Brief Contents

List of Examples  xiii
Preface  xvii
Chapter 1  Circuit Variables  2
Chapter 2  Circuit Elements  24
Chapter 3  Simple Resistive Circuits  56
Chapter 4  Techniques of Circuit Analysis  88
Chapter 5  The Operational Amplifier  144
Chapter 6  Inductance, Capacitance, and Mutual Inductance  174
Chapter 7  Response of First-Order RL and RC Circuits  212
Chapter 8  Natural and Step Responses of RLC Circuits  264
Chapter 9  Sinusoidal Steady-State Analysis  304
Chapter 10  Sinusoidal Steady-State Power Calculations  358
Chapter 11  Balanced Three-Phase Circuits  396
Chapter 12  Introduction to the Laplace Transform  426
Chapter 13  The Laplace Transform in Circuit Analysis  464
Chapter 14  Introduction to Frequency Selective Circuits  520
Chapter 15  Active Filter Circuits  556
Chapter 16  Fourier Series  602
Chapter 17  The Fourier Transform  642
Chapter 18  Two-Port Circuits  676
Appendix A  The Solution of Linear Simultaneous Equations  703
Appendix B  Complex Numbers  723
Appendix C  More on Magnetically Coupled Coils and Ideal Transformers  729
Appendix D  The Decibel  737
Appendix E  Bode Diagrams  739
Appendix F  An Abbreviated Table of Trigonometric Identities  757
Appendix G  An Abbreviated Table of Integrals  759
Appendix H  Common Standard Component Values  761
Answers to Selected Problems  763
Index  775
Contents

List of Examples xiii
Preface xvii

Chapter 1 Circuit Variables 2

Practical Perspective: Balancing Power 3
1.1 Electrical Engineering: An Overview 4
1.2 The International System of Units 8
1.3 Circuit Analysis: An Overview 10
1.4 Voltage and Current 11
1.5 The Ideal Basic Circuit Element 12
1.6 Power and Energy 14

Practical Perspective: Balancing Power 17
Summary 18
Problems 19

Chapter 2 Circuit Elements 24

Practical Perspective: Heating with Electric Radiators 25
2.1 Voltage and Current Sources 26
2.2 Electrical Resistance (Ohm’s Law) 30
2.3 Construction of a Circuit Model 34
2.4 Kirchhoff’s Laws 37
2.5 Analysis of a Circuit Containing Dependent Sources 42

Practical Perspective: Heating with Electric Radiators 46
Summary 48
Problems 48

Chapter 3 Simple Resistive Circuits 56

Practical Perspective: Resistive Touch Screens 57
3.1 Resistors in Series 58
3.2 Resistors in Parallel 59
3.3 The Voltage-Divider and Current-Divider Circuits 61
3.4 Voltage Division and Current Division 64
3.5 Measuring Voltage and Current 66
3.6 Measuring Resistance—The Wheatstone Bridge 69
3.7 Delta-to-Wye (Pi-to-Tee) Equivalent Circuits 71

Practical Perspective: Resistive Touch Screens 73
Summary 75
Problems 76

Chapter 4 Techniques of Circuit Analysis 88

Practical Perspective: Circuits with Realistic Resistors 89
4.1 Terminology 90
4.2 Introduction to the Node-Voltage Method 93
4.3 The Node-Voltage Method and Dependent Sources 95
4.4 The Node-Voltage Method: Some Special Cases 96
4.5 Introduction to the Mesh-Current Method 99
4.6 The Mesh-Current Method and Dependent Sources 102
4.7 The Mesh-Current Method: Some Special Cases 103
4.8 The Node-Voltage Method Versus the Mesh-Current Method 106
4.9 Source Transformations 109
4.10 Thévenin and Norton Equivalents 113
4.11 More on Deriving a Thévenin Equivalent 117
4.12 Maximum Power Transfer 120
4.13 Superposition 122

Practical Perspective: Circuits with Realistic Resistors 125
Summary 129
Problems 130

Chapter 5 The Operational Amplifier 144

Practical Perspective: Strain Gages 145
5.1 Operational Amplifier Terminals 146
5.2 Terminal Voltages and Currents 146
5.3 The Inverting-Amplifier Circuit 150
5.4 The Summing-Amplifier Circuit 152
5.5 The Noninverting-Amplifier Circuit 153
5.6 The Difference-Amplifier Circuit 155
5.7 A More Realistic Model for the Operational Amplifier 159

