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Preface

Many problems in the physical world can be modeled by partial differential
equations, from applications as diverse as the flow of heat, the vibration of a
ball, the propagation of sound waves, the diffusion of ink in a glass of water,
electric and magnetic fields, the spread of algae along the ocean’s surface,
the fluctuation in the price of a stock option, and the quantum mechanical
behavior of a hydrogen atom. However, as with any area of applied mathe-
matics, the field of PDEs is interesting not only because of its applications,
but because it has taken on a mathematical life of its own. The author has
written this book with both ideas in mind, in the hope that the student will
appreciate the usefulness of the subject and, at the same time, get a glimpse
into the beauty of some of the underlying mathematics.

This text is suitable for a two-semester introduction to partial differen-
tial equations and Fourier series for students who have had basic courses in
multivariable calculus (through Stokes’s and the Divergence Theorems) and
ordinary differential equations. Over the years, the author has taught much of
the material to undergraduate mathematics, physics and engineering students
at Penn State and Fairfield Universities, as well as to engineering graduate
students at Penn State and mathematics and engineering graduate students
at Fairfield. It is assumed that the student has not had a course in real
analysis. Thus, we treat pointwise convergence of Fourier series and do not
talk about mean-square convergence until Chapter 8 (and, there, in terms
of the Riemann, and not the Lebesgue, integral). Further, we feel that it is
not appropriate to introduce so subtle an idea as uniform convergence in this
setting, so we discuss it only in the Appendices.

Approach and Suggestions for Instructor

One may approach the teaching of PDEs in one of two ways: either based
on type of equation, or based on method of solution. While appreciating the
importance of the former idea, we have chosen the latter approach, as it

1. allows us to treat problems in one spatial dimension before dealing with
those in higher dimensions, and

xi



xii Preface

2. allows the text to be used for a one-semester course without the need
to jump around.

A typical one-semester course would cover the core Chapters 1–6. Beyond
that, one might consider doing Chapter 7, or the beginnings of Chapters 9
and 10, or Chapter 11. Alternatively, if the students already are familiar with
special functions, one may wish to cover Chapter 8 or most of Chapter 9.

Motivation

The author believes that it is essential to provide the students with motivation
(other than grade) for each of the various topics. We have tried, as far as
possible, to provide such motivation, both physical and mathematical (so, for
example, the Fourier series is introduced only after the need for it, through
solving the heat equation via separation of variables, has been established).
Further, we begin by considering PDEs on bounded domains before looking
at unbounded domains, because

1. This approach allows us to get to Fourier series early on.

2. Problems on bounded domains are more natural than those on un-
bounded domains, at least in one dimension.

Further, and in this same vein, we have provided a Prelude to each chapter,
the purpose of which is to describe the topics to be covered in the chapter,
so as to tell the student what is coming and why it is coming, and to put the
material into its historical setting, as well.

Exercises

Of course, mathematics is not a spectator sport, and can only be learned by
doing. Thus, it goes without saying that the exercises are a key part of the
text. Basically, they are of four types:

1. “solve-the-problem” exercises,

2. proofs,

3. “extend-the-material” exercises,

4. graphical exercises.
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Types (1) and (2) are self-explanatory. As for type (3), there are some topics
that we choose to present as exercises. In some cases, these will be problems
that are similar enough to those already solved in the text. In others, they
may involve material which we feel is important, but which is not necessary
in later parts of the text. As some of these may be quite difficult, we make
sure to lead the student through them when necessary. Alternatively, the
instructor may choose to present the material herself in class.

Lastly, as PDEs is such a visual subject, we’ve provided a number of graph-
ical exercises. Some of these can be done by hand, but the majority are to be
performed using MATLAB R© (and these are labeled MATLAB).

MATLAB

This text has been written so that it can be used without access to software.
That said, it makes little sense to write a book on such a visual and intu-
itive subject as PDEs without taking advantage of one of the multitude of
mathematical software packages available these days. We have chosen MAT-
LAB because it is, by far, the most user-friendly of the packages we’ve tried,
because of its excellent graphics capabilities, and because it seems to be the
software-of-choice among the engineering community (while making strong
inroads in math and physics, as well). While we have used the latest version
of MATLAB, 8.0, most, if not all, of the code will run in many of the earlier
versions.

This text does not pretend to be an introduction to MATLAB. There are a
number of good books available for that purpose (for example, that by Davis
listed in the Bibliography). For those wishing to use the MATLAB exercises,
we assume that the student is familiar with the rudiments of the package—how
to get it up-and-running, how M-files work, etc. What we have done is to use
MATLAB to generate the tables and the more “mathematical” figures in the
book, for which we’ve supplied the MATLAB code in Appendix E, and also
on the author’s website at

www.faculty.fairfield.edu/mcoleman

The exercises labeled MATLAB, then, are to be done using this code, with
slight variations provided by the student (for example, changing the input
function, the viewing window, the number of steps in a for loop and the like).
Little actual programming is required of the student.
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Prelude to Chapter 1

We have seen how physical problems often give rise to ordinary differential
equations (henceforth, ODEs). These same and similar physical problems,
when involving more than one independent variable, lead us to, instead, par-
tial differential equations (PDEs). A PDE, therefore, will look very much like
an ODE, except that the unknown function will be a function of several vari-
ables - and, of course, any derivatives that appear must be partial derivatives.
Although we shall find a number of PDEs which are solved in the same way
that we solved ODEs, this happy state of affairs will be short-lived. Indeed,
two- and higher-dimensional mathematical objects exhibit a wealth of behav-
ior which we do not see in one-dimensional objects. Similarly, PDEs, as a
rule, will exhibit much more complicated behavior and, therefore, be much
harder to solve than ODEs.

In this first chapter, we introduce PDEs, and we point out those which
can be solved like ODEs. Historically, many of these simpler PDEs were
overlooked by earlier mathematicians, simply because they weren’t interesting
(they already knew how to solve ODEs) or important (the really interesting
physical problems led to PDEs which could not be solved in this manner).
So, in the 18th century, we see famous mathematicians jumping right into the
more difficult equations, those which we will begin to discuss in Chapter 2.

We also treat in this chapter the PDE analogs of other ideas that were
studied in ODEs: initial and boundary conditions, and the important concept
of a linear PDE. We then introduce one of the most important tools for solving
linear PDEs, the method of separation of variables. The so-called product
solutions which are derived via separation of variables were studied as early
as the first half of the 18th century, first by Daniel Bernoulli (1700–1782,
son of John Bernoulli) in his study of the vibrating chain, then by the great
Leonhard Euler (1707–1783) and, most notably, by Jean Le Rond d’Alembert
(1717–1783), in their work on the wave equation (which models the vibrations
of a string).

Finally, we turn back to ODEs and look at the so-called eigenvalue problems
which arise when we apply separation of variables to PDEs. At this point, we
consider only simpler special cases of this type of problem, reserving a more
complete study for Chapter 8.

1
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Introduction

1.1 What are Partial Differential Equations?

Roughly speaking, a partial differential equation (PDE) is similar to an or-
dinary differential equation (ODE), except that the dependent variable is a
function of not just one, but of several independent variables. Let’s be more
precise. Given a function u = u(x1, x2, . . . , xn), a partial differential equa-
tion (PDE) in u is an equation which relates any of the partial derivatives
of u to each other and/or to any of the variables x1, x2, . . . , xn and u.

Before doing some examples, we introduce a bit of notation: Instead of the

somewhat unwieldy ∂u
∂x ,

∂3u
∂x2∂y and the like, we will use subscripts whenever

possible. We write

ux =
∂u

∂x
.

For higher order derivatives, we read the subscripts from left to right. So, for
example,

uxy =
∂

∂y

(
∂u

∂x

)
=

∂2u

∂y∂x
.

However, for all practical purposes, the order of differentiation will not matter
to us. So, for example, we’ll have

uxzyx = uzxxy = uyxzx, etc.

Examples

1. ux + u = 0 is a PDE in u = u(x, y). However, it also could be a PDE
in u = u(x, y, z). In general, we only know the number of independent
variables from the context.

2. 2ux + 3uz = 0 is a PDE in u(x, z), although, more likely, it is a PDE in
u(x, y, z).

3. uxuyy − xy3u = eu is a PDE in u(x, y).

4. z2uxxy − x cos yuyy + uy − e3zu = tan y2z is a PDE in u(x, y, z).

5. u5xxz + uxxyz = uzzz is a PDE in u(x, y, z).

3



4 An Introduction to Partial Differential Equations with MATLAB R©

Very important in the categorization of PDEs, as it is for ODEs, is a PDE’s
order. We define the order of a PDE to be the order of the highest derivative
which appears in the equation. So, for example, the orders of the PDEs in
Examples 1–5 are, respectively, 1, 1, 2, 3 and 4.

As with ODEs, the dependent variable in a PDE generally is unknown and
we wish to solve for it. A solution of a PDE, then, is any function u which
satisfies the PDE identically, that is, for all possible values of the independent
variables.

Examples

6. u(x, y) = e−x, u(x, y) = 5e−x, u(x, y) = ye−x and u(x, y) = y3 cos y e−x

all are solutions of ux + u = 0, since, in each case, ux = −u.
7. u(x, y, z) = y2 and u(x, y, z) = y5 cos y are both solutions of 2ux +

3uz = 0. In fact, so is u(x, y, z) = f(y) for any (well almost any—see
below) function f . Also, u(x, y, z) = e3x−2z and u(x, y, z) = ye3x−2z are
solutions.

8. u(x, y) = cx+ d is a solution of

u5xxz + uxxyz = uzzz

for any choice of the constants c and d.

Frequently, we will seek functions which are solutions of a given PDE in
some restricted region. Also, in order to ensure that there is never a problem
with the order of differentiation, we will require any solution u of an nth-order
PDE to have the property that all of the nth partial derivatives of u exist and
are continuous.

We conclude this section with a list of important PDEs which arise from
physical problems (most of which we will study in some detail):

ut + cux = 0 convection (or advection or transport)
equation

ut + uux = 0 Burger’s equation (from the study
of the dynamics of gases)

u2x + u2y = 1 eikonal equation (from optics)

ut = α2uxx heat equation (in one space variable)
utt = c2(uxx + uyy) wave equation (in two space variables)
uxx + uyy + uzz Schrödinger’s equation (time independent,

+ [E − V (x, y, z)]u = 0 in three space variables; from
quantum mechanics)

urr +
1
rur +

1
r2uθθ = 0 Laplace’s equation (in polar coordinates)

utt + α4uxxxx = 0 Euler–Bernoulli beam equation

In Appendix D we provide a complete list of the PDEs covered in this text,
along with many other important PDEs, organized by application.
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Exercises 1.1

1. Find the order of each PDE:

a) The convection or advection equation, ut + cux = 0

b) The wave equation, utt = c2uxx

c) The eikonal equation, u2x + u2y = 1

d) The Euler–Bernoulli beam equation, utt + α4uxxxx = 0

e) uxxyyz − u8 + u6xx = 0

2. Show that each given function is a solution of the corresponding PDE:

a) u = x2y, xux − 2yuy = 0

b) u = x sin y, uxx − uyy = u

c) u = yf(x), uyy = 0 (where f is any function with continuous second
derivative)

d) u = ex+2y + ex−2y, 4uxx − uyy = 0

e) u = ex cos y + ax + by, Laplace’s equation in two dimensions in
rectangular coordinates uxx + uyy = 0 (where a and b are any
constants)

f) u = xyz, 2xux − yuy − zuz = 0

g) u = x2y3z2 − xz3, 3x2uxx + 2yuy + 2xy3z2uzzz = 0

3. Consider the convection equation ut + cux = 0, where c is a constant.

a) Show that u = sin(x − ct), u = cos(x − ct) and u = 5(x − ct)2 are
solutions.

b) Show that u = 7 sin(x − ct), u = 3 cos(x − ct) and u = 7 sin(x −
ct)− 3 cos(x− ct) also are solutions.

c) Show that u = f(x− ct) is a solution for “any” function f .

d) Why is “any” in quotation marks in part (c)?

4. Consider the one-dimensional wave equation utt = c2uxx, where c is a
constant.

a) Show that all of the functions in Exercise 3 are solutions of this
equation, as well.

b) Show that u = g(x+ ct) also satisfies the wave equation for “any”
function g.

5. Consider the eikonal equation u2x + u2y = 1.

a) Show that u = x and u = y are solutions.

b) Are u = 3x and u = −4y solutions?
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c) Is u = x+ y a solution?

d) Find all solutions of the form u = ax + by, where a and b are
constants.

6. Consider the simple first-order PDE ux = 0, where u = u(x, y).

a) Find all solutions. (Compare this problem with that of finding all
solutions of the ODE dy

dx = 0.) Describe them (compare to Exercise
3).

b) Describe the set of solutions which satisfy the additional require-
ment that u(0, 0) = 0. How many are there?

c) Do the same, but for the requirement u(0, y) = y2 − cos y.

d) Do the same, but for u(x, 0) = x3.

1.2 PDEs We Can Already Solve

Let’s go back and look at Exercise 6 of the previous section. However, first,
remember how we would solve the ODE

dy

dx
= 0.

We integrated both sides to get y = constant (after having proved in calculus
that y = constant is the only function whose derivative is identically zero).

We can do the same with PDEs—except that we must remember that the
derivatives are partial derivatives, so any antiderivatives we take will be, in
a sense, “partial antiderivatives” or “partial integrals.” That is, we “anti-
differentiate” with respect to one variable while treating the other variables
as constants.

So for the PDE ux = 0, any function which is independent of x will be a
solution. (Further, similarly to above, these will be the only solutions.) To
be more precise, in order to find all functions u = u(x, y) which solve

ux = 0, (1.1)

we get

u =

∫
0 dx = f(y) (1.2)

where f is any∗ arbitrary function of y (and where
∫
. . . dx is, as we’ve men-

tioned, any antiderivative with respect to x while treating y as a constant).

∗Again, from our definition of solution, f ′ must be continuous.
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Since
u = f(y) (1.3)

represents all possible solutions of (1.1), we call (1.2) the general solution of
(1.1). So, where the general solution of an ODE involves arbitrary constants,
the general solution of a PDE involves arbitrary functions.

With these ideas in mind, there already are plenty of PDEs we can solve.

Example 1 Find all solutions u = (x, y) of ux = x2 + y2. We have

u =

∫
(x2 + y2)dx =

x3

3
+ xy2 + f(y),

where f(y) is an arbitrary function of y.

Example 2 Find the general solution of uy = xz + yz. We have

u =

∫
(xz + yz)dy = xyz +

y2z

2
+ f(x, z),

where f is an arbitrary function of x and z.

We need not restrict ourselves to equations of the first order.

Example 3 Find the general solution of uxx = 12xy. We integrate twice, of
course:

ux =

∫
12xy dx = 6x2y + f(y),

where f is an arbitrary function of y, then

u =

∫
(6x2y + f(y))dx = 2x3y + xf(y) + g(y),

where g is an arbitrary function of y.

Example 4 Do the same for uxy = cosx. First, we have

ux =

∫
cosx dy = y cosx+ f(x).

Then,

u =

∫
(y cosx+ f(x))dx.

Now, what is
∫
f(x)dx? If we antidifferentiate f(x) with respect to x, we just

get another function of x. However, we also get an “arbitrary constant,” that
is, in this case, an arbitrary function of y. So∫

f(x)dx = f1(x) + g(y)
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and our general solution is

u = y sinx+ f1(x) + g(y).

Finally, since f, f1 and g are arbitrary, we drop the subscript:

u = y sinx+ f(x) + g(y),

where f and g are arbitrary functions.

Example 5 Find the general solution of ux + 2u = y. Remember that we
would solve the ODE dy

dx + 2y = 5 by using the integrating factor e2x. We
may do the same here:

ux + 2u = y

⇒ ∂

∂x
(e2xu) = ye2x

⇒ e2xu =
1

2
ye2x + f(y)

or

u =
1

2
y + e−2xf(y)

for arbitrary f .

Example 6 Find the general solution of uxxz = x+ y − z. We have

uxx = xz + yz − z2

2
+ f(x, y).

Then,

ux =
x2z

2
+ xyz − xz2

2
+ f1(x, y) + g(y, z)

and

u =
x3z

6
+
x2yz

2
− x2z2

4
+ f2(x, y) + xg(y, z) + h(y, z).

Example 7 There are many other types of PDEs that we may solve at this
point. For example, the PDE uyy + u = 0 looks like the ODE y′′ + y = 0.
Since the latter has solution y = c1 cosx+c2 sinx, the former will have general
solution

u = f(x) cos y + g(x) sin y

for arbitrary f and g. Similarly, the PDE u2ux = x will behave like the

separable ODE y2 dy
dx = x, which has solution y = 3

√
3
2x

2 + c. Therefore, the

PDE’s solution is

u =
3

√
3

2
x2 + f(y)

for arbitrary f . (However, we must remember that, while we may multiply
and divide by the differentials dx and dy in the ODE, this generally is not
true of the “numerator” and “denominator” in the partial derivative ∂u

∂x .)
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Exercises 1.2

Find the general solution of each PDE. The solution u is a function of the
variables which appear, unless otherwise stated.

1. uy = 2x

2. ux = sinx+ cos y

3. ux = sinx+ cos y, u = u(x, y, z)

4. uyy = x2y

5. uxy = x− y
6. uxxy = 0

7. uxxyy = sin 2x

8. uxzz = x− yz + y3

9. uxyzz = 0

10. uxyyzz = xyz

11. uy − 4u = 0, u = u(x, y)

12. ux + 3u = ex, u = u(x, y)

13. ux − y2u = 0

14. ux + 3u = xy2 + y

15. uy + xu = 2

16. ux − zu = y − z
17. uxx + ux − 2u = 0, u = u(x, y)

18. Find all solutions of the PDE uy = 2x which also satisfy the additional
requirement that

a) u(x, 0) = sinx

b) u(x, 3) = sinx

c) u(0, y) = 3y

19. Find all solutions u(x, y) of the PDE ux− 2u = 0 which also satisfy the
additional requirement that

a) u(0, y) = y2

b) u(1, y) = y2

c) u(x, 1) = x2
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1.3 Initial and Boundary Conditions

In some of the exercises in the previous sections, we were asked to solve a
PDE and then to find the subset of those solutions which also satisfied an
additional requirement. These side conditions are part and parcel of the
study of PDEs. As these conditions arise naturally in physical settings, let’s
introduce them by way of a specific physical problem.

In Section 1.1 we mentioned the heat equation

ut = α2uxx. (1.4)

Here, α is a constant and u = u(x, t) represents the temperature at any point
x along a narrow piece of material, at any time t. (See Figure 1.1—we will
have much more to say about this equation in Chapter 2 and beyond.) We
are asked to find the temperature function, that is, to solve the PDE. Now,
as we would like to predict the temperature of a particular piece of material,
we would like to find the one solution of the PDE that does so. Certainly,
there must be some additional requirements at our disposal to narrow down
the general solution to one, unique solution.

x−axis

x=0 x=L

FIGURE 1.1
Metal rod; u(x, t) =u(x, t) =u(x, t) = temperature at point xxx, at time ttt.

First, it seems fairly clear that we cannot know the temperature at later
times if we don’t know the temperature now or, at least, at some definite
point in time. So we should hope that we are given, or can measure, the so-
called initial temperature of the material at each point x, at some specified
time t = t0. That is, we would like to be given the function f for which

u(x, t0) = f(x), 0 ≤ x ≤ L. (1.5)

We call this an initial condition. In practice, the initial time generally is
taken, or arranged, to be t0 = 0.

What additional requirements will we need? Well, it will turn out that
PDE (1.4) is derived under the assumption that the whole piece of material
is insulated except, possibly, at its ends, and that the heat “flows” only in
the x-direction. Therefore, it seems that we will need to know what is going
on at the endpoints. In fact, the endpoints generally are under the control of
the experimenters—so, for example, the left end may be held at a constant
temperature of u0 degrees, that is,

u(0, t) = u0, t > 0. (1.6)
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Alternatively, the right end may be insulated. We will see that, mathemati-
cally, this means that

ux(L, t) = 0, t > 0. (1.7)

Equations (1.6) and (1.7) are called boundary conditions, and a system
like the one consisting of PDE (1.4), subject to conditions (1.5), (1.6) and
(1.7), is called an initial-boundary-value problem.

As for simpler equations, in Exercises 18 and 19 in the previous section
we were asked to solve a first-order PDE subject to only one side condition.
In practice, one of the variables often will represent time, so the side con-
dition will be an initial condition, and the problem will be an initial-value
problem. (In fact, when treating first-order PDEs in Chapter 5, we will al-
ways refer to the side condition as an initial condition and the system as an
initial-value problem.)

Now, it turns out that the initial-boundary-value problem (1.4), (1.5), (1.6),
(1.7) has a unique solution. We call such a problem a well-posed problem.
Similarly, the problems in Exercises 6c of 1.1, and Exercises 18a, 18b, 19a and
19b of 1.2 all are well-posed. Those in Exercises 6b and 6d of 1.1 and 18c and
19c of 1.2 are not well-posed.

To be precise, an initial-value or initial-boundary-value problem is well-
posed if

1) A solution to it exists.

2) There is only one such solution (i.e., the solution is unique).

3) The problem is stable.†

Property (3), the stability condition, need not concern us. (Most, but not all,
of the problems considered in this book will be stable.)

By the way, remember from ODEs that, if an equation is of order n, we
generally need n initial conditions to determine a unique solution. For PDEs,
the situation is much more complicated. However, notice that our heat equa-
tion example has one time derivative and one initial condition, while it has
two x-derivatives and two x-boundary conditions. This often is the case. So,
for example, in order that the finite vibrating string problem be well-posed,
we will require two initial and two boundary conditions.

Exercises 1.3

The idea of well-posedness applies to ODEs, as well. Again, remember that
an nth-order linear ODE, with n conditions assigned at the same x-value—
initial conditions—“usually” has a unique solution. This may not be the case,

†Basically a problem is stable if, whenever we change the initial or boundary conditions
by a “little bit,” the solution also changes by only a little bit—where we can, of course,
quantify what we mean by a little bit.
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however, for the ODE problems in Exercises 1–4. Each of these problems is
called a boundary-value problem, and we will study these problems in
detail in Section 1.7. For now, decide whether each of these problems is well-
posed, in terms of existence and uniqueness of solutions.

1. y′′ + y = 0, y(0) = y(2) = 0, 0 ≤ x ≤ 2

2. y′′ + y = 0, y(0) = y(π) = 0, 0 ≤ x ≤ π
3. y′′ + y′ − 2y = 0, y(0) = 0, y′(1) = 0, 0 ≤ x ≤ 1

4. y′′ + 25y = 0, y(0) = 1, y(π) = −1, 0 ≤ x ≤ π
5. For which values of the constant L is the following boundary-value prob-

lem well-posed?

y′′ + 4y = 8x, y(0) = A, y(L) = B, 0 ≤ x ≤ L

Explain why each of the following problems is not well-posed.

6. uxx = 0, u(0, y) = y2, u(1, y) = 3y, u(x, 0) = x+ 2, x ≥ 0, 0 ≤ y ≤ 1

7. uxx + uyy = 0, ux(0, y) = ux(1, y) = uy(x, 0) = uy(x, 2) = 0, 0 ≤ x ≤
1, 0 ≤ y ≤ 2

1.4 Linear PDEs—Definitions

Almost every PDE which we have met so far is what is called a linear PDE,
which is defined in exactly the same manner as a linear ODE. Remember that
the latter was any ODE which could be written in the form

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = f(x),

where y = y(x) and y(k) = dky
dxk . However, a more fruitful way of looking at it

is to define the so-called operator,‡ L, by

L[y] = a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y.

It is then easy to show that, if c is any constant and y any function in the
domain of L, then

L[cy] = cL[y],

‡An operator is a “function of functions,” as it were. That is, it is a function which has the
property that its domain and range each consists of a certain class of functions.
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and that, if y1 and y2 are any functions in the domain of L, then

L[y1 + y2] = L[y1] + L[y2].

We use the idea of an operator to define linear PDEs. First, given a PDE
in u = u(x1, x2, . . . , xn), we write the equation in the form

L[u] = f(x1, x2, . . . , xn),

where f is a given function.

Example 1 The heat equation, ut = α2uxx, can be written as

L[u] = 0,

where L is the operator defined by

L[u] = ut − α2uxx.

Example 2 The PDE ux + yuy − xy2 + sin y = 0 can be written as

L[u] = xy2 − sin y,

where L is defined by

L[u] = ux + yuy.

Then, we define a linear PDE as follows:

Definition 1.1 The PDE

L[u] = f

is a linear PDE if

1) L[cu] =cL[u], (1.8)

for all constants c and all functions u in the domain of L, and

2) L[u1 + u2] =L[u1] + L[u2], (1.9)

for all functions u1 and u2 in the domain of L.

Also, if an operator satisfies both (1.8) and (1.9), we say that it is a linear
operator. If an operator or PDE fails to be linear, we call it a nonlinear
operator or PDE (and we do not call the operator L—for “linear”—if we
know that it is nonlinear).
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We will prove, in Exercise 8, that L is linear if and only if

L[c1u1 + c2u2] = c1L[u1] + c2L[u2], (1.10)

for all constants c1 and c2, and all functions

u1 and u2 in the domain of L.

We note that any discussion of linearity of PDEs is based upon the theorems
from calculus that tell us that first partial derivatives are linear (that is, that
∂
∂x (cu) = cux and ∂

∂x (u1 + u2) = u1x + u2x), from which it also follows that
all higher-order partial derivatives are linear (see Exercise 9).

In Examples 3–5, determine if the given PDE is linear or nonlinear.

Example 3 ux + 5u = x2y. The operator is L[u] = ux + 5u and we have

L[c1u1 + c2u2] = (c1u1 + c2u2)x + 5(c1u1 + c2u2)

= c1u1x + c2u2x + 5c1u1 + 5c2u2

= c1(u1x + 5u1) + c2(u2x + 5u2)

= c1L[u1] + c2L[u2]

and L is linear, so the PDE is linear, as well.

Example 4 The eikonal equation, u2x + u2y = 1. We have L[u] = u2x + u2y.
Consider, then, L[cu]:

L[cu] = (cu)2x + (cuy)
2

= c2u2x + c2u2y.

The question is, do we have L[cu] = cL[u] for all constants c and all functions
u (in the domain of L)? That is, is

c2u2x + c2u2y = cu2x + cu2y?

Certainly, the answer is no. To be more precise, the equation may be true for
certain constants c and/or functions u, but we need only find one counterex-
ample, that is, one case involving a particular c and a particular u for which
the equality doesn’t hold (e.g., try c = 2 and u = x). Therefore, the PDE is
nonlinear.

Example 5 y2uxx + uyy = 1. Here, L[u] = y2uxx + uyy and

L[c1u1 + c2u2] = y2(c1u1 + c2u2)xx + (c1u1 + c2u2)yy

= c1y
2u1xx + c2y

2u2xx + c1u1yy + c2u2yy

= c1(y
2u1xx + u1yy ) + c2(y

2u2xx + u2yy )

= c1L[u1] + c2L[u2],

so this PDE is linear.
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In practice, the things that make ODEs nonlinear also make PDEs nonlin-
ear, for example, powers of u and its derivatives (

√
u, 1

ux
, u3yy, . . .), products

involving u and its derivatives (uxuy, uuxxy, . . .), various functions of u and
its derivatives (eu, cosux, . . .) and the like.

As with linear ODEs, we distinguish between homogeneous and nonhomo-
geneous equations.

Definition 1.2 Given the linear PDE L[u] = f , if f ≡ 0 on some region
(that is, f is the zero-function on some region), we say that the PDE is
homogeneous on that region. Otherwise, the PDE is nonhomogeneous.

Example 6 The PDE xuxx − 5uxy + y2ux = 0 is homogeneous (on the x-y
plane).

Example 7 The PDE ux+5u = x2y is nonhomogeneous (on the x-y plane).

Example 8 ux =
{

1, if x<0 or y<0
0, otherwise is nonhomogeneous on the x-y plane, but

it is homogeneous on the first quadrant.

Example 9 u2x + u2y = 0 cannot be said to be homogeneous or nonhomoge-
neous, because it is not a linear PDE to start with.

Exercises 1.4

In Exercises 1–7, determine whether the PDE is linear or nonlinear, and prove
your result. If it is linear, decide if it is homogeneous or nonhomogeneous. If
it is nonlinear, point out the term or terms which make it nonlinear.

1. Burger’s equation, ut + uux = 0

2. uxxy − (sinx)uyy + x− y = 0

3. 2uy − 5u3 = x

4. uxx = sinu

5. The three-dimensional heat equation, ut = α2(uxx + uyy + uzz), where
α2 is a constant.

6. Poisson’s equation is two dimensions (in polar coordinates),

urr +
1

r
ur +

1

r2
uθθ = f(r, θ).

7.
√

1 + x2y2uxyy − cos(xy3)uxxy + e−y3

ux − (5x2 − 2xy + 3y2)u = 0
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8. Prove that the operator L[u] is linear if and only if it satisfies property
(1.10), that is, prove that L[u] satisfies properties (1.8) and (1.9) if and
only if it satisfies property (1.10).

9. We know from calculus (and from Exercise 8) that ∂
∂x(c1u1 + c2u2) =

c1u1x + c2u2x , for all constants c1 and c2 and all differentiable functions
u (and that the same is true not only for x but, of course, for any
independent variable).

a) Use this fact to prove that the following higher-order derivatives
are linear operators, as well.

i) L[u] = uyy
ii) L[u] = uxxy

b) Use mathematical induction to prove that the operator L[u] =
∂nu
∂xn = uxx···x︸ ︷︷ ︸

n times

is linear.

10. Prove that, if u1 and u2 are solutions of the homogeneous PDE L[u] = 0,
then so is the function c1u1 + c2u2, for any choice of the constants c1
and c2. Is this true for nonhomogeneous PDEs, as well?

11. If u1 and u2 are solutions of the nonhomogeneous equation L[u] = f ,
what can we say about the function u1 − u2?

12. Use mathematical induction to prove that, if L is linear,

L[c1u1 + c2u2 + · · ·+ cnun] = c1L[u1] + c2L[u2] + · · ·+ cnL[un]

for all constants c1, c2, . . . , cn and all functions u1, u2, . . . , un in the do-
main of L.

1.5 Linear PDEs—The Principle of Superposition

Here, again, we take our cue from the theory of linear ODEs.

Definition 1.3 Given functions u1, u2, . . . , un, any function of the form

c1u1 + c2u2 + · · ·+ cnun,

where c1, c2, . . . , cn are constants, is called a linear combination of u1, u2,
. . . , un.

The following theorem follows immediately from the result of Exercise 12
of the previous section.
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Theorem 1.1 If u1, u2, . . . , un are solutions of the linear, homogeneous PDE
L[u] = 0, then so is any linear combination of u1, u2, . . . , un. (This is the
principle of superposition of solutions for linear PDEs.)

PROOF The fact that u1, u2, . . . , un are solutions gives us

L[u1] = L[u2] = · · · = L[un] = 0.

Then, for any linear combination c1u1 + c2u2 + · · ·+ cnun,

L[c1u1 + c2u2 + · · ·+ cnun] = c1L[u1] + c2L[u2] + · · ·+ cnL[un]

= c1 · 0 + c2 · 0 + · · ·+ cn · 0 = 0.

Now, in the theory of ODEs, for an nth-order linear, homogeneous equation,
we need only find n linearly independent solutions. Then, the general solution
consists of all possible (finite) linear combinations of these solutions. However,
life is much more complicated in the realm of PDEs. Often, we will need to
find infinitely many solutions, u1, u2, . . ., of a linear, homogeneous PDE before
we are in a position to construct a general solution

u = c1u1 + c2u2 + · · · =
∞∑

n=1

cnun. (1.11)

And since this infinite linear combination actually is an infinite series, ques-
tions of convergence come to the forefront. Indeed, for any given choice of
the coefficients, expression (1.10) may diverge for all values of x, or it may
converge for some values of x but not for others.

Suffice it to say that, throughout this book, we will assume that, whenever
(1.11) converges, it satisfies the linearity condition

L

[ ∞∑
n=1

cnun

]
=

∞∑
n=1

cnL[un] (1.12)

and, therefore, that if each un is a solution of L[u] = 0, then so is the linear
combination, (1.11), of these solutions. When (1.12) holds, we say that we
may differentiate the series term-by-term.

Exercises 1.5

In Exercises 1–4, verify directly that the principle of superposition holds for
any two solutions, u1 and u2, of the given PDE.

1. yux − x2uy + 2u = 0
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2. The heat equation in two space variables, ut = α2(uxx + uyy)

3. Laplace’s equation in three space variables, uxx + uyy + uzz = 0

4. The wave equation in three space variables,

utt + c2(uxx + uyy + uzz) = 0

5. Use (1.12) to show that the function u(x, t) =
∞∑

n=1
cne

−n2t sinnx is a

solution of the heat equation ut = uxx (whenever the series converges,
of course).

6. Show directly that the principle of superposition does not hold for the
PDE ux + u2 = 0, u = u(x, y), by finding two different solutions, then
finding a linear combination of them that is not a solution.

7. We may also prove theorems for solutions of nonhomogeneous PDEs
that are analogous to those for ODEs. Prove that the general solution
of the nonhomogeneous PDE L[u] = f is u = uh + up, where up is any
one particular solution of L[u] = f , and uh is the general solution of the
associated homogeneous PDE L[u] = 0, as follows:

a) First, prove that uh + up always is a solution of L[u] = f .

b) Next, prove that, if u is any particular solution of L[u] = f , then
we can always write

u = uh′ + up,

where uh′ is a particular case of the solution uh.

Illustrate the theorem that we proved in Exercise 7 for the nonhomogeneous
PDEs in Exercises 8–12. You may refer to the corresponding exercises in
Section 1.2.

8. uy = 2x

9. ux = sinx+ cos y

10. uxxy = 12x

11. uzz = x+ y

12. uxx + ux − 2u = 6, u = u(x, y).

13. a) If v is a solution of the PDE L[u] = f , and w is a solution of
L[u] = g, find a solution of the PDE L[u] = αf + βg, where α and
β are any two constants.

b) Use what you did in part (a) to find a solution of the PDE uxx +
uyy = 3x− 5y.
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1.6 Separation of Variables for Linear,
Homogeneous PDEs

In the mid-1700s, Daniel Bernoulli and, later, Jean le Rond d’Alembert exper-
imented with a new technique for producing solutions of linear, homogeneous
PDEs. This method, called separation of variables,§ entails the reduction
of a PDE to an ODE (or, more commonly, to a number of ODEs, each corre-
sponding to a different independent variable), a recurrent theme in the study
of PDEs.

Definition 1.4 Given a PDE in u = u(x, y), we say that u is a product
solution if

u(x, y) = f(x)g(y)

for functions f and g. More generally, u = u(x1, x2, . . . , xn) is a product
solution of a PDE in the n variables x1, x2, . . . , xn if

u(x1, x2, . . . , xn) = f1(x1)f2(x2) . . . fn(xn)

for functions f1, f2, . . . , fn. (See Exercise 23.)

In practice, it is more common to write u(x, y) = X(x)Y (y), u(x, y, z) =
X(x)Y (y)Z(z), etc.

How does the method work? Let’s look at some examples.

Example 1 Find all product solutions of the first-order, linear, homogeneous
PDE ux + uy = 0.

We search for all solutions of the form u(x, y) = X(x)Y (y). Using the facts
that

ux = X ′Y and uy = XY ′,

we substitute into the PDE and get

X ′Y +XY ′ = 0. (1.13)

How does this help us? Well, a little algebra (specifically, dividing both sides
by XY ¶) gives us

X ′

X
= −Y

′

Y
, (1.14)

§When studying a linear, homogeneous PDE, the first question that a mathematician usu-
ally asks is, “Is the equation separable?”
¶Of course, if either X or Y is the zero-function, then we may not divide by XY . However,
in this case, u is the zero-function, which is already known to be a solution to any linear,
homogeneous PDE. “Officially,” we may use this method only on two-dimensional regions
where X(x)Y (y) �= 0 although, in practice, this turns out not to be an issue.
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that is, we have managed to separate the variable x from the variable y.
We say that the equation is separable and that we have separated the
variables. Now, we have a situation where a function of x equals a function
of y, that is, where

f(x) = g(y)

for all values of x and y in the domain of the problem. So choose any such
x-value, x = x0. We then have

f(x0) = g(y)

for all values of y, that is, that g(y) is a constant function! Then, it follows
that f(x) is a constant function, as well!

So, at this point, we have

u(x, y) = X(x)Y (y) is a solution ⇒ X ′

X
= −Y

′

Y
= λ (1.15)

for some real constant λ. Conversely, given any real constant λ, if (1.15) is
satisfied, then u = XY is a solution of the PDE (why?).

Equation (1.15) actually is two equations:

X ′

X
= λ and

Y ′

Y
= −λ.

Therefore, we conclude that u = XY is a solution of the PDE if and only if
X and Y satisfy the ODEs

X ′ − λX = 0 and Y ′ + λY = 0

for the same λ. The product solutions, thus, are

X(x) = eλx and Y (y) = e−λy

or
u(x, y) = eλ(x−y),

for any real constant, λ. Further, any linear combination of these solutions
is, again, a solution.

As we shall see in the following chapter, although it looks as though we have
found only solutions which are linear combinations of product solutions, in
many cases that will be enough to solve any well-posed problem involving the
given PDE. In the process of solving these initial-boundary-value problems,
we shall find that only certain values of λ will lead to nontrivial solutions of
the problem, that is, to solutions other than the zero-function.

Example 2 Find all product solutions of the heat equation, ut = uxx.
We let u(x, t) = X(x)T (t) and substitute:

X(x)T ′(t) = X ′′(x)T (t).
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Again, dividing both sides by u gives us

T ′

T
=
X ′′

X
= constant.

For the sake of convenience (we’ll see why later), we call the constant −λ:
T ′

T
=
X ′′

X
= −λ

or

X ′′ + λX = 0 and T ′ + λT = 0.

So, for each real number λ, we must solve these two ODEs. Now, the form of
the solution of the first PDE will depend on the sign of λ (this did not happen
in the previous example), so we must consider three cases.

Case 1: λ > 0

X = c cos
√
λ x+ d sin

√
λ x, T = e−λt

and

u = e−λt[c cos
√
λ x+ d sin

√
λ x].

Case 2: λ = 0

X = cx+ d, T = 1

and

u = cx+ d.

Case 3: λ < 0

X = ce
√−λx + de−

√−λx, T = e−λt

and

u = e−λt[ce
√−λx + de−

√−λx].

In each case, c and d are arbitrary constants. Again, any linear combination
of solutions is a solution.

Example 3 Separate the PDE 3uyy − 5uxxxy + 7uxxy = 0.
Again, let u = XY :

3XY ′′ − 5X ′′′Y ′ + 7X ′′Y ′ = 0.

Then, dividing by XY doesn’t help us, but dividing by XY ′ gives us

3Y ′′

Y ′ =
5X ′′′ − 7X ′′

X
= −λ

or

5X ′′′ − 7X ′′ + λX = 0 and 3Y ′′ + λY ′ = 0.
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Example 4 Separate the PDE (in u(x, y, z)),

ux − 2uyy + 3uz = 0.

We let u(x, y, z) = X(x)Y (y)Z(z) and, substituting, get

X ′Y Z − 2XY ′′Z + 3XY Z ′ = 0.

Let’s divide by u = XY Z and see what happens:

X ′

X
− 2Y ′′

Y
+

3Z ′

Z
= 0.

At the very least, we can separate any one of the variables from the other
two. For example, we can write

X ′

X
=

2Y ′′

Y
− 3Z ′

Z
= −λ1,

where we have concluded, as before, that each side of the separated equation
must be constant. Now, we immediately get the ODE

X ′ + λ1X = 0.

As for the second half, we can rewrite it as

2Y ′′

Y
=

3Z ′

Z
− λ1,

and we have separated the variables y and z. Hence, we conclude that

2Y ′′

Y
=

3Z ′

Z
− λ1 = −λ2

for any real λ2, or

2Y ′′ + λ2Y = 0 and 3Z ′ + (λ2 − λ1)Z = 0.

Therefore, u = XY Z is a solution if and only if there exist constants λ1 and
λ2 such that X,Y and Z satisfy the three ODEs above (with, of course, the
same λ1 and the same λ2 in each).

We do not want to give the impression that all linear, homogeneous PDEs
are separable—in fact, “most” are not separable. However, many of the equa-
tions which are important in applications are separable (rather, many of the
simplifications which are made in deriving PDEs are made so that the re-
sulting PDEs are linear and, often, separable). It is very easy to prove that
a PDE is separable—by separating it! However, it is more difficult to prove
that a PDE is not separable.
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Exercises 1.6

In Exercises 1–21, separate the PDE into a system of ODEs.

1. 3ux − 2uy = 0

2. 5ux + 4uy − 2u = 0

3. y2ux + x2uy = 0

4. uxx − uy + u = 0

5. The wave equation, utt − uxx = 0

6. Laplace’s equation, uxx + uyy = 0

7. uxx + 2uyy − ux + 3uy = 0

8. uxx − xuy + xu = 0

9. −iut = uxx − x2u (This is the one-dimensional Schrödinger’s equation
for a harmonic oscillator. Here, i is the imaginary constant with the
property i2 = −1.)

10. x2uxx + 2ux − 3uy − yu = 0

11. Laplace’s equation in polar coordinates, urr +
1
rur +

1
r2uθθ = 0

12. rurr + ur − rut = 0 (this equation gives the intensity of the magnetic
field inside a solenoid)

13. The Euler–Bernoulli beam equation, utt + uxxxx = 0

14. ux + uy − uz = 0

15. ux + uy + uz + u = 0

16. uxx − uy + uz = 0

17. x2ux − y3uy − 4zuz = 0

18. The two-dimensional heat equation, ut = uxx + uyy

19. The two-dimensional wave equation, utt = uxx + uyy

20. The three-dimensional Laplace equation, uxx + uyy + uzz = 0

21. Schrödinger’s equation (with zero potential), uxx + uyy + uzz + u = 0

In Exercises 22–35, find all product solutions of the PDE (each PDE already
was separated in Exercises 1–21).

22. 3ux − 2uy = 0
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23. 5ux + 4uy − 2u = 0

24. y2ux + x2uy = 0

25. uxx − uy + u = 0

26. The wave equation, utt − uxx = 0

27. Laplace’s equation, uxx + uyy = 0

28. uxx + 2uyy − ux + 3uy = 0

29. Laplace’s equation in polar coordinates, urr +
1
rur +

1
r2uθθ = 0

30. ux + uy − uz = 0

31. ux + uy + uz + u = 0

32. uxx + uy + uz = 0

33. The two-dimensional heat equation, ut = uxx + uyy

34. The two-dimensional wave equation, utt = uxx + uyy

35. The three-dimensional Laplace equation, uxx + uyy + uzz = 0

36. Prove that if f(x) = g(y, z) for all x, y and z, then f and g both are
constant functions.

37. One also may try to separate variables in other ways.

a) Find all solutions of the PDE ux + uy = 0 of the form u(x, y) =
X(x) + Y (y).

b) Do the same for the eikonal equation, u2x + u2y = 1.

38. In Section 1.3, we saw that we often are interested in solving a PDE
subject to certain auxiliary conditions, namely, initial and boundary
conditions. In fact, when we solve an initial-boundary-value problem
using separation of variables, we will find it much easier to solve if
we also separate the boundary conditions. For each of the boundary
conditions given below, separate the variables, that is, decide what each
of them tells you about product solutions u(x, t) = X(x)T (t). (In each
case, a is a constant.)

a) u(a, t) = 0 (the so-called Dirichlet boundary condition)

b) ux(a, t) = 0 (the Neumann condition)

c) αux(a, t) + βu(a, t) = 0, where α and β are constants (the Robin
condition)

d) uxx(a, t) = 0

e) uxxx(a, t) = 0
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(The last two boundary conditions are encountered in connection with
the Euler–Bernoulli beam PDE, for example.)

39. Decide whether the given function is a product function, that is, if it
can be written in the form f(x)g(y) for functions f and g. If it is not,
justify your answer.

a) u(x, y) = exy

b) u(x, y) = e2x−3y

c) u(x, y) = y2 − xy + 1

d) u(x, y) = sin(x+ y)

1.7 Eigenvalue Problems

In Section 1.3, we discussed the heat equation, subject to initial and boundary
conditions. Suppose, for instance, we’re solving the heat equation ut = uxx
on the interval 0 ≤ x ≤ 1. Suppose, further, that the equation is subject to
the boundary conditions

u(0, t) = u(1, t) = 0

for t > 0. We first separate the PDE, resulting in the ODEs

X ′′ + λX = 0 and T ′ + λT = 0.

Then, as in Exercise 38 in the previous section, we separate the boundary
conditions, as follows:

u(0, t) = X(0)T (t) = 0 for all t > 0⇒ X(0) = 0, or T (t) = 0 for all t > 0.

So we have two types of product solutions of the PDE which satisfy the
left boundary condition: those which satisfy X(0) = 0 and those for which
T (t) ≡ 0, that is, those for which T (t) is the zero-function. But the latter
gives us the zero-solution (which we already know is a solution). So the only
nontrivial product solutions which satisfy the left boundary condition are
those which satisfy X(0) = 0.

Similarly, the only nontrivial product solutions which satisfy the right bound-
ary condition will satisfy X(1) = 0. So, we actually need to solve the system

X ′′ + λX = 0 T ′ + λT = 0

X(0) = X(1) = 0.

The X-system looks like the problems in Section 1.3, Exercises 1–5. Essen-
tially, then, it is an ODE boundary-value problem. However, it differs from
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the latter in that it includes the parameter λ. Remember that we solve the
X-ODE for each real number λ. For each λ, the ODE has infinitely many
solutions. Now, though, we need to find which of these solutions “survive”
the boundary conditions—that is, we shall see that, for “most” real numbers
λ, the only solution that also satisfies the boundary conditions is the zero-
solution, X(x) ≡ 0. Thus, we need to identify those values of λ for which
the X-system has nontrivial solutions (and, of course, find those solutions).
Then we will solve the T -equation, but only for these values of λ, and form
the nontrivial product solutions of the PDE and boundary conditions.

These values of λ are called eigenvalues‖ of the X-system, and the corre-
sponding nontrivial solutions are the eigenfunctions associated with λ. The
system itself is an example of an ODE eigenvalue problem.

Let’s calculate some eigenthings.

Example 1 Find all eigenvalues and eigenfunctions of the eigenvalue problem

y′′ + λy = 0, y = y(x), 0 < x < 1

y(0) = y(1) = 0.

As with ODE initial-value problems, and the boundary-value problems from
the exercises in Section 1.3, we first find the general solution of the ODE,
then apply the boundary conditions. To do this, we set y = erx and find the
characteristic equation r2 + λ = 0. It now becomes apparent that we need to
treat the cases λ > 0, λ = 0 and λ < 0 separately.

Case 1: λ < 0
If λ < 0, then we can write λ = −k2 for some real number k with k > 0.

Then, the characteristic equation r2 − k2 = 0 leads to the two independent
solutions ekx and e−kx. However, it turns out that life is much easier if we
use, instead, the functions

y1 =
ekx + e−kx

2
= cosh(kx)

and

y2 =
ekx − e−kx

2
= sinh(kx)

(see Exercise 22). Then, the general solution is

y = c1 cosh(kx) + c2 sinh(kx).

‖These eigenvalues are similar to those which we see in Linear Algebra, where the eigen-
values of a matrix are those real numbers for which the matrix equation A�v = λ�v has a
nontrivial solution. Here, we are looking for real numbers for which the functional equation
Ly = λy has a nontrivial solution, where Ly = −y′′.
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Applying the left end boundary condition, we have

y(0) = 0 = c1 cosh 0 + c2 sinh 0

= c1.

So the only solutions that survive this boundary condition are those of the
form

y = c2 sinh(kx).

Then, applying the right end boundary condition gives us

y(1) = 0 = c2 sinh k

and, since k > 0, we have sinh k �= 0 and, therefore, c2 = 0. Therefore,
for each negative number λ, the only solution which survives the boundary
conditions is the zero-function

y ≡ 0.

Therefore, there are no negative eigenvalues.

Case 2: λ = 0
In this case, the ODE is just y′′ = 0, with general solution

y = c1x+ c2.

Then,
y(0) = 0 = c2 and y(1) = 0 = c1 + c2,

so c1 = c2 = 0, and λ = 0 is not a eigenvalue.

Case 3: λ > 0
If λ > 0, we can write λ = k2 for some real number k with k > 0. Then,

the characteristic equation r2 + k2 = 0 leads to the two linearly independent
solutions cos(kx) and sin(kx) and, therefore, to the general solution

y = c1 cos(kx) + c2 sin(kx).

Applying the left end boundary condition, we have

y(0) = 0 = c1 cos 0 + c2 sin 0

= c1.

So the only solutions which survive this boundary condition are

y = c2 sin(kx).

Then, the other boundary condition gives us

y(1) = 0 = c2 sink.
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As in Case 1, this forces c2 = 0 except in those cases where k is a number with
the property sink = 0. For these latter values of k, we need not have c2 = 0; in
fact, there is no restriction on c2, so the term c2 sin(kx) survives both boundary
conditions. In other words, these values of k give us the eigenvalues λ = k2

of the problem; for each such k, the functions

y = c sin(kx)

are the associated eigenfunctions. In practice, we say that the eigenfunction
is y = sin(kx), realizing that any constant multiple of an eigenfunction is an
eigenfunction (why?).

So the eigenvalues are those numbers λ = k2 where sin k = 0. Therefore,
we have

k = π, 2π, 3π, . . . = nπ, n = 1, 2, 3, . . . (remember: k > 0)

and
λ = π2, 4π2, 9π2, . . . = n2π2, n = 1, 2, 3, . . . .

We write the eigenvalues as

λn = n2π2, n = 1, 2, 3, . . .

and the corresponding eigenfunctions as

yn = sin(nπx), n = 1, 2, 3, . . . .

Example 2 Do the same for

y′′ + λy = 0,

y′(0) = y′(3) = 0.

Case 1: λ < 0, λ = −k2, k > 0
We have

y = c1 cosh(kx) + c2 sinh(kx),

so that
y′ = c1k sinh(kx) + c2k cosh(kx).

(See Exercise 22.) Then,

y′(0) = 0 = c2k ⇒ c2 = 0

and
y′(3) = 0 = c1k sinh 3k⇒ c1 = 0,

so there are no negative eigenvalues.
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Case 2: λ = 0
The general solution is

y = c1x+ c2

so that
y′ = c1.

Then,
y′(0) = y′(3) = 0 = c1.

Therefore, the function y = c2 survives both boundary conditions, so λ = 0
is an eigenvalue. We write

λ0 = 0

with eigenfunction
y0 = 1.

Case 3: λ > 0, λ = k2, k > 0
We have the general solution

y = c1 cos(kx) + c2 sin(kx),

so that
y′ = −c1k sin(kx) + c2k cos(kx).

Then,

y′(0) = 0 = c2k ⇒ c2 = 0;

y′(3) = 0 = −c1k sin(3k)⇒ c1 = 0

unless
sin(3k) = 0, that is, 3k = π, 2π, 3π, . . .

or
k =

nπ

3
, n = 1, 2, 3, . . . .

Therefore, we have eigenvalues

λn =
n2π2

9
, n = 1, 2, 3, . . .

with associated eigenfunctions

yn = cos
nπx

3
, n = 1, 2, 3, . . . .

Example 3 Do the same for

x2y′′ + xy′ − λy = 0

y(1) = y(e) = 0.
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First, note that this is a Cauchy–Euler equation, for x > 0. We let y = xr

and determine the values of r that give us solutions. So

y = xr ⇒ x2r(r − 1)xr−2 + x · rxr−1 − λxr = 0

⇒ r(r − 1) + r − λ = 0

⇒ r2 − λ = 0.

Again, we must consider three cases.

Case 1: λ > 0, λ = k2, k > 0
We have r = ±k, so our two linearly independent solutions are xk and x−k,

giving us the general solution

y = c1x
k + c2x

−k.

Then,

y(1) = 0 = c1 + c2

y(e) = 0 = c1e
k + c2e

−k

which imply

c2 = −c1
c1(e

k − e−k) = 0.

Since k > 0, the latter implies that c1 = 0, so c2 = 0 as well, and we have no
positive eigenvalues.

Case 2: λ = 0
In this case, we have the repeated root r = 0, giving us the linearly inde-

pendent solutions x0 and x0 lnx. So the general solution is

y = c1 + c2 lnx.

Then,

y(1) = 0 = c1

y(e) = 0 = c1 + c2

so, again, c1 = c2 = 0, and λ = 0 is not an eigenvalue.

Case 3: λ < 0, λ = −k2, k > 0
Here we have the roots r = ±ik and corresponding linearly independent

solutions cos(k lnx) and sin(k lnx). The general solution is

y = c1 cos(k lnx) + c2 sin(k lnx).
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Applying the boundary conditions, we have

y(1) = 0 = c1 ⇒ c1 = 0

y(e) = 0 = c2 sink

and the latter equation forces c2 = 0, except for those values of k satisfying
sin k = 0; that is, c2 is arbitrary when

k = π, 2π, 3π, . . .

or
λ = −π2,−4π2,−9π2, . . . .

Therefore, the eigenvalues are

λn = −n2π2, n = 1, 2, 3, . . . ,

and the associated eigenfunctions are

yn = sin(nπ lnx), n = 1, 2, 3, . . . .

Example 4 Do the same for

y′′ + λy = 0

y(0) = y(1) + y′(1) = 0.

Case 1: λ < 0, λ = −k2, k > 0
We have

y = c1 cosh kx+ c2 sinh kx.

Then,
y′ = c1k sinh kx+ c2k cosh kx

and, applying the boundary conditions, we have

y(0) = 0 = c1

y(1) = 0 = c2(sinh k + k cosh k).

So we must have c2 = 0, except for those values of k > 0 satisfying

sinh k + k cosh k = 0.

Essentially, then, we wish to find all positive roots of the function

f(x) = sinh x+ x cosh x.

Now, f(0) = 0. For x > 0, let’s consider f ′:

f ′(x) = 2 cosh x+ x sinh x > 0 for x > 0.
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Therefore (see Exercise 23), f(x) has no roots when x > 0 and the problem
has no negative eigenvalues.

Case 2: λ = 0
The general solution here is

y = c1x+ c2

and, since y′ = c1, the boundary conditions give

y(0) = 0 = c2

y(1) + y′(1) = 0 = 2c1 + c2.

Therefore, c1 = c2 = 0, so λ0 = 0 is not an eigenvalue.

Case 3: λ > 0, λ = k2, k > 0.
Here, as usual,

y = c1 cos kx+ c2 sin kx,

so
y′ = −c1k sin kx+ c2k cosx.

Then,

y(0) = 0 = c1

y(1) = 0 = c2(sin k + k cos k).

This system has only the solution c1 = c2 = 0 unless k is such that

sink + k cos k = 0.

Therefore, the eigenvalues correspond to those values of k satisfying

−k = tan k.

How do we solve for k? We don’t—because we can’t! However, we can show
that there are infinitely many such values of k, by looking at the graphs of
y = −k and y = tan k for k > 0, which we have plotted in Figure 1.2. In
fact, it looks as though y = −k intersects each branch of y = tan k exactly
once. Therefore, our eigenvalues correspond to values of kn, n = 1, 2, 3, . . .,
satisfying

π

2
< k1 <

3π

2
3π

2
< k2 <

5π

2
...

(2n− 1)π

2
< kn <

(2n+ 1)π

2
.

...
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FIGURE 1.2
MATLAB graph of the intersection of the functions y = −ky = −ky = −k and
y = tan ky = tan ky = tan k for k > 0k > 0k > 0.

Therefore, the eigenvalues are those λn > 0 satisfying −√λn = tan
√
λn,

with associated eigenfunctions

yn = sin
√
λn x.

We have also solved this same problem using the MATLAB routine BVP4C.
The first five eigenvalues are given in Table 1.1, and the first five eigenfunctions
(normalized by requiring that y′(0) = 1) are plotted in Figure 1.3. Note that
the solutions do seem to satisfy the condition y′(1) = −y(1).

n λn

1. 4.116
2. 24.142
3. 63.664
4. 122.897
5. 201.863

TABLE 1.1
First five eigenvalues of the problem in Example 4, computed using
the MATLAB routine BVP4C.
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FIGURE 1.3
MATLAB graph of the first five eigenfunctions in Example 4, using
the routine BVP4C (highest to lowest, respectively, at x = 0.2x = 0.2x = 0.2).

It may seem odd to include such an example, but this problem illustrates
the fact that many eigenvalue problems cannot be solved explicitly.

Further, this type of eigenvalue problem often shows up in applications.
See, for example, Exercises 5e and 5f in Section 4.1.

Example 5 Here, we briefly introduce a more general technique for solving
these eigenvalue problems. Suppose we wish to find the positive eigenvalues
of

y′′ + λy = 0,

y(0) + y′(0) = y(1) = 0.

Proceeding as before, we have

y = c1 cos kx+ c2 sin kx, λ = k2,

and we must find those values of k for which the system

c1 + c2k = 0

c1 cos k + c2 sin k = 0.
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Now, if we write these equations in matrix form,

[
1 k

cos k sin k

] [
c1
c2

]
=

[
0
0

]
,

we see that λ = k2 is an eigenvalue if and only if

∣∣∣∣ 1 k
cos k sin k

∣∣∣∣ = 0.

This leads to the equation
k = tan k,

with solution similar to that in the previous example (with one additional
concern—see Exercise 24).

Exercises 1.7

In Exercises 1–14, solve the eigenvalue problem, that is, find all eigenvalues
and associated eigenfunctions.

1. y′′ + λy = 0, y(0) = y(5) = 0

2. y′′ + λy = 0, y′(0) = y′
(
1
2

)
= 0

3. y′′ + λy = 0, y′(0) = y(π) = 0

4. y′′ + λy = 0, y(0) = y′(4) = 0

5. y′′ + λy = 0, y(0)− y′(0) = y(1)− y′(1) = 0

6. y′′ + λy = 0, y(0) + y′(0) = y(2) + y′(2) = 0

7. x2y′′ + 3xy′ + λy = 0, y(1) = y(e2) = 0

8. y′′ + 2y′ + (λ + 1)y = 0, y(0) = y(π) = 0

9. y′′ + λy = 0, y(−1) = y(1) = 0

10. y′′ + 2y′ + λy = 0, y(−2) = y(2) = 0

11. y(4) + λy = 0, y(0) = y′′(0) = y(1) = y′′(1) = 0 (Hint: Let λ =
k4, 0,−k4.)

12. y(4) + λy = 0, y′(0) = y′′′(0) = y′(π) = y′′′(π) = 0

13. y′′ + λy = 0, y(0) = y(2)− y′(2) = 0

14. y(4) + λy′′(0) = 0, y(0) = y′′(0) = y(1) = y′′(1) = 0

15. Solve each eigenvalue/eigenfunction problem two ways:
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i) by hand

ii) MATLAB: Using the MATLAB routine BVP4C

a) y′′ + λy = 0, y(0) + y′(0) = y(1) = 0
b) y′′ + λy = 0, 2y(0)− y′(0) = y(2) = 0
c) Exercise 13
d) y(4) + λy′′ = 0, y(0) = y′′(0) = y(1) = y′(1) = 0

16. Find all eigenvalues and eigenfunctions of the ODE y′′ +λy = 0 subject
to the boundary conditions (where L > 0)

a) y(0) = y(L) = 0

b) y(0) = y′(L) = 0

c) y′(0) = y(L) = 0

d) y′(0) = y′(L) = 0

17. Find all product solutions of the heat equation ut = uxx which also
satisfy the boundary conditions u(0, t) = u(5, t) = 0. (Refer to Exercise
1, above, and to Example 2 of the previous section.)

18. Find all product solutions of the wave equation utt = uxx which also
satisfy the boundary conditions u(0, t) = u(1, t) = 0. (Refer to Example
1, and to Exercises 5 and 26 of the previous section.)

19. a) Show that the ODE y′′ + λy = 0 has nontrivial periodic solutions
of period L, that is, which satisfy

y(x+ L) = y(x) for all x

if λ = λn =
(
2πn
L

)2
, n = 0, 1, 2, . . . .

b) Show that the statement actually is an if and only if. (Hint: Write
c1 cos kx+ c2 sin kx = c3 cos(kx− c4).)

Hence, show that the only solutions of y′′ + λy = 0 of period 2π are the
functions

y0 = 1, yn = c1 cosnx+ c2 sinnx, n = 1, 2, . . . .

c) Solve, instead, the eigenvalue problem

y′′ + λy = 0

y(−π) = y(π)

y′(−π) = y′(π)

and show that we get the same eigenvalues and eigenfunction as
above.
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20. Sturm Comparison Theorem: The Sturm Comparison Theorem (due
to Jacques Charles François Sturm, whom we’ll meet in Chapter 8) says,
as a special case, that if y1 and y2 are nonzero solutions of y′′ +λ1y = 0
and y′′ + λ2y = 0, respectively, with 0 < λ1 < λ2, then, between any
two consecutive roots of y1, there is a root of y2.

a) Show that the theorem is true for the eigenvalues and eigenfunc-
tions of each problem in Exercise 16.

b) MATLAB: Exhibit this theorem graphically for the first 10 eigen-
functions from Example 4.

21. Suppose we are asked to solve the eigenvalue problem

y′′ + λy = 0, a ≤ x ≤ b
y(a) = y(b) = 0.

a) Show that the change of variable z = L
b−a (x − a) transforms the

problem to what, essentially, is the problem in Exercise 16a.

b) Use this transformation and the solution of Exercise 16a to solve
this problem.

c) Use this method to solve Exercise 9.

22. a) Explain why we may say that y = c1cosh kx + c2 sinh kx is the
general solution of y′′ − k2y = 0.

b) Show that d
dx (cosh x) = sinh x and d

dx (sinh x) = cosh x.

23. Use Rolle’s Theorem to prove that if f(0) = 0 and f ′(x) > 0 for x > 0,
then f has no positive roots.

24. a) MATLAB: Graph y = x and y = tanx, x ≥ 0, on the same set of
axes.

b) Prove that f(x) = x and g(x) = tanx do not intersect on the
interval 0 < x < π

2 .

25. In this exercise we prove that if y1 and y2 are eigenfunctions, corre-
sponding to different eigenvalues, of the problem y′′ + λy = 0 subject
to either y(0) = 0 or y′(0) = 0 at the left end and either y(L) = 0 or
y′(L) = 0 at the right end, then

∫ L

0

y1y2 dx = 0.

(In this case, we say that y1 and y2 are orthogonal on 0 ≤ x ≤ L.)
To this end, suppose that y1 and y2 are eigenfunctions corresponding to
the eigenvalues λ1 and λ2, respectively, with λ1 �= λ2. Then,
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a) Show that (λ1 − λ2)
∫ L

0
y1y2 dx =

∫ L

0
(y1y

′′
2 − y′′1y2)dx.

b) Use integration by parts to prove Green’s first identity

∫ L

0

y1y
′′
2 dx = y1y

′
2

∣∣∣x=L

x=0
−
∫ L

0

y′1y
′
2 dx.

c) Now prove Green’s second identity

∫ L

0

(y1y
′′
2 − y′′1y2)dx = (y1y

′
2 − y′1y2)

∣∣∣x=L

x=0
.

d) Conclude that ∫ L

0

y1y2 dx = 0.

e) Show that we cannot do anything similar for

∫ b

a

(y1y
′
2 − y2y′1)dx.

How about for ∫ b

a

(y1y
′
2 + y2y

′
1)dx?

(Note that the second integral results from replacing y′1 by −y′1 in
the first. We’ll see the significance of this in Chapter 8.)

26. Rayleigh quotient: Suppose that λn is an eigenvalue, with eigenfunc-
tion yn, of any of the four eigenvalue problems

y′′ + λy = 0, 0 < x < L,

y(0) = 0 or y′(0) = 0,

y(L) = 0 or y′(L) = 0.

a) Use Green’s first identity, from the previous exercise, to show that

λn =

∫ L

0
[y′n(x)]

2dx∫ L

0
[yn(x)]2dx

.

This is the Rayleigh∗∗ quotient for λn, in terms of yn.

b) Conclude that we must have λn ≥ 0, that is, that the problems
have no negative eigenvalues. In which case(s) is 0 an eigenvalue?

∗∗After the great British scientist John William Strutt, Lord Rayleigh (1842–1919).
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c) Show that the eigenvalue problem

y′′ + λy = 0, 0 < x < L,

y(0)− ay′(0) = y(L) + by′(L) = 0

has no negative eigenvalues if a > 0 and b > 0. (These boundary
conditions will show up in our discussion of the heat equation.)

27. Consider the nonhomogeneous boundary-value problem

y′′ + αy = f(t), α = constant

y(0) = y(L) = 0

(where f(t) is continuous on 0 ≤ x ≤ L).
a) Show that if α is not an eigenvalue of the associated homogeneous

problem y′′ + λy = 0, y(0) = y(L) = 0, then the nonhomogeneous
problem has a unique solution.

b) Show that if α is an eigenvalue of the homogeneous problem, then
the nonhomogeneous problem may or may not have a solution. In
this case, for which functions f(t) will the problem have a solution?
Is the solution unique?

(Compare this problem to the nonhomogeneous problem from Linear
Algebra,

(A− λI)�v = �b.)





Prelude to Chapter 2

In this chapter, we provide physical derivations for the three most important
PDEs, the heat equation, the wave equation and Laplace’s equation, each in
two independent variables. We also derive the appropriate initial and bound-
ary conditions in order that these problems be well-posed on finite domains.
Finally, we’ll solve special cases of these initial-boundary-value problems, and
we’ll see that we are only one step away from solving them in general—with
that last step to be filled in Chapter 3.

Although many mathematicians in the late 18th and early 19th centuries in-
vestigated the problem of heat conduction, the name of Joseph Fourier (1768–
1830) has become synonymous with this particular problem. Fourier played an
important role in the French Revolution and, when Napoleon came to power,
Fourier was appointed Chair of Mathematics at the newly formed École Nor-
male. Fourier became so successful that Napolean decided to take him along
on his ill-fated invasion of Egypt in 1798. The French had a successful land-
ing and met almost no resistance, but the British destroyed the French fleet
in Alexandria harbor, stranding Napoleon’s army, most of whom—including
Fourier – were stuck in Egypt for more than two years!

During this time and after, motivated by the problem of better designing
cannons so that they would cool quickly after firing, Fourier continued think-
ing about the conduction of heat. He soon was able to derive the heat equation
and to solve it using trigonometric series about which we’ll say much more in
Chapter 3.

The study of the vibrating string seems to have been prompted by the
writings of French composer and music theorist Jean-Philippe Rameau (1683–
1764) and, in particular, by the appearance in 1722 of his famous textbook on
harmony. In 1727, John Bernoulli (1667–1748, brother of James and father
of Daniel) approximated a continuous string by a massless string loaded with
a finite number of discrete masses. Although Bernoulli seems to have “taken
the limit,” the wave equation as we know it did not appear until the 1760s,
in the works of Euler and d’Alembert.

Laplace’s equation, or the potential equation, actually appeared first in
1752 in a paper by Euler. The paper dealt with the motion of fluids and was
influenced by Daniel Bernoulli’s seminal workHydrodynamics, which appeared
in 1738 and in which he coined the term “potential function.” Pierre-Simon
de Laplace (1749–1827) got his name attached to the equation through his
rederivation and use of it in connection with the problem of gravitational
attraction. He wrote a number of important papers on the topic in the 1770s
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and 1780s, but his greatest contribution was his landmark five-volume work,
Traité de mécanique céleste (Treatise on celestial mechanics), in which Laplace
compiled all of the important work, since Newton, on Newtonian gravitation
and its role in the solar system. In particular, Laplace’s main goal was to
prove that the solar system is stable, a problem that has returned to the
forefront with recent advances in dynamical systems and the study of chaos.

Of course, these are but a few of the highlights of the rich and varied history
of the Big Three PDEs.



2

The Big Three PDEs

2.1 Second-Order, Linear, Homogeneous PDEs
with Constant Coefficients

In this chapter we begin to look at the “Big Three PDEs”—the heat equa-
tion (or diffusion equation), the wave equation and Laplace’s equation (or the
potential equation)—each in two independent variables. Each is a second-
order, linear, homogeneous PDE with constant coefficients. The general such
equation is

auxx + buxy + cuyy + dux + fuy + gu = 0, (2.1)

where, again, u = u(x, y) and, of course, a, b, c, d, f and g are constants.
We study equation (2.1) in detail in Section 5.4. In particular, there we’ll

classify these equations as in the following definition and give reasons for such
a classification.

Definition 2.1 Equation (2.1) is said to be:
Hyperbolic, if b2 − 4ac > 0
Parabolic, if b2 − 4ac = 0
Elliptic, if b2 − 4ac < 0

We mention this classification now because, as we’ll see in the exercises,
the heat equation is parabolic; the wave equation is hyperbolic; and Laplace’s
equation is elliptic. In fact, each of these equations is, in some sense, the
standard example or “prototypical equation” of its type. As a result, the
mathematical importance of these three PDEs goes far beyond their connec-
tion with physical problems.

Exercises 2.1

1. a) Show that the heat equation in one space variable, ut = α2uxx,
where α is a constant, is parabolic.

b) Show that the wave equation in one space variable, utt = c2uxx,
where c is a constant, is hyperbolic.

c) Show that Laplace’s equation in two space variables, uxx+uyy = 0,
is elliptic.
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d) Show that, in each of the above, if we interchange the independent
variables, the classification remains the same.

2.2 The Heat Equation and Diffusion

Although we know that heat is a form of energy which results from the motion
of molecules, at a macroscopic level it appears to flow from warmer to cooler
regions. We would like to use this idea of heat flow in order to study its
conduction throughout a long, thin piece of material—a rod. We will derive
a PDE which must be satisfied by the temperature function of the rod.

First, a word on the derivations found in this book. We will be providing
the simplest, “barebones” derivations, the purpose being to give the student
who is approaching these ideas for the first time an intuitive feel for what
is involved. As such, we will make some approximations which may seem
ad hoc or based on hindsight (we already know what the heat equation is!).
Be assured that our assumptions are reasonable and that they can be made
rigorous; we’ll provide more rigorous derivations in the exercises, or we’ll point
the student to an appropriate reference.

We begin with a very brief derivation of the heat equation, filling in the gaps
afterwards. Along the way, we’ll introduce certain simplifying assumptions,
as needed.

We have, then, a rod of length L, placed along the x-axis (as in Figure 1.1).
We wish to determine the temperature function

u(x, t) = temperature at point x, at time t.

See Figure 2.1. As with most PDE derivations, we start by looking at an
arbitrary small piece of the rod, from x to x+Δx, as in Figure 2.2 (this piece
often is called a differential element of the rod). We will measure, in two
different ways, the rate at which heat enters the element.

u(x,t)

u

L

x

FIGURE 2.1
Temperature function for a rod of length LLL.
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0 x x+   xΔ L

FIGURE 2.2
Differential element of length ΔxΔxΔx.

First, heat content will be defined so that the amount of heat contained in
the element (at any time t) is proportional to its temperature and its length.
Then, the rate at which heat is entering the element is its time derivative,
that is,

rate ∼ ∂

∂t
(uΔx) = utΔx.

As for the second way to calculate this rate, we assume that the rod is
insulated except, possibly, at its ends. Therefore, heat enters or leaves the
element only at its endpoints. Fourier’s Law will tell us that the rate at
which heat flows across a given cross section is proportional to ux at that
point. Therefore, the above rate also is proportional to the

rate at which heat enters the right end

+ rate at which heat enters the left end

∼ ux(x+Δx, t)− ux(x, t).

Therefore, we have

utΔx ∼ ux(x +Δx, t)− ux(x, t)

or

ut ∼ ux(x+Δx, t)− ux(x, t)
Δx

,

and, letting Δx→ 0, we have

ut ∼ uxx

or

ut = constant · uxx,

which is the heat equation!
Okay, let’s go back and clean things up a bit. (What is the constant and,

in particular, what is its sign?) First, suppose we have a homogeneous piece
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of material of mass m, at constant temperature T . Then, we define the heat
content of the material to be

σmT,

where the proportionality constant σ is called the specific heat of the given
substance. Applying this to the element in Figure 2.2, and supposing that the
element’s cross sectional area A, mass density (mass per unit volume) ρ and
specific heat are constant, we arrive at a heat content of approximately

σρAΔx u

(
x+

Δx

2
, t

)
, (2.2)

where ρAΔx is the mass of the element, and where we have approximated the
variable temperature using the temperature at the element’s midpoint (but
see Exercise 4). The time rate of change of this heat content, then, is

σρAΔx ut

(
x+

Δx

2
, t

)
. (2.3)

Now, for Fourier’s Law : First, in defining the temperature function as we
have done, we are assuming that the rod is sufficiently thin so that the tem-
perature is essentially constant throughout any cross section. This, in turn,
coupled with the assumption that the rod is insulated (except, possibly, at
the ends), allows us to assume that heat flows only in the x-direction.

Fourier’s Law then states, for the heat problem, that the rate of left-
to-right flow of heat per unit area, i.e., the flux of heat, through any cross
section, is

Φ(x, t) = −kux(x, t), (2.4)

where the ratio k is called the material’s thermal conductivity and −ux is
called the temperature gradient (Why gradient? We’ll see, in Chapter 9).
See Figure 2.3.

x

u

x
x

x

u    > 0
u    < 0

u    > 0

direction of heat "flow"

FIGURE 2.3
Fourier’s Law and the direction of heat flow.
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Then, assuming that k is constant along the rod (and remembering the
assumption that A is constant), the rate of change of the element’s heat
content is the

rate at which heat enters the right end

+ rate at which heat enters the left end

= −AΦ(x+Δx, t) +AΦ(x, t)

= kA[ux(x+Δx, t)− ux(x, t)].∗ (2.5)

Finally, we equate (2.3) and (2.5):

σρAΔxut

(
x+

Δx

2
, t

)
= kA[ux(x+Δx, t)− ux(x, t)],

and, dividing by Δx and letting Δx→ 0, we have the heat equation

ut = α2uxx, (2.6)

where the constant α2 = k
σρ is called the thermal diffusivity of the material.

Heat flow is not the only application of this PDE.

OTHER APPLICATIONS OF THE HEAT EQUATION

Diffusion

Heat conduction is a specific example of the process of diffusion—we say
that heat diffuses through the rod, just as a drop of ink diffuses throughout
a container of water. In general, let u(x, t) represent the concentration (mass
per unit volume), at point x at time t, of whatever it is that’s diffusing. In
this case, equation (2.4) is known as Fick’s Law (actually, Fick’s First Law
of Diffusion), and the constant k† is called the coefficient of diffusion. The
resulting PDE is

ut = kuxx.

(So, for example, temperature can be thought of as the concentration of heat.)

∗But see Exercise 3.
†Not the k from the heat equation derivation.
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Electric current in a long, insulated cable

If i(x, t) and E(x, t) represent the current and voltage in a long, insulated
cable, it can be shown that both i and E satisfy the telegraph equation

uxx = LCutt + (RC + LG)ut +RGu.

The constants are defined in Exercise 10. If we may neglect L and G, we see
that i and E satisfy

uxx = RCut,

the heat/diffusion equation. Again, see Exercise 10.

Financial mathematics—the Black–Scholes equation

In the study of options pricing, a very important—and relatively new (1973)—
model is the so-called Black–Scholes equation‡

σ2s2

2
Vss + rsVs − rV + Vt = 0.

Here, V = V (s, t), t is time, s is the market value of the asset being optioned,
σ is the constant volatility of the asset and r is the constant interest rate.
Although the equation is separable, it’s possible via a change of variable to
turn it into the heat equation

uτ =
σ2

2
uxx.

See Exercise 11.

It’s nice to interpret the heat equation graphically. If we plot u in terms of
x, for fixed t, then uxx is just the concavity of the graph. Since ut = α2uxx,
we have the following possibilities:

u concave down ⇒ ut < 0⇒ u decreasing

u concave up ⇒ ut > 0⇒ u increasing.

Thus, heat flows in such a way that it smooths out the temperature function.
See Figure 2.4.

‡For a derivation see, e.g., Financial Calculus by Baxter and Rennie.
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u

x

= u t

xxu    >0

>0

u    xx <0

= <0tu

FIGURE 2.4
Relationship between temperature change and concavity of temper-
ature graph.

We’ll discuss initial and boundary conditions for the heat equation in Sec-
tion 2.4.

EQUATIONS OF CONTINUITY AND CONSERVATION LAWS

When deriving the heat equation, if there is no source, we arrive at the state-
ment

σρAutΔx = −A[Φ(x+Δx, t)− Φ(x, t)]

(see (2.3) and (2.5)), or, letting Δx→ 0,

σρut +Φx = 0.

If σ and ρ were not constant, we would have

(σρu)t +Φx = 0.

This is the one-dimensional version of what is called the equation of con-
tinuity for heat flow and, since it really is a statement of the conservation
of heat energy, we refer to it as a conservation law. In general, the one-
dimensional equation of continuity/conservation law in any similar situation
is

ρt +Φx = 0, §

where ρ is the concentration and Φ is the flux of the “substance” involved.
(Convince yourself that σρu is, in fact, the “heat concentration.”)

Examples abound—the equation of continuity shows up whenever we have
something which is diffusing or flowing.

§In higher dimensions we have ρt +∇ · Φ = ρt + div Φ = 0.
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Fluid flow

Suppose we have a liquid in one-dimensional flow through a pipe with constant
cross sectional area A. If ρ(x, t) is the mass density (mass per unit volume) of
the liquid, and if v(x, t) is the velocity at point x, time t, then ρ and v satisfy
the continuity equation

ρt + (ρv)x = 0.

See Exercise 13.

Electric current

If electricity flows along a very thin wire, with charge density ρ(x, t) (charge
per unit length) and current i(x, t), then ρ and i satisfy the continuity equation

ρt + ix = 0.

See Exercise 12.

One final note: The heat equation is homogeneous, of course. However, if
we suppose there is an additional heat source/sink along or within the rod,
given by

f(x, t) = time rate at which heat is added/removed,

per unit volume, at point x at time t,

then the result is the nonhomogeneous heat/diffusion equation

ut = α2uxx + F (x, t), (2.7)

where

F (x, t) =
1

σρ
f(x, t)

(see Exercise 8). Of course, any source terms will appear in the equation of
continuity, as well. So, for example, with heat source/sink f , the equation
becomes

(σρu)t +Φx = f.

Exercises 2.2

1. a) What are the dimensions of α2 in the heat equation? (Use calories
for heat content; you can use “time” and “length” for the remaining
quantities.)

b) What are the dimensions of the specific heat, σ?

c) What are the dimensions of the thermal conductivity, k?

d) What are the dimensions of the source term F (x, t) in the nonho-
mogeneous heat equation?
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e) What are the dimensions of k in the diffusion equation?

2. Write down the heat equation (homogeneous) which corresponds to the
given data. (Throughout, heat is measured in calories, temperature is
measured in ◦C and the other basic units are measured in centimeters,
grams and seconds.)

a) Thermal diffusivity = .72 cm2/sec

b) Specific heat = .215 cal/g-◦C
Density = 2.7 g/cm3

Thermal conductivity = .63 cal/cm-sec-◦C
c) Specific heat = .09 cal/g-◦C

Density = 8.9 g/cm3

Thermal conductivity = .92 cal/cm-sec-◦C

3. Use Taylor series to show that we’re justified in writing

f(x+Δx)− f(x) = f ′(x)Δx

in these physical derivations. Thus, in (2.5), we can immediately write

ux(x+Δx, t)− ux(x, t) = uxx(x, t)Δx.

4. Show that if u is a solution of the heat equation ut = α2uxx + F (x, t),
then so is u+ c1x+ c2 for any choice of the constants c1 and c2.

5. Show that if u satisfies the heat equation ut = α2uxx, and if we make
the change of variable τ = t − t0, where t0 is any constant, then the
new function of x and τ still satisfies the same PDE. (This will mean
that it doesn’t matter what we call the initial time in our heat equation
problems.)

6. Give the details in the derivation of the diffusion equation (2.7).

7. When deriving expression (2.2) for the heat content of the rod element,
we approximated the temperature of the element using the tempera-
ture at its midpoint. However, we did not (and could not) use a simi-
lar approximation for ux in expression (2.5). Provide a more rigorous
derivation of the heat equation as follows:

a) Write down an integral which represents the exact heat content of
the element at time t.

b) Replace expression (2.2) with this integral, and arrive at the heat
equation, using the equation

∂

∂t

∫ b

a

g(x, t)dx =

∫ b

a

gt(x, t)dt,

as well as the Mean Value Theorem for Integrals.
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8. a) Derive the nonhomogeneous heat equation (2.7). You will need to
write down an approximate expression similar to (2.2) in order to
deal with the source term f(x, t).

b) Do the same as in part (a) but, instead, proceeding as in Exercise 7
and using an integral to represent the effect of the source term.

9. In order to generalize a PDE like the heat equation, so that it is ap-
plicable to a greater variety of problems, it is necessary to relax the
simplifying assumptions.

a) Suppose that σ and ρ are not constant, but are functions of x, σ =
σ(x) and ρ = ρ(x). Show that the heat equation still takes the
same form

ut = α2uxx,

where α2 = α2(x) = k
σ(x)ρ(x) .

b) Suppose, instead, that σ and ρ are constant, but that the thermal
conductivity k depends on x, k = k(x). Show that, in this case, the
heat equation becomes

ut =
1

σρ

∂

∂x
(k(x)ux).

(Hint: Remember the proof of the product rule.) Note: One
easily can imagine more complicated situations where these basic
quantities depend on t and even on the temperature, u. In the
latter case, the heat equation will be nonlinear.

10. Electric current in a long, insulated cable: Suppose we have an
insulated wire with current i = i(x, t) and voltage E = E(x, t). Let R
be the resistance, L be the inductance, C be the capacitance and G be
the conductance (or leakage), all per unit length and all constant, of the
wire. Then, if we look at a differential element of the wire from x to
x+Δx, the potential drop along this element gives us

−ΔE = i(x, t)RΔx+ L
∂i

∂t
(x, t)Δx.

Also, the capacitance and inductance lead to

−Δi = GEΔx + C
∂E

∂t
(x, t)Δx.

a) Show that letting Δx→ 0 gives us the two first-order PDEs:

Ex +Ri+ Lit = 0,

ix +GE + CEt = 0.
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b) Differentiate the first equation by x and the second equation by t,
then, along with the second equation above, eliminate ix and ixt
to arrive at

Exx = LCEtt + (RC + LG)Et +RGE.

c) Instead, differentiate the first equation in part (a) by t and the
second equation by x, then, along with the first equation in (a),
eliminate Et and Ext to arrive at

ixx = LCitt + (RC + LG)it +RGi.

Thus, E and i both satisfy the telegraph equation.

d) If the inductance and leakage are very small and can be neglected,
show that E and i both satisfy the heat/diffusion equation.

11. a) Use separation of variables to turn the Black–Scholes equation

σ2s2

2
Vss + rsVs − rV + Vt = 0

into two ODEs.

b) Instead of separating variables, it is possible via change-of-variables
to turn the Black–Scholes equation into the heat equation, as fol-
lows:

(i) Show that the change of variables x = ln(c1s), τ = c2 − t, for
any choice of the constants c1 and c2, turns the Black–Scholes
equation into the PDE

Vτ =
σ2

2
Vxx +

(
r − σ2

2

)
Vx − rV.

(ii) Now show that the Vx and V terms can be eliminated by choos-
ing appropriate constants α and β for which the substitution

V (x, τ) = U(x, τ)eαx+βτ

turns this PDE into the heat equation Uτ = σ2

2 Uxx.

12. Derive the equation of continuity for electric current.

13. Derive the equation of continuity for fluid flow. (Hint: The volume of
liquid flowing through a cross section at x during time interval Δt is,
approximately, length · cross sectional area · density = [v(x, t)Δt] · A ·
ρ(x, t).)
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2.3 The Wave Equation and the Vibrating String
¶

Suppose we have a perfectly flexible string which, for the time being, is nailed
down at both ends. If we pluck the string, or pull it and let it go, it will
begin to vibrate. We would like to be able to determine the shapes of these
vibrations. To that end, we derive a PDE—the wave equation—which must
be satisfied by the position function of the string.

To be precise, suppose our string has length L and that it is nailed down
at the endpoints (0,0) and (L, 0), as in Figure 2.5. The string’s motion is
described by its position function

u(x, t) = height of string at point x, at time t.

(Here we are tacitly assuming that each point of the string moves only in the
u-direction and that the motion is restricted to the x-u plane. Thus, each
point on the string occupies the same x-coordinate at all times; therefore, the
statement “string at point x” is unambiguous.)

Now, we proceed as we did for the heat equation, that is, we look at an
arbitrary differential element of the string, of length Δx, as in Figure 2.6.
We intend to apply Newton’s 2nd Law, F = ma, to the vertical motion of the
string.

u

0 x L
x

u(x,t)

FIGURE 2.5
Displacement function for a string of length LLL.

¶For a very rigorous derivation of the wave equation, see A First Course in Partial Differ-
ential Equations by H. F. Weinberger.
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xT sin         u  (x+  x,t)Δ

FIGURE 2.6
Forces acting on a differential element of length ΔxΔxΔx.

We see that the only forces acting upon the isolated element are due to the
pull of the rest of the string at either end—that is, the tension at each end.
Assuming that the tension T is constant along the string (an approximation),∗

and that it is tangent to the string at each point (a consequence of the perfect
flexibility of the string), we see that the vertical force components are T sin θ1
at the left end and T sin θ2 at the right end, as in Figure 2.6. Now, ux is the
slope of the string, so we have

tan θ1 = ux(x, t)

and

tan θ2 = ux(x+Δx, t).

This gives us a nonlinear relationship between the angles θ1 and θ2 and the
function u. In order to get a linear relationship, we make the following as-
sumption: ux is small. In this case, θ1 and θ2 are small, as well, and for
small values of θ, we have

tan θ ≈ θ ≈ sin θ.

(Remember the Taylor series for these functions: tan θ = θ+ θ3

3 + · · · , sin θ =
θ − θ3

3! + · · · .) Therefore, T sin θ1 ≈ Tux(x, t) and T sin θ2 ≈ Tux(x+Δx, t),
and the sum of the vertical forces acting on the element is

T [ux(x+Δx, t)− ux(x, t)].
The mass of the element is ρΔx, where ρ is the constant linear mass den-

sity (linear because, here, it represents mass per unit length of the string)

∗This actually follows from Hooke’s Law, along with the assumption, which we make below,
that ux is small.
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and, since utt is the acceleration at each point, we approximate mass times
acceleration by

ρΔx utt

(
x+

Δx

2
, t

)
.

Newton’s 2nd Law applied to the element gives

ρΔx utt

(
x+

Δx

2
, t

)
= T [ux(x +Δx, t)− ux(x, t)]

and, dividing by Δx and letting Δx→ 0, we have the wave equation

utt = c2uxx,

where c =
√

T
ρ is called the wave speed (we’ll see why in Section 5.3).

Notice that we have neglected, among other possible effects, the force of
gravity. Suppose that we do wish to include such an external force, referred
to as a load, given by

f(x, t) = vertical force per unit length at point x, at time t.

Then, the result will be the nonhomogeneous wave equation

utt = c2uxx + F (x, t), (2.8)

where F (x, t) = 1
ρf(x, t).

OTHER APPLICATIONS OF THE WAVE EQUATION

Longitudinal vibrations of a rod

Take a rod like the one we used in our derivation but, instead, attach one end
to a wall and hit the other end with a hammer (horizontally, as in Figure 2.7).
Then, each cross section will vibrate horizontally. If we let

u(x, t) = left-right displacement of the cross section which

originally was at x, at time t,

then u satisfies
utt = kuxx,

the wave equation! Here, the constant k is a measure of how elastic the rod
is, and is called Young’s modulus.†

†After the scientist Thomas Young (1773–1829), who also made major contributions to the
study of light.
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(a) rod at rest (b) points displaced during vibration
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c

FIGURE 2.7
Longitudinal vibration of a rod.

Torsional vibrations of a rod

Take the same rod (in this case, assuming its cross sections are circular) and,
instead, twist it and release. The rod then undergoes torsional vibration (see
Figure 2.8). If we let

θ(x, t) = angle of twist of the cross section which is at x, at time t,

then θ satisfies . . . surprise . . .

θtt = c2θxx,

where c2 = G
ρ , ρ is the density and G is called the shear modulus of the

material.

FIGURE 2.8
Torsional vibration of a rod.

Electric current in a long, insulated cable

In the previous section, we showed that the current i and voltage E both
satisfy the telegraph equation

uxx = LCutt + (RC + LG)ut +RGu.

If, instead of neglecting L and G, we are able to neglect R and G (which turns
out to be the case when dealing with high frequencies), then i and E both
satisfy

uxx = LCutt.
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Again, it’s good to look at a graphical integration of the wave equation.
Fixing t, we again have that uxx is the concavity, and it is proportional to the
acceleration utt. Hence,

u concave down ⇒ utt < 0⇒ downward force/acceleration

u concave up ⇒ utt > 0⇒ upward force/acceleration.

See Figure 2.9.

xx

tt=

=

xx 

tt

u    > 0

u     < 0

u    < 0

u    > 0

FIGURE 2.9
Relationship between acceleration and concavity of string.

Exercises 2.3

1. Write down the homogeneous wave equation for the following data:
tension = 6 dynes
density = 2 g/cm

2. Show that, if u is a solution of the wave equation utt = c2uxx + F (x, t),
then so is u + c1x + c2t + c3 for any choice of the constants c1, c2 and
c3.

3. As in Exercise 9 of the previous section, consider what happens with
the homogeneous wave equation when the assumptions are relaxed.

a) Suppose that the tension remains constant, but the density is a
function of x, ρ = ρ(x). Show that the form of the wave equation
remains the same, that is, that the resulting PDE is

utt =
T

ρ(x)
uxx.

b) Suppose instead that the density is constant, but that T = T (x).
Show that, in this case, the PDE becomes

utt =
1

ρ

∂

∂x
(T (x)ux).
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4. In deriving the homogeneous wave equation, suppose that the string is
vibrating in a medium which offers resistance. The simplest model for
such frictional resistance is a force per unit length which is proportional
to the velocity. Show that the inclusion of such a damping term leads
to the damped or dissipative wave equation

utt = c2uxx − βut.

(You should assume that the medium is homogeneous so that the damp-
ing coefficient is constant.)

2.4 Initial and Boundary Conditions for the Heat
and Wave Equations

As we suggested in Section 1.3, in order for the heat equation for a finite
rod to be well-posed,∗ we must be supplied with an initial condition and two
boundary conditions, one at each end. The initial condition generally is of
the form

u(x, t0) = f(x), 0 ≤ x ≤ L
and specifies the initial temperature at each point of the rod.

It turns out that the wave equation for a finite string requires two initial
conditions, as well as two boundary conditions, in order to be well-posed.
These initial conditions generally are of the form

u(x, t0) = f(x), 0 ≤ x ≤ L, (2.9)

ut(x, t0) = g(x), 0 ≤ x ≤ L, (2.10)

and specify, respectively, the initial shape of the string and the initial velocity
at each point.

BOUNDARY CONDITIONS FOR THE HEAT EQUATION

Temperature/concentration specified at an end (Dirichlet condi-
tion†)

∗Most of the problems we consider will be well-posed. For a detailed discussion of the
issues involved, you may want to look at some of the higher level books mentioned in
the references. In particular, the classic text by Churchill and Brown, Fourier Series and
Boundary Value Problems, contains an excellent treatment of the uniqueness of solutions
of the Big Three PDEs. Also, see Appendix C.
†After the Prussian mathematician Peter Gustav Lejeune-Dirichlet (1805–1859).
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Suppose the left or right end is held at 0◦ throughout the duration of the
experiment. We then have the homogeneous Dirichlet boundary condition

u(0, t) = 0, t ≥ t0

or

u(L, t) = 0, t ≥ t0. (2.11)

More generally, an end may be held at any temperature. In fact, the temper-
ature need not be constant, but can be a given function of t, in which case we
have the nonhomogeneous Dirichlet condition

u(0, t) = g1(t), t ≥ t0

or

u(L, t) = g2(t), t ≥ t0. (2.12)

Flux specified at an end (Neumann condition‡)

If an end of the rod is insulated, so that no heat enters or leaves the rod at that
end, then the flux is zero there. From (2.4), we then have the homogeneous
Neumann boundary condition

ux(0, t) = 0, t > t0,
§

or
ux(L, t) = 0, t > t0. (2.13)

As with the Dirichlet condition, the flux need not be zero, but may be
any specified function of t, in which case (2.4) gives us the nonhomogeneous
Neumann condition

kux(0, t) = g1(t), t > t0,

or

−kux(L, t) = g2(t), t > t0. (2.14)

‡After another Prussian/German, Carl Gottfried Neumann (1832–1925).
§You may notice that the boundary conditions are specified in some cases for t ≥ t0 and
in others for t > t0. Although this need not concern us, it is a consequence of the various
existence-uniqueness-of-solution theorems connected with these problems.
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End in contact with material held at constant temperature/concen-
tration (Robin condition)

Suppose, instead, that an end of the rod is immersed in a large container
of water which is held at 0◦. (We suppose the container is of sufficient size,
and the water is in motion, so that the water in contact with the end of
the rod remains at 0◦.) To deal with this type of condition, we assume that
Newton’s Law of Cooling applies, namely, that the outward flux of heat
at such a boundary is proportional to the temperature difference between the
two media. In this particular case, then, we have the homogeneous Robin
boundary condition

kux(0, t) = h[u(0, t)− 0], t > t0,

or

−kux(L, t) = h[u(L, t)− 0], t > t0,

where h is called the heat-exchange coefficient.
Again, more generally, the temperature of the water/medium may be spec-

ified as a function of t, in which case we get the nonhomogeneous Robin
condition

kux(0, t) = h[u(0, t)− g1(t)], t > t0,

or

−kux(L, t) = h[u(L, t)− g2(t)], t > t0.

Figure 2.10 illustrates a typical set of boundary conditions.
Note that each of these three types of boundary conditions is linear. In the

following examples, we have some typical heat equation initial-boundary-value
problems for a finite rod.

Example 1
ut = uxx, 0 < x < 5, t > 0¶

u(x, 0) = x(5− x), 0 ≤ x ≤ 5

u(0, t) = u(5, t) = 0, t > 0.

¶From now on we will not include the domain a < x < b, t > t0, unless it is not obvious.
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(surrounded by insulation)

(insulated end)

ku   (0,t) = h[u(0,t) − T] u   (L,t) = 0xx

T

FIGURE 2.10
A typical setup for the heat problem.

Example 2

ut = 1.17uxx

u(x, 0) = sinx− 3 cos 4x

ux(0, t) = 3, ux(9, t)− 2u(9, t) = e−t.

BOUNDARY CONDITIONS FOR THE WAVE EQUATION

It turns out that the Dirichlet, Neumann and Robin boundary conditions
are applicable to the wave equation, as well. The most common conditions
found in connection with the vibrating string are the homogeneous Dirichlet
condition

u(0, t) = 0 or u(L, t) = 0, t > t0, (2.15)

and the homogeneous Neumann condition

ux(0, t) = 0 or ux(L, t) = 0, t > t0. (2.16)

The physical meaning of each is fairly obvious: (2.15) just means that the end
is nailed down at height zero, exactly as in Figure 2.11, while (2.15) means
that the slope of the end is held at zero. Alternatively, since Tux is the vertical
component of the tension, (2.16) may be interpreted as saying that there is no
such force exerted upon the end of the string and, thus, nothing is “pulling”
the slope away from zero.

It is not difficult to imagine generalizing these boundary conditions to (2.10)
or (2.12). Similar ideas are used to derive the Robin condition for the wave
equation, as well.‖

‖For a more comprehensive, physical look at the boundary conditions, see Stanley Far-
low’s excellent physical/intuitive book, Partial Differential Equations for Scientists and
Engineers.
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The following, then, are typical examples of the wave equation initial-
boundary-value problem for a finite string.

u(0,t) = 0 u   (L,t) = 0x

FIGURE 2.11
Boundary conditions for the vibrating string.

Example 3

utt = uxx

u(x, 0) = x(1− x)
ut(x, 0) = sinx

u(0, t) = 2, u(1, t) = −3.

Example 4

utt = 5uxx

u(x, 0) = 0

ut(x, 0) = x2

u(0, t) = te−t, ux(3, t) = 0.

