiness are detected. However, since the symptoms of 
sleepiness vary from person to person, these methods are less 
accurate. 2) In vehicle-based methods, indicators such as 
deviation from the line, the movement of the steering wheel, 
and the amount of pressure on the gas pedal are continuously 
monitored by sensors embedded in the car. Any change in these 
cases above a certain threshold indicates increased drowsiness 
of the driver. Despite their nonintrusive nature and easy 
recording process, vehicle- based measures suffer from the 
following major issues that results in low efficiency [4, 7]: (1) 
Driver drowsiness may not affect vehicle-based parameters in 
some drivers or until the very severe stages of drowsiness. (2) 
Vehicle-based parameters depend on external disturbances, 
such as strong wind and rutted road surfaces, that may 
interfere with the detection process. 

Biosignal-based technologies use physiological signals such 
as electroencephalography (EEG), electrocardiography (ECG), 
and electrooculography (EOG) for monitoring and detection 
purposes [3, 5, 7]. Among all the drowsiness detection 
measures, EEG is strongly affected by drowsiness and is proven 
to result in higher accuracy [4, 8]. EEG is suitable for 
diagnosing drowsiness due to its time resolution and high 
sensitivity. However, despite the reliable performance of EEG-
based approaches, their intrusive nature 
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makes them impractical for driving. The clinical devices used in 
most cases do not provide the possibility of commercialization 
of this method due to the disturbance in the individual's 
driving. 

A solution to this issue is using commercial EEG recording 
headsets for data collection [4, 9, 10]. Advances in dry 
electrodes and commercial headbands have made it possible 
for the EEG data acquisition process to take place more quickly. 
Studies show that these headbands have the potential to record 
the changes made to the brain signal during sleepiness [4, 9, 
12, 13]. 

In this paper, our goal is to determine whether the 
performance of EEG-based techniques with consumer-grade 
headsets is superior to vehicle-based ones. To this end, the EEG 
signals of sleep-deprived participants were recorded by 
commercial devices while driving in a simulator. Statistical 
analyses were performed on the simulator's log data and the 
brain signals to identify an effective detection technique. 

II. METHODOLOGY 

A. Data Acquisition 

The EEG signals were recorded with commercial headsets 
(from 4 channels) from 50 participants while driving in a driving 
simulator. The subjects were fully informed about the test and 
signed written consent forms before the experiment. All 
subjects received a small token of appreciation for their 
participation. Since the simulator's log was unavailable for 2 of 
the 50 subjects, data analysis was conducted on the remaining 
48 series of measurements. Test protocols have been defined 
based on [4, 11]. 

Participants should have met the following inclusion criteria: 
1) Age: 20-50, 2) Acquisition of a driving license and at least two 
years of driving experience. Subjects were excluded from the 
study if they had met the following exclusion criteria: 1) a Body 
Mass Index (BMI) of more than 40, 2) a sign of sleep disorders 
or motion sickness, and 3) a history of significant head injury 
or neurological disorder. 

Volunteers were asked to fill out three questionnaires: 1) a 
general information form asking about their age, height, 
weight, driving experience, and medical history, 2) Pittsburgh 
Sleep Quality Index (PSQI): regarding sleep quality, and 3) 
Epworth Sleepiness Scale (ESS): questions about the possibility 
of snoozing in different situations. 

Participants were encouraged to sleep less (half their regular 
night's sleep) the night before the experiment (Avg = 

4.5 hours). They were also given a heavy meal before the test to 
make them more prone to drowsiness. The test took place in a 
dark room, and the subjects were asked to drive in the 
automatic gearbox mode to prevent any distractions from 
interfering with the drowsiness process. The duration of the 
experiment depended on the participant's performance. The 
experiment would come to an end if one of the following 
conditions were met: 1) Seventy-five minutes had passed since 
the beginning of the test, 2) The driver was not able to control 
the vehicle for any reason, 3) Three alert-to-drowsy cycles 
were achieved, 4) The driver became restless or requested to 
stop the test for any other reasons. 

 

 
Fig. 1. Nasir Driving Simulator. 

 

The experimental setup included a fixed-base driving 
simulator (Nasir Driving Simulator, K. N. Toosi University of 
Technology). Three large LCDs were placed in front of the 
windshield, almost covering the driver's entire field of vision 
(Fig. 1). The screens also provided front and side mirrors to 
complete the subject's view of the road. The simulated road 
selected for the study had a high fatality rate in accidents due 
to its almost nonexistent visual attractions. The simulator 
provided a preprocessed log with the following data derived 
from its various sensors with a sampling frequency of 30 Hz: 

Car position and orientation in x, y, and z axes, car speed, 
steer, turn state, brake, throttle, clutch, gear, rpm, hand brake, 
horn, turn signal, flasher, seatbelt, switch state, wiper state, 
lights state, force sensor, steering angle and speed, lane 
deviation, lane number, self-aligning torque, torque sensor, 
steer command, road distance, and trigger event. 