Practical Perspective: Strain Gages 162
Summary 164
Problems 165
Chapter 6 Inductance, Capacitance, and Mutual Inductance 174

6.1 The Inductor 176
6.2 The Capacitor 182
6.3 Series-Parallel Combinations of Inductance and Capacitance 187
6.4 Mutual Inductance 189
6.5 A Closer Look at Mutual Inductance 193

Practical Perspective: Capacitive Touch Screens 200
Summary 202
Problems 204

Chapter 7 Response of First-Order RL and RC Circuits 212

7.1 The Natural Response of an RL Circuit 214
7.2 The Natural Response of an RC Circuit 220
7.3 The Step Response of RL and RC Circuits 224
7.4 A General Solution for Step and Natural Responses 231
7.5 Sequential Switching 236
7.6 Unbounded Response 240
7.7 The Integrating Amplifier 241

Practical Perspective: Artificial Pacemaker 245
Summary 246
Problems 247

Chapter 8 Natural and Step Responses of RLC Circuits 264

8.1 Introduction to the Natural Response of a Parallel RLC Circuit 266
8.2 The Forms of the Natural Response of a Parallel RLC Circuit 270
8.3 The Step Response of a Parallel RLC Circuit 280
8.4 The Natural and Step Response of a Series RLC Circuit 285
8.5 A Circuit with Two Integrating Amplifiers 289

Practical Perspective: Clock for Computer Timing 293
Summary 295
Problems 296

Chapter 9 Sinusoidal Steady-State Analysis 304

9.1 The Sinusoidal Source 306
9.2 The Sinusoidal Response 309
9.3 The Phasor 310
9.4 The Passive Circuit Elements in the Frequency Domain 315
9.5 Kirchhoff’s Laws in the Frequency Domain 319
9.6 Series, Parallel, and Delta-to-Wye Simplifications 320
9.7 Source Transformations and Thévenin-Norton Equivalent Circuits 327
9.8 The Node-Voltage Method 330
9.9 The Mesh-Current Method 331
9.10 The Transformer 332
9.11 The Ideal Transformer 336
9.12 Phasor Diagrams 342

Practical Perspective: Clock for Computer Timing 344
Summary 345
Problems 346

Chapter 10 Sinusoidal Steady-State Power Calculations 358

10.1 Instantaneous Power 360
10.2 Average and Reactive Power 361
10.3 The rms Value and Power Calculations 366
10.4 Complex Power 368
10.5 Power Calculations 369
10.6 Maximum Power Transfer 376

Practical Perspective: Vampire Power 382
Summary 384
Problems 385

Chapter 11 Balanced Three-Phase Circuits 396

11.1 Balanced Three-Phase Voltages 398
11.2 Three-Phase Voltage Sources 399
11.3 Analysis of the Wye-Wye Circuit 400
11.4 Analysis of the Wye-Delta Circuit 405
11.5 Power Calculations in Balanced Three-Phase Circuits 408
11.6 Measuring Average Power in Three-Phase Circuits 413

Practical Perspective: Transmission and Distribution of Electric Power 416
Summary 417
Problems 418
### Chapter 12 Introduction to the Laplace Transform 426

*Practical Perspective: Transient Effects* 427

12.1 Definition of the Laplace Transform 428
12.2 The Step Function 429
12.3 The Impulse Function 431
12.4 Functional Transforms 434
12.5 Operational Transforms 435
12.6 Applying the Laplace Transform 440
12.7 Inverse Transforms 442
12.8 Poles and Zeros of $F(s)$ 452
12.9 Initial- and Final-Value Theorems 453

*Practical Perspective: Transient Effects* 456

Summary 457
Problems 458

### Chapter 13 The Laplace Transform in Circuit Analysis 464

*Practical Perspective: Surge Suppressors* 465

13.1 Circuit Elements in the $s$ Domain 466
13.2 Circuit Analysis in the $s$ Domain 468
13.3 Applications 470
13.4 The Transfer Function 482
13.5 The Transfer Function in Partial Fraction Expansions 484
13.6 The Transfer Function and the Convolution Integral 487
13.7 The Transfer Function and the Steady-State Sinusoidal Response 493
13.8 The Impulse Function in Circuit Analysis 496