Exercises 2.4

1. Set up the heat/diffusion initial-boundary-value problem for the given
data:

a) Length of rod = 5 cm
Thermal diffusivity = 1.2 cm2/sec
Left end: held at 20◦

Right end: insulated
Initial temperature: 50◦

b) Length = 3.7 cm
Specific heat = .215 cal/g-◦C
Density = 2.78/cm3

Thermal conductivity = .63 cal/cm-sec-◦C
Left end: in container of water at 0◦ (h = .8 cal/cm2-sec-◦C)
Right end: held at 0◦

Initial temperature: f(x) = x(3.7− x)
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c) Length = 22 cm
Specific heat = .09 cal/g-◦C
Density = 8.9 g/cm3

Thermal conductivity = .92 cal/cm-sec-◦C
Left end: insulated
Right end: in container of water at 15◦ (h = .65 cal/cm2-sec-◦C)
Initial temperature: linear function, 0◦ at left end, 15◦ at right
end

2. Two rods, each 7 cm long, are identical, except that one is at a constant
temperature of 40◦ and the other is at a constant temperature of −20◦.
Our experiment starts when these two rods are placed in perfect contact
with one another, end to end, so that they form, in effect, one rod. If the
other ends of the rods are insulated, write down the initial and boundary
conditions for this problem.

3. Steady state solutions of the heat equation (or any other equation in-
volving time, for that matter) are solutions which are time independent,
that is, of the form u = u(x). Find all steady state solutions of the heat
equation for a rod of length L, if

a) The left end is held at constant temperature T1, and the right end
is held at T2.

b) The left end is insulated, and the right end is held at constant
temperature T .

c) The left end is held at constant temperature T , and the right end
satisfies the Robin condition kux(L, t) + hu(L, t) = 0.

4. a) Set up a wave initial-boundary-value problem for the following
plucked string. Suppose we have a string of length = 8 cm, with
wave speed = 1 cm/sec, with each end held at the same height.
The string is set into motion by the act of plucking it, that is, by
holding it at its midpoint, pulling up a distance of 2 cm and releas-
ing it. (This act of plucking is essentially what goes on when one
plays a guitar, mandolin, harp or similar instrument.)

b) Do the same for a string of length = 4 cm, with tension = 3 dynes
and density = 1 g/cm. Suppose that the left end is held in position
1 cm below the x-axis, while the right end is held 2 cm above the
x-axis. The motion is started by taking the taut string at rest and
hitting it with a long, flat object which has a downward velocity of
5 cm/sec and which hits, simultaneously, each point on the string
(excepting the endpoints).

c) Do the same for the string in part (b), except suppose that the
object with which the string is struck is only 2 cm long and that
it hits the string symmetrically with respect to its midpoint. (A



The Big Three PDEs 65

piano string is sounded this way, by a hammer striking a segment
of the string. Of course, in this case, the string is much longer
than 4 cm, and the hammer hits a very small fraction of the total
length.)

5. Suppose we include the effect of gravity on a string of length L, with
wave speed c and constant density ρ.

a) Show that the string satisfies the PDE utt = c2uxx − g, where g is
the constant acceleration due to gravity at the earth’s surface.

b) If the ends of the string are nailed down at the same height, what
shape does the string take if it just hangs and doesn’t vibrate?

6. Apply the change of variable τ = t− t0 to the problem

ut = α2uxx

u(x, t0) = f(x)

u(0, t) = u(L, t) = 0.

Thus, without loss of generality (mathematicians say WLOG), we need
only consider such heat/diffusion problems with initial time t0 = 0.
(You should convince yourself that this is true for any of the initial-
boundary-value problems we have discussed.)

7. a) Given the heat problem with nonhomogeneous boundary conditions

ut = uxx

u(x, 0) = f(x)

u(0, t) = 10, u(5, t) = 30,

find a function v(x) = c1x+ c2 so that the new unknown

w(x, t) = u(x, t)− v(x)
satisfies the heat problem with homogeneous boundary conditions.
What is the new initial condition for w?

b) Do the same for the general problem

ut = α2uxx

u(x, 0) = f(x)

u(0, t) = T1, u(L, t) = T2,

where T1 and T2 are constants. Therefore, if we can solve the
heat problem with homogeneous Dirichlet conditions, then we know
how to solve it when it has nonhomogeneous, constant Dirichlet
conditions.



66 An Introduction to Partial Differential Equations with MATLAB R©

8. a) Do the same as in Exercise 7 for the problem with mixed conditions

ut = 3uxx

u(x, 0) = f(x)

u(0, t) = 12, ux(5, t) + u(5, t) = −2.

b) Do the same for the problem

ut = 4uxx

u(x, 0) = f(x)

ux(0, t) = 5, ux(2, t) = 3.

What’s the trouble in this case?

9. Suppose that we have a rod immersed in a large container of water which
is held at a temperature of 0◦, and suppose that the rod is not insulated
at all. Then, it turns out, the temperature function satisfies a PDE of
the form

ut = α2uxx − βu.
Briefly explain where the term −βu comes from.

2.5 Laplace’s Equation—The Potential Equation

In Chapter 9, when we generalize the heat and wave equations to higher
dimensions, we’ll get

two-dimensional heat: ut = α2(uxx + uyy),

three-dimensional heat: ut = α2(uxx + uyy + uzz),

two-dimensional wave: utt = c2(uxx + uyy),

three-dimensional wave: utt = c2(uxx + uyy + uzz).

It should not be hard to imagine, then, that the expression on the right side
of these equations is an important one. Indeed, it may be the most important
such expression in all of applied mathematics and mathematical physics.

Definition 2.2 Given the function u = u(x, y), the function

uxx + uyy

is called the two-dimensional Laplacian of u. (Similarly, the one-dimensional
Laplacian is uxx, and the three-dimensional Laplacian is uxx + uyy + uzz.)
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The formal notation for the Laplacian is

∇2u = ∇ · ∇u = uxx + uyy,
∗

where, from vector analysis, ∇ is the operator

∇ = ı̂
∂

∂x
+ ĵ

∂

∂y
,

so that the gradient of the scalar field u(x, y) is written

grad u = ∇u = uxı̂+ uy ĵ,

while the divergence of the vector field �F = F1(x, y)̂ı+ F2(x, y)ĵ is written

div �F = ∇ · �F = F1x + F2y.

From now on, we may write the heat equation as

ut = α2∇2u

and the wave equation as

utt = c2∇2u,

where the number of space dimensions should be obvious from the setting.
Now, when Fourier began to study the heat equation, he first looked for

steady state solutions of the two-dimensional heat equation. These are time-
independent solutions of the heat equation and represent, in some sense, the
“final state” of the heat problem, after it has “settled down.” These solutions
will satisfy ut = 0, so they also must satisfy

uxx + uyy = ∇2u = 0. (2.17)

The same is true, of course, for steady state solutions of the three-dimensional
heat equation, as well as the two- and three-dimensional wave equations.

Equation (2.17), the third of the Big Three PDEs, is known as Laplace’s
equation† (in two dimensions). Its appearance as a limiting case of the heat
and wave equations is interesting, but of much greater importance is the role
that Laplace’s equation plays in potential theory.

∗There is no ambiguity in the notation ∇ ·∇ = ∇2, since, of the three possibilities ∇(∇u),
∇ × (∇u) and ∇ · (∇u), the first makes no sense and the second is identically zero. By
the way, the Laplacian shows up often in the theory of elasticity. For example, the PDE
for a vibrating plate is (∇2)2u = ∇4u = −cutt, while for a vibrating so-called shallow
spherical shell we have ∇6u−c1∇2u = −c2utt. One often uses the notation Δ = ∇2. Here,
the Laplacian Δ sometimes is called the harmonic operator, and Δ2 = ∇4 is called the
biharmonic operator.
†Solutions of Laplace’s equation are called harmonic functions.



68 An Introduction to Partial Differential Equations with MATLAB R©

Again, from vector analysis, remember that a potential for a vector function
�F is a scalar function φ for which

grad φ = ∇φ = �F .

In physical problems, involving gravitation, electricity and magnetism, fluid
flow and the like, it is very convenient if we can find a potential for a force
field or velocity field because

(1) It reduces the number of functions that we must deal with.

(2) It makes it very easy to calculate line integrals of the vector field.

Suppose, for example, that we’d like to find the electric field �E = �E(x, y, z) =

E1 ı̂+E2ĵ+E3k̂ due to a certain distribution of electric charges. To be more
specific, suppose that electric charge is distributed along the boundary of a
rectangular box, and we’d like to calculate �E inside the box. We will need
two of the four famous Maxwell’s‡ equations from the theory of electricity and
magnetism. (See Appendix D.)

One of Maxwell’s equations says that

curl �E = �∇× �E = (E3y − E2z )̂ı+ (E1z − E3x)ĵ+ (E2x − E1y)k̂ = �0.

This, in turn, implies that �E does, indeed, have a potential, φ = φ(x, y, z), so

−grad φ = −∇φ = �E.§

Then, another of Maxwell’s equations says that, in regions where there is no
charge, we must have

div �E = ∇ · �E = 0. (2.18)

Hence,

−div �E = ∇ · (∇φ) = ∇2φ = 0,

and φ satisfies Laplace’s equation. We may then solve this equation and
determine φ from its given values on the boundary. The function φ is called
the electric potential.

Not every potential function φ satisfies Laplace’s equation, but since the
potential functions in many important applied problems do satisfy it, the
Laplace equation often is referred to as the potential equation.

We’ll concentrate on solving the two-dimensional Laplace equation on a
rectangle; in Chapter 9 we will solve it inside a circle.

‡James Clerk Maxwell (1831–1879), probably the greatest theoretical physicist of the 19th
century, and one of the greatest of all time.
§From a theorem in vector analysis: This will follow if the region throughout which∇× �E = �0
is simply-connected. The minus sign is a convention; see footnote on page 70.
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BOUNDARY CONDITIONS FOR LAPLACE’S EQUATION

Since time is not involved, we have only Laplace boundary-value problems. As
with the heat and wave equations, at this point we are interested in solving
Laplace’s equation on finite domains and, in particular, on a rectangle (we
shall treat the circle in Chapter 9, where we consider polar coordinates). The
examples below are typical Laplace boundary-value problems on rectangular
domains.

Example 1

uxx + uyy = 0, 0 < x < 3, 0 < y < 2,

u(x, 0) = 0, 0 < x < 3,

uy(x, 2) = 0, 0 < x < 3,

ux(0, y) = y2, 0 < y < 2,

u(3, y) = 2, 0 < y < 2.

See Figure 2.12.

2

y

3
x

u(3,y) = 2

2

u(x,0) = 0

Δ

u = 0xu (0,y) = y2

yu (x,2) = 0

FIGURE 2.12
The Laplace equation boundary-value problem from Example 1.

Example 2

uxx + uyy = 0, 0 < x < 4, 0 < y < 5,

uy(x, 0)− 2u(x, 0) = 2x,

u(x, 5) = 3,

u(0, y) = y2,

ux(4, y) + 3u(4, y) = 0.

In practice, we often encounter Laplace’s equation in situations where we
have just one type of boundary condition along the entire boundary. These
problems are so important that they are just called the Dirichlet Prob-
lem or the Neumann Problem (or, sometimes, the Interior or Exterior
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Dirichlet Problem, etc., depending on whether we are solving the PDE on the
interior or the exterior of the boundary).

Finally, going back to the problem of finding the electric potential, if we
are doing so throughout a region that does contain electric charge, then we
must use the more general version of Maxwell’s equation (2.18), which is

div �E = ∇ · �E = 4πρ,

where ρ = ρ(x, y, z) is the density of electric charge in the region. Then, we
have

−∇ · �E = ∇2φ = −4πρ.
This is the nonhomogeneous Laplace equation. The general equation of this
form,

∇2u = f, ¶

is called Poisson’s‖ equation.

Exercises 2.5

1. Find all u = u(x) which are solutions of Laplace’s equation uxx+uyy =
0.

2. Find all polynomials of the form ax2 + bxy + cy2 + dx + fy + g which
satisfy Laplace’s equation.

3. Show that the function u = −ln
√
x2 + y2 satisfies Laplace’s equation

(except at the origin, of course). This function is called the logarithmic
potential.

4. Show that if u is a solution of Poisson’s equation uxx + uyy = F (x, y),
then so is u + c1xy + c2x + c3y + c4 for any choice of the constants
c1, c2, c3 and c4.

5. In the field of complex analysis, we consider complex-valued functions of
the form f(x, y) = u(x, y) + iv(x, y). In order to decide if f is differen-
tiable, we need to see if u and v satisfy the Cauchy–Riemann equations
ux = vy and uy = −vx. Show that if u and v satisfy these equations,
then u and v both are solutions of Laplace’s equation. (Assume that u
and v have continuous second derivatives, so that the order of differen-
tiation doesn’t matter.)

¶Actually, we usually write ∇2u = −f or, commonly in more advanced texts, −Δu = f .
There are various reasons: Signs of eigenvalues, the fact that an electron is negatively
charged, etc.
‖After Siméon-Denis Poisson (1781–1840), known also for his contributions to probability
theory.
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6. a) Show that the two-dimensional Laplacian is translation-invariant,
that is, show that if the independent variables undergo a translation
to the new variables x′ = x + a, y′ = y + b, where a and b are
constants, then

uxx + uyy = ux′x′ + uy′y′ .

b) Show that the two-dimensional Laplacian is rotation-invariant, that
is, show that if the independent variables undergo a rotation through
angle α to the new variables x′ = x cosα+ y sinα, y′ = −x sinα+
y cosα, where α is a constant, then

uxx + uyy = ux′x′ + uy′y′ .

7. Show that Poisson’s equation in polar coordinates is

urr +
1

r
ur +

1

r2
uθθ = F (r, θ),

where F (r, θ) = f(r cos θ, r sin θ).

8. Use the polar form from Exercise 7 to find all θ-independent solutions
of Laplace’s equation, that is, all solutions u = u(r).

9. Show that, by separating the time variable in the two-dimensional heat
and wave equations, that is, by looking for product solutions of the
form u(x, y, t) = T (t)φ(x, y), we are led to the Helmholtz equation,
∇∇∇2φ+ λφ = 0.

2.6 Using Separation of Variables to Solve
the Big Three PDEs

We will solve the Big Three PDEs as we started to solve the heat equation in
Sections 1.6 and 1.7, that is, we’ll separate the PDE and boundary conditions
and then see what happens. Let’s look, again, at an example of the heat
problem.

Example 1 Try to solve the heat initial-boundary-value problem

ut = uxx
u(x, 0) = f(x)
u(0, t) = u(π, t) = 0

⎫⎬
⎭ (2.19)

(we’ll look at specific cases of the function f(x) when the time is right).
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Again, we separate the PDE and boundary conditions. We let u(x, t) =
X(x)T (t), and the PDE becomes

XT ′ = X ′′T

or

T ′

T
=
X ′′

X
= −λ, constant

or

T ′ + λT = 0, X ′′ + λX = 0 (for the same λ).

The boundary conditions become

X(0)T (t) = X(π)T (t) = 0,

and, as before, since T (t) ≡ 0 leads to the zero-solution, we have

X(0) = X(π) = 0.

We first solve the boundary-value problem

X ′′ + λX = 0

X(0) = X(π) = 0.

Proceeding as in Example 1 in Section 1.7, we find that the eigenvalues and
eigenfunctions are

λn = n2, Xn(x) = sinnx, n = 1, 2, 3, . . . .

(You should carry out the calculations yourself.) Therefore, these λn are
the only values of λ for which the X-boundary-value problem has nontrivial
solutions, so we need only solve the T -equation for these values of λ! We have

T ′ + λnT = 0

or

T ′ + n2T = 0,

which has solution

Tn(t) = e−n2t, n = 1, 2, 3, . . . .



The Big Three PDEs 73

Therefore, the nontrivial product solutions of the original problem, including
the boundary conditions (but not the initial condition), are

un(x, t) = e−n2t sinnx, n = 1, 2, 3, . . . .

Also, since the PDE and boundary conditions are homogeneous, any linear
combination of these functions is again a solution. So any function of the form

u(x, t) =
∞∑
n=1

cne
−n2t sinnx (2.20)

= c1e
−t sinx+ c2e

−4t sin 2t+ c3e
−9t sin 3t+ · · ·

is a solution (as long as it “converges nicely enough,” which turns out to be
the case).

Now, at this point we have found only linear combinations of product so-
lutions of the system

ut = uxx

u(0, t) = u(π, t) = 0.

However, surprisingly, we’ll see in the next chapter that, for just about any
function f(x), the solution of the original problem (2.19) must be of the form
(2.20). More precisely, for “any” function f(x), we’ll be able to determine the
constant cn so that

u(x, 0) = f(x) =

∞∑
n=1

cn sinnx

is satisfied! That being the case, we will call (2.20) the general solution
of the heat initial-boundary-value problem (2.19) (realizing, of course, that,
since (2.19) is well-posed, there really will be only one solution).

The question we must answer, then, is: Can we find values of cn, n =
1, 2, 3, . . ., for which

f(x) =

∞∑
n=1

cn sinnx?

The answer will have to wait until Chapter 3 for most functions f . However,
there are some special cases for which we already can find the values of cn.

Example 2 Suppose f(x) = 2 sinx−5 sin 3x in the previous example. Then,
we’d like to find the values of cn for which

2 sinx− 5 sin 3x =

∞∑
n=1

cn sinnx

= c1 sinx+ c2 sin 2x+ c3 sin 3x+ · · · .
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It should be clear that c1 = 2, c2 = 0, c3 = −5, c4 = c5 = · · · = 0 does the
job.∗ Therefore, the unique solution to (2.19), with f(x) = 2 sinx − 5 sin 3x,
is just (2.20) with these values plugged in, that is,

u(x, t) = 2e−t sinx+ 0e−4t sin 2x− 5e−9t sin 3x

+ 0e−16t sin 4t+ 0 + 0 + · · ·
= 2e−t sinx− 5e−9t sin 3x.

Example 3 Solve the initial-boundary-value problem

ut = 3uxx

u(x, 0) = 17 sinπx

u(0, t) = u(4, t) = 0.

We begin by separating the PDE and the boundary conditions. Letting
u(x, t) = X(x)T (t), the PDE becomes

XT ′ = 3X ′′T or
X ′′

X
=
T ′

3T
= −λ

so the separated ODEs become

X ′′ + λX = 0, T ′ + 3λT = 0.

Separating the boundary conditions gives us

X(0) = X(4) = 0.

We now solve the X-boundary-value problem. The result is (see Exercise 1)
that the eigenvalues and corresponding eigenfunctions are

λn =
n2π2

16
, Xn(x) = sin

nπx

4
, n = 1, 2, 3, . . . .

Then, solving the T -equation for each λn gives us

Tn(t) = e−3λnt = e−
3n2π2t

16 , n = 1, 2, 3, . . . .

So the general solution is

u(x, t) =
∞∑

n=1

cne
− 3n2π2t

16 sin
nπx

4
(2.21)

∗Are these the only numbers cn that do the job? The answer is yes—we’ll say more in
Chapter 3.
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and, applying the initial condition, we see that we need to find the values of
cn, n = 1, 2, 3, . . ., for which

u(x, 0) = 17 sinπx =
∞∑
n=1

cn sin
nπx

4
.

We see that we get the term sinπx on the right side when n = 4. Therefore,
c4 = 17, c1 = c2 = c3 = c5 = c6 = · · · = 0, and our solution is

u(x, t) = 17e−3π2t sinπx

(which, as before, is the general solution (2.21), with the particular values of
cn plugged in).

Exercises 2.6

1. Solve the X-eigenvalue problems in Examples 1 and 3, as was done in
Section 1.7.

2. Solve the heat equation initial-boundary-value problem

ut = 2uxx

u(x, 0) = − sin 3πx+
1

4
sin 6πx

u(0, t) = u(1, t) = 0.

(Refer to Example 1 in Section 1.7.)

3. Solve the heat equation initial-boundary-value problem

ut = uxx

u(x, 0) = 3 + cos 2πx

ux(0, t) = ux(3, t) = 0.

(Refer to Example 2 in Section 1.7.)

4. Solve the heat equation initial-boundary-value problem

ut = uxx

u(x, 0) = 7 cos
5x

2
ux(0, t) = u(π, t) = 0.

(Refer to Exercise 3 in Section 1.7.)

5. Find the general solution of the heat equation ut = α2uxx, subject to
the boundary conditions u(0, t) = u(L, t) = 0.
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6. Do the same as in Exercise 5, but subject to ux(0, t) = ux(L, t) = 0.

7. Find the general solution of the wave equation utt = uxx, subject to
the boundary conditions u(0, t) = u(1, t) = 0. (Refer to Example 1 in
Section 1.7.)

8. Find the unique solution of the wave equation problem in Exercise 7,
subject to the initial conditions

u(x, 0) = 2 sin 3πx and ut(x, 0) = 5 sinπx.

9. Solve the wave equation initial-boundary-value problem

utt = 4uxx

u(x, 0) = 5 sin 2x− 7 sin 4x

ut(x, 0) = 0

u(0, t) = u(π, t) = 0.

10. a) In Exercise 27 of Section 1.6, you were asked to find all product
solutions of Laplace’s equation uxx + uyy = 0. Now, find which of
the product solutions also satisfy the boundary conditions u(0, y) =
u(π, y) = 0, and use these to form the general solution of Laplace’s
equation subject to these conditions.

b) Solve the Laplace boundary-value problem

uxx + uyy = 0

u(x, 0) = sin 3x

u(x, 1) = sinx

u(0, y) = u(π, y) = 0.

11. MATLAB: Plot the solutions of the heat problems in Exercises 2, 3
and 4. You should plot them in two ways:

i) As surfaces u = u(x, t) in three-dimensional space

ii) As functions of x in the x-u plane, for various (fixed) values of t

In each case, investigate the behavior as t→∞, that is, the steady state
behavior.

12. MATLAB: Plot the solution of Exercise 9 in the x-u plane, for various
values of t.



Prelude to Chapter 3

In this chapter we show that many of the “usual” functions with which we
are familiar or which occur in physical problems can be rewritten as—that
is, expanded in—infinite series of cosines and/or sines. Thus, the Big Three
PDEs, as well as other important PDEs, may be solved using separation of
variables for a wide variety of initial conditions.

These trigonometric series are called Fourier series, as they were investi-
gated by Fourier in conjunction with his application of separation of variables
to the heat equation. In fact, trigonometric series of this form had been used
by a number of mathematicians throughout the latter half of the 18th cen-
tury, including Euler, Daniel Bernoulli in his work on the vibrating string, and
Alexis-Claude Clairaut (1713–1765) in his study of the motion of the planets.

However, Fourier, in his 1807 paper on heat conduction, made the claim
that “any function” can be expanded in a trigonometric series and showed
how to do so. This paper was rejected by its reviewing committee—consisting
of Laplace, Joseph-Louis Lagrange (1736–1813), Gaspard Monge (1746–1818)
and Francois Lacroix (1765–1843), the first three of whom we shall meet again
soon. However, they encouraged Fourier to continue to develop these ideas,
and he responded with an award winning revision in 1811. Finally, in 1822
Fourier published his masterpiece, La Théorie Analytique de Chaleur (The
Analytic Theory of Heat).

Fourier and his series were here to stay. However, there still was no rig-
orous proof of the convergence of these series. More to the point, there still
was no precise definition of function, without which rigor is impossible. Much
of what was needed was provided by Dirichlet. In fact, mathematicians were
realizing that calculus needed a complete overhaul, in order for its arguments
to be mathematically justified. This overhaul continued unabated into the
20th century, by which time we had a new theory of integration (initially
spurred, by the way, by the integral coefficients in Fourier’s series), a precise
definition of real number and of limit, and a “new” calculus based on these
notions. This whole process—this “arithmetization of analysis” as it is some-
times called—had its roots in the trigonometric series of Joseph Fourier and
his contemporaries.
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Fourier Series

3.1 Introduction

At the end of the previous chapter, we were given an arbitrary function f(x)
defined on 0 ≤ x ≤ L, and we wanted to know if there is a linear combination
(possibly with infinitely many terms) of the functions sin nπx

L that is identical
to f(x) on 0 ≤ x ≤ L. That is, can we find coefficients cn, n = 1, 2, 3, . . .,
such that

f(x) =

∞∑
n=1

cn sin
nπx

L
(3.1)

for 0 ≤ x ≤ L?
Fourier’s affirmative answer to this question in 1807, while not quite correct,

marks a pivotal moment in the history of mathematics. Indeed, this surprising
and profound result not only disturbed Fourier’s mathematical contemporaries
but, ultimately, rocked the very foundations of mathematical analysis.

What we would like to do is to assume that (3.1) is true and actually find
the values of the coefficients cn for which it is, in fact, true. Let’s do this and
worry about serious mathematical issues afterwards. (We say that we proceed
formally.) To this end, we will fix positive integer N , multiply both sides of
(3.1) by sin Nπx

L and then integrate both sides from x = 0 to x = L, resulting
in ∫ L

0

f(x) sin
Nπx

L
dx =

∞∑
n=1

cn

∫ L

0

sin
nπx

L
sin

Nπx

L
dx. (3.2)

Then, it is easy enough to calculate the integrals in (3.2). It turns out that

∫ L

0

sin
nπx

L
sin

Nπx

L
dx =

{
0, if n �= N ,
L
2 , if n = N ,

(3.3)

so (3.2) becomes

∫ L

0

f(x) sin
Nπx

L
dx = c1 · 0 = c2 · 0 + · · ·+ cN−1 · 0 + cN · L

2
+ cN+1 · 0 + · · ·

or

cN =
2

L

∫ L

0

f(x) sin
Nπx

L
dx. (3.4)
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Therefore, we have determined the values of cn for which (3.1) is true. Or
have we?

Many readers will notice that we assumed the truth of (3.1) and then cal-
culated the values that the coefficients must take on. This, of course, says
nothing about the truth of (3.1). Further, the series in (3.1) is an infinite
series of functions. As we know, an infinite series of constants may not even
converge; an infinite series of functions may, then, converge for some values
of x and diverge for others.

Finally, there is a more subtle problem with the above argument. We
actually skipped a step in going from (3.1) to (3.2)—we assumed that we
could integrate the right side term-by-term, i.e., that

∫ L

0

( ∞∑
n=1

cn sin
nπx

L
sin

Nπx

L

)
dx =

∞∑
n=1

cn

∫ L

0

sin
nπx

L
sin

Nπx

L
dx.

It turns out that, even if an infinite series of functions converges for all ap-
propriate values of x, it still may not have this property.

Fortunately, for “most” of the functions that we deal with in calculus and,
in particular, for functions which arise in physical problems, we will see that
we need not be concerned with these issues.

Now, instead of working directly with (3.1), or with the analogous series
involving cosines, we will first consider the following related question:

Given f(x) on −L ≤ x ≤ L, is it possible to find constants cn and
dn, n = 0, 1, 2, . . ., so that

f(x) =

∞∑
n=0

(
cn cos

nπx

L
+ dn sin

nπx

L

)

= c0 +

∞∑
n=1

(
cn cos

nπx

L
+ dn sin

nπx

L

)
(3.5)

on −L ≤ x ≤ L?

(This series will be called the Fourier series of f(x) on −L ≤ x ≤ L;
similarly, (3.1) will be called the Fourier sine series of f(x) on 0 ≤ x ≤ L.)

3.2 Properties of Sine and Cosine

We start by looking at the properties of sine and cosine that will be relevant
to this discussion. There are three such properties: periodicity, symmetry and
orthogonality.
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PERIODICITY

Remember that the functions y = sin px and y = cos px are periodic, as can
be seen from their graphs in Figure 3.1. We see there that, for any value of x,

sin px = sin p

(
x+

2π

p

)
= sin p

(
x+

4π

p

)
= · · ·

= sin p

(
x− 2π

p

)
= sin p

(
x− 4π

p

)
= · · ·

and, similarly, for cos px.

2π 3π

p p p p
3π
ppp

y

xx

(b)  y = cos px(a)  y = sin px

−1 −1

1
1

y

fundamental periodfundamental period

π π 2ππ
p
π

FIGURE 3.1
Graphs of y = sin pxy = sin pxy = sin px and y = cos pxy = cos pxy = cos px, showing the fundamental period
2π
p
2π
p
2π
p .

Definition 3.1 If there exists a number T �= 0 for which f(x+T ) = f(x) for
all x in the domain of f , then we say that f is periodic of period T . The
smallest positive period of f is called its fundamental period.

The fundamental period of sin px, as well as of cos px, is T = 2π
p (see

Exercise 5). Now, since we are interested in linear combinations of functions
of this form, let’s look at a few examples of such.

Example 1 Is f(x) = 2 + 3 sinx periodic? If so, what are its periods?
We know that 2π is the fundamental period of 3 sinx. Also, the constant
function 2 seems to be periodic, with every possible period! (Hence, it has no
fundamental period. Why not?) So we suspect that the fundamental period
of f is 2π. Let’s see:

f(x+ 2π) = 2 + 3 sin(x+ 2π)

= 2 + 3 sinx.

Therefore, f has period 2kπ for any nonzero integer k. It is easy to show that
these are the only periods of f .
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Example 2 Do the same for f(x) = sin 2x + cos 4x. The first function has
fundamental period π; the second, π

2 . Therefore, f has fundamental period π
(why π and not π

2 ?). See Figure 3.2.

0 1 2 3 4 5 6 7 8 9
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

FIGURE 3.2
MATLAB graph of y = sin 2x+ cos 4xy = sin 2x+ cos 4xy = sin 2x+ cos 4x, with fundamental period πππ.

It follows that sin nπx
L and cos nπx

L each has fundamental period T = 2L
n .

Also, since sin πx
L and cos πx

L have fundamental period 2L, and since any
integral multiple of a period also is a period, we find that any finite series

FN (x) = c0 +

N∑
n=1

(
cn cos

nπx

L
+ dn sin

nπx

L

)

has period 2L. It follows that, if the infinite series in (3.4) converges, it also
must be periodic of period 2L. (This is not hard to show and should be
“relatively obvious.”)

SYMMETRY

We notice that the graph of y = cos nπx
L is symmetric with respect to the

y-axis, while that of y = sin nπx
L is symmetric about the origin.

Definition 3.2 f(x) is even if its graph is symmetric with respect to the y-
axis, that is, if f(−x) = f(x) for all x in the domain of f ; f(x) is odd if its
graph is symmetric with respect to the origin, that is, if f(−x) = −f(x) for
all x in the domain of f . (See Figure 3.3.)
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−x

f(−x)

f(x)

x
x

y

x

y

f(−x)

−x x

(a)  f even (b)  f odd

f(x)

FIGURE 3.3
Typical even and odd functions.

Example 3 1, x2, x4, . . . are even functions (hence the name “even”).

Example 4 x, x3, x5, . . . are odd functions (hence the name “odd”).

(Note that the same is true for negative powers, on the restricted domain
x �= 0.)

It is easy to show that any linear combination of even/odd functions is
even/odd. What about products and quotients? Suppose f(x) and g(x) are
even functions, and look at the product h(x) = f(x)g(x). We have

h(−x) = f(−x)g(−x)
= f(x)g(x)

= h(x) for every x in the domain of h.

(Similarly for the quotient of two even functions.) Thus,

f(x), g(x) even ⇒ f(x)g(x) even.

A similar argument (see Exercise 12) gives us

f(x), g(x) odd ⇒ f(x)g(x) even

f(x) even, g(x) odd ⇒ f(x)g(x) odd.

Now, back in (3.2), we needed to integrate products of functions. Similarly,
when finding the coefficients in (3.5), we will be integrating such products,
but on the interval −L ≤ x ≤ L. Even and odd symmetries not only will make
our life easier now but, more importantly, will allow us to make an easy jump
from Fourier series to Fourier sine and cosine series. So, looking at Figure 3.4,
the following simplification should be “obvious”:

f even on − L ≤ x ≤ L⇒
∫ L

−L

f(x)dx = 2

∫ L

0

f(x)dx = 2

∫ 0

−L

f(x)dx

(3.6)

f odd on − L ≤ x ≤ L⇒
∫ L

−L

f(x)dx = 0.
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A A
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L
x

−L L

−L
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(a)  f even (b)  f odd

FIGURE 3.4
Integrals of even and odd functions on −L ≤ x ≤ L−L ≤ x ≤ L−L ≤ x ≤ L.

Let’s prove the second statement—the first is left to Exercise 13. Suppose f
is integrable and odd on −L ≤ x ≤ L. Then

∫ L

−L

f(x)dx =

∫ 0

−L

f(x)dx +

∫ L

0

f(x)dx

= −
∫ 0

−L

f(−x)dx+

∫ L

0

f(x)dx, since f is odd

=

∫ 0

L

f(u)du+

∫ L

0

f(x)dx, from the substitution u = −x

= −
∫ L

0

f(u)du+

∫ L

0

f(x)dx

= 0.

ORTHOGONALITY

Back in equation (3.3) we mentioned that

∫ L

0

sin
nπx

L
sin

mπx

L
dx = 0 if n �= m.

We say that the functions sin nπx
L are orthogonal on 0 ≤ x ≤ L. But let us

be more precise, while introducing some new terminology.

Definition 3.3 Given two functions f and g which are integrable on a ≤ x ≤
b, their inner product on a ≤ x ≤ b is the real number

〈f, g〉 =
∫ b

a

f(x)g(x)dx.

The inner product is motivated by the fact that Riemann sums of this integral
are of the form

Δx

n∑
i=1

f(xi)g(xi),
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which has the same form as the dot product of two n-dimensional vectors.
Indeed, the inner product is an infinite-dimensional analog of the dot prod-
uct in R

n. Then, analogous to the concept of perpendicularity, we have the
following definition.

Definition 3.4 If 〈f, g〉 = 0, we say that f and g are orthogonal on a ≤
x ≤ b. Given a set of functions {fn(x)} on a ≤ x ≤ b, if

〈fn, fm〉 = 0 whenever n �= m,

we say that the functions fn(x) are pairwise orthogonal and that the set
{fn(x)} is an orthogonal set.

Now, just as we needed the fact that the functions in (3.1) form an orthog-
onal set on 0 ≤ x ≤ L (as we saw from (3.3)), so we will need to show that the
functions appearing on the right-hand side of (3.5) are pairwise orthogonal on
−L ≤ x ≤ L, that is, that the functions

1, cos
πx

L
, cos

2πx

L
, . . . , sin

πx

L
, sin

2πx

L
, . . .

form an orthogonal set on that interval.

For example, let’s look at

〈
sin

nπx

L
, sin

mπx

L

〉
=

∫ L

−L

sin
nπx

L
sin

mπx

L
dx. (3.7)

Since sin nπx
L sin mπx

L is even (why?), we can write

〈
sin

nπx

L
, sin

mπx

L

〉
= 2

∫ L

0

sin
nπx

L
sin

mπx

L
dx. (3.8)

To deal with these integrals, we will need the trigonometric identities

sin(a+ b) = sin a cos b+ cos a sin b, (3.9a)

sin(a− b) = sin a cos b− cos a sin b, (3.9b)

cos(a+ b) = cos a cos b− sin a sin b, (3.9c)

cos(a− b) = cos a cos b+ sin a sin b. (3.9d)

Now, the integrand in (3.8) is of the form sina sin b, so we use identities (3.9c)
and (3.9d); specifically, subtracting (3.9c) from (3.9d) gives us

sin a sin b =
1

2
[cos(a− b)− cos(a+ b)].
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Therefore, (3.7) becomes

〈
sin

nπx

L
, sin

mπx

L

〉
=

∫ L

0

[
cos

(nπx
L
− mπx

L

)
− cos

(nπx
L

+
mπx

L

)]
dx

=

⎧⎪⎪⎨
⎪⎪⎩

∫ L

0

[
cos (n−m)πx

L − cos (n+m)πx
L

]
dx, if n �= m,∫ L

0

[
1− cos 2nπx

L

]
dx, if n = m

=

{
0, if n �= m

L, if n = m, for n = 1, 2, . . . ,m = 1, 2, . . . .

(3.10a)

For example, see Figure 3.5 where we look at 〈sin 2x, sin 4x〉 on −π ≤ x ≤ π.

Similarly (see Exercise 14),

〈
1, cos

nπx

L

〉
= 0, for n = 1, 2, . . . (3.10b)〈

1, sin
nπx

L

〉
= 0, for n = 1, 2, . . . (3.10c)〈

sin
nπx

L
, cos

mπx

L

〉
= 0, for n = 1, 2, . . . ;m = 1, 2, . . . (3.10d)

〈
cos

nπx

L
, cos

mπx

L

〉
=

{
0, if n �= m,

L, if n = m, for n = 1, 2, . . . ;m = 1, 2, . . .

(3.10e)

and, of course,

〈1, 1〉 = 2L. (3.10f)

So we see that the functions in (3.5) do, indeed, form an orthogonal set.
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FIGURE 3.5
MATLAB graph showing the orthogonality of the functions sin 2xsin 2xsin 2x
and sin 4xsin 4xsin 4x on −π ≤ x ≤ π : 〈sin 2x, sin 4x〉 = ∫ π

−π sin 2x sin 4x dx = 0−π ≤ x ≤ π : 〈sin 2x, sin 4x〉 = ∫ π

−π sin 2x sin 4x dx = 0−π ≤ x ≤ π : 〈sin 2x, sin 4x〉 = ∫ π

−π sin 2x sin 4x dx = 0.

Exercises 3.2

In Exercises 1–4, determine whether or not f(x) is periodic. If so, find its
fundamental period.
MATLAB: Afterwards, check your answer by graphing the function.

1. f(x) = 2 sinπx− 3 cos πx
2 + 7

2. f(x) = cos x
4 + sinx

3. f(x) = x sinx

4. f(x) = cos 4x+ cos 3x

5. a) Use the identities in (3.9) to prove that sin px and cos px are peri-
odic of period T = 2kπ

p for any nonzero integer k.

b) Use the fact that sin px and cos px are linearly independent to prove
that these functions have no other periods.

6. True or false? Prove, or provide a counterexample.

a) If f(x) and g(x) are periodic of period T , then so is c1f(x)+c2g(x)
for any choice of constants c1 and c2.

b) If f(x) and g(x) are periodic of period T , then so are f(x)g(x) and
f(x)/g(x) (on their domains).
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c) If f(x) and g(x) are periodic with fundamental period T , then
f(x)g(x) is periodic with fundamental period T .

7. Use mathematical induction to prove that if f(x) has period T , then
f(x) also has period kT for any nonzero integer k.

In Exercises 8–11, determine if f(x) is even, odd or neither.

8. f(x) = 5x4 − 9x2 + 6

9. f(x) = 2x5 + 5x3 − 2

10. f(x) = cos 3
(
x− π

4

)
11. f(x) = x2 sinx

12. Prove:

a) If f(x) and g(x) are odd, then f(x)g(x) is even.

b) If f(x) is even and g(x) is odd, then f(x)g(x) is odd.

13. Prove statement (3.6).

14. Fill in the details in the derivation of (3.10a), then derive equations
(3.10b) through (3.10f).

15. a) Show that the functions f(x) = xn and g(x) = xm, where n,m ∈ N,
are orthogonal on the interval −L ≤ x ≤ L if and only if n is even
and m is odd (or vice versa, of course!).

b) Show that the functions {1, x, x2, x3, . . .} do not form an orthogonal
set on −1 ≤ x ≤ 1.

16. a) Show that the functions 1 and x are orthogonal on −1 ≤ x ≤ 1.

b) Find a quadratic polynomial which is orthogonal to both 1 and x,
on −1 ≤ x ≤ 1.

c) Show that the quadratic in part (b) actually is orthogonal to any
linear function f(x) = ax+ b, on −1 ≤ x ≤ 1.

d) Find a cubic polynomial which is orthogonal to 1, x and the quadratic
from part (b), on −1 ≤ x ≤ 1. (If we continue in this manner,
we generate a set of orthogonal polynomials called the Legendre
polynomials, which we treat in Chapter 7.)

Suppose we are given a (fixed) function w(x) > 0 on a < x < b. We may
generalize the idea of inner product by defining

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx.
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This is called the inner product with respect to the weight function w(x)
and, if 〈f, g〉 = 0, we say that f and g are orthogonal with respect to w
on a ≤ x ≤ b. (If w(x) = 1, then we’re back to the original definition of
orthogonal—in the present context, we will then say that f and g are simply
orthogonal.)

17. Find the inner product of f and g, with respect to the weight function
w, on the given interval.

a) f(x) = x, g(x) = x2, w(x) =
√
x, 0 ≤ x ≤ 4

b) f(x) = 1 + x, g(x) = 2 + x,w(x) = x2, 0 ≤ x ≤ 1

18. a) Show that the functions 1, x, 2x2 − 1 form an orthogonal set on
−1 ≤ x ≤ 1, with respect to the weight function w(x) = 1√

1−x2
.

(Hint: Use a trigonometric substitution.) These are the first three
Chebyshev polynomials of the first kind.

b) Show that the functions 1, 1−x, 1−2x+ 1
2x

2 form an orthogonal set
on [0,∞), with respect to the weight function w(x) = e−x. These
are the first three Laguerre polynomials.

3.3 The Fourier Series

Now we are ready to look at the question from Section 3.1, namely, given any
function f(x) on −L ≤ x ≤ L, can we find coefficients cn, n = 0, 1, 2, . . ., and
dn, n = 1, 2, . . ., such that

f(x) = c0 +

∞∑
n=1

(
cn cos

nπx

L
+ dn sin

nπx

L

)
(3.11)

on −L ≤ x ≤ L? Fourier asserted that the answer is yes for any func-
tion f(x) and, thus, that the corresponding series always converges, and he
provided formulas for the coefficients. Actually, the coefficients already had
been determined much earlier by Euler and Clairaut, with Euler employing
the now-standard method that we use here. However, as mentioned, Euler,
Clairaut and others were more circumspect with regard to which functions
f(x) could be so expanded.

All of this talk ultimately led to a more precise idea of what we mean by
a function and to a much closer look at what it means for a function to be
integrable. Also, as we shall soon see, Fourier was overly ambitious in his
claims, although he was “more-or-less correct” if f(x) is the kind of function
that we are familiar with from calculus.
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Again, let us proceed formally, assuming that there are constants cn, dn for
which (3.11) is true, and go about finding these constants.

So, in order to determine a coefficient, we multiply (3.11) by the function
associated with that coefficient. Then, we integrate both sides from x = −L
to x = L, assuming that we may do so term-by-term. For example, to find
cN , for N ≥ 1, we multiply through by cos Nπx

L and integrate, resulting in

∫ L

−L

f(x) cos
Nπx

L
dx = c0

∫ L

−L

cos
Nπx

L
dx

+

∞∑
n=1

cn

∫ L

−L

cos
nπx

L
cos

Nπx

L
dx

+
∞∑

n=1

dn

∫ L

−L

sin
nπx

L
cos

Nπx

L
dx

= c0

〈
1, cos

Nπx

L

〉
+

∞∑
n=1

cn

〈
cos

nπx

L
, cos

Nπx

L

〉

+

∞∑
n=1

dn

〈
sin

nπx

L
, cos

Nπx

L

〉

= c0 · 0 + c1 · 0 + · · ·+ cN−1 · 0 + cn · L+ cN+1 · 0+
· · ·+ d1 · 0 + d2 · 0 + · · ·

and, solving for cN , we have

cN =
1

L

∫ L

−L

f(x) cos
Nπx

L
dx.

Similarly, we can find c0 and each dN :

c0 =
1

2L

∫ L

−L

f(x)dx,

dN =
1

L

∫ L

−L

f(x) sin
nπx

L
dx.

We summarize these results in the following definition.

Definition 3.5 Given a function f(x) on −L ≤ x ≤ L, the Fourier series
of fff on −L ≤ x ≤ L−L ≤ x ≤ L−L ≤ x ≤ L is the series

F (x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (3.12)
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where the coefficients are given by

an =
1

L

∫ L

−L

f(x) cos
nπx

L
dx, n = 0, 1, 2, . . .

bn =
1

L

∫ L

−L

f(x) sin
nπx

L
dx, n = 1, 2, . . .

(assuming these integrals exist).

By definition, the Fourier series of a function is unique, and from
the above it follows that, if f can be expanded in such a series of sines and
cosines, then this series must be its Fourier series.∗ (Also, see Exercise 14.)

Actually, we shall see later (in Chapter 8) that it is possible to expand f
in series involving functions other than sine and cosine. It is because of these
generalized Fourier series that we often refer to (3.12) as the trigono-
metric Fourier series of f on −L ≤ x ≤ L.

At this point, we have not answered the questions: Does the Fourier series
actually converge? If so, does it converge to f(x)? In fact, we really should
not even write F (x) = · · · in (3.12) until we know that the series does, indeed,
converge. Therefore, we write

f(x) ∼ a0
2

+
∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
. (3.13)

Let’s compute some. Calculate the Fourier series for the given function on
the given interval.

Example 1 f(x) = x on −π ≤ x ≤ π
Our coefficients are

a0 =
1

π

∫ π

−π

x dx = 0,

an =
1

π

∫ π

−π

x cosnx dx = 0, since x cosnx is odd,

bn =
1

π

∫ π

−π

x sinnx dx

=
2

π

∫ π

0

x sinnx dx, since x sinnx is even

=
2

π

[
− 1

n
x cosnx

∣∣∣π
0
+

1

n

∫ π

0

cosnx dx

]
,

∗To be precise, this is true so long as term-by-term integration of the series is justified. This
certainly is the case if the series is finite (and, more generally, if it converges uniformly to
f on −L ≤ x ≤ L. See Appendix A.)
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where we have integrated by parts

=
2

π

[
− 1

n
π cosnπ

]
= − 2

n
(−1)n

and we have

x ∼
∞∑
n=1

(
− 2

n

)
(−1)n sinnx = 2

∞∑
n=1

(−1)n+1

n
sinnx.

Example 2

f(x) =

{
0, if −2 ≤ x < 0,

1, if 0 ≤ x ≤ 2

The coefficients are

a0 =
1

2

∫ 2

−2

f(x)dx =
1

2

∫ 0

−2

f(x)dx +
1

2

∫ 2

0

f(x)dx

=
1

2

∫ 0

−2

0 dx+
1

2

∫ 2

0

1 dx

= 0 + 1 = 1,

an =
1

2

∫ 2

−2

f(x) cos
nπx

2
dx

=
1

2

∫ 0

−2

0 cos
nπx

2
dx+

1

2

∫ 2

0

1 cos
nπx

2
dx

= 0 +
1

nπ
sin

nπx

2

∣∣∣2
0
= 0,

bn =
1

2

∫ 2

−2

f(x) sin
nπx

2
dx

=
1

2

∫ 0

−2

0 sin
nπx

2
dx+

1

2

∫ 2

0

1 sin
nπx

2
dx

= 0− 1

nπ
cos

nπx

2

∣∣∣2
0
=

1− (−1)n
nπ

and

f(x) ∼ 1

2
+

1

π

∞∑
n=1

1− (−1)n
n

sin
nπx

2

=
1

2
+

2

π

∞∑
n=0

1

2n+ 1
sin

(2n+ 1)πx

2
.

We’ll wait until the next section to answer the big questions about conver-
gence of the Fourier series.
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Exercises 3.3

In Exercises 1–12, calculate the Fourier series of f(x) on the given interval.

1. f(x) =

{
2, if −1 ≤ x ≤ 0

0, if 0 < x ≤ 1

2. f(x) =

{
−1, if −3 ≤ x < 0

2, if 0 ≤ x ≤ 3

3. f(x) = x, on −5 ≤ x ≤ 5

4. f(x) = 2x+ 1, on −π ≤ x ≤ π
5. f(x) = x2, on −1 ≤ x ≤ 1

6. f(x) =

{
x2, if −2π ≤ x < 0

−x2, if 0 ≤ x ≤ 2π

7. f(x) = |x|, on −1 ≤ x ≤ 1

8. f(x) = x2 + x, on −π ≤ x ≤ π

9. f(x) =

{
0, if −π ≤ x < π

2

1, if π
2 ≤ x ≤ π

10. f(x) =

⎧⎪⎨
⎪⎩
0, if −π ≤ x < −π

2

1, if −π
2 < x < π

2

0, if π
2 ≤ x ≤ π

11. f(x) = 2 + 3 sin 2x− 5 cos 4x, on −π ≤ x ≤ π
12. f(x) = sinx, on −π

2 ≤ x ≤ π
2

13. In Example 1, we saw that, for the odd function f(x) = x, the Fourier
series contains only sine terms, i.e., we had an = 0, n = 0, 1, 2, . . . . Such
a Fourier series is called a pure sine series.

a) Show that the Fourier series of any function which is odd on −L ≤
x ≤ L is, in fact, a pure sine series.

b) Show that the Fourier series of any function which is even on −L ≤
x ≤ L is a pure cosine series, i.e., that bn = 0, n = 1, 2, . . . .

c) Is the function in Example 2 even or odd? Is its Fourier series a
pure cosine or pure sine series?

14. a) Explain why the functions 1, cos nπx
L , sin nπx

L , n = 1, 2, 3, . . ., are
linearly independent on −L ≤ x ≤ L.
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b) Show that, if

a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

=
c0
2

+

∞∑
n=1

(
cn cos

nπx

L
+ dn sin

nπx

L

)
,

we must have an = cn, n = 0, 1, 2, . . ., and bn = dn, n = 1, 2, . . . .

15. Given f(x) on −L < x ≤ L, let z = ax, where a is a constant, and
g(z) = f(z/a).

a) Find a so that g(z) has domain −π ≤ z ≤ π.
b) Using the value for a, compute the Fourier series for g on −π ≤

z ≤ π. Then, use this series to recover the Fourier series of f on
−L ≤ x ≤ L.

Thus, WLOG, we need only know how to compute Fourier series on
−π ≤ x ≤ π.

16. Fourier Series on Other Intervals

a) Show that the functions 1, cos nπx
L , sin nπx

L , n = 1, 2, . . ., are pair-
wise orthogonal on any interval of length 2L.

b) Show that any piecewise smooth function f(x) on a ≤ x ≤ b can
be expanded into a series

f(x) =
a0
2

+

∞∑
n=1

[
an cos

nπx

L
+ bn sin

nπx

L

]
,

where L = b−a
2 ; in particular, find expressions for the constants

an, bn.

c) Compute this series for f(x) = x on 1 ≤ x ≤ 4.

17. Complex Fourier Series: Using Euler’s formula, eiθ = cos θ+ i sin θ, we
can rewrite the Fourier series in the form

f(x) ∼
∞∑

k=−∞
cke

ikπx
L .

Using L = π,

a) Find the coefficients ck in terms of the coefficients an and bn of the
original Fourier series (where k = ±n).
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It turns out that, when complex functions are involved, we must change
the definition of inner product, so that it has certain desirable mathe-
matical properties which are satisfied by the real inner product and the
vector dot product. Actually, this complex inner product turns out to
be

〈f(x), g(x)〉 =
∫ L

−L

f(x)g(x) dx,

where f(x) is the complex conjugate of f(x). Note that if f and g both
are real, then this turns out to be the same as the inner product from
Definition 3.3.

b) Show that eikx = e−ikx.

c) Assume that f(x) =
∞∑

k=−∞
cke

ikx, on −π ≤ x ≤ π. Find the

coefficients by way of the complex inner product 〈einx, f(x)〉 on
−π ≤ x ≤ π.

3.4 The Fourier Series, Continued

Now we are ready to deal with the question of convergence for Fourier series.
Specifically, we’ll state in this section, and prove in the next section, the
famous theorem of Dirichlet† from 1829, in which he proved that if f(x)
consists of a finite number of smooth arcs, then the Fourier series converges
for all x, and it converges to f except, possibly, at a finite number of x-values.
But let’s be more precise.

Definition 3.6 Given f(x) and a point x = x0, not necessarily in the domain
of f , we define

f(x0+) = lim
x→x+

0

f(x)

f(x0−) = lim
x→x−

0

f(x).

See Figure 3.6.

†Actually, the theorem we state is not exactly Dirichlet’s Theorem. For a very nice historical
treatment of the latter, see David Bressoud’s A Radical Approach to Real Analysis.
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x

f(2−) = 1

f(2+) = 3

FIGURE 3.6
A typical jump discontinuity.

Definition 3.7 Given f(x) with domain a ≤ x ≤ b, we say that f is piece-
wise continuous on a ≤ x ≤ b if

1) f has a finite number of discontinuities in a ≤ x ≤ b.

2) At each point of discontinuity x0, a < x0 < b, f(x0+) and f(x0−) both
exist (and, therefore, are finite).

3) f(a+) and f(b−) both exist (and are finite).

(Actually, f need not exist at the points of discontinuity.) If f ′(x) also is
piecewise continuous on a ≤ x ≤ b, we say that f is piecewise smooth
there.

Example 1 f(x) =

{
1, if −2 ≤ x ≤ 3,

5, if 3 < x ≤ 6

is piecewise smooth on −2 ≤ x ≤ 6.

Example 2 f(x) = x2 is piecewise smooth on any interval a ≤ x ≤ b (in
fact, it is smooth on any interval a ≤ x ≤ b).
Example 3

f(x) =

{
x, if 1 ≤ x ≤ 2,
1

x−2 , if 2 < x ≤ 3

is not piecewise continuous on 1 ≤ x ≤ 3, since f(2+) =∞. See Figure 3.7.
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FIGURE 3.7
MATLAB graph of the function from Example 3.

Example 4

f(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, if x = −4,
x if −4 < x < 1,
2, if x = 1,
−2, if 1 < x ≤ 4

is piecewise smooth on −4 ≤ x ≤ 4. See Figure 3.8.

−4 1 4
x

1

−2

−4

y

FIGURE 3.8
Graph of the function from Example 4.

Example 5 f(x) = 3
√
x is piecewise continuous but not piecewise smooth on

any interval containing x = 0, since f ′(0+) = f ′(0−) =∞. See Figure 3.9.
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FIGURE 3.9
MATLAB graph of the function f(x) = 3

√
xf(x) = 3
√
xf(x) = 3
√
x.

From calculus, a very important property of piecewise continuous functions
is that they are integrable. More precisely, if f(x) is piecewise continuous on
a ≤ x ≤ b, with discontinuities at x1, . . . , xn−1 (and, possibly, at x0 = a or
xn = b), then ∫ b

a

f(x)dx =

n∑
i=1

∫ xi

xi−1

f(x)dx.

(A “typical” example is shown in Figure 3.10.) Also, many of the theorems
on continuous functions have their analogs for piecewise continuous/smooth
function, e.g., if f and g are piecewise continuous/smooth, then so is their
sum, their product and the like.

x

y

xx0 2 31x  = a x  = b

FIGURE 3.10
Evaluating the definite integral of a piecewise continuous function.



Fourier Series 99

Now we are ready to state the big theorem.

Theorem 3.1 If f(x) is piecewise smooth‡ on −L ≤ x ≤ L, then its Fourier
series, F (x), converges on −L ≤ x ≤ L, and

1) F (x) = f(x) for all x in −L < x < L where f is continuous.

2) F (x) = f(x+)+f(x−)
2 for all x in −L < x < L where f is discontinuous.

3) F (−L) = F (L) = f(−L+)+f(L−)
2 .

(The proof will be given in Section 3.5.) It also can be shown that the Fourier
series converges uniformly, and that’s all we need to be able to integrate it
term-by-term. See Appendix A.

Let’s get right to some examples. In each case, we draw the graph of
y = f(x) and the graph of its Fourier series, y = F (x).

Example 6 f(x) = x,−2 ≤ x ≤ 2.

See Figure 3.11.

−2

−6 −4 −2

2

2 4 6
x

2

2
x

−2

y y

−2

(a)  y = f(x) (b)  y = F(x)

FIGURE 3.11
The function from Example 6 and its Fourier series.

Example 7

f(x) =

{
2, if −2 ≤ x < 1,

x− 1, if 1 ≤ x ≤ 2.

See Figure 3.12.

‡It actually turns out that the assumption that f be piecewise smooth can be relaxed,
without too much difficulty.
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We note that the Fourier series is “blind” to the discontinuous points of f ,
i.e., if we change the value of f at a discontinuous point, it does not change
the Fourier series. In fact, we may change f at a finite number of points
without effecting a change in the Fourier series. The reason for the behavior
is that the coefficients are determined by integrals involving f , and the value
of an integral is unaffected by changing the values of the integrand at finitely
many points.

2

y

−2 −1 1 2

x

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6

y

x

1

(a)  y = f(x) (b)  y = F(x)

FIGURE 3.12
The function from Example 7 and its Fourier series.

Now, when we graphed the Fourier series above, we graphed them on −L ≤
x ≤ L. However, the domain of each term of the Fourier series is all real
numbers. Also, we mentioned earlier that the Fourier series is periodic
of period 2L2L2L. Hence the actual graph of the Fourier series is the graph on
−L ≤ x ≤ L extended periodically.

Definition 3.8 Given a function f(x) defined on a ≤ x ≤ b, the function
g(x) defined by

g(x) = f(x), a < x < b, and

g(x+ T ) = g(x), for all x, where T = b− a,
is called the periodic extension of f (of period T ). See Figure 3.13. (We’re
being a bit sloppy here, since we may have f(a) �= f(b). Again, though, we’re
not so concerned about the points of discontinuity.)

So the Fourier series of f actually is the periodic extension of f (of period
2L, of course), with the possible exception of what happens at the points
where f is discontinuous, as well as the endpoints x = ±L.

Finally, we may restate Theorem 3.1 more succinctly. First, if x is a point
in −L < x < L where f is continuous, then

f(x) =
f(x+) + f(x−)

2
.

Next, letting fp(x) be the periodic extension of f , we can write

f(−L+) = fp(L+)
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and

f(L−) = fp(−L−).
We then have the following corollary.

Corollary 3.1 If f(x) is piecewise smooth on −L ≤ x ≤ L, and fp(x) is the
periodic extension of f(x), then the Fourier series F (x) converges for all x
and

F (x) =
fp(x+) + fp(x−)

2
for all x.

Exercises 3.4

In Exercises 1–6, determine if f(x) is piecewise continuous and if it is piecewise
smooth (assume that L > 0). (If f is actually continuous or smooth, say so.)

1. f(x) = |x|, on −L ≤ x ≤ L

2. f(x) =

{
−x2, if −L ≤ x < 0,

x2, if 0 ≤ x ≤ L

3. f(x) = x2/3, on −L ≤ x ≤ L
4. f(x) = x4/3, on −L ≤ x ≤ L

5. f(x) =

{
tanx, if −π

2 < x < π
2 ,

0, if x = ±π
2

6. f(x) =

⎧⎪⎨
⎪⎩
2, if x = −3,
x, if −3 < x ≤ 1,
1
x , if 1 < x ≤ 3

7. f(0) = 0 and, for x �= 0,−L ≤ x ≤ L,
a) f(x) = sin 1

x

b) f(x) = x sin 1
x

c) f(x) = x3 sin 1
x

In Exercises 8–13, sketch three periods of the graph of the Fourier series of
f(x).

8. f(x) = x2 on −2 ≤ x ≤ 2

9. f(x) = x+ 1 on −2 ≤ x ≤ 2

10. f(x) =

{
0, if −3 ≤ x < 0,

1− x, if 0 ≤ x ≤ 3
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11. f(x) = |3− x| on −1 ≤ x ≤ 1

12. f(x) =

⎧⎪⎨
⎪⎩
2 + x, if −3 ≤ x < −1,
4, if −1 ≤ x < 2,

6− x, if 2 ≤ x ≤ 3

13. f(x) =

{
x, if x = −1,− 4

5 ,− 3
5 ,− 2

5 ,− 1
5 , 0,

1
5 ,

2
5 ,

3
5 ,

4
5 , 1,

2, otherwise
on −1 ≤ x ≤ 1

14. MATLAB: Redo Exercises 10 and 12 using MATLAB.

In Exercises 15–17, decide if the statement is true or false. Assume that f is
piecewise smooth on −L ≤ x ≤ L.
15. If f is continuous, then so is its Fourier series.

16. If f is discontinuous, then so is its Fourier series.

17. If f is even and continuous, then its periodic extension is identical to
its Fourier series.

18. Although each term in the Fourier series is a continuous function for
all x, the (infinite!) sum of these terms can be (and “usually” is) a
function which is not continuous. This was surprising and unacceptable
to mathematicians of the 18th century. Looked at more precisely, we
have a sequence of continuous functions

Fn(x) =
a0
2

+

N∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

which converges pointwise to a discontinuous function. Actually, there
are examples of this phenomenon which are closer to home. Consider
the functions

fn(x) = xn on 0 ≤ x ≤ 1, n = 1, 2, . . . .

What function does this sequence tend to as n→∞?

19. In the 17th and 18th centuries, starting even before the discovery/inven-
tion of calculus, finding the sum of various infinite series was a hot topic.
For example, as early as 1736, Euler quite cleverly came up with the sum

∞∑
n=1

1

n2
=
π2

6
,

a sum that other famous mathematicians had been unable to evaluate,
the most notable being the Swiss mathematician James Bernoulli (1654–
1705). (By the way, the Bernoulli family is to mathematics as the Bach
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family is to music. The most well-known of the Bernoullis are James;
his brother John who, incidentally, had been Euler’s teacher; and John’s
son, Daniel, the last two of whom we have already met.) Around this
same time, Euler also came up with

∞∑
n=1

1

n4
=
π4

90
and

∞∑
n=1

1

n6
=

π6

945
.

a) Many of these infinite series are much easier to deal with using
Fourier series. Use the Fourier series for f(x) = x2 on −1 ≤ x ≤ 1
and Theorem 3.1 to derive Euler’s sum

∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+ · · · = π2

6
.

b) Use the same Fourier series to find the sum

∞∑
n=1

(−1)n+1

n2
= 1− 1

4
+

1

9
− 1

16
+ · · · ,

that is, the alternating version of the sum in (a).

c) Even before he discovered/invented calculus, Gottfried Wilhelm
Leibniz (1646–1716) was working on summing infinite series; in-
deed, this work led him to his development of calculus. Along
the way, in 1673, Leibniz used a beautiful geometric argument to
conclude that

∞∑
k=1

(−1)k+1

(2k − 1)
= 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
.

Post-calculus, there are various ways to determine this result. Use
the Fourier series for f(x) = x on −π ≤ x ≤ π to prove it.

20. Establish the result

1

12
+

1

32
+

1

52
+ · · · = π2

8

two different ways.

a) Using the Fourier series for f(x) = |x| on −1 ≤ x ≤ 1.

b) Algebraically, using the results from Exercises 19a and 19b.

21. MATLAB: Gibbs phenomenon. If you plan on skipping the follow-
ing section, read Example 1 of that section. Then do the same for the
following functions.
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a) f(x) = x,−π ≤ x ≤ π
b) f(x) = x2,−1 ≤ x ≤ 1

c) f(x) =

{
2, if −2 ≤ x < 1,

x− 1, if 1 ≤ x ≤ 2

d) f(x) =

{
1 + x, if −1 ≤ x ≤ 0,

1− x, if 0 < x ≤ 1

e) f(x) =

⎧⎪⎨
⎪⎩
−1, if −3 ≤ x < −2,
1, if −2 ≤ x ≤ 2,

−1, if 2 < x ≤ 3

3.5 The Fourier Series—Proof of Pointwise Convergence
§

We now prove the results given in the previous section. We do so for the
interval −π ≤ x ≤ π, that is, for L = π, realizing that the proof for arbitrary
L proceeds similarly (or realizing that we may transform a problem on −L ≤
x ≤ L to a problem on −π ≤ x ≤ π). Further, we may assume at the start
that f(x) already has been extended to a function on the real line, with period
2π—in essence, then, we are proving Corollary 3.1.

We proceed as follows. First, we list the steps required to prove Corol-
lary 3.1 for those x where f is continuous. Next, we fill in the proof of these
steps. Finally, we modify the proof in order to deal with those values of x
where f is discontinuous.

PROOF that f(x) = F (x)f(x) = F (x)f(x) = F (x) at all points where fff is continuous

For each such x we wish to prove that the nth partial sum

sn(x) =
a0
2

+

n∑
k=1

(ak cos kx+ bk sin kx)

converges to f(x), that is, that

lim
n→∞[sn(x) − f(x)] = 0

for each (fixed) x at which f is continuous. To this end we will

§This section may be skipped without loss of continuity (no pun intended).
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[1] Rewrite sn(x) as

sn(x) =
1

2π

∫ π

−π

[
1 + 2

n∑
k=1

cos k(t− x)
]
f(t)dt.

[2] Show that

1 + 2

n∑
k=1

cos k(t− x) = sin 2n+1
2 (t− x)

sin t−x
2

∗ (for − π ≤ t− x ≤ π, t �= x).

[3] Use a substitution to rewrite sn(x) as

sn(x) =
1

2π

∫ π

−π

sin 2n+1
2 u

sin u
2

f(x+ u)du.

[4] Show that

1

2π

∫ π

−π

sin 2n+1
2 u

sin u
2

du = 1

so that we may write

sn(x) − f(x) = 1

2π

∫ π

−π

sin 2n+1
2 u

sin u
2

f(x+ u)du− f(x)

· 1

2π

∫ π

−π

sin (2n+1)
2 u

sin u
2

du

=
1

2π

∫ π

−π

[f(x+ u)− f(x)] sin
2n+1

2 u

sin u
2

du.

[5] Show that this last integral → 0 as n→∞.

PROOF of [[[1]]] Remember that the Fourier coefficients are

a0 =
1

π

∫ π

−π

f(t)dt, ak =
1

π

∫ π

−π

f(t) cos kt dt,

bk =
1

π

∫ π

−π

f(t) sin kt dt, k = 1, 2, . . . , n.

∗This is 2Dn(t − x), where Dn(x) is the well-known Dirichlet kernel.
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Therefore,

sn(x) =
a0
2

+
n∑

k=1

(ak cos kx+ bk sin kx)

=
1

2π

∫ π

−π

f(t)dt+

n∑
k=1

[
cos kx · 1

π

∫ π

−π

f(t) cos kt dt

+sin kx · 1
π

∫ π

−π

f(t) sin kt dt

]

=
1

2π

∫ π

−π

[
1 + 2

n∑
k=1

(cos kx cos kt+ sinkx sin kt)

]
f(t)dt

=
1

2π

∫ π

−π

[
1 + 2

n∑
k=1

cos k(t− x)
]
f(t)dt

where, in the last step, we have used the trigonometric identity

cos(A−B) = cosA cosB + sinA sinB.

PROOF of [[[2]]] We need to show that

1 + 2

n∑
k=1

cos kθ =
sin 2n+1

2 θ

sin θ
2

, for − π ≤ θ ≤ π, θ �= 0.

Now, we could use trig identities to do this, but this approach presupposes
that we know what the right side should be. Instead, as is the case with
so many situations which involve trig identities, life is much easier if we get
things in terms of complex exponentials. Remember Euler’s formula

eiθ = cos θ + i sin θ.

Replacing θ with −θ gives us

e−iθ = cos(−θ) + i sin(−θ) = cos θ − i sin θ.
Finally, adding these two equations, we get

cos θ =
eiθ + e−iθ

2
.

Also, subtracting the second from the first gives us

sin θ =
eiθ − e−iθ

2i
.
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Then,

1 + 2

n∑
k=1

cos kθ = 1 +

n∑
k=1

(eikθ + e−ikθ)

= e−inθ + e−i(n−1)θ + . . .+ e−iθ + 1+ eiθ + . . .+ einθ

= e−inθ(1 + eiθ + e2iθ + . . .+ e2niθ). (3.14)

The sum in parentheses is geometric, of the form

1 + r + r2 + . . .+ r2n =
1− r2n+1

1− r .

Therefore, (3.14) becomes

= e−inθ 1− e(2n+1)iθ

1− eiθ

=
e−inθ − e(n+1)iθ

1− eiθ ,

and, multiplying top and bottom by e
−iθ
2 , we get

=
e(n+

1
2 )iθ − e−(n+ 1

2 )iθ

e
iθ
2 − e−iθ

2

=
sin 2n+1

2 θ

sin θ
2

.

PROOF of [[[3]]] Letting u = t− x, du = dt, we have

sn(x) =
1

2π

∫ π

−π

sin 2n+1
2 (t− x)

sin t−x
2

f(t)dt

=
1

2π

∫ π−x

−π−x

sin 2n+1
2 u

sinu/2
f(x+ u)du.

But f has period 2π, as does
sin 2n+1

2 u

sinu/2 (why?), so we may write the above as

sn(x) =
1

2π

∫ π

−π

sin 2n+1
2 u

sinu/2
f(x+ u)du.
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PROOF of [[[4]]]

∫ π

−π

sin 2n+1
2 u

sinu/2
du =

∫ π

−π

[
1 + 2

n∑
k=1

cos ku

]
du

= 2

∫ π

0

[
1 + 2

n∑
k=1

cos ku

]
du

and

∫ π

0

[
1 + 2

n∑
k=1

cos ku

]
du =

∫ π

0

du+ 2

n∑
k=1

∫ π

0

cos ku du

= π + 2

n∑
k=1

sin ku

k

∣∣∣π
0

= π.

PROOF of [[[5]]] We must show that

lim
n→∞

∫ π

−π

[f(x+ u)− f(x)] sin
2n+1

2 u

sin u
2

du = 0.

In order to do this, we’ll need the following well known lemma.

Lemma (Riemann–Lebesgue)† If g is piecewise continuous on [a, b], then

lim
λ→∞

∫ b

a

g(x) sinλxdx = 0.

Then, we need only show that

f(x+ u)− f(x)
sinu/2

is piecewise continuous (in u, of course—x is fixed) on −π ≤ u ≤ π.

PROOF of Lemma Since g is piecewise continuous on [a, b], we can
write ∫ b

a

g(x) sinλxdx =

n∑
i=1

∫ xi

xi−1

gi(x) sin λxdx,

†This is the Riemann–Lebesgue Lemma for the sine function.
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where gi(x) = g(x) on (xi−1, xi) and gi is continuous on [xi−1, xi], i = 1, . . . , n.
It follows that each gi is uniformly continuous on [xi−1, xi].

We now wish to prove that

lim
λ→∞

∣∣∣∣∣
∫ xi

xi−1

gi(x) sin λxdx

∣∣∣∣∣ = 0, i = 1, . . . , N.

First, letting x = z + π
λ and noting that sinλx = − sinλz, we can write

I =

∫ xi

xi−1

gi(x) sin λxdx = −
∫ xi−π

λ

xi−1−π
λ

gi

(
z +

π

λ

)
sinλzdz

so that

2I =

∫ xi

xi−1

gi(x) sin λxdx −
∫ xi−π

λ

xi−1−π
λ

gi

(
z +

π

λ

)
sinλzdz

= −
∫ xi−1

xi−1−π
λ

gi

(
x+

π

λ

)
sinλxdx +

∫ xi

xi−π
λ

gi(x) sin λxdx

+

∫ xi−π
λ

xi−1

[
gi(x)− gi

(
x+

π

λ

)]
sinλxdx

= −I1 + I2 + I3.

Now, gi continuous on [xi−1, xi] implies that gi(x) is bounded there. Thus,
there exists M such that

|gi(x)| ≤M, xi−1 ≤ x ≤ xi
and ∣∣∣gi

(
x+

π

λ

)∣∣∣ ≤M, xi−1 − π

λ
≤ x ≤ xi − π

λ
.

Then, 2|I| ≤ |I1|+ |I2|+ |I3| and

|I1| ≤
∫ xi−1

xi−1−π
λ

∣∣∣gi
(
x+

π

λ

)∣∣∣ | sinλx|dx
≤
∫ xi−1

xi−1−π
λ

M dx (why?)

≤ Mπ

λ
(why?).

Similarly, |I2| ≤ Mπ
λ . Thus, I1 → 0 and I2 → 0 as λ→∞.

Finally, we must show that, for every ε > 0, there is a constant k such that

λ > k ⇒ |I3| < ε.
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Now, as g is uniformly continuous on [xi−1, xi], we know that for all ε1 > 0,
there is a δ > 0 such that

π

λ
< δ ⇒

∣∣∣gi(x) − gi
(
x+

π

λ

)∣∣∣ < ε1

for all x ∈ [xi−1, xi]. So, given ε above, let ε1 = ε
xi−xi−1

and let δ = δ1 be the

corresponding value of δ. Then,

λ >
π

δ1
⇒ π

λ
< δ1 ⇒

∣∣∣gi(x)− gi
(
x+

π

λ

)∣∣∣ < ε

xi − xi−1

for all x ∈ [xi−1, xi]

⇒ |I3| ≤
∫ xi−π

λ

xi−1

∣∣∣gi(x)− gi
(
x+

π

λ

)∣∣∣ dx

<

∫ xi−π
λ

xi−1

ε

xi − xi−1
dx < ε.

Now, all that’s left is to show that f(x+u)−f(x)
sinu/2 is piecewise smooth. Since f

is piecewise smooth and the sine is smooth, we need only be concerned when
the denominator vanishes, which occurs only at u = 0 (since we’re restricted
to the interval −π ≤ u ≤ π).

The trick here is to use the following two facts:

1) f ′(x+) and f ′(x−) exist (since f is piecewise smooth) and
2) lim

x→0

sin x
x = 1 (using l’Hôpital’s rule—but see Exercise 5).

With these in mind, we rewrite

g(u) =
f(x+ u)− f(x)

sinu/2
=
f(x+ u)− f(x)

u

u

sin u
2

.

Then,

lim
u→0+

g(u) = lim
u→0+

f(x+ u)− f(x)
u

· lim
u→0+

u

sin u
2

= f ′(x+) · 2

and

lim
u→0−

g(u) = f ′(x−) · 2,

each of which exists. Therefore, g is piecewise continuous, and we are done!
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Now, what happens at a point x where f is not continuous? Life is a bit
more complicated, since at least one of

lim
u→0+

f(x+ u)− f(x)
u

, lim
u→0−

f(x+ u)− f(x)
u

will not exist. (In fact, we would like to be able to include points where f(x)
doesn’t even exist.) However, we need only look at the expression

sn(x) − 1

2
[f(x+) + f(x−)],

which we may rewrite as

1

2π

∫ π

−π

sin 2n+1
2 u

sin u
2

f(x+ u)du− 1

2
[f(x−) + f(x+)]

=
1

2π

∫ 0

−π

sin 2n+1
2 u

sin u
2

f(x+ u)du− 1

2
f(x−)

+
1

2π

∫ π

0

sin 2n+1
2 u

sin u
2

f(x+ u)du− 1

2
f(x+)

=
1

2π

∫ 0

−π

sin 2n+1
2 u

sin u
2

[f(x+ u)− f(x−)]du

+
1

2π

∫ π

0

sin 2n+1
2 u

sin u
2

[f(x+ u)− f(x+)]du,

where we have used the fact that

1

2π

∫ 0

−π

sin 2n+1
2 u

sin u
2

du =
1

2π

∫ π

0

sin 2n+1
2 u

sin u
2

du =
1

2
(why is this true?).

We proceed pretty much as we did above and use the Riemann–Lebesgue
Lemma to show that each of the integrals → 0 as n→∞. We do so here for
the second integral (the first is dealt with in the same way).

As above, we write

∫ π

0

sin 2n+1
2 u

sin u
2

[f(x+ u)− f(x+)]du =

∫ π

−π

g(u) sin
2n+ 1

2
u du,

where

g(u) =

{
0, if −π ≤ u ≤ 0

f(x+ u)− f(x+)

u
· u
sin u

2
, if 0 < u ≤ π.

We need only show that g is piecewise continuous on −π ≤ u ≤ π, and, as
before, we need only be concerned with what happens as u→ 0+. But

lim
u→0+

g(u) = lim
u→0+

f(x+ u)− f(x+)

u
· lim
u→0+

u

sin u
2

= 2f ′(x+),
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which exists as f is piecewise smooth.‡ So we are done!
Now that we know what the Fourier series of a function converges to, we

may ask how it converges (that is, does it converge “quickly” or “slowly,” and
what do the partial sums look like as the value of n increases?). It turns out
that the Fourier series of f converges “nicely” to f at those points where f
is continuous. However, remembering that each sine and cosine function in a
Fourier series is continuous for all values of x, it should come as no surprise
that the Fourier series may behave somewhat strangely near those x-values
where f has a jump.

Example 1 The Fourier series for

f(x) =

{
0, if −π ≤ x < 0
1, if 0 ≤ x ≤ π

is

F (x) =
1

2
+

2

π

∞∑
n=1

sin(2n− 1)x

2n− 1
.

In Figure 3.13 we have graphed the function

sn(x) =
1

2
+

2

π

n∑
k=1

sin(2k − 1)x

2k − 1
§

for n = 5, n = 20 and n = 200, respectively. We can see, in each case, that
the function sn(x) exhibits a noticeable overshoot just to the right (and left)
of x = 0 (with similar behavior near x = ±π). We also see that, while most
of the humps in the graph of sn(x) tend to flatten out as n increases, this
first overshoot, although also shrinking, seems to remain fairly large. So what
happens as n→∞?

‡Note that f ′(x+) is not the same as the right-hand derivative that you learned in calculus.
The latter,

lim
h→0+

f(x+ h)− f(x)

h
,

need not exist even if f is piecewise smooth and, therefore, is less interesting and less useful
than the former (which, by the way, is the “old” right-hand derivative of the function whose
value at x is f(x+)). See Exercises 6–9 for a more in-depth look.
§To be more precise, we should have s2n−1(x) = s2n(x), instead of sn(x).
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FIGURE 3.13
MATLAB graphs of the truncated Fourier series for the function
from Example 1, for (a) n = 5n = 5n = 5, (b) n = 20n = 20n = 20 and (c) n = 200n = 200n = 200.
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FIGURE 3.13 continued

This overshoot is known as the Gibbs phenomenon, after Josiah Willard
Gibbs¶ who, in 1899, pointed out this behavior and stated that the overshoot
approaches a quantity involving

∫ π

0
sin x
x dx as n → ∞. We’ll examine the

Gibbs phenomenon as it applies to this particular example.‖

So, let’s look at the function

gn(x) = sn(x)− f(x),
find its least positive critical point x = xn, show that gn(xn) is a relative
maximum and, finally, relate lim

n→∞ gn(xn) to
∫ π

0
sin x
x dx.

First, we restrict ourselves to the interval 0 < x < π, where

g(x) =
2

π

n∑
k=1

sin(2k − 1)x

2k − 1
− 1

2
.

Hence, on 0 < x < π,

g′n(x) =
2

π

n∑
k=1

cos(2k − 1)x.

¶Josiah Willard Gibbs (1839–1903) is often considered to be the first American mathe-
matician of note. Gibbs actually treated the case where f(x) = x, and he gave no proof
of his claims. Later, in 1906, Maxime Bôcher proved Gibbs’s statement and showed that
this phenomenon occurs at any jump discontinuity. (Actually, a British mathematician
named Wilbraham had discovered the phenomenon in 1848! Thus, it is sometimes called
the Wilbraham–Gibbs phenomenon.)
‖For a more detailed treatment, see, e.g., Introduction to the Theory of Fourier’s Series
and Integrals by H. S. Carslaw.
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Next, we may use an argument similar to the proof of [2], above (see Exer-
cise 1), to show that

g′n(x) =
2

π

sin 2nx

sinx
on 0 < x < π.

The critical points are those values of x for which 2nx is an integral multiple
of π, and the least such value is xn = π

2n . Further, gn attains a relative
maximum here (see Exercise 2).

We would like to relate lim
n→∞ gn

(
π
2n

)
to

∫ π

0
sin x
x dx. The easiest way to see

this is to notice that the sum

gn

( π

2n

)
=

2

π

n∑
k=1

1

2k − 1
sin

(2k − 1)π

2n
− 1

2

can be made to look like a Riemann sum for the integral
∫ π

0
sin x
x dx. To that

end, break the interval [0, π] into n equal subdivisions and, on each subinterval,
choose xi = midpoint of that subinterval. We then have Δx = π

n , xi =
2i−1
2

π
n ,

i = 1, 2, . . . , n and∫ π

0

sinx

x
dx = lim

n→∞

n∑
i=1

1
(2i−1)π

2n

· sin (2i− 1)π

2n
· π
n

= lim
n→∞ 2

n∑
i=1

1

2i− 1
sin

(2i− 1)π

2n
.

It follows that

lim
n→∞ gn

( π

2n

)
= lim

n→∞
2

π

n∑
k=1

1

2k − 1
sin

(2k − 1)π

2n
− 1

2

=
1

π

∫ π

0

sinx

x
dx− 1

2
,

which turns out to be approximately .09 (see Exercise 4). Therefore, the
Gibbs overshoot here is approximately 9% of the jump in the graph of f .
More generally, it can be shown that this is always the case (for functions on
−π ≤ x ≤ π).

The true mathematical significance of the Gibbs phenomenon is to show
that if f has any jump discontinuities, then its Fourier series will not converge
uniformly to f . We discuss this important type of convergence in Appendix B.

Exercises 3.5

1. MATLAB: Do Exercise 22 of the previous section.

2. Proceed as in the proof of [2] to show that

n∑
k=1

cos(2k − 1)x =
sin 2nx

sinx
on 0 < x < π.
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3. Show that the function

n∑
k=1

1

2k − 1
sin

(2k − 1)π

2n

has 2n − 1 critical values in the interval 0 < x < π, that the least of
these corresponds to a relative maximum and that each thereafter is,
alternatively, a relative min or a relative max.

4. Evaluate
∫ π

0
sin x
x dx by expanding sinx in its Maclaurin series. Then

show that 1
π

∫ π

0
sin x
x dx− 1

2 ≈ .09.

5. Explain why 2
n∑

k=1

1
2k−1 sin

(2k−1)π
2n converges down to

∫ π

0
sin x
x dx, i.e.,

why the sequence is monotonic decreasing.

6. a) Use L’Hôpital’s rule to show that lim
x→0

sin x
x = 1.

b) As you did in calculus, show that

d

dx
(sin x) = lim

h→0
cosx · sinh

h
+ sinx

cosh− 1

h
.

(Therefore, in order to apply L’Hôpital’s rule to sin x
x , you need to

compute d
dx(sinx). However, in order to compute d

dx(sinx), you

already need to know lim
x→0

sin x
x ! Is this circular reasoning?)

In Exercises 7–9 we look more closely at the difference between f ′(x0+) and
the right-hand derivative of f at x0, f

′
R(x0). Remember, the latter is just

f ′
R(x0) = lim

h→0+

f(x0 + h)− f(x0)
h

,

while the former is
f ′(x0+) = lim

x→x+
0

f ′(x).

(Of course, we can deal with

fL(x0) = lim
h→0−

f(x0 + h)− f(x0)
h

and f ′(x0−) in a similar manner.)

7. For each function below, compute f ′
R(0), f

′
L(0), f

′(0+), f ′(0−) and
f ′(0), if they exist.
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a) f(x) = x3 + 5x

b) f(x) =

{
2x+ 3, if x < 0
x− 1, if x ≥ 0

c) f(x) =

{
x2, if x ≤ 0

x2 + 1, if x > 0

8. In Exercise 7, we’ve seen that it’s possible that f ′(x0+) exists while
f ′
R(x0) doesn’t exist. But the opposite can occur, too! Do the same as
in Exercise 7 for each function below.

a) f(x) =

{
x sin 1

x , if x �= 0
0, if x = 0

b) f(x) =

{
x2 sin 1

x , if x �= 0
0, if x = 0

c) f(x) =

{
x3 sin 1

x , if x �= 0
0, if x = 0

9. Decide if the statement is true or false. In each case, f is piecewise
smooth.

a) If f ′(x0+) = f ′(x0−), then f ′(x0) exists and f ′(x0) = f ′(x0+).

b) If f ′
R(x0) = f ′

L(x0), then f
′(x0) exists and f ′(x0) = f ′

R(x0).

c) If f ′
R(x0) = f ′(x0+) and f ′

L(x0) = f ′(x0−), then f ′(x0) exists.

3.6 Fourier Sine and Cosine Series

At last we are in a position to answer the questions posed at the end of the
previous chapter.

Given a function f(x) on 0 ≤ x ≤ L, is it possible to find constants
cn, n = 0, 1, 2, . . ., and dn, n = 0, 1, 2, . . ., so that

f(x) =

∞∑
n=0

cn cos
nπx

L
= c0 +

∞∑
n=1

cn cos
nπx

L

and

f(x) =

∞∑
n=0

dn sin
nπx

L
=

∞∑
n=1

dn sin
nπx

L

on 0 ≤ x ≤ L?
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What we do is this: If f is piecewise smooth, then we extend it to a
piecewise smooth function on −L ≤ x ≤ L. Then, we can find the Fourier
series of the latter, which will be identical to f(x) on 0 ≤ x ≤ L (except
possibly, of course, at finitely many points).

But—how do we extend f? Further, since the Fourier series contains both
sines and cosines, how will this answer our question, anyway? Our key can
be found in Exercise 13 of Section 3.3:

If f(x) is even on −L ≤ x ≤ L, then its Fourier series is a pure
cosine series.
If f(x) is odd on −L ≤ x ≤ L, then its Fourier series is a pure sine
series.

Obviously, if we want to expand f in a cosine series, we need only extend it
to an even function on −L ≤ x ≤ L; similarly for a sine series, we extend it
to an odd function on −L ≤ x ≤ L.

Definition 3.9 Given f(x) on 0 ≤ x ≤ L, the even function

g(x) =

{
f(x), if 0 ≤ x ≤ L,
f(−x), if −L ≤ x < 0

is called the even extension of fff to −L ≤ x ≤ L−L ≤ x ≤ L−L ≤ x ≤ L. The odd function

h(x) =

{
f(x), if 0 ≤ x ≤ L,
−f(−x), if −L ≤ x < 0

is called the odd extension of fff to −L ≤ x ≤ L−L ≤ x ≤ L−L ≤ x ≤ L. (See Figure 3.14.)

y
y

x

y

x

(c)  odd extension(b)  even extension(a)  y = f(x)

x
L L L L−L −

FIGURE 3.14
Even and odd extensions.

Note that if f is piecewise smooth, then so are g and h. Also, technically,
h(x) is not an odd function unless f(0) = 0. However, remember that what
happens at one point has no effect on the Fourier series of the function.
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Let us calculate the Fourier series of g and h, with an eye toward getting
everything in terms of f . For g we get the series

G(x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
,

where

bn = 0, n = 1, 2, . . . ,

an =
1

L

∫ L

−L

g(x) cos
nπx

L
dx

=
2

L

∫ L

0

g(x) cos
nπx

L
dx, since the integrand is even

=
2

L

∫ L

0

f(x) cos
nπx

L
dx, since g(x) = f(x) on 0 ≤ x ≤ L, n = 0, 1, 2, . . . .

Furthermore,

G(x) = g(x) ∗ on − L ≤ x ≤ L
and so

G(x) = f(x) on 0 ≤ x ≤ L.
We can do the same for the function h(x), resulting in the series

H(x) =

∞∑
n=1

bn sin
nπx

L
,

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, n = 1, 2, 3, . . .

(see Exercise 13).

Definition 3.10 Given f(x) on 0 ≤ x ≤ L, the series

Fc(x) =
a0
2

+

∞∑
n=1

an cos
nπx

L
, where an =

2

L

∫ L

0

f(x) cos
nπx

L
dx

is called the Fourier cosine series of fff on 0 ≤ x ≤ L0 ≤ x ≤ L0 ≤ x ≤ L. The series

Fs(x) =

∞∑
n=1

bn sin
nπx

L
, where bn =

2

L

∫ L

0

f(x) sin
nπx

L
dx

is called the Fourier sine series of fff on 0 ≤ x ≤ L0 ≤ x ≤ L0 ≤ x ≤ L.

∗Here, and following, we write “=,” realizing, of course, that the two functions may differ
at finitely many points.
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Corollary 3.2 If f is piecewise smooth on 0 ≤ x ≤ L, we have

Fc(x) = f(x) on 0 ≤ x ≤ L

and

Fs(x) = f(x) on 0 ≤ x ≤ L.
Of course, we can be precise—as we were in Theorem 3.1—as to the value of
Fc(x) and Fs(x) at the discontinuous points of f and the endpoints. Further,
since Fc(x) and Fs(x) are also Fourier series, as in Section 3.4, each is periodic
of period 2L. See Figure 3.15.

L

x

(a)  y = f(x)

x

2L

y

x

−2L −L 3L

2L 3LL−L−2L

L

s(c)  y = F (x)

(b)  y = F (x) cy

y

FIGURE 3.15
The graphs of the Fourier cosine and sine series (ignoring the points
of discontinuity).

Example 1 Calculate the Fourier sine and Fourier cosine series of f(x) = 3
on 0 ≤ x ≤ π.

Fs(x) =

∞∑
n=1

bn sinnx, where bn =
2

π

∫ π

0

3 · sinnx dx

=

{
0, if n is even
12
nπ , if n is odd.

So

Fs(x) =
12

π
sinx+ 0 +

12

3π
sin 3x+ 0 + · · ·

=
12

π

∞∑
k=0

1

2k + 1
sin(2k + 1)x.
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Also,

Fc(x) =
a0
2

+

∞∑
n=1

an cosnx, where an =
2

π

∫ π

0

3 cosnx dx.

Now, we could do the calculation and find that

a0 = 6, an = 0 for n = 1, 2, 3, . . . .

However, life is much easier if we notice that f(x) already is in the same form
as Fc(x) (compare Exercise 9 in Section 3.3) and, in light of Corollary 3.2, we
must have

Fc(x) = 3 = f(x).

Example 2 Calculate the Fourier sine and cosine series of f(x) = x on
0 ≤ x ≤ 1.

Fs(x) =
∞∑
n=1

bn sinnπx, where bn = 2

∫ 1

0

x sinnπx dx =
2(−1)n+1

nπ

Fc(x) =
a0
2

+

∞∑
n=1

an cosnπx, where an = 2

∫ 1

0

x cosnπx dx,

so

a0 = 2

∫ 1

0

x dx = 1,

an = 2

∫ 1

0

x cosnπx dx =
2

n2π2
[cosnπ − 1]

=
2

n2π2
[(−1)n − 1]

=

{
0, if n is even,

− 4
n2π2 , if n is odd,

and

Fc(x) =
1

2
− 4

π2
cosπx− 4

32π2
cos 3πx− 4

52π2
cos 5πx− · · ·

=
1

2
− 4

π2

∞∑
k=1

1

(2k − 1)2
cos(2k − 1)πx.

Example 3 Draw the graph of y = f(x), along with the graph of its Fourier
cosine series, y = Fc(x), and the graph of its Fourier sine series, y = Fs(x),
for f(x) = 1− x on 0 ≤ x ≤ 1. See Figure 3.16.
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FIGURE 3.16
The graphs for Example 3.

Exercises 3.6

In Exercises 1–3, calculate the Fourier sine and Fourier cosine series of f(x).

1. f(x) =

{
1, if 0 ≤ x < 2,

0, if 2 ≤ x ≤ 4

2. f(x) = x2, 0 ≤ x ≤ π
3. f(x) = sinx, 0 ≤ x ≤ π

In Exercises 4–7, proceed as in Example 3.

4. f(x) = x2 + 1 on 0 ≤ x ≤ 1

5. f(x) = x− 1 on 0 ≤ x ≤ 2

6. f(x) =

{
3, if x = 0 or x = 1,

x+ 1, otherwise, on 0 ≤ x ≤ 2

7. f(x) =

{
1, if 0 ≤ x ≤ 3,

−2, if 3 < x ≤ 5
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8. MATLAB: Following Example 1, Section 3.5, use MATLAB to graph
the truncated Fourier sine and cosine series, for various values of n,
for the functions in Exercises 1–7. When is the Gibbs phenomenon
exhibited?

In Exercises 9–12, decide if the statement is true or false. Assume that f is
piecewise smooth on 0 ≤ x ≤ L.

9. Fs(kL) = 0 for every integer k.

10. Fc(2kL) = f(0) for every integer k.

11. Fc(2kL) = f(0+) for every integer k.

12. The constant term a0

2 in Fc(x) actually is the average value of f on
0 ≤ x ≤ L. (Similarly, true or false? The constant term a0

2 in the Fourier
series is the average value of piecewise smooth f on −L ≤ x ≤ L.)

13. Derive the Fourier sine series summation and coefficients, as we did for
the Fourier cosine series.

14. a) Show that the functions 1, cos nπx
b−a , n = 1, 2, . . ., are pairwise or-

thogonal on the interval a ≤ x ≤ b. Do the same for the functions
sin nπx

b−a , n = 1, 2 . . . .

b) Given piecewise smooth f(x) on a ≤ x ≤ b, show that it can be
expanded in a series of functions 1, cos nπx

b−a , n = 1, 2, . . ., and also
in a series of the functions sin nπx

b−a , n = 1, 2, . . . . (See Exercise 18,
Section 3.4.)

c) Compute both series from part b, for the function f(x) = x on
1 ≤ x ≤ 4.

15. Suppose we wanted to do this whole process the other way around, that
is, suppose we start with a theorem which tells us that every piecewise
smooth function on 0 ≤ x ≤ L has a Fourier sine and Fourier cosine
series, and we want to show that it follows that any piecewise smooth
f(x) on −L ≤ x ≤ L has a Fourier series. Show that this can be
accomplished using the fact that f(x) = g(x) + h(x), where

g(x) =
f(x) + f(−x)

2
is even

and

h(x) =
f(x)− f(−x)

2
is odd.
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3.7 Completeness

So far, in our discussion of the various types of Fourier series, we’ve had to
qualify all of our convergence statements with “except, possibly, at finitely
many points.” So, although the Fourier series of a function is unique, many
different functions—infinitely many, of course—have the same Fourier series.
While not a problem for physical applications, this state of affairs is not at
all satisfying from a mathematical standpoint.

In order to remedy the situation, mathematicians introduce a new setting,
based on a different type of convergence (which we’ll study in Chapter 8, when
we look at generalized Fourier series). In this weaker setting, two functions
which differ from each other at finitely many points are considered to be
the “same” function. Thus, we are able to say that the Fourier series of f
converges to f , without qualification.

Although it is more appropriate to wait and discuss the idea of completeness
in this new setting, we briefly introduce it now, as it is such an important
concept. Thus, we will use this weaker definition of “=” throughout this
section.

So, as we have seen, given any piecewise smooth function f(x) on 0 ≤ x ≤ L,
we can find constants b1, b2, b3, . . . , such that

f(x) =

∞∑
n=1

bn sin
nπx

L
.

Therefore, the functions sin nπx
L , n = 1, 2, 3, . . ., essentially span the space of

piecewise smooth functions on 0 ≤ x ≤ L. We say, then, that the set

{
sin

nπx

L

}∞

n=1
=

{
sin

πx

L
, sin

2πx

L
, sin

3πx

L
, . . .

}
(3.15)

is complete in this space of functions. Further, as we have seen, these func-
tions form an orthogonal set. We say, then, that (3.15) forms a complete
orthogonal set (in the space of piecewise smooth functions on 0 ≤ x ≤ L).

Similarly, the functions

{
cos

nπx

L

}∞

n=0
=

{
1, cos

πx

L
, cos

2πx

L
, . . .

}
(3.16)

form a complete orthogonal set (in the same space).
Now, let’s go back to Chapter 1, where we solved the eigenvalue problem

y′′ + λy = 0

y(0) = y(L) = 0
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and got (3.15) as our set of eigenfunctions. Similarly, (3.16) are the eigen-
functions of the problem

y′′ + λy = 0

y′(0) = y′(L) = 0.

It is natural to ask if the set of eigenfunctions of such an eigenvalue problem
always forms a complete orthogonal set in some space of functions on the
interval in question. Well, the answer is “sometimes,” and we’ll give a precise
treatment in Chapter 11. However, there are two other eigenvalue problems
which need to be addressed now, as they also arise in connection with the
heat, wave and Laplace’s equations.

In Exercise 15b of Section 1.7, we solved the problem

y′′ + λy = 0

y(0) = y′(L) = 0

and found that the eigenfunctions are{
sin

(2n− 1)πx

2L

}∞

n=1

=

{
sin

πx

2L
, sin

3πx

2L
, sin

5πx

2L
, . . .

}
. (3.17)

Similarly, the eigenfunctions for

y′′ + λy = 0

y′(0) = y(L) = 0

and (Exercise 15c, Section 1.7){
cos

(2n− 1)πx

2L

}∞

n=1

=

{
cos

πx

2L
, cos

3πx

2L
, cos

5πx

2L
, . . .

}
. (3.18)

Does each of (3.17) and (3.18) form a complete orthogonal set in the space
of piecewise smooth functions on 0 ≤ x ≤ L? We’ll prove that the answer
is “yes,” in the exercises (although we’ll see that this affirmative answer also
follows from a general result of Chapter 11—also, orthogonality was already
established in Exercise 22 of Section 1.7).