 

(a) (b) 

Fig. 2. The commercial headsets, (a) Muse 2; (b) Muse S. 

 

The commercial headsets used for recording brain signals 
were Muse 2 and Muse S (Fig 2) [12, 13]. The two devices had 
similar specifications. Both headsets had four dry electrodes 
and one reference: AF7, AF8, TP9, and TP10, consistent with 
the 10-20 system. As in Fig. 3, in the 10-20 system, the 
electrodes above the eyes are AF7 and AF8, and the electrodes 
close to the ears are TP9 and TP10. The device 
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is designed to fit around the head, and electrodes are 
embedded in its fabric headband and positioned near the eyes 
and ears. The middle electrode, which has a similar position as 
the FpZ in the 10-20 system, serves as the reference electrode. 
Besides EEG electrodes, both devices have gyroscope, 
accelerometer, and PPG sensors that provide the user with four 
types of data. The sampling frequency rate is 256 Hz. 

Fig. 3. Muse electrode placement based on the 10-20 system; AF7 and A8F 
electrodes are located above the eyes, and the TP9 and TP10 are close to the ears. 
FpZ is the reference electrode placed in the middle of the forehead. 

 
The experiment used a camera to record the participant's 

face for rating drowsiness and labeling the data. The camera 
was located on the left side of the steering wheel, capturing the 
driver's face and neck while not disrupting their view of the 
screen (Fig 4). 

 

 

 

 

 

Fig. 4. Simulator during the experiment; The camera located on the left side of the 
steering wheel captures the driver's face and neck while not disrupting their view 
of the screen for the driver 

 

 

 

B. Labeling 

Observer Rating of Drowsiness (ORD) is a subjective 
method employed in this paper for rating drowsiness and 
labeling signals. The Drowsiness state of the individual is 
determined via the video captured from their face and neck 
during the experiment. Three observers assessed the facial 
expressions and behavior of the driver in the video (such as 
eye-lid closure rate, staring, yawning, stretching, and head 
dropping). The observers score the driver's drowsiness level 
from 1 (Not drowsy) to 5 (extremely drowsy) every 30 seconds 
based on the ORD checklist shown in Fig 5 [14, 15]. The final 
label is then determined by voting among the rating of the three 
observers. In our study, levels 1 and 2 were considered alert, 
and levels 3-5 were considered drowsy. 

 

 

Fig. 5. The ORD checklist; Descriptions of progressive drowsiness levels 

 

III. RESULT AND DISCUSSION 

A. Drowsiness detection Analysis 

In order to present a comparison between the vehicle- 
based detection techniques and the commercial EEG-based 
ones, the two groups of data were analyzed separately. Each 
group was split into two parts of alert and drowsy data based 
on the ORD labels. The group with a better separation of the 
two states performs better detecting drowsiness. The criteria 
used to determine the performance of each method is the level of 
marginal significance between the alert and drowsy data. P- 
value is the probability representing how much the separation of 
the two states has occurred randomly. A p-value of less than 
0.05 is typically considered to be statistically significant. Here, 
p-values were obtained from the drowsy-related features of each 
method's alert and drowsy data. 

1) EEG-based analysis: Since EEG is a noisy signal, several 
denoising methods were employed to remove noise and 
artifacts and obtain the signal containing valuable data. The 
preprocessing steps are as follows: 

a) Epoching: First, raw EEG signals were epoched into 30-
second sections consistent with the ORD labeling intervals. 

Filtering: In this step, each epoch was filtered with low 
and high-pass FIR filters with 0.1 and 40 Hz cut-off frequencies, 
respectively. 

b) Denoising: Epochs containing more than 30% outliers 
(data points out of the threshold range of ±70 µv) were 
considered noisy and omitted from the subject's epochs. 

Table 1 represents the number of alert, drowsy, and total 
epochs of all 48 subjects pre- and post-denoising. 

 
TABLE I. NUMBER OF ALERT, DROWSY, AND TOTAL EPOCHS OF ALL SUBJECTS PRE- 

AND POST-DENOISING 
 

 Number of 
Alert Epochs 

Number of 

Drowsy 

Epochs 

Total Number 
of Epochs 

Pre-Denoising 1058 2986 4044 

Post-Denoising 998 2814 3812 
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As a result of the denoising process, 5.73% of total epochs, 
most of which were drowsy, were considered noisy and, 
therefore, cast aside. 

Absolute power spectral density (PSD) and relative PSD 
(the ratio of the PSD of a single frequency band to the total 
frequency band) of the frequency bands delta, theta, alpha, 
beta, and gamma were extracted from the processed EEG 
signals. Since the signals were recorded by four channels, the 
total number of features extracted from each epoch was 40. 
The frequency domain signal was obtained by applying a 1024 
point fast Fourier transform (FFT) on each epoch. The absolute 
and relative PSD of each band was calculated after splitting 
EEG into the following five frequencies: Delta (0.1- 4 Hz), theta 
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and 
gamma (30-40 Hz). 