*Practical Perspective: Surge Suppressors* 503

Summary 504
Problems 505

### Chapter 14 Introduction to Frequency Selective Circuits 520

*Practical Perspective: Pushbutton Telephone Circuits* 521

14.1 Some Preliminaries 522
14.2 Low-Pass Filters 524
14.3 High-Pass Filters 530
14.4 Bandpass Filters 534
14.5 Bandreject Filters 543

*Practical Perspective: Pushbutton Telephone Circuits* 548
Summary 548
Problems 549

### Chapter 15 Active Filter Circuits 556

*Practical Perspective: Bass Volume Control* 557

15.1 First-Order Low-Pass and High-Pass Filters 558
15.2 Scaling 562
15.3 Op Amp Bandpass and Bandreject Filters 564
15.4 Higher Order Op Amp Filters 571
15.5 Narrowband Bandpass and Bandreject Filters 584

*Practical Perspective: Bass Volume Control* 589
Summary 592
Problems 593

### Chapter 16 Fourier Series 602

*Practical Perspective: Active High-Q Filters* 603

16.1 Fourier Series Analysis: An Overview 605
16.2 The Fourier Coefficients 606
16.3 The Effect of Symmetry on the Fourier Coefficients 609
16.4 An Alternative Trigonometric Form of the Fourier Series 615
16.5 An Application 617
16.6 Average-Power Calculations with Periodic Functions 621
16.7 The rms Value of a Periodic Function 624
16.8 The Exponential Form of the Fourier Series 625
16.9 Amplitude and Phase Spectra 628

*Practical Perspective: Active High-Q Filters* 630
Summary 632
Problems 633

### Chapter 17 The Fourier Transform 642

*Practical Perspective: Filtering Digital Signals* 643

17.1 The Derivation of the Fourier Transform 644
17.2 The Convergence of the Fourier Integral 646
17.3 Using Laplace Transforms to Find Fourier Transforms 648
17.4 Fourier Transforms in the Limit 651
17.5 Some Mathematical Properties 653
17.6 Operational Transforms 655
17.7 Circuit Applications 659
17.8 Parseval’s Theorem 662

*Practical Perspective: Filtering Digital Signals* 669
Summary 670
Problems 670
Chapter 18 Two-Port Circuits 676

Practical Perspective: Characterizing an Unknown Circuit 677
18.1 The Terminal Equations 678
18.2 The Two-Port Parameters 679
18.3 Analysis of the Terminated Two-Port Circuit 687
18.4 Interconnected Two-Port Circuits 692

Practical Perspective: Characterizing an Unknown Circuit 695
Summary 696
Problems 696

Appendix A The Solution of Linear Simultaneous Equations 703
A.1 Preliminary Steps 703
A.2 Cramer’s Method 704
A.3 The Characteristic Determinant 704
A.4 The Numerator Determinant 704
A.5 The Evaluation of a Determinant 705
A.6 Matrices 707
A.7 Matrix Algebra 708
A.8 Identity, Adjoint, and Inverse Matrices 712
A.9 Partitioned Matrices 715
A.10 Applications 718

Appendix B Complex Numbers 723
B.1 Notation 723
B.2 The Graphical Representation of a Complex Number 724
B.3 Arithmetic Operations 725
B.4 Useful Identities 726
B.5 The Integer Power of a Complex Number 727
B.6 The Roots of a Complex Number 727

Appendix C More on Magnetically Coupled Coils and Ideal Transformers 729
C.1 Equivalent Circuits for Magnetically Coupled Coils 729
C.2 The Need for Ideal Transformers in the Equivalent Circuits 733

Appendix D The Decibel 737

Appendix E Bode Diagrams 739
E.1 Real, First-Order Poles and Zeros 739
E.2 Straight-Line Amplitude Plots 740
E.3 More Accurate Amplitude Plots 744
E.4 Straight-Line Phase Angle Plots 745
E.5 Bode Diagrams: Complex Poles and Zeros 747
E.6 Amplitude Plots 749
E.7 Correcting Straight-Line Amplitude Plots 750
E.8 Phase Angle Plots 753

Appendix F An Abbreviated Table of Trigonometric Identities 757

Appendix G An Abbreviated Table of Integrals 759

Appendix H Common Standard Component Values 761

Answers to Selected Problems 763

Index 775