As a result, we’ll see:

1) That any piecewise smooth function f(x) on 0 ≤ x ≤ L can be expanded
in series of the form

f(x) =
∞∑
n=1

cn sin
(2n− 1)πx

2L

and

f(x) =

∞∑
n=1

dn cos
(2n− 1)πx

2L
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2) That the coefficients cn and dn are given by

cn =
2

L

∫ L

0

f(x) sin
(2n− 1)πx

2L
dx

and

dn =
2

L

∫ L

0

f(x) cos
(2n− 1)πx

2L
dx, n = 1, 2, 3, . . . .

Exercises 3.7

1. Prove directly by integration that each of the sets
{
sin (2n−1)x

2

}∞

n=1
and{

cos (2n−1)x
2

}∞

n=1
forms an orthogonal set on 0 ≤ x ≤ π.

2. Prove that the set of functions{
sin

(2n− 1)x

2

}∞

n=1

=

{
sin

x

2
, sin

3x

2
, sin

5x

2
, . . .

}

forms a complete set in the space of piecewise smooth functions on
0 ≤ x ≤ π, as follows.
We must show that there exist constants c1, c2, c3, . . ., such that

f(x) =

∞∑
n=1

cn sin
(2n− 1)x

2
(3.19)

= c1 sin
x

2
+ c2 sin

3x

2
+ · · · 0 ≤ x ≤ π.

In order to accomplish this,

a) Let F (x) be the even extension of f(x) to 0 ≤ x ≤ 2π, that is,
extend f so that F is symmetric about the line x = π.

b) Find the Fourier sine series of F on 0 ≤ x ≤ 2π.

c) Show that (3.19) follows; what are the constants, cn?

3. Prove that the set of functions{
cos

(2n− 1)x

2

}∞

n=1

=

{
cos

x

2
, cos

3x

2
, cos

5x

2
, . . .

}

forms a complete set in the space of piecewise smooth functions on
0 ≤ x ≤ π.



Prelude to Chapter 4

Now, with the introduction of Fourier’s sine and cosine series, we are able to
solve the Big Three PDEs, along with many others, for fairly arbitrary initial
and boundary conditions. So, in this chapter, we solve the one-dimensional
homogeneous heat equation for a finite rod, the one-dimensional homogeneous
wave equation for a finite string and the two-dimensional Laplace’s equation
on a rectangle, in each case with homogeneous boundary conditions. After
that, we consider how to deal with nonhomogeneous boundary conditions.
Finally, we treat the case where the PDE itself is nonhomogeneous.

As we have seen, the nonhomogeneous Laplace’s equation actually is called
Poisson’s equation. Laplace had been under the mistaken impression that
the gravitational potential of, say, a planet must satisfy Laplace’s equation
everywhere—in particular, he thought it must be satisfied in the interior of
the attracting body. In 1813, Siméon-Denis Poisson (1781–1840) pointed out
Laplace’s error and showed that the PDE must be nonhomogeneous. Although
we solve Poisson’s equation in this chapter, we must wait until Chapter 8 in
order to treat this gravitational problem, as it occurs most naturally in the
setting of spherical coordinates.

And so, without further ado, . . . .
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4

Solving the Big Three PDEs
on Finite Domains

4.1 Solving the Homogeneous Heat Equation
for a Finite Rod

Finally we are in a position to solve the PDE problems which were derived in
Chapter 2. We start with some examples involving the heat equation, leaving
the general case for the exercises.

Example 1 Solve the heat equation initial-boundary-value problem

ut = 3uxx,

u(x, 0) = x(π − x),
u(0, t) = u(π, t) = 0.

As before, we separate the PDE:

u(x, t) = X(x)T (t)⇒ T ′

3T
=
X ′′

X
= −λ

⇒ X ′′ + λX = 0, T ′ + 3λT = 0.

Next, separate the boundary conditions:

u(0, t) = 0 = X(0)T (t)⇒ X(0) = 0,

u(π, t) = 0 = X(π)T (t)⇒ X(π) = 0.

So we have

X ′′ + λX = 0, T ′ + 3λT = 0,

X(0) = X(π) = 0.

Now we solve the X-eigenvalue problem. We get (see Example 3, Section 2.6)

eigenvalues: λn = n2

eigenfunctions: Xn(x) = sinnx, n = 1, 2, 3, . . . .
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Next, we go back and solve the T -equation for λ = λn:

T ′ + 3n2T = 0⇒ Tn(t) = e−3n2t.

Then, for each eigenvalue λn, we form the product solution XnTn, and use
them to form the general solution

u(x, t) =
∞∑

n=1

cne
−3n2t sinnx. (4.1)

Finally, we determine the coefficients from the initial condition,

u(x, 0) = x(π − x) =
∞∑
n=1

cn sinnx, on 0 ≤ x ≤ π. (4.2)

Now, we know that the Fourier sine series for f(x) = x(π − x) on 0 ≤ x ≤ π
is

Fs(x) =

∞∑
n=1

bn sinnx, bn =
2

π

∫ π

0

x(π−x) sinnx dx =

{
8/πn3, if n is odd,

0, if n is even.

In other words, we must have

cn = bn =

{
8/πn3, if n is odd,

0, if n is even,

that is, (4.2) must be the Fourier sine series for f(x) = x2! Our final solution
is the general solution (4.1), with these particular values of the cn:

u(x, t) =
8

π

∞∑
k=1

1

(2k − 1)3
e−3(2k−1)2t sin(2k − 1)x (why?).

(Of course, we can evaluate the integrals using integration by parts or an
integral table.) Figure 4.1 shows the solution for various values of t. For
more, see Exercises 4 and 9. Note that we’re actually plotting the truncated

solution (using
10∑
k=1

).
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FIGURE 4.1
MATLAB graphs of the solution of Example 1, in the xxx-uuu plane, for
t = 0, 1, 2, 3t = 0, 1, 2, 3t = 0, 1, 2, 3 and 444 (from top to bottom). We can see how quickly
the solution approaches the steady state solution u ≡ 0u ≡ 0u ≡ 0. (We have
used the truncated solution, with n = 10n = 10n = 10 terms.)

Example 2 Do the same for

ut = uxx,

u(x, 0) = x,

ux(0, t) = ux(3, t) = 0.

Again, we separate:

X ′′ + λX = 0, T ′ + λT = 0,

X ′(0) = X ′(3) = 0.

Solve the X-problem (see Example 2 in Section 1.7):

eigenvalues: λ0 = 0, λn =
n2π2

9
, n = 1, 2, 3, . . .

eigenfunctions: X0(x) = 1, Xn(x) = cos
nπx

3
, n = 1, 2, 3, . . . .

Solve the T -equation for each eigenvalue:

λ0 = 0 : T ′ = 0⇒ T0(t) = 1

λn =
n2π2

9
: T ′ +

n2π2

9
T = 0⇒ Tn(t) = e−

n2π2t
9 , n = 1, 2, 3, . . . .
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Form the product solutions:

u0(x, t) = X0(x)T0(t) = 1

un(x, t) = Xn(x)Tn(t) = e−
n2π2t

9 cos
nπx

3
, n = 1, 2, 3, . . . .

Form the general solution:

u(x, t) = c0 · 1 + c1e
−π2t

9 cos
πx

3
+ c2e

− 4π2t
9 cos

2πx

3
+ · · ·

= c0 +
∞∑

n=1

cne
−n2π2t

9 cos
nπx

3
. (4.3)

Finally, apply the initial condition:

u(x, 0) = x = c0 +
∞∑
n=1

cn cos
nπx

3
,

and the right side must be the Fourier cosine series of f(x) = x on 0 ≤ x ≤ 3.
(Alternatively, expand x in its Fourier cosine series on 0 ≤ x ≤ 3, then equate
corresponding coefficients.) So we have

c0 =
a0
2
, cn = an, n = 1, 2, 3, . . . ,

where

an =
2

3

∫ 3

0

x cos
nπx

3
dx, n = 0, 1, 2, . . . .

Therefore, our solution is (4.3) with these coefficients plugged in:

u(x, t) =
a0
2
+

∞∑
n=1

ane
−n2π2t

9 cos
nπx

3
= 3−12

π2

∞∑
k=1

1

(2k − 1)2
e−

(2k−1)2π2t
9 cos

nπx

3
.

See Figure 4.2 for plots of the solution for various values of t. Here, we use
50∑
k=1

.
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FIGURE 4.2
MATLAB graphs of the truncated solution from Example 2, using
n = 50n = 50n = 50 terms, in the xxx-uuu plane for t = 0, 1, 2, 3t = 0, 1, 2, 3t = 0, 1, 2, 3 and 444. Again, we
see its very fast approach to the steady state solution u ≡ 3u ≡ 3u ≡ 3. (Note
the not-so-good Fourier approximation to the initial straight line
u(x, 0) = xu(x, 0) = xu(x, 0) = x.)

Example 3 Do the same for

ut = 2uxx,

u(x, 0) = x+ 1,

u(0, t) = ux(4, t) = 0.

First, separate:

X ′′ + λX = 0, T ′ + 2λT = 0,

X(0) = X ′(4) = 0.

Then, find the eigenvalues and eigenfunctions for the X-system (see Exercise
4 in Section 1.7):

eigenvalues: λn =
(2n− 1)2π2

64

eigenfunctions: Xn(x) = sin
(2n− 1)πx

8
.
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Solve the T -equation for each λn:

T ′ +
(2n− 1)2π2

32
T = 0⇒ Tn(t) = e−

(2n−1)2π2t
32 .

Form the product solutions and the general solution:

u(x, t) =
∞∑
n=1

cne
− (2n−1)2π2t

32 sin
(2n− 1)πx

8
.

Finally, apply the initial condition:

u(x, 0) = x+ 1 =
∞∑

n=1

cn sin
(2n− 1)πx

8
.

From the discussion in Section 3.7—that is, that the functions
{
sin (2n−1)πx

8

}∞
n=1

form a complete orthogonal set on 0 ≤ x ≤ 4—we are guaranteed that there
are coefficients that satisfy this equality (from completeness) and that they
are (from orthogonality)

cn =
2

4

∫ 4

0

(x+ 1) sin
(2n− 1)πx

8
dx.

How do we deal with more complicated heat problems, for example, those
with nonhomogeneous boundary conditions or nonhomogeneous PDEs? We’ll
take these up in Section 4.4.

Exercises 4.1

1. Solve the heat equation ut = 2uxx for a rod of length L with both ends
held at 0◦, if

a) L = π, u(x, 0) = 20

b) L = 1, u(x, 0) = x (See Example 2, Section 3.6.)

c) L = 2, u(x, 0) =

{
20, if 0 ≤ x < 1
0, if 1 ≤ x ≤ 2

2. Solve the heat equation ut = 4uxx for a rod of length L with both ends
insulated, if

a) L = π, u(x, 0) = x2 (See Exercise 2, Section 3.6.)

b) L = 1, u(x, 0) = 10

c) L = 2, u(x, 0) =

{
10, if 0 ≤ x ≤ 1
0, if 1 < x ≤ 2

3. Solve the heat equation ut = uxx for a rod of length π, subject to
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a) u(0, t) = ux(π, t) = 0, u(x, 0) = 100

b) ux(0, t) = u(π, t) = 0, u(x, 0) = x

4. MATLAB: Plot the truncated solution for each heat problem, in the
x-u plane, for various values of t. What happens as t→∞?

a) Exercise 1c

b) Exercise 2a

c) Exercise 2c

d) Exercise 3b

e) Exercise 3c

5. Solve the general heat equation ut = α2uxx subject to initial condition
u(x, 0) = f(x) and to the boundary conditions

a) u(0, t) = u(L, t) = 0

b) ux(0, t) = ux(L, t) = 0

c) u(0, t) = ux(L, t) = 0

d) ux(0, t) = u(L, t) = 0

e) u(0, t) = u(L, t) + ux(L, t) = 0∗

f) ux(0, t) = u(L, t) + ux(L, t) = 0∗

6. In quantum mechanics, if we have a particle of mass m, then its wave
function u = u(x, y, z, t) satisfies the famous Schrödinger’s equation

−i�ut = �
2

2m
∇2u− V (x, y, z)u.

Here, i is the imaginary number, � is Planck’s constant divided by 2π
and V is a potential for the force acting on the particle.

For now let’s consider the case of a “particle in a box, with zero po-
tential,” where the box is long and narrow enough to be considered
one-dimensional. In this case, ∇2u = uxx, and the PDE becomes

ut =
i�

2m
uxx,

which looks suspiciously like the heat equation! If the wave function is
zero at both ends of the box, then we have the initial-boundary-value

∗You should assume that we have completeness and orthogonality here. This will be justified
in Chapter 8.
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problem

ut =
i�

2m
uxx,

u(x, 0) = f(x),

u(0, t) = u(π, t) = 0,

where f(x) is the initial state and L is the length of the box. Solve this
problem.

7. In Exercise 9 of Section 2.4, we saw that a rod whose sides are not
insulated satisfies the PDE ut = α2uxx − βu. Solve the problem

ut = uxx − u,
u(x, 0) = f(x),

u(0, t) = u(π, t) = 0.

8. If a pollutant is spilled into a still body of water, it will diffuse through-
out the water and, thus, its concentration will satisfy the heat/diffusion
equation. Suppose, instead, that it is spilled into a moving stream. The
pollutant is then carried downstream; this process is called convection or
advection. If there is no diffusion, then its concentration satisfies the con-
vection or advection equation (discussed in Section 5.1). Finally, if the
pollutant undergoes both diffusion and convection—which is what we
would expect—its concentration will satisfy the diffusion-convection
equation ut = α2uxx − νux. Here, ν is the velocity of the stream (ν
may depend on x or t).

Solve the diffusion-convection problem

ut = uxx + ux, 0 < x < π,

u(x, 0) = f(x)

subject to the (not very realistic!) boundary conditions

u(0, t) = u(π, t) = 0.

9. Remember that the steady state temperature of a rod is the time-
independent function which solves the problem and which represents
the temperature distribution of the rod “after a long time.”

a) Find the steady state temperature of the system

ut = uxx, 0 < x < L,

u(x, 0) = f(x),

u(0, t) = u(L, t),

in two different ways:
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(1) Letting ut ≡ 0 and solving the PDE uxx = 0

(2) Using the Fourier method of this section, and then allowing
t → ∞ (you may assume that you may interchange the sum
and the limit, that is, you may assume that

lim
t→∞

∞∑
n=0

gn(x, t) =

∞∑
n=0

lim
t→∞ gn(x, t))

What role does the initial temperature distribution play in the
result? What’s happening, physically?

b) Show that the steady state temperature of the system

ut = uxx,

u(x, 0) = f(x),

ux(0, t) = ux(L, t)

is just the (constant) average value of the initial temperature dis-
tribution. Explain what’s happening, physically.

c) What happens when the boundary conditions are mixed, that is,
when we have u(0) = u′(L) = 0 or u′(0) = u(L) = 0? Again,
what’s happening, physically?

10. a) Given the heat problem

ut = α2uxx,

u(x, 0) = f(x),

u(0, t) = u(L, t) = 0,

show that, when we change variables to s = πx
L and τ = α2π2

L2 t, the
PDE and boundary conditions become

vτ = vss,

v(0, τ) = v(π, τ) = 0,

where v is the new dependent variable, v(s, τ) = u
(

L
π s,

L2

α2π2 τ
)
.

Thus, we need only know how to solve the heat problem on 0 ≤
x ≤ π, with α2 = 1. What is the new initial condition?

b) Redo each part of Exercise 1 but, this time, first solve the v-problem
in part (a), and then transform back to u(x, t).
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4.2 Solving the Homogeneous Wave Equation
for a Finite String

The solution of the wave equation is quite similar to that of the heat equation.

Example 1 Solve the wave equation initial-boundary-value problem

utt = 4uxx,

u(x, 0) = x(1 − x),
ut(x, 0) = cosx,

u(0, t) = u(1, t) = 0.

We begin by separating the PDE:

u(x, t) = X(x)T (t)⇒ XT ′′ = 4X ′′T

⇒ T ′′

4T
=
X ′′

X
= −λ, constant

⇒ X ′′ + λX = 0, T ′′ + 4λT = 0.

Then, separating the boundary conditions gives us

X(0) = X(1) = 0.

Next, solve the X-boundary-value problem (see Example 1, Section 1.7):

eigenvalues: λn = n2π2

eigenfunctions: Xn = sinnπx, n = 1, 2, 3, . . . .

Now we solve the T -equation for λ = λn, and it is here that we find that the
wave equation’s solution differs from that of the heat equation:

T ′′ + 4λnT = 0⇒ T ′′ + 4n2π2T = 0

⇒ T (t) = c1 cos 2nπt+ c2 sin 2nπt.

Since we must do this for each positive integer n, we write

Tn(t) = cn cos 2nπt+ dn sin 2nπt, n = 1, 2, 3, . . . .

Our product solutions, then, are

un(x, t) = sinnπx(cn cos 2nπt+ dn sin 2nπt), n = 1, 2, 3, . . . ,

so the general solution is the linear combination

u(x, t) =

∞∑
n=1

sinnπx(cn cos 2nπt+ dn sin 2nπt). (4.4)
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Finally, we apply both initial conditions. First, we need to calculate ut:

ut(x, t) =

∞∑
n=1

sinnπx(−2nπcn sin 2nπt+ 2nπdn cos 2nπt).

Then, we have

u(x, 0) = x(1 − x) =
∞∑

n=1

cn sinnπx, on 0 ≤ x ≤ 1 (4.5)

and

ut(x, 0) = cosx =

∞∑
n=1

2nπdn sinnπx, on 0 ≤ x ≤ 1. (4.6)

So the right-hand side of (4.5) must be the Fourier sine series for the function
x(1−x) on 0 ≤ x ≤ 1 and similarly for (4.6) and the function cosx. Or, if you
prefer, expand x(1 − x) and cosx into their Fourier sine series on 0 ≤ x ≤ 1,
and (4.5) and (4.6) become, respectively,

∞∑
n=1

bn sinnπx =

∞∑
n=1

cn sinnπx,

where

bn =
2

1

∫ 1

0

x(1 − x) sinnπx dx, n = 1, 2, 3, . . . ,

and ∞∑
n=1

bn sinnπx =

∞∑
n=1

2nπdn sinnπx,

where

bn =
2

1

∫ 1

0

cosx sinnπx dx, n = 1, 2, 3, . . . .

Therefore,

cn = 2

∫ 1

0

x(1− x) sinnπx dx, n = 1, 2, 3, . . . ,

2nπ dn = 2

∫ 1

0

cosx sinnπx dx, n = 1, 2, 3, . . . ,

and our solution is just the general solution (4.4) with these values for the
coefficients, that is,

u(x, t) =

∞∑
n=1

sinnπx(cn cos 2nπt+ dn sin 2nπt),

cn = 2

∫ 1

0

x(1 − x) sinnπx dx, n = 1, 2, 3, . . . ,

dn =
1

nπ

∫ 1

0

cosx sinnπx dx, n = 1, 2, 3, . . . .
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Example 2 Solve the system. Describe the string’s motion.

utt = uxx,

u(x, 0) = 0,

ut(x, 0) = 1,

ux(0, t) = ux(π, t) = 0.

Physically, it looks like there will be nothing to cause the string to vibrate,
and it should just continue moving vertically at the initial velocity, without
changing shape (not very realistic!). Let’s make sure that the Fourier method
actually gives us this solution.

So, first, separate:

X ′′ + λX = 0, T ′′ + λT = 0,

X ′(0) = X ′(π) = 0.

Solve the X-problem:

eigenvalues: λ0 = 0, λn = n2, n = 1, 2, 3, . . . ,
eigenfunctions: X0(x) = 1, Xn(x) = cosnx, n = 1, 2, 3, . . . .

Solve the T -equation for λ = λn:

λ0 = 0 : T ′′ = 0⇒ T0(t) = c0 + d0t
λn = n2 : T ′′ + n2T = 0⇒ Tn(t) = cn cosnt+ dn sinnt, n = 1, 2, 3, . . . .

Form the product solutions:

u0(x, t) = X0(x)T0(t) = c0 + d0t

un(x, t) = Xn(x)Tn(t)

= cosnx(cn cosnt+ dn sinnt), n = 1, 2, 3, . . . .

Then the general solution is

u(x, t) = c0 + d0t+

∞∑
n=1

cosnx(cn cosnt+ dn sinnt). (4.7)

Now, the initial shape gives us

u(x, 0) = 0 = c0 +

∞∑
n=1

cn cosnx,

which means that we have

cn = 0, n = 0, 1, 2, . . . .
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The initial velocity is

ut(x, 0) = 1 = d0 +

∞∑
n=1

ndn cosnx,

and, remembering that the Fourier cosine series for 1 on 0 ≤ x ≤ π is

1 =
a0
2

+

∞∑
n=1

an cosnx,

where

an =
2

π

∫ π

0

1 · cosnx dx, n = 0, 1, 2, . . . ,

we have

d0 =
a0
2

=
1

π

∫ π

0

1 dx = 1

and

dn =
1

n
an =

2

nπ

∫ π

0

cosnx dx = 0, n = 1, 2, 3, . . . .

Therefore, our solution is the general solution (4.7) with the above values
of the coefficients plugged in:

u(x, t) = t,

so the string does not vibrate but, instead, retains its initial shape and con-
tinues to move upward at a velocity of 1.

Of course, we can’t look at steady state solutions of the wave equation, but
we can get some very important physical (and mathematical) information if
we use our Fourier series solution to decompose u into its various vibration
modes.

So, setting g(x) ≡ 0 for the sake of convenience (and it won’t make a
difference as far as what we’d like to show), we look at the solution

u(x, t) =

∞∑
n=1

an sin
nπx

L
cos

nπct

L

of the string problem

utt = c2uxx, 0 < x < L, t > 0,

u(x, 0) = f(x),

ut(x, 0) = 0,

u(0, t) = u(L, t) = 0.
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The individual product solution

un(x, t) = sin
nπx

L
cos

nπct

L
, n = 1, 2, 3, . . . ,

of the PDE and boundary conditions, is called the nnnth normal mode of
vibration for the problem. What do these modes look like?

1. The functions
un(x, 0) = Xn(x) = sin

nπx

L

are, of course, standard sine waves. The first few can be seen in Fig-
ure 4.3. The points where each curve intersects the x-axis (including
the endpoints, for the string which is nailed down) are called its nodes.
More on these below.

y

L
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L
x

y

L2L

3

L

3

(a)  y = sin x (b)  y = sin (c)  y = sin π
π π2    x 3    x

L L L

FIGURE 4.3
First three vibration modes for the vibrating string.

2. The function

Tn(t) = cos
nπct

L

is what tells us how the nth mode vibrates. Figure 4.4 gives snapshots
of the second mode each at various time t. Note that the nodes remain
fixed!

L L L L

(a)  t = 0 (b)  t = (d)  t = (e)  t = 
L

(c)  t = 
L

2C

3L

4C

L

C4C

L

FIGURE 4.4
Vibration of the second mode. The three nodes remain fixed.
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The time that it takes for the nth mode to go through one cycle of
vibration—the vibration period of the mode—is just the (least positive)
period of the cosine function. Thus, it’s the value tn for which nπctn

L =
2π, or

period of nth mode: tn =
2L

nc
.

Then, the mode’s vibration frequency, or number of vibrations per
unit time, is just

frequency of nth mode: νn =
1

tn
=
nc

2L
.

We see that each frequency is an integral multiple of the fundamental
frequency

ν1 =
c

2L
,

the frequency of the first or fundamental mode. The complete set of
frequencies is called the frequency spectrum of the string, and it is
a discrete, as opposed to continuous, spectrum (the separation between
consecutive frequencies being the fundamental frequency—we say they
are “spaced according to n”).
Thus, regardless of the initial displacement and velocity of the string,

its motion can be decomposed into these modes and frequencies, and,
since each frequency is an integral multiple of the fundamental fre-
quency, the string actually vibrates at this frequency (why?). So, what
tells us the difference between two different vibrations?

3. The coefficients an, of course! The number |an| gives us the ampli-
tude of the corresponding mode and, since the Fourier series solution
converges, we must have an → 0 as n → ∞. Thus, the lowest modes
contribute most to the motion of the string. (One may also show that
the total energy of the vibrating string is equal to the sum of the ener-
gies of the individual modes and that the latter → 0 as an → 0, so as
n→∞.)

A nice real-world illustration of the situation can be seen (and heard!) in
the case of a violin string. Every note played by the violinist corresponds
to a specific vibration frequency of the string, and the higher the frequency,
the higher the note. For example, “concert A” (the A above “middle C”)
corresponds to a frequency of 440 hertz. So, suppose she plays this A—what
do we actually hear? We hear the A, of course! The string is vibrating at
440 hertz. However, it’s virtually impossible for anyone to cause any string to
vibrate in a single mode. Thus, we should be able to decompose the motion
into many—infinitely many—frequencies and modes. It turns out that 440
hertz is the fundamental frequency (which makes sense, since the A turns
out to be the loudest note we hear) and that, in principle, the string also
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sounds the notes corresponding to all integral multiples of this frequency. In
practice, we actually do hear the first few of these higher notes, with the
various contributions dying out and becoming inaudible as the frequencies
increase (again, the lower modes contribute more than the higher modes).

It is the relative contributions of the notes of various frequencies that give
the violin string its unique sound. (To be more specific, striking the string
differently will lead to different relative contributions, and we can hear these
differences. More generally, though, the possible relative contributions at vari-
ous frequencies for a violin string are different from those of other instruments.
If we play the same A on a piano and a violin, and if we arrange things so
that someone with a trained ear hears them only after they’ve been struck,
then that person still can tell the difference between the two.)

In our example, we call A the fundamental and the higher tones the
overtones of the particular string. As it turns out, the first few overtones
turn out to be

2nd: A (an octave above the original, 880 hertz)
3rd: E (above the second A, 1320 hertz)∗

4th: A (two octaves above the original, 1760 hertz)
5th: D (above this last A, 2200 hertz).∗

These notes are harmonically consonant with the original—when sounded
together, they are pleasing to the ear. Hence, the fundamental and overtones
have come to be known as the harmonics of the particular string (although,
if we go high enough, we start to encounter overtones which form a dissonance
with the original A; however, these generally are inaudible).

Exercises 4.2

1. Solve the wave equation utt = 5uxx for a string of length L with both
ends nailed down along the x-axis, if

a) L = π, u(x, 0) = 3 sin 2x, ut(x, 0) = sinx− 7 sin 4x

b) (the plucked string) L = 4, u(x, 0) =

{
x, if 0 ≤ x ≤ 2,

4− x, if 2 ≤ x ≤ 4,

ut(x, 0) = 0

c) L = 2, u(x, 0) = 0, ut(x, 0) = 3

2. Solve the wave equation utt = 4uxx for a string of length π, subject
to the boundary conditions ux(0, t) = ux(π, t) = 0 and to the initial
conditions

∗For the equal-tempered scale, these values are approximately 1318.51 and 2349.32, respec-
tively.
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a) u(x, 0) = 4 cos 3x ut(x, 0) = 6 cos 2x− cos 5x

b) u(x, 0) = sinx ut(x, 0) = 0 (See Exercise 3, Section 3.6.)

c) u(x, 0) = 1 ut(x, 0) = x

3. Solve the wave equation utt = uxx subject to

a) u(0, t) = ux(1, t) = 0, u(x, 0) = 0, ut(x, 0) = 1

b) ux(0, t) = u(π, t) = 0, u(x, 0) = π2 − x2, ut(x, 0) = 0

4. Solve the general wave equation utt = c2uxx subject to the initial condi-
tions u(x, 0) = f(x) and ut(x, 0) = g(x) and to the boundary conditions

a) u(0, t) = u(L, t) = 0

b) ux(0, t) = ux(L, t) = 0

c) u(0, t) = ux(L, t) = 0

d) ux(0, t) = (L, t) = 0.

5. In Exercise 4 in Section 2.3, we derived the damped wave equation
utt = c2uxx − βut.
a) Solve the initial-boundary-value problem

utt = uxx − 4ut,

u(x, 0) = 1,

ut(x, 0) = 0,

u(0, t) = u(π, t) = 0.

What happens as t→∞?

b) Solve the initial-boundary-value problem

utt = uxx − 2ut,

u(x, 0) = 5 sinx− 3 sin 4x,

ut(x, 0) = 0,

u(0, t) = u(π, t) = 0.

Again, what happens as t→∞?

c) Solve the same problem as in part (b), but with initial conditions
u(x, 0) = 0, ut(x, 0) = sinx+ sin 2x. Once more, what happens as
t→∞?

d) Remember that utt = c2uxx−βut−γu is the telegraph equation.
Solve the initial-boundary-value problem

utt = uxx − 2ut − 3u,

u(x, 0) = x,

ut(x, 0) = 0,

u(0, t) = u(π, t) = 0.
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6. MATLAB: Plot the truncated (unless it’s not necessary to truncate)
solution for each problem, in the x-u plane, for various values of t.

a) Exercise 1a

b) Exercise 1b

c) Exercise 1c

d) Exercise 3a

e) Exercise 5b

f) Exercise 5c

7. MATLAB: Plot the first four modes of the vibrating string of length
1 with boundary conditions u(0, t) = ux(1, t) = 0.

8. Using trigonometric identities (as in Section 3.2), show that the solution
of the wave initial-boundary problem

utt = c2uxx,

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(0, t) = u(L, t) = 0

can be written as

u(x, t) =
1

2
[F (x + ct) + F (x− ct)] + 1

2c

∫ x+ct

x−ct

G(s)ds,

where F (x) and G(x) are the odd periodic extensions of f(x) and g(x),
respectively.

9. Vibrating Euler–Bernoulli beam: From Appendix D, we know that
a simply-supported vibrating E–B beam, given an initial displacement
with zero initial velocity, is

utt + a4uxxxx = 0, 0 < x < π, t > 0,

u(x, 0) = f(x),

ut(x, 0) = 0,

u(0, t) = uxx(0, t) = u(π, t) = uxx(π, t) = 0.

a) Solve this problem. (Hint: Let the separation constant be λ =
−k4, 0, k4, for k > 0. For each eigenvalue λ, the corresponding k is
called the wave number.)

b) What is the vibration spectrum? Are the frequencies of the over-
tones integral multiples of the fundamental frequency? Conversely,
is every integral multiple of the fundamental also the frequency of
an overtone?

c) Which musical instrument is, essentially, a series of such beams?
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4.3 Solving the Homogeneous Laplace’s Equation
on a Rectangular Domain

Let’s start by looking at a particular case of the Dirichlet problem on a rect-
angle:

uxx + uyy = 0, 0 < x < a, 0 < y < b

u(x, 0) = f(x),

u(x, b) = g(x),

u(0, y) = u(a, y) = 0.

(See Figure 4.5.) First, separate the PDE:

u(x, y) = X(x)Y (y)⇒ X ′′

X
= −Y

′′

Y
= −λ

⇒ X ′′ + λX = 0, Y ′′ − λY = 0.

Next, separate the left and right side boundary conditions, as we’ve been
doing. We now have

X ′′ + λX = 0, Y ′′ − λY = 0,

X(0) = X(a) = 0.

u(x,b) = g(x)

u = 0

u(x,0) = f(x)

b

a

Δ2 u(a,y) = 0u(0,y) = 0

FIGURE 4.5
The Dirichlet problem on a rectangle (with homogeneous BCs along
left and right edges).

Solving the X-eigenvalue problem, we get

eigenvalues: λn = n2π2

a2 ,
eigenfunctions: Xn(x) = sin nπx

a , n = 1, 2, 3, . . . .

Again, we now must solve the Y -equation for λ = λn:

Y ′′ − n2π2

a2
Y = 0⇒ Yn(y) = cn cosh

nπy

a
+ dn sinh

nπy

a
.
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The penultimate step, as usual, is to form the product solutions and use them
to form the general solution:

u(x, y) =

∞∑
n=1

sin
nπx

a

(
cn cosh

nπy

a
+ dn sinh

nπy

a

)
.

Finally, we use the remaining two boundary conditions to determine the co-
efficients cn, dn, n = 1, 2, 3, . . .:

u(x, 0) = f(x) =

∞∑
n=1

cn sin
nπx

a
⇒ cn =

2

a

∫ a

0

f(x) sin
nπx

a
dx, n = 1, 2, 3, . . . ,

u(x, b) = g(x) =

∞∑
n=1

sin
nπx

a

(
cn cosh

nπb

a
+ dn sinh

nπb

a

)

⇒ dn sinh
nπb

a
=

2

a

∫ a

0

g(x) sin
nπx

a
dx− cn cosh nπb

a

or

dn =
2

a sinh nπb
a

∫ a

0

g(x) sin
nπx

a
dx− cn coth nπb

a
, n = 1, 2, 3, . . . .†

Of course, this example is by no means the most general Dirichlet prob-
lem. Specifically, the conditions involving u(0, y) and u(a, y) need not be
homogeneous. We’ll look more closely in the exercises.

Suppose, instead, we have the Neumann problem

uxx + uyy = 0,

uy(x, 0) = uy(x, b) = 0,

ux(0, y) = f(y),

ux(a, y) = g(y).

Again, we separate, but we do so with an eye toward the fact that the homo-
geneous boundary conditions are uy(x, 0) = uy(x, b) = 0:

u(x, y) = X(x)Y (y)⇒ Y ′′

Y
= −X

′′

X
= −λ

⇒ Y ′′ + λY = 0, X ′′ − λX = 0.

Now, separating these two boundary conditions, we see that we must solve

Y ′′ + λY = 0, X ′′ − λX = 0,

Y ′(0) = Y ′(b) = 0.

†Remember, the hyperbolic cotangent is coth x = cosh x
sinhx

.
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As before, we see that the eigenvalues and eigenfunctions of the Y -problem
are:

eigenvalues: λ0 = 0, λn = n2π2

b2 , n = 1, 2, 3, . . .
eigenfunctions: Y0(y) = 1, Yn(y) = cos nπy

b , n = 1, 2, 3, . . . .

Solving the X-ODE for each of these eigenvalues, we have

λ0 = 0: X0(x) = c0 + d0x

λn =
n2π2

b2
: Xn(x) = cn cosh

nπx

b
+ dn sinh

nπx

b
, n = 1, 2, 3, . . . ,

and the general solution becomes

u(x, y) = c0 + d0x+

∞∑
n=1

cos
nπy

b

(
cn cosh

nπx

b
+ dn sinh

nπx

b

)
.

Finally, the other boundary conditions determine the constants:

ux(0, y) = f(y) = d0 +
∞∑
n=1

nπ

b
dn cos

nπy

b
, 0 ≤ y ≤ b

⇒ d0 =
1

b

∫ b

0

f(y)dy,

dn =
2

nπ

∫ b

0

f(y) cos
nπy

b
dy, n = 1, 2, 3, . . . ,

ux(a, y) = g(y) = d0 +

∞∑
n=1

nπ

b
cos

nπy

b

(
cn sinh

nπa

b
+ dn cosh

nπa

b

)

⇒ d0 =
1

b

∫ b

0

g(y)dy,

nπ

b

(
cn sinh

nπa

b
+ dn cosh

nπa

b

)
=

2

b

∫ b

0

g(y) cos
nπy

b
dy

or

cn =
2

nπ sinh nπa
b

∫ b

0

g(y) cos
nπy

b
dy − nπdn

b
cosh

nπa

b
, n = 1, 2, 3, . . . .

Now, we notice two important differences between this example and the
previous one:

1) c0 is arbitrary! Therefore, there are infinitely many solutions, so this
Neumann problem is not well-posed. In fact, this is a property of all
Neumann problems.
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2) There seem to be two expressions for d0. Indeed, f and g must satisfy
the compatibility condition

∫ b

0

f(y)dy =

∫ b

0

g(y)dy

or else the problem has no solution. See Exercises 12–14.

Again, we’ll look at problems with more than two nonhomogeneous bound-
ary conditions in the exercises.

Exercises 4.3

In Exercises 1–10, solve Laplace’s equation subject to the given boundary
conditions. Work each problem out completely, rather than referring to the
solutions in this section.

1. u(x, 0) = 0, u(x, 2) = 10, u(0, y) = u(1, y) = 0

2. u(x, 0) = 3 sinπx, u(x, 3) = 0, u(0, y) = u(4, y) = 0

3. u(x, 0) = u(x, π) = 0, u(0, y) = y, u(1, y) = 0

4. u(x, 0) = cosx, u(x, 1) = sin x
2 − sin 2x, u(0, y) = u(π, y) = 0

5. u(x, 0) = u(x, 2) = 0, u(0, y) = y, u(1, y) = 2y

6. u(x, 0) = u(x, π) = 0, u(0, y) = 0, ux(5, y) = 3 sin y − 5 sin 4y

7. uy(x, 0) = 0, u(x, 1) = x, u(0, y) = u(1, y) = 0

8. uy(x, 0) = uy(x, π) = 0, ux(0, y) = 0, ux(2π, y) = cos 5y

9. uy(x, 0) = 2, uy(x, π) = 3, ux(0, y) = ux(2π, y) = 0

10. MATLAB: Plot the (truncated) solution of the given problem. Where
do the maximum and minimum values of u seem to occur?

a) Exercise 3

b) Exercise 6

11. a) Use the solution to Exercise 6 to solve

uxx + uyy = 0,

u(x, 0) = 0,

uy(x, 5) = 3 sinx− 5 sin 4x,

u(0, y) = u(π, y) = 0.
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b) Use the solution to the first example in this section to solve

uxx + uyy = 0,

u(x, 0) = u(x, b) = 0,

u(0, y) = f(y),

u(a, y) = g(y).

Hint: Don’t work too hard—look at part (a)!

c) More generally, solve

uxx + uyy = 0,

u(x, 0) = u(x, b) = 0,

u(0, y) = f(y),

u(a, y) = g(y).

12. a) Use the solutions to Exercises 1 and 5 of the Dirichlet problems

uxx + uyy = 0, uxx + uyy = 0,

u(x, 0) = u(x, 2) = 0, u(x, 0) = 0,

u(0, y) = y, u(x, 2) = 10,

u(1, y) = 2y, u(0, y) = u(1, y) = 0,

to solve

uxx + uyy = 0,

u(x, 0) = 0,

u(x, 2) = 10,

u(0, y) = y,

u(1, y) = 2y.

b) More generally, what is the solution of the Dirichlet problem

uxx + uyy = 0,

u(x, 0) = f1(x),

u(x, b) = f2(x),

u(0, y) = g1(y),

u(a, y) = g2(y)?

c) What is the solution of the Neumann problem

uxx + uyy = 0,

uy(x, 0) = f1(x),

uy(x, b) = f2(x),

ux(0, y) = g1(y),

ux(a, y) = g2(y)?
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Note: There may be compatibility conditions. See the following
two exercises.

13. Solve the problem

uxx + uyy = 0,

u(0, y) = u(a, y) = 0,

subject to

a) ux(x, 0) = f(x), ux(x, b) = g(x). What restrictions, if any, are
there on the functions f and g?

b) u(x, 0) = f(x), ux(x, b) = g(x). Again, what restrictions, if any,
are there on f and g?

14. a) Show that the Neumann problem

uxx + uyy = 0, 0 < x < a, 0 < y < b,

uy(x, 0) = f1(x),

uy(x, b) = f2(x),

ux(0, y) = g1(y),

ux(a, y) = g2(y),

must satisfy the compatibility condition

∫ a

0

[f2(x)− f1(x)]dx +

∫ b

0

[g2(y)− g1(y)]dy = 0,

as follows: write

0 = uxx + uyy ⇒ 0 =

∫ b

0

∫ a

0

(uxx + uyy)dxdy

=

∫ b

0

∫ a

0

uxx dxdy +

∫ a

0

∫ b

0

uyy dydx

and then integrate.

b) Instead, use Green’s Theorem on

0 =

∫ b

a

∫ a

0

(uxx + uyy)dxdy

to arrive at the same result.

c) More generally, show that, if D and C are well-enough behaved,
Green’s Theorem says that∫∫

D

∇2u dA =

∮
C

∂u

∂n
ds,
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where D is a two-dimensional region, C is its boundary curve and
∂u
∂n is the outward normal derivative of u along C. Therefore, the
above result is just a special case of the more general compatibility
condition ∮

C

∂u

∂n
ds = 0.

This says, of course, that the total flux across C is zero, which
makes sense as solutions of Laplace’s equation can be looked at as
steady state temperatures.

4.4 Nonhomogeneous Problems

The heat and wave equation problems can be nonhomogeneous in one of two
ways: the PDE itself may be nonhomogeneous or the boundary conditions
may be nonhomogeneous. Let’s first consider the simplest nonhomogeneous
boundary conditions, leaving the more general case for the exercises.

NONHOMOGENEOUS BOUNDARY CONDITIONS

We start with the heat equation, with each end held at a constant temperature
(see Exercise 7 in Section 2.4):

ut = α2uxx,

u(x, 0) = f(x),

u(0, t) = T1, u(L, t) = T2,

where T1 and T2 are not necessarily zero. We plan to transform the problem
into a homogeneous problem in a new unknown w(x, t). In order to accomplish
this, we wish to find the “simplest” function v(x, t) so that w = u− v satisfies

wt = α2wxx

and

w(0, t) = w(L, t) = 0.

The first condition certainly will be satisfied if vt = vxx = 0, and this will
require v to be a linear function in x,

v = v(x) = c1x+ c2.

Then, if w(x, t) = u(x, t)− (c1x+ c2), we have

w(0, t) = u(0, t)− c2
= T1 − c2
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and

w(L, t) = u(L, t)− (c1L+ c2)

= T2 − c1L− c2.
Solving the two equations

T1 − c2 = 0,

T2 − c1L− c2 = 0

for c1 and c2 gives us

c1 =
T2 − T1
L

,

c2 = T1,

so our new unknown w is given by

w(x, t) = u(x, t) +
T1 − T2

L
x− T1.

See Figure 4.6.

y

T

T

y

w

L
x

1

2

(a)  graph of u(x,t)
1 2

L

u

L
x

T   − T
x  − T1(b)  graph of w(x,t) = u(x,t)  + 

FIGURE 4.6
Transforming nonhomogeneous boundary conditions into homoge-
neous BCs.

Finally, the initial condition in w becomes

w(x, 0) = u(x, 0) +
T1 − T2

L
x− T1

= f(x) +
T1 − T2

L
x− T1.

Therefore, we need only solve the problem

wt = α2wxx,

w(x, 0) = f(x) +
T1 − T2

L
x− T1,

w(0, t) = w(L, t) = 0,
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and the solution to the original problem will be

u(x, t) = w(x, t) + v(x),

= w(x, t) +
T2 − T1

L
x+ T1.

Of course, the wave equation with nonhomogeneous boundary conditions
can be treated in the same way. Also, it is not difficult to extend this method
to more complicated boundary conditions.

Example 1 Transform the wave equation initial-boundary-value problem

utt = uxx,

u(x, 0) = f(x),

ut(x, 0) = g(x),

ux(0, t) = 10, ux(2, t)− u(2, t) = 3

into one with homogeneous boundary conditions. Again, we try w(x, t) =
u(x, t)− c1x− c2. The boundary conditions become

wx(0, t) = ux(0, t)− c1 = 10− c1,
wx(2, t)− w(2, t) = ux(2, t)− u(2, t)− c1 + 2c1 + c2 = 3 + c1 + c2,

which become homogeneous in w if and only if c1 = 10 and c2 = −13. So our
transformation is

w(x, t) = u(x, t)− 10x+ 13.

Finally, the new initial conditions are

w(x, 0) = u(x, 0)− 10x+ 3 = f(x)− 10x+ 13,

wt(x, 0) = ut(x, 0) = g(x).

In the exercises we treat more general boundary conditions, including those
which involve functions of t.

NONHOMOGENEOUS PDEs

A more difficult question is how to solve an initial-boundary-value problem
when the PDE is nonhomogeneous. Again, let’s begin by considering the heat
problem

ut = uxx + F (x, t), (4.8)

u(x, 0) = f(x), (4.9)

u(0, t) = u(L, t) = 0. (4.10)
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Now, if the problem were, instead, homogeneous, it would have a solution of
the form

u(x, t) =

∞∑
n=1

Tn(t) sin
nπx

L
, (4.11)

where we have sin nπx
L because of the boundary conditions (4.10) (and, of

course, in the homogeneous case, Tn(t) = bne
−n2π2t

L2 , where the constants bn
are the Fourier sine coefficients of f(x) on 0 ≤ x ≤ L). These boundary
conditions, then, suggest that the solution of the nonhomogeneous problem
also will have the form (4.11) (for different functions Tn(t), of course). Our
goal is to determine the functions Tn(t) so that (4.11) is the solution of the
problem (4.8)–(4.10).

To this end, for each value of t we expand F (x, t) into its Fourier sine series
on 0 ≤ x ≤ L. Thus, we have

F (x, t) =

∞∑
n=1

Fn(t) sin
nπx

L

where

Fn(t) =
2

L

∫ L

0

F (x, t) sin
nπx

L
dx. (4.12)

Next, we substitute (4.11) into the PDE (4.8) and, assuming we may differ-
entiate term-by-term, we get

∞∑
n=1

T ′
n(t) sin

nπx

L
= −

∞∑
n=1

n2π2

L2
Tn(t) sin

nπx

L
+

∞∑
n=1

Fn(t) sin
nπx

L
,

∞∑
n=1

T ′
n(t) sin

nπx

L
=

∞∑
n=1

[
−n

2π2

L2
Tn(t) + Fn(t)

]
sin

nπx

L
.

Equating coefficients of sin nπx
L (which, by the way, is equivalent to forming the

inner product of each side with sin nπx
L , as these sine functions are orthogonal

on 0 ≤ x ≤ L) we have

T ′
n(t) +

n2π2

L2
Tn(t) = Fn(t), n = 1, 2, . . . .

Again, we have reduced a PDE to a problem involving ODEs. We may solve

each ODE by multiplying through by the integrating factor e
n2π2t

L2 , resulting
in

d

dt

[
e

n2π2t
L2 Tn(t)

]
= e

n2π2t
L2 Fn(t)

or

e
n2π2t

L2 Tn(t) =

∫ t

0

e
n2π2τ

L2 Fn(τ)dτ + kn
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or

Tn(t) = e−
n2π2t

L2

∫ t

0

e
n2π2τ

L2 Fn(τ)dτ + kne
−n2π2t

L2 , n = 1, 2, 3, . . . . (4.13)

Note that we could have chosen any constant as the value of the lower limit
of integration. We choose it to be zero for the sake of convenience, because
the initial condition is given at time t = 0.

Now, what’s the value of each kn? The initial condition (4.9) implies that

u(x, 0) = f(x) =

∞∑
n=1

Tn(0) sin
nπx

L

=
∞∑
n=1

kn sin
nπx

L

and, since this must hold for all x in 0 ≤ x ≤ L, we must have

kn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, (4.14)

that is, the constants kn must be the Fourier sine coefficients of f(x) on
0 ≤ x ≤ L.

So, our solution is (4.11), with each Tn(t) given by (4.13), each kn by (4.14)
and each function Fn(t) by (4.12).

Again, we may treat the nonhomogeneous wave equation, as well as the
nonhomogeneous Laplace’s equation (i.e., Poisson’s equation), in a similar
manner (and we do so in the exercises).

Exercises 4.4

1. Suppose we are given the wave equation initial-boundary-value problem
utt = uxx, u(x, 0) = f(x), ut(x, 0) = g(x), subject to the given nonho-
mogeneous boundary conditions. Transform each problem to one with
homogeneous boundary conditions.

a) u(0, t) = u(L, t) = T

b) u(0, t) = T, ux(L, t) = a

c) ux(0, t) = a, u(L, t) = T

d) ux(0, t) = ux(L, t) = a

(In each case, T and a are constants.)

2. Do the same as in Exercise 1 for the boundary conditions ux(0, t) =
a �= ux(L, t) = b. (Note: The PDE in the transformed system will be
nonhomogeneous.)
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3. Consider the general heat problem

ut = uxx + F (x, t),

u(x, 0) = f(x),

u(0, t) = g(t),

u(L, t) = h(t).

Determine functions A(t) and B(t) so that the transformation

w(x, t) = u(x, t)−A(t)− xB(t)

leads to a problem with homogeneous boundary conditions. Write down
the initial-boundary-value problem for w.

In Exercises 4–10, solve the nonhomogeneous heat initial-boundary-value prob-
lem. In each case, rather than following the example in the text, start from
scratch by assuming a solution of the correct form, as in (4.11). Also, cal-
culate the steady state temperature, lim

t→∞u(x, t); if the limit doesn’t exist,

describe the system’s behavior as t→∞. (Hint: Use l’Hôpital’s rule and the
fundamental theorem of calculus.)

4. ut = uxx + x,
u(x, 0) = sin 2x,
u(0, t) = u(π, t) = 0.

5. ut = uxx + 10,
u(x, 0) = 3 sinx− 4 sin 2x+ 5 sin 3x,
u(0, t) = u(π, t) = 0.

6. ut = uxx + 10,
u(x, 0) = 50,
u(0, t) = u(π, t) = 0.

7. ut = uxx + x+ t,
u(x, 0) = x,
u(0, t) = u(π, t) = 0.

8. ut = uxx + cos 2x− cos 5x,
u(x, 0) = cos 3x,
ux(0, t) = ux(π, t) = 0.

9. ut = uxx + 10,
u(x, 0) = −15,
ux(0, t) = ux(π, t) = 0.

10. ut = uxx,

u(x, 0) = 10x2

2π ,
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ux(0, t) = 0,
ux(π, t) = 10.
(Hint: See Exercise 2.)

In Exercises 11–15, solve the nonhomogeneous wave initial-boundary-value

problem. In each case, start by letting u(x, t) =
∞∑

n=1
Tn(t) sinnx and proceed

from there.

11. utt = uxx + sinx,
u(x, 0) = sin 3x,
ut(x, 0) = sin 5x,
u(0, t) = u(π, t) = 0.

12. utt = uxx + x,
u(x, 0) = 1,
ut(x, 0) = 0,
u(0, t) = u(π, t) = 0.

13. utt = uxx + sinx sin t,
u(x, 0) = 0,
ut(x, 0) = sin 3x,
u(0, t) = u(π, t) = 0.
(Explain why this system is said to exhibit resonance.)

14. MATLAB: Plot snapshots of the (truncated) solution in the x-u plane,
for various values of t, for the following problems. What happens as
t→∞?

a) Exercise 5

b) Exercise 9

c) Exercise 11

d) Exercise 15

15. Show that the solution of the general nonhomogeneous wave initial-
boundary-value problem

utt = uxx + F (x, t),

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(0, t) = u(π, t) = 0

is

u(x, t) =

∞∑
n=1

sinnx[cn cosnt+ dn sinnt+ pn(t)],
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where, if F (x, t) =
∞∑
n=1

Fn(t) sinnx, then pn(t) is any particular solution

of the ODE
T ′′
n + n2Tn = Fn,

and where

cn =
2

π

∫ π

0

f(x) sinnx dx− pn(0)

and

dn =
2

nπ

∫ π

n

g(x) sinnx dx− 1

n
p′n(0), n = 1, 2, 3, . . . .

In Exercises 16 and 17, solve the Poisson’s equation boundary-value problem.

You will want to let u(x, y) =
∞∑
n=1

Xn(x) sinny or u(x, y) =
∞∑

n=1
Yn(y) sinnx,

depending on the boundary conditions.

16. uxx + uyy = sin 2x,
u(x, 0) = sin 3x,
u(x, π) = 0,
u(0, y) = u(π, y) = 0.

17. uxx + uyy = x2y2,
u(x, 0) = u(x, π) = 0,
u(0, y) = u(π, y) = 0.



Prelude to Chapter 5

This chapter is devoted to the idea of characteristics of a PDE. For our pur-
poses, these characteristics are curves in the domain of the PDE—here, the
x-y plane—along which solutions of the PDE have certain “nice” properties.
For example, for some equations, solutions are constant along these charac-
teristics.

We begin with first-order linear equations, which were studied by many no-
table mathematicians in the late 18th century, particularly Lagrange, who, as
in all of his work, used an analytical approach, and Monge, whose geometrical
ideas were quite fruitful.

The method of characteristics can be generalized to equations of higher or-
der. We do so only for second-order linear equations with constant coefficients,
starting with Jean Le Rond d’Alembert’s (1717–1783) famous solution for the
infinite vibrating string, which he actually derived around 1746, before any of
the important work on characteristics. Although he did not call them such,
it is implicit in d’Alembert’s work that he understood the behavior of the
characteristics of the wave equation. Daniel Bernoulli, Euler and Lagrange
also made important contributions in this area.

Finally, we classify second-order linear PDEs according to how many fam-
ilies of characteristics they have. It is here that we see that the wave, heat
and Laplace equations have a mathematical importance far beyond their con-
nection with specific physical problems.
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5

Characteristics

5.1 First-Order PDEs with Constant Coefficients

In Chapter 1, we saw that there are many first-order PDEs which we can
already solve. In particular, the linear equation

a(x, y)ux + b(x, y)u = f(x, y) (5.1)

can be treated as an ODE. What about more general linear, first-order PDEs?
And why would we be interested in these equations?

The PDE aux + buy = 0 often is called the convection equation (as
in “convey”) or advection equation (where advection is a synonym of the
noun transport). Imagine a very narrow stream flowing at constant velocity
v. Suppose there is a chemical that has polluted the stream and that this
chemical is carried downstream without diffusing at all. Let

u(x, t) = concentration of chemical per unit length, at point x

along the stream, at time t

(we are assuming that the stream is narrow enough so that the concentration
is the same along any line across its width, so we may treat the stream as
one-dimensional). See Figure 5.1. What can we say about the function u?
Consider a short length of the stream, from x to x + Δx, and calculate the
change in the amount of chemical present from time t to time t+ Δt. First,
the amount present at time t is approximately

u(x, t)Δx,

so the change is approximately

[u(x, t+Δt)− u(x, t)]Δx.
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x−axis

velocity: ν

bank

bank

stream

FIGURE 5.1
Narrow stream flowing at constant velocity ννν.

Now, during the time interval Δt, a particle in the stream travels a distance
vΔt. Therefore, the amount of material passing a point x during this time
interval is approximately

u(x, t)vΔt,

so the net change in the amount of chemical in our length Δx, during the
interval Δt, is approximately

− (Amount leaving right end)

+ (Amount entering left end)

= [−u(x+Δx, t) + u(x, t)]vΔt.

Divide through by ΔxΔt and take limits as Δt and Δx go to 0, and we get

ut + vux = 0

(see Figure 5.2).

x+   xx

x

t tvv

Δ

Δ

ΔΔ

FIGURE 5.2
Differential element of stream, “before” and “after.”

So how do we solve the convection equation? Let’s look at some examples.

Example 1 Find all solutions of the PDE

2ux + 3uy = 0. (5.2)

We’ll try to reduce this equation, via a transformation of the independent
variables, to one which we know how to solve, namely, to (5.1). Let

ξ = x

η = Ax +By
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and let’s choose the constants A and B so that the transformed PDE has no
uη term. We have

ux = uξ +Auη

uy = Buη

and the PDE becomes

2uξ + (2A+ 3B)uη = 0.

We may choose, for example, A = 3 and B = −2, and the transformation

ξ = x
η = 3x− 2y

or
x = ξ
y = 3

2ξ − 1
2η

reduces our PDE to
2uξ = 0.

Integrating by ξ (and treating η as a constant), we have our solution

u = g(η)

= g(3x− 2y), (5.3)

where g is any arbitrary function (with certain restrictions). We can always
check our solution:

ux = 3g′(3x− 2y), uy = −2g′(3x− 2y)

and
2ux + 3uy = 0.

Note that the above implies that g must be differentiable. (We may refer to
(5.3) as the general solution of the PDE.)

First, you should convince yourself that we could have interchanged the
roles of x and y and used a transformation

ξ = Cx+Dy

η = y

to eliminate the uξ term and arrive at the same solution. Now, let’s look more
carefully at the solution. Notice that, for all points on the line 3x − 2y = c,
where c is a given constant, we have

u(x, y) = g(3x− 2y)

= g(c),

that is, u is constant along each of the lines 3x−2y = c. These important lines
are called the characteristics or characteristic curves of the PDE, while ξ
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and η are called characteristic coordinates. (We will give the “official” def-
inition of characteristics in Section 5.2. See Definition 5.1.) Essentially, what
has happened is that the PDE (5.2) has been turned into an ODE “along”
these characteristics (an ODE which, in this particular case, has solution u =
constant along them).

Example 1 (cont.) Continuing with our example, suppose that the PDE is
to be solved subject to the additional condition

u(x, 0) = sinx.

Then,
u(x, 0) = g(3x) = sinx

and, letting z = 3x, x = 1
3z, we have

g(z) = sin

(
1

3
z

)
.

So the unique solution to the system

2ux + 3uy = 0,

u(x, 0) = sinx (5.4)

is

u(x, y) = sin
1

3
(3x− 2y)

= sin

(
x− 2

3
y

)
.

The condition u(x, 0) = sinx is called a side condition or, in the case
where y is replaced by the time variable, t, an initial condition. We shall
use the latter, even when the variable does not necessarily represent time.
Then, the curve along which the condition is given will be called the initial
curve, and the system (5.4) is called an initial-value problem.∗

Looking at Figure 5.3, we see the relationship between the solution in the
transformed coordinates and the actual solution. In the ξ-η plane, u is con-
stant along the characteristic η = constant . To get the graph of the actual
solution, we “tilt and stretch” the latter until they coincide with the lines
3x− 2y = constant .

∗Alternatively, the system often is called a Cauchy problem, after Augustin-Louis Cauchy
(1789–1857), and the initial condition is called the Cauchy data.
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FIGURE 5.3
Characteristics for Example 1 in (a) characteristic coordinates and
(b) Cartesian coordinates.

Also, we have a nice physical interpretation of the solution if we replace y
by the time variable, t. Then, if we take “snapshots” of the solution u(x, t) =
sin

(
x− 2

3 t
)
at various times t0, we see that we can think of our solution as

an initial curve u = sinx which moves to the right at constant velocity. See
Exercise 11. Here, we can see the phenomenon in three dimensions in Figure
5.4, which graphs the solution in x-t-u space.

−10 −5 0 5 10
0

1

2

3

4

5

−6

−4

−2

0

2

4

6

FIGURE 5.4
MATLAB graph of the function u(x, t) = sin

(
x− 2

3 t
)

u(x, t) = sin
(
x− 2

3 t
)

u(x, t) = sin
(
x− 2

3 t
)
, for t ≥ 0t ≥ 0t ≥ 0. We

see that the cross sections t =t =t =constant are copies of the initial shape,
traveling to the right.

More generally, given the first-order, linear PDE

aux + buy + cu = f(x, y), (5.5)
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where a, b and c are constant, we may always proceed as above. We find that
the transformation

ξ = x
η = bx− ay or

x = ξ
y = b

aξ − 1
aη

(for example) reduces the PDE (5.5) to

auξ + cu = F (ξ, η),

where F (ξ, η) is just the function f(x, y) with x and y replaced by x = ξ and
y = b

aξ− 1
aη. Rather than memorizing, let’s apply the basic principle to some

examples.

Example 2 Solve ux − 4uy + u = 0

u(0, y) = cos 3y.

Again, we let

ξ = x

η = Ax +By

and the transformed PDE becomes

uξ + (A− 4B)uη + u = 0.

We may choose A = 4, B = 1, so that

ξ = x

η = 4x+ y

and the PDE becomes

uξ + u = 0.

Its solution is

u = g(η)e−ξ or u = g(4x+ y)e−x,

where g is any function. Then, applying the initial condition, we have

u(0, y) = g(y) = cos 3y,

so our final, unique solution is

u(x, y) = e−x cos 3(4x+ y).

Figure 5.5a shows the graph of u = e−ξ cos 3η. Along each characteristic
η = constant, we have the exponential solution u = e−ξ . constant. Then,
tilting these lines clockwise, and stretching them until they coincide with the
lines 4x+y = constant, gives us the graph of our actual solution in Figure 5.5b.
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FIGURE 5.5
MATLAB graphs of (a) u = e−ξ cos 3ηu = e−ξ cos 3ηu = e−ξ cos 3η and (b) u = e−x cos 3(4x+ y)u = e−x cos 3(4x+ y)u = e−x cos 3(4x+ y).

The initial condition need not be given along one of the coordinate axes.
In fact, as we shall see shortly, it can be given along almost any curve. For
example, the values of our solution u could be given along the curve y = x3,
in which case the side condition would be of the form

u(x, x3) = f1(x)

or

u( 3
√
y, y) = f2(y),

where f1 and f2 are given functions.



170 An Introduction to Partial Differential Equations with MATLAB R©

Example 3 Solve

ux − uy − 2y = 0,

u(x, 2x+ 1) = ex.

We see that the transformation

ξ = x
η = x+ y

or
x = ξ
y = η − ξ

reduces the PDE to
uξ = 2η − 2ξ.

Integrating both sides with respect to ξ, we have

u = 2ξη − ξ2 + g(η),

or

u(x, y) = 2x(x+ y)− x2 + g(x+ y)

= x2 + 2xy + g(x+ y).

Then,
u(x, 2x+ 1) = ex = x2 + 2x(2x+ 1) + g(x+ 2x+ 1),

so
g(3x+ 1) = ex − 6x2 − 2x.

Letting z = 3x+ 1, x = z−1
3 , we have

g(z) = e
z−1
3 − 6

(
z − 1

3

)2

− 2

(
z − 1

3

)
,

and our solution becomes

u(x, y) = x2 + 2xy + e
x+y−1

3 − 6

(
x+ y − 1

3

)2

− 2

(
x+ y − 1

3

)
.

Example 4 Solve

ux − uy − u = 0,

u(x,−x) = sinx.

As in Example 3, we use the transformation

ξ = x,
η = x+ y,

or
x = ξ,
y = η − ξ

to reduce the PDE to
uξ − u = 0.
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The solution is

u = g(η)eξ

= g(x+ y)ex.

Then,

u(x,−x) = sinx = g(0)ex.

But g(0) is a constant. Rather than determining g, the initial condition seems
to require that sinx be a multiple of ex for all x, which is impossible (why?).
Therefore, it seems that this problem has no solution. Why did this happen?

Notice that the characteristic curves are the lines x + y = constant. Also,
notice that the initial condition is given along the line y = −x, which happens
to be a characteristic of the PDE.

Basically, what’s going on is this. As mentioned before, the PDE becomes
a first-order ODE along each of the characteristic curves. In order to have a
unique solution, the initial condition must specify the value of u at exactly
one point on each of these characteristics. Therefore, it seems that the curve
along which the side condition u is given must intersect each characteristic at
exactly one point. This, indeed, is the case. We state the following theorem
without proof.

Theorem 5.1 Given the initial-value problem

aux + buy + cu = f(x, y)

u(x, f1(x)) = f2(x),

where a, b and c are constant, suppose that

1) fx, fy, f
′
1 and f ′

2 are continuous.

2) Each characteristic of the PDE intersects the initial curve y = f1(x)
exactly once.

3) No characteristic is tangent to the initial curve.

Then, the initial-value problem has a unique solution u, with the property that
ux and uy are continuous.

Note that, by interchanging the roles of x and y, the theorem is also true for
initial conditions of the form u(f1(y), y) = f2(y). Further, it is easy to gener-
alize the theorem to include parametric initial curves which are continuously
differentiable.

We generalize the convection equation in Exercise 18.
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Exercises 5.1

In Exercises 1–10, first find all possible solutions of the PDE, and check your
answer. Then, solve the initial-value problem, and check your answer, or say
why the initial-value problem cannot be solved.

1. 5ux − 7uy = 0, u(x, 0) = 4 sin 5x

2. 3ux + uy = 0, u(4, y) = e−y2

3. ux − 2uy = 0, u(x,−2x+ 4) = x2 + 3x− 1

4. −2ux + 6uy = 0, u(4y, y) = 2y + 1

5. ux − uy + 2u = 0, u(x, 3) = x2

6. 2ux + uy − 5u = 0, u(y2, y) = 3(−y2 + 2y)e
5y2

2

7. 2ux + uy = 12x(1 + y), u(x,−1) = 4x

8. ux + 4uy − 2u = ex+y, u(x, 0) = cosx

9. ux + uy + u = y, u(0, y) = sin y

10. 4ux − 3uy + 5u = 0, u
(− 4

3y, y
)
= 1

1+y2

11. In the remarks following Example 1, it is mentioned that the solution
u(x, t) = sin

(
x− 2

3 t
)
can be viewed as a sine wave moving to the right

at constant speed. Why is this so? What is this speed?

12. MATLAB: Plot the solution, in x-y-u space, of the given problem.

a) Exercise 2

b) Exercise 5

c) Exercise 9

13. MATLAB: Plot snapshots of the solution in the x-u plane, for various
versions of t, for the given problem. In each case, what is the velocity
of the moving wave?

a) Exercise 1 (first, change x to t and y to x)

b) Exercise 2 (change x to t and y to x)

c) Exercise 5 (change y to t)

d) Exercise 9 (change x to t and y to x)

14. If we solve the PDE ux − uy + u = 0, we get u = g(x + y)e−x, for
arbitrary g. However, if, instead, we let ξ = Ax + By and η = y and
solve, we get u = g(x+ y)ey. What’s going on?



Characteristics 173

In Exercises 15 and 16, solve each initial-value problem two ways. First,
solve each as we’ve been doing; then, transform both the PDE and the initial
condition in terms of ξ and η; solve that problem; and substitute back. (Make
sure you get the same answer!) Hint: When using the second method, it may
help to rename u, i.e., write u(x, y) = v(ξ, η) and work with v.

15. ux − uy = 0, u(x, 3x) = x2

16. ux + uy = u, u(x, x3) = 5(x− x3)ex

17. Solve the initial-value problem ux−uy = 0, u(x, x3−x) = x2. Where is
the solution not differentiable? Why does this example not contradict
Theorem 5.1?

18. a) In the derivation of the convection equation, suppose that the ve-
locity of the stream depends on position, that is, that v = v(x).
Show that the PDE becomes

ut + v(x)ux = 0.

b) If, in addition, there is a source of pollutant of the form

f(x, t) = amount added at point x at time t,

per unit length per unit time,

show that we get the nonhomogeneous equation

ut + v(x)ux = f(x, t).

19. In Example 1, we solved 2ux + 3uy = 0 using the transformation

ξ = x η = 3x− 2y.

Solve this same equation using various other transformations

ξ = Ax+By η = 3x− 2y.

Which transformations “don’t work,” that is, for which values of A and
B are we unable to solve the problem?

20. a) Solve the problem

aux + buy = 0 x > 0, y > 0,

u(x, 0) = f(x), x ≥ 0,

u(0, y) = g(y), y ≥ 0,

where a > 0 and b > 0 are constants, and where f(0) = g(0).

Hint: Follow the characteristics.



174 An Introduction to Partial Differential Equations with MATLAB R©

b) Solve the problem

ux − uy = u, x > 0, y > 0,

u(x, 0) = sin 2x, x ≥ 0,

u(0, y) = sin 3y, y ≥ 0.

5.2 First-Order PDEs with Variable Coefficients

In Exercise 18 of the previous section, we derived the more general version of
the convection equation

ut + v(x)ux = f(x, t).

Can we extend the method of Section 5.1 to deal with equations where the
coefficients are not all constant? Let’s see.

Example 1 Try to solve ux + yuy = 0.
We let

ξ = x

η = Ax +By

and the uη coefficient becomes A + By. However, it is impossible to choose
constants A and B which will make A + By = 0 for all y (why?). We meet
with a similar fate if we try

ξ = Ax +By

η = y.

What can we do?
In the previous section, our transformation was chosen so that the charac-

teristics were the curves η = constant . This suggests that we try the same
thing for equations with variable coefficients. The obvious question, then, is,
“What are the characteristics?”

Remember that the characteristics were curves along which the PDE could
be treated as an ODE. Let’s go back to Example 1 of Section 5.1 and see if
we can look at that problem in a different way.

Example 2 2ux + 3uy = 0.
Notice that we can write this equation as

(2ı̂+ 3ĵ) · (ux ı̂+ uy ĵ) = 0



Characteristics 175

or

(2ı̂+ 3ĵ) · grad u = 0.

The left side of the PDE is just a constant multiple of the directional deriva-
tive, du

ds , of u, in the direction 2ı̂+ 3ĵ, so the PDE says that

du

ds
= 0

in this direction. More precisely, u is constant along curves which have tangent
vector 2ı̂+ 3ĵ at each point, i.e., along curves with slope

dy

dx
=

3

2
.

These curves are, of course, the characteristics

y =
3

2
x+ c.

Therefore, the value of u at any point (x, y) depends only on the characteristic
on which (x, y) lies; in other words, u depends only on the value of 3

2x − y,
i.e.,

u = g

(
3

2
x− y

)

for any arbitrary function g. Notice that this says the same thing as does
equation (5.3).

This approach is a nice geometric way of looking at the problem. However,
it may seem somewhat ad hoc, and it may not be clear how it generalizes to
equations with more terms. For example, what, exactly, does an equation like

du

ds
+ u = 0

mean, since we expect PDEs to have at least two independent variables?
We will recast this geometric method slightly, so that it looks like what

we have been doing in Section 5.1. To that end, remember, again, that we
chose the transformation so that the characteristics were given by η = c in the
transformed coordinates. We shall make the same choice for η in equations
with variable coefficients, and we shall see that ξ plays a role similar to that
of the arc length variable s in the notation for the directional derivative of u.

Example 3 Find all solutions of ux+4xuy−u = 0. Again, the term ux+4xuy
is the directional derivative of u in the direction of the vector ı̂ + 4xĵ. We
expect curves with this vector as tangent vectors to be the characteristics.
They satisfy

dy

dx
=

4x

1
,
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so the characteristics are the curves

y = 2x2 + c or 2x2 − y = constant .

Now, let

ξ = x
η = 2x2 − y or

x = ξ
y = 2ξ2 − η.

Then

ux = uξ + 4xuη

uy = −uη

and the transformed PDE is

uξ − u = 0

with solution

u = g(η)eξ

= g(2x2 − y)ex

for arbitrary function g. So the curves 2x2− y = c are, indeed, characteristic.

More precisely, given the first-order linear PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y),

we define the characteristic curves to be those curves satisfying

dy

dx
=
b(x, y)

a(x, y)

or, as is traditionally written,

dx

a(x, y)
=

dy

b(x, y)
. (5.6)

Definition 5.1 The characteristics or characteristic curves of the first-
order linear PDE

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y)

are those curves satisfying the ODE

dx

a(x, y)
=

dy

b(x, y)
.
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Then, supposing that the ODE (5.6) has general solution h(x, y) = c, we
make the transformation

ξ = x

η = h(x, y).

In this case, we have

ux = uξ + uηhx

uy = uηhy

and
aux + buy = auξ + (ahx + bhy)uη.

But

dx

a
=
dy

b
⇒ h(x, y) = c

⇒ dh = 0 = hx dx+ hy dy

= dx

(
hx + hy

dy

dx

)

= dx

(
hx + hy

b

a

)

=
dx

a
(ahx + bhy)

and we have
aux + buy = auξ,

so the PDE has been reduced to an ODE.
We haven’t been very rigorous here. For example, what happens at points

where a = 0 or b = 0? Theorem 5.1 can be extended somewhat to the case
of variable coefficients.† It turns out that a necessary condition for existence
and uniqueness of a solution throughout a neighborhood of a point is that
a �= 0 or b �= 0 at that point.

Example 4 Solve

ux + yuy = x,

u(1, y) = cos y.

The characteristics are given by

dx

1
=
dy

y

†See, e.g., Introduction to Partial Differential Equations with Applications by E. C. Zach-
manoglou and Dale W. Thoe.
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with solution
y = cex or ye−x = c.

Then, our transformation is

ξ = x,
η = ye−x,

or
x = ξ,
y = ηeξ

and our PDE becomes
uξ = ξ

with solution

u =
ξ2

2
+ g(η),

=
x2

2
+ g(ye−x).

Finally,

u(1, y) = cos y =
1

2
+ g(ye−1),

and, letting z = y
e , y = ez, we get

g(z) = cos ez − 1

2
.

Therefore, our unique solution is

u =
x2

2
+ cos(ye1−x)− 1

2
.

Exercises 5.2

In Exercises 1–6, first find all possible solutions of the PDE, and check your
answer. Then, solve the initial-value problem, and check your answer. Also,
sketch the initial curve and some of the characteristics.

1. yux − xuy = 0, u(x, 2x) = x4

2. (1 + x2)ux + uy = 0, u(1, y) = cos y

3. ux + 3x2uy = 0, u(0, y) = sin 3y

4. (1 + y2)ux + uy = 0, u(x, 0) = e−x2

5. ux + 3x2uy − u = 0, u(2, y) = 3y + 1

6. ux + xuy = x2y, u
(
x, 2x+ x2

2

)
= 5x

7. MATLAB: Plot the solution of the given problem in x-y-u space. On
a separate graph, plot some of the characteristic curves.
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a) Exercise 1

b) Exercise 3

8. Solve the problem ut+xux = 0, u(x, 0) = sinx; draw the characteristics
in the x-t plane (the first quadrant will suffice); and compare the solution
with the solution of ut + vux = 0, u(x, 0) = sinx, where v is a constant.
Specifically, describe what happens to the initial sine wave in both cases.

We may extend the methods of Sections 5.1 and 5.2 to equations in higher
dimensions. For example, for the PDE

aux + buy + cuz + du = f,

where a, b, c, d and f are functions of x, y and z, it can be shown that the
characteristics can be determined by the three ODEs (one of which is redun-
dant)

dx

a
=
dy

b
=
dz

c
.

More precisely, solving any two of the ODEs gives us two families of surfaces,
the intersections of which give the characteristic curves. This suggests solving,
say, dx

a = dy
b , resulting in h1(x, y) = c, and dx

a = dz
c , resulting in h2(x, z) = c2,

and transforming via the characteristic coordinates

ξ = x

η = h1(x, y)

ζ = h2(x, z).

Use this method to solve the following PDEs, making sure to check your
answers, then solve each initial value problem, again checking your answers.

9. ux + 2uy + 3uz = 0, u(x, y, 0) = xy

10. 5ux − 3uy + uz = 0, u(1, y, z) = y cos z

11. ux + 3x2uy − uz = 0, u(x, 0, z) = x4 + x3z

12. 2ux + uy − 4uz = 0, u(x, y, 0) = y

An important type of first-order PDE in physical applications is the equation

a(x, y, u)ux + b(x, y, u)uy = c(x, y, u).

This equation is, of course, nonlinear, but it is linear in the derivatives ux
and uy. It is called a quasi-linear equation. A class of quasi-linear equations
which describe certain conservation laws consists of PDEs of the form

ut +
∂

∂x
[F (u)] = ut + f(u)ux = 0,
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where F is a given function with F ′ = f . Lagrange, in the late 1700s, de-
vised a method of transforming the general quasi-linear equation into a linear
PDE involving three independent variables. Instead, we will solve the simpler
conservation equation as a special case. In fact, it can be shown that the
characteristic equations are given by

dt

1
=

dx

f(u)
,

where u is treated formally as a constant.

13. a) Given Burger’s equation from the study of gas dynamics,

ut + uux = 0,

u(x, 0) = g(x),

show that the characteristics actually must be the straight lines

x− tg(x0) = x0,

that is, show that the solution is constant along these lines.

b) Using part (a), and given the Burger’s problem

ut + uux = 0,

u(x, 0) = 2x,

(a rather unrealistic initial condition!), compute u(6, 8), u(0, 5).

c) More generally, what is u(x, t) for any point (x, t)?

Note that the characteristics do not intersect each other in this partic-
ular example. They will for “most” functions g(x), in which case life
becomes more complicated (specifically, the solution develops what we
call shock waves, or just shocks).

5.3 The Infinite String

We have solved first-order equations by considering curves along which the
PDE and its solutions have certain nice properties. The obvious question now
is whether we can extend this idea of characteristics to higher order equations.

To this end, let’s look at how d’Alembert cleverly solved the wave equation
for an infinitely long string. The well-posed system for the infinite string is

utt = c2uxx, −∞ < x <∞, t > 0, (5.7)

u(x, 0) = f(x), (5.8)

ut(x, 0) = g(x), (5.9)
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where each term has the same meaning as in Chapter 3. There are no bound-
ary conditions, as we are supposing the string to have infinite length. (How-
ever, it turns out that we do need certain “conditions at infinity.” We’ll say
more, later.)

D’Alembert suggested the following change in coordinates:

ξ = x+ ct

η = x− ct,
in which case we have (see Exercise 1)

utt = c2(uξξ − 2uξη + uηη)

uxx = uξξ + 2uξη + uηη.

The PDE in the transformed coordinates becomes

uξη = 0, (5.10)

which can be solved by integrating twice! Doing so leads to

u = φ(ξ) + ψ(η) (5.11)

= φ(x + ct) + ψ(x− ct),
where φ and ψ are arbitrary functions (again, with certain restrictions).

Now, if we choose ψ ≡ 0, we have that

u = φ(x+ ct)

is a solution for any φ. These solutions, of course, will be constant along the
lines

x+ ct = constant ,

so that these lines behave very much like the characteristics we have already
met. Similarly, if φ ≡ 0, our solutions are constant along the lines

x− ct = constant .

We call these lines the characteristics for the wave equation. Of course,
if neither φ nor ψ is the zero-function, we do not expect the solution to be
constant along the characteristics.

Before we finish solving the initial-value problem and looking more closely
at the characteristics, let’s look at the physical interpretation of our solution.

Suppose, first, that φ ≡ 0. Then, again, we have the solution

u = ψ(x − ct).
Further, suppose the initial shape u(x, 0) = ψ(x) has the graph given in
Figure 5.6a, and let x = x0 be the point where the “hump” is, initially. What
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will the shape be at any time t > 0? For starters, consider what happens
at time t = 1, when the shape is u(x, 1) = ψ(x − c). As can be seen in
Figure 5.6b, this is just the initial curve shifted c units to the right. More
generally, u(x, t0) = ψ(x − ct0) is the initial curve moved ct0 units to the
right. Therefore, our solution represents a wave whose shape is unchanged
and which moves to the right with velocity c. (Compare with Exercise 11 in
Section 5.1.)

u

x
x

0 0

ψ(b)  u(x,1) =    (x−c)

x 0

(a)  u(x,0) =    (x)ψ

u

x
x   + c

FIGURE 5.6
Hump moves to the right at velocity ccc.

Similarly, u = φ(x + ct) is a wave moving to the left with velocity c. It is
this physical interpretation that gives the wave equation its name.

Finally, let’s apply the initial conditions. Equation (5.8) becomes

u(x, 0) = f(x) = φ(x) + ψ(x). (5.12)

As for (5.9), we need to calculate ut first. Using the chain rule, we have

ut = cφ′(x+ ct)− cψ′(x − ct),
and (5.9) becomes

ut(x, 0) = g(x) = cφ′(x)− cψ′(x).

We must solve for φ and ψ in terms of f and g. Therefore, we first differ-
entiate (5.12) with respect to x, and we solve

f ′(x) = φ′(x) + ψ′(x)
g(x) = cφ′(x)− cψ′(x).

With a little algebra, we get

φ′(x) =
1

2
f ′(x) +

1

2c
g(x)

ψ′(x) =
1

2
f ′(x) − 1

2c
g(x),
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and, upon integrating, we have

φ(x) =
1

2
f(x) +

1

2c

∫ x

0

g(z)dz + c1 (5.13)

ψ(x) =
1

2
f(x)− 1

2c

∫ x

0

g(z)dz + c2.

(Remember that the Fundamental Theorem of Calculus says that

d

dx

∫ x

a

g(z)dz = g(x)

for any constant a. We choose a = 0 for the sake of convenience.) Are c1 and
c2 arbitrary constants? Well, (5.12) and (5.13) say that

f(x) = φ(x) + ψ(x)

=
1

2
f(x) +

1

2c

∫ x

0

g(z)dz + c1 +
1

2
f(x)− 1

2c

∫ x

0

g(z)dz + c2

= f(x) + c1 + c2,

so we must have
c1 + c2 = 0.

Our solution, then, is

u = φ(x+ ct) + ψ(x− ct)

=
1

2
f(x+ ct) +

1

2c

∫ x+ct

0

g(z)dz +
1

2
f(x− ct)− 1

2c

∫ x−ct

0

g(z)dz

or

u =
1

2
[f(x+ ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct

g(z)dz. (5.14)

We can check this function to show that it does, indeed, satisfy the original
system (see Exercise 2).

Example 1 Solve

utt = 5uxx,

u(x, 0) = sinx,

ut(x, 0) = sin 3x.

We have

u =
1

2
[sin(x+

√
5t) + sin(x−

√
5t)] +

1

10

∫ x+
√
5t

x−√
5t

sin 3z dz

=
1

2
[sin(x+

√
5t) + sin(x−

√
5t)]− 1

30
cos 3z

∣∣∣z=x+
√
5t

z=x−√
5t

=
1

2
[sin(x+

√
5t)− sin(x−

√
5t)]− 1

30
[cos 3(x+

√
5t)− cos 3(x−

√
5t)].
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Example 2 Let’s look graphically at the solution of

utt = uxx,

u(x, 0) = f(x),

ut(x, 0) = 0,

where

f(x) =

{
2, if −3 ≤ x ≤ 3,

0, if |x| > 3,

for various times t. Note that the function f(x) is known as a square wave
(although maybe it should be called a rectangular wave!). Of course, a real
string can only approximate such a shape; however, square waves are very
important in many wave phenomena, in fields like electronics and acoustics.
Also, this system technically does not have a solution, since f ′ (and, therefore,
f ′′) does not exist at x = ±3. However, d’Alembert’s solution still “works,”
and the square wave makes it easy to see what’s going on in these problems.

Now, our solution is

u =
1

2
[f(x+ t) + f(x− t)].

Therefore, at any time t, the graph of u is the superposition of two identical
waves, one shifted t units to the right, the other shifted t units to the left,
and each a copy of the initial shape but half its height. So, for example, we
have (see Figure 5.7)

t = 0: u(x, 0) = f(x),

t = 1: u(x, 1) =
1

2
[f(x+ 1) + f(x− 1)],

t = 2: u(x, 2) =
1

2
[f(x+ 1) + f(x− 2)],

t = 3: u(x, 3) =
1

2
[f(x+ 3) + f(x− 3)],

t = 4: u(x, 4) =
1

2
[f(x+ 4) + f(x− 4)]

and, by this point in time, we clearly see that the initial shape has broken
into two half-waves, traveling in opposite directions. We continue this example
below.
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(b)  t=1

(a)  t=0

(c)  t=2

(d)  t=3

(e)  t=4

FIGURE 5.7
Breaking up of square wave into two half-waves, traveling in oppo-
site directions.

Now let’s look more carefully at the characteristic curves. We ask the
following question: How do the initial conditions affect the solution at points
(x0, t0), where t0 > 0? We will treat u(x, 0) and ut(x, 0) separately (more
precisely, we know that we may deal with the initial conditions

u(x, 0) = f(x),

ut(x, 0) = 0

and

u(x, 0) = 0,

ut(x, 0) = g(x)

separately because of the principle of superposition).
The contribution of f to our solution u gives us

u(x0, t0) =
1

2
[f(x0 + ct0) + f(x0 − ct0)]

=
1

2
[u(x0 + ct0, 0) + u(x0 − ct0, 0)].
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In other words, the value of u(x0, t0) depends only on the values of f at
x = x0 − ct0 and x = x0 + ct0. We have a nice geometrical interpretation of
this fact in Figure 5.8a. There are two characteristics which pass through the
point (x0, t0), and these intersect the initial line t = 0 at the above-mentioned
x-values. We can think of the initial disturbance of the string at these
points as propagating “along” the characteristics to the point (x0, t0),
with velocity c.

From g(x), we have

u(x0, t0) =
1

2c

∫ x0+ct0

x0−ct0

g(z)dz,

which tells us that the solution u(x0, t0) depends on the values of g along the
interval x0 − ct0 ≤ x ≤ x0 + ct0. This fact is illustrated in Figure 5.8b.

x   −ct00 0

t t
(x   ,t   )0 0

x

interval of dependence

(x   ,t   )0 0

x
x   +ct

0x+ct=x  +ct0

0
0

(a)  characteristics through (x  ,t  )
(b)  interval of dependence for (x  ,t  )

0
0

x−ct=x   −ct0

0

0

FIGURE 5.8
The characteristics and interval of dependence of the point (x0, t0)(x0, t0)(x0, t0).

This interval often is called the interval of dependence or domain of
dependence of the point (x0, t0). More generally, though, we may think of
all points in the triangle in Figure 5.9 as having an effect on the solution at
(x0, t0). That is why this whole triangle, and not just its base, is sometimes
referred to as the domain of dependence.
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0 0x   −ct

dependence

domain
of

(x   ,t   )0 0

influence

region
of 

t

x

0x   +ct

0 0x−ct=x  −ct

 0

x+ct=x  +ct0  0

FIGURE 5.9
Domain of dependence and region of influence of the point (x0, t0)(x0, t0)(x0, t0).

With the latter idea in mind, we may turn the question around and ask,
instead, at which points (x, t) is the solution affected by what has “happened”
at the point (x0, t0)? Of course, (x, t) will be such a point if and only if (x0, t0)
is in the domain of dependence of (x, t). Therefore, this region of influence
of the point (x0, t0) will consist of the (infinite) region in Figure 5.9.

Example 2 (cont.) Let’s go back to Example 2, and use these ideas to
get a different look at our solution. Indeed, we see that we may represent
our solution in the x-t plane as given below. In Figure 5.10, we take three
representative points and use the characteristics and initial data to show that

u(x0, t0) =
1

2
[f(x0 + ct0) + f(x0 − ct0)] = 2,

u(x1, t1) = 1,

and

u(x2, t2) = 0.
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x

t

3−3

 1

 2

 0

x  − t x  − t x  +t x  + t
2 2

x  +t
1 1 0 0 2  211

x  − t
0 0

(x  ,t  )

(x  ,t  )

(x  ,t  )

1

0

2

FIGURE 5.10
Graphical solution of Example 2.

Then, using these ideas, we see in Figure 5.11 a graphical solution of the
problem on its domain. We leave the case where the initial velocity is a
square wave to Exercise 13.

So we have shown that a solution of the wave equation can be thought of as
a superposition of two waves (5.11) traveling in opposite directions, each with
velocity c. That they do not interfere with each other is implicit in (5.11)—we
say that the waves do not scatter each other. This is a consequence of the
fact that the equation is linear.

t

3−3
x

x+t = −3

x+t = 3

x−
t =

 −
3

u = 0

u = 2

u = 0

u = 0

u = 1u = 1 x−
t =

 3

FIGURE 5.11
Complete graphical solution of Example 2.
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Also, these waves—and all disturbances—travel at the same speed. This
need not be the case for linear PDEs with wave solutions. When wave so-
lutions move at different speeds, the PDE is said to exhibit the property of
dispersion. (See Exercise 14.)

Exercises 5.3

1. Carry through the computations that transform PDE (5.7) into (5.10).

2. Show that the function u given by (5.14) does, indeed, satisfy equations
(5.7), (5.8) and (5.9).
In Exercises 3 and 4, find the solution of

utt = c2uxx, −∞ < x < −∞,
u(x, 0) = f(x),

ut(x, 0) = g(x),

where c, f and g are given by

3. c = 1, f(x) = 3e−x2

, g(x) = 0

4. c = 3, f(x) = 0, g(x) = xe−x2

In Exercises 5–7,

a) Graph, by hand, snapshots of the solution in the x-u plane, for
various times t, as in Example 2.

b) MATLAB: Plot the solution in x-t-u space—make sure you can
see the “characteristic directions.”

5. Use f(x) = 3e−x2

.

6. Use

f(x) =

{
|4− x|, if −4 ≤ x ≤ 4,

0, if |x| > 4.

7. Use

f(x) =

⎧⎪⎨
⎪⎩
2, if −4 ≤ x ≤ 0,

3, if 4 ≤ x ≤ 8,

0, otherwise.

8. a) Show that if f(x) and g(x) are both even, then the solution (5.14)
also is even.

b) Show that if f(x) and g(x) are both odd, then the solution (5.14)
also is odd.

In Exercises 9 and 10, find and sketch the (triangular) domain of de-
pendence and the region of influence of the given point (x0, t0) for the
given PDE.
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9. utt = 4uxx, (x0, t0) = (5, 4)

10. utt = 3uxx, (x0, t0) = (0, 5)

11. For the problem in Example 2, use only characteristics to find the fol-
lowing: u(0, 2), u(0, 4), u(5, 5), u(10, 6), u(−5, 3). See Figure 5.10. By
the way, again, notice that, in those cases where ut(x, 0) = 0, the value
of u(x0, t0) depends only on the values of u along the two characteristics
containing (x0, t0). This means that a disturbance at some point on the
string arrives at, and leaves from, the point x = x0 instantaneously. In
this particular example, a square wave hits the point x = x0, moves
through it and leaves as sharply as it arrived—we say that it has sharp
leading and trailing edges. When all disturbances propagate in this
manner, the system is said to satisfy Huygens’s‡ Principle.

12. We wish to show that Huygens’s Principle is not satisfied when ut(x, 0) is
not the zero-function. Specifically, consider the problem in Example 2,
but with f(x) and g(x) interchanged. Show that the solution u is as
given in Figure 5.12, and then describe what the graph of u looks like
for various times t.

t

3−3
x

x+t = 3
x−

t =
 −
3

u = 0x−
t =

 3

u = 2tu = 0

u = −x+t+3

u = 6

u = x+t+3

x+t = −3

FIGURE 5.12
Graphical solution of the problem in Exercise 12.

‡Named after Christiaan Huygens (1629–1695), famous Dutch scientist and contemporary
of Newton.
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13. Green’s Theorem and the nonhomogeneous wave equation:
There’s another, elegant method for deriving d’Alembert’s solution for
the infinite string, a method which can be extended to solve the nonho-
mogeneous equation, as well. Suppose that we’re given the problem

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

a) Integrate both sides of the PDE over any simple closed region D
in the upper half of the x-t plane, then use Green’s Theorem to
conclude that we must have∮

∂D

(c2ux dt+ ux dx),

where ∂D is the boundary of D with positive (counterclockwise)
orientation.

Now, which region D will do something for us? Given a point
(x0, t0), it seems the most logical choice would be the domain of
dependence (or characteristic triangle or past history) of (x0, t0),
given in Figure 5.9.

b) Show that the line integral on the bottom line segment gives us

∫
c1

(c2ux dt+ ut dx) =

∫ x0+ct0

x0−ct0

g(z)dz.

c) Parametrize c2 as

t = t,

x = x0 + ct0 − ct, 0 ≤ t ≤ t0,
to show that∫

c2

(c2ux dt+ ut dx) = cu(x0, t0)− cf(x0 + ct0).

d) Similarly, show that

∫
c3

(c2ux dt+ ut dx) = cu(x0, t0)− cf(x0 − ct0),

and conclude that we, indeed, end up with d’Alembert’s formula
for the solution u(x0, t0).
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e) Proceed similarly to show that the solution of the nonhomogeneous
problem

utt = c2uxx + F (x, t), −∞ < x <∞, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x)

is

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct

g(z)dz

+
1

2c

∫∫
D

F (x, t)dxdt,

where, again, D is the domain of dependence of the point (x, t).

14. a) Find all solutions of the wave equation of the form sin(κx−ωt) and
cos(κx−ωt), then use this information to find all complex solutions
of the form ei(κx−ωt), where κ and ω are constants (remember
Euler’s formula: eiθ = cos θ + i sin θ). The number κ is called
the wave number of such a solution, while ω is called its angular
frequency. Show that, regardless of the wave number κ, these
solutions all travel at velocity c.

b) Remember the Euler–Bernoulli beam equation

utt + uxxxx = 0.

Find all solutions of this equation of the form ei(κx−ωt). What is
the velocity of a solution with given wave number κ? (Solutions of
this PDE exhibit dispersion, and we say that the Euler–Bernoulli
beam equation is a dispersive equation.)

5.4 Characteristics for Semi-Infinite and
Finite String Problems

Now let’s see how characteristics relate to the wave equation on more restricted
intervals. We begin with the interval x ≥ 0.
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SEMI-INFINITE STRING

We would like to solve

utt = c2uxx, x > 0, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(0, t) = 0

and, proceeding as in the previous section, we arrive at the same solution so
long as x− ct ≥ 0. So if x0 ≥ ct0, we have

u(x0, t0) =
1

2
[f(x0 + ct0) + f(x0 − ct0)]

+
1

2c

∫ x0+ct0

x0−ct0

g(z)dz,

and the domain of dependence is the same as earlier. The problem arises, of
course, if x0 < ct0, as f(x) and g(x) are not defined for x < 0. In that case,
we need to do something with the term ψ(x−ct) in (5.11). Now, note that we
still have the boundary condition at our disposal. So, using (5.11), we have

u(0, t) = φ(ct) + ψ(−ct) = 0 for all t ≥ 0,

on
ψ(z) = −φ(−z) for all z < 0.

Then, from (5.13),

ψ(x0 − ct0) = −φ(ct0 − x0)

= −1

2
f(ct0 − x0)− 1

2c

∫ ct0−x0

0

g(z)dz

and, combining, we have

u(x0, t0) =
1

2
[f(x0 + ct0)− f(ct0 − x0)]

+
1

2c

∫ x0+ct0

ct0−x0

g(z)dz, x0 < ct0.

We see that the solution depends on the initial interval ct0 − x0 ≤ x ≤
x0 + ct0. In the x-t plane, we see that the characteristic

x− ct = x0 − ct0
comes about via a reflection of the characteristic

x+ ct = ct0 − x0
against the t-axis. The two-dimensional domain of dependence no longer is a
triangle, as can be seen in Figure 5.13. Further, the region of influence of any
point (x0, t0) is no longer a triangle (see Figure 5.14).
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t

ct  −x

c

0

ct   −x
t =

0

x
x  +ct0

0

 0  (x   ,t  )

0

0

x−ct = x  −ct0

of
domain 

dependence

0x+ct = ct  −x

x+ct = x +ct0

 0

 0

  0

 0

FIGURE 5.13
Domain of dependence for the semi-infinite string, for a point (x0, t0)(x0, t0)(x0, t0)
“above” the line x = ctx = ctx = ct.

t

x

t =
x  +ct0

x+ct = x  +ct 0 0

    of
region

influence

x−ct = −x  −ct

 0

0

x−ct = x −ct
c

 0       0

   0       0

(x   ,t  )   0

FIGURE 5.14
Region of influence for the semi-infinite string, for any point (x0, t0)(x0, t0)(x0, t0).

It’s interesting to see that the word reflection is no misnomer, as the initial
disturbance actually does reflect at the boundary. We look closely at this
phenomenon in Exercises 4 and 5.
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Example 1 Let’s look at an analog of the problem in Example 2 of the
previous section,

utt = uxx, x > 0, t > 0,

u(x, 0) =

{
2, if 2 ≤ x ≤ 3,

0, otherwise,

ut(x, 0) = 0,

u(0, t) = 0.

We follow the characteristics and their reflections and arrive at the x-t repre-
sentation of the solution given in Figure 5.15. To be sure, look at the shaded
region. Here, we have x < t and

2 < x+ t < 3,

2 < t− x < 3,

so the solution at any point here is

u(x, t) =
1

2
[f(x+ t)− f(t− x)]

=
1

2
(2 − 2).

t

2
x

2

3

3

u=0

x−t = −3

x+t = 3

u = 0

u = 1

u = 0 u = 2

u = 1

u = 0

x−t = 2

u = −1

x−t = −2

x+t = 2

x−t = 3

FIGURE 5.15
Graphical solution of the problem in Example 1.

Before moving on, we mention that there’s a more elegant approach to
problems on semi-infinite intervals—the so-called method of images, which
we deal with in Exercises 10 and 11.
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FINITE STRING

We can extend this principle of reflection to a finite string easily enough.
Consider the problem

utt = c2uxx, 0 < x < L,

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(0, t) = u(L, t) = 0.

Here, now, the original d’Alembert’s solution is only good for those points
(x0, t0) for which

0 ≤ x0 + ct0 ≤ L
and

0 ≤ x0 − ct0 ≤ L,
and we must reflect the characteristics at both boundaries in order to find the
solution elsewhere. Let’s begin by looking at a point (x0, t0) situated as in
Figure 5.16. We see that

0 ≤ x0 − ct0 ≤ L,
but

L ≤ x0 + ct0 ≤ 2L.

2L

x

t

x = L

L,  0 0

x+ct = x  +ct
0

0

 0        0x   + ctx   − ct  0              0      

0

0

x−
ct 

= 
x 
  −

 ct

0

x−
ct 

= 
2L
−x

  −
 ct

 0

2L−x   − ct  0         0

c

x  +ct   − L
 0    0(x   ,t   )

FIGURE 5.16
Reflection of characteristic for the finite string.