In order to find features indicating a meaningful separation 
between the alert and drowsy states, the meaningful 
separation of each feature in the two states was checked and 
the p-value was computed. First, each feature's distribution 
was evaluated by Kolmogorov-Smirnov test. Since some 
features did not have Gaussian distribution, the p-value was 
obtained from Wilcoxon rank-sum test. Meaningful features 
were considered to be the ones with a p- value lower than 0.05. 
A low p-value means that the feature can separate the two 
states significantly. The following table shows the p-value of all 
40 features of the 48 subjects. 

 
TABLE II. P-VALUES OF EEG FEATURESA,B

 

 

Channel TP9 AF7 AF8 TP10 

Delta 6.3726e-07 0.4024 1.5985e-07 6.1958e-05 

Theta 6.6807e-40 3.9399e-05 4.8593e-17 1.9819e-31 

Alpha 1.3984e-28 3.9369e-16 3.8816e-19 6.2720e-32 

Beta 2.3431e-38 9.2009e-19 7.8557e-17 1.2218e-23 

Gamma 5.5560e-35 6.3956e-15 2.8017e-05 1.4233e-24 

a. 
Features: absolute PSD of EEG frequency bands of the 4 channels 

b.
 
Highlighted features have a p-value of above 0.05 

 
TABLE III. P-VALUES OF EEG FEATURES

C,D
 

 

Channel TP9 AF7 AF8 TP10 

Delta 0.6940 0.8034 0.0393 0.4233 

Theta 4.3019e-10 0.6521 0.0183 5.6652e-14 

Alpha 0.8237 0.8007 5.4517e-05 0.0015 

Beta 0.0167 0.0024 0.0090 0.1401 

Gamma 0.0097 0.0059 2.5392e-06 0.6121 

c. 
Features: relative PSD of EEG frequency bands of the four channels 

d.
 
Highlighted features have a p-value of above 0.05 

 
As indicated in tables 2 and 3, the nine highlighted features 

have p-values greater than 0.05 and should be excluded since 
the separation of the two states can be considered to have 
occurred randomly in these features. In absolute PSD features, 
only 5% have a p-value above 0.05; in relative PSD features, the 
percentage is 40. The p-values obtained from the former are 
much smaller, indicating that absolute PSD distinguishes 
drowsiness and alertness better. Among the five frequency 
bands, beta, theta, and gamma seem to reflect drowsiness the 
best, in contrast to delta, which 

has the lowest number of meaningful features. The results are 
consistence with the literature claims [16]. 

 

2) Vehicle-based Analysis: Steer Angle, Steer Speed, Lane 
Deviation, and Torque Sensor are the vehicle features analyzed 
in this paper since they are commonly used in previous studies 
[5, 6]. The average value of the features was calculated for each 
ORD interval to synchronize the two methods for further 
comparison. The p-value for each feature was obtained 
similarly to the EEG-based technique. The following table 
indicates the p-value of the features in all 48 subjects. 

 
TABLE IV. P-VALUES OF VEHICLE-BASED FEATURESA,B

 

 

Feature 
Steer 
Angle 

Steer 
Speed 

Lane 
Deviation 

Torque 
Sensor 

P-value 1.8439e-14 0.3590 0.0075 2.9897e-09 

a. 
Features: steer angle and speed, lane deviation, and torque sensor 

b.
 
Highlighted features have a p-value of above 0.05 

As presented, the vehicle-based method's four features, 
steer angle, lane deviation, and torque sensor can differentiate 
drowsiness from alertness. The steer speed's p-value is more 
significant than 0.05 and, thus, should be excluded. 

 
IV. CONCLUSIONS 

This work compared the vehicle-based and the commercial 
EEG-based drowsiness detection methods. Each method has its 
own merits and demerits. Vehicle-based measures have a 
nonintrusive nature, so the data collection process with these 
techniques is easy. However, it is challenging to obtain high 
accuracy in detecting drowsiness using these approaches since 
they are highly affected by external disturbances, and 
drowsiness might not affect vehicle-based parameters in less 
severe levels of drowsiness. On the other hand, EEG-based 
measures have proven high accuracy because drowsiness 
directly affects brain signals. The main issue with these 
methods is the complexity of their data acquisition process. 
Many studies have utilized clinical devices in this regard, and 
although the results seem compelling, they do not outweigh the 
difficulty of the collection process. In our case study, we used 
commercial devices to substitute the clinical ones, making the 
signal recording much easier and less costly. Our goal was to 
investigate whether this recording process performs better 
than vehicle-based approaches. To assess the performance of 
each method, a comparison was made between the p-values of 
each method's features., It can be concluded that EEG features 
acquired by commercial headsets can distinguish drowsiness 
and alertness better than vehicle-based features. 
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