Therefore, we use u(L, t) = 0 to give us

φ(L + ct) + ψ(L− ct) = 0

or
φ(z) = −ψ(2L− z) for L ≤ z ≤ 2L (why?).
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So we have

u(x0, t0) = φ(x0 + ct0) + ψ(x0 − ct0)
= −ψ(2L− x0 − ct0) + ψ(x0 − ct0)
=

1

2
[f(x0 − ct0)− f(2L− x0 − ct0)]

+
1

2c

∫ 2L−x0−ct0

x0−ct0

g(z)dz.

Now, let’s take a point that requires two reflections. Here, we must bounce
off both ends; since x0 − ct0 < 0, while x0 + ct0 > L, we use

ψ(z) = −φ(−z), −L ≤ z ≤ 0

and
φ(z) = ψ(2L− z), L ≤ z ≤ 2L

in order to write

u(x0, t0) = φ(x0 + ct0) + ψ(x0 − ct0)
= −ψ(2L− x0 − ct0)− φ(ct0 − x0)
= −1

2
[f(ct0 − x0) + f(2L− x0 − ct0)]

+
1

2c

∫ 2L−x0−ct0

ct0−x0

g(z)dz.

Figure 5.17 shows the domain of dependence of the point (x0, t0) (although
we need not always have ct0 − x0 < 2L− x0 − ct0, as we do in this particular
case).

t

2L

x

dependence
of 

domain 

L

x  −ct ct  −x 2L−x  −ct x  +ct0 0 0 00 0 0 0

(x   , t  ) 0     0

FIGURE 5.17
Reflection of two characteristics for the finite string.

We may, of course, continue the process indefinitely. In order to get a simple
picture of what’s going on, let’s look at the following example.
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Example 2 Suppose that we have the problem

utt = uxx, 0 < x < 3, t > 0,

ut(x, 0) = 0,

u(0, t) = u(3, t) = 0,

where the initial shape u(x, 0) is given by a “point-impulse” of “magnitude
2” at x = 1. (These ideas will be made more precise in Section 6.5, where
we introduce the Dirac delta function, δ(x). Then, this initial shape would
be written as u(x, 0) = 2δ(x − 1).) We should then have two pulses, each
of magnitude 1, traveling in opposite directions from the point x = 1. In
the x-t plane, each disturbance travels along a characteristic and, as earlier,
each undergoes a change of sign as it reflects off either boundary. Thus, the
solution will be u = 0 everywhere except along the characteristics x ± t =
constant, with values as given in Figure 5.18.

We investigate more complicated problems in the exercises.

1 2 3

u = 0

x

u = −2

u = 0

u = 0

t

yu=−1

u=1

u=1

u=−1

u=1
u=1

u=−1

u=−1

u=1 u=1

u=−1

u=2

u = 0

u = 0

FIGURE 5.18
Graphical solution of the problem in Example 2.
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Exercises 5.4

In Exercises 1–3, find the solution of

utt = c2uxx, x > 0, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(0, t) = 0,

where c, f and g are given by

1. c = 2, f(x) = 3e−x, g(x) = 0

2. c = 1, f(x) =

{
2, if 0 ≤ x ≤ 1,

0, otherwise,
g(x) = 0.

3. c = 4, f(x) = 0, g(x) = e−x

In Exercises 4 and 5, proceed as in Exercises 5–7 of the previous section for
the problem

utt = uxx, x > 0, t > 0,

u(x, 0) = f(x),

ut(x, 0) = 0,

u(0, t) = 0.

That is,

a) Draw snapshots of the solution for various time t.

b) Graph the solution in x-t-u space—make sure you can see the “charac-
teristic directions,” both before and after reflection.

4. For f(x) =

{
2, if 2 ≤ x ≤ 5,

0, otherwise.

5. For f(x) =

{
|12− x|, if 4 ≤ x ≤ 8,

0, otherwise.

In Exercises 6 and 7, proceed as in Exercises 4 and 5 for the finite string
problem on 0 ≤ x ≤ 8.

6. For f(x) =

{
2, if 2 ≤ x ≤ 4,

0, otherwise.

7. For f(x) =

{
2, if 0 ≤ x ≤ 4,

0, otherwise.



200 An Introduction to Partial Differential Equations with MATLAB R©

8. a) Proceed as in Example 1 to find a graphical representation of the
solution of that same problem, but with the initial displacement
changed to

u(x, 0) =

{
(2 − x)(3 − x), if 2 ≤ x ≤ 3,

0, otherwise.

b) Do the same, but with initial conditions

u(x, 0) = 0,

ut(x, 0) =

{
2, if 2 ≤ x ≤ 3,

0, otherwise.

9. Do the same as in Exercise 8, but for the finite string problems in Ex-
ercises 6 and 7. You need only go “up” to two reflections.

10. Method of images: Given the semi-infinite string problem

utt = c2uxx, x > 0, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(0, t) = 0,

solve, instead, the infinite string problem

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = F (x),

ut(x, 0) = G(x),

where F and G are the odd extensions of f and g, respectively. Then,
show that your solution, when restricted to x ≥ 0, is the solution of the
original problem on x ≥ 0.

11. Semi-infinite string with Neumann condition

a) Solve the problem with free end

utt = c2uxx, x > 0, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x),

ux(0, t) = 0

as in the text.

b) Solve the same problem, but use the method of images.
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12. Use Green’s Theorem, as in Exercise 13 of the previous section, to solve
the nonhomogeneous semi-infinite string problem

utt = c2uxx + F (x, t), x > 0, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x),
u(0, t) = 0.§

5.5 General Second-Order Linear PDEs
and Characteristics

The general second-order linear PDE in x and y is

auxx + buxy + cuyy + dux + fuy + gu+ h(x, y) = 0, (5.15)

where a, b, c, d, f, g and h are functions of x and y. For now, let’s assume
that they are constant. The question we would like to answer is: Is there a
transformation similar to that in Section 5.3 which will reduce PDE (5.15) to
some simple form? Let’s try. First, if any two of a, b and c are zero, then the
PDE already is in the simplest form. So we assume this is not the case, and
we set

ξ = Ax+By, η = Cx+Dy,

where A,B,C and D are constants to be determined. Proceeding as in Exer-
cise 1 from Section 5.3, we have

ux = uξξx + uηηx

= Auξ + Cuη

and, similarly,
uy = Buξ +Duη.

Then,

uxx = (ux)x = (Auξ + Cuη)x

= A(Auξ + Cuη)ξ + C(Auξ + Cuη)η

= A2uξξ + 2ACuξη + C2uηη.

Similarly,

uxy = ABuξξ + (BC +AD)uξη + CDuηη (5.16)

uyy = B2uξξ + 2BDuξη +D2uηη.

§It turns out that we need to assume that f(0) = g(0) = 0.
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The second-derivative part of PDE (5.15) then transforms to

(A2a+ABb+B2c)uξξ + [2ACa+ (BC +AD)b+ 2BDc]uξη

+ (C2a+ CDb +D2c)uηη. (5.17)

Now, notice that the uξξ and uηη coefficients are such that if we can elimi-
nate one, then we can eliminate both. For what values of a, b and c will we be
able to do this? We are considering only cases where a �= 0 or c �= 0; suppose
the former (the latter case will proceed similarly). Then, a �= 0 implies that
B �= 0 (because, if B = 0, we would need A = 0 as well, to eliminate uξξ) and
D �= 0. Dividing the uξξ- and uηη-coefficients by B2 and D2, respectively, we
see that we need to solve the equations

a

(
A

B

)2

+ b

(
A

B

)
+ c = 0

a

(
C

D

)2

+ b

(
C

D

)
+ c = 0,

that is, we need to look at the quadratic equation

az2 + bz + c = 0,

which has roots

z =
−b±√b2 − 4ac

2a
.

Case 1: b2 − 4ac > 0
In this case, the quadratic has two distinct real roots, so we may take

A

B
=
−b+√b2 − 4ac

2a
and

C

D
=
−b−√b2 − 4ac

2a
.

(5.18)

So, for example, we may take

ξ = (−b+
√
b2 − 4ac)x+ 2ay (5.19)

η = (−b−
√
b2 − 4ac)x+ 2ay,

in which case the PDE (5.15) reduces to its standard or canonical form

uξη + lower order terms = 0.

In particular, the PDE

auxx + buxy + cuyy = 0
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reduces to
uξη = 0

and, thus, has solution

u = φ(ξ) + ψ(η) (5.20)

= φ[(−b+
√
b2 − 4ac)x+ 2ay] + ψ[(−b−

√
b2 − 4ac)x+ 2ay]

for arbitrary φ and ψ. Actually, we will show that, in this case, equation
(5.15) reduces to the alternate canonical form

uξξ = κ2uηη + lower order terms = 0

(see Exercise 11).

Definition 5.2 If b2 − 4ac > 0, we say that PDE (5.15) is hyperbolic.

Examples

1. The wave equation utt − c2uxx = 0 is hyperbolic

2. The telegraph equation or dissipative wave equation utt−c2uxx+
γut = 0, where γ > 0 is a constant, is hyperbolic.

3. Consider the equation 2uxx − 5uxy + 2uyy = 0. We have b2 − 4ac = 9,
so the equation is hyperbolic. In order to reduce it to standard form,
we solve the quadratic

2z2 − 5z + 2 = 0

which gives us

z =
5±√9

2
=

5

2
± 3

2
.

Then, we determine the coefficients of our transformation by

A

B
=

5

2
+

3

2
= 4,

C

D
=

5

2
− 3

2
= 1,

so we may choose A = 4, B = C = D = 1, arriving at

ξ = 4x+ y

η = x+ y.

Our solution, then, is

u = φ(ξ) + ψ(η)

= φ(4x+ y) + ψ(x + y).

Often, PDEs which model vibrations and wave phenomena are hyperbolic,
and the wave equation is a “standard example” of a hyperbolic equation.
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Notice that, in Example 3, the lines

4x+ y = constant, x+ y = constant

play the same role as did the lines x ± ct = constant for the wave equation.
In general, this will be true of the lines

ξ = constant, ψ = constant

for hyperbolic equations and, thus, these lines are called the characteristics
of the PDE. In general:

Hyperbolic equations have two families of characteristics.

Case 2: b2 − 4ac = 0
In this case, the quadratic has one repeated root, z = − b

2a . The problem
here is that, although we may choose

A

B
= − b

2a

and eliminate the uξξ term, we may not choose

C

D
= − b

2a

since this choice will make η a multiple of ξ and, thus, the new variables
will not be independent (we say that the transformation to ξ, η is singular
because it cannot be inverted to give us x and y in terms of ξ and η).

However, by choosing only the former, for example,

A = b, B = −2a and ξ = bx− 2ay, (5.21)

we get lucky—the coefficient of uξη becomes

2ACa+ (BC +AD)b+ 2BDC

= 2Cab+ (−2aC + bD)b− 4Dac

= (b2 − 4ac)D = 0

and, by letting η = x (or anything else that is not a constant multiple of ξ),
the PDE (5.15) reduces to the standard form

uηη + lower order terms = 0.

In this case, the PDE
auxx + buxy + cuyy = 0

transforms into
uηη = 0
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with solution

u = ηφ(ξ) + ψ(ξ) (5.22)

= xφ(bx − 2ay) + ψ(bx− 2ay)

for any functions φ and ψ.

Definition 5.3 If b2 − 4ac = 0, we say that PDE (5.15) is parabolic.

Examples

4. The heat equation ut − α2uxx = 0 is parabolic.

5. Consider the equation 9uxx + 12uxy + 4uyy = 0. We have b2 − 4ac = 0,
so it is parabolic. Let’s reduce it to standard form:

9z2 + 12z + 4 = 0

has the repeated root z = − 2
3 . We choose A and B to satisfy

A

B
= −2

3

so the transformation

ξ = 2x− 3y, η = x

reduces the PDE to canonical form

uηη = 0

with solution

u = ηφ(ξ) + ψ(ξ)

= xφ(2x − 3y) + ψ(2x− 3y).

In general, PDEs which model heat flow and other dissipative phenom-
ena are parabolic. The heat equation is a “standard example” of a parabolic
equation.

In Example 5, the lines 2x− 3y = constant play the role of characteristics
of the PDE and, in general, the lines

ξ = constant

are the characteristics of a parabolic PDE. The lines η = constant are not
characteristic, for various reasons, one of which is the fact that our choice of η
is arbitrary (with minimal restriction). In fact, in many parabolic problems,
the line η = 0 will correspond to the initial line t = 0. Thus,

Parabolic equations have one family of characteristics.



206 An Introduction to Partial Differential Equations with MATLAB R©

Case 3: b2 − 4ac < 0
In this case the quadratic has no real roots and there is no transformation

ξ = Ax+By

η = Cx+Dy

(with A,B,C and D real) that will eliminate the uξξ and uηη terms. Can we
simplify the PDE, nonetheless? Let’s try

η = x,

i.e.,
C = 1 and D = 0,

and see what that does to (5.17). We get

(A2a+ABb+B2c)uξξ + (2Aa+Bb)uξη + auηη.

Next, choosing Bb = −2Aa eliminates the middle term, resulting in

(
−A2a+

4A2a2c

b2

)
uξξ + auηη

or
A2a

b2
(4ac− b2)uξξ + auηη.

(Here we have assumed that b �= 0. If b = 0, things are much easier.) Then,
choosing

A2 =
b2

4ac− b2
or

A =
b√

4ac− b2

reduces (5.17) to
a(uξξ + uηη),

the Laplace operator! Therefore, the transformation

ξ =
b√

4ac− b2x−
2a√

4ac− b2 y
η = x

reduces the PDE (5.15) to its canonical form

uξξ + uηη + lower order terms = 0.
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Definition 5.4 If b2 − 4ac < 0, we say that PDE (5.15) is elliptic.

Examples

6. The Laplace equation uxx + uyy = 0 is elliptic.

7. The equation 4uxx − 5uxy + 3uyy = 0 is elliptic.

8. The Helmholtz equation or reduced wave equation uxx + uyy +
λu = 0 is very important in the study of wave motion and shows up in
the fields of elasticity theory, electricity and magnetism, acoustics and
quantum mechanics. It is elliptic.

Elliptic PDEs arise in steady state problems and in other problems involving
two (or more) space dimensions in which the time behavior is neglected or has
been separated from the original PDE. The Laplace equation is a “standard
example” of an elliptic equation.

Unfortunately, there are no characteristic coordinates, like (5.19) and (5.21),
for elliptic equations, so elliptic equations cannot be integrated as we did to
get (5.20) and (5.22). (More precisely, the transformation

A

B
=
−b+√b2 − 4ac

2a
,

C

D
=
−b−√b2 − 4ac

2a

leads to a complex transformation and, hence, to complex characteristics—see
Exercise 13.)

Elliptic equations have no (real) characteristics.

Now, what if the coefficients in (5.13) are not constant? Well, pretty much
the same as what we’ve been doing, except that, since the quantity b2 − 4ac
is now a function of x and y, it may have different signs in different parts of
the x-y plane.

Example 9 What can we say about the PDE uxx + xuxy + y2uyy = 0? We
have

b2 − 4ac = x2 − 4y2 = (x− 2y)(x+ 2y),

so, looking at Figure 5.19, we see that the equation is hyperbolic in the region
marked H , elliptic in the region marked E and parabolic along the boundary
of these regions.



208 An Introduction to Partial Differential Equations with MATLAB R©

y

x

x−2y = 0

x+2y = 0

E

H

E

H

FIGURE 5.19
Regions where the PDE of Example 9 is hyperbolic (H) and elliptic
(E).

Example 10 An important equation from hydrodynamics is the Tricomi
equation, yuxx + uyy = 0. We have

b2 − 4ac = −4y,
so this equation is hyperbolic in the lower half-plane elliptic in the upper
half-plane, and parabolic along the x-axis.

Although we mentioned that each of these last two equations is parabolic
along certain curves, in practice we are only interested in two-dimensional
regions throughout which an equation is hyperbolic, parabolic or elliptic.

Exercises 5.5

In Exercises 1–6, determine if the PDE is hyperbolic, parabolic or elliptic.
Then, transform the equation to canonical form. If hyperbolic or parabolic,
find its solution.

1. uxx + 8uxy + 16uyy = 0

2. 21uxx − 10uxy + uyy = 0

3. 6uxx − uxy − uyy = 0

4. 25uxx − 30uxy + 9uyy = 0

5. uxx + 4uxy + 5uyy = 0

6. 2uxx + 5uxy + uyy = 0

7. Solve uxx − uxy − 6uyy = 0, u(0, y) = sin 3y, ux(0, y) = sin 2y.

8. Solve uxx − 4uxy + 4uyy = 0, u(0, y) = y2, ux(0, y) = 1− 3y.



Characteristics 209

9. Derive formulas (5.16).

10. Prove that the classification of the PDE

auxx + buxy + cuyy + lower order terms = 0,

where a, b and c are constant, is invariant with respect to coordinate
transformations

ξ = Ax+By, η = Cx+Dy,

where A,B,C and D are constant. In other words, prove that the
transformed equation

a1uξξ + b1uξη + c1uηη + · · · = 0

has the same classification as the original PDE.

11. We showed that the hyperbolic PDE

auxx + buxy + cuyy = 0, a, b, c constant,

can always be transformed to the PDE

uξη = 0.

Show that the latter equation can always be transformed into the equa-
tion

utt − κ2uss = 0, κ constant

and, therefore, that the original also can be put in this form. In other
words, the original PDE is just the wave equation in disguise and the
equation uξξ − κ2uηη+ lower order terms = 0 is an alternate canonical
form for any hyperbolic equation.

12. What is the graph, in the x-y plane, of the equation

ax2 + bxy + cy2 = 0

when b2 − 4ac > 0?
when b2 − 4ac = 0?
when b2 − 4ac < 0?

13. Show that, by way of the transformation

ξ = x+ iy, η = x− iy,

the Laplace equation has solution

u = φ(x+ iy) + ψ(x − iy).
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We say that the “lines” x + iy = constant and x − iy = constant are
the complex characteristics of the Laplace equation. More generally, for
any elliptic equation

auxx + buxy + cuyy = 0,

show that we may use a complex version of equations (5.18) which re-
duces the PDE to

uξη = 0.

(Hint: If x < 0, then
√
x =

√
(−1)(−x) = i

√−x, where i, as always,
has the property that i2 = −1.)

Find and sketch the regions in the x-y plane where the PDE is hyperbolic,
parabolic or elliptic.

14. xuxx − 4uxy + 2yuyy = 0

15. uxx + y2uyy + u = 0

16. xuxx + 2uxy + xuyy − xux + x2yuy = sin y



Prelude to Chapter 6

Although the previous chapter was somewhat of a detour from our Fourier
path, we did meet PDEs which were to be solved on unbounded intervals.
There, we had no problem solving the infinite and semi-infinite string prob-
lems, but what happens with parabolic or elliptic equations on such domains?

Specifically, we ask whether we can extend the idea of the Fourier series
to functions on unbounded domains, and we see that an affirmative answer
was given by Fourier, Cauchy and Poisson in the second decade of the 19th
century. We now call this representation the Fourier integral, although all
three seemed to have discovered it more or less independently. (Of course,
they were all in Paris at the time and knew each other—the idea was in the
air.)

The Fourier integral immediately gives us the Fourier transform which, like
the Laplace transform (introduced by Laplace in 1782), turns ODEs into al-
gebraic equations (and, as we’ll see, PDEs into ODEs). In turn, we use the
Fourier transform to solve the infinite and semi-infinite heat equation. Fur-
ther, it gives us the perfect opportunity to introduce the theory of generalized
functions or distributions, which began its life as the operational calculus of
the British scientist Oliver Heaviside (1850–1925) and, ultimately, was given
a firm mathematical footing around 1950, in the setting of Fourier transforms.
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Integral Transforms

6.1 The Laplace Transform for PDEs

In Chapter 4, we used separation of variables and Fourier series to solve PDEs
on finite intervals. Then, in Sections 5.3 and 5.4, we solved the wave equa-
tion on unbounded intervals using the method of characteristics. An obvious
question is, how do we solve more general PDEs on unbounded intervals?

We assume that the reader has seen the Laplace transform in connection
with the solution of ODEs (specifically, with initial-value problems). It turns
out that these and other integral transforms play a crucial role in the study
of PDEs, on both bounded and unbounded domains.

Since we mean to concentrate on the Fourier transform, the natural ex-
tension of the Fourier series to functions on unbounded domains, we use the
Laplace transform only as a brief introduction to the application of integral
transforms to PDEs.

Actually, to get an idea of how transforms work, one need only look at the
logarithm function. Back in the old days, before computers and calculators
were available, mathematicians made extensive log tables. Then, supposing
one of these mathematicians wanted to do a quick calculation of the product
of two numbers, a and b, she would start by writing

P = ab.

Then, she would take the log of both sides:

log10 P = log10 ab,

the point being to use the property of logs:

log10 ab = log10 a+ log10 b.

Thus, transforming both sides of the equation would result in a multiplication
problem being transformed into an (easier) addition problem. Next, she would
look up the values of log10 a and log10 b and add them, resulting in

log10 P = C.
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The last step is to transform back, that is, to find in the table the number P
whose log is C.

Now, let’s define the Laplace transform and give some of its properties, for
functions u(x, t). We write

L[u(x, t)] =
∫ ∞

0

e−stu(x, t)dt = U(x, s), s > 0.

Sufficient conditions for U(x, s) to exist are that, for each x,

1) u(x, t) is piecewise continuous on any interval 0 ≤ t ≤ T .
2) u(x, t) is of exponential order as t→∞, i.e., there exist constants α and

M such that u(x, t) does not grow more rapidly than Meαt as t → ∞.
(We write u = O(eαt), and we say that u is “big-oh” of eαt.)

Now, when we applied the Laplace transform to ODEs, in order to transform
back to the solution we needed to have at our disposal a table of inverse
transforms. (Actually, there is an integral formula that gives the inverse
transform for “any” function F (s). However, we need to know some complex
analysis in order to evaluate this integral.∗) We provide a short table of these
inverse transforms before the exercises (Table 6.1).

Let’s look at two examples involving the temperature distribution in a semi-
infinite rod. In the process, we’ll introduce two important functions often
arising in problems in applied mathematics, and then, in the second example,
we’ll use a special case of what is known as Duhamel’s Principle.

Example 1

ut = uxx, x > 0, t > 0,

u(x, 0) = 0, x > 0,

u(0, t) = 1, t > 0,

lim
x→∞u(x, t) = 0, t > 0.

Here, u represents the temperature of a very long rod which, initially, is at
a temperature of 0◦ and for which, at time t = 0, the one end that is “near”
us is raised to, and held thereafter at, 1◦. Note that we require u → 0 as
x→∞.

We transform the PDE and, using the initial condition and Property 1 in
Table 6.1, we get

sU(x, s) = Uxx(x, s).
†

∗Due to Poisson. See, e.g., Ruel V. Churchill’s excellent text, Operational Mathematics, for
a detailed treatment of the Laplace transform.
†So long as ∂2

∂x2

∫∞
0 e−stu(x, t)dt =

∫∞
0 e−stuxx(x, t)dt.
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This equation can be treated as an ODE and has general solution

U(x, s) = C1(s)e
x
√
s + C2(s)e

−x
√
s.

Next, let’s apply the “boundary condition at x =∞.” We know, via hindsight,
that if we take the inverse transform of the first term, we will get a function
that grows without bound as t → ∞. Therefore, we must have C1(s) =
0. What we have done, essentially, is formally to transform the “boundary
condition at x =∞” to lim

x→∞U(x, s) = 0. Then, applying the other boundary

condition, we have

U(0, s) = L[u(0, t)] = L[1] = 1

s
= C2(s),

i.e.,

U(x, s) =
1

s
e−x

√
s.

Finally, transforming back (using Property 13 in Table 6.1), our solution is

u(x, t) =
2√
π

∫ ∞

x
2
√

t

e−z2

dz.

Actually, this is a well-known function. First, let us look at a very important
function, the so-called error function or probability integral

erf(x) =
2√
π

∫ x

0

e−z2

dz.

The latter name is based on the fact that the function

f(x) =
1√
π
e−x2

is related to the normal density function, or Gaussian, from probability (the

famous bell-shaped curve). As such, we must have erf(∞) = 2√
π

∫∞
0 e−z2

dz

= 1√
π

∫∞
−∞ e−z2

dz = 1 (see Exercise 6).

Then, the function

erfc(x) = 1− erf(x) =
2√
π

∫ ∞

x

e−z2

dz

is called the complementary error function. So the solution to our prob-
lem is

u(x, t) = erfc

(
x

2
√
t

)
.

We graph both functions in Figure 6.1.
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FIGURE 6.1
MATLAB plots of the error function (solid) and the complementary
error function (dashed).

Now let’s change the previous example slightly by considering, instead, a
left end condition which varies with time.

Example 2

wt = wxx

w(x, 0) = 0

w(0, t) = f(t)

lim
x→∞w(x, t) = 0.

The solution is identical to that in Example 1, until we get to the left end
boundary condition:

W (0, s) = L[w(0, t)] = L[f(t)] = F (s) = C2(s).

In this case, we have

W (x, s) = L[w(x, t)] = F (s)e−x
√
s.

Rather than performing the inverse transform directly, we, instead, try to use
the solution U(x, s) from Example 1:

W (x, s) = F (s)e−x
√
s = sF (s)

1

s
e−x

√
s

= F (s) · sU(x, s).



Integral Transforms 217

Now, from Property 1 in Table 6.1, L[ut(x, t)] = sU(x, s)−u(x, 0) = sU(x, s).
Then, from Property 3, our solution is the (finite) convolution of f(t) and
ut(x, t), that is,

w(x, t) = ut(x, t) ∗ f(t) =
∫ t

0

f(t− τ)ut(x, τ)dτ.

This method of solution is a special case of what is known as Duhamel’s‡

Principle, which, in some cases, involves relating the solution of problems
with variable boundary or initial conditions to those with constant boundary
or initial conditions. (We’ll meet a more important version of this principle
in Section 10.5.)

Before getting to the exercises, one may ask why we chose to transform the
t, and not the x, in these problems—since both t and x have domain [0,∞).
It’s a good exercise to try to do these problems by transforming x, instead.
You’ll see why we generally choose to transform t when using the Laplace
transform.

Finally, most of the exercises will be solved formally. We won’t be able to
check our answers until we’ve covered Section 6.5

Suppose L[g(t)] = G(s) and L[h(t)] = H(s). We have the Laplace transform
formulas in Table 6.1.

Exercises 6.1

1. Use Laplace transforms to solve the (unrealistic!) convection problem

a) ut + 2ux = 0, x > 0, t > 0,
u(x, 0) = 3,
u(0, t) = 5.

b) ut + (1 + x2)ux = 0, x > 0, t > 0,
u(x, 0) = 0,
u(0, t) = 1.

2. Use Laplace transforms to solve the following heat problem:

a) ut = uxx, x > 0, t > 0,
u(x, 0) = 10e−x,
u(0, t) = 0,
lim
x→∞u(x, t) = 0.

b) ut = uxx,
u(x, 0) = 10e−x,
u(0, t) = 10,
lim
x→∞u(x, t) = 0.

‡Jean Marie Constant Duhamel (1797–1872).
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c) ut = uxx,
u(x, 0) = 10e−x,
u(0, t) = f(t),
lim
x→∞u(x, t) = 0.

f(t) = L−1[F (s)] F (s) = L[f(t)]
1. g(n)(t) 1. snG(s) − sn−1g(0)− . . .

−sg(n−2)(0)− g(n−1)(0)

2.
∫ t

0 g(τ)dτ 2. G(s)/s

3. g(t) ∗ h(t) = ∫ t

0 g(τ)h(t− τ)dτ 3. G(s)H(s)
4. tn 4. n!/sn+1

5. eat 5. 1
s−a

6. sin at 6. a
s2+a2

7. cosat 7. s
s2+a2

8. eatg(t) 8. G(s− a)
9. H(t− a) =

{
1, if t ≥ a
0, if t < a

∗
9. e−as/s

10. f(t) =

{
g(t− a), if t ≥ a∗
0, if t < a

10. e−asG(s)

= H(t− a)g(t− a)
11. 1√

πt
e−a2/4t 11. e−a

√
s

12. erf(t/2a)∗∗ 12. ea
2s2 erfc(as)/s

13. erfc(a/2
√
t)∗∗ 13. e−a

√
s/s

∗H is the well-known Heaviside function, named after Oliver Heaviside.
∗∗Again, erf(x) = 2√

π

∫ x

0
e−z2

dz and erfc(x) = 1− erf(x).

TABLE 6.1
Laplace transforms.

3. Use Laplace transforms to solve the semi-infinite wave problem

a) utt = c2uxx, x > 0, t > 0,
u(x, 0) = ut(x, 0) = 0,
u(0, t) = f(t),
lim
x→∞u(x, t) = 0.

b) utt = c2uxx − g,
u(x, 0) = ut(x, 0) = 0,
u(0, t) = 0,
lim
x→∞ux(x, t) = 0.
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This, of course, is the equation for a string which is tied down at
one end and which falls under its own weight (see equation (2.8),
Section 2.3). The constant g is the gravitational constant. (Note
the difference between the limit condition here and the one above.)

c) In part (b), replace the constant gravitational force with a force
F (t) (units of force per unit mass of string), so that the PDE
becomes

utt = c2uxx − F (t).
Show that the solution is u(x, t) = H

(
t− x

c

)
G
(
t− x

c

) − G(t),
where

G(t) =

∫ t

0

∫ τ

0

F (z)dz dτ.

4. Show formally that the solutions in Examples 1 and 2 actually do satisfy
the PDE and side conditions.

5. Prove that the finite convolution is commutative, that is, that f ∗ g =
g ∗ f . (Formula 3 in Table 6.1.)

6. If you haven’t done so in multivariable calculus, show that erf(0) = 0

and erf(∞) = 1. (Hint: If I =
∫∞
−∞ e−x2

dx, then I2 =
(∫∞

−∞ e−x2

dx
)

(∫∞
−∞ e−y2

dy
)
. Rewrite I2 as a double integral, and change to polar

coordinates.)

7. a) Prove Formula 2 in Table 6.1: L
[∫ t

0 f(τ)dτ
]
= 1

sL[f(t)].
b) Prove Formula 9 in Table 6.1: L[H(t− a)] = e−as/s.

c) Prove Formula 10 in Table 6.1.

8. We also may use Laplace transforms to solve problems on finite x-
domains, as we did earlier using Fourier series. Use the Laplace trans-
form to solve

a) ut = 3uxx,
u(x, 0) = 17 sinπx,
u(0, t) = u(4, t) = 0. (This is Example 3, Section 2.6.)

b) utt = 4uxx,
u(x, 0) = 5 sin 2x− 7 sin 4x,
ut(x, 0) = 0,
u(0, t) = u(π, t) = 0. (This is Exercise 9, Section 2.6.)

9. a) Use Laplace transforms to solve
ut = uxx, x > 0, t > 0,
u(x, 0) = 0,
ux(0, t) = 1,
lim
x→∞u(x, t) = 0.
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b) Use part (a) and Duhamel’s Principle to solve
wt = wxx, x > 0, t > 0,
w(x, 0) = 0,
wx(0, t) = g(t),
lim
x→∞w(x, t) = 0.

(Note: You need not use Duhamel—try to solve it directly, too,
and make sure you get the same answer.)

10. MATLAB: For each problem,

i) Plot snapshots of the solution in the x-u plane for various time t.

ii) Plot the solution in x-t-u space.

a) Exercise 1a

b) Exercise 2a

c) Exercise 2b

d) Exercise 9a

6.2 Fourier Sine and Cosine Transforms

What has all this to do with Fourier series? Well, Laplace transforming an
ODE or PDE can be looked at as multiplying both sides of the equation by
e−st and then integrating. Similarly, solving a PDE by Fourier series can be
made to look like multiplying both sides of the equation by the appropriate
trigonometric function and integrating. In fact, the various Fourier coefficients
are referred to as finite Fourier transforms (while the inverse transform would,
in a sense, be the corresponding Fourier series).

As the Laplace transform involves functions on [0,∞), it is not unnatural
to ask if we can extend Fourier’s idea to functions on unbounded domains.
The answer, of course, is yes (or we wouldn’t have asked the question!). So,
remember that any piecewise smooth function on a finite domain, or any
piecewise smooth periodic function, can be expanded in a Fourier series. Now,
what if f is neither? For definiteness, suppose f(x) has domain [0,∞) and is
not periodic. For any L > 0, we have

f(x) = Fs(x) =
∞∑
n=1

bn sin
nπx

L
on 0 ≤ x ≤ L, (6.1)

where

bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx
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and, of course, Fs(x) is the Fourier sine series for f on [0, L]. Since this
statement is not true on (L,∞), let’s see what happens as L→∞. Rewriting
(6.1), we have

f(x) =

∞∑
n=1

2

L

∫ L

0

f(z) sin
nπz

L
dz sin

nπx

L
.

Since 2
L → 0 as L → ∞, this looks a little like a Riemann sum. If we let

Δα = π
L , we then have

f(x) =
2

π

∞∑
n=1

∫ π/Δα

0

f(z) sin(nzΔα) dz sin(nxΔα)Δα, (6.2)

which looks a lot more like a Riemann sum—specifically, we’ve broken up
the nonnegative α-axis into pieces of length Δα, and the function inside is
evaluated at each grid point nΔα. Letting Δα → 0, it should not be too
surprising (although we must be very careful with that π/Δα term) that
(6.2) becomes

f(x) =
2

π

∫ ∞

0

∫ ∞

0

f(z) sinαz dz sinαx dα (6.3)

or

f(x) =

∫ ∞

0

Fs(α) sinαx dα (6.4)

with

Fs(α) =
2

π

∫ ∞

0

f(x) sinαx dx. (6.5)

Note the beautiful symmetry! Of course, what we have done is not a proof.
Equation (6.3) is called the Fourier sine integral formula for f(x); (6.5)

is the Fourier sine transform of f , while (6.4) is the inverse transform
or the Fourier sine inversion formula. We often will write

Fs(α) = Fs[f(x)], f(x) = F−1
s [Fs(α)],

similar to the notation for the Laplace transform.
One also can show that

f(x) =

∫ ∞

0

Fc(α) cosαx dα = F−1
c [Fc(α)], (6.6)

where

Fc(α) =
2

π

∫ ∞

0

f(x) cosαx dx = Fc[f(x)]. (6.7)

These, of course, are the Fourier cosine transform and inverse (Fourier
cosine) transform. Note that the placement of the 2

π is arbitrary; for ex-
ample, we could, instead, have chosen to write

f(x) =
2

π

∫ ∞

0

Fs(α) sinαx dα, Fs(α) =

∫ ∞

0

f(x) sinαx dα
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or, to make the symmetry perfect,

f(x) =

√
2

π

∫ ∞

0

Fs(α) sinαx dα, Fs(α) =

√
2

π

∫ ∞

0

f(x) sinαx dα.

It should not be surprising that, analogous to the Fourier series of a function
on−L ≤ x ≤ L, we have the Fourier transform of a function on−∞ < x <∞.
We derive the trigonometric form of this Fourier transform in Exercise 10.
However, it is much more convenient to deal with the complex form of the
transform (analogous to the complex form of the Fourier series) for which we
wait until the next section.

Now, what properties must f possess in order that its Fourier sine and
cosine transforms exist and, in each case, for which values of x will we get
(6.3) and (6.6)? We have the following theorem, whose proof will be given in
Section 6.6.

Theorem 6.1 Suppose f(x) is piecewise smooth on every interval [0, L], and
suppose that

∫∞
0
|f(x)|dx is finite (we say that f is absolutely integrable).

Then,

∫ ∞

0

Fs(α) sinαx dα =
1

2
[f(x+) + f(x−)]

and

∫ ∞

0

Fc(α) cosαx dα =
1

2
[f(x+) + f(x−)]

for each x > 0. (Also, when x=0, the first integral is 0, while the second is
f(0+).)

At this point, we must mention that, in some cases, these integrals may not
converge. We will give a precise treatment in the final section of this chapter,
where we prove these Fourier inversion theorems. For now, we’ll continue to
use the notation

∫∞
0 (and, later,

∫∞
−∞), realizing that it may not, technically,

be correct.

Also, in practice, it turns out that the condition that f be absolutely inte-
grable is too strict—there are many situations where this is not the case, but
where it is useful to be able to talk about f ’s Fourier transform, anyway.

Therefore, until we get to Section 6.6, we’ll take a purely formal approach
and not concern ourselves with problems of convergence.

Before deciding for which functions f these statements are valid, let’s com-
pute some Fourier sine and cosine transforms.

Example 1 Compute the Fourier sine and cosine transforms of f(x) = e−cx.



Integral Transforms 223

First,
∫∞
0
e−cx dx = 1

c (why?), so f is absolutely integrable. We compute
the transforms directly (although there’s a simple and more elegant way to
do the problem—see Exercise 1):

Fs(α) =
2

π

∫ ∞

0

e−cx sinαx dx.

Integrating by parts twice gives us

2

π
I =

2

π

{
− 1

α
e−cx cosαx

∣∣∣∞
0
− c

α2
e−cx sinαx

∣∣∣∞
0
− c2

α2
I

}

so

Fs(α) =
2

π

α

α2 + c2
.

Similarly,

Fc(α) =
2

π

∫ ∞

0

e−cx cosαx dx =
2

π

c

α2 + c2
.

Note that Theorem 6.1 then tells us that

e−cx =
2

π

∫ ∞

0

α

α2 + c2
sinαx dα =

2

π

∫ ∞

0

c

α2 + c2
cosαx dα.

Example 2 Compute Fs

(
x

x2+c2

)
and Fc

(
1

x2+c2

)
.

It appears that we must compute the difficult integrals

Fc

(
x

x2 + c2

)
=

2

π

∫ ∞

0

x sinαx

x2 + c2
dx

and

Fc

(
1

x2 + c2

)
=

2

π

∫ ∞

0

cosαx

x2 + c2
dx.

However, notice that we’ve already done them in the previous example! There-
fore,

Fs

(
x

x2 + c2

)
= e−cα

Fc

(
1

x2 + c2

)
=

1

c
e−cα.

(By the way, note that f(x) = x
x2+c2 is not absolutely integrable.)

What about transforms of derivatives? Suppose that Fs[f(x)] = Fs(α) and
Fc[f(x)] = Fc(α). Then it is easy to show (see Exercise 3) that

Fs[f
′(x)] = −αFc(α)
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and

Fc[f
′(x)] = αFs(α)− 2

π
f(0),§

from which it follows that

Fs[f
′′(x)] = −α2Fs(α) +

2

π
f(0)α

and

Fc[f
′′(x)] = −α2Fc(α)− 2

π
f ′(0)α.

As with the Laplace transform, these transforms essentially turn differenti-
ation into multiplication, thereby allowing us to turn PDEs into ODEs, and
ODEs into algebraic equations. Let’s look at an example of the latter.

Example 3 Solve the boundary-value problem

y′′ − y = e−2x, 0 ≤ x <∞,
y(0) = 1,

lim
x→∞ y(x) = 0.

The presence of y(0) suggests we use the sine transform. Letting Fs(α) =
Fs[y(x)] and transforming the ODE, we have

−α2Fs(α) +
2

π
α− Fs(α) =

2

π

α

α2 + 4

or, after using partial fractions,

Fs(α) =
4

3π

α

α2 + 1
+

2

3π

α

α2 + 4
.

The inverse transform, then, is

y =
2

3
e−x +

1

3
e−2x.

It is interesting to note that there are infinitely many solutions to y′′ − y =
e−2x, y(0) = 1 (the reader should find some), but the method we used seemed
to find the only bounded solution (note the limit “boundary condition”).

§Since f (or, below, f ′) may not be continuous at x = 0, we really should have f(0+) and
f ′(0+), respectively.



Integral Transforms 225

Of course, we would like to solve not ODEs, but PDEs. It turns out that
it is easiest to use the Fourier transform, rather than the sine and cosine
transforms, both for problems on −∞ < x <∞ and for many on 0 ≤ x <∞.
We’ll look at the semi-infinite heat equation below, then we’ll solve it again
in Section 6.4 using the Fourier transform.

Here, as with the Laplace transform, we run into the question of which
variable to transform. It turns out that, due to the nature of the Fourier
transforms and the problems we solve with them, it is the space variable(s)
that is transformed, instead of time.

Okay, let’s solve the heat equation for a semi-infinite rod. Specifically, let’s
start with the problem in Example 4.

Example 4

ut = uxx, x > 0, t > 0,

u(x, 0) = f(x), x > 0,

u(0, t) = 0, t > 0,

lim
x→∞u(x, t) = 0.

We choose to transform x and, since we’re given u(0, t) (as opposed to ux(0, t)),
we use the sine transform. Specifically, we define

U(α, t) = Fs[u(x, t)]

=
2

π

∫ ∞

0

u(x, t) sinαx dx, for each t.

As with Laplace transforms, we will need the property

∂

∂t
U(α, t) =

2

π

∫ ∞

0

ut(x, t) sinαx dx.

Then, the transformed PDE is

Ut = −α2U +
2

π
u(0, t)α

or
Ut + α2U = 0,

with solution
U(α, t) = e−α2tG(α), G arbitrary.

Then, the initial condition gives

U(α, 0) = Fs(α)

which implies that

U(α, t) = e−α2tFs(α).
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Therefore, we may transform back:

u(x, t) =

∫ ∞

0

e−α2tFs(α) sinαx dα

=

∫ ∞

0

e−α2t 2

π

∫ ∞

0

f(z) sinαz dz sinαx dα.

This is our not-so-satisfying solution. However, let’s switch the order of inte-
gration (if it’s actually allowed! More, later.):

u(x, t) =
2

π

∫ ∞

0

f(z)

∫ ∞

0

e−α2t sinαz sinαx dαdz

=
1

π

∫ ∞

0

f(z)

∫ ∞

0

e−α2t[cosα(z − x)− cosα(z + x)]dαdz.

Now, we’ll show in the next section that

∫ ∞

0

e−cx2

cos cx dx =

√
π

2
√
k
e−

c2

4k ,

so we can rewrite u as

u(x, t) =
1

2
√
πt

∫ ∞

0

f(z)

[
e−

(z−x)2

4t − e− (z+x)2

4t

]
dz.

So it seems that the sine transform is the transform of choice for the problem
with Dirichlet boundary condition. We hope it’s relatively obvious that the
cosine transform is appropriate for the Neumann condition (see Exercise 5).
(However, we also may solve these problems using the full Fourier transform
and the method of images, which we do in Section 6.4.)

Exercises 6.2

1. Derive the Fourier sine and cosine transforms of f(x) = e−cx by writing
eiαx = cosαx+ i sinαx and computing the integral

∫∞
0 e−cxeiαxdx.

2. Find the Fourier sine and cosine transforms of f(x) = xe−x.

3. a) Derive the formulas

Fs[f
′(x)] = −αFc(α)

and

Fc[f
′(x)] = αFs(α) − 2

π
f(0+).

b) Verify the formulas for Fs[f
′′(x)] and Fc[f

′′(x)], as well.
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c) Show that

Fs[f
(4)(x)] = α4Fs(α)− 2

π
α3f(0) +

2

π
αf ′′(0)

and

Fc[f
(4)(x)] = α4Fc(α) +

2

π
α2f ′(0)− 2

π
f ′′′(0).

4. Solve the boundary-value problem.

a) y′′ − y = 3e−4x,
y′(0) = 0,
lim
x→∞ y(x) = 0.

b) y′′ − 3y = e−x,
y(0) = 4,
lim
x→∞ y(x) = 0.

c) y(4) − 5y′′ + 4y = 3e−3x,
y(0) = 0,
y′′(0) = 1,
lim
x→∞ y(x) = lim

x→∞ y′(x) = 0.

5. Solve the problem with Neumann BC,

ut = uxx, x > 0, t > 0,

u(x, 0) = f(x),

ux(0, t) = 0,

lim
x→∞u(x, t) = 0.

6. a) Use Fourier sine or cosine transforms to show that

u(x, t) =
2

π

∫ ∞

0

1− e−α2t

α
sinαx dα

is the solution of Example 1 in Section 6.1, i.e., of

ut = uxx,

u(x, 0) = 0,

ut(x, 0) = 1,

lim
x→∞u(x, t) = 0.

b) Conclude from part (a) that if we, indeed, have found the solution,
then

Fs

[
erfc

x

2
√
c

]
=

2

π

1− e−cα2

α
.
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7. Derive the following properties of Fourier sine and cosine transforms.

a) Fs[xf(x)] = −F ′
c(α)

b) Fc[xf(x)] = F ′
s(α)

8. Do the same for the following properties:

a) Fs[f(x) cos kx] =
1
2 [Fs(α+ k) + Fs(α− k)]

b) Fc[f(x) sin kx] =
1
2 [Fc(α+ k)− Fc(α− k)]

c) What would the corresponding formula be for

Fs[f(x) sin kx] and Fc[f(x) cos kx]?

9. Convolution and Fourier sine and cosine transforms: We wish to
derive the inverse Fourier transforms of a product, that is, if Fs[f(x)] =
Fs(α) and Fc[g(x)] = Gs(α), we wish to find out how to inverse trans-
form Fs(α)Gs(α). To this end,

a) Suppose that we’re given f(x) on x ≥ 0, and let f1(x) be the odd
extension of f to the interval −∞ < x <∞. Show that

Fc

{
1

2
[f1(x+ k)− f1(x− k)]

}
= Fs(α) sin kα

for any constant k.

b) Show that

2Fs(α)Gs(α) =

∫ ∞

0

g(y)

∫ ∞

0

[f1(x+ y)− f1(x− y)] cosαx dxdy

and, therefore, that

F−1
c [Fs(α)Gs(α)] =

∫ ∞

0

g(y)[f1(x+ y)− f1(x− y)]dy.

Thus, we have found out how to find the inverse cosine transform
in this case. Similarly, one can show that

F−1
s [Fs(α)Gc(α)] =

∫ ∞

0

g(y)[f1(x + y) + f1(x− y)]dy

=

∫ ∞

0

f(y)[g(|x− y|)− g(x+ y)]dy

and

F−1
c [Fc(α)Gc(α)] =

∫ ∞

0

g(y)[f(|x− y|) + f(x+ y)]dy.
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10. Given f(x) piecewise continuous on any interval, and
∫∞
−∞ |f(x)|dx <∞,

show that we can write

f(x) =

∫ ∞

−∞
[A(α) cosαx+B(α) sinαx]dα,

where

A(α) =
1

π

∫ ∞

−∞
f(x) cosαx dx

and

B(α) =
1

π

∫ ∞

−∞
f(x) sinαx dx.

(Hint: We can write f(x) = f(x)+f(−x)
2 + f(x)−f(−x)

2 . Then, one of those
functions is even and the other is odd. For x ≥ 0, use the Fourier cosine
integral for the even one, and the Fourier sine integral for the odd one;
then extend everything to the interval −∞ < x <∞.)

11. Parseval’s equality for the Fourier transform:

a) Show formally that if the Fourier sine and cosine transforms of f
exist, then

2

π

∫ ∞

0

f2(x)dx =

∫ ∞

0

F 2
s (α)dα =

∫ ∞

0

F 2
c (α)dα.

(Hint:
∫∞
0 f2(x)dx =

∫∞
0 f(x)

∫∞
0 Fs(α) sinαx dαdx; now switch

the order of integration.)

b) Similarly, show formally that if f is as in Exercise 10, then

1

π

∫ ∞

−∞
f2(x)dx =

∫ ∞

−∞
[A2(α) +B2(α)]dα.

Each of these is called Parseval’s equality for the corresponding
transforms; compare it to the version of Parseval’s equality for
Fourier series in Section 8.5 and, particularly, in Example 4 and
Exercise 6 of that section.

12. Sampling: Given a function f(x) on x ≥ 0, we say that f is band-
limited if its Fourier sine transform is 0 except on a finite interval.
(Actually, this definition usually refers to functions on −∞ < x < ∞
and their exponential Fourier transform—see Exercise 16 in the follow-
ing section.) Specifically, there exists a positive constant L such that
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Fs(α) = 0 outside of 0 ≤ α ≤ L. The least such L¶ is called the cut-
off frequency for f .

a) For convenience, suppose that the cutoff frequency for f is L = π.
Then, we may expand Fs(α) in a Fourier sine series on 0 ≤ α ≤ π.
Do this and conclude that

f(x) =

∫ π

0

sinαx

[ ∞∑
n=1

bn sinnα

]
dα,

where

bn =
2

π

∫ π

0

Fs(α) sinnα dα, n = 1, 2, 3, . . . .

b) Show that we actually have

bn =
2

π
f(n), n = 1, 2, 3, . . . !

c) Conclude that

f(x) =
2

π

∞∑
n=1

f(n)

∫ π

0

sinαx sinnα dα

and, thus, that if we know beforehand that f is band-limited, then
we can construct f by knowing only its values on the positive in-
tegers! This result is known as the Sampling Theorem.

6.3 The Fourier Transform

One either can define the Fourier sine and cosine transforms and then derive
from them the Fourier transform for functions on −∞ < x < ∞ (as we do
here), or go the other way around (as we do in the exercises, and as we did
with Fourier series). Our procedure is quite similar, not surprisingly, to what
we did in Exercise 14 of Section 3.6.

So, suppose we’re given a piecewise smooth function f(x) with domain
−∞ < x < ∞ (as earlier, officially we also would need

∫∞
−∞ |f(x)|dx to be

finite). We write f as the sum of an even function and an odd function:

f(x) = g(x) + h(x),

¶And there always is a least such L—from analysis, it is the least upper bound of the set
of all values of α for which F (α) �= 0.
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where

g(x) =
f(x) + f(−x)

2
, h(x) =

f(x)− f(−x)
2

.

Now, for g we have

g(x) =

∫ ∞

0

Gc(α) cosαx dα, Gc(α) =
2

π

∫ ∞

0

g(x) cosαx dx (6.8)

on 0 ≤ x < ∞. But the fact that g(x) and cosαx are even functions (of x)
allow us to rewrite the second half of (6.8) as

Gc(α) =
1

π

∫ ∞

−∞
g(x) cosαx dx

=
1

π

∫ ∞

−∞

f(x) + f(−x)
2

cosαx dx

=
1

π

∫ ∞

−∞
f(x) cosαx dx (why?).

Similarly, for h we have

h(x) =

∫ ∞

0

Hs(α) sinαx,

Hs(α) =
2

π

∫ ∞

0

h(x) sinαx dx (6.9)

and, as above, we may write

Hs(α) =
1

π

∫ ∞

−∞
h(x) sinαx dx

=
1

π

∫ ∞

−∞

f(x)− f(−x)
2

sinαx dx

=
1

π

∫ ∞

−∞
f(x) sinαx dx (again, why?).

Combining, we arrive at

f(x) =

∫ ∞

0

[A(α) cosαx+B(α) sinαx]dα (6.10)

where

A(α) = Gc(α), B(α) = Hs(α).

Thus we can write

f(x) =
1

π

∫ ∞

0

∫ ∞

−∞
f(z)[cosαz cosαx+ sinαz sinαx]dzdα.
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This Fourier integral representation of f is, of course, the analog of the
Fourier series. But we may go still further. In Exercise 17 in Section 3.3,
we derived the complex form of the Fourier series which, ultimately, is more
convenient (and more elegant) than the real Fourier series. With regard to
Fourier integrals, this is decidedly the case, as well.

Now we note that A(α) and B(α) actually are defined for −∞ < α < ∞,
and that A(−α) = A(α) and B(−α) = −B(α) for all α. Thus, we may rewrite
(6.10) as

f(x) =
1

2

∫ ∞

−∞
[A(α) cosαx+B(α) sinαx]dα. (why)?

Then, remembering that

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
,

we have

f(x) =
1

2

∫ ∞

−∞

[
A(α)

eiαx + e−iαx

2
+B(α)

eiαx − e−iαx

2i

]
dα

=
1

4

∫ ∞

−∞
{[A(α)− iB(α)]eiαx + [A(α) + iB(α)]e−iαx}dα

=
1

4

∫ ∞

−∞
{A(α) +A(−α)− i[B(α) −B(−α)]}eiαxdα

=
1

2

∫ ∞

−∞
[A(α) − iB(α)]eiαxdα.

We then have

A(α)− iB(α) =
1

π

∫ ∞

−∞
f(z)[cosαz − i sinαz]dz

=
1

π

∫ ∞

−∞
f(z)e−iαzdz

and it follows that

f(x) =
1

2π

∫ ∞

−∞

[∫ ∞

−∞
f(z)e−iαzdz

]
eiαx dα. (6.11)

This is the complex Fourier integral representation of f , and we generally
write

f(x) =
1√
2π

∫ ∞

−∞
F (α)eiαx dα = F−1[F (α)],
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where

F (α) =
1√
2π

∫ ∞

−∞
f(x)e−iαx dx = F [f(x)]

is the Fourier transform of f . Again, it really doesn’t matter how we divvy
up the 1

2π , as long as we’re consistent. We say that the functions f(x) and
F (α) form a Fourier transform pair. It can be shown that if f(x) and
F (α) form such a pair, then so do F (x) and f(−α) (see Exercise 2).

As before, sufficient conditions for the validity of (6.11) are given by the
following theorem.

Theorem 6.2 Suppose that f is piecewise smooth on every finite interval and∫∞
−∞ |f(x)|dx is finite. Then, for each x,

1

2π

∫ ∞

−∞

∫ ∞

−∞
f(z)e−iαz dz eiαx dα =

1

2
[f(x+) + f(x−)].

This is the theorem that we’ll prove in Section 6.6. Again, we must tread
lightly when using “

∫∞
−∞.” Also, as with Theorem 6.1, this theorem actually

is too restrictive, so we won’t take it too seriously.

First, let’s compute some transforms and inverse transforms.

Example 1 Find the Fourier transform of the square wave

f(x) =

{
1, if |x| ≤ 1,
0, if |x| > 1.

We have

F (α) =
1√
2π

∫ ∞

−∞
f(x)e−iαxdx

=
1√
2π

∫ 1

−1

e−iαxdx

=

√
2

π

sinα

α
.

Of course, this means that

F−1

[
sinα

α

]
=

√
π

2
f(x) (why?).

Example 2 Find the Fourier transform of f(x) = e−c|x|, c > 0.
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We have

F (α) =
1√
2π

∫ ∞

−∞
e−c|x|e−iαx dx

=
1√
2π

[∫ 0

−∞
e(c−iα)xdx+

∫ ∞

0

e−(c+iα)xdx

]

=
1√
2π

[
1

c− iαe
(c−iα)x

∣∣∣0
x=−∞

− 1

c+ iα
e−(c+iα)x

∣∣∣∞
x=0

]

=

√
2

π

c

c2 + α2
.

Again, we have

F−1

[
1

c2 + α2

]
=

√
π

2

e−c|x|

c
.

Example 3 As the normal density function is such an important function in
many applications, let’s find the Fourier transform of f(x) = e−x2

.

We have

F (α) =
1√
2π

∫ ∞

−∞
e−x2

e−iαx dx

=
1√
2π

∫ ∞

−∞
e−(x2+iαx) dx.

Now, we know that
∫∞
−∞ e−x2

dx =
√
π, so it looks like we need to complete

the square in the exponent:

x2 + iαx =

(
x+

iα

2

)2

+
α2

4
.

So

F (α) =
1√
2π
e−

a2

4

∫ ∞

−∞
e−(x+ iα

2 )2dx

=
1√
2π
e−

α2

4

∫ ∞

−∞
e−u2

du

=
1√
2
e−

α2

4 .

So the Fourier transform of the Gaussian e−x2

is another Gaussian—in fact,
we’ll see that this is always the case (see Exercises 3 and 4). More specifically,
we’ll see that a sharply peaked Gaussian has a transform which is “lower” and
more “spread out,” and vice versa. See Figures 6.2 and 6.3.

Each of the Fourier transforms above turned out to be real. This is not
always the case, as we will see below and in the exercises.

Let’s look now at the important properties of the Fourier transforms.
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FIGURE 6.2
MATLAB graphs of f(x) = e−4x2

f(x) = e−4x2

f(x) = e−4x2

(solid curve) and its Fourier trans-

form F (α) = 1
2
√
2
e−α2/16F (α) = 1
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2
e−α2/16F (α) = 1

2
√
2
e−α2/16 (dashed curve).
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FIGURE 6.3
MATLAB graph of f(x) = e−x2/16f(x) = e−x2/16f(x) = e−x2/16 (solid curve) and its Fourier trans-

form F (α) = 2
√
2 e−4α2

F (α) = 2
√
2 e−4α2

F (α) = 2
√
2 e−4α2

(dashed curve).
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TRANSFORMS AND DERIVATIVES

If F [f(x)] = F (α), let’s find F [f ′(x)]:

F [f ′(x)] =
1√
2π

∫ ∞

−∞
f ′(x)e−iαx dx

=
1√
2π

[
e−iαxf(x)

∣∣∣∞
−∞

+ iα

∫ ∞

−∞
f(x)e−iαx dx

]
(why?)

= iαF (α).

So we have
F [f ′(x)] = iαF [f(x)].

It follows that
F [f (n)(x)] = (iα)nF(f(x)]

(see Exercise 10a). Similarly, we can show that

F [−ixf(x)] = F ′(α)

and, more generally, that

F [(−ix)nf(x)] = F (n)(α).

CONVOLUTION

As with Laplace transforms, we often need to find inverse transforms of prod-
ucts. Specifically, if

F [f(x)] = F (α) and F [g(x)] = G(α),

what is
F−1[F (α)G(α)]?

Well, we know that

F (α) =
1√
2π

∫ ∞

−∞
f(x)e−iαxdx

and

G(α) =
1√
2π

∫ ∞

−∞
g(y)e−iαy dy,

so

F (α)G(α) =
1

2π

[∫ ∞

−∞
f(x)e−iαx dx

] [∫ ∞

−∞
g(y)e−iαy dy

]

=
1

2π

∫ ∞

−∞
g(y)

[∫ ∞

−∞
f(x)e−iα(x+y) dx

]
dy (why?).
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Now, we substitute z = x + y in the inner integral in order to make it look
like a Fourier transform (so dz = dx), and we get

F (α)G(α) =
1

2π

∫ ∞

−∞
g(y)

[∫ ∞

−∞
f(z − y)e−iαz dz

]
dy

=
1√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
f(x− y)g(y)dy

]
e−iαx dx,

where we have reversed the order of integration,‖ and replaced z by (the new
variable) x. But this is just the Fourier transform of the function of x in the
brackets! So,

F (α)G(α) = F
[

1√
2π

∫ ∞

−∞
f(x− y)g(y)dy

]

and, thus,

F−1[F (α)G(α)] =
1√
2π

∫ ∞

−∞
f(x− y)g(y)dy

=
1√
2π
f ∗ g,

where f ∗ g is called the (infinite) convolution of f with g (as long as the
integral exists).

Example 4 Find F−1

[
e−

α2

4

1+α2

]
.

From Examples 2 and 3, F [e−|x|] =
√

2
π

1
1+α2 and F [e−x2

] = 1√
2
e−α2/4.

Therefore,

F−1

[
e−α2/4

1 + α2

]
=
√
π F−1

[
1√
2
e−α2/4 ·

√
2

π

1

1 + α2

]

=
√
π

1√
2π
e−x2 ∗ e−|x|

=
1√
2

∫ ∞

−∞
e−(x−y)2e−|y| dy.

‖It turns out that, in order to switch the order of integration, we need the inner integral to
be a uniformly continuous function of y.
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TRANSLATION

If F [f(x)] = F (α), what is F [f(x− c)], where c is a constant?

F [f(x− c)] = 1√
2π

∫ ∞

−∞
f(x− c)e−iαx dx

=
1√
2π

∫ ∞

−∞
f(z)e−iα(z+c) dz

= e−icαF (α).

Example 5 If we would like to find the Fourier transform of

g(x) =

{
1, if − 3 ≤ x ≤ −1,
0, otherwise,

we may notice that g(x) = f(x+2), where f is the function from Example 1.
Then,

G(α) = e2iαF (α) =

√
2

π
e2iα

sinα

α
.

Let’s list these properties again. If F [f(x)] = F (α) and F [g(x)] = G(α),
then

Derivative property : F [f (n)(x)] = (iα)nF (α)
Convolution: F−1[F (α)G(α)] = 1√

2π
f(x) ∗ g(x)

Translation: F [f(x− c)] = e−icαF (α)

(as long as the integrals involved do not give us any problems). Finally, given
the symmetry of the various Fourier transform pairs, it should be no surprise
that these properties can be “turned around” (as we mentioned when deriving
the derivative properties). See Exercises 2 and 9.

Of course, as with the sine and cosine transforms, when using Fourier trans-
forms to solve partial differential equations, the functions no longer are func-
tions of a single variable. We treat these problems in the following section.

We include a table of Fourier transforms and properties at the
end of this chapter (see Table 6.3).

Exercises 6.3

1. Calculate the Fourier transform of f , then use Theorem 6.2 to describe
the function

g(x) =
1

2π

∫ ∞

−∞
eiαx

∫ ∞

−∞
f(z)e−iαz dzdα.

a) f(x) =

{
1, if a ≤ x ≤ b
0, otherwise
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b) f(x) =

{
e2x, if x ≤ 0
e−x, if x > 0

c) f(x) = xe−c|x|, c > 0

d) f(x) = e−|x| cosx and g(x) = e−|x| sinx

e) f(x) =
sinx

x
(see Example 1)

2. Suppose that f(x) and F (α) form a Fourier transform pair. Show that
the following also form Fourier transform pairs:

f(−x) and F (−α),
F (x) and f(−α),
F (−x) and f(α).

3. The most general form of the Gaussian or normal density function is

f(x) =
1√
2πσ2

e−
(x−m)2

2σ2 ,

where m is the mean and σ is the standard deviation.

a) Compute its Fourier transform, F (α).

b) MATLAB: Investigate graphically the behavior of f versus F as
σ varies; in particular, justify the statement made in the text, that
sharply peaked Gaussian’s have flat, spread-out Fourier transforms,
and vice versa.

4. Find a function which is its own Fourier transform, i.e., for which
F [f(x)] = f(α).

5. Prove that the (infinite) convolution satisfies the following properties:

a) Commutativity: f ∗ g = g ∗ f .
b) Associativity: f ∗ (g ∗ h) = (f ∗ g) ∗ h.
c) Distributive law: f ∗ (c1g+c2h) = c1f ∗g+c2f ∗h, for all constants

c1 and c2.

6. We’ve been treating all of these transforms as though they’re linear
without even justifying it! Prove that all of the integral transforms in
this chapter are linear, that is, prove that each transform T satisfies

T (c1f1 + c2f2) = c1T (f1) + c2T (f2)

for all constants c1 and c2 and for all functions f1 and f2 for which the
transform is defined.



240 An Introduction to Partial Differential Equations with MATLAB R©

7. Use the result of Example 1 to show that
∫∞
−∞

sinα
α dα = π. Then, find

Fc

[
sin cx

x

]
. (Actually, we’ll need the first statement when we prove the

Fourier inversion theorem, so in Section 6.5 we must prove
∫∞
−∞

sinα
α dα =

π without using transforms.)

8. Show that the Fourier integral representation also can be written

F [f(x)] = 1

π

∫ ∞

0

∫ ∞

−∞
f(z) cosα(x − z)dzdα.

9. Prove the following properties of Fourier transforms. In each case,
F (α) = F [f(x)] and G(α) = F [g(x)].

a) F [f(cx)] = 1
cF

(
α
c

)
b) F [xf(x)] = iF ′(α)

c) F [f(x)g(x)] = 1√
2π
F (α) ∗G(α)

d) F [eicxf(x)] = F (α− c)

10. a) Use the property F [f ′(x)] = iαF (α) to prove that F [f (n)(x)] =
(iα)nF (α), n = 1, 2, 3, . . . .

b) How would you find F−1
[
F (α)
α

]
and, more generally, F−1

[
F (α)
αn

]
?

(We can’t really answer these questions definitively until we get to
Section 6.5.)

11. Calculate the Fourier transform of f .

a) f(x) =
x

(1 + x2)2

b) f(x) =

∫ ∞

−∞

sin y

y
e−|x−y| dy

c) f(x) =
2

3 + (x− 1)2

d) f(x) = e−x2−|x|

e) f(x) = x2e−x2

12. a) Show that if f is even, then F [f ] is even, and that if f is odd, then
F [f ] is odd.

b) Suppose that f(x) and F (α) form a Fourier transform pair. Show
that if f is even, then F (x) and f(α) form a Fourier transform pair,
while if f is odd, then F (x) and −f(α) form a Fourier transform
pair.
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13. The Laplace transform and the Fourier transform: Of course, the
Laplace transform is defined for functions with domain [0,∞). However,
suppose that

f(t) =

{
0, if t < 0,

g(t), if t ≥ 0.

Show formally that
L[g(t)] =

√
2π F (−iα),

where F (α) = F [f(t)].
14. Suppose that we start with the complex Fourier transform and derive

the sine and cosine integral formulas for functions on x ≥ 0. That is,
suppose that

f(x) =
1

2π

∫ ∞

−∞
eiαx

∫ ∞

−∞
f(z)e−iαz dzdα

for any well-behaved function f on −∞ < x < ∞, and show that, for
any well-behaved function g on x ≥ 0, we have

g(x) =
2

π

∫ ∞

0

sinαx

∫ ∞

0

g(z) sinαz dzdα

=
2

π

∫ ∞

0

cosαx

∫ ∞

0

g(z) cosαz dzdα.

15. Parseval’s equality for the complex Fourier transform: If we
allow f(x) and F (α) to be complex-valued functions, then we must
alter slightly the form of Parseval’s equality. Here it becomes∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|F (α)|2dα,

where |z| = |a+ bi| = √a2 + b2 is the modulus of the complex number
z. Noticing that |z|2 = a2 + b2 = (a+ bi)(a− bi), we see that the above
can be rewritten as∫ ∞

−∞
f(x)f(x) dx =

∫ ∞

−∞
F (α)F (α) dα.

We prove this as follows:

a) Use Euler’s formula to show that eiθ = e−iθ, where θ is real.

b) Show that z̄1z̄2 = (z1z2) for complex numbers z1 and z2.

c) Follow what you did in Exercise 11 of the previous section and,
along the way, use the fact that∫ ∞

−∞
f(x)e−iαx dx =

∫ ∞

−∞
f(x)e−iαx dx,

to arrive at the above result.
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16. Sampling, revisited: Exercise 12 of Section 6.2 dealt with the sampling
theorem for the Fourier sine series. Here, we do the same for the complex
Fourier transform and series. So, a function f on −∞ < x <∞ will be
band-limited if its Fourier transform F (α) = 0 outside some interval
−L ≤ α ≤ L. The least such (positive) L is f ’s cutoff frequency.

a) Supposing that the cutoff frequency for f is L = π, expand F (α)
in a complex Fourier series, as in Exercise 13, Section 3.3, and
conclude that

f(x) =
1√
2π

∫ ∞

−∞
eiαx

[ ∞∑
n=−∞

cne
−inα

]
dα,

where

cn =
1

2π

∫ π

−π

F (α)einα dα, n = . . . ,−1, 0, 1, . . . .

b) Show that

cn =
1√
2π
f(n), n = . . . ,−1, 0, 1, . . .

and, thus, that

f(x) =
1

2π

∞∑
n=−∞

f(n)

∫ π

−π

eiα(x−n) dα.

Again, f is recovered by sampling it on the integers!

6.4 The Infinite and Semi-Infinite Heat Equations

We are now in a position to use Fourier transforms to solve the heat equation
for an infinite rod. So suppose we have the problem

ut = k2uxx, −∞ < x <∞, t > 0,∗

u(x, 0) = f(x), −∞ < x <∞,
lim

|x|→∞
u(x, t) = 0.

∗We now use k2, instead of α2, for the thermal diffusivity, in order to avoid confusion.
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Since we have −∞ < x < ∞, we’ll apply the Fourier transform to the x-
variable. The transformed PDE is

Ut(α, t) = −α2k2U(α, t),

where U(α, t) = F [u(x, t)]. This is essentially an ODE, with general solution

U(α, t) = e−α2k2tG(α),

where G is an arbitrary function of α and may be determined by transforming
the initial condition. We arrive at

U(α, 0) = F (α) = F [f(x)]
= e0G(α),

so we now have
U(α, t) = e−α2k2tF (α).

Therefore, our solution is a convolution. First, then, we need to compute

F−1[e−α2k2t] =
1√
2π

∫ ∞

−∞
e−α2k2teiαx dα. (6.12)

We can evaluate this directly from the result of Exercise 4 in the previous sec-
tion. However, let’s compute it here. We know from Example 3 in Section 6.3
that

F−1[e−
α2

4 ] =
√
2 e−x2

=
1√
2π

∫ ∞

−∞
e−α2/4eiαx dα,

so we need only put (6.12) in this form. Remembering that α is the integration
variable and, therefore, treating x and t as constants, we let

u

2
= αk

√
t,

1

2
du = k

√
t dα.

Then, (6.12) becomes

1√
2π

∫ ∞

−∞
e−

u2

4 e
iu

(
x

2k
√

t

)
du

2k
√
t
=

1

k
√
2t
e
−
(

x
2k

√
t

)2

=
1

k
√
2t
e−

x2

4k2t .

So our solution is the convolution (in x, of course)

u(x, t) =
1

k
√
2π

1√
2t
e−x2/4k2t ∗ f(x) = 1

k
√
2π

1√
2t
f(x) ∗ e−x2/4k2t,

which can be written

u(x, t) =
1

2k
√
πt

∫ ∞

−∞
e−

(x−ξ)2

4k2t f(ξ)dξ (6.13)
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or

u(x, t) =
1

2k
√
πt

∫ ∞

−∞
f(x− ξ)e− ξ2

4k2t dξ.

For various reasons, the solution usually is written as the former. The

function G(x, t) = 1
2k

√
πt
e−

x2

4k2t is called the heat kernel, and it’s also called

the fundamental solution for this problem (see Section 10.5). Of course,
for fixed t, G is just the normal density function of Exercise 3 in the previous
section, with variance σ2 = 2k2t (and variance is the square of the standard
deviation).

Sadly, (6.12) is not the only solution to this problem. It turns out, however,
that it is the only continuous, bounded solution (so long as f is bounded).

There is a very nice physical interpretation of this solution, which we’ll
mention in Chapter 10. Let’s look at an example.

Example 1 Solve the heat problem

ut = uxx

u(x, 0) = f(x) =

{
1/2a, if |x| ≤ a,
0, if |x| > a, a > 0,

lim
|x|→∞

u(x, t) = 0.

Note that the initial heat content of the bar is the same for any choice of a.
Using (6.12), our solution is

u(x, t) =
1

4a
√
πt

∫ a

−a

e−
(x−ξ)2

4t dξ.

It’s interesting to analyze what happens at t → ∞, or as a varies. In either
case, let’s first calculate the heat content of the bar (assuming constant cross
section, as always); it is proportional to

∫ ∞

−∞
u(x, t)dx =

1

4a
√
πt

∫ ∞

−∞

∫ a

−a

e−
(x−ξ)2

4t dξdx

=
1

4a
√
πt

∫ a

−a

∫ ∞

−∞
e−

(x−ξ)2

4t dxdξ.†

Now, in order to evaluate the x-integral, we—as usual!—substitute so that we
can use

∫∞
−∞ e−x2

dx =
√
π. Then, everything simplifies to

∫ ∞

−∞
u(x, t)dx = 1,

†Again, so long as we may reverse the order of integration.
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for any choice of t! Actually, this is not as surprising as it seems; it’s just a
statement of the conservation of (heat) energy.

Of course, the last equation says that the heat content does not depend
on a, as well. This is because we rigged the problem so that the initial heat
content is independent of the choice of a.

Figure 6.4 illustrates u(x, t) for a = 1 and for various values of t. Figure 6.5,
on the other hand, shows u(x, t) for the specific time t = 1, but for different
values of a.

FIGURE 6.4
MATLAB graph of the solution of the problem in Example 1, with
a = 1a = 1a = 1, for t = 1, 3t = 1, 3t = 1, 3 and 555 (from highest peaked to lowest peaked).

We look more closely at the solution u(x, t), and the conservation of energy,
in the exercises.

Before leaving this example, we should ask what happens as a→ 0. Specif-
ically, let’s rewrite some of the functions f(x) by letting a = 1

n , where n is a
natural number:

fn(x) =

⎧⎪⎨
⎪⎩
n/2, if |x| ≤ 1

n
,

0, if |x| > 1

n
.
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FIGURE 6.5
MATLAB graph of the solution of the problem in Example 1, at
time t = 1t = 1t = 1, for a = 1, 3a = 1, 3a = 1, 3 and 555 (from highest peaked to lowest peaked).

As n → ∞, f seems to be approaching a “function” which is infinite at the
origin and 0 everywhere else—certainly not a function, as far as we’re con-
cerned. (See Figure 6.6.) However, in the more general setting of distributions
or generalized functions, it turns out that it does make sense and, in fact, that
it turns out to be one of the most important ideas in mathematics! We write

lim
n→∞ fn(x) = δ(x), ‡

where δ(x) is called the Dirac§ delta function, and the functions fn(x) are
said to form a delta sequence.

Also, as
∫∞
−∞ fn(x)dx = 1 for each n, it looks as though δ(x) has the

property ∫ ∞

−∞
δ(x)dx = 1.

We’ll look more closely at these ideas in the next section.

‡Realizing that this is not a true “=.”
§After the great quantum physicist P.A.M. Dirac (1902–1984).
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Now that we’ve solved the heat equation for an infinite bar, we turn to the
case of the semi-infinite bar. Specifically, we’d like to solve the problem

x

1

y = f      (x)

y

4y = f   (x)

1

10

2

1y = f  (x)

y = f  (x)

1

2

1

4 4

1

210

1

10

1 1

FIGURE 6.6 Graphs of y = fn(x)y = fn(x)y = fn(x) for n = 1, 2, 4n = 1, 2, 4n = 1, 2, 4 and 101010.

ut = uxx, 0 < x <∞, t > 0,

u(x, 0) = f(x), 0 < x <∞,
u(0, t) = 0,

from Section 6.2. We’ll solve it here using the method of images. (You
may recall that we used the method of images to solve the semi-infinite wave
equation in Section 5.4.) The idea is to solve, instead, the problem

ut = uxx, −∞ < x <∞, t > 0,

u(x, 0) = g(x), −∞ < x <∞,
where g(x) is either the even or the odd extension of f to the interval −∞ <
x < ∞. Which one? Since we would like the solution to satisfy u(0, t) = 0,
we try the odd extension

g(x) =

{
f(x), if x > 0,
−f(−x), if x < 0.

We’ve already solved the new problem; from (6.12) we have

u(x, t) =
1

2
√
πt

∫ ∞

−∞
e−

(x−ξ)2

4t g(ξ)dξ.
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Then, since g is odd, we also have

u(0, t) = 0 (why?).

Thus, we have our solution to the original problem. However, we really should
be able to write it in terms of the initial function f . So, we write

u(x, t) =
1

2
√
πt

[∫ 0

−∞
e−

(x−ξ)2

4t g(ξ)dξ +

∫ ∞

0

e−
(x−ξ)2

4t g(ξ)dξ

]
.

Substituting z = −ξ in the first integral turns it into∫ ∞

0

e−
(x+z)2

4t g(−z)dz = −
∫ ∞

0

e−
(x+z)2

4t f(z)dz

and our solution becomes

u(x, t) =
1

2
√
πt

∫ ∞

0

[
e−

(x−ξ)2

4t − e− (x+ξ)2

4t

]
f(ξ)dξ

which, of course, is exactly what we got in Section 6.2 using the sine transform.
One final note: It turns out that the heat/diffusion problem on −∞ < x <

∞ is not well-posed! See Exercise 15.

Exercises 6.4

1. Two identical very long rods are at different temperatures, T1 and T2. At
time t = 0 they are attached; then, the system will satisfy the problem

ut = k2uxx, −∞ < x <∞, t > 0,

u(x, 0) =

{
T1, if x < 0

T2, if x > 0.

a) Solve the problem.

b) MATLAB: Letting k2 = 1, T1 = 10◦ and T2 = 30◦, graph the
solution in the x-u plane, for various values of t. (You’ll need to
replace ±∞ by ±M and to choose M judiciously.)

2. Show formally that (6.13) does, in fact, satisfy the PDE and initial
condition. Find another solution to this problem. (Hint: It need not be
continuous at t = 0.)

3. Use the method of images to solve

ut = uxx, x > 0, t > 0,

u(x, 0) = f(x),

ux(0, t) = 0,

lim
x→∞u(x, t) = 0,
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and make sure you get the same answer as before (Exercise 5, Sec-
tion 6.2).

4. Uninsulated rod (In each case, verify formally that your solution
satisfies the problem.)

a) Solve the system

ut = uxx − u, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

lim
|x|→∞

u(x, t) = 0,

which represents the temperature of an infinite rod whose sides are
not insulated (as we derived in Exercise 9, Section 2.4).

b) Now solve the same problem for the semi-infinite rod, with Dirichlet
condition u(0, t) = 0.

c) Do the same, but now for the semi-infinite rod subject to the Neu-
mann condition ux(0, t) = 0.

d) Go back and solve parts (a)–(c) via the substitution u(x, t) =
e−tv(x, t).

5. Diffusion-Convection: Repeat Exercise 3, but for the diffusion-convec-
tion equation ut = uxx − ux (see Exercise 7, Section 4.1). Again, verify
formally that your solutions satisfy the system.

6. Infinite and semi-infinite Euler–Bernoulli beam: (Solve each
problem, in terms of Fourier integrals.)

a) The infinite Euler–Bernoulli beam problem

utt = uxxxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

ut(x, 0) = g(x).

b) The semi-infinite E–B beam problem

utt = uxxxx, x > 0, t > 0

u(x, 0) = f(x),

ut(x, 0) = g(x),

ux(0, t) = 0.
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7. In Section 5.3 we derived d’Alembert’s formula

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct

g(z)dz

for the solution of the infinite wave problem

utt = c2uxx,

u(x, 0) = f(x),

ut(x, 0) = g(x).

We also may solve this problem using Fourier transforms.

a) Use Fourier transforms to solve

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x),

ut(x, 0) = 0,

lim
|x|→∞

u(x, t) = 0. (Hint: Use cos θ =
eiθ + e−iθ

2
.)

b) Do the same for

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = 0,

ut(x, 0) = g(x),

lim
|x|→∞

u(x, t) = 0. (Hint: Do not use the above hint!)

8. Use Fourier transforms to solve Laplace’s equation on the half-plane:

uxx + uyy = 0, −∞ < x <∞, y ≥ 0,

u(x, 0) = f(x),

lim
|x|,y→∞

|u(x, y)| = 0.

Then show that you may write this solution explicitly as

u(x, y) =
y

π

∫ ∞

−∞

f(z)

y2 + (x− z)2 dz.

(When you solve the ODE after transforming, take care to solve it for
α ≥ 0 and for α < 0 separately.) This is one form of the Schwarz
integral formula, or Poisson’s integral formula for the upper
half-plane, and the function y

π(y2+x2) is the Poisson kernel.
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9. Solve the semi-infinite heat problem

ut = uxx, x > 0, t > 0,

u(x, 0) = f(x),

u(0, t) = g(t),

lim
x→∞u(x, t) = 0.

(See Example 4 in Section 6.2.)

10. Solve the Laplace equation problem on the first quadrant:

uxx + uyy = 0, x > 0, y > 0,

u(x, 0) = f(x),

u(0, y) = g(y),

lim
x,y→∞u(x, y) = 0.

11. Consider the PDE

utt + 2aut + bu = c2uxx, −∞ < x <∞, t > 0.

a) What kind of equation is this (hyperbolic, parabolic, elliptic)?

b) Show that, if a2 − b < 0, the Fourier transform of the solution is

U(α, t) = c1(α)e
−at cos

√
b+ c2α2 − a2 t + c2(α)e

−at sin
√
b+ c2α2 − a2 t

for arbitrary functions c1 and c2.

c) Show that, if a2 − b = 0, we have

U(α, t) = c1(α)e
−at cos cαt+ c2(α)e

−at sin cαt

(unless α = 0).

d) Show that, if a2 − b > 0, we have

U(α, t) =

⎧⎪⎪⎨
⎪⎪⎩

c1(α)e
−at cos

√
b+ c2α2 − a2 t

+ c2(α)e
−at sin

√
b+ c2α2 − a2 t, if c2α2 ≥ a2 − b,

c3(α)e
−at cosh

√−b− c2α2 + a2 t

+ c4(α)e
−at sinh

√−b− c2α2 + a2 t, if c2α2 < a2 − b.

12. a) Use the results of the preceding exercise to find the solution, in
Fourier integral form, of the one-dimensional telegraph equation

CLutt + (RC +GL)ut +RGu = uxx
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on −∞ < x <∞, t > 0, subject to the conditions

u(x, 0) = f(x),

ut(x, 0) = g(x),

lim
|x|→∞

u(x, t) = 0.

b) A very important PDE from particle physics is the (one-dimensional)
linearized Klein–Gordon equation

utt +m2u = c2uxx,

where m is the mass of the given elementary particle and c is the
speed of light. Do the same as in part (a) for this equation.

c) Use the fact that

F [J0(
√

1− x2)H(1− x2)] =
√

2

π

sin
√
α2 + 1

α2 + 1

to show that the solution of part (b), with f(x) = 0, is

u(x, t) =
1

2c

∫ ct

−ct

g(x− ξ)J0(m
√
c2t2 − ξ2)dξ.

13. Fourier transform in higher dimensions; the two-dimensional
heat equation on the plane: As we show in Section 9.6, we may
talk about the Fourier transform of a function of several variables. For
instance, for f = f(x, y), we have the Fourier transform

F (α, β) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(αx+βy)dxdy

= F [f(x, y)],
with the inverse transform of F given by

f(x, y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
F (α, β)ei(αx+βy)dαdβ.

a) Show that
F [fx] = iαF and F [fy] = iβF.

b) Show that the formal solution to the two-dimensional heat equation

ut = uxx + uyy, −∞ < x <∞,−∞ < y <∞,
u(x, y, 0) = f(x, y),

lim
x2+y2→∞

u(x, y, t) = 0,
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is

u(x, y, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
F (α, β)e−(α2+β2)t+i(αx+βy)dαdβ

= F−1[F (α, β)e−(α2+β2)t].

c) Convolution: Show that

F−1[F (α, β)G(α, β)] =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x− u, y − v)g(u, v)dudv,

where F = F [f ] and G = F [g]. Not surprisingly, we call this
integral f ∗ g, the convolution of f with g.

d) Show that the solution to part (b) can be written

u(x, y, t) =
1

4πt

∫ ∞

−∞

∫ ∞

−∞
e

−[(x−u)2+(y−v)2]
4t f(u, v)dudv.

14. Use the result of the previous exercise to solve the two-dimensional heat
problem on the half-plane

ut = uxx + uyy, −∞ < x <∞, 0 < y <∞,
u(x, y, 0) = f(x, y),

subject to the boundary condition

a) u(x, 0, t) = 0

b) uy(x, 0, t) = 0

15. Here we consider the well-known function

f(x) =

{
e−1/x2

, if x �= 0,

0, if x = 0.

a) What is lim
x→0

f(x)?

b) Show that

lim
x→0

f(x)

x
= lim

x→0

f(x)

x2
= 0,

then use mathematical induction to show that

lim
x→0

f(x)

xn
= 0, n = 3, 4, 5, . . . .

c) Show that f is infinitely differentiable and that f (n)(0) = 0 for
n = 1, 2, 3, . . . . (Hint: Look at

lim
h→0

f (n−1)(h)− f (n−1)(0)

h
= f (n)(0).)
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d) Show that f is not analytic at x = 0. Remember that f is analytic
at x0 if the Taylor series

∞∑
n=0

f (n)(x0)

n!
(x− x0)n

converges to f on some interval x0 − L < x < x0 + L (L > 0).

e) Now show, by differentiating term-by-term (which, as it turns out,
is legal here), that the function

u0(x, t) =

∞∑
n=0

f (n)(t)

(2n)!
x2n

is a solution of the heat/diffusion problem

ut = uxx, −∞ < x <∞, t > 0,

u(x, 0) = 0.

Why does it follow that the problem does not possess a unique
solution?

f) Explain why uniqueness must fail for the general problem

ut = uxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x).

This famous example is due to A.N. Tychonov (1935).

6.5 Distributions, the Dirac Delta Function
and Generalized Fourier Transforms

We have been lax in our treatment of Fourier transforms. Specifically, we
have paid almost no attention to the “absolutely integrable” requirement.
And now, in the previous section, we introduce the function δ(x) which, for
all intents and purposes, looks like

δ(x) =

{
0, if x �= 0,

∞, if x = 0!

Why? Well, as in most situations of this type, it’s because it works (so very
well). Remember that Newton, Leibniz, Euler, et al. used the calculus with
astounding results without even knowing why it worked. (Newton went so
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far as to recast all of the proofs in Principia Mathematica in terms of the
well-established Euclidean geometry.)

Similarly, during the late 19th and early 20th centuries, mathematicians
and scientists used the old classical analysis on problems involving these new
“functions,” with resounding success.∗

Finally, in the early 1950s, the mathematician Laurent Schwartz† gener-
alized the idea of function, putting everything into a setting—the theory of
generalized functions or distributions—which made all of the ideas math-
ematically legitimate.

Schwarz defined these generalized functions and these operations in terms
of integrals and, specifically, in terms of inner products. In this setting, our
old classical functions still behave as always.

We begin by defining a test function to be any function φ : R→ R which

1) Has derivatives of all orders.

2) Is zero outside some finite internal (we say that φ has finite support).

Then, given any function f : R→ R which is locally integrable on (−∞,∞),‡

the inner product

〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x)dx

converges for any test function φ. Further, it is linear in the sense that

〈f, c1φ1 + c2φ2〉 = c1〈f, φ1〉+ c2〈f, φ2〉

for any constants c1, c2 and any test functions φ1, φ2. So, if we think of f as
fixed, what we actually have is a function of functions, which maps each test
function φ to the real number 〈f, φ〉. (Such a function, with domain equal to
a set of functions and range consisting of a set of real or complex numbers, is
called a functional.) Although the notation is not the usual, we can write

f [φ] = 〈f, φ〉,

and the linearity property becomes

f [c1φ1 + c2φ2] = c1f [φ1] + c2f [φ2].

∗Heaviside was the “leader of the pack.” (As Heaviside said, “Should I refuse a good dinner
simply because I do not understand the process of digestion?”) The downside of all this
is that they could only show formally that they had the right answer, and that only by
“plugging it back in.”
†His famous article “Théorie des distributions” appeared in two parts, in 1950 and 1951.
‡That is, integrable on any bounded subset of the number line.
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Now, to generalize, we look again at the delta sequence

fn(x) =

⎧⎪⎨
⎪⎩
n

2
, if |x| ≤ 1

n
,

0, if |x| > 1

n
.

For any test function φ,

〈fn, φ〉 = n

2

∫ 1
n

− 1
n

φ(x)dx

and, classically, we may write

lim
n→∞〈fn, φ〉 = φ(0)

(see Exercise 4). Then, formally,

φ(0) = lim
n→∞〈fn, φ〉 = lim

n→∞

∫ ∞

−∞
fn(x)φ(x)dx

=

∫ ∞

−∞
[ lim
n→∞ fn(x)]φ(x)dx

=

∫ ∞

−∞
δ(x)φ(x)dx,

suggesting that we define the generalized function δ(x), the Dirac delta
function, by

δ[φ] = 〈δ(x), φ(x)〉 = φ(0).

Certainly, this is defined for any test function φ. Further,

δ[c1φ1 + c2φ2] = [c1φ1(x) + c2φ2(x)]|x=0

= c1δ[φ1] + c2δ[φ2],

so δ is a linear functional on the space of test functions.
Generally, we define a generalized function or distribution to be any

linear functional on the space of test functions.§ We use the notation

f [φ] = 〈f, φ〉 =
∫ ∞

−∞
f(x)φ(x)dx,

realizing that the integral may not make sense, classically. It is more than
mere notation, though, in the sense that this generalized integral still behaves
like a classical integral (so we may substitute, integrate by parts, etc.).

§Actually, we need more—we define what we mean by a continuous functional and then
define a distribution to be any continuous, linear functional on the space of test functions.
For a very nice brief treatment, see the excellent book Mathematical Methods in Physics
and Engineering by John W. Dettman.
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MULTIPLICATION OF A DISTRIBUTION BY A FUNCTION

If f and g are integrable, then we have

〈fg, φ〉 =
∫ ∞

−∞
f(x)g(x)φ(x)dx = 〈g, fφ〉.

Therefore, we define the multiplication of the distribution g by the integrable
function f by

〈fg, φ〉 = 〈g, fφ〉.¶

In particular, it’s interesting to note that the distribution xrδ(x), for any
r > 0, is given by

〈xrδ(x), φ(x)〉 = 〈δ(x), xrφ(x)〉 = 0 (why?).

Therefore, there are infinitely many distributions which behave as the “zero
distribution.” In fact, it follows that

〈f, φ〉 = 〈f + cxrδ(x), φ〉

for any constants c and r, with r > 0.

TRANSLATION OF A DISTRIBUTION

If f(x) is integrable, then so is f(x− x0) for any constant x0. Then

〈f(x− x0), φ(x)〉 =
∫ ∞

−∞
f(x)φ(x + x0)dx = 〈f(x), φ(x + x0)〉.

So we define the translation of the distribution f via

〈f(x− x0), φ(x)〉 = 〈f(x), φ(x + x0)〉

for all test functions φ. In particular, we have

〈δ(x − x0), φ(x)〉 = 〈δ(x), φ(x + x0)〉 = φ(x0),

and we write ∫ ∞

−∞
δ(x− x0)φ(x)dx = φ(x0).

This is called the sifting property of δ.‖

¶Of course, we must show that this is a distribution, too.
‖We generalize this statement below, to functions φ which are not test functions.
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DERIVATIVE OF A DISTRIBUTION

Now, given an integrable and differentiable function f(x), what distribution,
in terms of f , is defined by f ′? Well,

〈f ′, φ〉 =
∫ ∞

−∞
f ′(x)φ(x)dx,

and, integrating by parts, we have

= −
∫ ∞

−∞
f(x)φ′(x)dx (why?)

= −〈f, φ′〉.
Therefore, we define the derivative of any distribution f to be the distribution

f ′[φ] = −〈f, φ′〉.
For the delta function, we have

〈δ′, φ〉 = −〈δ, φ′〉 = −φ′(0)
and, more generally,

〈δ(n), φ〉 = (−1)nφ(n)(0), n = 1, 2, 3, . . .

(see Exercise 6).
Another important function—and distribution—is the Heaviside∗∗ func-

tion

H(x) =

{
1, if x > 0,

0, if x < 0.

Classically, of course, H ′(x) = 0 except at x = 0, where it doesn’t exist. What
is H ′ as a distribution? We have

〈H ′, φ〉 = −〈H,φ′〉 = −
∫ ∞

0

φ′(x)dx (why?)

= φ(0) (again, why?),

that is, for any test function φ,

〈H ′, φ〉 = 〈δ, φ〉.
We say that H ′(x) = δ(x), and, more generally, we can write

〈H(n)(x− x0), φ(x)〉 = 〈(−1)n−1δ(n−1)(x− x0), φ(x)〉
= (−1)n−1φ(n−1)(x0)

for any test function φ.

∗∗Again, Oliver.
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GENERALIZED FOURIER TRANSFORMS
AND DISTRIBUTIONS

The definition of the Fourier transform is generalized to this setting, as well,
so that we may talk about the Fourier transform of any distribution. So, for
example, we will throw around integrals like

F [H(x)] =

∫ ∞

0

e−iαx dx

which clearly make no sense classically.
Let’s begin by looking at the Fourier transform of the function in the delta

sequence fn(x) from earlier. We have

F [fn(x)] = 1√
2π

n

2

∫ 1/n

−1/n

e−iαx dx

=
1√
2π

sinα/n

α/n
(why?)

and, since

lim
n→∞

sinα/n

α/n
= 1,

we have no choice but to define

F [δ(x)] = 1√
2π
.††

This suggests that we would like to be able to say that∫ ∞

−∞
δ(x)f(x)dx = f(0)

even when f is not a test function. This is accomplished by looking at what is
called the principal value of the given integral—an idea discussed classically
in the following section. In particular, we’ll have∫ ∞

−∞
δ(x)dx = 1.

More generally, we have (formally)

F [δ(x− x0)] = 1√
2π

∫ ∞

−∞
δ(x− x0)e−iαx dx

=
1√
2π

∫ ∞

−∞
δ(x)e−iα(x+x0) dx

=
e−iαx0

√
2π

,

††Many texts choose to write F [f(x)] =
∫∞
−∞ f(x)e−iαx dx, F−1[F (α)] =

1
2π

∫∞
−∞ F (α)eiαxdx, so that F [δ(x)] = 1.
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and we have the transform pairs

δ(x− x0)←→ e−iαx0

√
2π

eicx ←→
√
2π δ(α− c)

(see Exercise 7b).
Now, what about the transform of the Heaviside function? Here it turns

out that we must proceed with care. We require that Fourier transforms of
distributions must satisfy the old identity

F [f ′(x)] = iαF [f(x)],
so we must have

iαF [H(x)] = F [δ(x)] = 1√
2π
.

So it looks like we would get

F [H(x)] =
1

iα
√
2π
.

However, consider the function f(x) = H(x) + H(−x) = 1. We have, from
Exercise 2 of Section 6.3,

F [H(−x)] = − 1

iα
√
2π
,

from which it follows that

F [1] =
√
2π δ(α) = F [H(x)] + F [H(−x)] = 0,

a contradiction! What happened? It turns out that the presence of 1
α is

what causes the trouble, due to its severe discontinuity at α = 0. For this
reason, in the distributional setting, 1

α is referred to not as a function, but as a
pseudo function.‡‡ For our purposes, it suffices to remember that f(x)+cxδ(x)
generates the same distribution as f(x), for any constant c. So we see if we
can find c so that

F [H(x)] =
1

iα
√
2π

+ cδ(α) = Ĥ(α).

Back to the equation above, we have
√
2π δ(α) = F [H(x)] + F [H(−x)]

= Ĥ(α) + Ĥ(−α)
= 2cδ(α),

‡‡See, e.g., Green’s Functions and Boundary Value Problems, 2nd ed., by Ivar Stakgold.
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or

F [H(x)] =
1

iα
√
2π

+

√
π

2
δ(α).

Finally, the sign or signum function

sgn(x) = H(x)−H(−x)

turns out to be very important, as we’ll see presently. Therefore, let’s look at
its transform:

F [sgn x] = F [H(x)] −F [H(−x)]

=
1

iα

√
2

π
.

Now we’re finally in a position to deal with F−1
[
F (α)
iα

]
and the like (which

we tried to do in Exercise 9b of Section 6.3). To repeat, though, we have the
transform pairs

H(x)←→ 1

iα
√
2π

+

√
π

2
δ(x)

√
π

2
sgn x←→ 1

iα
.

Then, using the convolution formula, we have

F−1

[
F (α)

iα

]
=

1√
2π

(√
π

2
sgn x

)
∗ f(x)

=
1

2

∫ ∞

−∞
sgn(x− y)f(y)dy

=
1

2

[∫ x

−∞
f(y)dy −

∫ ∞

x

f(y)dy

]
(why?).

Exercises 6.5

1. Show formally, using integrals, that we have no choice but to treat δ(x)
as an even function.

2. Suppose that φ(x) and ψ(x) are test functions. Decide if each statement
is true or false, and justify your answer.

a) φ(x + x0) is a test function.

b) φ′(x) is a test function.

c)
∫ x

−∞ φ(ξ)dξ is a test function.

d) φ(x)ψ(x) is a test function.
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e) φ(x)/ψ(x) is a test function.

f) f(x)φ(x) is a test function for any infinitely differentiable function
f .

3. a) Show that the function

φ(x) =

{
e−1/xe1/x−1, if 0 < x < 1,

0, otherwise,

is a test function.

b) MATLAB: Graph φ(x).

c) Using part (a) as a hint, construct a test function on the more
general interval a < x < b (i.e., such that φ(x) = 0 outside of
a < x < b).

4. Given the delta sequence

fn(x) =

⎧⎨
⎩
n

2
, if −1/n < x < 1/n,

0, otherwise,

use the mean value theorem for integrals to show that

lim
n→∞

n

2

∫ 1/n

−1/n

fn(x)φ(x)dx = φ(0)

for any continuous function φ.

5. a) Show that, for any x �= 0,

lim
n→∞

√
n

π
e−nx2

= 0.

b) What happens for x = 0?

c) Show that, for any n > 0,√
n

π

∫ ∞

−∞
e−nx2

dx = 1.

d) MATLAB: Plot the graph of y =
√

π
n e−nx2

for various values of
n.

e) Describe how you would show that

lim
n→∞

√
n

π

∫ ∞

−∞
e−nx2

φ(x)dx = φ(0)

for any continuous, bounded function φ. (Therefore, the sequence

of continuous function
√

n
π e

−nx2

is a delta sequence.)
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f) More generally, suppose that
∫∞
−∞ f(x)dx = 1. Define

fn(x) =
1

n
f
(x
n

)
, n = 1, 2, 3, . . .

and show that

i) lim
n→∞ fn(x) = 0 for any fixed x �= 0.

ii) lim
n→∞

∫∞
−∞ fn(x)dx = 1.

6. Use mathematical induction to prove that

〈δ(n)(x− x0), φ(x)〉 = (−1)nφ(n)(x0), n = 1, 2, 3, . . . .

7. a) Show that F [δ(x + x0)± δ(x− x0)] =
{
2 cosαx0
2i sinαx0.

b) Show that, if

F [δ(x − x0)] = e−iαx0

√
2π

,

then
F [eicx] = √2π δ(α − c).

8. a) Although we have the classical formulaF [f(x−x0)] = e−ix0αF [f(x)],
compute F [H(x − x0)], instead, the same way that we computed
F [H(x)].

b) In Example 1 of Section 6.3, we found the Fourier transform of the
square wave

f(x) =

{
1, if 1 < x < 1,

0, otherwise.

Here, instead, rewrite f as a sum of various Heaviside functions,
then take the Fourier transform (and show that we get the same
answer!).

c) If f(x) is a function and g(x) is a distribution, we define the product
fg by 〈fg, φ〉 = 〈g, fφ〉 (so long as f is sufficiently well behaved).
Show that the old product rule still holds, that is, that (fg)′ =
fg′ + gf ′, in the distributional sense.

d) Distributional derivatives of general piecewise smooth func-
tions: Suppose f(x) is the piecewise smooth function

f(x) =

{
g(x), if x < x0,

h(x), if x > x0.

Rewrite f using the Heaviside function, as in part (b), then com-
pute its distributional derivative. (Hopefully, it will be identical to
the old f ′(x) for every x �= x0.)
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e) Generalize part (d) to any piecewise smooth function

f(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x), if x < x1,
f2(x), if x1 < x < x2,

...
fn(x), if x > xn−1.

9. Use Exercise 9d of Section 6.3 to find

a) F−1
[

1
α−c

]

b) F−1
[

1
α2+α−2

]

10. Consider an electric network consisting of a resistor, an inductor and a
capacitor in series. Suppose that the network has a voltage source, so
that the voltage at the terminals of the network is given by E(t). See
Figure 6.7. Then it turns out that the current I(t) must satisfy the
differential equation

LÏ +Rİ +
1

C
I = Ė(t), −∞ < t <∞.

Here, L,R and C are the inductance, resistance and capacitance.

)

L
E(t)

R

I(t)

+

_

FIGURE 6.7
The electrical network in Exercise 10.

a) Suppose, further, that there is a switch and that the voltage is a
constant E0 when the switch is closed. Conclude that, if the switch
is closed at time t = t0, the equation becomes

LÏ +Rİ +
1

C
I = E0δ(t− t0), −∞ < t <∞.

b) Use Fourier transforms, as well as Exercise 9 of Section 6.3, to solve
this problem from the case L = 1, R = 0, C = 1/4, E0 = 1 and
t0 = 3.
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11. a) Show that the heat kernel

u(x, t) =
1

2k
√
πt
e−

x2

4k2t

is the solution of the heat/diffusion problem

ut = k2uxx, −∞ < x <∞, t > 0,

u(x, 0) = δ(x).

b) Show formally that the nonhomogeneous heat problem

wt = k2wxx + δ(x), −∞ < x <∞, t > 0,

w(x, 0) = 0,

has solution w(x, t) =
∫ t

0 u(x, t), where u is the solution from part
(a).

12. Suppose we start out by defining the Fourier transform/inverse trans-
form formulas for the delta function. That is, formally, we say that

F [δ(x− x0)] = 1√
2π

∫ ∞

−∞
δ(x− x0)e−iαx dx =

e−iαx0

√
2π

and

δ(x− x0) = F−1

[
e−iαx0

√
2π

]
=

1

2π

∫ ∞

−∞
e−iα(x−x0)dα.

Then it turns out that we can recover (at least formally) the Fourier
transform formulas for arbitrary functions. For example,

a) Given

δ(x − y) = 1

2π

∫ ∞

−∞
eiα(x−y) dα,

multiply both sides by f(y), then integrate, to arrive at the Fourier
integral representation of f (6.11).

b) Similarly, starting with

δ(α− β) = 1

2π

∫ ∞

−∞
e−iy(α−β) dy,

multiply both sides by F (α)G(β)eiβx, integrate both sides with
respect to β and α and then reverse the order of integration on the
right side to arrive at the convolution formula∫ ∞

−∞
F (α)G(α)eiαx dα = f(x) ∗ g(x).

Here, of course, F and G are the transform of f and g, respectively.
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6.6 Proof of the Fourier Integral Formula ∗

Now we are ready to prove Theorem 6.2 (whence Theorem 6.1 follows). First,
let’s introduce the idea of the Cauchy principal value.

Definition 6.1 We define

lim
M→∞

∫ M

−M

f(x)dx

to be the Cauchy principal value or Cauchy principal part of the (pos-
sibly divergent—else, why bother?) integral∫ ∞

−∞
f(x)dx.

The point is that the integral may diverge, while the Cauchy principal value
converges, as we see in the following example. (Also, see Exercise 2.)

Example 1 As we saw in Section 6.2,
∫∞
−∞

x
x2+c2 dx diverges. However, lim

R→∞∫M

−M
x

x2+c2 dx = 0 (why?).

As a result, we needed to be very careful when we talked about∫ ∞

0

α sinαx

α2 + c2
dα

and the like. In fact, Theorem 6.2 should really read as the following.

Theorem 6.2′′′ Suppose that f is piecewise smooth on every finite interval,
and suppose that

∫∞
−∞ |f(x)|dx <∞. Then, for each x,

1

2π
lim

M→∞

∫ M

−M

F (α)eiαx dα

=
1

2π
lim

M→∞

∫ M

−M

∫ ∞

−∞
f(z)e−iαz dz eiαx dα =

1

2
[f(x+) + f(x−)].

Not surprisingly, there is much similarity between the proof of Theorem 6.2′

and the convergence proof for Fourier series, in Section 3.5. Here, we will need
first to prove a lemma which will allow us to use the same trick we used in
step [4] of that earlier proof. And, in proving this lemma, we’ll rely on the
proof of step [5], as well.

∗This section may be skipped without loss of continuity.
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Lemma 6.1 For any real constant M > 0,

∫ ∞

0

sinx

x
dx =

∫ ∞

0

sinMx

x
dx =

∫ 0

−∞

sinMx

x
dx =

π

2
.

PROOF The proof entails

[1] Showing that
∫∞
0

sin x
x dx converges;

[2] Rewriting the improper integral as

∫ π

0

sinx

x
dx = lim

n→∞

{∫ π

0

[
sinu/2

u/2
− 1

]
sin 2n+1

2 u

2 sinu/2
du

+

∫ π

0

sin 2n+1
2 u

2 sinu/α
du

}

(remember that Dn(u) = sin 2n+1
2 u/2 sin u

2 is the Dirichlet kernel);

[3] Using properties of the Dirichlet kernel to show that the first integral
→ 0 and the second → π

2 .

PROOF of [1] Write

∫ ∞

0

sinx

x
dx =

∫ 1

0

sinx

x
dx +

∫ ∞

1

sinx

x
dx.

Since lim
x→∞

sin x
x = 1, the first integral is finite. For the second, we integrate

by parts twice and get

∫ ∞

1

sinx

x
dx = cos 1− lim

x→∞
cosx

x
−
∫ ∞

1

cosx

x2
dx.

The limit on the right-hand side is 0 while, for the last integral, we have
∫ ∞

1

∣∣∣cosx
x2

∣∣∣ dx ≤
∫ ∞

1

1

x2
dx = 1.

Therefore, the integral is absolutely convergent (which implies it is conver-

gent).

PROOF of [2] and [3]

∫ ∞

0

sinx

x
dx = lim

R→∞

∫ R

0

sinx

x
dx

= lim
n→∞

∫ 2n+1
2 π

0

sinx

x
dx, n ∈ N
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(since it converges, we can have the upper limit approach ∞ any way we’d
like).

Now, we substitute

x =
2n+ 1

2
u, dx =

2n+ 1

2
du,

and we get∫ ∞

0

sinx

x
dx = lim

n→∞

∫ π

0

sin 2n+1
2 u

u
du

= lim
n→∞

∫ π

0

sinu/2

u/2

sin 2n+1
2 u

2 sinu/2
du

= lim
n→∞

∫ π

0

sinu/2

u/2
Dn(u)du,

where Dn(u) is, again, the Dirichlet kernel,

= lim
n→∞

[∫ π

0

(
sinu/2

u/2
− 1

)
Dn(u)du+

∫ π

0

Dn(u)du

]
.

To arrive at the last expression, we just added and subtracted 1 inside the
integral. But why? Well, first off, we already computed the second integral
in Section 3.5. As for the other, if we consider the continuous function

f(x) =

⎧⎨
⎩

sinx/2

x/2
, if x �= 0,

1, if x = 0,

then
sinu/2

u/2
− 1 = f(u)− f(0)

and the first integral is almost identical to the one from step [5] in Section 3.5.
There, we used the Riemann–Lebesgue Lemma to prove that the first integral
→ 0, and, in step [4], we proved that the second → π

2 .
Finally, it is straightforward to show that∫ ∞

0

sinMx

x
dx =

∫ 0

−∞

sinMx

x
dx =

∫ ∞

0

sinx

x
dx

for any constant M (see Exercise 1).

Now we prove Theorem 6.2′.

PROOF of Theorem 6.2′ We must prove that

lim
M→∞

1

2π

∫ M

−M

∫ ∞

−∞
f(z)e−iαzdz eiαxdα− 1

2
[f(x+) + f(x−)] = 0. (6.14)

To this end we shall
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[1] Justify reversing the order of integration, so that we may rewrite the
integral as

∫ M

−M

∫ ∞

−∞
f(z)e−iαzdz eiαxdx =

∫ ∞

−∞

[∫ M

−M

eiα(x−z)dα

]
f(x)dz

=

∫ ∞

−∞

eiα(x−z)

i(x− z)
∣∣∣α=M

α=−M
f(z)dz †

= 2

∫ ∞

−∞

sinM(x− z)
x− z f(z)dz,

(and, letting u = z − x)

= 2

∫ ∞

−∞

sinMu

u
f(x+ u)du.

[2] Use the lemma to write

f(x±) = 2

π

∫ ∞

0

sinMu

u
f(x±)du,

in which case (6.14) becomes

lim
M→∞

1

2π
· 2
∫ ∞

−∞

sinMu

u
f(x+ u)du− 1

2

[
2

π

∫ ∞

0

sinMu

u
f(x+)du

+
2

π

∫ 0

−∞

sinMu

u
f(x−)du

]

= lim
M→∞

[
1

π

∫ ∞

0

f(x+ u)− f(x+)

u
sinMu du

+
1

π

∫ 0

−∞

f(x+ u)− f(x−)
u

sinMu du

]
.

[3] Show that each integral → 0.

PROOF of [1] In order to reverse the order of integration, we must be
able to show that ∫ ∞

−∞
f(z)eiα(x−z)dz

converges uniformly as a function of α, on −R ≤ α ≤ R. While beyond
the scope of this book (although we briefly discuss uniform convergence in
Appendix B), it turns out that this follows from the fact that∫ ∞

−∞
|f(z)eiα(x−z)|dz =

∫ ∞

−∞
|f(z)|dz <∞.

†Note that, when x = z, the inside integral = 2M , although this is of no concern.
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(Note that the absolute value sign here represents not absolute value, but the
modulus of a complex number. It turns out that |z1z2| = |z1||z2| and that

|eiθ| = 1 for any real number θ.)

PROOF of [2] Easy (why?).

PROOF of [3] We prove here that

lim
M→∞

∫ ∞

0

f(x+ u)− f(x+)

u
sinMu du = 0;

the proof for the second integral is almost identical. First, we write∫ c

0

f(x+ u)− f(x+)

u
sinMu du+

∫ ∞

c

f(x+ u)− f(x+)

u
sinMu du

for constant c > 0. The only “problem” is what happens near u = 0; however,
as we’ve done before, we notice that

lim
u→0

f(x+ u)− f(x+)

u
= f ′(x+)

which is finite since f is piecewise smooth. This means that we can apply the
Riemann–Lebesgue Lemma to the first integral (again, see Section 3.5), with
the result being that, regardless of the choice of c, the first integral → 0 as
M →∞. As for the second integral, we can make it as small as we’d like just
by taking c large enough (why?). To be more precise, we may choose c and
M = M1 so that the second integral < ε

2 , and choose M = M2 which makes

the first integral < ε
2 ; then, for M = max(M1,M2), the sum is < ε.

And we are finished!

THE FOURIER TRANSFORM, INTUITIVELY

In closing, let’s take an intuitive look at the Fourier transform. As the Fourier
series resolved a function into its discrete spectrum, as well as the contribu-
tion at each frequency, so the Fourier transform may be looked at as resolving
a function into its continuous spectrum, with F (α) being a measure of
the contribution at each frequency α. Then, we see two phenomena involving
the Fourier transform which are analogous to those which we found for the
Fourier series:

1) Functions with sharp spikes require a greater contribution from
higher frequencies than do functions without them. So, we saw
that “thin, sharp” Gaussians had transforms which were “wide and flat,”
and vice versa, culminating in the extreme case involving the delta func-
tion. Indeed, δ(x) requires the same contribution from each frequency
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(since F [δ(x)] = constant), while a constant function requires an infinite
contribution from a single frequency.

2) The smoother a function, the less of a contribution it requires
from higher frequencies, and vice versa. This phenomenon can
be seen, for example, in the relationship between the square wave and
its Fourier transform, sinα

α , and is obviously related to the Gibbs phe-
nomenon for Fourier series. Of course, the delta function represents the
extreme case of this phenomenon, as well.

Exercises 6.6

1. Given that
∫∞
0

sin x
x dx = π

2 , show that
∫∞
0

sinMx
x dx =

∫ 0

−∞
sinMx

x dx =
π
2 , for any real constant M > 0. What can you say about

∫∞
0

cosx
x dx?

2. Give three examples of functions f with the property that
∫∞
−∞ f(x)dx

diverges but lim
M→∞

∫M

−M f(x)dx converges.

3. One also may talk about the principal value of an integral for which the
integrand has a singularity. For example, we may have that

∫ a

−a f(x)dx
diverges, but

lim
ε→0+

[∫ −ε

−a

f(x)dx +

∫ a

ε

f(x)dx

]

converges, in which case this limit is the principal value of the divergent
integral. Give an example of an integral

∫ a

−b
f(x)dx which diverges, but

for which the principal value converges.

OTHER INTEGRAL TRANSFORMS

There are many integral transforms, each determined by (a) the function that
is multiplied by f (this function is called the kernel of the transform) and
(b) the interval over which we integrate the product. In general, given f(x)
on a < x < b, an integral transform of f will be a function

F (α) =

∫ b

a

K(x, α)f(x)dx.

Here, K is the kernel. For example, for the Fourier transform, a = −∞,
b =∞ and K(x, α) = 1√

2π
eiαx. Other transforms are listed in Table 6.2.
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Kernel K(x, α) Interval

1. Laplace e−αx [0,∞)

2. Fourier e−iαx (−∞,∞)

3. Fourier sine sinαx [0,∞)

4. Fourier cosine cosαx [0,∞)

5. Finite Fourier K
(
x,
nπ

L

)
= e

inπx

L [−L,L]

6. Finite Fourier sine K
(
x,
nπ

L

)
= sin

nπx

L
[0, L]

7. Finite Fourier cosine K
(
x,
nπ

L

)
= cos

nπx

L
[0, L]

8. Mellin xα−1 [0,∞)

9. Hankel∗ xJm(αx) [0,∞)

10. Hilbert
1

π

1

x+ α
(−∞,∞)

11. Weierstrass
1

2
√
πα

e−x2/4α (−∞,∞)

∗ The function Jm is the mth-order Bessel function of the first kind; the
Hankel transform sometimes is called the Fourier–Bessel transform.

TABLE 6.2
Some integral transforms.

It turns out that the Mellin transform is very similar to the Fourier transform,
as we see in the following exercise.

4. Given f(x) on [0,∞), we define the Mellin transform of f to be

M[f(x)] = FM(α) =

∫ ∞

0

f(x)xα−1dx,

where α is purely imaginary, i.e., α = iβ, where β is real.

a) Show via the substitution x = e−z that

FM(α) = H(β) =

∫ ∞

−∞
f(e−z)e−iβzdz.

In other words,

M[f(x)] =
√
2πF [h(x)], where h(x) = f(e−x).

Therefore, the Mellin transform should have properties similar to
those of the Fourier transform.
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b) Show that it follows from part (a) that the inversion formula for
the Mellin transform is

f(x) =
1

2π

∫ ∞

−∞
x−iβH(β)dβ.

c) Show formally that

M−1[FM(α)GM(α)] = (f × g)(x),

where the multiplicative convolution f × g is defined by

(f × x)(x) =
∫ ∞

0

f(z)g
(x
z

) dz
z
.

5. The Weierstrass transform should look familiar. If we letW [f(x)] be the
Weierstrass transform of f , then describe the pertinence of the function

w(y, α) =W [f(y − x)].

(By the way, the Weierstrass kernel sometimes is called the Gauss–
Weierstrass kernel.)

INTEGRAL EQUATIONS

Frequently, functions which describe certain physical situations are solutions
of what are called integral equations; often, a differential equation problem
will be recast in the form of an integral equation.
The general linear integral equation in the unknown function f(x) can be
written

λ

∫ b

a

K(x, y)f(y)dy + g(x) = h(x)f(x),

where g, h and K are known functions (K is called the kernel of the integral
equation), and λ is a parameter (often playing the role of an eigenvalue, as it
turns out). If g(x) ≡ 0, the equation is homogeneous. Often the function K
is of the form K = K(x− y).

Solve the following integral equations.

6.
∫∞
−∞

f(y)
(x−y)2+a2 dy − 1

x2+b2 = 0, 0 < a < b.

This is an example of a so-called Wiener–Hopf equation.

7.
∫∞
−∞ e−|x−y|f(y)dy + e−x2/2 + f(x) = 0.
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f(x) = 1√
2π

∫∞
−∞ F (α)eiαx dα F (α) = 1√

2π

∫∞
−∞ f(x)e−iαx dx

1. f ′(x) 1. iαF (α)

2. xf(x) 2. iF ′(α)

3. f(x− c) 3. e−icαF (α)

4. eicxf(x) 4. F (α− c)
5. f(cx) 5. 1

cF
(
α
c

)
6. 1

cf
(
x
c

)
6. F (cα)

7. f(x) ∗ g(x) 7.
√
2π F (α)G(α)

8. f(x)g(x) 8. 1√
2π

F (−α) ∗G(−α)
9. e−c|x| 9.

√
2
π

c
α2+c2

10. 1
x2+c2 10.

√
π
2 e

−c|α|/c

11. exp[−(x−m)2/2σ2]/σ
√
2π 11. exp

[
−σ2α2

2 − imα
]/√

2π

12.

⎧⎪⎨
⎪⎩
1, if |x| ≤ L,
0, if |x| > L.

12.
√

2
π

sinLα
α

13. sinLx
x 13.

⎧⎪⎨
⎪⎩
√

π
2 , if |α| ≤ L,

0, if |α| > L.

14. δ(x) 14. 1√
2π

15. 1 15.
√
2π δ(α)

16. H(x) 16. 1
iα

√
2π

+
√

π
2 δ(α)

17. sgn x 17.
√

2
π

1
iα

18. 1
x 18.

√
π
2
sgn α

i

19. sgn x ∗ f(x) 19.
2F (α)

iα

20. f(x)
x 20. − i

2 sgn α ∗ f(−α)

TABLE 6.3
Table of Fourier transforms.



Prelude to Chapter 7

Eventually, we’d like to solve PDEs in higher dimensions. As we show in the
following chapter, applying separation of variables to many of the important
higher-dimensional equations leads to certain special ODEs, the solutions of
which are called the special functions. (Okay, we never said that mathemati-
cians have much originality when it comes to naming things. To be fair,
they’re often called the special functions of mathematical physics.)

The earliest studied of the special functions are probably the Bessel func-
tions. Daniel Bernoulli ran into the first few of these when he solved the
hanging chain problem in 1733, and Euler encountered the modified Bessel
functions around the same time. Then, in 1759, Euler solved the problem of
the vibration of a circular drumhead (as we do in Chapter 9), giving us the
standard solution in terms of the Bessel functions of the first kind.

However, the Bessel functions are named after the well-known Prussian
mathematician and astronomer Friedrich Wilhelm Bessel (1784–1824), who
performed the first systematic study of solutions of Bessel’s ODE during the
decade 1815–1825. (Although he made numerous contributions to mathemat-
ics and the like, during his lifetime Bessel was best known by virtue of his
being the first person to measure the parallax of a star.)

The other special functions we’ll look at are the so-called (we’ll see why in
Chapter 8) orthogonal polynomials—the Legendre, Chebyshev, Hermite and
Laguerre polynomials. The Legendre polynomials seem first to have arisen in
the work of Adrien-Marie Legendre (1752–1833) and also of Laplace, in their
study of gravitational potentials in the 1780s. (In fact, early on they often
were referred to as the Laplace coefficients.)

The Russian mathematician Pafnuti Chebyshev (or Tchebycheff or Chebi-
chev!) (1821–1894) derived both sets of polynomials which bear his name,
while studying the approximation of functions by these polynomials, in the
1850s. Chebyshev also seems to have been the first to consider orthogonal
polynomials as such, in a general setting.

275
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Similarly, the Hermite polynomials were studied by Charles Hermite (1822–
1901) in the 1860s, in his work on polynomial approximation of functions,
although Laplace seems to have encountered them in the early 1800s, when
working on probability theory. Incidentally, known for many things, Hermite’s
most famous contribution is his proof, in 1873, that e is a transcendental
number. Finally, the Laguerre polynomials are named after the geometer
Edmond Laguerre (1834–1886). The Hermite and Laguerre polynomials are
involved in the solution of certain versions of Schrödinger’s equation and, thus,
play a key role in the study of quantum mechanics.



7

Special Functions and Orthogonal
Polynomials

7.1 The Special Functions and Their
Differential Equations

The PDEs describing many important physical problems lead, when sepa-
rated, to ODEs with solutions which are called the special functions (of
mathematical physics). These include the Bessel functions and the sets of
orthogonal polynomials: the Chebyshev, Hermite, Laguerre and Legendre
polynomials. (In Chapter 8, we explain why they are called orthogonal.)

Here we derive these ODEs in the following exercises, in most cases via
separation of variables.

Exercises 7.1

1. Bessel’s ODE: In Chapter 9, we’ll see that the PDE for the motion of
a vibrating membrane is

utt = c2(uxx + uyy).

a) Use polar coordinates to change this into the equation

1

c2
utt = urr +

1

r
ur +

1

r2
uθθ

(see Exercise 11, Section 1.6).

b) Separate variables and show that the separated equations can be
written as

T ′′ + c2λT = 0, Θ′′ + γΘ = 0, R′′ +
1

r
R′ +

(
λ− γ

r2

)
R = 0,

where T = T (t), Θ = Θ(θ) and R = R(r), and λ and γ are separa-
tion constants. The R-ODE is the eigenvalue version of Bessel’s
equation.

c) Use Exercise 18 in Section 1.7 to conclude that γ = m2, where
m = 0, 1, 2, . . . .

277
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d) If λ > 0, use the change of variable x =
√
λ r to rewrite the R-

equation in the standard form of Bessel’s equation of order
ααα,

x2y′′ + xy′ + (x2 − α2)y = 0

(where, for the vibrating membrane, of course, α = m = 0, 1, 2, . . .).

e) If, instead, λ < 0, use the change of variable x =
√−λ r to rewrite

the R-equation as

x2y′′ + xy′ − (x2 + α2)y = 0.

This is the modified Bessel’s equation, and its solutions are
modified Bessel functions, of order ααα.

Note: The only reason to change to polars is if we are looking at a
circular membrane/drumhead. Now, from the theory of ODEs, the R-
equation has a singular point (see the following section) at r = 0, which
means that there may be solutions which “blow up” there. As these
solutions are unrealistic, the physical nature of the problem suggests
that we must stipulate the additional “boundary condition” that R be
bounded as r → 0+. Similarly, we must have y bounded as x→ 0+ for
the equations in parts (d) and (e).

2. Legendre’s ODE: Laplace’s equation in three dimensions is the PDE

∇2u = uxx + uyy + uzz = 0.

a) Transform this equation, using spherical coordinates, to

(ρ2uρ)ρ +
1

sinφ
(uφ sinφ)φ +

1

sin2 φ
uθθ = 0.

b) Suppose we are looking for solutions which are θ-independent and
φ-independent. Show that they are of the form u = u(ρ), where u
satisfies the Cauchy–Euler equation

ρ2uρρ + 2ρuρ = 0.

c) If, instead, we want solutions which are only θ-independent, show
that they are those functions u = u(ρ, φ) which satisfy

(ρ2uρ)ρ +
1

sinφ
(uφ sinφ)φ = 0.

d) Why are there no φ-independent solutions?

e) Use separation of variables, u(ρ, φ) = R(ρ)Φ(φ), to show that the
equation in part (c) can be separated into the ODEs

(ρ2R′)′ − λR = 0, (Φ′ sinφ)′ + λΦ sinφ = 0.

Here, λ is the separation constant.
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f) Using the change of variable x = cosφ, 0 ≤ φ ≤ π, show that the
φ-equation becomes

[(1 − x2)y′]′ + λy = 0.

Here, y(x) = y(cosφ) = Φ(φ). This ODE is the eigenvalue version
of Legendre’s equation. Note that our change to spherical coor-
dinates has added the artificial-looking requirement that solutions
be finite at φ = nπ, n = 0,±1, . . ., i.e., at x = ±1. These points
correspond, of course, to the north and south poles.

Note: For reasons similar to those above, we also stipulate that y be
bounded as x → 1− and x → −1+. It turns out that the only such
solutions are polynomials!

3. Hermite’s ODE: The one-dimensional Schrödinger’s equation for a
harmonic oscillator is

−iut = uxx − x2u,
where u = u(x, t) and i2 = −1. If we solve this equation in −∞ <
x < ∞, quantum mechanics tells us that the solutions must → 0 as
x→ ±∞.

a) Show that this equation separates into the ODEs

T ′ + iλT = 0, X ′′ + (λ− x2)X = 0,

where u(x, t) = X(x)T (t) and λ is the separation constant.

b) Show that, if λ = 1, X = e−x2/2 is a solution. What is

lim
x→±∞ e−x2/2?

c) Show that, for arbitrary λ, the change of dependent variable

y(x) = e
x2

2 X(x)

transforms the X-equation into

y′′ − 2xy′ + (λ− 1)y = y′′ − 2xy′ + λ1y = 0.

This is the eigenvalue version of Hermite’s equation.

Note: Here, from the physics of the problem, it turns out that we need
our solutions to have the property

lim
x→±∞ e−x2/2y(x) = 0.∗

Again, it turns out that the only viable solutions are polynomials.

∗Actually, the business of assigning boundary conditions at singular points, especially at
±∞, is not trivial. For a detailed treatment, see either Green’s Functions and Boundary
Value Problems by Ivar Stakgold or Ordinary Differential Equations by E.L. Ince.
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4. Laguerre’s ODE: Quantum Mechanics and The Hydrogen
Atom: Quantum mechanics has shown us that we cannot predict where
a particle (an electron, say) will be at a given moment. Rather, the
best that we can do is to talk about the probability of its being at any
particular location at any given time. Thus, we look at the so-called
wave function of the particle,

ψ(x, y, z, t) = probability that the particle is at point (x, y, z) at time t.

In the 1920s, Erwin Schrödinger derived (actually, cobbled together!)
the partial differential equation that ψ must satisfy. Thus, we have
Schrödinger’s equation

i�ψt = − �
2

2m
∇2ψ + V ψ,

where

m = mass of particle,

�(we say h-bar) =
h

2π
, where h = Planck’s constant,

and

V = V (x, y, z) = potential energy of the force field at point (x, y, z).

We may always choose units so that m = � = 1 in these units. Now,
we would like to study the simplest quantum system, the hydrogen
atom, where our “particle” is the atom’s electron, and the force field
is due solely to the atom’s nucleus, a single proton, located at the ori-
gin. Therefore, we switch to spherical coordinates, and the potential

function is just V = − e2

ρ , where e is the electric charge of a proton

(and, of course, negative the charge of the electron). Again, we choose
units so that e = 1, and we have the simplified Schrödinger’s equation

iψt = −1

2
∇2ψ − 1

ρ
ψ.

a) Separate out time, that is, let u = T (t)v where v is a function
of the space variables. Show that the space part of the equation
becomes

∇2v +

(
λ+

2

ρ

)
v = 0,

where λ is the separation constant.

b) If we write this equation in spherical coordinates, as in Exercise 2,
we get

1

ρ2
(ρ2vρ)ρ +

1

ρ2 sinφ
(vφ sinφ)φ

+
1

ρ2 sin2 φ
vθθ +

(
λ+

2

ρ

)
v = 0.
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Writing v(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ), show that this equation sepa-
rates into

ρ2R′′ + 2ρR′ + (λρ2 + 2ρ− μ)R = 0

Θ′′ + γΘ = 0

Φ′′ sin2 φ+Φ′ sinφ cosφ+ μΦ sin2 φ− γΦ = 0.

c) Conclude that we must have γ = k2, where k = 0, 1, 2, . . . .

d) In the Φ-equation, change variables via x = cosφ and show that
the resulting equation is

[(1− x2)y′]′ +
(
μ− k2

1− x2
)
y = 0.

When k �= 0, this is almost Legendre’s equation and is called the
associated Legendre equation of order kkk, about which we’ll
say more in Exercise 6.

e) Now for the R-equation: As we’ll see in Chapter 9, it turns out
that we must have μ = �(�+ 1), � = 0, 1, 2, . . ., and that λ < 0. So
we write λ = −β2, and we have

R′′ +
2

ρ
R′ +

(
−β2 +

2

ρ
− �(�+ 1)

ρ2

)
R = 0.

Make the change of variable x = 2βρ, and show that the resulting
equation is

R′′ +
2

x
R′ +

(
−1

4
+

1

βx
− �(�+ 1)

x2

)
R = 0

(where, now, R′ = dR
dx ).

f) Next, make the change of dependent variable

R(x) = xaebxw(x),

and determine all values of a and b so that the equation becomes

xw′′ + [(2�+ 1) + 1− x]w′ +
(
1

β
− �− 1

)
w = 0.

We look at this equation in the following exercise.

5. Laguerre’s ODE, cont.: Laguerre’s equation is the ODE

xy′′ + (1− x)y′ + λy = 0.
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a) Show that if y is a solution of Laguerre’s equation, then y(m) = dmy
dxm

is a solution of the associated Laguerre’s equation

xu′′ + (1 +m− x)u′ + (λ−m)u = 0.

As we’ll see, the polynomial solutions of

xy′′ + (1− x)y′ + ny = 0

are the Laguerre polynomials Ln(x), n = 0, 1, 2, . . . . Conclude
that the associated Laguerre polynomial

Lm
n (x) =

dm

dxm
Ln(x)

is a polynomial solution of the corresponding associated Laguerre’s
equation.

Note: Similarly, our solutions here must be bounded as x → 0+,
and, at the other end, it turns out that we need

lim
x→∞

√
x e−x/2y(x) = 0.

Once more, it turns out that the only such solutions are polynomi-
als.

b) Show that the w-equation in Exercise 4e is, indeed, the associated
Laguerre’s equation.

6. Associated Legendre’s ODE: The three-dimensional wave equation
is, as you might guess,

utt = c2∇2u = c2(uxx + uyy + uzz).

Therefore, if we wish to study the vibration of a ball, we should look at
this equation in spherical coordinates. As above, we have

1

c2
utt = (ρ2uρ)ρ +

1

ρ2 sinφ
(uφ sinφ)φ +

1

ρ2 sin2 φ
uθθ.

a) First “separate out” t, then ρ, and show that we have

T ′′ + c2λT = 0, R′′ +
2

ρ
R′ +

(
λ− γ

ρ2

)
R = 0,

1

sinφ
(vφ sinφ)φ +

1

sin2 φ
vθθ + γv = 0,

where v = v(θ, φ) and λ and γ are separation constants.
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b) Show that the change of dependent variable w = r1/2R turns the
R-equation into

w′′ +
1

r
w′ +

(
λ− γ + 1

4

r2

)
w = 0.

What equation is this, essentially?

c) Now separate v(θ, φ) = Θ(θ)Φ(φ), and show that the result is

Θ′′ + βΘ = 0, (Φ′ sinφ)′ sinφ+ (γ sin2 Φ− β)Φ = 0.

d) Similar to what we did in Exercise 2f, use the change of variable
x = cosφ to transform the φ-equation into

[(1 − x2)y′]′ +
(
γ − β

1− x2
)
y = 0.

Here, again, is the associated Legendre’s equation: Again, note
that the change to sphericals makes it necessary that we have y
bounded at the poles, that is, at x = ±1.

e) Explain why we must have β = k2, where k is an integer, so that
we write the equation as

[(1 − x2)y′]′ +
(
γ − k2

1− x2
)
y = 0.

7. Chebyshev Polynomials and ODEs

a) Use Euler’s formula

eiθ = cos θ + i sin θ

to prove De Moivre’s Theorem

cosnθ + i sinnθ = (cos θ + i sin θ)n.

b) Use De Moivre’s Theorem and the fact that a+ bi = c+ di if and
only if a = c and b = d to prove the trig identities

cos 2θ = 2 cos2 θ − 1, sin 2θ = 2 sin θ cos θ,

cos 3θ = 4 cos3 θ − 3 cos θ, sin 3θ = sin θ(4 cos2 θ − 1)

and

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1,

sin 4θ = sin θ(8 cos3 θ − 4 cos θ).
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In other words, for the polynomials

T2(x) = 2x2 − 1, S1(x) = 2x

T3(x) = 4x3 − 3x, S2(x) = 4x2 − 1

T4(x) = 8x4 − 8x2 + 1, S3(x) = 8x3 − 4x,

we have

cosnx = Tn(cos θ) and sinnx = (sin θ)Sn−1(cos θ).

c) Use the binomial theorem,

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk,

to prove that, for n = 0, 1, 2, . . ., there exist polynomials Tn(x) and
Sn(x) such that

cosnθ = Tn(cos θ) and sin(n+ 1)θ = Sn(cos θ) sin θ.

These are called the Chebyshev polynomials of the first and
second kind, respectively. Further, show that if n is even, then
Tn and Sn are even functions, while if n is odd, then Tn and Sn

are odd. (See Exercise 1d, Section 7.6.)

d) Since cosnθ = Tn(cos θ) is a solution of the ODE

y′′ + n2y = 0,

use the substitution x = cos θ to show that Tn(x) satisfies Cheby-
shev’s equation of the first kind

(1− x2)y′′ − xy′ + n2y = 0.

e) Although not so obvious, it can be shown that the function fn(θ) =
sin(n+1)θ

sin θ satisfies the ODE

(sin θ)y′′ + 2(cos θ)y′ + n(n+ 2) sin θy = 0.

Use the substitution x = cos θ to show that Sn(x) satisfies Cheby-
shev’s equation of the second kind

(1 − x2)y′′ − 3xy′ + n(n+ 2)y = 0.

Note: As with Legendre’s equation, we must have y bounded as x→ 1−

and x→ −1+.
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7.2 Ordinary Points and Power Series Solutions;
Chebyshev, Hermite and Legendre Polynomials

All of the ODEs derived in the previous section have variable coefficients. You
may remember that the method of power series is, in general, used to solve
such equations. So, we look for solutions of the form

y =

∞∑
n=0

an(x− x0)n,

where x = x0 is the point “about which we expand the series” (and, usually,
an important point, for example, the point where the initial conditions are
given) and the an are unknown constants to be determined. The resulting
power series is actually the Taylor series of a solution. And we know, from
the theory of ODEs, that if x = x0 is an ordinary point of the equation, we
can expect to find two linearly independent solutions, while if x = x0 is a
singular point, this need not be the case.

Definition 7.1 Given the ODE

y′′ + P (x)y′ +Q(x)y = 0

we say that x = x0 is an ordinary point of the equation if P (x) and Q(x)
are analytic at x = x0. Otherwise, we say that x = x0 is a singular point.

(Remember that f(x) is analytic at x = x0 if the Taylor series of f ,

∞∑
n=0

f (n)(x0)

n!
(x− x0)n,

converges to f on an interval x0 − r < x < x0 + r, r > 0. In practice,
polynomials are analytic everywhere, since a polynomial is its own Taylor
series. Also, the functions ex, sinx and cosx are analytic everywhere. One
obvious way for a function not to be analytic at x = x0 is if P (x) or Q(x) has
the factor x− x0 in its denominator.)

Example 1 Hermite’s equation: Hermite’s ODE y′′ − 2xy′ + λy = 0 has no
singular points.

Example 2 Legendre’s and Chebyshev’s equations: Legendre’s equation can
be written as

y′′ − 2x

1− x2 y
′ +

λ

1− x2 y = 0;
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similarly, we may rewrite Chebyshev’s equations:

y′′ − x

1− x2 y
′ +

λ

1− x2 y = 0

and

y′′ − 3x

1− x2 y
′ +

λ

1− x2 y = 0.

We are interested in solving these equations only for −1 ≤ x ≤ 1. Note that
all three are singular at x = ±1, while every x in −1 < x < 1 is an ordinary
point of each.

Example 3 Bessel’s and Laguerre’s equations: We rewrite Bessel’s ODE as

y′′ +
1

x
y′ +

x2 − α2

x2
y = 0

and Laguerre’s equation as

y′′ +
1− x
x

y′ +
λ

x
y = 0.

Clearly, each is singular at x = 0 and nowhere else.

For various reasons, we would like to solve each of these equations at
x = x0 = 0. We may solve the equations from Examples 1 and 2 using
standard power series solutions. Further, from the theory of ODEs, the ra-
dius of convergence of each solution will be r = |x0|, where x0 is the singular
point nearest the origin.

What about using power series for Bessel and Laguerre? Let’s first look at
a simpler example.

Example 4 Solve the Cauchy–Euler equation

2x2y′′ + 3xy′ − 2y = 0.

We let y = xr and find that our two independent solutions are

y1 =
√
|x| and y2 =

1

x2
.

Neither of these functions is analytic at x = 0; therefore, no power series of
the form ∞∑

n=0

anx
n

will lead to either solution.
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Although occasionally we will find power series solutions at a singular point,
we cannot, in general, expect to do so. Therefore, we need a more general
method to deal with these situations—for this, we wait for the next section.

For now, let’s solve Legendre’s equation, leaving Chebyshev’s and Hermite’s
equations for the exercises.

LEGENDRE’S EQUATION

(1− x2)y′′ − 2xy′ + λy = 0, −1 < x < 1, y bounded as x→ ±1.

We let y =
∞∑
i=0

aix
i and plug into the ODE. The result is

2a2 + (λ− 2)a1 + λa0 +

∞∑
i=2

[(i + 2)(i+ 1)ai+2 + (λ− i2 − i)ai]xn = 0.

So we have a0, a1 arbitrary,

a2 =
(2 − λ)a1 − λa0

2
,

and the recurrence relation is

ai+2 =
i(i+ 1)− λ
(i+ 2)(i+ 1)

ai, i = 2, 3, . . . .

Now, we want solutions that are bounded at x = ±1. However, if we look at

lim
i→∞

ai+2

ai
= lim

i→∞
i(i+ 1)− λ
(i+ 2)(i + 1)

= 1,

we see that if a0 �= 0, we get an infinite series of even powers of x, which

behaves like the geometric series
∞∑
i=0

x2i. Similarly, a1 �= 0 gives us a series

which behaves like
∞∑
i=0

x2i+1. Each of these series diverges at x = ±1 (and

is unbounded at x = 1). (This unrigorous treatment can be made precise, of
course.)

So the only way that we can have a bounded solution is if the series termi-
nates, that is, if it is a polynomial. When will this happen?

Suppose λ = n(n+ 1), where n is a positive integer. Then

an+2 =
n(n+ 1)− n(n+ 1)

(n+ 2)(n+ 1)
an = 0.

In this case, we’ll have

an+2 = an+4 = . . . = 0,
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i.e., if n is odd, the series of odd powers will be a polynomial; similarly for n
even and the even powers. In each case, the other half of the series will still
be infinite—the only way to eliminate it will be to choose a0 = 0 or a1 = 0,
respectively.

Essentially, we have found that the numbers

λn = n(n+ 1), n = 0, 1, 2, . . . ,

are the eigenvalues of the given Legendre boundary-value problem, while the
eigenfunctions are the corresponding polynomial solutions. Since any constant
multiple of an eigenfunction also is an eigenfunction, we define the nthnthnth de-
gree Legendre polynomial Pn(x) to be the polynomial solution for which
Pn(1) = 1.

In order to compute some Legendre polynomials, we remember that, for
each n, we have

a2 =
(2− λ)a1 − λa0

2
=

[2− n(n+ 1)]a1 − n(n+ 1)a0
2

along with the recurrence formula

ai+2 =
i(i+ 1)− n(n+ 1)

(i+ 2)(i+ 1)
ai, i = 2, 3, . . . .

So, we have, for the first few Legendre polynomials:

λ0 = 0:

Choose a1 = 0⇒ a3 = a5 = a7 = . . . = 0. Then,

a2 = 2a1 − 0a0 = 0

⇒ a4 = a6 = a8 = . . . = 0.

So, choosing a0 = 1 gives us

P0(x) = 1.

λ1 = 2:

Choose a0 = 0⇒ a2 = a4 = a6 = . . . = 0. The recurrence formula
here is

ai+2 =
i(i+ 1)− 2

(i+ 2)(i+ 1)
ai,

so a3 = 0, implying that a5 = a7 = a9 = . . . = 0. Thus,

P1(x) = x.
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λ2 = 6:

Choose a1 = a3 = a5 = . . . = 0. Letting a0 = 1, we have
a2 = 0a1−6a0

12 = −3. The recurrence formula is

ai+2 =
i(i+ 1)− 6

(i+ 2)(i+ 1)
ai,

so a4 = a6 = . . . = 0. So an eigenfunction is f2(x) = −3x2 + 1. Dividing
by f2(1) = −2, we have

P2(x) =
3

2
x2 − 1

2
.

We may continue computing polynomials in this manner. The next few
turn out to be

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

8
(35x4 − 30x2 + 3)

P5(x) =
1

8
(63x5 − 70x3 + 15x)

(see Exercise 2, below, and Exercise 1 of Section 7.6). We plot P0 through P5

in Figure 7.1. Notice that if n is even, then Pn is even and, if n is odd, then
Pn is odd. We prove this in Exercise 1b of Section 7.6.
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(a)

FIGURE 7.1
MATLAB graphs of the first six Legendre polynomials: (a) P0, P2P0, P2P0, P2

and P4P4P4 and (b) P1, P3P1, P3P1, P3 and P5P5P5. (In each case, solid, dash-dotted and
dashed, respectively.)
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FIGURE 7.1 continued.

One can show (with a lot of work) that the Legendre polynomials them-
selves satisfy a recurrence relation. In fact, as we’ll see, Hermite’s equation,
Laguerre’s equation and both Chebyshev’s equations have polynomial eigen-
functions and, in each case, these polynomials satisfy a recurrence relation.

Each such set of polynomials is called a set of orthogonal polynomials,
for reasons given in Chapter 8, and referred to briefly in Section 7.6. There,
we’ll list the recurrence formulas and other properties of the orthogonal poly-
nomials.

In the exercises, we derive the Chebyshev and the Hermite polynomials.

Exercises 7.2

1. For each equation, classify each point on the x-axis as an ordinary point
or a singular point.

a) (x + 2)y′′ − y′ + y = 0

b) x(x + 1)y′′ + 3xy′ + (x+ 1)y = 0

c) (x2 + 1)y′′ + 2xy′ + 5y = 0

2. Derive the Legendre polynomials P3, P4 and P5.

3. Proceed as we did in the case of Legendre’s equation to find the eigen-
values and eigenfunctions for each of the following:

a) Chebyshev’s equation of the first kind

(1 − x2)y′′ − xy′ + λy = 0, −1 < x < 1, y bounded as x→ ±1.
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Calculate the first four Chebyshev polynomials of the first
kind, T0, T1, T2 and T3, where, in each case, we normalize the
polynomial so that Tn(1) = 1.

b) Chebyshev’s equation of the second kind

(1− x2)y′′ − 3xy′ + λy = 0, −1 < x < 1, y bounded as x→ ±1.
Calculate the first four Chebyshev polynomials of the sec-
ond kind. So, calculate S0, S1, S2 and S3, where we normalize by
choosing Sn(1) = n+ 1.

c) Hermite’s equation

y′′ − 2xy′ + λy = 0, −∞ < x <∞, e−x2

y → 0 as x→ ±∞.
That is, calculate the first fourHermite polynomials,H0, H1, H2

and H3. In each case, choose the polynomial so that its leading
term, that is, the term with the highest power, is of the form 2nxn.

4. MATLAB

a) Referring to Exercise 3 of Section 7.1, plot the graphs of the func-
tions

yn = ex
2/2Hn(x), n = 0, 1, 2, 3,

where Hn is the nth-degree Hermite polynomial from the previous
exercise.

b) Use BVP4C to solve the problem

y′′ + (λ− x2)y = 0, −L ≤ x ≤ L,
y(−L) = y(L) = 0,

for various large values of L, and compare the first four eigenfunc-
tions with the functions in part (a).

5. The associated Legendre equation, again, is

[(1− x2)y′]′ +
(
γ − k2

1− x2
)
y = 0, −1 < x < 1,

y bounded as x→ ±1, k a positive integer.

We may solve this as we solved Legendre’s equation, but there is a slicker
way of dealing with it.

a) If y satisfies Legendre’s equation,

(1− x2)y′′ − 2xy′ + λy = 0,

differentiate this equation k times to show that y(k) satisfies the
equation

(1− x2)y(k+2) − 2(k + 1)xy(k+1) + [λ− k(k + 1)]y = 0.
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b) Next, make the change of dependent variable

y(x) = (1− x2)k/2z(x)

in the associated Legendre equation.

c) Conclude that if fγ(x) is a Legendre function, that is, a solution
of Legendre’s equation

(1− x2)y′′ − 2xy′ + γy = 0,

then
gkγ(x) = (1− x2)k/2f (k)

γ (x)

is a solution of the associated Legendre equation. In particular,
show that the associated Legendre function of degree nnn and
order kkk

P k
n (x) = (1 − x2)k/2P (k)

n (x)

is a solution of

(1− x2)y′′ − 2xy′ +
[
n(n+ 1)− k2

1− x2
]
y = 0.

(It turns out that, as with Legendre’s equation, the associated Leg-
endre’s equation has bounded solutions if and only if γ = n(n+1),
n = 0, 1, 2, . . . . These bounded solutions are the associated Leg-
endre functions.)

7.3 The Method of Frobenius; Laguerre Polynomials

We saw that both Laguerre’s equation and Bessel’s equation are singular at
x = 0. Actually, there are two types of singular points, one “good” and the
other “not so good.”

Definition 7.2 Suppose the ODE

y′′ + P (x)y′ +Q(x)y = 0

has a singular point at x = x0. Let’s rewrite the equation in the form

(x− x0)2y′′ + (x− x0)p(x)y′ + q(x)y = 0.

If p and q are analytic at x = x0, we say that x0 is a regular singular point
of the ODE; otherwise, it is an irregular singular point.
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Example 1 The equation

y′′ +
1

(x+ 1)2(x− 2)
y′ − 1

(x− 2)2
y = 0

is singular at x = −1 and x = 2. If we multiply by (x − 2)2, the equation
becomes

(x− 2)2y′′ +
x− 2

(x+ 1)2
y′ − y = 0.

Since p(x) = 1
(x+1)2 and q(x) = −1 are analytic at x = 2, this point is a

regular singular point.
If, instead, we multiply the ODE by (x+ 1)2, we get

(x+ 1)2y′′ + (x + 1)
x− 2

x+ 1
y′ − (x+ 1)2y = 0.

Then, q(x) = (x+1)2 is analytic at x = −1, but p(x) = x−2
x+1 is not. Therefore,

x = −1 is an irregular singular point.

Example 2 Bessel’s equation

x2y′′ + xy′ + (x2 − α2)y = 0

and Laguerre’s equation

x2y′ + x(1 − x)y′ + xy = 0

both have a regular singular point at x = 0. Now, it turns out that if an ODE
has a regular singular point at x = x0, then it always possesses one solution
of the form

y = (x− x0)r
∞∑
n=0

an(x− x0)n

(and, sometimes, two). The procedure for finding such solutions is called the
method of Frobenius. Let’s begin with an example.

Example 3 Try to find Frobenius series solutions for

2x2y′′ + xy′ − (x + 1)y = 0

about the regular singular point x = 0. We let

y = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+r,

and we proceed as we did with power series solutions. So,

y′ =
∞∑

n=0

(n+ r)anx
n+r−1
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and

y′′ =
∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r−2.

Substituting into the ODE gives us

∞∑
n=0

2(n+ r)(n + r − 1)anx
n+r +

∞∑
n=0

(n+ r)anx
n+r

−
∞∑
n=0

anx
n+r+1 +

∞∑
n=0

anx
n+r = 0

or, after changing the index in the third series and pulling out the first term
of each of the other three series,

[2r(r − 1) + r − 1]a0

+

∞∑
n=1

{[2(n+ r)(n+ r − 1) + (n+ r) − 1]an − an−1} xn = 0.

Now we can determine the values of r for which a solution is possible. The
first term must be zero and, since we don’t want a0 = 0 (else we’ll have the 0
solution!), r must satisfy the indicial equation

2r(r − 1) + r − 1 = 0.

Therefore, the only viable values of r are

r = −1

2
, 1.

We take each in turn.

Case 1: r = 1

In this case, the recurrence formula

[2(n+ r)(n+ r − 1) + (n+ r)− 1]an − an−1 = 0

becomes

an =
1

2(n+ 1)2 − (n+ 1)− 1
an−1

=
1

n(2n+ 3)
an−1, n = 1, 2, . . .
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(note the similarity between the denominator and the indicial equation).
Therefore, the first few coefficients are

a1 =
1

5
a0, a2 =

1

14
a1 =

1

70
a0, a3 =

1

27
a2 =

1

1890
a0, . . .

and, letting a0 = 1, the corresponding solution is

y = x

[
1 +

1

5
x+

1

70
x2 +

1

1890
x3 + · · ·

]
.

Case 2: r = − 1
2

Here, the recurrence formula becomes

[
2

(
n− 1

2

)(
n− 3

2

)
+

(
n− 1

2

)
− 1

]
an − an−1 = 0

or

an =
1

n(2n− 3)
an−1, n = 1, 2, . . . .

So the first few coefficients are

a1 = −a0, a2 =
1

2
a1 = −1

2
a0, a3 =

1

9
a2 = − 1

18
a0, . . .

and the corresponding Frobenius solution is

y = x−1/2

[
1− x− 1

2
x2 − 1

18
x3 + · · ·

]
.

(See Exercise 3.)
So, in this case, we were fortunate to be able to find two linearly independent

solutions. It’s natural to ask what could have “gone wrong,” that is, under
what circumstances might we not be able to find a second solution this way?
Obviously, if the indicial equation has only one (double) root, we’re stuck, at
least for now. Are there any other such situations?

Take a look at the second recurrence formula in the previous example—
certainly it never gave us any trouble for n = 1, 2, . . . . However, it’s easy
enough to imagine that there may be values of r for which the corresponding
denominator does become zero for a positive integer n. Again, we look at some
examples; however, let us mention that, even if only one Frobenius solution
to a problem exists, it is always possible to derive from this solution a second,
linearly independent solution.

Example 4 Let’s look for Frobenius solutions of

xy′′ + 2y′ − y = 0.
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Plugging in y =
∞∑
n=0

anx
n+r, we arrive at

r(r + 1)a0 +

∞∑
n=1

[(n+ r)(n+ r + 1)an − an−1]x
n = 0.

The indicial equation r(r + 1) = 0 has roots r = 0,−1. Also, the recurrence
formula is

an =
1

(n+ r)(n + r + 1)
an−1, n = 1, 2, . . . .

For r = 0, we have

an =
1

n(n+ 1)
an−1, n = 1, 2, . . . ,

which leads to a solution (see Exercise 2). As for r = −1, the recurrence
formula becomes

an =
1

(n− 1)n
an−1

and, for n = 1, we get a1 = 1
0a0, which is undefined.

Now, what caused this to happen, and is there any way around it? As
we’ll see in Exercise 9, this occurs whenever the two indicial roots differ by
an integer! As for getting around it, we usually can’t. Here, though, let’s go
back and rewrite the troublesome recurrence formula in its original form:

(n− 1)nan = an−1.

Again, n = 1 gives us 0a1 = a0. Of course, we could choose a0 = 0 but,
in that case, we’ll wind up with the same solution we got from r = 0 (try
it!). However, as the next example shows, there are cases where the right side
already is zero, and the difficulty is circumvented.

Example 5 Find all Frobenius solutions of

x2y′′ − x2y′ + (x2 − 2)y = 0.

Proceeding as usual, we arrive at the equation

(r + 1)(r − 2)a0 + [(r − 1)(r + 2)a1 − ra0]x

+

∞∑
n=2

[((n+ r)(n + r − 1)− 2)an − (n+ r − 1)an−1 + an−2]x
n = 0.

The indicial roots are r = −1, 2. For r = 2, we have no problems (see
Exercise 3). As for r = −1, we get

−2a1 + a0 = 0
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and
n(n− 3)an = (n− 2)an−1 − an−2, n = 2, 3, . . . .

So we have a1 = 1
2a0 and, from n = 2, a2 = 1

2a0. What happens when n = 3?
We get

0a3 = a2 − a1
=

1

2
a0 − 1

2
a0

= 0,

that is, the recurrence formula is true for n = 3 regardless of the choice of a3.
So a3 is arbitrary! Therefore, we may choose a3 = 0 (although we don’t have
to).

The question still remains as to how to find a second linearly independent
solution in those cases where there is only one Frobenius solution. It turns
out that, in all cases, there is a so-called logarithmic solution. If y1 is the
Frobenius solution then, for the case r1 = r2, the second solution takes the
form

y2 = y1 lnx+ xr1
∞∑

n=0

cnx
n

while, for the case r1 − r2 = N , an integer, we have

y2 = y1 lnx+ xr2
∞∑
n=0

dnx
n.

There are various ways to derive these solutions—for example, via reduction
of order—and they can be found in most ODE texts. We choose a different
tact when solving Bessel’s equation in Section 7.5, although the resulting y2
will be equivalent to a linear combination of the y1 and y2 above.

Let’s finish this section with a derivation of the Laguerre polynomials.

Example 6 Laguerre’s equation and the Laguerre polynomials: We
wish to find all polynomial solutions of

xy′′ + (1− x)y′ + λy = 0, 0 < x <∞,
i.e., we wish to find the eigenvalues λ which have polynomial eigenfunctions.
We let

y = xr
∞∑

n=0

anx
n,

and the ODE implies that we must have

r2a0 +

∞∑
n=0

[(n+ r + 1)2an+1 + (λ − n− r)an]xn = 0.
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Then the indicial equation r2 = 0 has double root r = 0. There will be one
Frobenius solution and a logarithmic solution. The latter, of course, cannot
be a polynomial.

So with r = 0, the Frobenius solution has the recurrence formula

an+1 =
n− λ

(n+ 1)2
an, n = 0, 1, 2, . . . .

Thus, we will have a polynomial solution if and only if λ is a nonnegative
integer. Let’s compute the first few of these Laguerre polynomials. Setting
a0 = 1, we have

λ = 0: an+1 = n
(n+1)2 an, n = 0, 1, 2, . . .

⇒ a1 = 0 = a2 = a3 = . . . and L0(x) = 1.

λ = 1: an+1 = n−1
(n+1)2 an, n = 0, 1, 2, . . .

⇒ a1 = −1, a2 = 0 = a3 = a4 = . . . and L1(x) = 1− x.

λ = 2: an+1 = n−2
(n+1)2 an, n = 0, 1, 2, . . .

⇒ a1 = −2, a2 = −1

4
a1 =

1

2
, a3 = 0 = a4 = a5 = 0 . . .

and L2(x) = 1− 2x+
1

2
x2.

More generally, if λ = N , we find LN (x) from the recurrence formula

an+1 =
n−N
(n+ 1)2

an

=
(n−N)

(n+ 1)2
(n− 1−N)

n2
an−1

= · · ·

=
(n−N)

(n+ 1)2
(n− 1−N)

n2
· · · (1−N)

12
.

Ultimately (see Exercise 5), we have

Ln(x) =

n∑
k=0

(−1)kn!
(k!)2(n− k)!x

k

as the polynomial solution of the equation

xy′′ + (1 − x)y′ + ny = 0.
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Exercises 7.3

1. For each ODE, classify all singular points as either regular or irregular.

a) x2(x− 1)y′′ − y′ + 2y = 0

b) x3y′′ + xy′ − y = 0

c) y′′ + y′ + 1
(x+2)4x2 y = 0

2. Finish finding the Frobenius solution for Example 4, and show that it
can be written as

y =

∞∑
n=0

1

n!(n+ 1)!
xn.

3. Write the solutions from Example 3 in summation notation.

4. Use the method of Frobenius to show that the given ODE has the given
general solution:

a) xy′′ + 2y′ + xy = 0, y = 1
x (c1 cosx+ c2 sinx)

b) xy′′ − y′ + 4x3y = 0, y = c1 cos(x
2) + c2 sin(x

2)

5. Show that the formula given in Example 5 for the Laguerre polynomial
Ln(x) is correct.

6. Each of the following ODEs has an indicial equation with a double root
r = r1 = r2. Use the formula

y2 = y1 lnx+ xr1
∞∑

n=0

a′n(r1)x
n

to construct a second solution. Is it clear that your two solutions are
linearly independent?

a) (x2 − x3)y′′ − 3xy′ + 4y = 0

b) (x2 + x3)y′′ − (x + x2)y′ + y = 0

7. Use the method of Frobenius to solve Bessel’s equation

x2y′′ + xy′ + (x2 − α2)y = 0

for the given value of α:

a) α = π

b) α = 1
2

c) α = 3
2
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8. a) Use the substitution u =
√
x y to turn Bessel’s equation into

u′′ +
(
1 +

1− 4α2

4x2

)
u = 0.

b) Use part (a) to show that the solution for Bessel’s equation with
α = 1

2 also can be written as

y =
1√
x
(c1 cosx+ c2 sinx).

9. Given the ODE
x2y′′ + xp(x)y′ + q(x)y = 0,

where p and q are polynomials, show that if the Frobenius indicial equa-
tion is f(r) = 0, then the recurrence formula will be

f(n+ r)an = (term(s) involving ak, with k < n).

Suppose now that the roots of the indicial equation differ by a integer,
that is, suppose that the roots are r = r1 and r = r1 + N , where N is
a natural number. Show that, in the recurrence formula corresponding
to r = r1, we have

0 · aN = . . . .

7.4 Interlude: The Gamma Function

As you may have seen in Exercise 6 of the previous section, when solving
Bessel’s equations we run into expressions that look very much like factori-
als, except that the individual terms are not integers. The extension of the
factorial to these kinds of expressions is called the gamma function (only
because its symbol is the letter gamma)

Γ(x) =

∫ ∞

0

tx−1e−tdt.

The integral is improper, of course—possibly at both ends, depending on the
value of x. It’s not hard to show that the right end causes no problems, as
e−t → 0 much more rapidly than any power of t. At the left end, it turns out
that Γ(x) behaves like ∫

0

tx−1 dt,

which converges for x > 0.
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Now, what about its relation to the factorial? First, we have

Γ(1) =

∫ ∞

0

e−t dt = 1.

Next, let’s relate Γ(x + 1) and Γ(x), using our old standby, integration by
parts:

Γ(x + 1) =

∫ ∞

0

txe−t dt

= −txe−t
∣∣∞
0

+ x

∫ ∞

0

tx−1e−t dt

= xΓ(x)

(see Exercise 1). So, for x an integer, we have

Γ(2) = 1Γ(1) = 1

Γ(3) = 2Γ(2) = 2 · 1
Γ(4) = 4Γ(3) = 3 · 2 · 1,

and it should be clear (and we prove it in Exercise 1) that

Γ(n+ 1) = n!

More generally, it’s easy to see that

Γ(α+ n) = (α+ n− 1)Γ(α+ n− 1)

= · · ·
= (α+ n− 1)(α+ n− 2) · · ·αΓ(α).

(Again, see Exercise 1.) We may also show that

Γ

(
1

2

)
=
√
π,

in terms of which we may then find Γ
(
n
2

)
, where n is an odd integer.

It turns out that the domain −1 < x <∞ is not good enough and that we
need to extend Γ(x) to the left of −1. Of course, we would like the extension
to satisfy the property Γ(x+ 1) = xΓ(x), so we actually use this equation to
define the extension! Since Γ(x+ 1) has domain −2 < x <∞, we define

Γ(x) =
Γ(x+ 1)

x
, −2 < x < −1.

Now, we’ve defined Γ(x) on −2 < x < −1, so we do it again!

Γ(x) =
Γ(x+ 1)

x
, −3 < x < −2.
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Of course, we continue this process indefinitely. (Note the use of < and not
≤. This is due to the fact that there’s no way to define Γ(0), hence no way
to extend the definition as above to the negative integers.)†

See Figure 7.2 for the graph of the gamma function.
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FIGURE 7.2
MATLAB graph of the gamma function, y = Γ(x)y = Γ(x)y = Γ(x).

Another function which shows up often is

ψ(x) =
d

dx
ln Γ(x+ 1), x > 0.

What does it look like? Well,

Γ′(x) =
∫ ∞

0

tx−1e−t ln t dt (why?),

†It turns out that lim
x→n

1
Γ(x)

= 0 for n = 0,−1,−2, . . . . Therefore, we often define 1
Γ(n)

= 0

for these values. Then it can be shown that the function 1
Γ(x)

is everywhere continuous!

See Exercise 4.
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where we have interchanged the order of integration and differentiates (it turns
out that we can, here). Then

ψ(x) =
Γ′(x+ 1)

Γ(x+ 1)

=
xΓ′(x) + Γ(x)

xΓ(x)

=
Γ′(x)
Γ(x)

+
1

x

= ψ(x− 1) +
1

x
.

If x = n, a positive integer, then

ψ(n) = ψ(n− 1) +
1

n

= ψ(n− 2) +
1

n
+

1

n− 1

= · · ·

= ψ(0) +
n∑

k=1

1

k
.

We write φ(n) =
n∑

k=1

1
k ; as for the other term,

ψ(0) = Γ′(1) =
∫ ∞

0

e−t ln t dt.

Although it’s not obvious, this integral converges, to a famous irrational num-
ber

−γ = −.57721 . . . .

The positive number γ is known as Euler’s‡ constant.
(
It can be shown, in

fact, that

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− lnn

)
.

)

So we may write

ψ(n) = −γ + φ(n).

‡Sometimes referred to as the Euler–Mascheroni constant.
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Exercises 7.4

1. Use mathematical induction to prove that

a) Γ(n+ 1) = n! for n = 1, 2, . . . .

b) Γ(α+ n) = (α+ n− 1)(α+ n− 2) · · ·αΓ(α) for n = 1, 2, . . . .

2. a) Use the substitution t = u2 to show that Γ
(
1
2

)
=
√
π.

b) Compute Γ
(
3
2

)
,Γ

(
5
2

)
and Γ

(− 1
2

)
.

c) Generalize part (a) and show that

∫ ∞

0

e−un

du =
1

n
Γ

(
1

n

)
.

3. Use mathematical induction to prove that

a) ψ(n) = ψ(0) +
n∑

k=1

1
k , for n = 1, 2, . . . .

b) ψ(x + n) = ψ(x) +
n∑

k=1

1
x+k , for n = 1, 2, . . . .

4. MATLAB: Plot the function f(x) = 1
Γ(x) .

5. The beta function is defined as

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt, x > 0, y > 0.

We prove that

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
.

a) Proceed as in Exercise 2a to write

Γ(x)Γ(y) = 4

∫ ∞

0

e−u2

u2x−1 du

∫ ∞

0

e−v2

v2y−1 dv.

b) Combine this into a double integral, change to polar coordinates
and then separate the resulting double integral into the product of
two integrals.

c) Make the substitution t = sin2 θ in the definition of B(x, y).

d) Let x = y to obtain the Legendre duplication formula

22x−1

√
π

Γ(x)Γ

(
x+

1

2

)
= Γ(2x).

e) MATLAB: Plot the graph of z = B(x, y).
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7.5 Bessel Functions

Now let’s bring the method of Frobenius to bear on Bessel’s equation

x2y′′ + xy′ + (x2 − α2)y = 0.

Again, we let y = xr
∞∑
n=0

anx
n, and the ODE implies that we must have

(r2 − α2)a0 + [(r + 1)2 − α2]a1x

+

∞∑
n=2

{[(n+ r)2 − α2]an + an−2}xn+r = 0.

So the indicial equation r2−α2 = 0 has two roots r = ±α (so long as α �= 0).
For r = α > 0, we have

[(α+ 1)2 − α2]a1 = 0⇒ a1 = 0

and

[(n+ α)2 − α2]an + an−2 = 0, n = 2, 3, . . .

or

n(n+ 2α)an = −an−2, n = 2, 3, . . . .

So all of the odd-numbered coefficients are zero:

a1 = a3 = a5 = . . . = 0.

As for the evens, we have

an = − 1

n(n+ 2α)
an−2, n = 2, 4, 6, . . .

or, letting n = 2k,

a2k(α) = − 1

2k(2k + 2α)
a2k−2 = − 1

2′k2′(k + α)
a2k−2

=
1

2k(2k + 2α)

1

(2k − 2)(2k − 2 + 2α)
a2k−4

=
1

22k(k − 1)22(k + α)(k − 1 + α)
a2k−4

= · · ·

=
(−1)k

2kk!2k(k + α)(k − 1 + α) · · · (1 + α)
a0

=
(−1)kΓ(1 + α)

22kk!Γ(k + α+ 1)
a0, k = 1, 2, . . . .
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(See Exercise 3.) So we have the Frobenius solution

y1 = a0x
α

∞∑
k=0

(−1)kΓ(1 + α)

22kk!Γ(k + α+ 1)
x2k.

For various reasons, it’s traditional to choose

a0 =
1

2αΓ(α+ 1)
,

giving us the solution

Jα(x) =
xα

2α

∞∑
k=0

(−1)k
22kk!Γ(k + α+ 1)

x2k

=

∞∑
k=0

(−1)k
k!Γ(k + α+ 1)

(x
2

)2k+α

.

This solution is called the Bessel function of the first kind of order ααα.
It’s a valid solution of Bessel’s equation of order α for any α ≥ 0. If n is an
integer (n ≥ 0), we have

Jn(x) =
∞∑
k=0

(−1)k
k!(k + n)!

(x
2

)2k+n

.

The graphs of J0, J1 and J2 can be seen in Figure 7.3.
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FIGURE 7.3
MATLAB graphs of the Bessel functions of the first kind, J0J0J0 (solid),
J1J1J1 (dash-dotted) and J2J2J2 (dashed).
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For r = −α, we have

[(−α+ 1)2 − α2]a1 = 0

and

[(n− α)2 − α2]an = −an−2, n = 2, 3, . . .

or

(1− 2α)a1 = 0

and

n(n− 2α)an = −an−2, n = 2, 3, . . . .

We suspect there may be a problem if 2α is an integer (that is, if r1 − r2 =
α − (−α) is an integer!). So, for now, suppose this is not the case. Then,
proceeding as above, we wind up with

a1 = a3 = a5 = . . . = 0

and

a2k =
(−1)kΓ(1− α)

22kk!Γ(k − α+ 1)
a0,

and, choosing a0 = 1
2αΓ(1−α) , we have the solution

J−α(x) =

∞∑
k=0

(−1)k
k!Γ(k − α+ 1)

(x
2

)2k−α

,

which is, of course, the Bessel function of the first kind of order −α−α−α.
Note that Jα is bounded at x = 0, while J−α is not. Therefore, they are
linearly independent and, at least for x > 0, the general solution of Bessel’s
equation is

y = c1Jα(x) + c2J−α(x).

What happens when α is an integer or a half-integer? In Exercise 7 of
Section 7.3 we saw that, for α = 1

2 and α = 3
2 , there was a second Frobenius

solution. In general, suppose α = 2m+1
2 , m = 0, 1, 2, . . . . Then, for r =

−α = − 2m+1
2 , the recurrence formulas become

−2ma1 = 0

and
n(n− 2m− 1)an = −an−2, n = 2, 3, 4, . . . .
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In the case α = 1
2 , that is, m = 0, we have a1 arbitrary, and no problems

thereafter. So we may take a1 = 0, and J−1/2(x) is just given by the J−α(x)

formula, above. Similarly, for α = 3
2 ,

5
2 ,

7
2 , . . ., that is, for m = 1, 2, 3, . . ., we

have a1 = a3 = a5 = . . . = 0. Then, the left side of the recurrence formula is
zero only when n is odd, so there is no problem here, either, and J−α(x) is,
again, as above.

Now, when α = m = 1, 2, 3, . . ., the formulas become

(1− 2m)a1 = 0⇒ a1 = 0

and
n(n− 2m)an = −an−2, n = 2, 3, . . . .

So a1 = a3 = a5 = . . . = 0. However, if a0 �= 0, then all of the even
a2, a4, . . . , a2n−2 are nonzero, while, for n = 2m, we get the contradiction

0 · a2m = −a2m−2.

Therefore, we will not have a second Frobenius solution. (As in Example 4 of
the previous section, we could choose a0 = a2 = . . . = a2m−2 = 0, in which
case a2m is arbitrary and we can start from there. But it turns out that we
get the solution (−1)nJn(x). See Exercise 3.)

So we must manufacture a second linearly independent solution. There are
various ways to do this but, for Bessel’s equations, the standard approach is
as follows. First, when α is not an integer, we define the function

Yα(x) =
(cosπα)Jα(x)− J−α(x)

sinπα
.

This function is (a) well defined for all nonintegral α and (b) a solution of
Bessel’s equation of order α (why?). Further, (c) Jα and Yα are linearly
independent (again, see Exercise 3). Yα(x) is called the Bessel function of
the second kind of order ααα, or the Weber function of order ααα.

Next, we extend the idea to α = n = 0, 1, 2, . . . by looking at the above as
a function of α. As α→ n, Yα(x)→

cosnπJn(x) − J−n(x)

sinnπ
.

Here, J−n(x) is interpreted to be the second Frobenius solution for α = n.
We mentioned above that J−n(x) = (−1)nJn(x). Therefore,

cosnπJn(x) − J−n(x)

sinnπ
=

(−1)nJn(x) − (−1)nJn(x)
sinnπ

=
0

0
,

so we may treat α as a variable and use L’Hôpital’s rule! Therefore, we define

Yn(x) = lim
α→n

Yα(x)

=
1

π
lim
α→n

[
∂

∂α
Jα(x)− π tanπαJα(x) −

∂
∂αJ−α(x)

cosπα

]
;
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so, realizing that this all can be done rigorously, we write

Yn(x) =
1

π

[
∂

∂α
Jα(x)− (−1)n ∂

∂α
J−α(x)

] ∣∣∣∣
α=n

.

For α = 0, it turns out that we get

Y0(x) =
2

π

∞∑
k=0

(−1)k
k!Γ(k + 1)

[
ln
x

2
− ψ(k)

] (x
2

)2k

=
2

π

[
J0(x)

(
γ + ln

x

2

)
−

∞∑
k=0

(−1)kφ(k)
(k!)2

(x
2

)2k
]
.

(See Exercise 12.)
More generally, it can be shown that Yn(x) is of the form

Jn(x)(A ln x+B) + x−n
∞∑
k=0

akx
k, n = 1, 2, 3, . . . ,

where the constants A and a0 are nonzero. Hence, Yn(x), n = 0, 1, 2, . . ., is
unbounded as x → 0+ and, in general, Jn and Yn are linearly independent.
We plot Y0, Y1 and Y2 in Figure 7.4.
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FIGURE 7.4
MATLAB graphs of the Bessel functions of the second kind, Y0Y0Y0
(solid), Y1Y1Y1 (dash-dotted) and Y2Y2Y2 (dashed).

Bessel functions exhibit a number of important properties, some of which
we explore in the exercises. One that we’ll need in order to solve Bessel’s
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eigenvalue problem below is the fact that each function Jα(x), α ≥ 0, has
infinitely many positive roots. Although we don’t prove it here,§ we can see
why it might be true by looking at what we did in Exercise 8 of Section 7.3.
There we showed that the substitution u =

√
x y turns Bessel’s equation into

u′′ +
(
1 +

1− 4α2

4x2

)
u = 0.

For large values of x, this equation is “close to” the equation

u′′ + u = 0,

which, of course, leads to the solution given in Exercise 8b of Section 7.3
namely,

y =
1√
x
(c1 cosx+ c2 sinx).

This solution has infinitely many zeros x1, x2, . . . → ∞ (why?), and so it’s
not hard to believe that the same is true of the Bessel functions. Further, it
turns out that xn+1 − xn → π as n→∞.

BESSEL’S EIGENVALUE PROBLEM

Now, what about Bessel’s eigenvalue problem from Exercise 1b in Section 7.1?
Again, it is the R-equation arising from the application of separation of vari-
ables to the wave (and heat) equation in polar coordinates. Generally, then,
we are asked to find the eigenvalues and eigenfunctions of the problem

x2y′′ + xy′ + (λx2 − n2)y = 0, 0 < x < L,

y bounded as x→ 0+, y(L) = 0,

where n is a nonnegative integer. We proceed as usual:

Case 1: λ = 0

x2y′′ + xy′ − n2y = 0

is a Cauchy–Euler equation. If n = 0, we have general solution

y = c1 + c2 lnx,

while for n > 0 we have

y = c1x
n + c2x

−n.

In either case, the boundary condition gives c1 = c2 = 0 (why?), and λ = 0 is
not an eigenvalue.

§See, e.g., Georgi Tolstov’s excellent book Fourier Series.
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Case 2: λ < 0, λ = −k2
This case is treated in Exercise 9, where we see that there are no negative

eigenvalues.

Case 3: λ > 0, λ = k2

Here, of course, we have

x2y′′ + xy′ + (k2x2 − n2)y = 0.

Proceeding as in Exercise 1d of Section 7.1, we see that the general solution
is

y = c1Jn(kx) + c2Yn(kx).

As Yα is unbounded as x → 0+, we must have c2 = 0. Then, the right end
boundary condition gives us c1 = 0 unless k is such that

Jn(kL) = 0.

As mentioned above, the Bessel function Jn has an infinite sequence of pos-
itive zeros, xn,1, xn,2, . . .→∞, so we have an infinite sequence of eigenvalues

kn,m =
xn,m
L

, m = 1, 2, 3, . . . ,

with corresponding eigenfunctions

yn,m = Jn

(xn,m
L

x
)
, m = 1, 2, 3, . . . .

ZEROS OF Jn(x)Jn(x)Jn(x); STURM COMPARISON
THEOREM, REVISITED

In Chapter 8, we’ll need to know the zeros of the Bessel functions Jn(x),
n = 0, 1, 2, . . . . We list the first 20 positive zeros of J0, J1 and J2 in Table 7.1.¶

We note here that the table bears out the results of the Sturm Comparison
Theorem, mentioned in Exercise 20, Section 1.7. In this setting, the theorem
implies that if α1 < α2, then between any two zeros of Jα2 there lies a zero
of Jα1 . Notice, too, that the difference between zeros seems to be tending
toward approximately 3.14, as expected.

Exercises 7.5

1. Write down the general solution of each equation, on 0 < x <∞.

a) x2y′′ + xy′ + (x2 − 5)y = 0

b) x2y′′ + xy′ + (x2 − 9)y = 0

c) xy′′ + y′ + xy = 0

¶From the Handbook of Mathematical Functions by Abramowitz and Stegun.
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J0 J1 J2

1) 2.40483 3.83171 5.13562

2) 5.52008 7.01559 8.41724

3) 8.65373 10.17347 11.61984

4) 11.79153 13.32369 14.79595

5) 14.93092 16.47063 17.95982

6) 18.07106 19.61586 21.11700

7) 21.21164 22.76008 24.27011

8) 24.35247 25.90367 27.42057

9) 27.49348 29.04683 30.56920

10) 30.63461 32.18968 33.71652

11) 33.77852 35.33231 36.86286

12) 36.91710 38.47477 40.00845

13) 40.05843 41.61709 43.15345

14) 43.19979 44.75932 46.29800

15) 46.34119 47.90146 49.44216

16) 49.48261 51.04354 52.58602

17) 52.62405 54.18555 55.72963

18) 55.76551 57.32753 58.87302

19) 58.90698 60.46946 62.01622

20) 62.04847 63.61136 65.15927

TABLE 7.1
The first 20 positive zeros of J0, J1J0, J1J0, J1 and J2J2J2.

2. Verify the calculations in deriving a2k(α) for the first solution of Bessel’s
equation.

3. Show that J−n(x) = (−1)nJn(x) (where J−n(x) is constructed by choos-
ing a0 = a2 = . . . = a2n−2 = 0).

4. Establish the following properties of Bessel functions.

a) J0(0) = 1

b) Jα(0) = 0 for α > 0
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c) J ′
0(x) = −J1(x)

d) d
dx [xJ1(x)] = xJ0(x)

5. a) Show that d
dx [x

αJα(x)] = xαJα−1(x).

b) Show that d
dx [x

−αJα(x)] = −x−αJα+1(x).

c) Use the results of parts (a) and (b) to show that

J ′
α(x) =

1

α
[Jα−1(x)− Jα+1(x)].

d) Use the results of parts (a) and (b) to show that

Jα+1(x) =
2α

x
Jα(x)− Jα−1(x).

e) Express J2(x) and J3(x) in terms of J0(x) and J1(x).

6. Show that the functions Yα(x) also satisfy the relations in the previous
exercise.

7. a) Use Rolle’s Theorem to show that if f(x) has infinitely many zeros
on 0 < x <∞, then so does f ′(x).

b) Solve the Bessel eigenvalue problem

x2y′′ + xy′ + (λx2 − n2)y = 0, 0 < x < L,

y bounded as x→ 0+, y′(L) = 0.

8. Hankel Functions or Bessel Functions of the Third Kind: The
Hankel functions of order α, of the first and second kinds, are defined
by, respectively,

H(1)
α (x) = Jα(x) + iYα(x) and

H(2)
α (x) = Jα(x) − iYα(x),

where i is the imaginary number satisfying i2 = −1. Show that each of
these functions satisfies Bessel’s equation of order α.

9. Modified Bessel Functions: The ODE

x2y′′ + xy′ − (x2 + α2)y = 0

is called the modified Bessel’s equation of order ααα.

a) Use the method of Frobenius to show that

Iα(x) =

∞∑
k=0

1

k!Γ(k + α+ 1)

(x
2

)2k+α
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is a solution for α ≥ 0 and that

I−α(x) =

∞∑
k=0

1

k!(k − α+ 1)

(x
2

)2k−α

is a solution for α > 0, α not an integer. Each of these is a mod-
ified Bessel function of the first kind of order ααα or −α−α−α,
respectively.

b) Show that, if α > 0 is not an integer, the function

Kα(x) =
π

2

I−α(x)− Iα(x)
sinπα

also is a solution. This is the modified Bessel function of the
second kind of order ααα. We may define Kn(x), n = 0, 1, 2, . . .,
as we defined Yn(x), by taking lim

α→n
Kα(x).

c) Verify that Iα(x) > 0 for all x, for any α ≥ 0. Also, show that
I0(0) = 1 and Iα(0) = 0 for α > 0.

d) It turns out that the functions Kn(x), n = 0, 1, 2, . . ., are un-
bounded as x → 0+. Use this, and the results of part (c), to
show that, for each k = 1, 2, 3, . . ., the problem

x2y′′ + xy′ − (k2x2 + n2)y = 0,

y bounded as x→ 0+, y(L) = 0,

has only the trivial solution.

e) Show formally that Iα(ix) = iαJα(x).

f) Use part (e) to show that

I ′0(x) = I1(x),

then do the same using the series in part (a). (One also can show
that K ′

0(x) = K1(x).)

We provide the graphs of I0, I1, I2 and K0,K1,K2 in Figures 7.5 and
7.6, respectively.

10. Bessel’s equation in disguise: There are many ODEs which can be
turned into Bessel’s equation via an appropriate change of variables.
Actually, let’s go the other way—let’s start with Bessel’s equation and
try to generalize it.

a) Let x = atb, for constants a and b, to turn Bessel’s equation into

t2y′′ + ty′ + (a2b2t2b − b2α2)y = 0,

where y′ = dy
dt .



Special Functions and Orthogonal Polynomials 315

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

10

FIGURE 7.5
MATLAB graphs of I0I0I0 (solid), I1I1I1 (dash-dotted) and I2I2I2
(dashed), modified Bessel functions of the first kind.
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FIGURE 7.6
MATLAB graphs of K0K0K0 (solid), K1K1K1 (dash-dotted) and K2K2K2

(dashed), modified Bessel functions of the second kind.

b) Next, change dependent variables via z(t) = tcy(t), for c constant,
to get

t2z′′ + (1− 2c)tz′ + (a2b2t2b + c2 − b2α2)y = 0.

(Compare with Exercise 8a, Section 7.3.)
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c) Show that the general solution of this last equation is

z = t2[c1Jα(at
b) + c2Yα(at

b)].

d) Use these results to find the general solution of Airy’s equation,
y′′ + xy = 0.

11. From ODEs, you may remember Ricatti’s equation,

y′ + by2 = cxm.

a) If m = −2, show that the substitution v(x) = xy(x) turns Ricatti’s
equation into a separable equation.

b) More generally, show that the substitution

y =
1

bu
u′, where u = u(x),

transforms Ricatti’s equation into

u′′ − bcxmu = 0.

c) Use the above, and Exercise 9, to solve the Ricatti equation

y′ − y2 = x2.

12. Derive the expression given for Y0(x).

13. Integral form for Bessel functions: It turns out that

Jn(x) =
1

2πin

∫ π

−π

ei(x cos θ−nθ) dθ, n = 0, 1, 2, . . . .

We do so only for the case n = 0, as follows:

a) Use the Maclaurin series for ex to expand eix cos θ, in order to show
that ∫ π

−π

eix cos θ dθ =

∞∑
m=0

(ix)m

m!

∫ π

−π

cosm θ dθ.

(You may assume that we may integrate term-by-term.)

b) Use the binomial theorem and Euler’s formula to show that

∫ π

−π

cosm θ dθ =

⎧⎪⎨
⎪⎩
0, if m is odd,
(
2k
k

)/
22k, if m = 2k is even.

(Remember that
(
n
k

)
is just “n-choose k,”

(
n
k

)
= n!

k!(n−k)! .)
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c) Conclude that J0(x) =
1
2π

∫ π

−π
eix cos θ dθ.

d) If f is a real function with |f(θ)| ≤ 1 on −π ≤ θ ≤ π, explain why

−1 ≤ 1

2π

∫ π

−π

f(θ)dθ ≤ 1.

(One can make a similar statement for complex functions and, thus,
conclude that |Jn(x)| ≤ 1 for any x, for any n = 0, 1, 2, . . . .)

7.6 Recap: A List of Properties of Bessel Functions
and Orthogonal Polynomials

In this final section, we list a number of the important properties of the
functions we have dealt with in this chapter. We prove some of these properties
in the exercises; others were proven earlier, and some we state without proof.
The various Fourier series are listed here for convenience, but are dealt with
in the following chapter.

BESSEL FUNCTIONS

OF THE FIRST KIND

Jα(x), α ≥ 0, and J−α(x), α > 0 and α not an integer.

OF THE SECOND KIND (Weber functions)

Yα(x) =
cosπα · Jα(x) − J−α(x)

sinπα
, α > 0 and α not an integer,

Yn(x) = lim
α→n

Yα(x), n an integer.

OF THE THIRD KIND (Hankel functions)

H(1)
α (x) = Jα(x) + iYα(x),

H(2)
α (x) = Jα(x) − iYα(x).

All are solutions of the ODE

x2y′′ + xy′ + (x2 − α2)y = 0

or

(xy′)′ +
x2 − α2

x
y = 0, 0 < x <∞.
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Recurrence relation:

fα+1(x) =
α

x
fα(x) − fα−1(x).

Orthogonality relation:

∫ 1

0

xJn(kix)Jn(kjx)dx =

⎧⎨
⎩

0, if i �= j,
1

2
J2
n+1(ki), if i = j

for each n = 0, 1, 2, . . . . (Here, the numbers ki are the roots
of Jn.)

Series representation:

Jα(x) =

∞∑
k=0

(−1)k
k!Γ(k + α+ 1)

(x
2

)2k+α

, α ≥ 0.

Fourier–Bessel series:

f(x) ∼
∞∑

n=1

cnJα(knx) (α fixed), 0 ≤ x ≤ 1,

where cn =
2

J2
α+1(kn)

∫ 1

0

xf(x)Jα(knx)dx

and kn = nth positive root of Jα.

LEGENDRE POLYNOMIALS Pn(x), n = 0, 1, 2, . . .

Solutions of ODE

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0

or

[(1− x2)y′]′ + n(n+ 1)y = 0, −1 < x < 1.

P0(x) = 1, P1(x) = x

Recurrence relation:

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

Orthogonality relation:

∫ 1

−1

Pn(x)Pm(x)dx =

⎧⎪⎨
⎪⎩

2

2n+ 1
, if n = m,

0, if n �= m.



Special Functions and Orthogonal Polynomials 319

Pn(±1) = (±1)n

Series representation:

Pn(x) =

[ n2 ]∑
k=0

(−1)k(2n− 2k)!

2nk!(n− k)!(n− 2k)!
xn−2k. ‖

Rodrigues’s formula:

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n].

Fourier–Legendre series:

f(x) ∼
∞∑
n=1

cnPn(x), −1 ≤ x ≤ 1,

where cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx.

CHEBYSHEV POLYNOMIALS

OF THE FIRST KIND Tn(x), n = 0, 1, . . .

Solutions of ODE

(1− x2)y′′ − xy′ + n2y = 0

or

[
√
1− x2 y′]′ + n2

√
1− x2 y = 0, −1 < x < 1.

T0(x) = 1, T1(x) = x

Recurrence relation:

Tn(x) = 2xTn−1(x) − Tn−2(x).

Orthogonality relation:

∫ 1

−1

Tn(x)Tm(x)√
1− x2 dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π, if n = m = 0,

π

2
, if n = m > 0,

0, if n �= m.

‖Here and following,
[
n
2

]
equals the greatest integer that is ≤ n

2
(remember the greatest

integer function f(x) = [x]).



320 An Introduction to Partial Differential Equations with MATLAB R©

Tn(±1) = (±1)n

Series representation:

Tn(x) =

[n2 ]∑
k=0

(
n

2k

)
xn−2k(x2 − 1)k,

where

(
n

m

)
=

n!

m!(n−m)!
= “n-choose-m.”

Tn(cos θ) = cosnθ

Fourier–Chebyshev series (first kind):

f(x) ∼
∞∑

n=1

cnTn(x), −1 ≤ x ≤ 1,

where cn =
2

π

∫ 1

−1

f(x)Tn(x)dx.

OF THE SECOND KIND Sn(x), n = 0, 1, . . .

Solutions of ODE

(1− x2)y′′ − 3xy′ + n(n+ 2)y = 0

or

[(1− x2)3/2y′]′ + n(n+ 2)
√

1− x2 y = 0, −1 < x < 1.

S0(x) = 1, S1(x) = 2x

Recurrence relation:

Sn(x) = 2xSn−1(x)− Sn−2(x).

Orthogonality relation:

∫ 1

−1

Sn(x)Sm(x)
√

1− x2 dx =

⎧⎪⎨
⎪⎩
π

2
, if n = m,

0, if n �= m.

Sn(±1) = (±1)n(n+ 1)
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Series representation:

Sn(x) =

[n2 ]∑
k=0

(
n+ 1

2k + 1

)
xn−2k(x2 − 1)k.

Sn(cos θ) =
sin(n+1)θ

sin θ (where we use L’Hôpital’s rule if θ = 0,±π, . . .)

Fourier–Chebyshev series (second kind):

f(x) ∼
∞∑
n=1

cnSn(x), −1 ≤ x ≤ 1,

where cn =
2

π

∫ 1

−1

f(x)Sn(x)dx.

LAGUERRE POLYNOMIALS Ln(x), n = 0, 1, 2, . . .

Solutions of ODE

xy′′ + (1 − x)y′ + ny = 0

or

(xe−xy′)′ + ne−xy = 0, 0 < x <∞.

L0(x) = 1, L1(x) = 1− x

Recurrence relation:

nLn(x) = (2n− 1− x)Ln−1(x) − (n− 1)Ln−2(x).

Orthogonality relation:

∫ ∞

0

Ln(x)Lm(x)e−x dx =

⎧⎨
⎩

1, if n = m,

0, if n �= m.

Series representation:

Ln(x) =
n∑

k=0

(
n

k

)
(−1)k
k!

xk.

Rodrigues’s formula:

Ln(x) =
1

n!
ex

dn

dxn
(xne−x).
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Fourier–Laguerre series:

f(x) ∼
∞∑

n=0

cnLn(x), −1 ≤ x < 1,

where cn =

∫ ∞

0

f(x)Ln(x)e
−x dx.

HERMITE POLYNOMIALS Hn(x), n = 0, 1, 2, . . .

Solutions of ODE

y′′ − 2xy′ + 2ny = 0

or

[e−x2

y′]′ + 2ne−x2

y = 0, −∞ < x <∞.

H0(x) = 1, H1(x) = 2x

Recurrence relation:

Hn(x) = 2xHn−1(x) − 2(n− 1)Hn−2(x).

Orthogonality relation:

∫ ∞

−∞
Hn(x)Hm(x)e−x2

dx =

⎧⎨
⎩

2nn!
√
π, if n = m,

0, if n �= m.

Series representation:

Hn(x) =

[n2 ]∑
k=0

(−1)kn!
k!(n− 2k)!

(2x)n−2k.

Rodrigues’s formula:

Hn(x) = (−1)nex2 dn

dxn
(e−x2

).

Fourier–Hermite series:

f(x) ∼
∞∑
n=0

cnHn(x), −∞ < x <∞,

where cn =
1

2nn!
√
π

∫ ∞

−∞
f(x)Hn(x)e

−x2

dx.
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Exercises 7.6

1. a) For each set of orthogonal polynomials, write down the third through
fifth polynomials, and make sure that these match what we got in
Section 7.2. (See Section 7.3 for L0, L1 and L2.)

b) For each set of orthogonal polynomials fn(x) except Laguerre (why
not Laguerre?), use the recurrence relation to show that

n even ⇒ fn is an even function,

n odd ⇒ fn is an odd function.

c) MATLAB: For each set of orthogonal polynomials, use the recur-
rence relation to write a MATLAB program which generates the
first N polynomials.

d) MATLAB: Plot the graphs of the first six of each set of orthogonal
polynomials, as we did for the Legendre polynomials in Figure 7.1.

2. For each set of functions in this section, we gave two differential equa-
tions. Show that the two equations are equivalent in each case. In each
case, the second equation is said to be in self-adjoint form. This idea
is treated in detail in Chapter 8.

3. Here, we prove the so-called orthogonality relations for Legendre poly-
nomials, for n �= m.

a) Pn and Pm satisfy, respectively,

[(1− x2)P ′
n]

′ + n(n+ 1)Pn = 0

and
[(1− x2)P ′

m]′ +m(m+ 1)Pm = 0.

Multiply the top equation by Pm and the bottom by Pn, and sub-
tract.

b) Integrate the resulting equation from x = −1 to x = 1. You’ll need
to use integration by parts.

4. a) Proceed as in Exercise 3, for the Laguerre polynomials.

b) Do the same for the Hermite polynomials.

5. a) Use the fact that Tn(cos θ) = cosnθ to prove the orthogonality
relation for the Chebyshev polynomials of the first kind (both for
n �= m and for n = m).

b) Similarly, use the property Sn(cos θ) = sin(n+1)θ
sin θ to prove the or-

thogonality relation for the Chebyshev polynomials of the second
kind (both for n �= m and for n = m).
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6. a) Use Rodrigues’s formula for the Legendre polynomials to show that
we write the associated Legendre functions as

Pn
m(x) =

1

2mm!
(1− x2)n/2 d

m+n

dxm+n
[(x2 − 1)m]

(m and n are integers, of course).

b) For which values of n and m will Pn
m(x) be a polynomial?

c) Show that

Pn
m(cos θ)

is a polynomial in sin θ and/or cos θ, for any choice of n and m.

7. Here we prove the orthogonality relation for the functions Jα(kix), i =
1, 2, 3, . . ., where α > 0 and the numbers ki are the positive zeros of the
Bessel function Jα(x).

a) Show that Jα(kix) is a solution of the problem

x2y′′ + xy′ + (k2i x
2 − α2)y = 0,

y bounded as x→ 0+, y(1) = 0.

b) Letting yi = Jα(kix) and yj = Jα(kjx), i �= j, we have

x2y′′i + xy′i + (k2i x
2 − α2)yi = 0

x2y′′j + xy′j + (k2jx
2 − α2)yj = 0.

Multiply the first by yj and the second by yi, and subtract. Then,
integrate the resulting equation from 0 to 1 and conclude that we
have ∫ 1

0

xJα(kix)Jα(kjx)dx = 0.

c) More generally, for any L > 0, show that

∫ L

0

xJα

(
kix

L

)
Jα

(
kjx

L

)
dx = 0.

8. What about when i = j in Exercise 6?

a) Multiply the differential equation in Exercise 6a by y′ and, using
integration by parts, show that it follows that

[y′(1)]2 + (k2i − α2)[y(1)]2 = 2k2i

∫ 1

0

xy2 dx.
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b) Conclude that

∫ 1

0

xJ2
α(kix)dx =

1

2
[J ′

α(ki)]
2.

c) Use the result of Exercise 5b from the previous section to show
that we can rewrite this as

∫ 1

0

xJ2
α(kix)dx =

1

2
J2
α+1(ki)

and, more generally, as

∫ L

0

xJ2
α

(
kix

L

)
dx =

L2

2
J2
α+1(ki).

9. Proceed as in Exercises 7 and 8, and show that if ki, i = 1, 2, 3, . . . are
the positive zeros of the derivative J ′

α, then we still have

∫ 1

0

xJα(kix)Jα(kjx)dx = 0 for i �= j

and, more generally, that

∫ L

0

xJα

(
kix

L

)
Jα

(
kjx

L

)
dx = 0 for i �= j.

Show that, in this case, for i = j we have

∫ 1

0

xJ2
α(kix)dx =

k2i − α2

2k2i
J2
α(ki).





Prelude to Chapter 8

In the 1830s, Charles Sturm (1803–1852) and Joseph Liouville∗ (1809–1882),
both in Paris, embarked on a study of second-order boundary-value problems,
resulting in the consolidation and generalization of the ideas from the previous
chapter. Here, we introduce these Sturm–Liouville problems, and we find
that their eigenvalues and eigenfunctions share the same important properties
which characterize the eigenvalues and eigenfunctions of Section 3.7. Indeed,
the sets of trigonometric functions comprising the various Fourier series, as
well as the sets of special functions, all shake out as particular cases in the
Sturm–Liouville theory.

The theory can be extended to higher order equations, where we touch upon
the ideas of adjoint and self-adjoint problems. (This terminology, though,
didn’t arise until the early 1900s, in the work of David Hilbert (1862–1943)
and others.) For our purposes, the most important result is the fact that the
special functions are complete on their defining intervals, in the same sense
as are the trigonometric functions. Sturm and Liouville saw that this was
the case and established Bessel’s inequality and Parseval’s† equality in this
setting of generalized Fourier series. (Bessel and Parseval had derived them
for the trigonometric case.) However, they were not in a position to state and
prove a general theorem on completeness, due to the problem that Fourier
series converge pointwise only at points of continuity. All of this eventually
was “made nice” following 1907, when Ernst Fischer (1875–1959) introduced
a different kind of convergence, the so-called mean-square convergence, which
entails looking at integrals of the functions involved and, thus, circumvents
the difficulties associated with points of discontinuity. (Actually, the inte-
grals were not Riemann integrals, but the new Lebesgue integrals, devised
by Henri Lebesgue (1875–1941) around the turn of the century, and in some
sense the culmination of the work of the great analysts—Dirichlet, Cauchy,
Georg Friedrich Riemann (1826–1866), Liouville, Weierstrass, et al.—whose
investigations had been spurred, initially, by the work of Fourier.)

∗Liouville was very productive in many areas of mathematics, but he is also known as the
person who resurrected the work of Evariste Galois (1811–1832). If you’re not familiar with
Galois’s story, you really should check it out.
†Marc-Antoine Parseval (d. 1836).
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Sturm–Liouville Theory and Generalized
Fourier Series

8.1 Sturm–Liouville Problems

Before moving on to equations in higher dimensions, we pause to look again at
Fourier series, with any eye toward seeing if there are other sets of functions
which behave like the functions discussed in Section 3.7. It may seem strange
that our approach will hinge upon looking again at ODE eigenvalue problems.
However, you will remember that, in Chapters 1 and 3, when dealing with the
separated eigenvalue problems

y′′ + λy = 0, 0 ≤ x ≤ L,
y(0) = 0 or y′(0) = 0,

y(L) = 0 or y′(L) = 0,

we found that the eigenvalues and eigenfunctions had a number of important
properties—we list these and, in parentheses, we compare them with similar
eigenproperties of matrices.

1) The eigenvalues are real. (A matrix need not have real eigenvalues.)

2) There are infinitely many eigenvalues.∗ (n× n matrices have exactly n
eigenvalues, if we include multiplicities.)

3) Each eigenvalue has multiplicity one, i.e., if y1 is an eigenfunction cor-
responding to λ1, then the only eigenfunctions corresponding to λ1 are
of the form cy1. (This was not the case with matrices and eigenvectors.)

4) If y1 and y2 are eigenfunctions corresponding to different eigenvalues λ1
and λ2, then y1 and y2 are orthogonal on [0, L], i.e.,

〈y1, y2〉 =
∫ L

0

y1(x)y2(x)dx = 0.

∗Actually, they are countably infinite, meaning that they can be put into a 1-1 correspon-
dence with the natural numbers.
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(Eigenvectors corresponding to different eigenvalues need not be per-
pendicular.)

5) The eigenfunctions form a complete set in the space of piecewise smooth
functions on [0, L], i.e., for any such f , there exist constants c1, c2, . . .,
such that

f(x) =

∞∑
n=1

cnyn(x), 0 ≤ x ≤ L,

where yn is the eigenfunction corresponding to λn. (For matrices, we
sometimes found that the eigenvectors of an n×n matrix spanned R

n.)

Let’s start by rewriting the ODE y′′ + λy = 0 as

y′′ = −λy
so that it looks like a matrix eigenvalue problem (modulo the minus sign).
More generally, then, we’ll be looking at eigenvalue ODEs of the form

L[y] = −λy,
where L is a linear differential operator; so, above, we have L[y] = y′′. Further,
we’ll restrict ourselves to second-order ODEs, as these form the vast majority
of the problems we have encountered which arise from separation of variables.

So we consider eigenvalue ODEs of the form

L[y] = a0(x)y
′′ + a1(x)y

′ + a2(x)y = −λy. (8.1)

For starters, we may put this equation into a sort of standard form. Remember
that, when solving the first-order ODE

a0(x)y
′ + a1(x)y = b(x),

we divided by a0 and multiplied by the integrating factor

r(x) = e
∫ a1(x)

a0(x) dx

to rewrite the equation as

(ry′)′ = r(x)b(x).

Well, we may do the same with the first two terms of any linear ODE. So, we
rewrite equation (8.1) as

y′′ +
a1(x)

a0(x)
y′ +

a2(x)

a0(x)
y = −λ 1

a0(x)
y

and then multiply by the integrating factor r(x) = e
∫ a

1
(x)

a
0
(x)

dx
to arrive at

(r(x)y(x))′ + q(x)y(x) = −λw(x)y(x).
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This particular eigenvalue ODE is called a Sturm–Liouville equation and
any operator

L[y] = (ry′)′ + qy

is called a Sturm–Liouville operator, or to have been put into Sturm–
Liouville form. Finally, any eigenvalue problem of the form

L[y] = (ry′)′ + qy = −λwy, a ≤ x ≤ b,
a1y(a) + a2y

′(a) + a3y(b) + a4y
′(b) = 0,

b1y(a) + b2y
′(a) + b3y(b) + b4y

′(b) = 0,

where a1, . . . , a4, b1, . . . , b4 are constants and the two boundary conditions are
independent (i.e., neither implies the other), is called a Sturm–Liouville
problem. We’re interested in a few specific types of Sturm–Liouville prob-
lems, as they arise frequently in applications, often via separation of variables.
Specifically, most problems that we run into will be of the form

L[y] = (ry′)′ + qy = −λwy, a < x < b,

a1y(a) + a2y
′(a) = 0,

b1y(b) + b2y
′(b) = 0,

where

1) w(x), q(x), r(x) and r′(x) are continuous on a < x < b.

2) w(x) > 0 and r(x) > 0 on a < x < b.

The boundary conditions—one at x=a, the other at x=b—are called sepa-
rated boundary conditions.

Definition 8.1 If, in addition, the Sturm–Liouville problem above also sat-
isfies

1) w, q, r and r′ are continuous on a ≤ x ≤ b,
2) w(x) > 0 and r(x) > 0 for x = a and x = b

we say that it is a regular Sturm–Liouville problem.
If, instead, the problem satisfies at least one of the following:

1) w(a) = 0 or w(b) = 0 or r(a) = 0 or r(b) = 0

2) any of w, q or r becomes infinite at x = a or x = b

3) a = −∞ or b =∞,

we call the problem a singular Sturm–Liouville problem. (Of course,
there are many other ways a problem can become singular, for example, if one
of the functions involved becomes infinite on the interval a < x < b.)
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Example 1 The system

y′′ = (y′)′ = −λy, 0 ≤ x ≤ L,
y(0) = 0 or y′(0) = 0,

y(L) = 0 or y′(L) = 0

is a regular Sturm–Liouville problem, with r(x) ≡ w(x) ≡ 1, q(x) ≡ 0.

Example 2 The Cauchy–Euler equation

x2y′′ + axy′ + by = −λy, a, b constant

can be rewritten
(xay′)′ + bxa−1y = −λxa−1y.

So, e.g.,

(xay′)′ + bxa−1y = −λxa−1y

y(1) = y(e) = 0

is a regular Sturm–Liouville problem, while, with boundary conditions

y(0) = y(e) = 0,

it would be a singular Sturm–Liouville problem.

Example 3 We often need to solve Legendre’s equation

(1− x2)y′′ − 2xy′ + λy = 0

on the interval −1 ≤ x ≤ 1. We can rewrite the equation as

[(1 − x2)y′]′ + λy = 0,

and we see that the equation, subject to boundary conditions at x = ±1, is a
singular Sturm–Liouville problem.

Analogous versions of properties 1–5 hold for the general regular Sturm–
Liouville problem, as we’ll show in the following section. A few of the exercises
below will serve as preparation or motivation for these proofs.

Exercises 8.1

1. Write each ODE in Sturm–Liouville form:

a) y′′ + 3y′ − 2y = 0

b) y′′ − xy = 0 (Airy’s equation)

c) x2y′′ + xy′ − 6y = 0
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d) xy′′ + (1 − x)y′ + ny = 0 (Laguerre’s equation of order n)

e) y′′ − 2xy′ + 2ny = 0 (Hermite’s equation of order n)

f) x2y′′ + xy′ + (x2 − α2)y = 0 (Bessel’s equation of order α)

g) (1 − x2)y′′ − 3xy′ + λy = 0 (Chebyshev’s equation of the second
kind)

2. Write the ODE in Sturm–Liouville form, then determine if the Sturm–
Liouville problem is regular or singular.

a) y′′ + λy = 0
y(−1) + 3y′(−1) = 5y(2)− 7y′(2) = 0

b) y′′ + 2y′ − 5λy = 0
y(0) = y′(3) = 0

c) (1− x2)y′′ − xy′ + λy = 0 (Chebyshev’s equation of the first kind)
y(−1) = y(1) = 0

d) x2y′′ + xy′ + λy = 0
y(0) = y′(1) = 0

3. Suppose that y1 and y2 are linearly independent solutions of

(ry′)′ + qy = 0

on a given interval (possibly of infinite extent). If W is the Wronskian

W [y1, y2] = y1y
′
2 − y2y′1,

show that
(rW )′ = 0

and, then, that rW is constant on the given interval. (Assume that r
and q are well-enough behaved.)

4. (For the proof of Theorem 8.4 in the following section.) Remember that
every complex number z can be written as z = a+ bi, where a and b are
real numbers. We define the complex conjugate of z to be the complex
number

z̄ = a− bi.
Prove the following:

a) For any complex number z, z · z̄ is real.

b) For any complex numbers z1 and z2,
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i) z1 + z2 = z̄1 + z̄2

ii) z1z2 = z̄1 z̄2

c) If z is real, then z̄ = z.

It follows from the above that any complex function f(x), x real, can be
written as f(x) = g(x) + ih(x), where g and h are real.

d) Show that f ′(x) = f(x)
′
.

Finally, putting everything together, and using the definition of the
equality of two numbers

a+ bi = c+ di if and only if a = c and b = d,

prove:

e) If y1 is an eigenfunction, corresponding to the eigenvalue λ1, of the
problem

a0(x)y
′′ + a1(x)y

′ + a2(x)y = −λy
A1y(a) +A2y

′(a) = B1y(b) +B2y
′(b),

then ȳ1 also is an eigenfunction, corresponding to the eigenvalue
λ̄1.

5. (Perpendicularity/orthogonality of eigenvectors: compare to
proof of Theorem 8.3 in the following section.) Remember that the
inner product of functions is analogous to the dot product of vectors,
and the orthogonality of functions is analogous to the perpendicularity
of vectors. Here, we’d like to prove that the eigenvectors of a symmetric
matrix are orthogonal. Specifically, suppose that the real matrix A is
n×n and symmetric, that is, AT = A, and suppose that vvv andwww are real
eigenvectors, corresponding to real eigenvalues λ1 and λ2, respectively,
with λ1 �= λ2. Let’s agree that all vectors are column vectors, so that
the dot product is the same as a matrix product, that is,

vvv ·www = vvvTwww.

a) Show that vvvAwww−wwwAvvv = 0. (Hints: (AB)T = BTAT , and vvv1 ·vvv2 =
vvv2 · vvv1.)

b) Show that vvvAwww −wwwAvvv = (λ2 − λ1)vvv ·www.
c) Conclude that vvv and www are perpendicular.

In general, if A is a real n×n matrix, then AT is called the Hermitian
adjoint of A, and A is called self-adjoint if AT = A. What if the
entries are allowed to be complex? First, when we talked about the
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inner product of complex functions (Exercise 15, Section 3.3), we saw
that it had to be defined as

〈f, g〉 =
∫ b

a

f(x)g(x)dx,

or else it would not possess the properties that we would like an inner
product to have. Similarly, the inner product of two complex vectors
must be defined as

〈vvv,www〉 = v̄Tw,

where

v̄vv =

⎡
⎢⎢⎣
v̄1
...

v̄n

⎤
⎥⎥⎦ .

(Refer here and below to Exercise 4.) In this setting, the Hermitian
adjoint of a complex matrix A is defined to be

A∗ = ĀT ,

where Ā results from taking the complex conjugate of every element of
A. A is said to be self-adjoint if

A∗ = A.

d) Show that if A is self-adjoint, then its eigenvectors are orthogonal.

e) Show that if A is real and self-adjoint, then its eigenvalues are real.

(Actually, it can be shown that the eigenvalues of any complex self-
adjoint matrix must be real.)

6. (For the proof of Theorem 8.3 in the following section.) Generalize
Green’s first and second identities (Exercise 23, Section 1.7) by
showing that the Sturm–Liouville operator

L[y] = (ry′)′ + qy

satisfies

a)
∫ b

a
y1L[y2]dx = r(x)y1(x)y

′
2(x)|ba −

∫ b

a
ry′1y

′
2 dx+

∫ b

a
qy1y2 dx

b)
∫ b

a
(y1L[y2]− y2L[y1])dx = r(x)[y1(x)y

′
2(x) − y2(x)y′1(x)]|ba

(so long as everything is well-enough behaved). The latter is called
Green’s second identity or Green’s formula for L. When written
in differential form

y1L[y2]− y2L[y1] = d

dx
[r(y1y

′
2 − y2y′1)]

it is known as Lagrange’s identity for L.
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c) Show that we cannot do anything similar if the operator is first-
order, that is, of the form

L[y] = a0(x)y
′ + a1(x)y.

d) However, show that we can simplify

∫ b

a

(y1L[y2]− y2L∗[y1])dx

if we define

L[y] = a0(x)y
′ + a1(x)y,

L∗[y] = −a0(x)y′ + a1(x)y.

(We will call L∗ the adjoint of the operator L.)

7. The Sturm–Liouville equation (ry′)′ + qy = −λwy, a ≤ x ≤ b, may be
put into a simpler form, as follows. (We assume r > 0 and p > 0 on
a ≤ x ≤ b.)
a) Let

t =

∫ x

a

f(z)dz, f(z) > 0 on a ≤ z ≤ b.

Show that the equation becomes

Y ′′ +
(rf)′

rf
Y ′ +

q

f2r
Y = −λ w

f2r
Y,

where Y (t) = y(x) and the prime represents differentiation by t.

b) Show that the specific choice

f(x) =

√
w(x)

r(x)

leads to the equation

Y ′′ +
1

2

(rw)′

rw
Y ′ +

q

r
Y = −λY.

c) Now show that the change of dependent variable Y (t) = g(t)z(t)
leads to the equation

gz′′ +
[
2g′ +

1

2

(rw)′

rw
g

]
z′ +

[
q

r
g +

1

2

(rw)′

rw
g′ + g′′

]
z = −λz.
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d) Finally, show that, by choosing

g =
1

4
√
rw

,

the equation becomes

z′′ +Q(t)z = −λz,

where

Q = −7[(rw)′]2

16(rw)2
− (rw)′′

4rw
.

This is called the Liouville normal form of the original equation.

8.2 Regular and Periodic Sturm–Liouville Problems

It turns out that statements 1–5 of the previous section are “mostly” true for
the regular Sturm–Liouville problem

L[y] = (ry′)′ + qy = −λwy, a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0.
(8.2)

We’ll state here without proof two of the theorems which are too difficult
to prove at this level. Then we’ll prove the remaining three, using some of
the results from the exercises of the previous section.

Theorem 8.1 The eigenvalues of the regular Sturm–Liouville problem (8.2)
form an infinite sequence

λ1 < λ2 < λ3 < . . .

with

lim
n→∞λn =∞.

Theorem 8.2 The eigenfunctions of the regular Sturm–Liouville problem (8.2)
form a complete set in the space of piecewise smooth functions on a ≤ x ≤ b
(complete in the sense that functions which differ at finitely many points are
represented by the same series of eigenfunctions).

For proofs see, e.g., the classic text Theory of Ordinary Differential Equa-
tions by Coddington and Levinson.
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Now we’d like to prove the remaining three results from the previous section
for the regular Sturm–Liouville problem (8.2):

L[y] = (ry′)′ + qy = −λwy,
a1y(a) + a2y

′(a) = b1y(b) + b2y
′(b) = 0.

First, what can we say with respect to orthogonality of the eigenfunctions?
Suppose y1 and y2 are eigenfunctions corresponding to eigenvalues λ1 and λ2,
respectively, with λ1 �= λ2. In Exercise 6 of the previous section, we showed
that we always have

∫ b

a

(y1L[y2]− y2L[y1])dx = r(x)[y1(x)y
′
2(x) − y2(x)y′1(x)]

∣∣b
a
.

But, from the ODE, we also have, for eigenfunctions y1 and y2,

∫ b

a

(y1L[y2]− y2L[y1])dx = (λ1 − λ2)
∫ b

a

w(x)y1(x)y2(x)dx.

Let’s show that the boundary terms disappear. They become

r(b)[y1(b)y
′
2(b)− y2(b)y′1(b)]− r(a)[y1(a)y′2(a)− y2(a)y′1(a)].

If we can show that the first bracketed term is zero, then we’re done (why?).
Now, since we do not have b1 = b2 = 0, let’s first assume that b1 �= 0. Then,
from the second boundary condition, we get

y1(b) = −b2
b1
y′1(b)

y2(b) = −b2
b1
y′2(b),

so that

y1(b)y
′
2(b)− y2(b)y′1(b) = −

b2
b1
y′1(b)y

′
2(b) +

b2
b1
y′1(b)y

′
2(b) = 0.

If, instead, b2 �= 0, then

y′1(b) = −
b1
b2
y1(b)

y′2(b) = −
b1
b2
y2(b),

from which it again follows that

y1(b)y
′
2(b)− y2(b)y′1(b) = 0.

Therefore, we have proved the following.
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Theorem 8.3 Suppose that λ1 �= λ2 are eigenvalues, with eigenfunctions y1
and y2, respectively, of the regular Sturm–Liouville problem (8.2). Then,

∫ b

a

w(x)y1(x)y2(x)dx = 0.

So y1 and y2 are not necessarily orthogonal unless w(x) ≡ 1. What we say is
that y1 and y2 are

orthogonal with respect to the weight function w,

and Theorem 8.3 says that the eigenfunctions of the regular Sturm–Liouville
problem (8.2) are pairwise orthogonal with respect to w. Often, we’ll just say
that the functions are orthogonal and, in the case w(x) ≡ 1, we say that they
are simply orthogonal.

Next, using the results of Exercise 5 of Section 8.1, it is easy to show that
the eigenvalues must be real.

Theorem 8.4 The eigenvalues of a regular Sturm–Liouville problem are real.

PROOF Suppose that λ = c + di is an eigenvalue, with eigenfunction
y(x) = u(x)+ iv(x). Then Exercise 5 tells us that λ̄ = c− di is an eigenvalue,
with eigenfunction u(x)− iv(x).

From the proof of Theorem 8.3, we know that

(λ1 − λ2)
∫ b

a

w(x)y1(x)y2(x)dx = 0

= [(c+ di)− (c− di)]
∫ b

a

w(x)[u(x) + iv(x)][u(x) − iv(x)]dx

= 2di

∫ b

a

w(x)[u(x)2 + v(x)2]dx = 0.

The integral is positive (why?), forcing d = 0. Therefore, λ = c is real.

Note that this theorem justifies our considering only the cases λ > 0, λ = 0
and λ < 0 back in Section 1.7.

Now, what about the multiplicity of the eigenvalues?

Theorem 8.5 If y1 and y2 are eigenfunctions of (8.2) corresponding to the
same eigenvalue λ, then y2 = cy1 for some constant c.

PROOF We’re given that

L[y1] = (ry′1)
′ + (q + λw)y1 = 0

L[y2] = (ry′2)
′ + (q + λw)y2 = 0.
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Then,
y1L[y2]− y2L[y1] = y1(ry

′
2)− y2(ry′1)′ = 0.

Integrating by parts, we get (see Exercise 2)

∫ x

a

[y1(ry
′
2)

′ − y2(ry′1)′]dx = r(x)[y1(x)y
′
2(x)− y2(x)y′1(x)]

− r(a)[y1(a)y′2(a)− y2(a)y′1(a)] = 0.

Since we already showed, in proving Theorem 8.3, that the last term is zero,
and since r(x) > 0 on a ≤ x ≤ b, we must have

y1(x)y
′
2(x)− y2(x)y′1(x) ≡ 0 on a ≤ x ≤ b.

What does this do for us? Well, it sure looks like a determinant; in fact, it’s
the Wronskian, W (y1, y2;x)! And remember from ODEs that W ≡ 0 implies

that y1 and y2 are linearly dependent, i.e., that y2 = cy1.

So far we have considered only problems with separated boundary condi-
tions. These certainly are not the most general types of boundary conditions.
Let’s look at the following important example.

Example 1 Find all eigenvalues and eigenfunctions of the eigenvalue problem

y′′ + λy = 0,

y(−π) = y(π),

y′(−π) = y′(π).

Proceeding as in Chapter 1, we find that there are no negative eigenvalues
(see Exercise 2a, below). We do get λ0 = 0, with y0 = 1, and, interestingly,
we get

yn = n2, yn = cn cosnx+ dn sinnx

for any choice of the constants cn and dn. The eigenfunctions here, of course,
are the functions comprising the Fourier series on −π ≤ x ≤ π. So, we have
a countably infinite number of real eigenvalues, and the eigenfunctions are
orthogonal and complete. However, each positive eigenvalue has multiplicity
2.

Definition 8.2 The Sturm–Liouville problem

L[y] = (ry′)′ + qy = −λwy, a < x < b,

y(a) = y(b),

y′(a) = y′(b),
(8.3)

where
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1) w(x), q(x), r(x) and r′(x) are continuous on a ≤ x ≤ b,
2) w(x) > 0 and r(x) > 0 on a ≤ x ≤ b,
3) r(a) = r(b),

is called a periodic Sturm–Liouville problem, and the boundary condi-
tions are periodic boundary conditions.

One may prove analogous versions of Theorems 8.1, 8.2, 8.3 (see Exer-
cise 5) and 8.4 for these problems. Although we do not have uniqueness of
eigenfunctions, we do have the following theorem.

Theorem 8.6 The eigenvalues of a periodic Sturm–Liouville problem form a
sequence

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . ,

where, whenever we have “=,” that particular eigenvalue has multiplicity 2;
otherwise, each eigenvalue has multiplicity one.†

Exercises 8.2

1. Solve the regular Sturm–Liouville problem, then verify directly, by in-
tegration, the orthogonality of the eigenfunctions. (Note: Make sure to
use the correct weight function!)

a) y′′ + λy = 0, y(0) + y′(0) = y′(L) = 0

b) x2y′′ − xy′ + (λ+ 1)y = 0, y(1) = y(2) = 0

2. Find all eigenvalues and eigenfunctions of the periodic Sturm–Liouville
problem, and show by direct integration that the eigenfunctions are
simply orthogonal.

a) y′′ + λy = 0,
y(−L) = y(L),
y′(−L) = y′(L). (Compare with Exercise 9, Section 1.7.)

b) y′′ + (λ− 2)y = 0,
y(0) = y(L),
y′(0) = y′(L).

3. If the functions φ1, φ2, . . . are orthogonal with respect to w on a given
interval, what can we say about the functions

√
w φ1,

√
w φ2, . . .?

4. Show that
∫ x

a
[y1(ry

′
2)

′ − y2(ry′1)′]dx = r(y1y
′
2 − y2y′1)

∣∣x
a
.

†Again, for a proof, see Coddington and Levinson’s Theory of Ordinary Differential Equa-
tions.
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5. Prove that the eigenfunctions of the periodic Sturm–Liouville problem
(8.3) are orthogonal with respect to the weight function w, and that its
eigenvalues are real.

6. Why can there be no more than two linearly independent eigenfunctions
associated with an eigenvalue of the periodic Sturm–Liouville problem
(8.3)?

7. Find all eigenvalues of the following problems. Do the results contradict
Theorem 8.1?

a) y′′ + λy = 0,
2y(0)− y(1) = 2y′(0) + y′(1) = 0

b) y′′ + λy = 0,
y(0)− y(1) = y′(0) + y′(1) = 0

8. Rayleigh quotient, revisited: Here we generalize Exercise 26 of Sec-
tion 1.7, using Green’s first identity from Exercise 5 of the previous
section.

a) Suppose that we are given the regular Sturm–Liouville problem

(ry′)′ + qy = −λwy, a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0,

where a1a2 ≤ 0 and b1b2 ≥ 0 (and a21 + a22 > 0 and b21 + b22 > 0,
that is, we don’t have a1 = a2 = 0 or b1 = b2 = 0). If, in addition,
q(x) ≤ 0 on a ≤ x ≤ b, show that the problem has no negative
eigenvalues. When will zero be an eigenvalue?

b) Show that the same is true for the periodic Sturm–Liouville prob-
lem

(ry′)′ + qy = −λwy, a < x < b,

y(a) = y(b),

y′(a) = y′(b),

where, again, we have q(x) ≤ 0 on a ≤ x ≤ b. When will zero be
an eigenvalue?

9. Suppose that y1 and y2 are solutions of the problem

(ry′)′ + qy = −λ0wy

for which y1(a) = 1, y′1(a) = 0, y2(a) = 0, y′2(a) = 1. (Assume that
p, q, r and r′ are continuous, r > 0 and p > 0, or any intervals a ≤ x ≤ b
in this problem.)
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a) Why are y1 and y2 unique?

b) Show that the periodic Sturm–Liouville problem (8.3) has two lin-
early independent eigenfunctions corresponding to λ0 if and only
if y′1(b) = y2(b) = 0 and y1(b) = y′2(b) = 1.

10. In this problem, we consider regular Sturm–Liouville problems where, in
addition, functions y which satisfy the boundary conditions also satisfy
y(b)y′(b)− y(a)y′(a) ≤ 0.

a) Show that any function y which satisfies a Dirichlet or a Neumann
condition at each end also satisfies

y(b)y′(b)− y(a)y′(a) = 0.

b) What conditions must a1, a2, b1 and b2 satisfy so that we’re guar-
anteed that if y satisfies the Robin conditions

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0,

then y also satisfies

y(b)y′(b)− y(a)y′(a) ≤ 0?

c) Use Green’s first identity (Exercise 22, Section 1.7 and Exercise
6 of the previous section) to prove that if an eigenfunction of the
regular Sturm–Liouville problem

y′′ + λy = 0

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0

also satisfies
y(b)y′(b)− y(a)y′(a) ≤ 0,

then its corresponding eigenvalue is nonnegative. (Thus, if all func-
tions which satisfy the boundary conditions also satisfy the last
equation, then the problem has only nonnegative eigenvalues.)

d) In part (c), suppose that λ = 0 is an eigenvalue. What is its cor-
responding eigenfunction? Further, what can be said about which
boundary conditions we actually must have started with?

11. a) Show that

y1y
(4)
2 − y2y(4)1 =

d

dx
(y1y

′′′
2 − y2y′′′1 − y′1y′′2 + y′2y

′′
1 ).

b) Use the above to show that the eigenfunctions of the problem

y(4) + λy = 0, y(0) = y′(0) = y(L) = y′(L) = 0

are simply orthogonal.
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c) List all combinations of simple homogeneous boundary conditions
(of the form y′′(0) = 0, y′′′(L) = 0, etc.), two at each end, for which
the eigenfunctions of the problem are simply orthogonal.

d) Investigate the above situation, but with the operator y′′′ instead of
y(4) (you may assume that you have the “best possible” boundary
conditions).

12. Suppose that r is continuous and that r(x) > 0 on 0 ≤ x ≤ 1. Show
that the eigenfunctions are simply orthogonal for the problem

(ry(n))(n) + λy = 0,

y(0) = y′(0) = · · · = y(n−1)(0) = y(1) = y′(1) = · · · = y(n−1)(1),

for any positive integer n.

13. Using the properties

Tn(cos θ) = cosnθ

Sn(cos θ) =
sin(n+ 1)θ

sin θ
,

show that

a) The Chebyshev polynomials of the first kind, Tn(x), are orthogonal
with respect to the weight function w(x) = 1√

1−x2
on 1− ≤ x ≤ 1.

b) The Chebyshev polynomials of the second kind, Sn(x), are or-
thogonal with respect to the weight function w(x) =

√
1− x2 on

−1 ≤ x ≤ 1.

14. Analogous to the adjoint of a matrix operator, we would like to define
the adjoint of a linear differential operator L. Then, the analog of a
Hermitian matrix will be what is called a self-adjoint linear differential
operator (although the term Hermitian still is occasionally used).

Suppose we have the operator

L[y] = a0(x)y
′′ + a1(x)y

′ + a2(x)y.

a) Use integration by parts to show that
∫ b

a

y1L[y2]dx = [y1a0y
′
2 − (y1a0)

′y2 + y1a1y2]
∣∣b
a

+

∫ b

a

y2[(y1a0)
′′ − (y1a1)

′ + y1a2]dx.

In practice, we hope that the boundary conditions force the non-
integral terms on the right to be zero. Then, the adjoint of L is
the operator in the last integral:

L∗[y] = (a0y)
′′ − (a1y)

′ + a2y.
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b) Conclude that y1L[y2]−y2L∗[y1] is an exact derivative, that is, that

y1L[y2]− y2L∗[y1] =
d

dx
F (x; y1, y2, y

′
1, y

′
2)

for some function F .

c) L is self-adjoint if L∗ = L. Show that L is self-adjoint if and only
if a1 = a′0.

d) Show that the Sturm–Liouville operator

L[y] = (ry′)′ + qy

is always self-adjoint. What about

L[y] = ry′ + q?

e) In general, what is (L∗)∗ = L∗∗?

8.3 Singular Sturm–Liouville Problems;
Self-Adjoint Problems

There are many important applications which involve Sturm–Liouville prob-
lems which fail to be regular. Specifically, we’ll look at problems

L[y] = (ry′)′ + qy = −λwy, a < x < b,

for which at least one of the following is true:

1) r = 0 at an endpoint.

2) w or q becomes infinite at an endpoint.

3) a = −∞ or b =∞.

In each case we have, as mentioned before, a singular Sturm–Liouville prob-
lem. Important examples include the following.

Example 1 Bessel’s equation of order α,

(xy′)′ − α2

x
y = −λx2y, 0 < x < L,

is singular at x = 0.
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Example 2 Legendre’s equation,

[(1− x2)y′]′ = −λy, −1 < x < 1,

is singular at x = ±1.

Example 3 Chebyshev’s equations,

[
√
1− x2 y′]′ = −λ y√

1− x2 , −1 < x < 1,

and
[(1 − x2)3/2y′]′ = −λ

√
1− x2 y, −1 < x < 1,

are singular at x = ±1.

Example 4 Hermite’s equation,

(e−x2

y′)′ = −λe−x2

y, −∞ < x <∞,
is singular at x = ±∞.

Example 5 Laguerre’s equation,

(xe−xy′)′ = −λe−xy, 0 < x <∞,
is singular at x = 0 and at x =∞.

Note that we haven’t specified boundary conditions in any of these exam-
ples. The reason, of course, is that solutions often fail to exist at singular
points, so we certainly cannot expect a solution to attain a specified value at
such a point.

In Chapter 7, we saw that certain natural boundary conditions often arise
at singular points, due to the nature of the physical problem being solved.
However, we would like to do something a little more satisfying, mathemati-
cally. To that extent, we put the Sturm–Liouville theory into the more general
setting of adjoint operators.

ADJOINT OPERATORS AND SELF-ADJOINT
EIGENVALUE PROBLEMS

Motivated by Exercise 14 of Section 8.2, we make the following definition.

Definition 8.3 Given the operator

L[y] = a0(x)y
′′ + a1(x)y

′ + a2(x)y,

the adjoint of L is the operator L∗ defined by

L∗[y] = (a0y)
′′ − (a1y)

′ + a2y.

(The adjoint can be generalized and defined for any linear differential operator.
See Exercise 7.)
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Example 6 Many of our eigenvalue problems entail solving L[y] = y′′ = −λy.
The adjoint of L is

L∗[y] = y′′,

that is, L is its own adjoint, whence the following definition.

Definition 8.4 If L∗ = L, we say that L is self-adjoint.

Example 7 The operator L[y] = ay′′+by′+cy, where a, b and c are constants,
has adjoint

L∗[y] = ay′′ − by′ + cy.

Hence, L is self-adjoint if and only if b = 0.

Example 8 The Cauchy–Euler operator L[y] = ax2y′′+ bxy′+ cy, where a, b
and c are constant, has adjoint

L∗[y] = ax2y′′ + (4a− b)xy′ + (2a− b+ c)y.

So L is self-adjoint if and only if 2a = b.

More generally, in Exercise 14 of the previous section we found necessary
and sufficient conditions for L to be self-adjoint.

Theorem 8.7 The operator L[y] = a0(x)y
′′ + a1(x)y

′ + a2(x)y is self-adjoint
if and only if a′0 = a1.

Therefore, there are many second-order operators which are not self-adjoint.
So, what about Sturm–Liouville operators? We have

L[y] = (ry′)′ + qy = ry′′ + r′y′ + qy;

therefore,

a second-order linear differential operator is self-adjoint
if and only if it is a Sturm–Liouville operator, and any
second-order linear differential operator can be put into
self-adjoint form.

(There is no equivalent statement for higher-order operators.) Of course, L[y]L[y]L[y]
is self-adjoint if and only if L[y] + λwyL[y] + λwyL[y] + λwy is self-adjoint (why?).

Now, we also showed in Exercise 14 of the previous section that L and L∗

satisfy the following.

Theorem 8.8 For the operators L and L∗ given in Definition 8.3,

y1L[y2]− y2L∗[y1] =
d

dx
[a0y1y

′
2 − a0y′1y2 + a1y1y1 − a′0y1y2]
(Lagrange’s identity)
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and ∫ b

a

(y1L[y2]− y2L∗[y1])dx = (a0y1y
′
2 − a0y′1y2 + a1y1y2 − a′0y1y2)

∣∣b
a
.

(Green’s formula)

It’s easy to show that, for L self-adjoint, we have

a0y1y
′
2 − a0y′1y2 + a1y1y2 − a′0y1y2 = a0(y1y

′
2 − y2y′1),

and it was this expression’s equaling zero at x = a and x = b that was key
to our proving the theorems in Section 8.2 for regular and periodic Sturm–
Liouville problems. As for more general Sturm–Liouville problems, it’s quite
possible that the above expression does not disappear at the boundaries.
Therefore, we have the following definition.

Definition 8.5 The general Sturm–Liouville problem

L[y] = (ry′)′ + qy = −λpy,
a1y(a) + a2y

′(a) + a3y(b) + a4y
′(b) = 0,

b1y(a) + b2y
′(a) + b3y(b) + b4y

′(b) = 0

is a self-adjoint problem if all well-behaved y1 and y2 which satisfy the
boundary conditions also satisfy

r(y1y
′
2 − y2y′1)

∣∣b
a
= 0.

(More generally, an nth-order eigenvalue problem is self-adjoint if

1) The operator L is self-adjoint

2)
∫ b

a
(y1L[y2]− y2L[y1])dx = 0

for all y1, y2 satisfying the boundary conditions.)

Example 9 All regular and periodic Sturm–Liouville problems are self-adjoint.

Example 10 Consider the problem

y′′ + qy = −λwy,
y(0)− y′(1) = y′(0) + y(1) = 0.

It has boundary conditions which are neither separated nor periodic—so the
problem is neither regular nor periodic. Nevertheless, we have

r(y1y
′
2 − y2y′1)

∣∣1
0
= y1(1)y

′
2(1)− y2(1)y′1(1)− y1(0)y′2(0) + y2(0)y

′
1(0),

and this expression is zero if y1 and y2 satisfy the boundary conditions (why?).
Thus, the problem is self-adjoint.
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Now, back to singular Sturm–Liouville problems and their boundary condi-
tions. Although it seems like we’re cheating, we try to give conditions at the
singular points which will make the problem self-adjoint. Actually, though,
hindsight is 20-20, and these problems were solved before any talk of self-
adjointness—and the conditions which do make the problems self-adjoint give
us these same solutions. Further, these boundary conditions are consistent
with those derived physically and mentioned in Chapter 7.

So, for Legendre’s equation, the associated Legendre’s equation and both
Chebyshev’s equations, we have singularities of the form r(±1) = 0; thus,
these problems are self-adjoint provided we have

y, y′ bounded as x→ 1− and x→ −1+

(see Exercise 3c). The Legendre and Chebyshev polynomials satisfy these
properties, of course, and it turns out that they are the only solutions to do
so.‡

Bessel’s equation is singular both because r(0) = 0 and because q(0+) =∞.
To make a long story short, essentially we need to stipulate that

y, y′ be bounded as x→ 0+

and that they be such that any improper integrals involving q(x) = −α2

x
converge. Again, the solutions end up being the Bessel functions.

To be complete, although it is not done in practice, we may do something
similar for equations on unbounded intervals. However, here the situation is
delicate and, for a rigorous discussion, one should consult the references cited
in Section 7.1. That said, and guided by the physics of the problems, Laguerre
becomes a self-adjoint problem if we stipulate the conditions

y, y′ bounded as x→ 0+,
√
x e−

x
2 y,
√
x e−

x
2 y′ → 0 as x→∞.

Similarly for Hermite, if we have y satisfy

e−
x2

2 y, e−
x2

2 y′ → 0 as x→ ±∞.
Note that it was the self-adjointness of regular and periodic Sturm–Liouville

problems that allowed us to prove that their eigenvalues are real and their
eigenfunctions orthogonal. So it should be no surprise if the same were true
for self-adjoint problems in general and, indeed, this turns out to be so.

ADJOINT BOUNDARY CONDITIONS

To be more precise, for a given boundary-value problem we may define what
we call its adjoint boundary-value problem. To do so, we look at an
example.

‡See, e.g., Sagan’s Boundary and Eigenvalue Problems in Mathematical Physics.



350 An Introduction to Partial Differential Equations with MATLAB R©

Example 11 Given the boundary-value problem

L[y2] =y
′′
2 + 2y′2 − 3y2 = 0,

y2(0) = y′2(1) = 0,

we wish to find boundary conditions for y1 so that (from Green’s second iden-
tity)

∫ 1

0

[y1L[y2]− y2L∗[y1])dx

= [a0(y1y
′
2 − y′1y2) + (a1 − a′0)y1y2]

∣∣1
0

= (y1y
′
2 − y′1y2 + 2y1y2)

∣∣1
0
= 0.

Applying the y2 conditions, we have

y1(1)y
′
2(1)− y′1(1)y2(1) + 2y1(1)y2(1)

− y1(0)y′2(0)− y2(0)y′1(0)− 2y1(0)y2(0)

=y2(1)[y1(1)− y′1(0)]− y′2(0)y1(0).

Since there are no restrictions on y2(1) and y
′
2(0), we need to have

y1(0) = y1(1)− y′1(1) = 0.

We call these adjoint boundary conditions, and “the” adjoint boundary-
value problem is

L∗[y] = y′′ − 2y′ − 3y = 0,

y(0) = y(1)− y′(1) = 0.

We say “the” because the adjoint boundary conditions are not unique (why?).

Finally, we say that a boundary-value problem is self-adjoint if

1) L∗ = L.

2) The adjoint boundary conditions are equivalent to the given boundary
conditions (in the sense that any function satisfies the latter if and only
if it satisfies the former).

Exercises 8.3

1. Find all eigenvalues and eigenfunctions of the singular Sturm–Liouville
problem

a) x2y′′ + xy′ + λy = 0; y, y′ bounded as x→ 0+; y(1) = 0

b) y′′ + λy = 0; y(0) + y′(0) = 0; y, y′ → 0 as x→∞
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2. In each case, supposing the boundary conditions are such that the eigen-
functions are orthogonal with respect to the weight functions w, find w.

a) xy′′ + λy = 0

b) y′′ + 2y′ + λy = 0

c) y′′ + 2xy′ − λxy = 0

3. a) Suppose that the problem

(ry′)′ + qy = −λwy,
y, y′ bounded as x→ a+,

b1y(b) + b2y
′(b) = 0

has a singularity of the form r(a) = 0. Show that

∫ b

a

(y1L[y2]− y2L[y1])dx = 0

for all y1, y2 which satisfy the boundary conditions.

b) Do the same for the problem

(ry′)′ + qy = −λwy,
a1y(a) + a2y

′(a) = 0,

y, y′ → 0 as x→∞.

c) Show that Legendre’s and both Chebyshev’s equations, subject to
the boundary condition

y, y′ bounded as x→ 1− and x→ −1+,

form self-adjoint systems.

4. Decide if the problem, as it stands, is self-adjoint, and prove your result.

a) y′′ + λy = 0, y(0) = y′(0)− y(1) = 0

b) x2y′′ + 2xy′ + (λ− x3)y = 0, y(2) = y′(3) = 0

c) y′′ + 2y′ + λy = 0, y(0) = y′(1) = 0

d) y′′ + λy = 0, y(0) + y′(0) + 2y′(1) = y′(0)− y(1) = 0

5. What conditions must a and b satisfy if

y′′ + λy = 0, y(0) + ay′(1) = y′(0) + by(1) = 0

is to be self-adjoint?
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6. Here we generalize Exercise 11 of Section 8.2. Remember, the PDE for
the Euler–Bernoulli beam is

wtt + α4wxxxx = 0,

where α4 is constant. Letting α4 = 1 and separating variables, w =
T (t)Y (x), we arrive at the x-ODE

y(4) + λy = 0.

Now, the four standard energy-conserving boundary conditions for the
beam are:

Clamped: w = wx = 0 at x = x0;

Pinned: w = wxx = 0 at x = x0;

Roller-supported: wx = wxxx = 0 at x = x0;

Free: wxx = wxxx = 0 at x = x0.

(It’s easy to see that the first set of conditions is quite reasonable, from
a physical/geometric standpoint. If one digs a little deeper or, still
better, if one knows the physics of the problem, then the other three
make perfect sense, as well. See Appendix D.)

It’s easy enough to separate the boundary conditions, as well. So, prove
that the problem

y(4) + λy = 0, 0 < x < 1,

subject to any of the above boundary conditions at x = 0 and x = 1, is
self-adjoint.

7. A different way of looking at what we did in Exercise 12 of Section 8.2
is as follows. Given the ODE

L[y] = a0(x)y
′′ + a1(x)y

′ + a2(x)y = 0,

we would like to extend the idea of an exact equation to this equation.
Remember, a first-order equation is exact if there is a function F (x, y)
such that the equation can be written in the form d

dxF (x, y) = 0. We
try to do the same for the above equation, realizing that the best we
can expect here is that F = F (x, y, y′). So, we wish to find F so that

d

dx
F (x, y, y′) = a0(x)y

′′ + a1(x)y
′ + a2(x)y.

However,

d

dx
F (x, y, z) = Fx

dx

dx
+ Fy

dy

dx
+ Fz

dz

dx
= Fx + Fyy

′ + Fzz
′.
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Letting y′ play the role of z, we have

Fx + Fyy
′ + Fy′y′′ = a0(x)y

′′ + a1(x)y
′ + a2(x)y. (8.4)

a) Why can we conclude that F = a0(x)y
′+g(x, y), for some function

g?

b) Substitute the expression from part (a) back into equation (8.4) to
conclude that g must satisfy

gx = a0(x)y and gy = a1(x) − a′0(x).

c) Conclude that g = (a1−a′0)y+h(x), for some function h, and thus
that we must have

a′1 − a′′0 = a2 and h(x) = constant.

Therefore, there is such an F only if a′1 − a′′0 = a2, and, in this case, we
have F = a0y

′ + (a1 − a′0)y, which reduces the original ODE to

a0y
′ + (a1 − a′0)y = c, c = arbitrary constant.

d) Conversely, show that if a′1 − a′′0 = a2, then F = a0y
′ + (a1 − a′0)y

satisfies (8.4) and, therefore, the original ODE is exact.

Now, suppose that the original ODE is not exact, and suppose we’d like
to find an integrating factor, that is, a function v(x) such that

va0y
′′ + va1y

′ + va2y = 0

is exact.

e) Show that this new equation is exact if and only if v satisfies

a0v
′′ + (2a′0 − a1)v′ + (a′′0 − a′1 + a2)v = 0.

In other words, v is an integrating factor for the equation L[y] = 0 if
and only if v satisfies the adjoint equation L∗[v] = 0.

f) If L∗[v] = 0 is not exact, and u(x) is an integrating factor, what
ODE must u satisfy?

g) Use the above to find the general solution of the equation

xy′′ + (3x+ 2)y′ + (2x+ 3)y = 0, x > 0.

8. More generally, we define the adjoint of the nth-order linear differential
operator

L[y] = a0(x)y
(n) + a1(x)y

(n−1) + . . .+ an(x)y
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to be the operator

L∗[y] = (−1)n(a0y)(n) − (−1)n−1(a1y)
(n−1) ± . . .+ any.

In fact, one can compute this operator in a manner similar to that of
the previous problem.

a) Determine if the operator is self-adjoint:

i) L[y] = y(6) + 3y′′ − 5xy

ii) L[y] = y(4) − xy′′
iii) L[y] = y(2m),m = 1, 2, . . .

iv) L[y] = y(2m+1),m = 1, 2, . . . (compare with Exercise 11c of
Section 8.2)

b) Show that any operator of the form

L[y] = [a0(x)y
′′]′′ + [a1(x)y

′]′ + a2(x)y

is self-adjoint.

c) Show that any operator of the form

L[y] = [a0(x)y
(n)](n) + [a1(x)y

(n−1)](n−1)

+ . . .+ [an−1(x)y
′]′ + an(x)y

is self-adjoint.

9. Find the adjoint boundary-value problem for the given problem:

a) L[y] = a0y
′′ + a1y

′ + a2y = 0, a0, a1, a2 constant, y(0) − y′(0) =
y(1) + y′(1) = 0

b) L[y] = a0(x)y
′′ + a1(x)y

′ + a2(x)y = 0, y′(0) = y(1) = 0

In each case, what condition on the coefficients will make the problem
self-adjoint? (By the way, it turns out that things are more complicated
for operators of higher order.)

8.4 The Mean-Square or L2L2L2 Norm and
Convergence in the Mean

We have seen that many Sturm–Liouville problems have eigenfunctions which
are complete on the interval in question. So, suppose we have such a problem
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on the interval a ≤ x ≤ b, with eigenfunctions φ1, φ2, . . . . We can expand
“any” function f(x) into a series

f(x) ∼
∞∑
n=1

cnφn(x)

which, as it turns out, will behave just like the various trigonometric Fourier
series, i.e., it will converge to f pointwise except at finitely many points. So,
below, we’ll generalize the idea of Fourier series to include basis functions
φ1, φ2, . . . from any complete, orthogonal set.

However, before doing so, we change the mathematical setting. This will
allow us to consider more than just the piecewise smooth functions. In ad-
dition, the new setting will be more satisfying mathematically, in that we no
longer will have to include the codicil “except at finitely many points.”

We begin by generalizing the idea of inner product.

Definition 8.6 Given the weight function w(x) with the properties w(x) > 0
and w continuous on a < x < b, the inner product, with respect to www, of
the functions f and g is defined to be

〈f, g〉 =
∫ b

a

f(x)g(x)w(x)dx

(as long as the integral exists).

Of course, if w(x) ≡ 1, this is the inner product defined in Section 3.1. Also,
being analogous to the dot product of vectors, the inner product satisfies the
following properties (see Exercise 1):

〈f, g〉 = 〈g, f〉
〈f, g + h〉 = 〈f, g〉+ 〈f, h〉
〈cf, g〉 = c〈f, g〉.

As defined earlier, if 〈f, g〉 = 0, we say that f and g are orthogonal with
respect to www.

Continuing the analogy with the dot product, remember that the length of
a vector is given by

‖vvv‖ = √vvv · vvv.
Vector length is an example of what is called a norm; two of the important
properties of a norm—obviously satisfied by vectors—are

‖vvv‖ ≥ 0

‖vvv‖ = 0 if and only if vvv = 000.
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The norm automatically leads to the “distance between two vectors” (actually,
the distance between their endpoints, in standard position),

‖vvv −www‖ =
√
〈vvv −www,vvv −www〉.

Of course, ‖vvv −www‖ = 0 if and only if vvv = www. (A distance formula is a special
case of what is called a metric on the given vector space; this particular kind
of metric is said to be induced by the corresponding norm.)

We wish to extend these ideas (along with one more vector property, dealt
with in Exercise 6) to inner products of functions. So we define the norm of
a function.

Definition 8.7 With the same conditions as in Definition 8.6, we define the
mean-square or L2L2L2 (“L-2”) norm of a function f on a ≤ x ≤ b to be

‖f‖ =
√
〈f, f〉 =

{∫ b

a

[f(x)]2w(x)dx

}1/2

.

Now there is a slight problem—there are many functions f which satisfy
‖f‖ = 0 (give some examples); so, on the surface, it seems that we cannot
extend the first property of the vector norms to functions. (This, of course, is
intimately related to our “except at finitely many points” problem.) Our way
around this is to alter our definition of “=.” Taking our cue from the vector
case, we agree to say that f is the zero-function if and only if ‖f‖ = 0 and that
f = g if and only if ‖f − g‖ = 0. (Actually, we say that we identify g with f .)
This is a common mathematical practice and, although it seems that we’re
cheating, we’re justified because all of our operations are based on integrals.
Also, as we’ve seen, this identification seems to make sense physically. In fact,
we could almost as easily have done it back in Chapter 3, although we would
have had to give up on the beautiful idea of pointwise convergence of Fourier
series.

When dealing with vectors, we found that it was convenient if our basis
vectors were of length one. The same is true here.

Definition 8.8 The set of functions ψ1, ψ2, . . . is orthonormal (with respect
to w, on a ≤ x ≤ b) if

1) They are orthogonal.

2) ‖ψ1‖ = ‖ψ2‖ = · · · = 1.

Remember, we can turn a vector into a unit vector by dividing by its own
length. Here we do the same with functions.

Theorem 8.9 Suppose φ1, φ2, . . . are orthogonal with respect to w on a ≤
x ≤ b. Then the functions

ψ1 =
φ1
‖φ1‖ , ψ2 =

φ2
‖φ2‖ , . . .
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form an orthonormal set with respect to w, on a < x < b. Here, we say that
we have normalized the set of functions φ1, φ2, . . . .

PROOF If n = m, then

〈ψn, ψm〉 =
∫ b

a

φn
‖φn‖

φn
‖φn‖w dx

=
1

‖φn‖2
∫ b

a

φ2nw dx

=
1

‖φn‖2 ‖φn‖
2 = 1.

If n �= m, then

〈ψn, ψm〉 = 1

‖φn‖‖φm‖
∫ b

a

φnφmw dx = 0 (why?).

Example 1 The functions φn = sin nπx
L , n = 1, 2, . . . , are simply orthogonal

on 0 ≤ x ≤ L. Therefore, since

‖φn‖2 =
∫ L

0

sin2
nπx

L
dx =

L

2
,

the functions ψn =
√

2
L sin nπx

L , n = 1, 2, . . . , are (simply) orthonormal on

0 ≤ x ≤ L.

Example 2 The Legendre polynomials Pn, n = 0, 1, 2, . . . , are simply or-
thogonal on −1 ≤ x ≤ 1. Since

‖Pn‖ =
√

2n+ 1

2
,

the polynomials ψn =
√

2n+1
2 Pn are (simply) orthonormal on −1 ≤ x ≤ 1.

Example 3 The Chebyshev polynomials of the first kind, Tn, n = 0, 1, 2, . . . ,
are orthogonal with respect to the w(x) = 1√

1−x2
on −1 ≤ x ≤ 1. Since

‖Tn‖ =

⎧⎪⎨
⎪⎩
√
π, if n = 0,√
π

2
, if n ≥ 1,
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the polynomials

ψ0 =
1√
π
, ψn =

√
2

π
Tn, n = 1, 2, . . . ,

are orthonormal with respect to w(x) = 1√
1−x2

on −1 ≤ x ≤ 1.

Now, back in Chapter 3, when considering pointwise convergence of a se-
quence of functions, we wanted

lim
n→∞ |gn(x)− g(x)| = 0

for each value of x. The only distance formula or metric at our disposal was
the absolute value function and, in a sense, we had to look at the above limit
for each x, separately. However, we now have a new metric, induced by the
norm of a function, which looks at functions in a global, as opposed to a
pointwise, sense.

Definition 8.9 Given a sequence of functions g1, g2, g3, . . ., we say that the
sequence converges in the mean to g if

lim
n→∞ ‖gn − g‖ = 0.

Actually, to be more precise, we call this convergence mean-square conver-
gence or L2L2L2 convergence to distinguish it from other types of convergence
in the mean (e.g., mean-cubed convergence or L3 convergence).

Can we say that either pointwise or mean-square convergence is stronger
than the other, that is, that any sequence of functions which converges point-
wise also must converge in the mean, or vice versa? Surprisingly (well, not if
you’ve done a fair amount of analysis), the answer is no, as we’ll see in the
exercises.

Exercises 8.4

1. Prove the following properties of the inner product with respect to a
weight function, w:

a) 〈f, g〉 = 〈g, f〉
b) 〈f, g + h〉 = 〈f, g〉+ 〈f, h〉 = 〈g + h, f〉
c) 〈cf, g〉 = 〈f, cg〉 = c〈f, g〉, for any constant c

2. a) The functions 1, cos πx
L , cos 2πx

L , . . . are simply orthogonal on 0 ≤
x ≤ L. Use them to construct a set which is (simply) orthonormal
on 0 ≤ x ≤ L.

b) Construct a set of functions which is (simply) orthonormal on−L ≤
x ≤ L.



Sturm–Liouville Theory and Generalized Fourier Series 359

3. Construct a set of polynomials which is orthonormal with respect to the
weight function w, on the given interval.

a) w(x) =
√
1− x2, on −1 ≤ x ≤ 1

b) w(x) = e−x, on 0 ≤ x <∞
c) w(x) = e−x2

, on −∞ < x <∞
4. Given the set of functions gn(x) = xn, n = 1, 2 . . . , on 0 ≤ x ≤ 1:

a) Show that the sequence converges in the mean to g(x) = 0 (with
respect to the weight function w(x) = 1).

b) Show that the sequence does not converge pointwise to the function
g(x) = 0.

5. Given the set of functions

fn(x) =

⎧⎪⎨
⎪⎩
n, if 0 < x <

1

n
,

0, otherwise,

on 0 ≤ x ≤ 1,

a) Show that the sequence converges pointwise.

b) Show that the sequence does not converge in the mean (with re-
spect to the weight function w(x) = 1).

6. a) Show that ‖f − g‖ = 0 implies that ‖f‖ = ‖g‖.
b) Remember that the vector dot product satisfies vvv·www = ‖vvv‖‖www‖ cos θ,

where θ is the angle between the vectors. Therefore, we always have
|vvv ·www| ≤ ‖vvv‖‖www‖. Prove that the inner product of functions, with
respect to the weight function in (x), satisfies

|〈f, g〉| ≤ ‖f‖‖g‖.

This is the Schwarz inequality. (Hint: F (λ) = ‖f + λg‖2 =
〈f + λg, f + λg〉 ≥ 0; therefore, F is a quadratic polynomial in λ
with only one root.)

c) Using the Schwarz inequality, and comparing ‖f + g‖2 and (‖f‖+
‖g‖)2, prove the triangle inequality

‖f + g‖ ≤ ‖f‖+ ‖g‖.

7. Give a different proof of the Schwarz inequality by using the fact that

∫ b

a

∫ b

a

[f(x)g(y)− f(y)g(x)]2w(x)w(y)dxdy ≥ 0.
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8. If we generalize the vector statement |vvv ·www|2 ≤ ‖vvv‖2‖www‖2, we get
Cauchy’s inequality

(
n∑

i=1

aibi

)2

≤
n∑

i=1

a2i

n∑
i=1

b2i .

Use mathematical induction to prove this inequality.

9. Suppose we start with the R
3 vector vvv = âı̂ı̂ı+ bĵ̂ĵj+ ck̂̂k̂k.

a) Show that the vector in the x-y plane which most closely approx-
imates vvv is the vector vvv1 = âı̂ı̂ı + bĵ̂ĵj, i.e., show that the quantity
‖vvv − (Aı̂̂ı̂ı + Bĵ̂ĵj)‖ is minimized by choosing A = a and B = b. (vvv1,
of course, is the projection of vvv onto the x-y plane.)

b) Conclude that ‖vvv1‖ ≤ ‖vvv‖. When are they equal?

c) We generalize the above result as follows. Suppose vvv = aû1û1û1+bû2û2û2+
cû3û3û3 for a set û1û1û1, û2û2û2, û3û3û3 of orthonormal (i.e., perpendicular and of
length one) vectors. Show that the quantity

‖vvv − (Aû1û1û1 +Bû2û2û2)‖
is minimized when A = vvv · û1û1û1 and B = vvv · û2û2û2.

d) Conclude that

‖(vvv · û1û1û1)û1û1û1 + (vvv · û2û2û2)û2û2û2‖ ≤ ‖vvv‖.
Then conclude that we have “=” if and only if vvv is perpendicular
to û3û3û3.

e) Conclude that
(vvv · û1û1û1)2 + (vvv · û2û2û2)2 ≤ ‖vvv‖2.

When we extend this idea to functions in the following section, this
inequality will be called Bessel’s inequality.

f) Conclude that we have “=” in the above statement if and only if
vvv is perpendicular to û3û3û3. The equation

(vvv · u1u1u1)2 + (vvv · u2u2u2)2 = ‖vvv‖2

will be generalized, in the case of functions, to what will be Par-
seval’s equality. Actually, though, this equation, here, is a very
famous theorem, in disguise. Which theorem?

10. Given the function f(x) on 0 ≤ x ≤ π, using weight function w(x) = 1,

a) Find the value of c1 which minimizes

‖f − c1 sinx‖2.
What’s the significance of this number?
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b) Find the values of c1 and c2 which minimize

‖f − c1 sinx− c2 sin 2x‖2

two different ways:

i) Using calculus of two variables, with c1 and c2 the independent
variables;

ii) Using algebra, by completing the square in each variable, c1
and c2.

Again, what is the significance of these numbers?

In each case, we are trying to find the linear combination which most
closely approximates f in the mean-square or L2 sense. The quantity
being minimized is called the mean-square error.

11. Do the same as in Exercise 10, but for the given function f on −1 ≤ x ≤
1, and where P0, P1 and P2 are the first three Legendre polynomials.

a) f(x) = x4

b) f(x) =

⎧⎨
⎩

0, if − 1 ≤ x < 0,

x, if 0 ≤ x ≤ 1

c) f(x) = x2

In each case, what is the mean-square error?

8.5 Generalized Fourier Series;
Parseval’s Equality and Completeness

Now we are ready to look at generalized Fourier series in the setting of mean-
square convergence. We begin with an orthogonal set of functions, with re-
spect to the weight function w(x), on an interval a ≤ x ≤ b, where we may
have a = −∞ or b = ∞. Then, given any function f , we wish to see if we
can expand f into an infinite series of the functions φ1, φ2, . . . . Remembering
that an infinite series is defined in terms of the limit of its partial sums, we
first try to determine, for each N , the values of c1, c2, . . . , cN which minimize

∥∥∥∥∥f −
N∑

n=1

cnφn

∥∥∥∥∥ .

We can do this in a number of ways (see Exercise 10b in the previous section),
and we choose to do so algebraically.
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Since the above expression is nonnegative, we may look at

∥∥∥∥∥f −
N∑

n=1

cnφn

∥∥∥∥∥
2

=

〈
f −

N∑
n=1

cnφn, f −
N∑

n=1

cnφn

〉

= 〈f, f〉 − 2

〈
f,

N∑
n=1

cnφn

〉
+

〈
N∑

n=1

cnφn,

M∑
m=1

cmφm

〉

(why m?)

= 〈f, f〉 − 2

N∑
n=1

cn〈f, φn〉+
N∑

n=1

M∑
m=1

cncm〈φn, φm〉.

However, 〈φn, φm〉 = 0 unless n = m, so we have

= 〈f, f〉 − 2
N∑

n=1

cn〈f, φn〉+
N∑

n=1

c2n〈φn, φn〉

=

N∑
n=1

[c2n‖φn‖2 − 2cn〈f, φn〉] + 〈f, f〉.

Now, we complete the square inside the summation:

=

N∑
n=1

‖φn‖2
[
c2n −

2〈f, φn〉
‖φn‖2 +

〈f, φn〉2
‖φn‖4 −

〈f, φn〉2
‖φn‖4

]

+ 〈f, f〉

=

N∑
n=1

‖φn‖2
[
cn − 〈f, φn〉‖φn‖2

]2
−

N∑
n=1

〈f, φn〉2
‖φn‖2 + 〈f, f〉.

Finally, since the variables cn appear only in the squared term of the first
sum, it should be clear that the expression is minimized when each term in
this sum is zero. Therefore, the coefficients we’re after are

cn =
〈f, φn〉
‖φn‖2 .

Definition 8.10 Given an orthogonal set of functions φ1, φ2, . . . on an inter-
val a ≤ x ≤ b, and any function f defined on this interval, the constants

cn =
〈f, φn〉
‖φn‖2 , n = 1, 2, . . . ,
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are called the Fourier coefficients of f with respect to the orthogonal set
φ1, φ2, . . . (as long as they are defined). The sum

∞∑
n=1

cnφn

is called the Fourier series of f with respect to these functions and, as before,
we write

f ∼
∞∑

n=1

cnφn.

Of course, if the functions φn are orthonormal, the Fourier coefficients are
just cn = 〈f, φn〉.

Example 1 Given the simply orthogonal set
{
sin nπx

L

}∞
n=1

on 0 ≤ x ≤ L,
the Fourier coefficients of any function f are

cn =

〈
f, sin nπx

L

〉
∥∥sin nπx

L

∥∥2
=

2

L

∫ L

0

f(x) sin
nπx

L
dx,

which, of course, are just the Fourier sine coefficients derived in Chapter 3.
So the Fourier series is just the old Fourier sine series.

In fact, our derivation of the Fourier coefficients here really is just a “cleaner”
and more general version of that used in Section 3.3 to derive the trigonomet-
ric Fourier coefficients.

Example 2 With respect to the simply orthogonal set of Legendre polyno-
mials Pn, n = 0, 1, 2, . . ., on −1 ≤ x ≤ 1, the Fourier coefficients of any f
are

cn =
〈f, Pn〉
‖Pn‖2 , n = 0, 1, 2, . . . ,

=
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx,

and the Fourier–Legendre series for f is

f ∼
∞∑

n=0

cnPn.

The big question, of course, is, “When does the generalized Fourier series
of f actually converge in the mean to f?” Obviously, it does so if and only if

lim
N→∞

∥∥∥∥∥f −
N∑

n=1

cnφn

∥∥∥∥∥ = 0, cn =
〈f, φn〉
‖φn‖2 ,
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but under what conditions on f and the cn will this happen? Going back
to where we minimized the quantity inside the limit, we have, from letting

cn = 〈f,φn〉
‖φn‖2 ,

0 ≤
∥∥∥∥∥f −

N∑
n=1

cnφn

∥∥∥∥∥
2

= ‖f‖2 −
N∑

n=1

‖φn‖2
[〈f, φn〉
‖φn‖2

]2

= ‖f‖2 −
N∑

n=1

c2n‖φn‖2.

This makes sense so long as ‖f‖ is finite, in which case we rewrite it as

N∑
n=1

c2n‖φn‖2 ≤ ‖f‖2, for any N = 1, 2, 3, . . . .

Now, the left side is the N th partial sum of an infinite series of nonnegative
terms, and these are bounded above (by ‖f‖2). Therefore, the infinite series
must converge and must satisfy the famous Bessel’s inequality:

∞∑
n=1

c2n‖φn‖2 ≤ ‖f‖2.

For convergence to f , we need

∥∥∥∥∥f −
N∑

n=1

cnφn

∥∥∥∥∥
2

= ‖f‖2 −
N∑

n=1

c2n‖φn‖2 → 0 as N →∞,

that is, we need to have “=” in Bessel’s inequality. This is the equally famous
Parseval’s equality:

∞∑
n=1

c2n‖φn‖2 = ‖f‖2,

and we have proved the following theorem.

Theorem 8.10 Suppose that ‖f‖ < ∞. Then the Fourier series for f , in
terms of the orthogonal set {φn}∞n=1, converges to f if and only if Parseval’s
equality holds, that is, if and only if

∞∑
n=1

c2n‖φn‖2 = ‖f‖2, where cn =
〈f, φn〉
‖φn‖2 .

Now we may talk about completeness in the mean-square or L2 sense.
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Definition 8.11 Given the set φ1, φ2, . . ., orthogonal with respect to w on
a ≤ x ≤ b, we say that this set is complete in the mean-square sense if,
for every function f satisfying ‖f‖ < ∞, the Fourier series for f converges
in the mean to f . In other words, the set is complete if and only if, for
every fff satisfying ‖f‖ <∞‖f‖ <∞‖f‖ <∞, Parseval’s equality holds.

Unfortunately, there is no general method for proving that a given set of or-
thogonal functions is complete. However, it has been proven, for example, that
the eigenfunctions of any regular or periodic Sturm–Liouville problem form a
complete set, and the same has been proven for various sets of orthogonal poly-
nomials. In particular, the trigonometric functions of Chapter 3, and
the Legendre polynomials, associated Legendre functions,§ Cheby-
shev (both kinds), Laguerre and Hermite polynomials all form com-
plete sets in the mean-square or L2L2L2 sense.¶ So, too, do the functions
{Jn(xmx

a )}∞m=1{Jn(xmx
a )}∞m=1{Jn(xmx
a )}∞m=1, for any n = 0, 1, 2, . . .n = 0, 1, 2, . . .n = 0, 1, 2, . . ., where {xm}∞m=1{xm}∞m=1{xm}∞m=1 is the set of the

positive roots of JnJnJn.
There is a fairly easy way to show that a set φ1, φ2, . . . is not complete.

Let’s first think about vectors; given a set of k perpendicular vectors in R
n,

how do we know if they span R
n? Easy—if k < n, it doesn’t span the space.

However, we can’t use the same argument in these function spaces because
they are infinite dimensional. But, going back to vectors, if k < n, then
there’s at least one dimension unaccounted for—we can produce a nonzero
vector which is perpendicular to the given vectors. The same idea holds here.

Theorem 8.11 If the orthogonal set φ1, φ2, . . . is complete, and if f is or-
thogonal to each of the φn, then we must have f ≡ 0 (in the mean-square
sense).

PROOF Since φ1, φ2, . . . form a complete set, we have

f =

∞∑
n=1

cnφn, where cn =
〈f, φn〉
‖φn‖2 .

But f is orthogonal to each φn, so 〈f, φn〉 = 0 for each n. It follows that

f ≡ 0.

Example 3 Do the functions cosx, cos 2x, . . . form a complete set on 0 ≤
x ≤ π? Take f(x) = 1. Then

〈f, cosnx〉 =
∫ π

0

cosnx dx = 0 for each n = 1, 2, . . . .

§Pm
n , for fixed m, for n = m,m+ 1, . . . .

¶In fact, they all actually converge pointwise in the same way as the trigonometric series.
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Therefore, f is orthogonal to each function cosnx; thus, the set of functions
is not complete.

Before getting to the exercises, let’s look at a few examples involving Par-
seval’s equality.

Example 4 Parseval’s equality for the trigonometric Fourier series : Given
f(x) or −π ≤ x ≤ π, with ‖f‖ <∞, we have

f(x) =
a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx).

Then, ‖1‖2 = 2π, ‖ cosnx‖2 = ‖ sinnx‖2 = π for n = 1, 2, . . . . So Parseval’s
equality becomes

‖f‖2 =
(a0
2

)2

· 2π + π
∞∑

n=1

(a2n + b2n)

or

1

π
‖f‖2 = a20

2
+

∞∑
n=1

(a2n + b2n).

We extend this idea in Exercise 6.

Example 5 Use the above version of Parseval’s theorem, and the function
f(x) = x, to rederive Euler’s series

π2

6
=

∞∑
n=1

1

n2

(see Exercise 19, Section 3.4).

First,

‖f‖2 =
∫ π

−π

x2 dx =
2π3

3
.

Also, the Fourier coefficients were computed in the above-mentioned exercise:

a0 = an = 0, n = 1, 2, . . . ,

bn =
1

π

∫ π

−π

x sinnx dx =
2

n
(−1)n+1.

Then, Parseval’s equality becomes

1

π

2π3

3
= 4

∞∑
n=1

1

n2
,

which, after a little algebra, gives us what we want.
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Exercises 8.5

1. Show that the Fourier coefficients for both the trigonometric Fourier
series and the Fourier cosine series are the same as what we get using

cn = 〈f,φn〉
‖φn‖2 .

2. Calculate the first four terms of the Fourier–Legendre series (in parts a
and b) for

a) f(x) =

⎧⎨
⎩

0, if − 1 ≤ x < 0,

x, if 0 ≤ x ≤ 1.

b) f(x) = cosπx.

c) Calculate the complete Fourier–Legendre series for f(x) = x2.

3. Generalized Fourier Series: In Example 2 we showed that if

f(x) =

∞∑
n=0

cnPn(x), −1 ≤ x ≤ 1,

then the Fourier–Legendre coefficients of f are

cn =
2n+ 1

2

∫ 1

−1

f(x)Pn(x)dx, n = 0, 1, 2, . . . .

a) For a function f(x) on 0 ≤ x <∞, if

f(x) =

∞∑
n=0

cnLn(x),

show that the Fourier–Laguerre coefficients of f are

cn =

∫ ∞

0

f(x)Ln(x)e
−xdx, n = 0, 1, 2, . . . .

b) For a function f(x) on −∞ < x <∞, if

f(x) =

∞∑
n=0

cnHn(x),

show that the Fourier–Hermite coefficients of f are

cn =
1

2nn!
√
π

∫ ∞

−∞
f(x)Hn(x)e

−x2

dx, n = 0, 1, 2, . . . .
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c) For a function f(x) on 0 ≤ x ≤ 1, if

f(x) =

∞∑
i=1

ciJα(kix),

where the numbers ki are the positive roots of the Bessel function
Jα, show that the Fourier–Bessel coefficients of f are

ci =
2

J2
α+1(ki)

∫ 1

0

xf(x)Jα(kix)dx.

(Refer to Exercises 7 and 8, Section 7.5.)

d) Use the properties established in Exercise 4 of Section 7.5 to derive
the following Fourier–Bessel series:

1 ∼ 2

∞∑
n=1

1

knJ1(kn)
J0(knx), 0 < x < 1,

x2 ∼
∞∑
n=1

k2n − 4

k3nJ1(kn)
J0(knx), 0 < x < 1,

xm ∼ 2

∞∑
n=1

1

knJm+1(kn)
Jm(knx), 0 < x < 1, m = 0, 1, 2, . . . .

The numbers kn are the positive zeros of J0 in the first two, and
of Jm in the last.

e) MATLAB: Plot the graphs of

2

N∑
n=1

1

knJ1(kn)
J0(knx) and

N∑
n=1

k2n − 4

k3nJ1(kn)
J0(knx)

on −1 ≤ x ≤ 3, for various values of N . Refer to Table 7.1, Section
7.5.

f) MATLAB: Do the same as in part (e) for

2

N∑
n=1

1

knJ2(kn)
J1(knx) and 2

N∑
n=1

1

knJ3(kn)
J2(knx),

where, in the first sum, the kn are the positive roots of J1, while in
the second, they’re the positive roots of J2. Again, refer to Table
7.1, Section 7.5.

g) Suppose, instead, that the numbers ki, i = 1, 2, 3, . . ., are the roots
of Jα. Show that the Fourier–Bessel series for f(x), 0 ≤ x ≤ 1, in
this case is

f(x) ∼
∞∑
i=1

ciJα(kix)
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with

ci =
2k2i

(k2i − α2)J2
α(ki)

∫ 1

0

xf(x)Jα(kix)dx.
‖

(Refer to Exercise 9, Section 7.5.)

4. One may derive the Fourier–Chebyshev coefficients as in the previ-
ous exercise. However, we proceed as follows:

a) Suppose we have

f(x) =
c0
2

+

∞∑
n=1

cnTn(x), −1 ≤ x ≤ 1.

Let x = cos θ, 0 ≤ θ ≤ π, and use the more familiar looking result
to conclude that

cn =
2

π

∫ 1

−1

f(x)Tn(x)dx, n = 0, 1, 2, . . . .

b) Similarly, supposing that

f(x) =

∞∑
n=1

cnSn(x), −1 ≤ x ≤ 1,

use the same substitution to show that we have

cn =
2

π

∫ 1

−1

f(x)Sn(x)dx.

5. Find the first three terms of the Fourier–Laguerre series for f(x) = e−2x

(don’t forget the weight function).

6. a) Explain why every piecewise continuous function f(x) on a ≤ x ≤ b
also satisfies ‖f‖2 =

∫ b

a f
2(x)w(x)dx < ∞ for any weight function

w.

b) Give an example of a class of functions f(x) on 0 ≤ x ≤ 1 such

that
∫ 1

0 |f(x)|dx is infinite (and, therefore, f is not piecewise con-

tinuous), but
∫ 1

0
f2(x)dx <∞.

7. a) Show that Parseval’s equality for the trigonometric Fourier series
of a function f on −L ≤ x ≤ L is

1

L

∫ L

−L

f2(x)dx =
a20
2

+

∞∑
n=1

(a2n + b2n).

‖It turns out here that, for α = 0, we must include k1 = 0. One may then use l’Hôpital’s
rule in the “variable” k1, if need be. (For a more general treatment of this situation, see
Pinsky’s Partial Differential Equations and Boundary-Value Problems with Applications.)
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b) Show that Parseval’s inequality, for the Fourier sine and Fourier
cosine series of f on 0 ≤ x ≤ L, gives us

2

L

∫ L

0

f2(x)dx =

∞∑
n=1

b2n =
a20
2

+

∞∑
n=1

a2n.

8. In Exercises 19 and 20 of Section 3.4, we talked about some of the won-
derful results involving infinite series that Euler had derived, without
the benefit of Fourier analysis. We saw that, using Fourier series, we
could duplicate some of these results rather easily. Now, with Parseval’s
equality, we add yet another weapon to our arsenal.

a) For a warmup, use the Fourier sine series for f(x) = 1 on 0 ≤ x ≤ π
to rederive the sum

π2

8
=

∞∑
n=1

1

(2n− 1)2
.

b) Now use the Fourier cosine series for f(x) = x2, on 0 ≤ x ≤ π, to
show that

π4

90
=

∞∑
n=1

1

n4
.

c) Next, use the Fourier cosine series for f(x) = x, on 0 ≤ x ≤ 1, to
derive

π4

96
=

∞∑
n=1

1

(2n− 1)4
.

d) Use the results of parts (b) and (c) to find the sum

1

24
+

1

44
+

1

64
+

1

84
+ · · · .

9. Remember that, in Exercise 3, Section 8.2, we showed that if φ1, φ2, . . .
are orthogonal with respect to w on an interval, then

√
w φ1,

√
w φ2, . . .

are simply orthogonal on the same interval. Now, supposing that φ1, φ2, . . .
are complete with respect to w, show that the functions

√
w φ1,

√
w φ2, . . .

are (simply) complete on the same interval.

10. If φ1, φ2, . . . is an orthogonal set on a given interval, and if 〈f, φn〉 =
〈g, φn〉, n = 1, 2, . . ., must the functions f and g be identical, in the
mean-square sense, i.e., must ‖f − g‖ = 0? Why or why not?

11. Generalize Parseval’s equality and show that if

f(x) =

∞∑
n=1

cnφn(x) and g(x) =

∞∑
n=1

dnφn(x)
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on a given interval, where {φn}∞n=1 is a complete orthogonal set on the
interval, then

〈f, g〉 =
∞∑

n=1

cndn‖φn‖2.

12. The Hanging Chain: Bessel functions first arose in the study of the
hanging chain (by Daniel Bernoulli in 1732). So, suppose we have a
chain of length L, attached at the top and able to swing. Letting

u(x, t) = location of point x at time t

as in Figure 8.1, it turns out that u satisfies the boundary-value problem

utt = gxuxx + gux, 0 < x < L, t > 0,

u(x, 0) = f(x),

ut(x, 0) = h(x),

u(0, t) bounded, u(L, t) = 0.

x

L

x

u(x,t)

u

FIGURE 8.1
The hanging chain.

Here, g is the constant gravitational acceleration at the earth’s surface.

a) Solve this problem.

b) MATLAB: Letting L = 1, graph the first five vibration modes.

c) What is the vibration frequency of the nth mode?





Prelude to Chapter 9

Armed with the special functions, we’re now in a position to solve the Big
Three PDEs in two and three spatial dimensions. We look mostly at problems
on bounded domains with simple geometry—rectangular, spherical and the
like—and we’ll find that, again, we can use the Fourier method to solve them.

Fourier, in fact, after deriving the two- and three-dimensional heat equa-
tions, proceeded to solve them as he had solved the one-dimensional version.
Poisson followed with solutions of heat problems in polar and spherical co-
ordinates and, ultimately, with his 1835 treatise Théorie Mathematique de la
Chaleur (Mathematical Theory of Heat). As for the wave equation, Euler had
dealt with the vibrating drumhead much earlier and gave the product solu-
tions for the rectangular and circular drumhead in 1759, solving the latter
which eventually would be known as the Bessel functions of the first kind. It
remained only to look at infinite linear combinations of these solutions.

In that same year, Euler and Lagrange independently provided cylindrical
and spherical wave solutions of the wave equation on all of three-dimensional
space. And in the early 19th century, Poisson derived the three-dimensional
version of d’Alembert’s solution, from which it’s easy to see that solutions sat-
isfy Huygens’s Principle (which Christiaan Huygens (1629–1695) had shown
is satisfied by light waves, based on his wave theory of light).

Euler and Lagrange both had written Laplace’s equation in polar and spher-
ical coordinates. It was then Legendre, while studying gravitational attrac-
tion, who solved the spherical version in the 1780s, with some help from
Laplace. And it was here that he encountered the polynomials which now
bear his name and which are a special case of the spherical harmonics which
form part of the solution to the spherical heat and wave equations.

As we’ve seen, Poisson was responsible for showing that the gravitational
potential must satisfy the nonhomogeneous Laplace’s equation—that is, Pois-
son’s equation—in regions where mass is present. It was while studying these
problems that he also provided his elegant closed form solution to Laplace’s
equation in polar coordinates, a solution now referred to as Poisson’s integral
formula. Also, around 1813, Poisson was the first to apply Laplace’s and
Poisson’s equations to the study of electricity.
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9

PDEs in Higher Dimensions

9.1 PDEs in Higher Dimensions: Examples and
Derivations

THE HEAT/DIFFUSION EQUATION IN
THREE DIMENSIONS

We now derive the heat equation in three space dimensions. Suppose we
have a solid three-dimensional piece of material, with constant mass density
ρ, specific heat σ and thermal conductivity k (all as defined in Section 2.2).
Suppose also that there is a heat source/sink throughout the material, given
by

f(x, y, z, t) = rate at which heat is added/removed, per unit volume,

at point (x, y, z) at time t.

We wish, then, to determine the temperature function

u(x, y, z, t) = temperature at point (x, y, z), at time t,

by computing in two different ways, the rate at which heat enters a typical
differential element. Our element, in this case, is the rectangular “box” shown
in Figure 9.1.

y

xΔ

Δ

Δz

FIGURE 9.1
Three-dimensional differential element.

Proceeding as in Section 2.2, the time rate of change of the heat content of
the box, at time t, is

σρΔxΔyΔzut(x, y, z, t).
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(Actually, we probably should, as in (2.3), use ut

(
x+ Δx

2 , y +
Δy
2 , z +

Δz
2 , t

)
here. However, it really doesn’t matter (why?). Also, as then, we may ap-
proach things more rigorously, which we do in Exercise 1.)

Now we need the general statement of Fourier’s Law, which states that the
heat flux across any differential element of area at the point (x, y, z) is

Φ(x, y, z, t) = −k du
dn

(x, y, z, t),

where du
dn , of course, is the directional derivative of u in the direction normal

to the area element (realizing that there are two such directions). So,

Φ(x, y, z, t) = −k∇∇∇u · n̂.∗

Here, n̂ is the unit normal, and ∇u is the temperature gradient (hence the
use of this terminology in the one-dimensional case). Figure 9.2 illustrates
the flux for various orientations of the differential area and ∇∇∇u, letting k = 1.
(Actually, we graph the vector Φn̂̂n̂n, making clear the direction.)

u

u

n̂Φ
Δ

Δ u

Δn̂Φ

Φ n̂

FIGURE 9.2
Flux, including direction, for various orientations of the face of the
differential element.

Now we go back to Figure 9.1 and compute the inward flow across the front
and the back, that is, across the two faces x = constant. For the front, the
inward flow is

Φ(x+Δx, y, z, t)ΔyΔz = −k∇∇∇u · (−ı̂)ΔyΔz = kux(x +Δx, y, z, t)ΔyΔz;

for the back, it is

−k∇∇∇u · ı̂ΔyΔz = −kux(x, y, z, t)ΔyΔz.

The total contribution is

kΔyΔz[ux(x+Δx, y, z, t)− uz(x, y, z, t)],

∗In all cases, ∇ involves only the space variables, x, y and z.
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which, of course, is essentially the same as (2.5). In fact, it should be fairly
obvious that each component behaves the same way.

Finally, the rate at which heat is added to the box is

f(x, y, z, t)ΔxΔyΔz.

Putting everything together, we have

σρut(x, y, z, t) = k

[
u(x+Δx, y, z, t)− u(x, y, z, t)

Δx

+
u(x, y +Δy, z, t)− u(x, y, z, t)

Δy

+
u(x, y, z +Δz, t)− u(x, y, z, t)

Δz

]

+ f(x, y, z, t)

and, letting Δx→ 0,Δy → 0 and Δz → 0, we have the heat equation

ut = α2∇2u+ f,

where the thermal diffusivity, as before, is α2 = k
σρ and ∇2u is the Laplacian

∇2u = uxx + uyy + uzz.

Of course, the heat equation in two dimensions can be derived in the same
manner.

OTHER APPLICATIONS OF THE
HEAT/DIFFUSION EQUATION

Diffusion in three dimensions

As with the one-dimensional heat equation, if we replace “temperature” by
“concentration,” then Fourier’s Law is known as Fick’s Law and the derivation
of the diffusion equation for the substance proceeds almost exactly as above.

Diffusion-convection/mathematical biology

Suppose we are looking at algae on the surface of the ocean. Let

u(x, y, t) = concentration of algae at point (x, y), at time t.

The algae certainly are carried along by ocean currents and, in addition, they
are particle-like and undergo diffusion. Thus, they satisfy the two-dimensional
diffusion-convection equation, which turns out to be

ut = α2∇2u− v1ux − v2uy,
where v(x, y, t) = v1(x, y, t)̂ı+v2(x, y, t)ĵ is the velocity of the current at point
(x, y), at time t. See Exercise 3.
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THE WAVE EQUATION IN TWO DIMENSIONS

Here we derive the equation for the vibrations of a membrane (or drumhead).
We now have what, essentially, is a two-dimensional problem, with the mem-
brane being the two-dimensional analog of the string. As such, we make the
same assumption, that is, if we let

u(x, y, t) = height of membrane at point (x, y), at time t,

we assume that each point (x, y) of the membrane possesses only vertical
motion.

As always, we consider a differential rectangle of the membrane, as in Figure
9.3a. The only forces acting on this element are those due to the rest of the
membrane pulling on it, that is, due to the tension along the four edges.
Assuming that the tension per unit length τ is constant, we can “add these
up” along each side. The resultants are, by symmetry, at the center of each
edge. See Figure 9.3b.

Τ
Τ

Τ

Τ

ΔxΔx

(a) (b)

yΔ Δy

τ

FIGURE 9.3
The (a) forces per unit length and (b) resultants of those forces
acting along the edges of a differential element.

As in the case of the string, the horizontal components of these forces
must sum to zero. As for the vertical components, we treat each direction
separately, as in Section 2.3 and Figure 2.5. Thus, the sum of the vertical
forces is

T {Δy[ux(x+Δx, y, t)− ux(x, y, t)] + Δx[uy(x, y +Δy, t)− uy(x, y, t)]}.

Using Newton’s 2nd Law, we must equate this to

mass · acceleration = ρΔxΔy · utt(x, y, t).
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Here, ρ is the mass per unit area, and, again, we approximate utt at the
corner, rather than the midpoint, of the rectangle. So the result is

ρutt = T

[
ux(x+Δx, y, t)− ux(x, y, t)

Δx
+
uy(x, y +Δy, t)− uy(x, y, t)

Δy

]

and, letting Δx→ 0 and Δy → 0, we arrive at the wave equation

utt = c2∇2u,

where c2 =
√
T/ρ is the wave speed and ∇2u is the Laplacian

∇2u = uxx + uyy.

As with the one-dimensional wave equation, we may include the effect of a
load

f(x, y, t) = force per unit area at point (x, y), at time t,

resulting in the PDE

utt = c2∇2u+
1

ρ
f(x, y, t).

OTHER APPLICATIONS OF THE WAVE EQUATION

One might expect that the propagation of waves in three-dimensional media
is described by the three-dimensional wave equation, and this certainly is the
case.

Compression waves in liquids and gases

Given a fluid with negligible viscosity, let

p(x, y, z, t) = P (x, y, z, t)− P�(x, y, z, t).

Here, P is the hydrostatic pressure, P� is the equilibrium hydrostatic pressure
(in the absence of motion) and p is called the incremental pressure. Then it
can be shown that, in certain circumstances, p satisfies the wave equation

ptt = c2∇2p,

where c is the wave velocity. In particular, the propagation of sound waves is
governed by the wave equation. See Exercise 6.

Elastic waves in solids

In the study of the vibrational motion of an elastic solid, we let

RRR(x, y, z, t) = displacement of point initially at (x, y, z), at time t.
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It can be shown that any vector field can be resolved into the gradient of
a scalar and the curl of a zero-divergence vector, that is, that there exist
potentials φ and HHH such that

RRR = ∇φ+∇×HHH, with ∇ ·HHH = 0.

If no body force is present, it can be shown that φ and HHH satisfy

φtt =
λ+ 2u

ρ
∇2φ, HHHtt =

u

ρ
∇2HHH,

where λ and u are the so-called Lamé constants for the material and ρ is
the constant mass density. See Exercise 7.

Electromagnetic waves

The general form of Maxwell’s equations in a vacuum is given in Appendix D:

∇ ·EEE = 4πρ ∇ ·BBB = 0

EEEt = c∇×BBB − 4πJJJ BBBt = −c∇×EEE,
where c is the speed of light. It can be shown that

EEEtt = c2∇2EEE − 4πJJJ t − 4πc2∇ρ

and

BBBtt = c2∇2BBB + 4πc∇× JJJ.
In particular, if ρ ≡ 0 and JJJ ≡ 0, we have

EEEtt = c2∇2EEE and Btt = c2∇2BBB.

See Exercise 8. (For a vector function FFF = F1ı̂̂ı̂ı + F2ĵ̂ĵj + F3k̂̂k̂k and ∇2FFF =

∇2F1ı̂+∇2F2 ĵ+∇2F3k̂.)

THE LAPLACE/POTENTIAL EQUATION AND
POISSON’S EQUATION

Back in Section 2.5 we derived Laplace’s and Poisson’s equations in electro-
statics. If the magnetic field does not change with respect to time, so that
BBBt = 0, two of Maxwell’s equations become

∇ ·EEE = 4πρ and ∇×EEE = 000.

Again, ρ is the change density. The latter equation implies that EEE has a
potential −φ:

EEE = −∇∇∇φ.†

†Again, so long as the domain is simply-connected.
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Then the former gives us Poisson’s equation

∇2φ = −4πρ.
OTHER APPLICATIONS OF LAPLACE’S AND
POISSON’S EQUATIONS

Steady state problems

Of course, when looking at steady state solutions of any of the homogeneous
heat and wave equation examples, we see that they must satisfy Laplace’s
equation. Similarly, steady state solutions of the nonhomogeneous heat and
wave equations, with time-independent source terms, will satisfy Poisson’s
equation.

Magnetostatics

From Appendix D, the static Maxwell’s equations are

∇ ·EEE = 4πρ ∇ ·BBB = 0

∇×BBB = 0 ∇×EEE = 0.

We already used the first and last to show that there is an electric potential
φ such that ∇2φ = −4πρ. Similarly, it is easy to show that BBB has a magnetic
potential, BBB = −∇ψ, and that ψ satisfies Laplace’s equation ∇2ψ = 0.

Newtonian gravity

It can be shown that the Newtonian gravitational field

FFF (x, y, z) = force per unit mass at (x, y, z),

due to a distribution of mass, has a gravitational potential ψ = ψ(x, y, z), so
that

FFF = ∇ψ,
and that ψ must satisfy Laplace’s equation ∇2ψ = 0 in empty space, while it
satisfies ∇2ψ = −4πρ in regions where the density of matter is ρ = ρ(x, y, z).

Velocity of an incompressible and irrotational fluid (i.e., of a
perfect fluid)

If a fluid is incompressible, its velocity satisfies ∇ · vvv = 0; similarly, if irro-
tational, its velocity satisfies ∇ × vvv = 0. Thus, vvv has a velocity potential φ
which satisfies ∇2φ = 0. See Exercises 4 and 5.

EQUATIONS OF CONTINUITY

We may generalize to two and three dimensions the continuity equations dis-
cussed in Section 2.2.
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Fluid flow

If there is no source, the equation of continuity is

ρt +∇ · (ρvvv) = 0,

where, again, ρ is the fluid’s density and vvv its velocity. See Exercise 4.

Electric current

In general, the equation of continuity relating charge density ρ with current
density J , again, with no source term, is

ρt +∇ · (ρJJJ) = 0.

(The derivation is similar to that of the fluid flow continuity equation.)

Exercises 9.1

1. Here we provide a more rigorous, and more general, derivation of the
heat equation in three dimensions. Suppose we have a simply-connected
piece of material with mass density ρ = ρ(x, y, z), specific heat σ =
σ(x, y, z) and thermal conductivity k = k(x, y, z). Let V be an arbitrary
subset of the material, with boundary S.

a) Conclude that the rate at which heat enters V is

∫∫∫
V

σρut dv

(you may assume that d
dt

∫∫∫
f(x, y, z, t)dv =

∫∫∫
ft(x, y, z, t)dv).

b) Show that this must equal

∫∫
S

k∇u · n̂̂n̂n ds.

c) Use the Divergence Theorem on the result from part (b), and the
arbitrariness of V , to conclude that we must have

ut =
1

σρ
∇ · (k∇u).

2. Here, we do the same as in Exercise 1, but for the two-dimensional
wave equation. Let D be any subset of a two-dimensional vibrating
membrane, with boundary curve C. Let ρ = ρ(x, y) be the mass density
(per unit area) of the membrane. We apply F = ma to D.
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a) Conclude that we have

ma =

∫∫
D

ρutt dA.

b) Show that the vertical force at each point along C is T du
dn

‡ and,
thus, that the total vertical force acting on the piece of membrane
is ∫

C

T∇u · n̂̂n̂n ds.

c) Use Green’s Theorem in part (b), and the arbitrariness of D, to
conclude that we must have

T∇2u = ρutt.

(Note: T will be constant—again, an approximation—as in the
one-dimensional case.)

3. Two-dimensional diffusion-convection equation: We’d like to de-
rive the contribution of convection to the diffusion-convection equation,
and we proceed very much as in Section 5.1. So, suppose we have a
differential rectangle of size Δx × Δy, and suppose the velocity of the
current is the constant

v = v1ı̂+ v2 ĵ.

Show that the net inflow into the element is approximately

ut(x, y, t)ΔxΔy = −v1Δt[u(x+Δx, y, t)− u(x, y, t)]Δy
− v2Δt[u(x, y +Δy, t)− u(x, y, t)]Δx
+ terms of order (Δt)2ΔxΔy

and, thus, upon dividing by ΔxΔyΔt and letting each term go to zero,
we have

ut = −�v · ∇∇∇u = −v1ux − v2uy.
4. Derive the equation of continuity

ρt +∇ · (ρvvv) = 0

for a fluid with density ρ = ρ(x, y, z, t) and velocity vvv = vvv(x, y, z, t).
Show that if the fluid is incompressible, that is, if its density doesn’t
change, then we have

∇ · vvv = 0.

(See Exercise 13, Chapter 2, Section 2.2.)

‡Since we assume the membrane to be perfectly flexible.
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5. a) Suppose we have a fluid with two-dimensional velocity field vvv =
vvv(x, y, t) = v1ı̂̂ı̂ı+ v2jjj. Use Green’s Theorem to show that if

∮
C

vvv · drrr =
∮
C

v1 dx+ v2 dy = 0

around any simple closed curve C, then we must have

v1y = v2x.

b) Now use Stokes’s Theorem to show that if the three-dimensional
velocity field satisfies ∮

C

vvv · drrr = 0

around any simple closed curve C, then we must have

∇xvvv = 000.

Of course, part (a) is a special case of part (b); in each case we say
that the fluid is irrotational. Explain why this term makes sense.

6. Compression waves in fluids and gases: Suppose we’d like to con-
sider waves in a nonviscous fluid, for example, sound waves in air. We
let

P (x, y, z, t) = hydrostatic pressure at point (x, y, z), at time t

and

P�(x, y, z) = equilibrium pressure in the absence of motion.

We look at the incremental pressure

p(x, y, z, t) = P (x, y, z, t)− P�(x, y, z).

Now, if

RRR(x, y, z, t) = displacement of fluid initially at (x, y, z), at time t,

Hooke’s Law for a fluid says that

p = −B∇ ·RRR

(as long as ∇·RRR is small), where the proportionality constant B is called
the bulk modulus
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a) Consider the incremental pressure forces acting on the differential
element of size Δx×Δy×Δz in Figure 9.1. Realizing that pressure
is essentially a negative tension, show that the x-direction compo-
nent of force is

−px(x, y, z, t)ΔxΔyΔz
and, therefore, that the total force due to p on the element is

−∇pΔxΔyΔz.

We call ∇p the pressure gradient, for obvious reasons.

b) Use Newton’s 2nd Law to show that we must have

−∇p = ρRRRtt,

when ρ = ρ(x, y, z, t) is the density of the fluid.

c) Finally, eliminate RRR and show that the result is that p satisfies the
wave equation

ptt = c2∇2p, §

where c2 = B
ρ .

7. Elastic waves in solids: Supposing we have a homogeneous and isotropic
solid, the normal stresses σx, σy and σz and the shearing stresses τyz ,
τzx and τxy satisfy

σx = λ∇ ·RRR + 2μux, τyz = μ(wy + vz),

σy = λ∇ ·RRR + 2μvy, τzx = μ(uz + wx),

σz = λ∇ ·RRR + 2μwz, τxy = μ(vx + uy).

Here, RRR(x, y, z, t) = u(x, y, z, t)̂ı̂ı̂ı+ v(x, y, z, t)ĵ̂ĵj+w(x, y, z, t)k̂̂k̂k is the dis-
placement of the point initially at (x, y, z), and λ and μ are the so-called

Lamé constants for the material. If fff(x, y, z, t) = f, ı̂̂ı̂ı+ f2ĵ̂ĵj+ f3k̂̂k̂k is the
load or body force, then it can be shown that the total force at each
point is given by

x-direction: (σx)x + (τxy)y + (τzx)z + ρf1,

y-direction: (σy)y + (τxy)x + (τyz)z + ρf2,

z-direction: (σz)z + (τzx)x + (τyz)y + ρf3.

a) Show that the equation of motion for the solid is

(λ+ μ)∇(∇ ·RRR) + u∇2RRR+ ρfff = ρRRRtt.

§You may interchange the order of differentiation wherever needed.
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b) Show that ∇2RRR = ∇(∇ · RRR) − ∇ × (∇ × RRR) and, thus, that the
equation of motion can be rewritten as

(λ + 2u)∇(∇ ·RRR)− u∇× (∇×RRR) + ρf = ρRRRtt.

c) It turns out¶ that we may find potentials φ and HHH and ψ and KKK
such that

RRR = ∇φ+∇×HHH and fff = ∇ψ +∇xKKK.
Show that the equation of motion can be rewritten as

∇[(λ + 2u)∇2φ+ ρψ − ρφtt] +∇x[u∇2HHH + ρKKK − ρHHHtt] = 0

and, thus, will be satisfied if φ,HHH,ψ and KKK satisfy

φtt =
λ+ 2u

ρ
∇2φ+ ψ, HHHtt =

u

ρ
∇2HHH +KKK.

8. Electromagnetic waves: Show that Maxwell’s equations in a vacuum
imply that

EEEtt = c2∇2EEE − 4πJJJ t − 4πc2∇ρ
and

BBBtt = c2∇2BBB + 4πc∇× JJJ.
(You’ll need the identity established in Exercise 7b.)

9.2 The Heat and Wave Equations on a Rectangle;
Multiple Fourier Series

Now we solve the heat, wave and Laplace equations on two- and three-
dimensional domains with rectangular and circular/spherical boundaries. This
may seem much too restrictive. Although it is natural to solve one-dimensional
problems on intervals, the situation in higher dimensions is much more com-
plicated, with there being infinitely many possible shapes. It turns out, how-
ever, that there are so-called conformal mappings‖ (from complex analysis)
which may be used to transform more complicated domains into these simpler
regions, or combinations thereof.

We begin by considering the heat and wave equations on a rectangle in this
section.

¶See, e.g., Methods of Theoretical Physics by Morse and Feshbach.
‖In fact, the Riemann Mapping Theorem guarantees that any simply connected region
in the plane, of finite extent, can be mapped conformally onto a circle, where the problem
can be solved and then mapped back to the original region.
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THE TWO-DIMENSIONAL HEAT EQUATION

Let’s start by solving the two-dimensional heat equation on a finite rectangle,
with the temperature held at zero along the edges. It will proceed almost
exactly as did the one-dimensional case—separation of variables, boundary-
value problems, superposition of solutions—and, at the end, we’ll find the
need for an extended version of the Fourier series.

So, holding off on the initial condition, we begin with

ut = α2(uxx + uyy) = α2∇2u, 0 < x < a, 0 < y < b, t > 0,

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0, 0 < x < a, 0 < y < b, t > 0.

First, separate variables by letting u(x, y, t) = X(x)Y (y)T (t). As in Exercise
18, Section 1.6, the PDE leads us to

T ′

α2T
=
X ′′

X
+
Y ′′

Y
= −λ

⇒ T ′ + α2λT = 0,
X ′′

X
= −Y

′′

Y
− λ = −γ

⇒ T ′ + α2λT = 0, X ′′ + γX = 0, Y ′′ + (γ − λ)Y = 0.

Similarly, we separate the boundary conditions:

X(0) = X(a) = Y (0) = Y (b) = 0.

So we’re led to the two eigenvalue problems

X ′′ + γX = 0 Y ′′ + (λ− γ)Y = 0

X(0) = X(a) = 0 Y (0) = Y (b) = 0,

which we’ve solved many times. The X-boundary-value problem has eigen-
values and eigenfunctions

γn =
n2π2

a2
, Xn(x) = sin

nπx

a
, n = 1, 2, 3, . . . .

Then, for each such γ, the Y -ODE is

Y ′′ +
(
λ− n2π2

a2

)
Y = 0, n = 1, 2, 3, . . . ,

and, for each n, we must have

λ− n2π2

a2
=
m2π2

b2
, m = 1, 2, 3, . . .

that is, for each pair n,m, we have the eigenvalue

λn,m =
n2π2

a2
+
m2π2

b2
, n = 1, 2, 3, . . . ,m = 1, 2, 3, . . .
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with corresponding eigenfunction

Y (y) = Ym(y) = sin
mπy

b
.

Now, for each pair n,m, the solution to the T -equation is

Tn,m(t) = e−α2λn,mt = e
−α2π2

(
n2

a2 +m2

b2

)
t
,

giving us the product solutions

un,m(x, y, t) = Tn,m(t)Xn(x)Ym(y)

= e
−α2π2

(
n2

a2 +m2

b2

)
t
sin

nπx

a
sin

mπy

b
,

n = 1, 2, 3, . . . ;m = 1, 2, 3, . . . .

Finally, any linear combination of these solutions is a solution of the PDE and
the boundary conditions, so we have the general solution

u(x, y, t) =
∞∑
n=1

∞∑
m=1

cn,mun,m(x, y, t)

=

∞∑
n=1

∞∑
m=1

cn,me
−α2π2

(
n2

a2 +m2

b2

)
t
sin

nπx

a
sin

mπy

b
,

where the numbers cn,m are, of course, arbitrary constants.
Now, how about the initial condition? As in Section 2.6, for certain special

initial conditions, we can solve the problem immediately.

Example 1 Solve the initial-boundary-value problem

ut = ∇2u, 0 < x < 1, 0 < y < 2, t > 0,

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 2, t) = 0,

u(x, y, 0) = 3 sin 6πx sin 2πy + 7 sinπx sin
3πy

2
.

The general solution is

u(x, y, t) =

∞∑
n=1

∞∑
m=1

cn,me
−
(
n2+m2

2

)
π2t

sinnπx sin
mπy

2
.

Then,

u(x, y, 0) =

∞∑
n=1

∞∑
m=1

cn,m sinnπx sin
mπy

2

= 3 sin 6πx sin 2πy − 7 sinπx sin
3πy

2
.
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Thus, we have that each cn,m = 0 except for two cases:

n = 6,m = 4⇒ c6,4 = 3; n = 1,m = 3⇒ c1,3 = −7.

So our final solution is

u(x, y, t) = 3e−44π2t sin 6πx sin 2πy − 7e−
11
2 π2t sinπx sin

3πy

2
.

Of course, the big question is, what happens when the initial condition is
not so amenable, that is, what happens for general initial condition

u(x, y, 0) = f(x, y)?

Here we need to extend the concept of Fourier series to functions of several
variables. We will not give a detailed treatment here. Suffice it to say that
multiple Fourier series behave quite like the one-dimensional kind with similar
convergence properties. But how do we calculate the coefficients?

We could proceed as we did before, this time by considering functions
sin nπx

a sin mπy
b , n = 1, 2, 3, . . . ;m = 1, 2, 3, . . ., on the rectangle 0 ≤ x ≤ a,

0 ≤ y ≤ b. Specifically, we can show that these functions are orthogonal on
the rectangle, etc. (see Exercise 8).

However, our nonrigorous derivation follows directly from the one-variable
case. So, given f(x, y) on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b, for each (fixed)
y we can expand in a Fourier sine series in x:

f(x, y) =

∞∑
n=1

dn(y) sin
nπx

a
,

where, for each y,

dn(y) =
2

a

∫ a

0

f(x, y) sin
nπx

a
dx, n = 1, 2, . . . .

Then, for each n, dn(y) also can be expanded as a Fourier sine series:

dn(y) =

∞∑
m=1

cn,m sin
nπy

b
,

with

cn,m =
2

b

∫ b

0

dn(y) sin
mπx

b

=
2

b

∫ b

0

[
2

a

∫ a

0

f(x, y) sin
nπx

a
dx

]
sin

mπy

b
dy,

n = 1, 2, 3, . . . ;m = 1, 2, 3, . . . .
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Thus, putting everything together, we have the double Fourier sine series
for f on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b,

f(x, y) ∼
∞∑

n=1

∞∑
m=1

cn,m sin
nπx

a
sin

mπy

b
,

where

cn,m =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
nπx

a
sin

mπy

b
dydx.

It follows that the solution of the initial-boundary-value problem

ut = α2(uxx + uyy),

u(x, y, 0) = f(x, y),

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0

is

u =

∞∑
n=1

∞∑
m=1

cn,me
−α2π2

(
n2

a2 +m2

b2

)
t
sin

nπx

a
sin

nπy

b
,

with the above values for the constants cn,m.

THE TWO-DIMENSIONAL WAVE EQUATION

The two-dimensional wave equation, modeling the vibrations of a rectangular
membrane, is solved analogously. So, suppose we’re given

utt = c2(uxx + uyy) = c2∇2u,

u(x, y, 0) = f(x, y),

ut(x, y, 0) = g(x, y),

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0.

Separating the PDE and boundary conditions leads to the ODEs

T ′′ + c2λT = 0, X ′′ + γX = 0, Y ′′ + (λ− γ)Y = 0

and boundary conditions

X(0) = X(a) = Y (0) = Y (b) = 0.

Proceeding as above (see Exercise 2), we arrive at the general solution

u(x, y, t) =

∞∑
n=1

∞∑
m=1

sin
nπx

a
sin

mπy

b
[cn,m cos c

√
λn,m t+ dn,m sin c

√
λn,m t],

where, as above,

λn,m = π2

(
n2

a2
+
m2

b2

)
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and

cn,m =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
nπx

a
sin

mπy

b
dydx,

dn,m =
4

ab
√
λn,m

∫ a

0

∫ b

0

g(x, y) sin
nπx

a
sin

mπy

b
dydx,

n = 1, 2, 3, . . . ;m = 1, 2, 3, . . . .

It’s interesting to look at the X-Y eigenfunctions

vn,m(x, y) = sin
nπx

a
sin

mπy

b

for each of these problems and, in particular, to look at the role they play
in the case of the vibrating membrane. Remember that the solution of the
one-dimensional wave equation is

u(x, t) =

∞∑
n=1

sin
nπx

L

(
cn cos

nπct

L
+ dn sin

nπct

L

)
.

There, the X-eigenfunction

Xn(x) = sin
nπx

L
, n = 1, 2, 3, . . . ,

is the nth mode of vibration, corresponding to the nth vibration frequency

νn =
nc

2L
.

For the present case, vn,m(x, y) is called the (n,m)th(n,m)th(n,m)th mode of vibration of
the membrane, corresponding to the (n,m)th(n,m)th(n,m)th frequency

νn,m =
c
√
λn,m

2π
=
c
√
n2b2 +m2a2

2ab

(why?). In Table 9.1 we list the frequencies and modes for n = 1, 2, 3 and
m = 1, 2, 3 for a 2 × 3 membrane, with c = 1. Figure 9.4 shows these nine
vibration modes.

v1,1 = sin πx
2 sin πy

3 v1,2 = sin πx
2 sin 2πy

3 v1,3 = sin πx
2 sinπy

ν1,1 =
√
13
12 ν1,2 = 5

12 ν1,3 =
√
45

12

v2,1 = sinπx sin πy
3 v2,2 = sinπx sin 2πy

3 v2,3 = sinπx sin πy

ν2,1 =
√
20
12 ν2,2 =

√
52
12 ν2,3 =

√
72

12

v3,1 = sin 3πx
2 sin πy

3 v3,2 = sin 3πx
2 sin 2πy

3 v3,3 = sin 3πx
2 sinπy

ν3,1 =
√
82
12 ν3,2 =

√
97
12 ν3,3 =

√
117
12

TABLE 9.1
The vibration modes, and corresponding vibration frequencies, for
a 2× 32× 32× 3 membrane, for n = 1, 2, 3n = 1, 2, 3n = 1, 2, 3 and m = 1, 2, 3m = 1, 2, 3m = 1, 2, 3.
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FIGURE 9.4
MATLAB graphs of the vibration modes given in Table 9.1.

Now, in the one-dimensional case, you’ll remember that, for each mode,
there are points along the string which remain fixed—the nodes for that par-
ticular mode. As can be seen in Figure 9.4, the modes in the two-dimensional
case possess curves which have this property; these are the nodal lines (or
nodal curves) corresponding to each mode. Figure 9.5 shows the nodal lines
for each of the modes in Figure 9.4.
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FIGURE 9.5
The nodal lines for the modes in Figure 9.4. The +/−+/−+/− signs give
the sign of the mode throughout each cell.
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The “+” and “−” signs represent those regions where vn,m > 0 and vn,m <
0, respectively.

An interesting special case is that of the square membrane. Specifically, we
take a = b = 1, along with c = 1, and we plot the (1, 2)th and (2, 1)th modes
in Figure 9.6, along with the corresponding nodal lines in Figure 9.7.
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FIGURE 9.6
MATLAB graphs of the modes v1,2 = sinπx sin 2πyv1,2 = sinπx sin 2πyv1,2 = sinπx sin 2πy and v2,1 = sin 2πxv2,1 = sin 2πxv2,1 = sin 2πx
sinπysinπysinπy for a 1× 11× 11× 1 membrane.

v v1,2 2,1

FIGURE 9.7
Nodal lines and signs for the modes in Figure 9.6.

Here, it’s immediately obvious that ν1,2 = ν2,1 and that the corresponding
modes are symmetric. What is the significance of this? In the one-dimensional
case, to each frequency there corresponds a unique mode. In other words, each
eigenvalue has multiplicity one. Here, however, we have λ1,2 = λ2,1, so that
this number is an eigenvalue of multiplicity two (at least!). What this means
is that any linear combination of the eigenfunctions v1,2 and v2,1 also is an
eigenfunction corresponding to this particular frequency. So, instead of v1,2
and v2,1, we could use, for example, the linearly independent eigenfunctions

w1 = v1,2 + v2,1, w2 = v1,2 − v2,1
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(see Exercise 17). These functions∗∗ are shown in Figure 9.8; their nodal lines
are in Figure 9.9.
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FIGURE 9.8
MATLAB graphs of the linear combinations w1 = −v1,2 − v2,1w1 = −v1,2 − v2,1w1 = −v1,2 − v2,1 and
w2 = v1,2 − v2,1w2 = v1,2 − v2,1w2 = v1,2 − v2,1.

−
++

w w

−

1 2

FIGURE 9.9
Nodal lines and signs for the modes in Figure 9.8.

In general, of course, determining the multiplicity of the (n,m)th frequency
requires finding all pairs (n1,m1) satisfying n2b2 +m2a2 = n2

1b
2 +m2

1a
2. It

can be shown that no frequency has multiplicity greater than one if the ratio
b/a is irrational. Conversely, if b/a is rational, then one may use elementary
number theory to determine multiplicities.††

One may use double Fourier series to solve Laplace’s equation on a rectan-
gular solid, as well. See Exercise 10.

∗∗Actually, we graph w1 = −v1,2 − v2,1 to get a better picture.
††For a nice treatment, see Partial Differential Equations and Boundary-Value Problems
by Mark A. Pinsky.
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EIGENVALUES AND EIGENFUNCTIONS OF
THE LAPLACE OPERATOR

Note that, in both the heat and wave equations, if we began by separating
only time from the space variables, that is, if we had let

u(x, y, t) = T (t)Φ(x, y)

at the start, then we would be led to the Helmholtz PDE, with Dirichlet
boundary conditions,

∇2Φ+ λΦ = 0, 0 < x < a, 0 < y < b,

Φ(0, y) = Φ(a, y) = Φ(x, 0) = Φ(x, b) = 0.

Then, in solving this system, we actually found that the eigenvalues and eigen-
functions of the Laplace operator, subject to the Dirichlet condition, on the
rectangle 0 < x < a, 0 < y < b, are

λn,m =
n2π2

a2
+
m2π2

b2
,Φn,m(x, y) = sin

nπx

a
sin

mπy

b
.

We’ll say much more in Section 9.6.

Exercises 9.2

1. Helmholtz equation: When solving the two- (or three-) dimensional
heat and wave equations, we may choose to begin by separating time
from the space variables. Given the three-dimensional wave equation

utt = c2∇2u,

show that letting u(x, y, z, t) = Φ(x, y, z)T (t) leads to the Helmholtz
equation

∇2Φ + λ̃Φ = 0,

where λ̃ = λ/c and λ is the separation constant.

2. Work through the derivation of the general solution of the two-dimensional
wave equation.

3. Find the general solution of the two-dimensional heat equation ut = ∇2u
subject to the boundary conditions

a) u(0, y, t) = u(a, y, t) = uy(x, 0, t) = uy(x, b, t) = 0

b) ux(0, y, t) = ux(a, y, t) = u(x, 0, t) = u(x, b, t) = 0

c) ux(0, y, t) = ux(a, y, t) = uy(x, 0, t) = uy(x, b, t) = 0

d) u(0, y, t) = ux(a, y, t) = u(x, 0, t) = u(x, b, t) = 0
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4. Find the general solution of the two-dimensional wave equation utt =
∇2u subject to the boundary conditions

a) u(0, y, t) = u(a, y, t) = uy(x, 0, t) = u(x, b, t) = 0

b) ux(0, y, t) = ux(a, y, t) = u(x, 0, t) = u(x, b, t) = 0

5. a) Solve the two-dimensional heat IBVP

ut = ∇2u,

u(x, y, 0) = 2 + 5 cosπx cos πy,

ux(0, y, t) = ux(1, y, t) = uy(x, 0, t) = uy(x, 2, t) = 0.

What’s the steady state solution?

b) MATLAB: Plot the solution of part (a) for various values of t.

c) Solve the two-dimensional wave IBVP

utt = ∇2u,

u(x, 0) = 3 sin 4y − 5 cos 2x sin y,

ut(x, 0) = 7 cosx sin 3y,

ux(0, y, t) = ux(π, y, t) = u(x, 0, t) = u(x, π, t) = 0.

d) MATLAB: Plot the solution of part (b) for various values of t.

6. Compute the double Fourier sine series for f(x, y) on the rectangle 0 ≤
x ≤ π, 0 ≤ y ≤ π
a) f(x, y) = 1

b) f(x, y) =

⎧⎨
⎩

0, if x < y

1, if x ≥ y
c) f(x, y) = xy

d) MATLAB: Plot the truncated double Fourier series

(
N∑

n=1

M∑
m=1

)

for each function above, on the rectangle −π ≤ x ≤ 3π, −π ≤ y ≤
3π, for various values of N and M .

7. Show that any well-enough behaved function f(x, y) on 0 ≤ x ≤ π,
0 ≤ y ≤ π can be expanded into the following double Fourier series:

a) f(x, y) ∼
∞∑

m=1

c0,m
2 sinmy +

∞∑
n=1

∞∑
m=1

cn,m cosnx sinmy, where

cn,m =
4

π2

∫ π

0

∫ π

0

f(x, y) cosnx sinmy dydx,

n = 0, 1, 2, 3, . . . ;m = 1, 2, 3, . . . .
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b) f(x, y) ∼
∞∑

n=1

cn,0

2 sinnx+
∞∑

n=1

∞∑
m=1

cn,m sinnx cosmy, where

cn,m =
4

π2

∫ π

0

∫ π

0

f(x, y) sinnx cosmy dydx,

n = 1, 2, 3, . . . ;m = 0, 1, 2, 3, . . . .

c) f(x, y) ∼ c00
4 +

∞∑
m=1

c0,m
2 cosmy +

∞∑
n=1

cn,0

2 cosnx

+
∞∑

n=1

∞∑
m=1

cn,m cosnx cosmy, where

cn,m =
4

π2

∫ π

0

∫ π

0

f(x, y) cosnx cosmy dydx,

n = 0, 1, 2, . . . ;m = 0, 1, 2, . . . .

8. Show that the functions vn,m(x, y) = sin nπx
a sin mπy

b , n = 1, 2, 3, . . .;
m = 1, 2, 3, . . . are orthogonal on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤
b. Use this orthogonality to derive the formula for cn,m, the (n,m)th

coefficient in the double Fourier sine series, for a function f(x, y).

9. Use the results of Exercise 6 to solve the following IBVPs.

a) ut = ∇2u,
u(x, y, 0) = 1,
u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0.

b) utt = ∇2u,
u(x, y, 0) = xy,
ut(x, y, 0) = 1,
u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0.

c) MATLAB: Plot each (truncated) solution for various values of t.

10. Laplace’s equation on a rectangular solid: Here we solve the three-
dimensional Laplace equation on a rectangular solid.

a) First, we solve the Dirichlet problem where u ≡ 0 on the boundary,
except on the two faces z = constant. Specifically, show that the
solution of the problem

∇2u =uxx + uyy + uzz = 0, 0 < x < a, 0 < y < b, 0 < z < c,

u(x, y, 0) = f(x, y), u(x, y, c) = g(x, y),

u(x, 0, z) = u(x, b, z) = u(0, y, z) = u(a, y, z) = 0

is

u(x, y, z) =

∞∑
n=1

∞∑
m=1

sin
nπx

a
sin

mπy

b
[cn,m coshπαn,mz + dn,m sinhπαn,mz],



398 An Introduction to Partial Differential Equations with MATLAB R©

where

cn,m =
4

ab

∫ a

0

∫ b

0

f(x, y) sin
nπx

a
sin

mπy

b
dydx

and

dn,m = −cn,m coth παn,mc

+
4

ab sinhπαn,mc

∫ a

0

∫ b

0

g(x, y) sin
nπx

a
sin

mπy

b
dydx,

n = 1, 2, 3, . . . ;m = 1, 2, 3, . . . .

Here, αn,m =
√

n2

a2 + m2

b2 , and coth is the hyperbolic cotangent,

cothx = cosh x
sinh x .

b) Without doing too much work, write down the solution to

∇2u =uxx + uyy + uzz = 0,

u(x, 0, z) = f(x, z), u(x, b, z) = g(x, z),

u(0, y, z) = u(a, y, z) = u(x, y, 0) = u(x, y, c) = 0.

c) Solve the Dirichlet problem

∇2u =uxx + uyy + uzz = 0,

u(x, y, 0) = 3 sinπx sin y, u(x, y, 2π) = 0,

u(x, 0, z) = 2 sin 4πx sin z, u(x, π, z) = 0,

u(0, y, z) = 0, u(1, y, z) = sin 3y sin 3z.

11. a) Calculate the first (lowest) nine frequencies, and draw the corre-
sponding nodal patterns, for the vibrating membrane modeled by
the PDE utt = uxx + uyy, subject to the boundary conditions

u(0, y, t) = u(π, y, t) = uy(x, 0, t) = uy(x, π, t) = 0.

b) MATLAB: Plot the corresponding modes from part (a).

c) In general, what seems to be the relationship between the pair
(n,m) and the corresponding number of nodal lines? (To be con-
sistent, if u ≡ 0 along an edge, we call the edge a nodal line.)
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12. Solve the diffusion-convection IBVP

ut =uxx + uyy + 2αux + 2βuy − ku,
u(x, y, 0) = f(x, y),

u(0, y, t) = u(a, y, t) = u(x, 0, t) = u(x, b, t) = 0.

Here, α, β and k are nonnegative constants.

13. a) Show formally that any well-enough behaved function f(x, y, z), on
the rectangular solid 0 ≤ x ≤ π, 0 ≤ y ≤ π, 0 ≤ z ≤ π, can be
expanded into the triple Fourier series

∞∑
n=1

∞∑
m=1

∞∑
p=1

cn,m,p sinnx sinmy sin pz,

where

cn,m,p =
8

π3

∫ π

0

∫ π

0

∫ π

0

f(x, y, z) sinnx sinmy sin pz dzdydx,

n = 1, 2, 3, . . . ;m = 1, 2, 3, . . . ; p = 1, 2, 3, . . . .

b) Solve the three-dimensional heat IBVP

ut = uxx + uyy + uzz, 0 < x < π, 0 < y < π, 0 < z < π,

u(x, y, z, 0) = f(x, y, z),

u(x, y, 0) = u(x, y, π) = u(x, 0, z) = u(x, π, z)

= u(0, y, z) = u(π, y, z) = 0.

14. a) Given f(x, y) on 0 ≤ x ≤ a, 0 ≤ y ≤ b, perform a change to new
variables ξ, η so that

F (ξ, η) = f(x(ξ), y(η))

on the square 0 ≤ ξ ≤ π, 0 ≤ η ≤ π.
b) Compute the double Fourier sine series for F (ξ, η), then change

back to the variables x, y and show that we have the same coeffi-
cients cn,m that were derived in this section.

c) Use the same idea on each of the double Fourier series in Exercise
7 to calculate each kind of double Fourier series for a function on
the more general domain 0 ≤ x ≤ a, 0 ≤ y ≤ b. Thus, without
loss of generality, we may assume in any of these double Fourier
series problems that we have a function with domain 0 ≤ x ≤ π,
0 ≤ y ≤ π (similar to the one-variable case).

15. Given f(x, y) on 0 ≤ x ≤ π, 0 ≤ y ≤ π,
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a) Consider the function

g1(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f(x, y), if 0 ≤ x ≤ π, 0 ≤ y ≤ π,
f(−x,−y), if −π ≤ x < 0,−π ≤ y < 0,

−f(−x, y), if −π ≤ x < 0, 0 ≤ y ≤ π,
−f(x,−y), if 0 ≤ x ≤ π,−π ≤ y < 0.

i) What does the graph of z = g1(x, y) look like?

ii) Show that if we have

f(x, y) ∼
∞∑

n=1

∞∑
m=1

cn,m sinnx sinmy,

then this same series converges to g1(x, y) (except, possibly,
on the boundaries and at discontinuities). Compute the coef-
ficients cn,m in terms of the function g1.

This is the two-variable analog of the statement that the Fourier
series of an odd function is a pure sine series.

b) Similarly, construct a function g2(x, y) on −π ≤ x ≤ π, −π ≤ y ≤
π, for the series in Exercise 7a. Again, what are the coefficients, in
terms of g2?

c) Do the same, but for a function g3, for the series in Exercise 7b.

d) Do the same, but for a function g4, for the series in Exercise 7c.

Again, each of these is a special case of what is the general double
Fourier series for a function on −a ≤ x ≤ a, −b ≤ y ≤ b.

16. General double Fourier series: Given a function f(x, y) on −π ≤
x ≤ π, −π ≤ y ≤ π,
a) Find functions g1, g2, g3 and g4 which exhibit the symmetries in

Exercises 15a, b, c and d, respectively, and for which we have

f(x, y) = g1(x, y) + g2(x, y) + g3(x, y) + g4(x, y).

b) Use the series in Exercise 14 to show that we have

f(x, y) ∼ a0,0
4

+
1

2

∞∑
n=1

(an,0 cosnx+ a0,n cosny

+ b0,n sinny + cn,0 sinnx)

+

∞∑
n=1

∞∑
m=1

(an,m cosnx cosmy + bn,m cosnx sinmy

+ cn,m sinnx cosmy + dn,m sinnx sinmy),
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where

an,m =
4

π2

∫ π

0

∫ π

0

f(x, y) cosnx cosmy dydx,

n = 0, 1, 2, . . . ;m = 0, 1, 2, . . . ;

bn,m =
4

π2

∫ π

0

∫ π

0

f(x, y) cosnx sinmy dydx,

n = 0, 1, 2, . . . ;m = 1, 2, . . . ;

cn,m =
4

π2

∫ π

0

∫ π

0

f(x, y) sinnx cosmy dydx,

n = 1, 2, 3, . . . ;m = 0, 1, 2, . . . ;

and

dn,m =
4

π2

∫ π

0

∫ π

0

f(x, y) sinnx sinmy dydx,

m = 1, 2, 3, . . . ;m = 1, 2, . . . .

17. Prove that if f1(x, y) and f2(x, y) are linearly independent on a region,
then so are

g1(x, y) = f1(x, y) + f2(x, y),

g2(x, y) = f1(x, y)− f2(x, y).
More generally, for which choices of constants a, b, c and d will

h1(x, y) = af1(x, y) + bf2(x, y),

h2(x, y) = cf1(x, y) + df2(x, y)

be linearly independent?

18. Nonhomogeneous equations:

a) Proceed as in Section 4.4 to solve the heat equation problem with
source term

ut = ∇2u+ sin 2x sin 3y, 0 < x < π, 0 < y < π, t > 0,

u(x, y, 0) = sin 4x sin 7y,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0.

b) MATLAB: Plot the solution of part (a) for various values of t.

c) More generally, solve the problem

ut = ∇2u+ F (x, y, t),

u(x, y, 0) = 0,

u(x, 0, t) = u(x, π, t) = u(0, y, t) = u(π, y, t) = 0.



402 An Introduction to Partial Differential Equations with MATLAB R©

You may assume that F can be expanded in a double Fourier series

F (x, y, t) =

∞∑
n=1

∞∑
m=1

Fn,m(t) sinnx sinmy.

9.3 Laplace’s Equation in Polar Coordinates:
Poisson’s Integral Formula

In order to solve these problems on domains which have circular boundaries,
we must resort to polar coordinates. Let us then compute the Laplacian in
polar coordinates (which, in fact, we already did in Exercise 7 of Section 2.5).
So, given

∇2u = uxx + uyy,

we let

x = x(r, θ) = r cos θ,

y = y(r, θ) = r sin θ.

It turns out to be easier to do this backwards, that is, write

ur = uxxr + uyyr

= ux cos θ + uy sin θ

and

uθ = uxxθ + uyyθ

= −uxr sin θ + uyr cos θ.

Then, solving for ux and uy, we have

ux = ur cos θ − 1

r
uθ sin θ,

uy =
1

r
uθ cos θ + ur sin θ.
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It follows that

uxx =
∂

∂x
(ux) =

∂

∂x

(
ur cos θ − 1

r
uθ sin θ

)

=

(
ur cos θ − 1

r
uθ sin θ

)
r

cos θ

− 1

r

(
ur cos θ − 1

r
uθ sin θ

)
θ

sin θ

= urr cos
2 θ +

1

r2
uθθ sin

2 θ − 2

r
urθ sin θ cos θ

+
1

r
ur sin

2 θ +
2

r2
uθ sin θ cos θ

and, similarly,

uyy = urr sin
2 θ +

1

r2
uθθ cos

2 θ +
2

r
urθ sin θ cos θ

+
1

r
ur cos

2 θ − 2

r2
uθ sin θ cos θ.

Adding, we have

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ.

Now we may solve the two-dimensional heat, wave and Laplace equations
on a disk. We begin with Laplace, the least involved.

LAPLACE’S EQUATION ON A DISK

Here we solve the Laplace equation, on the disk 0 ≤ r ≤ a, with a Dirich-
let boundary condition—the so-called interior Dirichlet problem—leaving
other types of boundary conditions (as well as somewhat more complicated
geometries) for the exercises. So we must solve

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < a,−∞ < θ <∞,

u(a, θ) = f(θ), −∞ < θ <∞.
However, the change to polars necessitates further restrictions. First, since
the point (r, θ) is the same as the point (r, θ + 2π), we must require

u(r, θ + 2π) = u(r, θ)

for each θ, and each r in 0 < r < a. Also, why have we been avoiding r = 0?
From our experience with polar coordinates, we see that it’s possible to have
equations with solutions that are unbounded at the origin. These solutions
certainly are not continuous, so we must require

lim
r→0

u(r, θ) = L <∞, −∞ < θ <∞,
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or, in short,
u(0, θ) <∞.

Much of the separation of variables work already was done in Exercises 11
and 29, Section 1.6. There, we separated the ODEs and got

r2R′′ + rR′ − λR = 0, Θ′′ + λΘ = 0.

Here, we also need to separate the auxiliary conditions:

u(r, θ + 2π) = u(r, θ)⇒ R(r)Θ(θ + 2π) = R(r)Θ(θ)

⇒ Θ(θ + 2π) = Θ(θ), −∞ < θ <∞,
and

lim
r→0

u(r, θ) = lim
r→0

R(r)Θ(θ) = Θ(θ) lim
r→0

R(r) (why?)

<∞⇒ lim
r→0

R(r) <∞ (again, why?).

Again, in short, we write R(0) <∞.
We also showed that the eigenvalues and eigenfunctions of the Θ-problem

Θ′′ + λΘ = 0,

Θ(θ + 2π) = Θ(θ), for all θ,

are

λn = n2, n = 0, 1, 2, . . . ; Θ0(θ) = c0,Θn(θ) = cn cosnθ + dn sinnθ,

n = 1, 2, 3, . . . .

Then, from our earlier solution of the R-equation, we have

λ0 = 0, r2R′′ + rR′ = 0⇒ R0(r) = a0 + b0 ln r,

λn = n2, r2R′′ + rR′ − n2R = 0⇒ Rn(r) = anr
n + bnr

−n,

n = 1, 2, 3, . . . .

However, the condition lim
r→0+

R(r) = 0 forces bn = 0, n = 0, 1, 2, . . . . So our

surviving product solutions are

u0(r, θ) = c0,

un(r, θ) = rn(cn cosnθ + dn sinnθ), n = 1, 2, 3, . . . ,

and, thus, our general solution is

u(r, θ) = c0 +

∞∑
n=1

rn(cn cosnθ + dn sinnθ).
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Finally, we apply the Dirichlet condition:

u(a, θ) = f(θ) = c0 +

∞∑
n=1

an(cn cosnθ + dn sinnθ).

First, it follows that we must have started with an f of period 2π, or the
original problem would not have been well-posed (why?). Then, we may
restrict ourselves to the interval −π ≤ θ ≤ π, in which case it is clear that the
series must be the Fourier series of f on −π ≤ θ ≤ π, that is, that we must
have

c0 =
a0
2
, ancn = an and andn = bn, n = 1, 2, 3, . . . ,

where

an =
1

π

∫ 2π

0

f(θ) cosnθ dθ, ‡‡ n = 0, 1, 2, . . . ,

and

bn =
1

π

∫ 2π

0

f(θ) sinnθ dθ, n = 1, 2, 3, . . . .

Our solution, then, is

u(r, θ) =
a0
2

+

∞∑
n=1

( r
a

)n

(an cosnθ + bn sinnθ).

(By the way, we could, instead, have used the equivalence of our θ-problem
with the periodic Sturm–Liouville problem

Θ′′ + λΘ = 0, −π < θ < π

Θ(−π) = Θ(π)

Θ′(−π) = Θ′(π)

—see Exercise 19, Section 1.7 and Example 1, Section 8.2—in order to set the
problem on −π ≤ θ ≤ π from the start.)

We may, instead, have a Neumann or a Robin boundary condition (or any
combination of boundary conditions, of course!). We leave these for the exer-
cises, except that we must mention that the Neumann problem here, as when
we solved it in Chapter 4, requires a consistency condition. Specifically, if our
boundary condition is of the form

ur(a, θ) = f(θ),

‡‡Why may we integrate on 0 ≤ θ ≤ 2π instead of −π ≤ θ ≤ π? Actually, we need to be
careful—see Exercise 19h.
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then we will find that we must have

∫ 2π

0

f(θ)dθ =

∫ π

−π

f(θ)dθ = 0.

As before, all this says is that there is no net flux across the boundary. More
generally, as we saw in Exercise 14c, Section 4.3, we must have

∮
C

∂u

∂n
ds = 0,

where C is the boundary curve of the region in question. This sometimes is
called the theorem of the vanishing flux.

Interestingly, it turns out that we may rewrite the solution to the interior
Dirichlet problem as an integral. Specifically, the solution is given by the
famous Poisson’s integral formula

u(r, θ) =
a2 − r2

2π

∫ 2π

0

f(φ)

a2 − 2ar cos(θ − φ) + r2
dφ,

which we prove, after a few remarks.
Poisson’s formula tells us that the value of u at any point in the interior

of the disk is a weighted average of its values on the boundary; the Poisson
kernel

a2 − r2
a2 − 2ar cos(θ − φ) + r2

tells us how to weight each of the boundary values. In fact, the denominator is
just the square of the distance between the point (r, θ) and each point (a, φ)
on the boundary (see Figure 9.10 and Exercise 13). It’s the law of cosines
again, of course.

Also, if we let r = 0 in Poisson’s integral formula, we have the result that

u(0, θ) =
1

2π

∫ 2π

0

f(θ)dθ,

that is, that the value of u at the center is just the average of its values along
the boundary. It is not hard to translate this to any disk in the x-y plane. In
other words, we have that the value of any harmonic function at the center of
a disk is equal to the average of its values on the boundary. This is the Mean
Value Property for harmonic functions.

We can say even more. Suppose u is a nonconstant harmonic function on
any well-enough behaved closed region R, with nonempty interior in the x-y
plane.∗ Then, from the Extreme Value Theorem, u attains a maximum value
at some point in the region.

∗To be precise, u is harmonic on the region’s interior.
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a

r φ−θ

θ−φ

θ

φ

(r,  ) 

(a,  )

2 2 a  +r  −2ar cos(       )

FIGURE 9.10
The geometry of Poisson’s integral formula.

Where? Let P ∈ int(R). Then we may draw a circle, centered at P , which
lies within R; thus, u(P ) = average of u along this circle. Since u is not
constant, it follows that there must be a point Q on the circle such that
u(Q) > u(P ) (why?). In other words, we have shown that the maximum
value of u cannot occur at any point in the interval of R. This is the famous
Maximum Principle for harmonic functions, that the maximum must
occur on the boundary of R. (For a detailed proof, see Theorem C.5 in
Appendix C.)

PROOF of Poisson’s Integral Formula:

We need to prove that

a0
2

+

∞∑
n=1

( r
a

)n

(an cosnθ + bn sinnθ)

=
a2 − r2

2π

∫ 2π

0

f(θ)

a2 − 2ar cos(θ − φ) + r2
dφ,

where

an =
1

π

∫ 2π

0

f(θ) cosnθ dθ, n = 0, 1, 2, . . . ,

bn =
1

π

∫ 2π

0

f(θ) sinnθ dθ, n = 1, 2, 3, . . . ,
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and we proceed much as we did in Section 3.5. As then, we begin by writing

a0
2

+

∞∑
n=1

( r
a

)n

(an cosnθ + bn sinnθ)

=
1

2π

∫ 2π

0

[
1 + 2

∞∑
n=1

( r
a

)n

(cosnθ cosnφ+ sinnθ sinnφ)

]
f(φ)dφ

=
1

2π

∫ 2π

0

[
1 + 2

∞∑
n=1

( r
a

)n

cosn(θ − φ)
]
f(φ)dφ

=
1

2π

∫ 2π

0

[
1 +

∞∑
n=1

( r
a

)n

(ein(θ−φ) + e−in(θ−φ))

]
f(φ)dφ

=
1

2π

∫ 2π

0

[
1 +

rei(θ−φ)

a− rei(θ−φ)
+

re−in(θ−φ)

a− re−i(θ−φ)

]
f(φ)dφ

=
1

2π

∫ 2π

0

a2 − r2
a2 − 2ar cos(θ − φ) + r2

f(φ)dφ

(see Exercise 15a).

Exercises 9.3

1. Evaluate in both Cartesian coordinates and polar coordinates—make
sure you get the same answer both ways.

a) ∇2(xy)

b) ∇2(2x3 + 3x2y − y2)
2. Evaluate

a) ∇2(y2(x2 + y2)4)

b) ∇2(rn), n = 1, 2, 3, . . .

c) ∇2(cosnθ), n = 1, 2, 3, . . .

3. a) Use symmetry to solve the interior Dirichlet problem

∇2u = 0, 0 < r < 2, −∞ < θ <∞,
u(2, θ) = 4.

b) Use symmetry to solve the Dirichlet problem on an annulus,

∇2u = 0, 2 < r < 5,−∞ < θ <∞,
u(2, θ) = 4,

u(5, θ) = −1.
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c) Use symmetry to solve the exterior Dirichlet problem

∇2u = 0, r > 2,−∞ < θ <∞,
u(2, θ) = 4.

d) Show that the function u = 4 + r
2 cos θ − 2

r cos θ also satisfies the
problem in part (c). Therefore, we must be very careful when
solving exterior problems. Really, it turns out that we need only
specify the additional requirement that u be bounded as r → ∞.
However, note that there is no solution if we stipulate the condition
that u→ 0 as r →∞!

4. More generally, solve the exterior Dirichlet problem

∇2u = 0, r > a,−∞ < θ <∞,
u(a, θ) = f(θ),

u bounded as r →∞.

5. More generally, solve the Dirichlet problem on an annulus,

∇2u = 0, a < r < b,−∞ < θ <∞,
u(a, θ) = f1(θ),

u(b, θ) = f2(θ).

6. Solve the interior Neumann problem

∇2u = 0, 0 < r < a,−∞ < θ <∞,
ur(a, θ) = g(θ).

What consistency condition must g satisfy, and where in the solution of
the problem does the need for this condition arise?

7. Solve the interior Robin problem

∇2u = 0, 0 < r < a,−∞ < θ <∞,
ur(a, θ) + hu(a, θ) = f(θ), h constant.

Need f satisfy a consistency condition? If so, what is it?

8. a) Solve the general interior Dirichlet problem on a wedge,

∇2u = 0, 0 < r < a, 0 < θ < α < 2π,

u(a, θ) = f(θ),

u(r, 0) = u(r, α) = 0.
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b) Solve the general interior Neumann problem on a wedge,

∇2u = 0, 0 < r < a, 0 < θ < α < 2π,

ur(a, θ) = g(θ),

u(r, 0) = u(r, α) = 0.

Need g satisfy a consistency condition? If so, what is it?

9. Helmholtz equation: Solve the Helmholtz boundary-value problem

∇2u+ k2u = 0, 0 < r < a, k constant,

u(a, θ) = f(θ).

10. Explain why the problem

∇2u = 0, 0 < r < a,−∞ < θ <∞,
ur(a, θ) = 1

doesn’t make sense, physically.

11. If u is continuous on r ≤ a and harmonic on r < a, and u(a, θ) =
2 + 4 sin θ,

a) Find the maximum and minimum values of u on the disk r ≤ a.
b) Find the value of u at the origin.

12. a) Why does the fact that∇2u = 0 suggest that a harmonic function u
cannot attain a maximum or minimum on the interior of a region?

b) Assuming that the maximum principle for harmonic functions is
true, state and prove the Minimum Principle for harmonic
functions.

c) Liouville’s Theorem: Prove that a function u �≡ constant which
is harmonic on the x-y plane cannot be bounded above or below.

13. a) Refer to Figure 9.10, where L is the distance between the point
(r, θ) and any boundary point (a, φ). Show that L2 is the denomi-
nator of the Poisson kernel.

b) Show that Poisson’s integral formula can be written in vector form
as

u(rrr) =
a2 − |rrr|2

2πa

∮
C

u(r′r′r′)
|rrr − r′r′r′|2 ds,

where C, of course, is the circle r = a.

14. a) Show formally that Poisson’s integral formula does satisfy Laplace’s
equation.
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b) Show that

a2 − r2
2π

∫ 2π

0

1

a2 − 2ar cos(θ − φ) + r2
dφ = 1

for any choice of r, θ and a.

15. a) Justify the steps in the derivation of Poisson’s integral formula.

b) Show that the solution of the exterior Dirichlet problem (Exercise
4) can be written

u(r, θ) =
r2 − a2

2π

∫ 2π

0

f(φ)

a2 − 2ar cos(θ − φ) + r2
dφ,

and, thus, show that if u(r, θ, a) is the solution of the interior
Dirichlet problem on the disk r < a, then the solution of the ex-
terior Dirichlet, with the same boundary condition on r = a, is
u(a, θ, r).

16. Poisson’s integral formula for the interior Neumann problem:

a) From our proof of Poisson’s integral formula, we know that

1

2
+

∞∑
n=1

( r
a

)n

cosnα =
1

2

a2 − r2
a2 − 2ar cos(θ − φ) + r2

.

Use this to show that

∞∑
n=1

rn

n
cosnα = −1

2
ln(1 + r2 − 2r cosα).

b) Generalizing part (a), show that the solution of the interior Neu-
mann problem (Exercise 6) can be written as

u(r, θ) = c− a

2π

∫ 2π

0

f(φ) ln[a2 − 2ar cos(θ − φ) + r2]dφ,

where c is an arbitrary constant.

17. Electrostatics: zzz-independent Dirichlet problem in a cylinder.
Suppose we have an infinite cylinder of radius a with the potential dis-
tributed uniformly along its length, so that u(a, θ, z) = f(θ). If the
resulting potential is u(r, θ, z), determine the electric field EEE = −∇u at
any point, whether inside or outside the cylinder.
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18. Gravitation: Radially symmetric Dirichlet problem in spherical
coordinates. We showed in Exercise 2, Section 7.1 (and we show again
in Exercise 1, Section 9.5) that the Laplacian in spherical coordinates is

∇2u = uρρ +
2

ρ
uρ +

1

ρ
(uφφ + uφ cotφ+ uθθ cos

2 φ)

=
1

ρ2

[
(ρ2uρ)ρ +

1

sinφ
(uφ sinφ)φ +

1

sin2 φ
uθθ

]
.

Now, suppose that matter is uniformly distributed on the surface of the
sphere ρ = a, so that u(a, θ, φ) = constant.

a) Show that the gravitational field FFF = ∇u = 000 inside the sphere.

b) Show that, for points outside the sphere, the radius of the sphere is
irrelevant (and, in fact, it turns out that the gravitational field out-
side the sphere is the same as if all of the matter were concentrated
at the origin).

19. Equipotential curves and surfaces: Curves (in two dimensions) and
surfaces (in three dimensions) along which a potential function is con-
stant are called, not surprisingly, equipotential curves and surfaces.
In the case of steady state heat problems, these curves and surfaces are
referred to as isotherms (as you may have seen on weather maps).

In Parts a–c, describe the equipotential curves for a harmonic function
on the unit disk subject to the given boundary condition.

a) u(1, θ) = 3 cos θ

b) u(1, θ) = sin 2θ

c) u(1, θ) = 2− cos 2θ

We were fortunate that the initial conditions were so easy to deal with,
of course. What if things are more complicated? There are identities
that we can establish, the use of which will enable us to write many of
our series solutions in closed form. To begin with,

d) Show that the Maclaurin series for f(x) = ln(1 + x) is

ln(1 + x) =
∞∑

n=1

(−1)n+1xn

n
.

What’s its interval of convergence?

Next, the complex logarithm function is defined so that it’s consistent
with the real function lnx. In particular, it satisfies

log(1 + z) =

∞∑
n=1

(−1)n+1zn

n
for |z| < 1.
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(Remember that the modulus of z = x + iy is defined to be |x + iy| =√
x2 + y2.)

We need now to define the polar form of a complex number; however,
this form entails nothing more than writing the number in polar coor-
dinates. Thus, we have

z = x+ iy = r cos θ + ir sin θ,

where r = |z| and θ = tan−1 y
x (and we must take care when handling

the tan−1, of course). Thus,

z = reiθ (why?).

Finally, the complex logarithm also satisfies the other rules of logs (to
be precise, we define it so that it does). So,

log z = log reiθ = log r + iθ log e

= ln r + iθ.

We would like to substitute z = reiθ into the Maclaurin series above to
see what “pops out.”

e) Show that

log(1 + riθ) =
1

2
ln(1 + 2r cos θ + r2) + i tan−1

(
r sin θ

1 + r cos θ

)
.

f) Now substitute z = reiθ into the Maclaurin series and, taking real
and imaginary parts, show that

∞∑
n=1

(−1)n+1

n
rn cosnθ =

1

2
ln(1 + 2r cos θ + r2),

∞∑
n=1

(−1)n+1

n
rn sinnθ = tan−1

(
r sin θ

1 + r cos θ

)
.

g) Show, further, that

∞∑
n=1

1

n
rn cosnθ =

1

2
ln(1− 2r cos θ + r2)

∞∑
n=1

1

n
rn sinnθ = tan−1

(
r sin θ

1− r cos θ
)
.

After all that, solve, and describe the equipotential curves for the
problem ∇2u = 0, 0 < r < 1, subject to the boundary conditions
in parts (h) and (i).
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h) u(1, θ) = θ,−π < θ ≤ π

i) u(1, θ) =

⎧⎨
⎩

1 0 ≤ θ < π,

0, π ≤ θ < 2π

j) Finally, show that the function

f(r, θ) =
1− r2
2π

∫ 2π

0

sinφ

1− 2r cos(θ − φ) + r2
dφ, |r| < 1,

is constant along each line y = constant, while

f(r, θ) =
1− r2
2π

∫ 2π

0

cosφ

1− 2r cos(θ − φ) + r2
dφ, |r| < 1,

is constant along each line x = constant.

9.4 The Wave and Heat Equations in Polar Coordinates

ΘΘΘ-INDEPENDENT WAVE EQUATION ON A DISK

The method of solution for the heat equation in polar coordinates is almost
identical to that of the wave equation, so we leave the former for the exercises.
In each case, the actual solution is fairly complicated, so we begin by consid-
ering the special case of radially symmetric, or θ-independent, vibrations of a
circular drumhead. Our problem, then, is

utt = ∇2u, 0 < r < 1,−∞ < θ <∞, t > 0

with initial shape and velocity

u(r, θ, 0) = f(r),

ut(r, θ, 0) = 0,

and boundary condition

u(1, θ, t) = 0.

As usual, we have the auxiliary condition

lim
r→0+

u(r, θ, t) <∞,

and it should be clear from the initial and boundary condition that our solu-
tions will not depend on θ.
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So we begin by writing

utt = urr +
1

r
ur +

1

r2
uθθ

= urr +
1

r
ur,

and, separating variables, we arrive at

rR′′ +R′ + λrR = 0, T ′′ + λT = 0

R(1) = 0, R(0) <∞.
We solve the R eigenvalue problem as always.

Case 1: λ = 0
Here we have the Cauchy–Euler equation

rR′′ +R′ = 0

with general solution
R(r) = c1 + c2 ln r.

Then, the boundary conditions imply that c1 = c2 = 0 (why?). So λ = 0 is
not an eigenvalue.

Case 2: λ < 0, λ = −k2(k > 0)
Now we solve

rR′′ +R′ − k2rR = 0.

We could solve this equation using the method of Frobenius but, instead, we
proceed as in Exercise 9, Section 7.5. So, first we multiply by r, then make
the substitution x = kr, to arrive at the modified Bessel’s equation of order
0,

x2R′′ + xR′ − x2R = 0.

Thus, the general solution is

R(r) = c1I0(kr) + c2K0(kr),

where, of course, I0 andK0 are themodified Bessel functions of order 0 . Then,
since K0 is unbounded at the origin, we must have c2 = 0 and, since I0(x) > 0
for x > 0, we also have c1 = 0. Then, there are no negative eigenvalues.

Case 3: λ > 0, λ = k2(k > 0)
Finally, we have the ODE

rR′′ +R′ + k2rR = 0.

Again, we multiply by r and let x = kr. This time, we get Bessel’s equation
of order 0,

x2y′′ + xy′ + x2y = 0,
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so our general solution is

R(r) = c1J0(kr) + c2Y0(kr).

Here, J0 and Y0 are, of course, Bessel functions of order 0. Since Y0 is un-
bounded as r → 0+, we have c2 = 0. Then, the boundary condition at the
edge gives us

c1J0(k) = 0.

This implies that c1 = 0 unless k is a zero of J0. Remembering that J0 has
infinitely many positive roots k1, k2, . . .→∞, we see that the eigenvalues are

λn = k2n, n = 1, 2, 3, . . . ,

with corresponding eigenfunctions

Rn(r) = J0(knr), n = 1, 2, 3, . . . .

Back to the T -equation, we have

T ′′ + k2nT = 0

with general solution

Tn(t) = cn cos knt+ dn sin knt.

Therefore, we have the product solutions

un(r, θ, t) = Rn(r)Tn(t)

= J0(knr)(cn cos knt+ dn sin knt)

and, thus, the general solution

u(r, θ, t) =

∞∑
n=1

un(r, θ, t)

=

∞∑
n=1

J0(knr)(cn cos knt+ dn sin knt).

Finally, we apply the initial conditions:

u(r, θ, 0) = f(r) =

∞∑
n=1

cnJ0(knr),

and this just says that the series is a Fourier–Bessel series for f(r) on 0 ≤ r ≤ 1
(see Exercise 3c in Section 8.5). Similarly,

ut(r, θ, 0) = 0 =

∞∑
n=1

dnknJ0(knr),



PDEs in Higher Dimensions 417

so we have dn = 0, n = 1, 2, 3, . . ., and our final solution is

u(r, θ, t) =

∞∑
n=1

cnJ0(knr) cos knt,

where

cn =
2

J2
1 (kn)

∫ 1

0

rf(r)J0(knr)dr.

As with the vibrating string and rectangular membrane, we may look at
the individual modes of vibration

Rn(r) = J0(knr), n = 1, 2, 3, . . . ,

as well as their nodal patterns. The first columns of Figures 9.11 and 9.12
show, respectively, the first three vibration modes and corresponding nodal
lines.

Before moving on, it is interesting to note that, although each product
solution un is periodic, the infinite series u is not periodic! (Why is this the
case?)

GENERAL WAVE EQUATION ON A DISK

Okay, now that we’re finished with our warmup problem, let’s solve the prob-
lem of the vibrating circular drumhead in its full generality. So we have

utt = c2∇2u = c2
(
urr +

1

r
ur +

1

r2
uθθ

)
,

0 < r < a,−∞ < θ <∞, t > 0,

u(r, θ, 0) = f(r, θ),

ut(r, θ, 0) = g(r, θ),

u(a, θ, t) = 0.

As with Laplace, we have the auxiliary condition

u(θ + 2π) = u(θ), lim
r→0+

u(r, θ) <∞.

Separating variables, we have

r2R′′ + rR′ + (λr2 − γ)R = 0, Θ′′ + γΘ = 0, T ′′ + c2λT = 0,

along with the conditions

R(a) = 0, R(0) <∞ and Θ(θ + 2π) = Θ(θ).

As before, the Θ-equation implies that we have

γn = n2, Θ0(0) = c0,Θn(θ) = cn cosnθ + dn sinnθ, n = 0, 1, 2, . . . .
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Then, the R-equation becomes

r2R′′ + rR′ + (λr2 − n2)R = 0,

R(a) = 0, R(0) <∞.
Again, we solve the R eigenvalue problem.

Case 1: λ = 0
Here we have the Cauchy–Euler equation

r2R′′ + rR′ − n2R = 0

for each n = 0, 1, 2, . . . . For n = 0, the general solution is

R(r) = c1 + c2 ln r,

and the boundary conditions imply that c1 = c2 = 0.
For n �= 0,

R(r) = c1r
n + c2r

−n.

Again, the boundary conditions lead to c1 = c2 = 0. Thus, λ = 0 is not an
eigenvalue, for any choice of n.

Case 2: λ < 0, λ = −k2(k > 0)
We solve here

r2R′′ + rR′ − (k2r2 + n2)R = 0.

As before, the change of variable x = kr turns this into the modified Bessel’s
equation of order n,

x2y′′ + xy′ − (x2 + n2)y = 0.

Thus, the general solution is

R(r) = c1In(kr) + c2Kn(kr),

where In and Kn are the modified Bessel functions of order n. Since Kn is
unbounded as r→ 0, we must have c2 = 0 and, since In(x) > 0 for x > 0, we
must also have c1 = 0. Thus, there are no negative eigenvalues for any choice
of n.

Case 3: λ > 0, λ = k2(k > 0)
Now we have the ODE

r2R′′ + rR′ + (k2r2 − n2)R = 0.

Again, we perform the change of variable x = kr, the result being Bessel’s
equation of order n,

x2y′′ + xy′ + (x2 − n2)y = 0.
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The general solution, of course, is

R(r) = c1Jn(kr) + c2Yn(kr),

where Jn and Yn are Bessel functions of order n. Since Yn is unbounded as
r → 0, we have c0 = 0. Then, the boundary condition at r = a gives us

R(a) = c1Jn(ka) = 0.

This implies that c1 = 0 unless ka is a zero of the Bessel function Jn. Re-
membering that each Bessel function Jn has infinitely many positive zeros
xn,m, m = 1, 2, 3, . . . (with xn,m →∞), we see that the eigenvalues are

λn,m = (kn,m)2 =
(xn,m

a

)2

, n = 0, 1, 2, . . . ;m = 1, 2, 3, . . . ,

with corresponding eigenfunctions

Rn,m(r) = Jn

(xn,mr
a

)
, n = 0, 1, 2, . . . ;m = 1, 2, 3, . . . .

Finally, we solve the T -equation

T ′′ +
c2x2n,m
a2

T = 0

to get

Tn,m(t) = cn,m cos

(
cxn,mt

a

)
+ dn,m sin

(
cxn,mt

a

)
.

Putting everything together, we have, for each pair n,m, the product solution

un,m(r, θ, t) = Jn

(xn,mr
a

)
(Cn cosnθ +Dn sinnθ)

·
[
cn,m cos

(
cxn,mt

a

)
+ dn,m sin

(
cxn,mt

a

)]

and, thus, our general solution is

u(r, θ, t) =

∞∑
n=0

∞∑
m=1

un,m(r, θ, t).

To determine the constants we must, of course, apply the initial conditions.
First,

u(r, θ, 0) = f(r, θ) =

∞∑
n=0

∞∑
m=1

cn,mJn

(xn,mr
a

)
(Cn cosnθ +Dn sinnθ),

0 ≤ r ≤ a,−π ≤ θ ≤ π.
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This means that the series is just a double Fourier series for f (where one of
the series is actually a Fourier–Bessel series—again, see Section 8.5). In fact,
proceeding nonrigorously, we can rewrite the equation as

f(r, θ) =

∞∑
n=1

C0c0,mJ0

(x0,mr
a

)
+

∞∑
n=1

{[
Cn

∞∑
n=1

cn,mJn

(xn,mr
a

)]
cosnθ

+

[
Dn

∞∑
m=1

cn,mJn

(xn,mr
a

)]
sinnθ

}
,

and we see that the series is just the Fourier series in θ, for each (fixed) r, for
f(r, θ) on −π ≤ θ ≤ π. Therefore, for the Fourier coefficients an, bn, we have

a0
2

= C0

∞∑
m=1

c0,mJ0

(x0,mr
a

)
=

1

2π

∫ π

−π

f(r, θ)dθ,

an = Cn

∞∑
m=1

cn,mJn

(xn,mr
a

)
=

1

π

∫ π

−π

f(r, θ) cosnθ dθ,

bn = Dn

∞∑
n=1

cn,mJn

(xn,mr
a

)
=

1

π

∫ π

−π

f(r, θ) sinnθ dθ, 0 ≤ r ≤ a.

In turn, each series is a Fourier–Bessel series for the corresponding function
of r on the right.

As for the initial velocity, we have, again,

ut(r, θ, 0) = g(r, θ),

which leads to

cC0

∞∑
m=1

d0,mX0,mJ0

(x0,mr
a

)
=

1

2π

∫ π

−π

g(r, θ)dθ,

cCn

∞∑
m=1

dn,mxn,mJn

(xn,mr
a

)
=

1

π

∫ π

−π

g(r, θ) cosnθ dθ,

cDn

∞∑
m=1

dn,mxn,mJn

(xn,mr
a

)
=

1

π

∫ π

−π

g(r, θ) sinnθ dθ

(see Exercises 3 and 5).
Phew! Now, remembering that we can write

Cn cosnθ +Dn sinnθ = C cosn(θ − θ1),

for constants C and θ1, we look at the vibration modes

vn,m(r, θ) = Jn(xn,m, r) cosnθ,
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where we have taken a = 1, each corresponding to the vibration frequency

νn,m =
cxn,m
2πa

=
cxn,m
2π

.

Figure 9.11 shows the modes for n = 0, 1, 2; m = 1, 2, 3, while Figure 9.12
gives the corresponding nodal patterns. (Again, c = 1.)

FIGURE 9.11
MATLAB graphs of the modes Vn,m = Jn(xn,mr) cosnθVn,m = Jn(xn,mr) cosnθVn,m = Jn(xn,mr) cosnθ for n = 0, 1, 2n = 0, 1, 2n = 0, 1, 2
and m = 1, 2, 3m = 1, 2, 3m = 1, 2, 3. Again, xn,mxn,mxn,m is the mthmthmth positive zero of JnJnJn.
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FIGURE 9.12
Nodal lines and signs for the modes in Figure 9.11.

∗Thanks to Udaak Z. George, University of Sussex, UK, for pointing out that this figure
was incorrect in the first edition, and for providing us with the correct MATLAB code.
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Exercises 9.4

1. Use the results of Exercise 3d, Section 8.5, to solve the vibrating drum
problem

utt = ∇2u, 0 < r < 1,−∞ < θ <∞, t > 0,

u(1, r, θ) = 0,

subject to the initial conditions

a) u(r, θ, 0) = 1− 2r2,
ut(r, θ, 0) = 0

b) u(r, θ, 0) = 0,
ut(r, θ, 0) = 1

c) u(r, θ, 0) = 2J0(k3r),
ut(r, θ, 0) = J0(k1r) − J0(k2r)

where kn is the nth positive zero of J0.

d) MATLAB: Plot the solutions (truncated, if necessary) in r-θ-u
space for various times t.

2. a) Solve the θ-independent heat equation on a disk,

ut = α2∇2u, 0 < r < 1,−∞ < θ <∞, t > 0,

u(r, θ, 0) = f(r),

u(1, θ, t) = 0.

What is the steady state temperature?

b) Do the same, but, instead, with the Neumann boundary condition

ur(1, θ, t) = 0.

(You’ll need to look at Exercise 9, Section 7.6.) What is the steady
state temperature? Explain, physically, why

h(t) =

∫ 2π

0

∫ 1

0

u(r, θ, t)rdrdθ

must be constant, and find its value, in terms of f .

3. a) Justify the expressions derived from the initial velocity g(r, θ) at
the end of this section.

b) Write down integrals representing the values of the products Cn

cn,m; Cndn,m; Dncn,m; and Dndn,m in the solution for the general
vibrating circular membrane problem, for the case a = 1.
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4. Solve the membrane problem

utt = c2∇2u, 0 < r < 1,−∞ < θ <∞, t > 0,

u(1, θ, t) = 0,

subject to initial conditions

a) u(r, θ, 0) = 5J4(x4,1r) cos 4θ − J2(x2,3r) sin 2θ,
ut(r, θ, 0) = 0

b) u(r, θ, 0) = J0(x0,1r),
ut(r, θ, 0) = J2(x2,1r) sin 2θ

c) MATLAB: Plot both solutions for various times t.

5. Heat equation on a circular wedge: Solve the heat equation on a
wedge

ut = ∇2u, 0 < r < 1, 0 < θ < α < 2π,

u(r, θ, 0) = f(θ),

u(1, θ, t) = u(r, 0, t) = u(r, α, t) = 0.

(The wave equation is solved similarly, of course.)

6. Electrostatics: θθθ-independent Dirichlet problem in a cylinder.
In Exercise 17 of the previous section, we considered z-independent so-
lutions of Laplace’s equation on an infinite cylinder. Now, instead, we
look at a finite cylinder, with θ-independent boundary conditions. Refer
to Figure 9.13 for Exercises 6 and 7.

a

u = 0
2

    u(a, θ, z) = g(θ, z) L

 u(r, θ, L) = h(r, θ)

u(r,   , 0) = f(r,   ) θ  θ

∇

FIGURE 9.13
General Dirichlet problem in a cylinder.
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a) Solve

∇2u = 0, 0 < r < 1, 0 < z < L,

u(r, θ, 0) = 0,

u(r, θ, L) = h(r),

u(1, θ, z) = 0.

b) Solve

∇2u = 0, 0 < r < 1, 0 < z < L,

u(r, θ, 0) = 0,

u(r, θ, L) = 0,

u(1, θ, z) = g(z).

(See Exercise 9, Section 7.5.)

c) Solve

∇2u = 0, 0 < r < 1, 0 < z < L,

u(r, θ, 0) = f(r),

u(r, θ, L) = 0,

u(1, θ, z) = 0.

d) Solve

∇2u = 0, 0 < r < 1, 0 < z < L,

u(r, θ, 0) = f(r),

u(r, θ, L) = h(r),

u(1, θ, z) = g(z).

7. General Dirichlet problem in a cylinder: Continuing the previous
exercise, we now solve Laplace’s equation in cylindrical coordinates with
general boundary conditions. (See Figure 9.13.)

a) Solve

∇2u = 0, 0 < r < 1, 0 < z < L,

u(r, θ, 0) = f(r, θ),

u(r, θ, L) = 0,

u(a, θ, z) = 0.

b) Solve

∇2u = 0, 0 < r < 1, 0 < z < L,

u(r, θ, 0) = 0,

u(r, θ, L) = 0,

u(a, θ, z) = g(θ, z).



PDEs in Higher Dimensions 425

(Hint: same as in Exercise 6b)

8. Radial vibrations of a ball: spherical coordinates. As we’ll see
in the following section, if a uniform solid sphere of radius 1 undergoes
vibrations in the radial direction, and if its boundary sphere is held in
place, then, if u = u(ρ, θ, φ, t) in spherical coordinates, u must satisfy

utt = c2∇2u = c2
(
uρρ +

2

ρ
uρ

)
, 0 < ρ < 1, t > 0,

u(ρ, θ, φ, 0) = f(ρ),

ut(ρ, θ, φ, 0) = g(ρ),

u(1, θ, φ, t) = 0.

a) Show that the PDE separates, via u = T (t)R(ρ), into the ODEs

R′′ +
2

ρ
R′ + λR = 0, T ′′ + λT = 0,

with boundary conditions

R(1) = 0, R(0) <∞.
b) As in Exercise 6b, Section 7.1, show that the substitution R(ρ) =

ρ−1/2y(ρ) turns the R-equation into

ρ2y′′ + ρy′ +
(
λρ2 − 1

4

)
y = 0,

y(1) = 0, lim
ρ→0+

ρ−1/2y(ρ) <∞.

c) Solve the problem.

9.5 Problems in Spherical Coordinates

Of course, when solving three-dimensional problems with cylindrical or spher-
ical boundaries, it only makes sense to switch to the corresponding type of
coordinates. Since we’ve dealt with cylindrical problems in the exercises, here
we concentrate on sphericals. (See Figure 9.14.)

Back in Exercise 2a of Section 7.1, we derived an expression for the Lapla-
cian in spherical coordinates:

∇2u =
1

ρ2

[
(ρ2uρ)ρ +

1

sinφ
(uφ sinφ)φ +

1

sin2 φ
uθθ

]
.∗

∗Warning: Again, we use θ for the polar angle (longitude) and φ for the angle “down”
from the vertical (latitude).
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(We provide a slicker derivation in Exercise 1.) So let’s begin by finding the
potential inside a sphere, given the potential on the boundary—the interior
Dirichlet problem for a ball. See Figure 9.15.

z

x

y

ρ

θ

φ

r

FIGURE 9.14
Spherical coordinates.

ΘΘΘ-INDEPENDENT DIRICHLET PROBLEM ON A BALL

For a warmup, we first solve the θ-independent problem

∇2u = 0, 0 < ρ < 1,

u(1, θ, φ) = f(φ).

So we have

(ρ2uρ)ρ +
1

sinφ
(uφ sinφ)φ = 0,

which, upon separation via u = R(ρ)Φ(φ), becomes

[ρ2R′(ρ)]′

R(ρ)
= − [Φ′(φ) sin φ]′

Φ(φ) sin φ
= −λ

or
[ρ2R′(ρ)]′ − λR(ρ) = 0

and
[Φ′(φ) sin φ]′ + λΦ(φ) sin φ = 0.

The change to sphericals also makes it necessary to stipulate that Φ be con-
tinuous at the poles, that is, at φ = 0 and φ = π; so, certainly, Φ must be
bounded as φ → 0+ and φ → π−. Now, the Φ-equation looks familiar—in
Exercise 2e, Section 7.1, we saw that the substitution x = cosφ gives us the
problem

[(1− x2)Φ′]′ + λΦ = 0, −1 < x < 1,

Φ(x) bounded as x→ −1+ and as x→ 1−,
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1

 

2Δ

(θ, φ)u(1,   ,   ) = fθ  φ

u=0

FIGURE 9.15
General Dirichlet problem on a ball of radius 1.

which is just Legendre’s equation. In Section 7.2, we saw that the eigenvalues
and eigenfunctions are

λn = n(n+ 1), n = 0, 1, 2, . . .

and

Φn(x) = Pn(x), n = 0, 1, 2, . . . ,

where Pn is the nth degree Legendre polynomial. Thus (being loose with our
notation),

Φn(φ) = Pn(cosφ), n = 0, 1, 2, . . .

and, in addition, the R-equation becomes

ρ2R′′ + 2ρR′ − n(n+ 1)R = 0, 0 < ρ < 1, n = 0, 1, 2, . . . ,

R bounded as ρ→ 0+.

This, of course, is a Cauchy–Euler equation with general solution

R(ρ) = c1ρ
n + c2ρ

−1−n.

Since the second solution becomes infinite as ρ→ 0+, we have the solution

Rn(ρ) = ρn, n = 0, 1, 2, . . . .

Thus, the general solution is

u(ρ, θ, φ) =

∞∑
n=0

cnρ
nPn(cosφ).
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Finally, the boundary condition gives us

u(1, θ, φ) = f(φ) =

∞∑
n=0

cnPn(cosφ)

and, again letting x = cos θ, we have

f(cos−1 x) =

∞∑
n=0

cnPn(x).

Thus, the cn are just the Fourier–Legendre coefficients of the function f(cos−1 x),

cn =
2n+ 1

2

∫ 1

−1

f(cos−1 x)Pn(x)dx

=
2n+ 1

2

∫ π

0

f(φ)Pn(cosφ) sinφ dφ

(see Example 2, Section 8.5).

GENERAL DIRICHLET PROBLEM ON A BALL

Okay, now let’s generalize to the case where the boundary condition involves
a function of both φ and θ. We’d like to solve

∇2u = 0, 0 < ρ < 1,

u(1, θ, φ) = f(θ, φ).

Now we have

(ρ2uρ)ρ +
1

sinφ
(uφ sinφ)φ +

1

sin2 φ
uθθ = 0.

Letting u(ρ, θ, φ) = R(ρ)Θ(θ)Φ(φ) leads to

− [ρ2R′(ρ)]′

R(ρ)
=

1

sinφ

[Φ′(φ) sinφ]′

Φ(φ)
+

1

sin2 φ

Θ′′(θ)
Θ(θ)

= −μ

or

ρ2R′′ + 2ρR′ − μR = 0

and
[Φ′ sinφ]′ sinφ

Φ
+ μ sin2 φ = −Θ′′

Θ
= λ.

Finally, the ODEs for Θ and Φ are

Θ′′ + λΘ = 0, [Φ′ sinφ]′ sinφ+ (μ sin2 φ− λ)Φ = 0,
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with the usual conditions that Φ be bounded at φ = 0 and φ = π, and

Θ(0) = Θ(2π), Θ′(0) = Θ′(2π).

Again, we must have λn = n2 and

Θn(θ) = cn cosnθ + dn sinnθ, n = 0, 1, 2, . . . .

Then, as in the θ-independent case, we let x = cosφ in the Φ-equation,
resulting in (see Exercise 11)

(1− x2)Φ′′(x)− 2xΦ′(x) +
(
μ− n2

1− x2
)
Φ = 0, −1 < x < 1,

Φ bounded as x→ −1+ and x→ 1−.

This, of course, is the associated Legendre’s equation of order nnn (see
Exercise 4, Section 8.1, and Exercise 4, Section 8.2). It has bounded solutions
if and only if μ = m(m+1), m = 0, 1, 2, . . . , and these bounded solutions are
the associated Legendre functions

Φ(x) = Pn
m(x) = (1− x2)n/2P (n)

m (x).

So our Φ-solutions are

Φn,m(φ) = Pn
m(cosφ) = sinm(φ)P (n)

m (cosφ) (why?),

n = 0, 1, 2, . . . ;m = 0, 1, 2, . . . .

The R-equation again becomes

ρ2R′′ + 2ρR′ −m(m+ 1)R = 0, m = 0, 1, 2, . . . ,

with bounded solutions

Rm(ρ) = ρm, m = 0, 1, 2, . . . .

Putting it all together, the general solution to our problem is

u(ρ, θ, φ) =

∞∑
n=0

∞∑
m=n

ρmPn
m(cosφ)(cn,m cosnθ + dn,m sinnθ)†

(see Exercise 7).
Finally, we apply the boundary conditions

u(1, θ, φ) = f(θ, φ) =
∞∑
n=0

∞∑
m=n

Pn
m(cosφ)(cn,m cosnθ + dn,m sinnθ),

†Why does the second summation start at n and not at zero?
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and we may solve (unrigorously!) for the constants as in our treatment of the
wave equation in the previous section. (See Exercise 5.)

Completeness of the functions Pn
m (for each fixed n) on [−1, 1] and of the

set {1, cosnx, sinnx}∞n=1 on [−π, π] means that the functions

C0
m(θ, φ) = Pm(cosφ), m = 0, 1, 2, . . . ;

Cn
m(θ, φ) = Pn

m(cosφ) cosnθ, m = 0, 1, 2, . . . ;n = 1, 2, 3, . . . ;

Sn
m(θ, φ) = Pn

m(cosφ) sinnθ, m = 0, 1, 2 . . . ;n = 1, 2, 3, . . .

are complete on the sphere. These are the so-called spherical harmonics,
and we’ll discuss them further at the end of this section, after we solve the
heat equation in spherical coordinates (the solution of which also involves
these spherical harmonics). Actually, it turns out that the functions in our
solution—the so-called solid harmonics—can be written in Cartesian coor-
dinates as polynomials in x, y and z! See Exercise 12.

DIFFUSION OF HEAT IN A BALL

Suppose we have a ball of radius 1, made of a homogeneous material with
constant mass density and with the temperature of the boundary held at 0◦.
Then the temperature distribution satisfies the problem (assuming that the
thermal diffusivity is α2 = 1)

ut = ∇2u, 0 < ρ < 1,

u(ρ, θ, φ, 0) = f(ρ, θ, φ) (initial temperature distribution),

u(1, θ, φ, t) = 0.

We begin to solve this problem by separating variables, as in Exercise 6,
Section 8.1. Letting

u = T (t)v(ρ, θ, φ)

leads to the equation
T ′ + γT = 0

and the Helmholtz equation

∇2v + γv = 0.

Separating the latter via v(ρ, θ, φ) = R(ρ)H(θ, φ), we get

− [ρ2R′(ρ)]′

R(ρ)
− γρ2 =

1
sinφ (Hφ sinφ)φ + 1

sin2 φHθθ

H
= −μ,

which, apart from the −γρ2 term, is exactly what we had above, for Laplace’s
equation. In particular, we must have μ = m(m+1), m = 0, 1, 2, . . . , and the
functions are, again, the spherical harmonics
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Hn
m(θ, φ) = Pn

m(cosφ)(cn,m cosnθ + dn,m sinnθ),

n = 0, 1, 2, . . . ;m = 0, 1, 2, . . .

(although, as above, we need only look at m = n, n+ 1, . . .).
Then, the R-equation is

ρ2R′′ + 2ρR′ + [γρ2 −m(m+ 1)]R = 0

with boundary conditions

R(0) <∞, R(1) = 0.

This equation, which we met in Exercise 4, Section 7.1, is almost Bessel’s
equation and is called the spherical Bessel’s equation. The substitution

w(ρ) = ρ1/2R(ρ)

turns it into
ρ2w′′ + ρw′ + (γρ2 − α2)w = 0,

where α2 = m(m+ 1) + 1
4 =

(
m+ 1

2

)2
. The new boundary conditions are

w(0) = 0 (why?), w(1) = 0.

This w-equation was solved earlier (where?). We must have γ = y2m,�, and
the resulting solutions are

wm,�(ρ) = Jm+ 1
2
(ym,�ρ), m = 0, 1, 2, . . . ; � = 1, 2, 3, . . . ,

where
ym,� = xm+ 1

2 ,�
= the �th positive zero of Jm+ 1

2
.

It follows that

Rm,�(ρ) =
1√
ym,�ρ

Jm+ 1
2
(ym,�ρ).

Finally, the T -equation is

T ′ + γT = T ′ + �2T = 0

with solution
Tk(t) = e−�2t.

Putting it all together, we have the product solutions

un,m,� = e−�2tHn
m(θ, φ) · 1√

ρ
Jm+ 1

2
(ym,�ρ)

� = 1, 2, 3, . . . , n = 0, 1, 2, . . . ,m = n, n+ 1, n+ 2, . . .
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(what happened to the
√
ym,k term?), and we form the general solution and

then apply the initial condition as always (i.e., so long as we have all the right
orthogonality relationships. See Exercise 16).

The new special functions which were solutions of the spherical Bessel’s
equation are called, not surprisingly, the spherical Bessel functions of
the first kind, and we write

jn(x) =

√
π

2x
Jn+ 1

2
(x), n = 0, 1, 2, . . . .

(As usual, the
√

π
2 is a normalization factor, to make j0(0) = 1.) We almost

met j0(x) back in Exercise 8b, Section 7.3, where we showed that the general
solution to Bessel’s equation of order 1/2 is

y =
1√
x
(c1 cosx+ c2 sinx).

In fact, we can show that

j0(x) =
sinx

x

and, using recurrence formulas, we can write each jn(x) in a closed form which
involves only sinx, cosx and powers of x (see Exercises 11–13). We graph the
first four spherical Bessels in Figure 9.16.

FIGURE 9.16
MATLAB graphs of the spherical Bessel functions j0, j1, j2j0, j1, j2j0, j1, j2 and j3j3j3
(solid, dotted, dash-dotted and dashed, respectively).

Now, back to those other important special functions, the spherical har-
monics. First, we already have the usual harmonic functions, the solutions of
Laplace’s equation. So we have the so-called
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Rectangular harmonics: sinnx sinhny, etc.

Harmonics on a disk: rn cosnθ, rn sinnθ

Solid harmonics (in a ball): ρnCn
m(θ, φ), ρnSn

m(θ, φ).

Now, the spherical harmonics are not harmonic functions. So what are
they? They are what we might call boundary harmonics, in the following
sense. When solving Laplace’s equation on the unit square, say, we arrive at
the ODE X ′′ + n2X = 0 (or Y ′′ + n2Y = 0). This, of course, is just the one-
dimensional Helmholtz equation. The solutions {sinnx}∞n=1 or {cosnx}∞n=0

are complete on the interval 0 ≤ x ≤ 1, i.e., in a sense, on the x-boundary
of the square. We might call these functions linear harmonics (although we
don’t).

When solving Laplace’s equation on the disk, we separated variables to get
Θ′′+n2Θ = 0, again, the Helmholtz equation. The solutions {cosnθ, sinnθ}∞n=0

form a complete set along the boundary of the disk (and, actually, along any
circle centered at the origin). We could call them circular harmonics.

Finally, the spherical harmonics are just solutions of ∇2v(θ, φ)+n2v(θφ) =
0, once more the Helmholtz equation. And the solutions Sn

m(θ, φ) are complete
on the boundary sphere (and, in fact, on any sphere centered at the origin).

One final note: the spherical harmonics corresponding to n = 0 are, again,
just the θ-independent zonal harmonics

C0
m(θ, φ) = Pm(cosφ).

(Why “zonal”?)

Exercises 9.5

1. Laplacian in spherical coordinates: Again, the Laplacian in cylin-
dricals is

∇2u = uxx + uyy + uzz = urr +
1

r
ur +

1

r2
uθθ + uzz.

Since θ is the same in cylindricals and sphericals, we must deal only
with the r and z terms, as follows (see Figure 9.14).

a) Conclude from the figure that

z = ρ cosφ

and

r = ρ sinφ.

Thus, transforming from (x, y) to (r, θ) should involve the same
process as transforming from (z, r) to (ρ, φ).
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b) Conclude that

uzz + urr = uρρ +
1

ρ
uρ +

1

ρ2
uφφ.

c) Show also that

ur =
r

ρ
uρ +

cosφ

ρ
uφ

and, thus, that

∇2u = uρρ +
1

ρ
uρ +

1

ρ2
(uφφ + uφ cotφ+ uθθ cos

2 φ).

d) Show that this is equivalent to

∇2u =
1

ρ2

[
(ρ2uρ)ρ +

1

sinφ
(uφ sinφ)φ +

1

sin2 φ
uθθ

]
.

2. Solve the ODE ρ2R′′ + 2ρR′ − n(n+ 1)R = 0, n = 0, 1, 2, . . . .

3. Solve the Laplace equation inside the sphere ρ = 1 subject to the bound-
ary condition

a) u(1, θ, φ) = 3P5(cosφ)− 7P2(cosφ)

b) u(1, θ, φ) = cos2 φ

c) u(1, θ, φ) = − sin θ + 2P 4
7 (cosφ) cos 4θ

4. a) Solve, formally, the exterior Dirichlet problem

∇2u = 0, ρ > 1,

u(1, θ, φ) = f(φ).

b) Solve the interior and exterior Dirichlet problems

∇2u = 0, 0 < ρ < a,

u(a, θ, φ) = f(φ)

and

∇2u = 0, ρ > a,

u(a, θ, φ) = f(φ).

5. It can be shown that the orthogonality relationship of the associated
Legendre functions is

∫ 1

−1

Pn
m(x)Pn

k (x)dx =

⎧⎪⎨
⎪⎩
0, if m �= k,

2(n+m)!

(2m+ 1)(m− n)! , if m = k.
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Use this to determine the constants cn,m and dn,m in the solution of
Laplace’s equation,

u(ρ, θ, φ) =

∞∑
n=0

∞∑
m=n

ρmPn
m(cosφ)(cn,m cosnθ + dn,m sinnθ)

(as integrals involving u(1, θ, φ) = f(θ, φ)).

6. Reverse the order of summation in the series

∞∑
n=0

∞∑
m=n

an,m

and use mathematical induction to prove your result.

7. Find the general solution of the exterior Dirichlet problem

∇2u = 0, 1 < ρ <∞,
u(1, θ, φ) = f(θ, φ).

8. Write down the general solution of the three-dimensional vibration prob-
lem

utt = ∇2u, 0 < ρ < 1,

subject to the boundary condition

u(1, θ, φ, t) = 0.

9. Show that the substitution x = cosφ changes the φ-problem

[Φ′ sinφ]′ sinφ+ (μ sin2 φ− λ)Φ = 0, 0 < φ < π,

Φ bounded as φ→ 0+, π−

to the x-problem

(1− x2)Φ′′ − 2xΦ′ +
(
μ− λ

1− x2
)
Φ = 0, −1 < x < 1,

Φ bounded as x→ −1+, 1−.

10. In Exercise 6 of Section 7.6, we showed that we may write the associated
Legendre functions in the form

Pn
m(x) =

1

2mm!
(1− x2)n/2 d

m+n

dxm+n
[(x2 − 1)m].

Use this expression (and Exercise 3, Section 7.2, if necessary) to answer
the following:
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a) Write ρ2P 1
2 (cosφ) cos θ as a polynomial in x, y and z.

b) Do the same for ρ3P 2
3 (cosφ) sin 2θ.

c) Do the same for ρP 3
1 (cosφ) cos 3θ.

d) Do the same for ρ3P 3
3 (cosφ) sin 3θ.

e) What is the degree, in x, y and z, of the polynomial

ρmPn
m(cosφ) cosnθ?

f) What about
ρmPn

m(cosφ) sinnθ?

g) What is the degree of the z-part of each of these polynomials?

11. Show that the spherical Bessel function of the first kind of order 0 can
be written

j0(x) =
sinx

x

a) By using the fact that the general solution of Bessel’s equation of
order 1/2 is

y =
1√
x
(c1 cosx+ c2 sinx)

b) By using the Frobenius series solution for J1/2(x) and the result of
Exercise 4d, Section 7.5.

12. a) From Exercise 5, Section 7.5, conclude that

xJ ′
α(x) = xJα−1(x) − αJα(x).

b) Use part (a) to show that

j1(x) =
1

x2
sinx− 1

x
cosx.

c) Now use the recurrence formulas in Exercise 5d of that same section
to compute j2(x) and j3(x).

13. Continuing our discussion of the spherical Bessel functions,

a) Rewrite the identity in Exercise 12a as

x−(α+1)Jα+1(x) = − 1

x

d

dx
[x−αJα(x)],

and use mathematical induction to show that we must then have

x−(α+n)Jα+n(x) =

(
− 1

x

)n
dn

dxn
[x−αJα(x)], n = 1, 2, 3, . . . .
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b) Conclude that

x−(
1
2+n)Jn+ 1

2
(x) =

√
2

π

(
− 1

x

)n
dn

dxn

[
sinx

x

]
.

c) Use the relationship in part (b) to compute j1(x), j2(x) and j3(x)
(and make sure your answers match those in the previous exercise).

14. a) Show that the spherical Bessel functions satisfy the orthogonality
relationship

∫ 1

0

x2jn(yn,kx)jn(yn,jx)dx =

⎧⎪⎨
⎪⎩

0, if k �= j,

1

2
j2n+1(yn,k), if k = j,

and, more generally, that

∫ L

0

x2jn(yn,kx)jn(yn,jx)dx =

⎧⎪⎨
⎪⎩

0, if k �= j,

L3

2
j2n+1(yn,k), if k = j.

b) Show that the spherical harmonics are simply orthogonal on the
sphere, that is, show that∫∫

S

Cn1
m1

(θ, φ)Cn2
m2

(θ, φ)dS = 0 if m1 �= m2 or n1 �= n2,

∫∫
S

Sn1
m1

(θ, φ)Sn2
m2

(θ, φ)dS = 0, if m1 �= m2 or n1 �= n2,

∫∫
S

Cn1
m1

(θ, φ)Sn2
m2

(θ, φ)dS = 0 for all m1,m2, n1 and n2,

and ∫∫
S

[Cn
m(θ, φ)]2dS =

∫∫
S

[Sn
m(θ, φ)]2dS

=

⎧⎪⎪⎨
⎪⎪⎩

4π

2m+ 1
, if n = 0,

2π(m+ n)!

(2m+ 1)(m− n)! if n > 0,

0 ≤ n ≤ m.

Here, S is any sphere centered at the origin. (Note: One often sees
the spherical harmonics in complex form,

Y n
m(θ, φ) = Pn

m(cosφ)einθ , n = . . . ,−2,−1, 0, 1, 2, . . . ,
where we define Pn

m = P−n
m for n < 0.)



438 An Introduction to Partial Differential Equations with MATLAB R©

c) Show that the eigenfunctions of the spherical heat and wave equa-
tions are simply orthogonal on the ball of radius 1, that is, show
that ∫∫∫

V

wk1m1n1(ρ, θ, φ)wk2m2n2(ρ, θ, φ)dV = 0

if k1 �= k2 or m1 �= m2 or n1 �= n2, where V is the unit ball and

wkmn(ρ, θ, φ) = Sn
m(θ, φ)jm(ym,kρ).

(Again, Ym,k is the kth positive root of Jm+ 1
2
.)

Use the results of parts (a) and (b) of the previous exercise.

15. Quantum mechanics and the hydrogen atom, revisited: Back in
Exercise 4, Section 7.1, we saw that the wave function ψ for the electron
in a hydrogen atom satisfies Schrödinger’s equation,

i�ψt = − �
2

2m
∇2ψ − e2

ρ
ψ.

Again, let’s set � = m− � = 1, so that we must solve

iψt = −1

2
∇2ψ − 1

ρ
ψ.

In addition, we must have

lim
ρ→∞ψ = 0.

(To be more precise, we really need
∫∫∫

ψ dV < ∞, where the integral
is taken over all of three-dimensional space, for each t.)

a) Separate the variables by setting

ψ(ρ, θ, φ, t) = T (t)R(ρ)u(θ, φ).

Show that the result can be written as

T ′ − iλ

2
T = 0,

1

sinφ
(uφ sinφ)φ +

1

sin2 φ
uθθ + μu = 0,

R′′ +
2

ρ
R′ +

(
λ+

2

ρ
− μ

ρ2

)
R = 0.

b) Explain why u = �(�+ 1), � = 0, 1, 2, . . . .
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c) Given that λ = −β2, β > 0, for physical reasons, follow Exercises
4 and 5, Section 8.1, to show that the only bounded solutions of
the R-equation occur when

1

β
+ � = m = 1, 2, 3, . . . .

d) Show that the product solutions of the problem are

e
− t

(m−	)2 H�
n(θ, φ)

(
ρ

m− �
)�

e−
ρ

m−	L2�+1
m

(
ρ

m− �
)
,

n = 0, 1, 2, . . . ; � = 0, 1, 2, . . . ; 2�+ 1 ≤ m = 1, 2, 3, . . . ,

where, again, the H�
n are the spherical harmonics and the Lk

m are
the associated Laguerre polynomials.

9.6 The Infinite Wave Equation and Multiple
Fourier Transforms

In this final section of the chapter, we’d like to solve the two- and three-
dimensional analog of the problem of the infinite string. To that end, we’ll
need to rely on the two- and three-dimensional versions of the Fourier trans-
form.

To begin, though, let’s go back to the infinite string. We have

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, θ) = f(x),

ut(x, θ) = g(x),

lim
|x|→∞

u(x, t) = 0.

We may solve this problem as we did in Exercise 5, Section 6.4, by using the
Fourier transform

U(α, t) =
1√
2π

∫ ∞

−∞
u(x, t)e−iαx dx

and inverse transform

u(x, t) =
1√
2π

∫ ∞

−∞
U(α, t)eiαx dα.
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Transforming the PDE and initial condition, we have

Utt + c2α2U = 0,

U(α, 0) = F (α) = Fourier transform of f(x),

Ut(α, 0) = G(α) = Fourier transform of g(x).

Solving the “ODE” in t gives us

U(α, t) = c1(α) cos cαt+ c2(α) sin cαt,

and, applying the initial conditions, we find that the transform of our solution
is

U(α, t) = F (α) cos cαt+
G(α)

cα
sin cαt,

so our solution is the integral

u(x, t) =
1√
2π

∫ ∞

−∞

[
F (α) cos cαt+

G(α)

cα
sin cαt

]
eiαx dα.

Not very illuminating as it stands. But we can do better. First, notice that
the first term looks like the t-derivative of the second term (with F replacing
G, of course). That is,

∂

∂t

∫ ∞

−∞

H(α)

cα
sin cα teiαx dα =

∫ ∞

−∞
H(α) cos cα teiαx dα.‡

Thus, we may either simplify the F -part and integrate by t or simplify the
G-part and differentiate by t. We choose the latter route, only because it will
shed light on our attempt to solve the three-dimensional wave problem later
in this section.

So we have ∫ ∞

−∞
G(α)eiαx

sin cαt

cα
dα

=
1

2

∫ ∞

−∞
G(α)eiαx

eiαct − e−iαct

icα
dα

=
1

2c

∫ ∞

−∞
G(α)

∫ ct

−ct

eiα(x+ξ) dξdα (why?)

=
1

2c

∫ ct

−ct

∫ ∞

−∞
G(α)eiα(x+ξ) dαdξ §

‡So long as we may differentiate under the integral sign.
§So long as we may switch the order of integration.
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=
1

2c

∫ ct

−ct

g(x+ ξ)dξ (again, why?)

=
1

2c

∫ x+ct

x−ct

g(τ)dτ.

This looks familiar, of course! (We could have done this more succinctly, but
our approach here is illustrative of what will happen in the three-dimensional
case.) Now, replacing G by F , we have∫ ∞

−∞
F (α) cos cαt e−iαx dα =

∂

∂t

[
1

2c

∫ x+ct

x−ct

f(τ)dτ

]

=
1

2
[f(x+ ct) + f(x− ct)].

Next, remembering that 1
b−a

∫ b

a h(x)dx is the average value of h on [a, b],
we see that

1

2c

∫ x+ct

x−ct

g(τ)dτ = t · ḡ,

where ḡ is the average value of g on [x − ct, x+ ct]. Hence, our solution can
be written as

u(x, t) =
1√
2π

∂

∂t
(tf̄) + tḡ.

Now, let’s look again at the wave interpretation of d’Alembert’s solution—
in this case, though, we choose a point x0 on the string and see how it is
affected by the initial disturbance. First, suppose that the initial shape f(x)
is the square wave

f(x) =

⎧⎪⎨
⎪⎩
1, if −1 ≤ x ≤ 1,

0, otherwise,

as in Figure 9.17, and the initial velocity is g(x) ≡ 0. Taking x0 as in that
figure, it should be clear that it is affected only by the wave moving to the
right,

1

2
f(x− ct).

By watching the wave as it moves right and passes by the point x = x0
(see Figure 9.18), or by looking at the growing interval (x0 − ct, x0 + ct) and
watching it hit the initial disturbance (see Figure 9.19), we find that we have

u(x0, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ t < x0 − 1

c
,

1

2
, if

x0 − 1

c
≤ t ≤ x0 + 1

c
,

0, if t >
x0 + 1

c
.
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2 4 x−1−2−4

x

1 0

t = 3/c t = 3/c

u

t = 0
1

2
1

2
1f(x+ct) f(x−ct)

FIGURE 9.17
Half of initial square wave heading toward the point x = x0x = x0x = x0 at
velocity ccc.

So the wave hits x0 sharply and leaves just as sharply. We say that the
disturbance has sharp leading and trailing edges, and we see that it
travels at velocity c.

Next we look, instead, at the case where the initial shape is f(x) ≡ 0, but
the initial velocity is the same square wave

g(x) =

⎧⎪⎨
⎪⎩
1, if −1 ≤ x ≤ 1,

0, otherwise.

Now the situation is more complicated and, in particular, it’s not clear at all if
this disturbance travels in the same way as an initial displacement. However,
we still may use the second interpretation from above and see what happens
as the interval (x0− ct, x0+ ct) grows larger. As we look again at Figure 9.20,
we see that the situation is quite different here. To be precise, we have

u(x0, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if, 0 ≤ t < x0 − 1

c
,

1
2c

∫ 1

x0−ct
dξ =

1− (x0 − ct)
2c

, if
x0 − 1

c
≤ t ≤ x0 + 1

c
,

1

c
, if t >

x0 + 1

c
.

The leading edge is again sharp (although it doesn’t hit full-force, but, in-
stead, increases gradually from zero). However, there is no trailing edge in
this case.

More generally, it should be clear that the initial disturbance will eventu-

ally disappear at x0 only if
∫ 1

−1
g(x)dx = 0. The difference, of course, is that

in the case f(x) �= 0 and g(x) = 0, the solution is affected only by what hap-
pens at the point x = x0 − ct, while in the case where g(x) �= 0, the solution
encompasses the interval (x0 − ct, x0 + ct).

In any event, the initial-velocity disturbance in one dimension behaves very
differently from the initial-position disturbance, and, in particular, the former
does not possess a sharp trailing edge. We say that the wave equation, in a
given dimension, satisfies Huygens’s Principle if every disturbance travels
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in a way that its trailing edge is sharp. Hence, Huygens’s Principle does not
hold in one dimension.

1/2

x

u

x

1/2

u

x

u

1/2

x

x

u

1/2

t = x      

c

x

c
t = 0

x  −1

x  −2

0

t = c

t = c

x

 0   0

 0  0

 

  0  0  0

  0

  0  0

 0

  0x   +1

x   +2

x   +2

x    +1

x    −1

x   +1 x   +3

FIGURE 9.18
Half square wave “hitting” and passing the point x = x0x = x0x = x0.
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−1 x

1

x
x

−2 = x   − ct

−1 1 x

x

0 = x   −ct

−1 1 = x   −ct

u

x

1

t    =4

t    = c3
  0

t    = c2

0

t    = c1

0 0x   +ct 10x

−1 = x  −ct

  0

  0

  0

  0

   4

   3

x  0

 0x   −1

 1

   2

 0

x   +2

   0

x   +1

c

FIGURE 9.19
Interval centered at x = x0x = x0x = x0 expanding at velocity ccc.

So what happens in higher dimensions? Our everyday experience with light
and sound waves suggests that Huygens’s Principle may be true in dimension
three, while the ripples from our dropping a pebble in a pool may imply that it
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is not true in two dimensions. Here we must introduce the Fourier transform
in two and three (and higher) dimensions. We may do this nonrigorously just
by transforming each space variable separately. So, given a function f(x, y)
on −∞ < x <∞, −∞ < y <∞, we fix y and look at the x-Fourier transform
pair:

F1(α, y) =
1√
2π

∫ ∞

−∞
f(x, y)eiαx dx,

f(x, y) =
1√
2π

∫ ∞

−∞
F1(α, y)e

−iαx dα.

Next, look at the y-Fourier transform of F1:

F (α, β) =
1√
2π

∫ ∞

−∞
F1(α, y)e

iβy dy,

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)ei(αx+βy) dxdy,

F1(α, y) =
1√
2π

∫ ∞

−∞
F (α, β)e−iβy dy,

from which we get

F [f(x, y)] = F (α, β) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)ei(αx+βy) dxdy

and

F−1[F (α, β)] = f(x, y) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
F (α, β)e−i(αx+βy) dxdy.

We may, of course, follow the same procedure for dimensions three and
higher. We have

F [f(x, y, z)] = F (α, β, γ)

=
1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x, y, z)e−i(αx+βy+γz) dxdydz

and

F−1[F (α, β, γ)] = f(x, y, z)

=
1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
F (α, β, γ)ei(αx+βy+γx) dαdβdγ

and, more generally, for n dimensions,

F [f(xxx)] = F (ααα) =
1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
f(xxx)e−iααα·xxxdxxx
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and

F−1[F (ααα)] = f(xxx) =
1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
F (ααα)eiααα·xxx dααα.

Here, of course, the vectors xxx and ααα represent

xxx = (x1, x2, . . . , xn),ααα = (α1, α2, . . . , αn).

It’s also straightforward to generalize many of the important properties of
Fourier transforms to n dimensions. In particular, we still have the formula
for transforms of derivatives,

F
[
∂f

∂xj
(xxx)

]
= iαjF (ααα),

and, as we saw in Exercise 13c of Section 6.4, the inverse transform of a
product is a convolution (appropriately defined).

We’ll bypass the two-dimensional equation and go right to three dimensions.
Then we’ll get the 2-D solution almost for free, via the so-called method of
descent (by which we descend from three dimensions to two dimensions, more
or less by letting z = 0).

Before doing so, we look at an example, where we transform the three-
dimensional analog of the square wave defined on the one-dimensional
“sphere” −1 ≤ x ≤ 1. The resulting transform also will help us solve our
general three-dimensional wave problem, as it turns out.

Example 1 Find the Fourier transform of the function

f(x, y, z) =

⎧⎪⎨
⎪⎩
1, if x2 + y2 + z2 ≤ R2,

0, otherwise.

We have

F (α, β, γ) =
1

(2π)3/2

∫∫∫
x2+y2+z2≤R2

e−i(αx+βy+γz) dxdydz.

We cannot integrate this in Cartesians coordinates and, of course, the natural
inclination is to switch to sphericals. This doesn’t work either, as it stands
(try it!), but what does work is first to rotate the coordinate system so that
the vector ααα = (α, β, γ) points in the positive z-direction and then to use
sphericals. As bad as this may sound, it really is quite easy in this particular
case, for we wish to define the polar angle φ at the point (x, y, z) to be the
angle between the vectors ααα = (α, β, γ) and xxx = (x, y, z) and—this is the
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crux—the only function we need to worry about is

αx+ βy + γz = ααα · xxx
= |ααα||xxx| cosφ
= |ααα|ρ cosφ.

Further—and happily—we have

dxdydz = ρ2 sinφ dρdθdφ.

Thus,

F (α, β, γ) =
1

(2π)3/2

∫ R

0

∫ 2π

0

∫ π

0

e−i|ααα|ρ cosφρ2 sinφ dφdθdρ

=
1

(2π)3/2
4π

|ααα|
∫ R

0

ρ sin |ααα|ρ dρ

=

√
2

π

1

|ααα|3 [sin |ααα|R− |ααα|R cos |ααα|R].¶

By the way, if we were to try to find the two-dimensional transform of

f(x, y) =

⎧⎪⎨
⎪⎩
1, if x2 + y2 ≤ R2,

0, otherwise,

the same trick will not work (try it!). Hence, the method of descent is not
just an academic exercise.

Okay, now let’s solve

utt = c2∇2u = c2(uxx + uyy + uzz),

−∞ < x <∞,−∞ < y <∞,−∞ < z <∞, t > 0,

u(x, y, z, 0) = f(x, y, z),

ut(x, y, z, 0) = g(x, y, z),

lim
x2+y2+z2→∞

u = 0.

¶We’ve been a little sloppy here, as we have avoided the possibility that |ααα| = 0. For the
sake of completeness, in this case, we have

F (0, 0, 0) =
1

(2π)3/2

∫∫∫
∂V =

1

(2π)3/2
4πR3

3
.
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Transforming is easy, and we have

Utt + c2(α2 + β2 + γ2)U = 0,

U(α, β, γ, 0) = F (α, β, γ),

Ut(α, β, γ, 0) = G(α, β, γ).

Proceeding as in the one-dimensional case, we get

U(α, β, γ, t) = F (α, β, γ) cos c
√
α2 + β2 + γ2 t

+
G(α, β, γ)

c
√
α2 + β2 + γ2

sin c
√
α2 + β2 + γ2 t.

Thus,

u(x, y, z, t) =
1

(2π)3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
F (α, β, γ) cos c

√
α2 + β2 + γ2 t

+
G(α, β, γ)

c
√
α2 + β2 + γ2

sin c
√
α2 + β2 + γ2 t

]
ei(αx+βy+γz)dαdβdγ

=
1

(2π)3/2

∫∫∫
R3

F (ααα)eiααα·xxx cos c|ααα|t dt

+
1

(2π)3/2

∫∫∫
R3

G(ααα)eiααα·xxx sin c|ααα|t
c|ααα| dααα.

Transforming back, of course, is the hard part. Our solution looks very
much like the one-dimensional solution—as there, the first integral is the time
derivative of the second (again, with G replaced by F ). So, again, we look at
the second integral and, again, see if there’s any way that we can do something
with the expression

sin c|ααα|t
c|ααα| .

But we ran into an expression just like this in the second step of evaluating
F (α, β, γ) in Example 1. There we found that

∫ 2π

0

∫ π

0

e−i|ααα|ρ cosφρ2 sinφ dφdρ = 4π
ρ sin |ααα|ρ
|ααα|

for any value of ρ so that, letting ρ = ct and rewriting the first integral back
there in Cartesians, we have

sin c|ααα|t
c|ααα| =

1

4πc2t

∫∫
|ξξξ|=ct

e−iααα·ξξξ dS

=
1

4πc2t

∫∫
|ξξξ|=ct

eiααα·ξξξ dS (why?).
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It follows that

∫∫∫
R3

G(ααα)eiααα·xxx
sin c|ααα|t
c|ααα| dααα

=
1

4πc2t

∫∫∫
R3

G(ααα)

∫∫
|ξξξ|=ct

eiααα·(xxx+ξξξ) dSdααα

=
1

4πc2t

∫∫
|ξξξ|=ct

⎡
⎣∫∫∫

R3

G(ααα)eiααα·(xxx+ξξξ) dααα

⎤
⎦ dS ‖

=
1

4πc2t

∫∫
|ξξξ|=ct

g(xxx+ ξξξ)dS.

Now what is this? Well, the integral is performed on the sphere of radius
ct, centered at xxx, and, since the area of the sphere is 4πk2 = 4πc2t2, the full
expression is just

tḡ = t · (average value of g on the sphere of radius ct, centered at xxx).

Therefore, our solution is

u(x, y, z, t) =
1

(2π)3/2

[
∂

∂t
(tf̄) + tḡ

]

and is known as Kirchhoff’s formula.∗∗ So our solution looks very much
like the one-dimensional solution. However, there is a significant difference.
While the integral in the one-dimensional case encompasses the whole “ball”
of radius ct, centered at x, the three-dimensional integration involves only the
boundary of the ball. To be precise, suppose our initial disturbance is given
by

u(x, y, z, 0) = 0,

ut(x, y, z, 0) = g(x, y, z) =

⎧⎪⎨
⎪⎩
1, if x2 + y2 + z2 ≤ 1,

0, otherwise,

and let’s look at a point (x0, y0, z0) which is a distance D from the origin.

‖Once again, assuming it’s okay to switch the order of integration.
∗∗Due to Poisson!
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Then,

u(x0, y0, z0, t) =
t

(2π)3/2

∫∫
ξ21+ξ22+ξ23=c2t2

g(x0 + ξ1, y0 + ξ2, z0 + ξ3)dS

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if ct < D − 1,

nonzero, if D − 1 ≤ ct ≤ D + 1,

0, if ct > D + 1.

See Figure 9.20. In other words, there is no disturbance at (x0, y0, z0) until
the leading edge of the initial disturbance “reaches” this point (at t = D

c ), and

none after the disturbance “passes by” (at t = D+2
c ). So Huygens’s Principle

does hold in three dimensions, as our experience has suggested. (It should
be clear that the same thing happens if f �= 0.) This is why electromagnetic
disturbances travel at the speed of light.

t = 
D+1

t =  
C

C

D

D−1

C
t = 

(0,0,0)

 0   0(x  ,y  ,z  )  0

FIGURE 9.20
Huygens’s Principle holds in three dimensions: spheres traveling
outward from (x0, y0, z0)(x0, y0, z0)(x0, y0, z0) intersecting the “initial disturbance ball.”
(Compare with Figure 9.21.)

Now, we use the method of descent to compute the solution in two
dimensions. Basically, what will happen here is that the region of integration
will be projected onto the x-y plane so that, instead of “expanding bubbles,”
our disturbance will behave like “expanding disks.” Thus, as in the one-
dimensional case, it looks as though Huygens’s principle will not hold.

So suppose we have the two-dimensional wave problem

utt = c2(uxx + uyy), −∞ < x <∞,−∞ < y <∞, t > 0,

u(x, y, 0) = f(x, y),

ut(x, y, 0) = g(x, y).



PDEs in Higher Dimensions 451

The solution of this problem should be identical to that of the three-dimensional
problem

wtt = c2∇2u,

w(x, y, z, 0) = f(x, y),

wt(x, y, z, 0) = g(x, y)

(why?), which we’ve found already. To make matters simpler, let’s consider
the case where f(x, y) ≡ 0. Then the solution will be

w(x, y, z) = u(x, y) = tḡ

=
1

4πc2t

∫∫
ξ21+ξ22+ξ23=c2t2

g(x+ ξ1, y + ξ2)dS.

From symmetry, this last integral is twice the integral over the top hemisphere

ξ3 =
√
c2t2 − ξ21 − ξ22

and, since we have solved explicitly for the surface in terms of ξ1 and ξ2, we
may write dS in terms of these variables as

dS =

√
1 +

(
dξ3
dξ1

)2

+

(
dξ3
dξ2

)2

dξ1dξ2

=
ct√

c2t2 − ξ21 − ξ22
dξ1dξ2.

So our solution is

u(x, y) =
1

2πc

∫∫
ξ21+ξ22≤c2t2

g(x+ ξ1, y + ξ2)√
c2t2 − ξ21 − ξ22

dξ1dξ2,

which now is an integral on the whole disk of radius ct, centered at (x, y).
Again, to be more specific, let

g(x, y) =

⎧⎪⎨
⎪⎩
1, if x2 + y2 ≤ 1,

0, otherwise.

Then, in Figure 9.21, the disturbance reaches (x0, y0) when the disk of radius
ct about (x0, y0) hits the unit disk and does not subside thereafter. Hence,
Huygens’s Principle does not hold for waves in two dimensions.

Finally, we may descend one more dimension and recover d’Alembert’s solu-
tion to the one-dimensional wave equation. In the process of using the method
of descent, then, we see that the one- and two-dimensional wave equations also
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may be interpreted as describing various wave phenomena in three dimensions.
For obvious reasons, three-dimensional solutions of the one-dimensional wave
equation are called plane waves; those of the two-dimensional equation are
called cylindrical waves; and those of the three-dimensional equation are
called spherical waves.

(0,0)

t = 
D

C t = 
D+1

t = D+2
C

C

t = 
D−1

C

(x   ,y   )0 0

FIGURE 9.21
Huygens’s Principle does not hold in two dimensions: disks traveling
outward from (x0, y0)(x0, y0)(x0, y0), intersecting the “initial disturbance disk.”
(Compare with Figure 9.20.)

Now, what about characteristics in two and three dimensions? Remember
that, in one space dimensions, the characteristics were the lines

x+ ct = constant, x− ct = constant

in the x-t plane. Using these lines, and given any point (x0, t0), we defined
the domain of dependence and the domain of influence as in Figure 5.9. The
domain of dependence represented, essentially, the history of all disturbances
that reach x0 at time t0, while the domain of influence in the future, in relation
to (x0, t0), that is, consists of all points in space-time, with t > t0, that
eventually are affected by the disturbance at x0 at time t0.

It’s not difficult to see that, in the two-dimensional case, they are the cones

(x − x0)2 + (y − y0)2 = c2(t− t0)2.
As we see in Figure 9.22, the bottom half of the cone (and its interior) rep-
resents the past, or domain of dependence, of the point (x0, y0, t0), while the
top half is the future, or region of influence.
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(x  ,y  ,t  ) 0  0

0
2

domain of dependence

region of influence

+ t direction

 0

  0     0
  2    2 2(x−x )   + (y−y  )   = c  (t−t  )

FIGURE 9.22
Characteristic cone for the two-dimensional wave equation.

It follows that, for the three-dimensional case, we have the four-dimensional
cones

(x− x0)2 + (y − y0)2 + (z − z0)2 = c2(t− t0)2,
with analogous domains of dependence and influence (except for one very
important difference—what?). In particular, when studying electromagnetic
radiation, the characteristics cones are referred to as light cones (the same
light cones that we see in the special theory of relativity).

Exercises 9.6

1. Show that

∂

∂t

∫ x+ct

x−ct

f(τ)dτ = c[f(x+ ct) + f(x− ct)].

2. Go in the “other direction” in the solution of the one-dimensional wave
equation, that is, first compute

∫ ∞

−∞
F (α) cos cαt e−iαx dx

and then integrate to get the other half of the solution.
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3. Three-dimensional heat equation: Given a function f(x, y, z, t), de-
fine

F1(α, y, z, t) =
1√
2π

∫ ∞

−∞
e−iαxf(x, y, z, t)dx,

F2(α, β, z, t) =
1√
2π

∫ ∞

−∞
e−iβyF1(α, y, z, t)dy,

F3(α, β, γ, t) =
1√
2π

∫ ∞

−∞
e−iγzF2(α, β, z, t)dz.

a) What is F3(α, β, γ, t), in terms of f?

b) Solve the heat equation in three space dimensions

ut = ∇2u, −∞ < x <∞,−∞ < y <∞,−∞ < z <∞,
u(x, y, z, 0) = f(x, y, z).

(Hint: Use the one-dimensional solution derived in Section 6.4.)

c) Now solve the heat equation in half-space

ut = ∇2u, −∞ < x <∞,−∞ < y <∞, 0 < z <∞,
u(x, y, z, 0) = f(x, y, z),

where the boundary plane is held at temperature zero degrees.

d) Do the same as in part (c), but with the flux along the boundary
plane equal to zero.

4. a) We may, via the method of descent, recover d’Alembert’s solution
of the one-dimensional wave equation directly from the solution
in three dimensions. Specifically, from the solution of the three-
dimensional problem

utt = c2∇2u, −∞ < x <∞,−∞ < y <∞,
−∞ < z <∞, t > 0,

u(x, y, z, 0) = f(z),

ut(x, y, z, 0) = g(z),

use spherical coordinates to descend to d’Alembert’s solution

u =
1

2
[f(z + ct) + f(z − ct)] + 1

2c

∫ z+ct

z−ct

g(ξ)dξ.

Notice that this solution is the solution of the one-dimensional wave
equation for a string placed along the z-axis and, simultaneously,
gives the plane wave solution of the original problem.
(Why did we use z and not x or y? How would you have pro-
ceeded if we were given, instead, initial conditions dependent upon
x only?)
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b) Instead, arrive at d’Alembert’s solution by letting

u(x, y, t) = f(x),

ut(x, y, t) = g(x),

and descend from the two-dimensional solution by integrating out
the variable ξ2.

5. Solve the three-dimensional wave problem

utt = c2∇2u,

u(x, y, z, 0) = f(ρ),

ut(x, y, z, 0) = g(ρ),

where, of course, ρ is the radial spherical coordinate. (Hint: Let u(ρ, t) =
v(ρ,t)

ρ .)

6. The Dirac delta function in higher dimensions:The delta function
in higher dimensions is just

δ(x, y) = δ(x)δ(y) in two dimensions

and
δ(x, y, z) = δ(x)δ(y)δ(z) in three dimensions.

Consequently, everything that we did in one dimension can be applied
to these cases, as well.

So, compute

∫ ∞

−∞

∫ ∞

−∞
δ(x− x0, y − y0)dxdy

and ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x− x0, y − y0, z − z0)dxdydz.

Also, show that, in two dimensions, F [δ(x, y)] = 1
2π , while, in three

dimensions, we have F [δ(x, y, z)] = 1
(2π)3/2

. More generally, show that

F [δ(x− x0, y − y0, z − z0)] = F [δ(xxx − x0x0x0)]

=
e−iααα·x0x0x0

(2π)3/2
.

(Distributions are defined in higher dimensions as they are in one di-
mension. So, test functions in three dimensions will be infinitely differ-
entiable in all independent variables and will be identically zero outside
a closed and bounded—i.e., compact—subset of the domain. We say
that the function has compact support.)
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7. a) We’ve shown that the logarithmic potential

u(x, y) = − 1√
2π

ln
√
x2 + y2

is harmonic in any region not including the origin. It turns out
that u satisfies Poisson’s equation

uxx + uyy = −δ(x, y), −∞ < x <∞,−∞ < y <∞.

What, then, is F [ln√x2 + y2]?

b) It can be shown that u(x, y) = i
4H

(1)
0 (k

√
x2 + y2) satisfies the

Helmholtz equation

uxx + uyy + k2u = −δ(x, y), −∞ < x <∞,−∞ < y <∞.

Here, H
(1)
0 is the Hankel function of the first kind, of order 0, and

k > 0. What is F [H(1)
0 (k

√
x2 + y2)]?

c) Use the result of part (b) to find the formal solution of the PDE

uxx + uyy + ux = −δ(x, y), −∞ < x <∞,−∞ < y <∞.

9.7 Postlude: Eigenvalues and Eigenfunctions of the
Laplace Operator; Green’s Identities
for the Laplacian

In Section 9.2, we found that the eigenvalues and eigenfunctions of the Laplace
operator, for the Dirichlet problem on a rectangle, are

λn,m =
n2π2

a2
+
m2π2

b2
,Φn,m(x, y) = sin

nπx

a
sin

mπy

b
,

n = 1, 2, 3, . . . ;m = 1, 2, 3, . . . .

In Section 9.4, we did the same for a disk of radius a and found that

λn,m =
x2n,m
a2

, Φn,m(r, θ) = Jn

(xn,mr
a

)⎧⎨
⎩

cosnθ,

sinnθ,

where xn,m is the mth positive root of Jn.
In comparing the situation to that of Chapter 8 for Sturm–Liouville prob-

lem, we see that
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1) The eigenvalues are real.

2) There are infinitely many eigenvalues. (They are “doubly-infinite” in
this case.)

3) An eigenvalue need not have multiplicity one.

4) Eigenfunctions corresponding to different eigenvalues are simply orthog-
onal on the given domain. (See Exercise 6b.)

5) The eigenfunctions form a complete set in the space of piecewise smooth
functions on the given domain. (See Exercise 6a.)

How about on more general domains? It turns out that (1), (2), (4) and
(5) remain true for any reasonable bounded domain D. We’ll state (2) and
(5) without proof; we will prove (1) and (4) in Exercise 6. As for (3), it’s
often possible to find eigenvalues with multiplicity two or greater, sometimes
because of the symmetry exhibited in Section 9.4, sometimes just by accident.

It should be no surprise that we need to formulate Green’s identities for the
Laplacian. So in two dimensions, we’d like to see what we can say about

∫∫
D

u∇2v dA.

Although we still can use integration by parts, we have at our disposal Green’s
Theorem ∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dA =

∮
C=∂D

P dx +Q dy.

Since we need to integrate uvxx + uvyy, let’s set Q = uvx and P = −uvy and
see what happens. We have

∫∫
D

[
∂

∂x
(uvx) +

∂

∂y
(uvy)

]
dA

=

∫∫
D

u∇2v dA+

∫∫
D

(uxvx + uyvy)dA

=

∮
C

u(−vy dx+ vx dy)

or Green’s first identity for the Laplacian,
∫∫
D

u∇2v dA =

∮
C

u
∂v

∂n
ds−

∫∫
D

∇u · ∇v dA ††

††These identities often are referred to as “multidimensional integration by parts” formulas.
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(make sure you know why we may rewrite the line integral as we have). From
there it’s trivial to get Green’s second identity for the Laplacian,∫∫

D

(u∇2v − v∇2u)dA =

∮
C

(
u
∂v

∂n
− v ∂u

∂n

)
ds.

The three-dimensional versions are essentially the same:∫∫∫
D

u∇2v dV =

∫
©
∫

∂D=S

u
∂v

∂n
dS −

∫∫∫
D

∇u · ∇v dV

and ∫∫∫
D

(u∇2v − v∇2u)dV =

∫
©
∫
S

(
u
∂V

∂n
− v ∂u

∂n

)
dS.

(We prove these in Exercise 5.) Here, of course, we have volume and surface
integrals. (Green’s identities will loom large in the next chapter, in relation to
Green’s functions.) Of course, we need all functions, domains and boundaries
to be well-enough behaved.

Now, following Section 7.2, suppose that u and v satisfy the condition

au+ b
∂u

∂n
= 0

along the boundary of D, where a and b are constants. Then it’s easy to show
that

u
∂v

∂n
− v ∂u

∂n
= 0 along ∂D.

Therefore, if u and v are well-enough behaved on D, we have, in two dimen-
sions, ∫∫

D

(u∇2v − v∇2u)dA = 0

or, in three dimensions, ∫∫∫
D

(u∇2v − v∇2u)dV = 0.

As you may have guessed, this is how we define self-adjointness for boundary-
value problems in higher dimensions. In fact, we may generalize the idea of
Sturm–Liouville equations to dimensions greater than one—see Exercise 8.

So we have the following theorem.

Theorem 9.1 The Laplace boundary-value problem

∇2u = 0 on D,

au+ b
∂u

∂n
= 0 on ∂D,
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where D is a bounded, simply-connected domain, and a and b are constants
with at least one nonzero, is self-adjoint. (As with one-dimensional prob-
lems, we may extend the idea of self-adjointness to problems on unbounded
domains, etc.)

Now it’s easy to prove properties (1) and (4), which we do in Exercise 6.
So we have the following theorem.

Theorem 9.2 The Laplace boundary-value problem given in Theorem 9.1
possesses an infinite, unbounded sequence of eigenvalues, each of which is
real. The eigenfunctions are complete (in the L2 sense), and eigenfunctions
corresponding to different eigenvalues are simply orthogonal on D.

In physically realistic circumstances it turns out that the eigenvalues are
nonnegative and that there is a least eigenvalue (the fundamental frequency,
again), as earlier and as seen in this section’s examples. This can be shown
via two- and three-dimensional versions of the Rayleigh quotient, as we do in
Exercise 7.

Exercises 9.7

1. Find the eigenvalues and eigenfunctions for the two-dimensional Laplace
operator on the rectangle 0 < x < a, 0 < y < b, subject to the given
boundary conditions.

a) ux(0, y) = ux(a, y) = uy(x, 0) = uy(x, b) = 0

b) u(0, y) = u(a, y) = uy(x, 0) = uy(x, b) = 0

c) u(0, y) = ux(a, y) = u(x, 0) = uy(x, b) = 0

d) u(0, y) = u(a, y) = u(x, 0)− uy(x, 0) = u(x, b) + uy(x, b) = 0

2. Do the same as Exercise 1, but on the disk 0 < r < a, with boundary
condition

a) u(a, θ) = 0

b) ur(a, θ) = 0

3. Find the eigenvalues and eigenfunctions for the three-dimensional prob-
lem

∇2u+ λu = 0, 0 < x < π, 0 < y < π, 0 < z < π,

u(0, y, z) = u(π, y, z) = u(x, 0, z) = u(x, πz)

= u(x, y, 0) = u(x, y, π) = 0.
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4. Find the eigenvalues and eigenfunctions for the three-dimensional prob-
lem

∇2u+ λu = 0, 0 < ρ < 1,

u(1, θ, φ) = 0.

(Hint: Refer to the solution of the problem for diffusion of heat in a ball,
at the end of Section 9.5.) What is the multiplicity of each eigenvalue?

5. a) Using the Divergence Theorem∫∫∫
D

∇ ·FFF dV =

∫
©
∫
∂D

FFF · nnn dS

with FFF = u∇v, prove the three-dimensional version of Green’s first
and second identities.

b) Show that Green’s Theorem implies the two-dimensional version of
the Divergence Theorem∫∫

D

∇ ·FFF dA =

∮
∂D

FFF · nnn dS.

Thus, we can prove both the two- and three-dimensional Green’s
first identities in one fell swoop.

6. Given the eigenvalue problem

∇2u+ λu = 0 on D

subject to the general Robin boundary condition

au+ b
∂u

∂n
= 0 on ∂D,

show that

a) If λ1 �= λ2 are eigenvalues with eigenfunctions u1 and u2, respec-
tively, then u1 and u2 are orthogonal on D.

b) All eigenvalues of the problem are real (see Theorem 8.4, Section
8.2).

7. In Exercise 26, Section 1.7, we introduced the Rayleigh quotient for the
eigenvalue problem

y′′ + λy = 0, 0 < x < L,

with a Dirichlet or Neumann condition at each end; in Exercise 8, Sec-
tion 8.2, we generalized this idea to regular and periodic Sturm–Liouville
problems. Here, we develop the Rayleigh quotient for the Laplace oper-
ator.



PDEs in Higher Dimensions 461

a) Consider the eigenvalue problem

∇2u+ λu = 0 on D

subject either to the Dirichlet condition along ∂D or the Neumann
condition along ∂D. Show that if λn is an eigenvalue with eigen-
function un, then

λn =

∫∫
D

‖∇u‖2dA
∫∫
D

u2 dA

(in two dimensions, or the same with triple integrals in three dimen-
sions). Thus, we must have λn ≥ 0. When will 0 be an eigenvalue?

b) More generally, consider the problem

∇2u+ λu = 0 on D,

au+ b
∂u

∂n
= 0 on ∂D,

where a and b are constant. Show that if ab ≤ 0, then all of the
eigenvalues are nonnegative.

8. Sturm–Liouville problems in higher dimensions: An elliptic op-
erator of the form

L[u] = ∇ · [r(xxx)∇u(xxx)] + q(xxx)u(xxx),

where xxx = (x, y) or (x, y, z) (or (x1, x2, . . . , xn)), is called a Sturm–
Liouville operator, and an eigenvalue problem of the form

L[u] + λw(xxx)u = 0 on D,

subject to a Dirichlet, Neumann or Robin condition along ∂D, is called
a Sturm–Liouville problem.

a) Show that ∫∫
D

(uL[v]− vL[u])dA = 0

for all well-enough behaved functions u(x, y) and v(x, y) which sat-
isfy the boundary conditions.

b) If r > 0 and w > 0 and r, q and w are continuous on D ∪ ∂D,
show that eigenfunctions corresponding to different eigenvalues are
orthogonal with respect to the weight function w(x, y) on D.

c) Under these same assumptions, show that all eigenvalues are real.





Prelude to Chapter 10

Here we look at nonhomogeneous PDEs and, specifically, at the very im-
portant method of Green’s functions for solving them. We’ve already met a
Green’s function back in Section 6.4, namely, the heat kernel; remember that
the solution there was a convolution of that function with the initial temper-
ature. Of course, there we used it to solve the homogeneous heat equation.

We begin by looking at Green’s functions for ODEs and, fairly quickly, we
move from a classical to a distributional setting, as the introduction of the
Dirac delta function makes life much easier. Historically, however, Green’s
functions were introduced in 1828 by the self-taught British mathematician
George Green (1793–1841), in the context of solving the Poisson Dirichlet
problem. (Of course, distributions didn’t show up for another century!) In
his self-published An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism, Green proved the Divergence Theorem
(which, in two dimensions, is just Green’s Theorem) and then used it to prove
what came to be called Green’s identities, from which his results followed.
To this day, it is in the study of elliptic equations that Green’s function is
most crucial. However, we also derive Green’s function for both the heat and
wave equations, where we also get to see in greater detail the significance of
Duhamel’s Principle (which we met briefly in Section 6.1).

Incidentally, Green’s work remained pretty much unknown until rediscov-
ered by William Thomson, Lord Kelvin (1824–1907), in 1846.
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10

Nonhomogeneous Problems and
Green’s Functions

10.1 Green’s Functions for ODEs

Suppose that we have the ODE

Ly = −f(x)

and rewrite it using the sifting property of the Dirac delta function as

Ly = −f(x) = −
∫ ∞

−∞
δ(ξ − x)f(ξ)dξ

≈ −
∑
n

δ(ξn − x)f(ξn)Δξn.

Then it seems that we need only solve

LGξn(x) = −δ(ξn − x) = −δ(x− ξn),

then multiply by the “constants” f(ξn)Δξn and use superposition. So, we
would have the solution

y ≈
∑
n

Gξn(x)f(ξn)Δξn −→
∫ ∞

−∞
Gξ(x)f(ξ)dξ.

Indeed, formally we have

Ly = L

[∫ ∞

−∞
Gξ(x)f(ξ)dξ

]
=

∫ ∞

−∞
L[Gξ(x)]f(ξ)dξ

∗

= −
∫ ∞

−∞
δ(ξ − x)f(ξ)dξ = −f(x).

∗If we can bring L inside the integral, of course. It turns out that we always can, in the
setting of distributions.

465
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Further, if Gξ(x) satisfies the boundary conditions, then so will the solution.
(For example, suppose the boundary conditions are y(0) = y(L) = 0, so that,
for each ξ, Gξ(0) = Gξ(L) = 0. Then

y(0) =

∫ ∞

−∞
Gξ(0)f(ξ)dξ = 0

and similarly for y(L).)

Instead of writing Gξ(x), we say that G(x, ξ) is a Green’s function for the
given boundary-value problem. The beauty of Green’s function is that it does
not depend on the nonhomogeneous right side and, therefore, once we have
found it, we automatically have the solution for any well-enough behaved
f(x). (In fact, it turns out that one also can arrange to have the Green’s
function reflect a whole class of boundary conditions. So, for example, we
may set u(0) = α and u(L) = β and find the corresponding Green’s function
for arbitrary α and β.)

Of course, George Green lived long before any talk of the Dirac delta func-
tion and the like, so it seems that we should be able to “do” Green’s functions
classically; we introduce them classically in this section. However, there is
such a close connection between Green’s functions and the delta function that
a discussion of one without the other would be misleading.

Let’s begin with an example that will lead us to the salient features of
Green’s functions.

Example 1 Solve the BVP

y′′ + k2y = −f(x), † 0 < x < L, k > 0,

y(0) = y(L) = 0.

Two important homogeneous solutions are, of course, y1 = sin kx and y2 =
cos kx, and variation of parameters leads us to the particular solution

yp = u1y1 + u2y2,

where

u′1 = −1

k
f(x) cos kx

and

u′2 =
1

k
f(x) sin kx

†Here, again, we use −f instead of f . In this case, f > 0 will then represent a source and
f < 0 will represent a sink.
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(see Exercise 8a). Thus,

yp = −1

k
sinkx

∫ x

c1

f(ξ) cos kξ dξ

+
1

k
cos kx

∫ x

c2

f(ξ) sinkξ dξ

for any choice of the constants 0 ≤ c1, c2 ≤ L. Since we’re looking to have
our Green’s function satisfy the boundary conditions, let’s choose yp so that
it does the same (in which case yp will be the solution—why?). So,

yp(0) = 0 =
1

k

∫ 0

c2

f(ξ) sin kξ dξ

while

yp(L) = 0 = − 1

k
sin kL

∫ L

c1

f(ξ) cos kξ dξ

+
1

k
cos kL

∫ L

c2

f(ξ) sin kξ dξ.

So we take c2 = 0, and the second equation becomes

sinkL

∫ L

c1

f(ξ) cos kξ dξ = cos kL

∫ L

0

f(ξ) sinkξ dξ.

First, we note that if sin kL = 0, then this equation can only hold for certain
functions f ; in other words, if k2 is any eigenvalue of y′′ + λy = 0, then the
boundary-value problem has either/or

1) No solution (if
∫ L

0 f(ξ) sinkξ dξ �= 0)

2) Infinitely many solutions (if
∫ L

0 f(ξ) sin kξ dξ = 0).

Now, supposing sin kL �= 0, the second equation says that
∫ L

c1

f(ξ) cos kξ dξ =
cos kL

sinkL

∫ L

0

f(ξ) sinkξ dξ,

so that ∫ x

c1

f(ξ) cos kξ dξ =

∫ L

c1

f(ξ) cos kξ dξ

−
∫ L

x

f(ξ) cos kξ dξ

=
cos kL

sin kL

∫ L

0

f(ξ) sin kξ dξ

−
∫ L

x

f(ξ) cos kξ dξ.
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Finally, we write

yp = − sin kx

k

[
cos kL

sin kL

∫ L

0

f(ξ) sin kξ dξ −
∫ L

x

f(ξ) cos kξ dξ

]

+
cos kx

k

∫ x

0

f(ξ) sin kξ dξ.

Since this representation is different for ξ < x and ξ > x, we break up the
first integral at x and rewrite

yp =

∫ x

0

f(x)

[
cos kx sin kξ

k
− sin kx cos kL sinkξ

k sinkL

]
dξ

+

∫ L

x

f(ξ)

[
sin kx cos kξ

k
− sin kx cos kL sinkξ

k sin kL

]
dξ

=

∫ L

0

f(ξ)G(x; ξ)dξ,

where

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

cos kx sin kξ

k
− sinkx cos kL sinkξ

k sin kL
, if 0 ≤ ξ ≤ x

sin kx cos kξ

k
− sinkx cos kL sinkξ

k sin kL
, if x ≤ ξ ≤ L.‡

Notice that G satisfies the boundary conditions; however, this is obvious if we
rewrite G as

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1

k sinkL
sin kξ sin k(L− x), if 0 ≤ ξ ≤ x

1

k sinkL
sin kx sin k(L− ξ), if x ≤ ξ ≤ L§

(see Exercise 8b).
So let’s list the important properties of this particular Green’s function

(which, as it turns out, all Green’s functions will possess, although the dis-
continuity in the derivative may behave differently).

1. Symmetry: G(x; ξ) = G(ξ;x) for all x, ξ in [0, L].

2. Continuity: G is continuous on [0, L] and, specifically, at the point
ξ = x.

3. Derivative discontinuous: The derivative

Gx(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩
− 1

sinkL
sinxξ cos k(L− x), if 0 < ξ < x,

1

sin kL
cos kx sin k(L− ξ), if x < ξ < L,
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has a jump discontinuity at x = ξ. In particular, for this Green’s func-
tion it is

Gx(ξ+; ξ)−Gx(ξ−, ξ)
= − 1

sinkL
sin kξ cos k(L− ξ)− 1

sinkL
cos kξ sin k(L− ξ)

= −1 (why?).

4. Satisfies homogeneous equation: G has a continuous second deriva-
tive on 0 < x < ξ and ξ < x < L and satisfies the associated homoge-
neous equation there. (But not at x = ξ, of course.)

5. Satisfies boundary conditions: G satisfies both boundary condi-
tions, for each value of ξ.

Let’s note here that we may rewrite Property 3 as

lim
ε→0

∫ ξ+ε

ξ−ε

(y′′ + k2y)dx = −1

(see Exercise 6) in anticipation of the two- and three-dimensional ver-
sions of this property.

Guided by the above example, let’s construct the Green’s function for the
general nonhomogeneous regular Sturm–Liouville problem

(ry′)′ + (q + λw)y = −f(x), a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0.

Here, as before, w, q, r and r′ are continuous on a ≤ x ≤ b and w(x) > 0,
r(x) > 0 on a ≤ x ≤ b. Also, f is continuous on a ≤ x ≤ b. (The result can
be extended to many of the important singular problems, as well.)

To begin, and guided by Example 1, we assume that λ is not an eigenvalue
of the associated homogeneous problem, so that the latter has a unique solu-
tion. (We deal with λ = an eigenvalue later.) Further, as we’d like Green’s
function to satisfy the boundary conditions, and we notice from Example 1
that sin k(L − x) satisfies the boundary condition at x = L, and sin kx that
at x = 0, we try to do the same here. So, given any two linearly independent
solutions z1, z2 of the homogeneous problem, it turns out that we may always
find constants c1, c2, c3, c4 such that

y1 = c1z1 + c2z2, y2 = c3z1 + c4z2

are linearly independent and satisfy the boundary condition at x = a and
x = b, respectively. (Why? By the way, can y1, for example, satisfy both
boundary conditions? Why or why not?)
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Now perform variation of parameters, as in the example. We get

yp = u1y1 + u2y2,

where

u′1 =
f(x)y2(x)

r(x)W (x)
, u′2 = −f(x)y1(x)

r(x)W (x)
,

and W is the Wronskian

W (x) = y1(x)y
′
2(x)− y2(x)y′1(x)

(see Exercise 9a).¶ (Oh, and how do we know that W is never zero?) Then,

u1 =

∫ x

c1

y2(ξ)

r(ξ)W (ξ)
f(ξ)dξ,

u2 = −
∫ x

c2

y1(ξ)

r(ξ)W (ξ)
f(ξ)dξ

and

yp = y1(x)

∫ x

c1

y2(ξ)

r(ξ)W (ξ)
f(ξ)dξ

− y2(x)
∫ x

c2

y1(ξ)

r(ξ)W (ξ)
f(ξ)dξ.

As in the example, we’d like yp to be our solution, so we’d like c1 and c2
to be such that yp satisfies the boundary conditions. First, our life is made
much easier by the fact that r(x)W (x) is constant on a ≤ x ≤ b.‖ Further,
led by the example, our selection of y1 and y2 suggests that we let c1 = b and
c2 = a. Then,

yp = −y1(x)
∫ b

x

y2(ξ)

rW
dξ − y2(x)

∫ x

a

y1(ξ)

rW
dξ,

so

a1yp(a) + a2y
′
p(a) = −[a1y1(a) + a2y

′
1(a)]

∫ b

a

y2(ξ)

rW
dξ

− [a1y2(a) + a2y
′
2(a)]

∫ a

a

y1(ξ)

rW
dξ = 0

(see Exercise 9b). Similarly, at x = b.

¶Why are we not concerned with the possibility that rW = 0 at some point?
‖See Exercise 3, Section 8.1.
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So we have

G(x; ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−y1(ξ)y2(x)
r(ξ)W (ξ)

, if a ≤ ξ ≤ x (or ξ ≤ x ≤ b),

−y1(x)y2(ξ)
r(ξ)W (ξ)

, if x ≤ ξ ≤ b (or a ≤ x ≤ ξ).

It’s easy to see that G satisfies Properties (1), (2), (4) and (5), above. What
about the jump in the derivative? We have

Gx(ξ+, ξ)−Gx(ξ−, ξ) = y′1(ξ)y2(ξ)− y1(ξ)y′2(ξ)
r(ξ)W (ξ)

= − 1

r(ξ)
.

We put everything together in a theorem.

Theorem 10.1 Given the regular Sturm–Liouville problem

(ry′)′ + (q + λw)y = −f(x), a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0,

suppose that λ is not an eigenvalue and suppose that y1 and y2 are solutions
of the associated homogeneous equation, satisfying

a1y1(a) + a2y
′
1(a) = b1y2(b) + b2y

′
2(b) = 0.

Then the solution of the problem is given by

y =

∫ b

a

G(x, ξ)f(ξ)dξ,

where Green’s function G is given by

G(x; ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−y1(ξ)y2(x)
r(ξ)W (ξ)

, if a ≤ ξ ≤ x (or ξ ≤ x ≤ b),

−y1(x)y2(ξ)
r(ξ)W (ξ)

, if x ≤ ξ ≤ b (or a ≤ x ≤ ξ).

Further, G satisfies the following properties:

1. G(x; ξ) = G(ξ;x) for all x, ξ in [a, b]. (It turns out that this symmetry is
a result of the problem’s being self-adjoint. It is often called the property
of reciprocity or Maxwell’s reciprocity.∗∗)

∗∗After James Clark Maxwell.
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2. G(x; ξ) is continuous on a ≤ x ≤ b.
3. Gx(x; ξ) has a jump discontinuity at x = ξ given by

Gx(ξ+; ξ)−Gx(ξ−; ξ) = − 1

r(ξ)
.††

4. Gx and Gxx are continuous on a < x < ξ and ξ < x < b and satisfy the
associated homogeneous ODE on these intervals.

5. G satisfies the boundary conditions.

The above construction guarantees the existence of Green’s function, while
uniqueness is left to Exercise 10.

Theorem 10.2 For the Sturm–Liouville problem of Theorem 10.1, Green’s
function exists and is unique.

So we may compute Green’s functions either directly, using variation of
parameters, or by constructing them via the properties given in Theorem
10.1. Let’s look at an example.

Example 2 Find Green’s function for the BVP

y′′ = −f,
y(0) = y(L) = 0

in three different ways.

First, since λ = 0 is not an eigenvalue of the problem

y′′ + λy = 0, 0 < x < L,

y(0) = y(L) = 0,

we are guaranteed that G exists. We begin by finding the solutions z1 = 1 and
z2 = x of the associated homogeneous equation. Now, y1 = z2 = x satisfies
the boundary condition at x = 0, while y2 = z2 − Lz1 = x − L satisfies the
other; further, y1 and y2 are linearly independent. So Green’s function will
be

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩
−y1(ξ)y2(x)

rW
, if 0 ≤ ξ ≤ x,

−y1(x)y2(ξ)
rW

, if x ≤ ξ ≤ L,

=

⎧⎪⎪⎨
⎪⎪⎩
−ξ(x− L)

L
, if 0 ≤ ξ ≤ x,

−x(ξ − L)
L

, if x ≤ ξ ≤ L,

††Again, see Exercise 6.
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or, if we’d like,

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

x(L − ξ)
L

, if 0 ≤ x ≤ ξ,
ξ(L− x)

L
, if ξ ≤ x ≤ L.

Now, instead, let’s go backwards by using the properties of Green’s func-
tions. So, again, y1 = x and y2 = x−L, and we want the Green’s function to
be of the form

G(x; ξ) =

⎧⎪⎨
⎪⎩
A(ξ)(x − L), if 0 ≤ ξ ≤ x,
B(ξ)x, if x ≤ ξ ≤ L.

Now, we know that G is continuous at x = ξ, while Gx has a jump of −1
there. So,

A(ξ)(ξ − L) = B(ξ)ξ

and
A(ξ)−B(ξ) = −1.

Solving gives us A(ξ) = − ξ
L and B(ξ) = L−ξ

L , so that

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

ξ(L− x)
L

, if 0 ≤ ξ ≤ x,
x(L − ξ)

L
, if x ≤ ξ ≤ L.

Finally, a third method (at least for this example) is just to integrate:

y′′ = −f(x)
⇒ y′ = −

∫ x

0

f(ξ)dξ + c1

⇒ y = −
∫ x

0

∫ z

0

f(ξ)dξdz + c1x+ c2

=

∫ x

0

ξf(ξ)dξ − x
∫ x

0

f(ξ)dξ + c1x+ c2

(see Exercise 5). Then,

y(0) = 0 = c2

and

y(L) = 0 =

∫ L

0

ξf(ξ)dξ − L
∫ L

0

f(ξ)dξ + c1L.
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So

c1 =

∫ L

0

f(ξ)dξ − 1

L

∫ L

0

ξf(ξ)dξ,

and our solution is

y =

∫ x

0

ξf(ξ)dξ − x
∫ x

0

f(ξ)dξ + x

[∫ L

0

f(ξ)dξ − 1

L

∫ L

0

ξf(ξ)dξ

]

=

∫ x

0

ξ(L− x)
L

f(ξ)dξ +

∫ L

x

x(L − ξ)
L

f(ξ)dξ

=

∫ L

0

G(x; ξ)f(ξ)dξ,

where G is as given above.
Figure 10.1 shows the graph of y = G(x; ξ) for a fixed value of ξ. Obviously,

G is continuous, but not differentiable at the point x = ξ. In Figure 10.2,
we see the graphs of y = G(x; ξ1) and y = G(x; ξ2) and an illustration of the
reciprocity property, that G(ξ2; ξ1) = G(ξ1; ξ2).

L

x

G

y

ξ

(ξ,ξ)

L ξ

L

ξ

m=1 −

m= −

FIGURE 10.1
Graph of y = G(x; ξ)y = G(x; ξ)y = G(x; ξ) for a fixed value of ξξξ.
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FIGURE 10.2
An illustration of the reciprocity property of Green’s function:
G(ξ2; ξ1) = G(ξ1; ξ2)G(ξ2; ξ1) = G(ξ1; ξ2)G(ξ2; ξ1) = G(ξ1; ξ2).
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FOURIER SERIES REPRESENTATION OF
GREEN’S FUNCTION

There is yet another way to compute Green’s function. Consider, for example,
the nonhomogeneous heat equation

ut = uxx + f(x), 0 < x < π,

u(x, 0) = g(x),

u(0, t) = u(π, t) = 0.

We saw that we could solve it by, first, finding the form of the associated
homogeneous solution and then looking for a nonhomogeneous solution of
similar form. Here, we have

uh =

∞∑
n=1

bne
−n2t sinnx

and

up =

∞∑
n=1

cn(t) sinnx,

respectively, with the functions cn(t) to be determined by substituting into
the PDE and expanding f in its own sine series.

Let’s see how to apply this idea in the following example.

Example 3 Find the Green’s function for the BVP

y′′ = −f, 0 < x < π,

y(0) = y(π) = 0.

This problem looks somewhat like the problem above, so let’s try letting

y =

∞∑
n=1

bn sinnx, f =

∞∑
n=1

fn sinnx,

where, of course, the fn are known and the bn are to be determined. Also, our
choice of a sine series guarantees that the solution will satisfy the boundary
conditions.

Substituting into the ODE gives us

−
∞∑
n=1

n2bn sinnx = −
∞∑
n=1

fn sinnx,



476 An Introduction to Partial Differential Equations with MATLAB R©

so

bn =
1

n2
fn, n = 1, 2, 3, . . . ,

=
1

n2

2

π

∫ π

0

f(ξ) sinnξ dξ.

Therefore, our solution is just

y =

∞∑
n=1

1

n2
fn sinnx

=

∫ π

0

(
2

π

∞∑
n=1

sinnx sinnξ

n2

)
f(ξ)dξ

(so long as we may interchange Σ and
∫
), and it looks like we have the Green’s

function:

G(x; ξ) =
2

π

∞∑
n=1

sinnx sinnξ

n2
.

Then, from Example 2, we must have

2

π

∞∑
n=1

sinnx sinnξ

n2
=

⎧⎪⎪⎨
⎪⎪⎩

ξ(π − x)
π

, if 0 ≤ ξ ≤ x,
x(π − x)

π
, if x ≤ ξ ≤ x

(why?).

Now, what actually happened? In other words, in a more complicated
problem, how will we know which functions to use in the Fourier expansion?

Looking more closely, we see that the functions sinnx are the eigenfunctions
of

y′′ + λy = 0, 0 < x < π,

y(0) = y(π) = 0,

while the problem we’re actually solving is

y′′ + 0y = −f,
y(0) = y(π) = 0.

And, of course, zero is not an eigenvalue of the eigenvalue problem (which is
why we were guaranteed a Green’s function, of course).

This suggests that, in general, if we’re solving the BVP

(ry′)′ + (g + λ0w)y = L[y] + λ0wy = −f, a < x < b,
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with boundary conditions at x = a and x = b, and with λ0 not an eigen-
value of the associated homogeneous problem, we expand y and f in series of
eigenfunctions of the problem

L[y] + λwy = 0, a < x < b,

with the same boundary conditions.
Suppose, then, that the eigenvalues and eigenfunctions of the latter are,

respectively, λn and φn, n = 1, 2, 3, . . . . We let

y =

∞∑
n=1

bnφn(x)

and get

L[y] + λ0wy = L

[ ∞∑
n=1

bnφn(x)

]
+ λ0w

∞∑
n=1

bnφn(x)

=

∞∑
n=1

bnLφn(x) + λ0w

∞∑
n=1

bnφn(x)

= w

∞∑
n=1

(λn − λ0)bnφn(x),

so that the ODE gives us

w

∞∑
n=1

(λn − λ0)bnφn(x) = −f(x).

Finally, multiplying both sides by φm(x) and integrating leads to

(λm − λ0)bm‖φm‖2 = −
∫ b

a

f(ξ)φm(ξ)dξ.

Putting everything together, we have

y =

∞∑
n=1

bnφn(x) =

∞∑
n=1

∫ b

a
f(ξ)φn(ξ)dξ

(λ0 − λn)‖φn‖2φn(x)

=

∫ b

a

[ ∞∑
n=1

φn(x)φn(ξ)

(λ0 − λn)‖φn‖2
]
f(ξ)dξ,

and Green’s function is

G(x; ξ) =

∞∑
n=1

φn(x)φn(ξ)

(λ0 − λn)‖φn‖2 .
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MODIFIED GREEN’S FUNCTION

Now, what about the case where λ is an eigenvalue? Going back to Example
1, we saw that if sin kL = 0, in which case sin kx is an eigenfunction with
eigenvalue k2, then we lose uniqueness. Further, if

∫ L

0

f(x) sin kx dx = 〈f, sin kx〉 �= 0,

we lose existence, as well. The situation is similar—indeed, almost identical—
to the case where the linear operators are matrix multiplications of vectors.
In that case, if λ is not an eigenvalue of A, then the equation

(A− λI)xxx = xxx0

has a unique solution xxx = (A − λI)−1xxx0. (In fact, although we can’t really
talk about the inverse of an operator L, it looks like we have

L−1f =

∫ b

a

G(x; ξ)f(ξ)dξ.)

If λ is an eigenvalue, with eigenvector vvv, then we have

1) No solution if 〈vvv,xxx0〉 �= 0

2) Infinitely many solutions if 〈vvv,xxx0〉 = 0, that is, if vvv and xxx0 are perpen-
dicular

(with the obvious generalization for multiplicity greater than one).

The situation for the regular Sturm–Liouville problem (and for matrix op-
erators, as well, with adjustment in terminology) is stated in the following
theorem.

Theorem 10.3 (Fredholm Alternative Theorem) Given the regular Sturm–
Liouville problem above, we have the following possibilities.

a) Either λ is not an eigenvalue of the associated eigenvalue problem, and
the nonhomogeneous problem has a unique solution,

b) or λ is an eigenvalue of the associated eigenvalue problem with corre-
sponding eigenfunction φλ, and

i) either
∫ b

a
f(x)φλ(x)w(x)dx = 〈f, φλ〉 �= 0, in which case the non-

homogeneous problem has no solution.

ii) or
∫ b

a
f(x)φλ(x)w(x)dx = 〈f, φλ〉 = 0, in which case the nonhomo-

geneous problem has infinitely many solutions.
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Can we still talk about Green’s function for case (b)? Yes—if (ii) holds, we
may guarantee uniqueness by requiring that our solution and the eigenfunction
be orthogonal, that is, that 〈y, φλ0〉 = 0. If (i) holds—no solution—then there
is no Green’s function. However, we may solve the problem which is “closest”
to this problem by replacing −f with the component of −f which is orthogonal
to φλ0 .

Remember that we talked about the component of a vector vvv in the direction
of a vector www (see Figure 10.3). This component is just vvv · ŵ̂ŵw, where ŵ̂ŵw = www

‖www‖
is the unit vector in the direction of www. Then, vvvp = vvv − (vvv · ŵ̂ŵw)ŵ̂ŵw is the
component of vvv which is perpendicular to www, and it’s not hard to show that,
of all vectors perpendicular to www, this is the vector nearest vvv. (To be precise,
if wwwp represents all vectors perpendicular to www, then ‖vvv −wwwp‖ is minimized
by taking wwwp = vvvp.)

θ ŵ

^ ^

v

.(v     w) w

v − ^.   (v     w) w
   ^

FIGURE 10.3
The components of vvv with respect to ŵ̂ŵw.

Of course, we may do the same for functions, using inner product with re-
spect to w instead of dot product. So, if λ0 is an eigenvalue with eigenfunction
φ0, the function we’re after is

g = −f − 〈−f, φ̂0〉φ̂0, where φ̂0 =
φ0
‖φ0‖

(see Exercise 11).
Then, the problem

(ry′)′ + (q + λ0w)y = g

satisfies (ii), which we can solve. The resulting Green’s function is called
the generalized Green’s function, Gg(x; ξ), of the original problem; if we
force uniqueness by requiring that 〈y, φ0〉 = 0, we then have the modified
Green’s function, Gm(x; ξ).

Let’s conclude with an example.

Example 4 Compute the modified Green’s function for the problem

y′′ = −f, 0 < x < 1,

y(0) = y(1)− y′(1) = 0.
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We solve the associated homogeneous problem and find that y = cx is a
solution for any constant c. Remember, we’re looking at the problem y′′+0y =
0, and 0 is an eigenvalue. Since the weight function is w(x) = 1, we have no

solution unless
∫ 1

0
xf(x)dx = 0.

First, we need the eigenfunction φ with ‖φ‖ =
(∫ 1

0
φ2(x)dx

)1/2

= 1, so we

take φ(x) =
√
3 x. Then, the component of f in the direction of φ is

〈f, φ〉φ(x) =
√
3 x

∫ 1

0

√
3 xf(x)dx,

so we solve the new problem

y′′ = −f + 3x

∫ 1

0

ξf(ξ)dξ.

Then, as before,

y′ = −
∫ x

0

f(ξ)dξ +
3x2

2

∫ 1

0

f(ξ)dξ + c1

y =

∫ x

0

ξf(ξ)dξ − x
∫ x

0

f(ξ)dξ +
x3

2

∫ 1

0

ξf(ξ)dξ

+ c1x+ c2.

The first boundary condition implies that c2 = 0, while the second boundary
condition is satisfied identically (see Exercise 7). This is to be expected, as
we know that the problem has infinitely many solutions.

At this point, we have the generalized Green’s function

Gg(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩
ξ − x+

x3ξ

2
, if 0 ≤ ξ ≤ x,

x3ξ

2
, if x ≤ ξ ≤ 1

and

y =

∫ 1

0

Gg(x; ξ)f(ξ)dξ + cx

for any choice of the constant c. Note that Gg is not symmetric. In order
to find the modified Green’s function, we look for the value of c1 that makes
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〈φ, y〉 = 0. So, we need

0 = 〈x, y〉 =
∫ 1

0

x

∫ x

0

ξf(ξ)dξdx −
∫ 1

0

x2
∫ x

0

f(ξ)dξdx

+

∫ 1

0

x4

2
dx

∫ 1

0

ξf(ξ)dξ +
c1
3

=

∫ 1

0

ξf(ξ)

∫ 1

ξ

x dxdξ −
∫ 1

0

f(ξ)

∫ 1

ξ

x2 dxdξ

+
1

10

∫ 1

0

ξf(ξ)dξ +
c1
3

=
3

5

∫ 1

0

ξf(ξ)− 1

3

∫ 1

0

f(ξ)dξ − 1

6

∫ 1

0

ξ3f(ξ)dξ +
c1
3

and

c1 =

∫ 1

0

(
ξ3

2
− 9ξ

5
+ 1

)
f(ξ)dξ.

Finally, we put everything together as

y =

∫ x

0

[
ξ − x+ x3ξ

2
+ x

(
ξ3

2
− 9ξ

5
+ 1

)]
f(ξ)dξ

+

∫ 1

x

[
x3ξ

2
+ x

(
ξ3

2
− 9ξ

5
+ 1

)]
f(ξ)dξ,

so

Gm(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

x3ξ

2
+
xξ3

2
− 9xξ

5
+ x, if 0 ≤ x ≤ ξ,

x3ξ

2
+
xξ3

2
− 9xξ

5
+ ξ, if ξ ≤ x ≤ 1,

which is symmetric (though, in general, it need not be) and also continuous
at x = ξ.‡‡

Exercises 10.1

1. Compute Green’s function or the generalized Green’s function for the
BVP

a) y′′ = −f, y(0) = y′(1) = 0

b) y′′ = −f, y(0) + y′(0) = y(L) = 0, L �= 1 (see part (f), also)

c) y′′ = −f , y′(0) = y′(1) = 0

d) y′′ + k2y = −f, y(0) = y′(L) = 0, k �= 2n+1
2L π for integral n

‡‡To see what Gq and Gm do for us, see Exercise 10 in Section 10.2.
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e) y′′ − y = 0, y(0) = y(1) = 0

f) y′′ = −f, y(0) + y′(0) = y(1) = 0

2. Use the Green’s functions derived in the various examples, or in Exercise
1, to solve the nonhomogeneous BVP. (Make sure your answer matches
the one you get using traditional methods.)

a) y′′ = −erx, 0 < x < 1, r �= 0 constant,
y(0) = y(1) = 0

b) y′′ + y = 1, 0 < x < π
2 ,

y(0) = y
(
π
2

)
= 0

c) y′′ = x, 0 < x < 1,
y(0) = y′(1) = 0

3. Use the properties of Green’s function to construct Green’s function for

a) The singular Cauchy–Euler problem

(xy′)′ − 1

x
y = −f, 0 < x < 2,

y(0) <∞, y(2) = 0.

b) The Bessel’s BVP

(xy′)′ − n2

x
y + k2xy = −f, 0 < x < 1,

y(0) <∞, y(1) = 0.

Here, n ≥ 0 is an integer, while k �= 0 is real and not a root of Jn(x)
(why this restriction?).
Hint: Remember that rW is constant. You may use the fact that, in
this case, it turns out that

rW = xW [Jn, Yn] =
2

π
.

4. Find a Fourier series representation for Green’s function for the BVP

a) From Exercise 1a

b) From Example 1 (k �= an integer)

5. Show that ∫ x

0

∫ z

0

f(ξ)dξ dz =

∫ x

0

(x− ξ)f(ξ)dξ.

6. a) Verify that if y is continuous at x = ξ, then

lim
ε→0

∫ ξ+ε

ξ−ε

(y′′ + k2y)dx = y′(ξ+)− y′(ξ−).
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b) More generally, verify that if r, q and y are continuous at x = ξ,
then

lim
ε→0

∫ ξ+ε

ξ−ε

[(r(x)y′(x))′ + q(x)y(x)]dx = r(ξ)[y′(ξ+)− y′(ξ−)].

7. Show that the function

y =

∫ x

0

ξf(ξ)dξ − x
∫ x

0

f(ξ)dξ +
x3

2

∫ 1

0

ξf(ξ)dξ + cx

satisfies y(1) − y′(1) = 0 for any well-enough behaved function f and
any constant c.

8. In Example 1, justify

a) The variation of parameters computations

b) The simplifications leading to the final answer

9. Fill in the details in the computations leading up to Theorem 10.1

a) In the variation of parameters computation

b) In showing that yp satisfies the boundary conditions

10. Prove that Green’s function for the BVP of Theorem 10.1 is unique.

11. a) Verify that, for any well-enough behaved functions f and h, the
function

g = f −
〈
f,

h

‖h‖
〉

h

‖h‖
is orthogonal to h.

b) More generally, extend this procedure and create an orthogonal
sequence of functions

g1, g2, g2, . . .

from a sequence of functions

f1, f2, f3, . . . .

This is the Gram–Schmidt orthogonalization procedure.

c) If the functions fn form a linearly independent set, turn the se-
quence gn into an orthonormal sequence. Why must we specify
linear independence here?

12. Compute both
∫ 1

0 Gg(x; ξ)f(ξ)dξ) and
∫ 1

0 Gm(x; ξ)f(ξ)dξ for the prob-
lem in Example 4, with f(x) = 2 − 3x. How do these compare to the
problem’s actual solution?
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13. We may, instead, write our nonhomogeneous BVPs in the form

(ry′)′ + qy = −f, a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0.

a) Then, we’ll have a unique solution unless the associated homoge-
neous problem has a nontrivial solution (as usual). How do we say
this using eigenvalue language?

b) Show that, in the case that there is a unique solution, we may solve
this problem via generalized Fourier series by expanding y and f
in terms of eigenfunctions φn of the problem

(ry′)′ + (q + λw)y = 0,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0,

for any weight function w. Write down Green’s function in this
case.

c) When will this method not work, and why? (In practice, this
generalization turns out not to be very useful as, for most choices
of w, the eigenfunctions will be difficult to compute.)

10.2 Green’s Function and the Dirac Delta Function

It was suggested at the start of this chapter that Green’s function is the
solution of the BVP

Ly = −δ(x− ξ), a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0.

Of course, this is a distributional equation and care must be taken when we
“mix” classical and distributional settings. Keeping this in mind, let’s begin
by showing that the above statement is true for the problem in Example 1 of
the previous section.

Example 1 We computed Green’s function for the BVP

y′′ + k2y = −f, 0 < x < L,

y(0) = y(L) = 0,

where k2 is not an eigenvalue of the associated homogeneous problem, to be

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

1

k sin kL
sin kξ sin k(L− x), 0 ≤ ξ ≤ x,

1

k sin kL
sin kx sin k(L− ξ), x ≤ ξ ≤ L.
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We’d like to show that G is the (distributional) solution of the problem

y′′ + k2y = −δ(x− ξ), 0 < x < L,

y(0) = y(L) = 0.

Since G was constructed to satisfy the boundary conditions, we need only
show that it satisfies the ODE.

First, we write G using Heaviside functions:

G(x; ξ) =
1

k sin kL
[H(x− ξ) sin kξ sin k(L− x) +H(ξ − x) sin kx sin k(L− ξ)].

Then,

Gx(x; ξ) =
1

k sin kL
δ(x− ξ)[sin kξ sin k(L− x)− sin kx sin k(L− ξ)]

+
1

sin kL
[−H(x− ξ) sin kξ cos k(L − x) +H(ξ − x) cos kx sin k(L− ξ)].

Now, the first term is just the zero-function (why?). Then,

Gxx(x; ξ) = − 1

sinkL
δ(x− ξ)[sin kξ cos k(L− x) + cos kx sin k(L− ξ)]

− k2G(x; ξ)
= −δ(x− ξ)− k2G(x; ξ) (why?).

Therefore, we have

Gxx + k2G = −δ(x− ξ).
We say that G is the response to a unit impulse or a unit concentrated
source at x = ξ. For example, G(t; t0) which satisfies

Gtt + k2G = −δ(t− t0)

is the response of a spring-mass-dashpot system to a unit impulse (a hammer
blow) at time t = t0.

More generally, we can show that Green’s function is always related to δ in
this way.

Theorem 10.4 Green’s function given in Theorem 10.1 is the unique distri-
butional solution of the BVP

(ry′)′ + (q + λ0w)y = −δ(x− ξ), a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0.
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PROOF See Exercise 2.

From earlier, we know that the solution to the Sturm–Liouville problem in
Theorem 3.1 is

y =

∫ b

a

G(x; ξ)f(ξ)dξ,

but it’s instructive to apply Green’s formula or Green’s second identity in this
situation. Let’s restate Green’s first and second identities (which we proved
in Exercise 6, Section 8.1). So, given the Sturm–Liouville operator

L[y] = (ry′)′ + qy,

regular on a ≤ x ≤ b, we have Green’s first identity,

∫ b

a

uL[v]dx = r(x)u(x)v′(x)|ba −
∫ b

a

r(x)u′(x)v′(x)dx +

∫ b

a

q(x)u(x)v(x)dx,

and Green’s second identity,

∫ b

a

(uL[v]− vL[u])dx = r(x)[u(x)v′(x) − v(x)u′(x)]|ba,

for all well-enough behaved u and v. (As we saw, in many cases we can extend
these identities to singular operators.)

We now use Green’s second identity with u = y, the solution, and v =
G(x; ξ). So, ∫ b

a

(yLG−GLy)dx = r(x)[yGx −Gy′]|x=b
x=a.

We showed back in Section 7.2 that if y1 and y2 both satisfy a1y(c)+a2y
′(c) =

0, then y1(c)y
′
2(c)−y2(c)y′1(c) = 0. Therefore, as y and G satisfy the boundary

conditions, our right side is zero.
Now we have

0 = −
∫ b

a

(yLG−GLy)dx

= −
∫ b

a

y(x)δ(x − ξ)dx +

∫ b

a

G(x; ξ)f(x)dx ∗

= y(ξ) +

∫ b

a

G(ξ;x)f(x)dx

or

y(ξ) =

∫ b

a

G(ξ;x)f(x)dx,

∗Again, it is not obvious that all of the operations involved—integration by parts, etc.—are
valid in the realm of distributions. It turns out that Green’s identity does still hold in this
setting.
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that is,

y(x) =

∫ b

a

G(x; ξ)f(ξ)dξ.

We may continue and show that G(x; ξ) defined this way must satisfy the
classical properties given in Theorem 10.1. We do so for some of these prop-
erties in Exercise 3. In particular, the symmetry property G(x; ξ) = G(ξ;x)
has a nice physical interpretation in this setting—it says that the response at
x due to an impulse at ξ is the same as the response at ξ due to an impulse
at x. This reciprocal behavior between the points x and ξ is the reason that
this symmetry is called the property of reciprocity.

A few examples are in order.

Example 2 Repeat Example 2 of the previous section, but this time solve
the problem

y′′ = −δ(x− ξ), 0 < x < L,

y(0) = y(L) = 0.

Since d
dxH(x− ξ) = δ(x− ξ), we have

y′′ = −δ(x− ξ)⇒ y′ = −H(x− ξ) + c1

⇒ y = −
∫ x

0

H(z − ξ)dz + c1x+ c2

=

⎧⎪⎨
⎪⎩
c1x+ c2, if 0 ≤ x ≤ ξ,
−x+ ξ + c1x+ c2, if ξ ≤ x ≤ L.

The boundary conditions give us

y(0) = 0 = c2

y(L) = 0 = −L+ ξ + c1L+ c2

so

c1 =
L− ξ
L

, c2 = 0,

and our solution is

y = G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

x(L − ξ)
L

, if 0 ≤ x ≤ ξ,
ξ(L − x)

L
, if ξ ≤ x ≤ L.

By the way, we have a nice physical interpretation of this problem, too.
The nonhomogeneous heat equation

ut = uxx + δ(x− ξ)
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models the temperature distribution in a rod with a unit, time-independent
point source of heat at the point x = ξ. The steady state version of this
problem is, of course,

uxx = −δ(x− ξ),
so that G(x; ξ) represents its steady state temperature distribution.

Going a bit further, let’s integrate the original ODE over an ε-interval
centered at x = ξ:

∫ ξ+ε

ξ−ε

y′′ dx = −
∫ ξ+ε

ξ−ε

δ(x − ξ)dx

or

Gx(ξ + ε; ξ)−Gx(ξ − ε, ξ) = −1.
Of course, letting ε→ 0 gives us Property 3 of Green’s function, but here the
equation is still true for any (small enough) ε > 0. What this says, physically,
is that the flux across the boundary is equal to the heat generated within the
interval; in other words, this is just a statement of the conservation of heat
energy.

This idea will play a significant role in the computation of Green’s function
in higher dimensions.

Example 3 Solve the BVP

y′′ − k2y = −δ(x− ξ), 0 < x < L, k > 0,

y(0) = y(L) = 0.

First, as solutions of the associated homogeneous equation, we may use
y1 = ex and y2 = e−x or y1 = coshx and y2 = sinhx. However, led by our
experiences in Section 10.1, we can make our lives easier by taking y1 which
satisfies the first boundary condition, and y2 which satisfies the other bound-
ary condition. Taking y1 = sinhx, it should be clear that y2 = sinh k(L− x)
will work, as long as they’re linearly independent. But

W [sinh kx, sinh k(L− x)] =
∣∣∣∣∣∣
sinh kx sinh k(L− x)
k coshkx −k coshk(L− x)

∣∣∣∣∣∣
= −k[sinh kx coshk(L− x) + cosh kx sinh k(L− x)]
= −k sinh(kx+ k(L− x))
= −k sinh kL �= 0.

Then, using variation of parameters, we have yp = u1y1 + u2y2, where

u′1 = −δ(x− ξ) sinh k(L− x)
sinh kL

and u′2 =
δ(x − ξ) sinhx

sinh kL
.
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We may integrate from zero to x, for example, to get u1 and u2, but, again
guided by what we’ve seen, let’s take

u1 =
1

sinh kL

∫ L

x

δ(z − ξ) sinh k(L− z)dz

=

⎧⎪⎨
⎪⎩
sinh k(L− ξ)/ sinh kL, if 0 ≤ x ≤ ξ,
0, if ξ < x ≤ L

(why?)

and

u2 =
1

sinh kL

∫ x

0

δ(z − ξ) sinh kz dz

=

⎧⎪⎨
⎪⎩
0, if 0 ≤ x < ξ,

sinh kξ

sinh kL
, if ξ ≤ x ≤ L.

The general solution becomes

y = G(x; ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c1 sinh kx+ c2 sinh k(L− x)
+

sinh k(L− ξ) sinh kx
sinh kL

, if 0 ≤ x ≤ ξ,

c1 sinh kx+ c2 sinh k(L− x)
+

sinh kξ sinh k(L− x)
sinh kL

, if ξ ≤ x ≤ L.

Finally, from the boundary conditions, c1 = c2 = 0 (as expected), and our
solution is

G(x; ξ) =

⎧⎪⎪⎨
⎪⎪⎩

sinh kx sinh k(L− ξ)
sinh kL

, if 0 ≤ x ≤ ξ,
sinh kξ sinh k(L− x)

sinh kL
, if ξ ≤ x ≤ L.

(By the way, make sure it’s clear to you that G(x; ξ) = G(ξ;x) here.)
We may use Fourier series to find Green’s function in this setting, as well.

Example 4 Use Fourier series to solve

y′′ = −δ(x− ξ), 0 < x < π,

y(0) = y(π) = 0.

As before, we let

y =

∞∑
n=1

bn sinnx.
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Then, taking y′′ leads to
∞∑

n=1

n2bn sinnx = δ(x− ξ),

and we multiply both sides by sinmx and integrate to get

∞∑
n=1

n2bn

∫ π

0

sinnx sinmx dx =

∫ π

0

δ(x − ξ) sinmx dx

or

bn =
2

πn2
sinnξ.

So our solution is

y(x; ξ) =
2

π

∞∑
n=1

sinnx sinnξ

n2
,

as expected. In fact, we also have shown that, in a distributional setting, the
Fourier sine series for the delta function is

δ(x− ξ) ∼
∞∑
n=1

sinnξ sinnx.

We also may deal with the modified Green’s function using the delta func-
tion.

Example 5 We repeat Example 4 of the previous section but this time by
solving the problem

y′′ = −δ(x− ξ), 0 < x < 1,

y(0) = y(1)− y′(1) = 0.

As earlier, φ(x) =
√
3 x in the nontrivial solution with norm equal to 1.

Then, the projection of δ(x− ξ) onto φ is

〈δ(x− ξ), φ〉 = 3x

∫ 1

0

xδ(x− ξ)dx = 3xξ,

so we solve

y′′ = −δ(x− ξ) + 3xξ,

y(0) = y(1)− y′(1) = 0.

Integrating gives us

y′ = −H(x− ξ) + 3x2ξ

2
+ c1

y′ =

⎧⎪⎪⎨
⎪⎪⎩

x2ξ

2
+ c1x+ c2, if 0 ≤ x ≤ ξ,

−x+ ξ +
x2ξ

2
+ c1x+ c2, if ξ ≤ x ≤ 1.



Nonhomogeneous Problems and Green’s Functions 491

The first boundary condition gives c2 = 0, while the second boundary condi-
tion is satisfied identically (show this yourself!). Finally, we select c1 so that
〈x, y〉 = 0:

0 = 〈x, y〉 =
∫ 1

0

x

(
x3ξ

2
+ c1x

)
dx

+

∫ 1

ξ

x(−x+ ξ)dx

or

c1 =
ξ3

2
− 9ξ

5
+ 1.

Substituting this into our expression for y gives the same result as before.
An advantage of the delta function approach is that it gives us an easy

way to deal with nonhomogeneous boundary conditions, which we look at in
Exercise 5.

THE FUNDAMENTAL SOLUTION OR FREE-SPACE
GREEN’S FUNCTION

We may still talk about Green’s function for ODEs on −∞ < x < ∞. Of
course, we won’t have the usual boundary conditions but, as before, we’ll have
certain integrability conditions.

As we’re on −∞ < x <∞, we may use the Fourier transform and, in fact,
it gives us an elegant and easy way to deal with the problem. Let’s begin with
an example.

Example 6 We wish to solve the ODE

y′′ + k2y = −f, −∞ < x <∞,
in terms of the solution of

z′′ + k2z = −δ(x− ξ), −∞ < x <∞.
Let’s transform both equations and see what we can do. The latter transforms
to

Z(α; ξ) =
1√
2π
e−iαξ 1

α2 − k2 ,

and the former transforms to

Y (α) = F (α)
1

α2 − k2 .

It’s not difficult to find F−1[Z(α)], and we can write

Y (α) =
√
2π eiαξF (α)Z(α),
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so our solution will be a convolution. However, the e±iαξ terms seem to get
in the way (but see Exercise 10). We really need only solve

z′′ + k2z = −δ(x), −∞ < x <∞.
Then,

Z(α) = Z(α; 0) =
1√
2π

1

α2 − k2
and

Y (α) =
√
2π F (α)Z(α),

from which our solution is just

y(x) = f(x) ∗ z(x).
Before continuing the example, let’s state an official definition and a theo-

rem.

Definition 10.1 Given the linear ordinary differential operator L[y], its fun-
damental solution or free-space Green’s function is the function z(x; ξ)
which satisfies

L[z(x; ξ)] = −δ(x− ξ), −∞ < x <∞.
The following theorem will suffice for our purposes.

Theorem 10.5 The solution of the linear ODE

L[y] = −f, −∞ < x <∞
with constant coefficients is

y(x) = f(x) ∗ z(x; 0),
where z is its fundamental solution.

(The proof is an obvious generalization of what we’ve done in Example 6.)

Example 6 (cont.) So we continue with Example 6. We need only find
F−1[Z(α)]. We have

1

α2 − k2 =
1

2k

(
1

α− k −
1

α+ k

)
,

so we’ll need the following, from Chapter 6:

F−1[G(α − c)] = eicxF−1[G(α)] (Exercise 9d, Section 6.3),

F [sgn x] = −i
√

2

π

1

α
(Section 6.5),
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where, again,

sgn x = H(x)−H(−x) =

⎧⎪⎨
⎪⎩
1, if x > 0,

−1, if x < 0.

Then,

F−1

[
1

α− k
]
= eikxF−1

[
1

α

]
= i

√
π

2
eikx sgn x

and

F−1

[
1

α+ k

]
= i

√
π

2
e−ikx sgn x.

Finally, then,

F−1

[
1√
2π

1

α2 − k2
]
=

i

4k
(eikx − e−ikx) sgn x

= − 1

2k
sin kx sgn x = z(x; 0),

and our solution is

y(x) = f(x) ∗
(
− 1

2k
sin kx sgn x

)

= − 1

2k

∫ ∞

−∞
sin k(x− y) sgn(x− y)f(y)dy

=
1

2k

[∫ ∞

x

sin k(x− y)f(y)dy −
∫ x

−∞
sin k(x− y)f(y)dy

]
(why?)

(
or =

1

2k

[∫ ∞

0

sin kyf(x− y)dy −
∫ 0

−∞
sin kyf(x− y)dy

])
.

By the way, it’s easy to show that the more general fundamental solution
is

z(x; ξ) = − 1

2k
sin k(x− ξ) sgn(x− ξ),

and the solution to our problem is then seen to be what we expect it to be:

y =

∫ ∞

−∞
z(x; ξ)f(ξ)dξ.

In fact, in general, if

L[z(x; ξ)] = −δ(x− ξ),
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then the change of variable x→ x+ ξ tells us that

L[z(x+ ξ; ξ)] = −δ(x).

So, from uniqueness, we have the translation property of the fundamental
solution

z(x− ξ; 0) = z(x; ξ).

(See Exercise 8.) Then,

f(x) ∗ z(x; 0) =
∫ ∞

−∞
z(x− ξ; 0)f(ξ)dξ

=

∫ ∞

−∞
z(x; ξ)f(ξ)dξ.

Theorem 10.6 The solution of the problem

L[y] = −f, −∞ < x <∞

is

y =

∫ ∞

−∞
z(x; ξ)d(ξ)dξ,

where z(x; ξ) is the fundamental solution.

We may look at modified Green’s functions in this distributional setting,
as well. Instead, we choose to introduce another Green’s-like function, the
Neumann function. We do so by example.

Example 7 Consider again the (Neumann) problem

y′′ = −f, 0 < x < 1,

y′(0) = y′(1) = 0.

If we integrate the ODE from x = 0 to x = 1, we have

∫ 1

0

f(x)dx = y′(0)− y′(1) = 0,

a compatibility condition which is really just the condition that 〈1, f〉 = 0,
from earlier.

Therefore, the problem

G′′ = −δ(x− ξ), 0 < x < 1,

G′(0) = G′(1) = 0
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will not have a solution (why not?). However, the condition

−1 = −
∫ 1

0

δ(x− ξ)dx = G′(1)−G′(0)

suggests that, instead of changing the nonhomogeneous part of the ODE (as
we did in the case of the generalized Green’s function), we might try changing
the boundary conditions. So, let’s look at the problem

H ′′ = −δ(x− ξ), 0 < x < 1,

H ′(0) = a, H ′(1) = b,

and see what happens. We integrate the ODE to arrive at

H(x; ξ) =

{
c1x+ c2, if 0 ≤ x < ξ,

ξ − x+ c1x+ c2, if ξ < x ≤ 1,

and, keeping in mind the compatibility equation a− b = 1, we have

c1 = a, c2 arbitrary.

Really, this just says that we have a solution as long as a− b = 1.

What does this do for us? As usual, we apply Green’s second identity and,
this time, we get

∫ 1

0

(yH ′′ −Hy′′)dx = (yH ′ −Hy′)|10

or

y =

∫ 1

0

H(x; ξ)f(ξ)dξ + (a− 1)y(1)− ay(0).

In other words, we’ve found the solution of the original problem, as we may
treat a as arbitrary.

The function H is called the Neumann function for the original problem.
This same approach will be used to deal with the Neumann problem in higher
dimensions.

Physically, we may look at the problem

H ′′ = −δ(x− ξ), 0 < x < 1,

H ′(0) = a, H ′(1) = a− 1

as a steady state heat problem with constant unit heat source at x = ξ, and
constant outward flux of heat equal to −(a− 1) + a = 1.
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Exercises 10.2

1. Redo Exercise 1 of Section 10.1 but this time use the delta function
approach.

2. Suppose that y1 and y2 are linearly independent solutions of the homo-
geneous problem

(ry′)′ + (q + λ0w)y = 0, a < x < b,

a1y(a) + a2y
′(a) = b1y(b) + b2y

′(b) = 0

(where λ0 is not an eigenvalue). As in Example 1, rewrite the Green’s
function

G(x; ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−y1(ξ)y2(x)
r(ξ)W (ξ)

, if a ≤ ξ ≤ x,

−y1(x)y2(ξ)
r(ξ)W (ξ)

, if x ≤ ξ ≤ b

using Heaviside functions, and show that it satisfies the ODE

(ry′)′ + (q + λ0w)y = −δ(x− ξ), a < x < b.

3. Here we go backwards and show that if we define Green’s function as the
solution of the delta function BVP in this section, then it must satisfy
the five properties given in Theorem 10.1.

a) Use u = G(x; ξ1) and v = G(x; ξ2) in Green’s second identity to
show that G is symmetric, that is, that G(x; ξ) = G(ξ;x) for any
numbers x, ξ in the interval in question.

b) In order to show that

Gx(ξ+; ξ)−Gx(ξ−; ξ) = − 1

r(ξ)
,

first let u = 1 and v = G(x; ξ) in Green’s second identity and
then, having chosen the limits of integration appropriately, treat
the result classically.

4. Use the Fourier sine series representation of δ(x−ξ) and take the Fourier
transform of both sides to show that

e−iαξ = iπ

∞∑
n=1

sinnξ[δ(α+ n)− δ(α− n)], ξ �= 0.

5. Nonhomogeneous boundary conditions
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a) Suppose that the BVP

y′′ = −f, a < x < b,

y(a) = y(b) = 0

has Green’s function G(x; ξ). Use Green’s second identity, with
u = y, the solution, and v = G(x; ξ), to show that the solution of
the BVP

y′′ = −f, a < x < b,

y(a) = α, y(b) = β,

is

y =

∫ b

a

G(x; ξ)f(ξ)dξ − βGξ(x; b) + αGξ(x; a).

b) Generalize the idea in part (a) to solve

L[y] = (ry′)′ + (q + λ0w)y = −f, a < x < b,

y(a) = α, y(b) = β.

(Here, λ0 is not an eigenvalue of the associated homogeneous prob-
lem.)

c) Generalize part (b) still further, to the cases where the left end
boundary condition is y(a) = α or y′(a) = α, while the right end
boundary condition is y(b) = β or y′(b) = β.

d) Finally, generalize to the case where the boundary conditions are

a1y(a) + a2y
′(a) = α,

b1y(b) + b2y
′(b) = β,

where a1, a2, b1 and b2 are nonzero and a1b2 − a2b1 �= 0.

6. a) Show that the BVP

y(4) = 0, 0 < x < 1,

y(0) = y′(0) = y(1) = y′(1)

has a unique solution.

b) Find Green’s function for the BVP

y(4) = −f, 0 < x < 1,

y(0) = y′(0) = y(1) = y′(1) = 0.

7. Fundamental solution: Compute the general fundamental solution
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a) y′′ − k2y = −f , lim
x→±∞ y(x) = 0, k > 0

b) y′′ = −f , lim
x→±∞ y(x) = 0

c) y(4) − k4y = −f , lim
x→±∞ y(x) = 0, k > 0

8. Verify, formally, the more general translation property for the funda-
mental solution F (x; ξ), that

F (x+ a; ξ − a) = F (x; ξ)

for all x, ξ and a.

9. a) Prove that if g is well-enough behaved, then

d

dx

∫ x

a

g(x, y)dy = g(x, x) +

∫ x

a

gx(x, y)dy.

b) Use part (a) to show that the solution given in Example 6 does
satisfy the ODE, formally.

c) Do the same for the problem in Exercise 7a.

d) Do the same for the problem in Exercise 7b.

10. Referring to Example 4 in Section 10.1, suppose we have the problem

y′′ = −f, 0 < x < 1,

y(0) = y(1)− y′(1) = 0,

and suppose that 〈x, f〉 = 0.

a) Show that ∫ 1

0

Gg(x; ξ)f(ξ)dξ

gives the same function for any choice of the generalized Green’s
function Gg.

b) Show that all solutions of the above problem are of the form

y =

∫ 1

0

Gg(x; ξ)f(ξ)dξ + C.

c) Show that if there is a solution which is orthogonal to x, then that
solution is given by

y =

∫ 1

0

Gm(x; ξ)f(ξ)dξ.
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11. Neumann function

a) Let f(x) = 2x − 1 in Example 7, and solve the problem directly
via integration.

b) Instead, compute the function y =
∫ 1

0
H(x; ξ)(2ξ−1)dξ forH given

in Example 7. Compare with the solution of part (a).

c) Do the same as in parts (a) and (b) for the problem

y′′ = 3x− 2, 0 < x < 1,

y(0) = y(1)− y′(1) = 0.

12. One could proceed to solve the problem

L[y] = −δ(x− ξ), a < x < b,

y(a) = y(b) = 0

by first finding the fundamental solution

L[z(x; ξ)] = −δ(x− ξ), −∞ < x <∞,
then letting y = z + u and solving the resulting u-problem. Do this for
the problem

y′′ + k2y = −δ(x− ξ), 0 < x < L,

y(0) = y(L) = 0,

and make sure that your solution matches that of Example 1 in Section
10.1.

13. Method of images—problems on the interval 0 ≤ x <∞0 ≤ x <∞0 ≤ x <∞: Sup-
pose we’d like to solve the problem

y′′ + k2y = −δ(x− ξ), x > 0,

y(0) = 0.

a) Solve, instead, the problem

z′′ + k2z = −δ(x− ξ) + δ(x+ ξ), −∞ < x <∞.

b) Show that the solution to part (a) is actually the solution of the
original problem. In particular, make sure you know why

z′′ + k2z = −δ(x− ξ) on 0 < x <∞.
This is another version of the method of images. Note that we have
added a sink at x = −ξ in order to cancel out the source at x = ξ.
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10.3 Green’s Functions for Elliptic PDEs (I): Poisson’s
Equation in Two Dimensions

Let’s begin our study of Green’s functions for PDEs by considering the Dirich-
let problem

∇2u = uxx + uyy = −f on D,

u = g on C,

where D is a simply-connected domain in R
2 bounded by the simple closed

curve C. As we’ve seen before, if v is the solution of

∇2v = −f on D,

v = 0 on C,

and w is the solution of

∇2w = 0 on D,

w = g on C,

then u = v + w is the solution we’re looking for. Further, the w equation is
just Laplace’s equation, already solved in Chapters 2 and 9.

Therefore, we search for Green’s function for the v-equation. We expect—
and will show below—that this G(x, y; ξ, η) will satisfy

∇2G = −δ(x− ξ, y − η) on D,

G = 0 on C,

where the variables are x and y, and where the two-dimensional delta function
is defined, as earlier, by

δ(x, y) = δ(x)δ(y).

The existence of the boundary still complicates matters, but it turns out that
we can even get around this. Suppose that F (x, y; ξ, η) satisfies

∇2F = −δ(x− ξ, y − η), −∞ < x <∞,−∞ < y <∞,
that is, suppose that F is the fundamental solution or free-space Green’s func-
tion for Poisson’s equation. Then, once we’ve found F , we need only let
G(x, y; ξ, η) = F (x, y; ξ, η)+Z(x, y; ξ, η), where Z satisfies Laplace’s equation

∇2Z = 0 on D,

Z = −F on C

(which should cause no problem, as F is smooth on (x, y) �= (ξ, η)). To repeat,
once we have found the fundamental solution of the Laplace operator, then
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we will have reduced any problem involving Poisson’s equation to one which
entails solving Laplace’s equation on the same domain.

Before doing anything else, let’s compute the well-known fundamental so-
lution of the Laplace operator, after which we’ll show that Green’s function
actually does what we’d like it to do. So we wish to solve

∇2F (x, y; ξ, η) = −δ(x− ξ, y − η), −∞ < x <∞,−∞ < y <∞.

It should be clear that F is symmetric, that is, that

F (x, y; ξ, η) = F (ξ, η;x, y)

for all ordered pairs (x, y) and (ξ, η) (why?) and that F is radially symmetric
with respect to the point (ξ, η).

We may also ask about the jump in “the” first derivative of F at (ξ, η) (re-
alizing that, in two dimensions, there are infinitely many directional deriva-
tives). From the definition of δ(x), it should be clear (see Exercise 1) that

∫∫
D

δ(x − ξ, y − η)dxdy = 1

for any domain D with (ξ, η) ∈ D. Then, taking Dε to be the disk of radius
ε centered at (ξ, η), we have, upon integrating the PDE,

∫∫
Dε

∇2F dxdy = −
∫∫
Dε

δ(x− ξ, y − η)dxdy.

Using Green’s Theorem (or Green’s second identity for ∇2—see Exercise 2),
this becomes ∮

Cε

∂F

∂n
ds = −1

for any ε > 0, where Cε is the circle bounding Dε.
So we’re ready to compute F . Unfortunately, at this level we must proceed

in a somewhat ad hoc manner, mixing the classical with the distributional; so
care must be taken.∗ F must then satisfy the two conditions

∇2F = 0, (x, y) �= (ξ, η)

and ∮
Cε

∂F

∂n
ds = −1,

∗For a rigorous derivation, see R.P. Kanwal’s Generalized Functions: Theory and Technique.
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where Cε is as above. We use the radial symmetry of F to change to the polar
coordinates

x− ξ = r cos θ, y − η = r sin θ,

in which case the conditions become

1

4

d

dr

(
r
dF

dr

)
= 0, r �= 0

and ∫ 2π

0

dF

dr
r dθ = 2πε

dF

dr
(ε) = −1.

The r-equation has solution

F = c1 + c2 ln r,

and the second condition forces c2 = − 1
2π . Therefore, the fundamental solu-

tion for the Laplace operator is

F = C − 1

2π
ln r

for any choice of the constant C. Usually, we set C = 0 for convenience
(although sometimes we need C �= 0, as in Example 4 at the end of this
section). So we have the following theorem.

Theorem 10.7 The fundamental solution of Poisson’s equation

∇2F = −δ(x− ξ, y − η), −∞ < x <∞,−∞ < y <∞,

is the logarithmic potential

F = − 1

2π
ln
√
(x− ξ)2 + (y − η)2 .

Note that this 2-D Green’s function is not continuous at (x, y) = (ξ, η). Phys-
ically, F represents the three-dimensional electric potential due to a unit line
source of charge perpendicular to the x-y plane, through the point (ξ, η). That
is, it is the energy required to move a point charge from infinity to the point
(x, y), under the influence of this field. The graph of F , with (ξ, η) = (0, 0),
can be seen in Figure 10.4. (Using a finer mesh will emphasize the behavior
near the singularity—try it!)
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FIGURE 10.4
MATLAB view of the graph of the logarithmic potential F = − 1

2π ln rF = − 1
2π ln rF = − 1
2π ln r.

Now we solve the problem

∇2G(x, y; ξ, η) = −δ(x− ξ, y − η) on D,

G = 0 on C = ∂D,

as mentioned above, by letting G = F + Z, where Z(x, y; ξ, η) satisfies

∇2Z = 0 on D,

Z =
1

2π
ln
√
(x− ξ)2 + (y − η)2 on C.

We note that this is a classical equation, since the log has no problems along
C. Thus, we expect G to have the same kind of singular behavior as F at the
point (ξ, η).

As an illustration, let’s do an example.

Example 1 Find Green’s function for the Dirichlet problem on a disk. Specif-
ically, solve

∇2G = −δ(x− ξ, y − η) on D,

G = 0 on C,

where D is the disk 0 ≤ r < R.

The solution is

G = − 1

2π
ln
√
(x− ξ)2 + (y − η)2 + Z,
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where Z satisfies

∇2Z = 0 on D,

Z =
1

2π
ln
√
(x− ξ)2 + (y − η)2 on C.

We may find Z via Poisson’s integral formula (Section 9.3), but we’ll need to
get (x − ξ)2 + (y − η)2 as a function of θ. Letting the polar coordinates of
(ξ, η) be (r0, θ0), we use the law of cosines as we did back in Figure 9.10 to
get

(x− ξ)2 + (y − η)2 = r20 +R2 − 2r0R cos(θ − θ0).
Thus, we have

Z(r, θ; r0, θ0) =
1

4π2

∫ 2π

0

(R2 − r2) ln√r20 +R2 − 2r0R cos(φ − θ0)
r2 +R2 − 2rR cos(θ − φ) dφ

and

G(r, θ; , r0, θ0) = − 1

2π
ln
√
r2 +R2 − 2rR cos(θ − θ0) + z(r, θ; r0, θ0)

(where we have used the law of cosines again to get the expression under the
radical).

Okay, this is not very illuminating. As it turns out, however, there’s a
more elegant way of solving these problems when the geometry is simple: an
extension of the method of images. But we’re getting ahead of ourselves. We
should, at this point, derive the relevant properties of Green’s function. In
particular, we need to show that Green’s function does what we want it to
do, that is, that the solution of

∇2u = −f on D,

u = 0 on C = ∂D

is really given by

u =

∫∫
D

G(x, y; ξ, η)f(ξ, η)dξdη.

It turns out that we can do even better. At this point, we need to remind
ourselves of Green’s second identity for the Laplacian,

∫∫
D

(U∇2V − V∇2U)dA =

∮ (
U
∂V

∂n
− V ∂U

∂n

)
ds

in two dimensions (and, equivalently, in three dimensions). Not surprisingly,
it turns out that these Green’s identities hold in a distributional setting, as
well.
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Now, suppose we’re given Poisson’s equation

∇2u = −f on D

subject to the nonhomogeneous boundary condition

u = g on C = ∂D.

Let’s proceed as we did in the proof of Theorem 10.4 and see what happens.
So we let

U = u, V = G

in Green’s identity and get

∫∫
D

(u∇2G−G∇2u)dxdy =

∮
C

(
u
∂G

∂n
−G∂u

∂n

)
ds.

We know that ∇2G = −δ(x − ξ, y − η) and ∇2u(x, y) = −f(x, y) and also
that u = g and G = 0 along C, so we have

∫∫
D

δ(x− ξ, y − η)u(x, y)dxdy =

∫∫
D

G(x, y; ξ, η)f(x, y)dxdy

−
∮
C

g
∂G

∂n
ds.

Interchanging (x, y) and (ξ, η) and using the properties of the delta function
and Green’s function, we have proved the following theorem.

Theorem 10.8 The solution of the BVP

∇2u = −f on D,

u = g on C = ∂D

is given by

u(x, y) =

∫∫
D

G(x, y; ξ, η)f(ξ, η)dξdη −
∮
C

g(ξ, η)
∂G

∂n
(x, y; ξ, η)ds0,

†

where G is the solution of

∇2G = −δ(x− ξ, y − η) on D,

G = 0 on C.

†The ds0 represents integration with respect to ξ and η.
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We’re also in a position to derive the important properties of G. First,
it is easy to show that G is symmetric (see Exercise 2c). Also, as F is not
continuous at (ξ, η), then neither is G. Finally, it’s easy to show that ∂G

∂n

behaves exactly as ∂F
∂n at (ξ, η), that is,

lim
ε→0+

∮
Cε

∂G

∂n
ds = lim

ε→0+

∫∫
Dε

∇2G(x, y; ξ, η)dxdy = −1,

where Dε and Cε are as before (with the added stipulation that Dε ⊆ D).
Putting everything together, we have the following theorem.

Theorem 10.9 Suppose that G(x, y; ξ, η) is the Green’s function of the Laplace
operator on D. Then,

1) G is symmetric, that is,

G(x, y; ξ, η) = G(ξ, η;x, y)

for any points (x, y) and (ξ, η) in D.

2) G satisfies

lim
ε→0+

∮
Cε

∂G

∂n
ds = −1,

where Cε is the circle of radius ε, centered at (ξ, η).

Example 2 For example, let’s use Green’s function to solve the Poisson
Dirichlet problem on a square,

∇2u = −f, 0 < x < π, 0 < y < π,

u = g on the boundary.

First, we must solve

∇2G = −δ(x− ξ, y − η), 0 < x < π, 0 < y < π,

G = 0 on the boundary.

Example 3 in Section 10.1 suggests we try using a double Fourier sine series.
So we have

δ(x− ξ, y − η) =
∞∑
n=1

∞∑
m=1

bn,m sinnx sinmy,

where

bn,m =
4

π2

∫ π

0

∫ π

0

δ(x− ξ, y − η) sinnx sinmy dxdy

=
4

π2
sinnξ sinmη = bn,m(ξ, η).
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Letting

G =

∞∑
n=1

∞∑
m=1

cn,m sinnx sinmy, where cn,m = cn,m(ξ, η),

we have

∇2G = −
∞∑
n=1

∞∑
m=1

cn,m(n2 +m2) sinnx sinmy,

so that substituting into the PDE and comparing coefficients gives us

G(x, y; ξ, η) =
4

π2

∞∑
n=1

∞∑
m=1

sinnx sinmy sinnξ sinmη

n2 +m2
.

(Obviously, G is symmetric.) Then the solution is

u(x, y) =

∫∫
D

G(x, y; ξ, η)f(ξ, η)dξdη −
∮
g(ξ, η)

∂G

∂n
(x, y; ξ, η)ds

=
4

π2

∞∑
n=1

∞∑
m=1

sinnx sinmy

n2 +m2

∫ π

0

∫ π

0

f(ξ, η) sinnξ sinmη dξdη

−
∫ π

0

g(ξ, 0)

(
−∂G
∂η

(x, y; ξ, 0)

)
dξ

−
∫ π

0

g(π, η)
∂G

∂ξ
(x, y;π, η)dη

−
∫ 0

π

g(ξ, π)
∂G

∂η
(x, y; ξ, π)dξ

−
∫ 0

π

g(0, η)

(
−∂G
∂ξ

(x, y; 0, η)

)
dη

=
4

π2

∞∑
n=1

∞∑
m=1

sinnx sinmy

n2 +m2

[∫ π

0

∫ π

0

f(ξ, η) sinnξ sinmη dξdη

+m

∫ π

0

g(ξ, 0) sinnξ dξ − n(−1)n
∫ π

0

g(π, η) sinmη dη

+m(−1)m
∫ π

0

g(ξ, π) sinnξ dξ −
∫ π

0

g(0, η) sinmη dη

]

(see Exercise 3).

THE METHOD OF IMAGES

As mentioned, if the geometry is simple enough, we may use a variant of
the method of images to find Green’s function in terms of the fundamental
solution. Our procedure is very similar to that in Exercise 13 of the previous
section. Let’s look at some examples.
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Example 3 Let’s find Green’s function for the Laplacian on the upper half-
plane, that is, let’s solve

∇2G = −δ(x− ξ, y − η), −∞ < x <∞, y > 0,

G(x, 0; ξ, η) = 0.

First, we know that the free-space Green’s function F (x, y; ξ, η) satisfies the
PDE, but not the boundary condition. The trick is to change the problem
without actually changing it (whatever that means!). Let’s solve, instead, a
problem of the form

∇2u = −δ(x− ξ, y − η) + δ(x− ξ′, y − η′),
where (ξ′, η′) is chosen judiciously so that the solution satisfies u = 0 on the
boundary. Here, it shouldn’t be surprising that (ξ′, η′) = (ξ,−η), the mirror
image of (ξ, η) through the boundary curve. Physically, if we start with a
positive electric charge at (ξ, η), then we’re just placing a negative charge at
(ξ′, η′). See Figure 10.5.

y

x

(ξ,η)

−
(ξ,−η)

+

FIGURE 10.5
The image point (ξ,−η)(ξ,−η)(ξ,−η) for a point (ξ, η)(ξ, η)(ξ, η) in the upper half-plane.

So, we solve

∇2u = −δ(x− ξ, y − η) + δ(x− ξ, y + η),

with the result being

u = F (x, y; ξ, η) − F (x, y; ξ,−η)
= − 1

2π
ln
√
(x− ξ)2 + (y − η)2 + 1

2π
ln
√
(x− ξ)2 + (y + η)2,

and—presto!—we have u|y=0 = 0.
But wait a minute; Green’s function is supposed to satisfy the original PDE

∇2G = −δ(x− ξ, y − η).
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In fact, it does, on the domain −∞ < x <∞, y > 0, since

∇2[ln
√
(x − ξ)2 + (y + η)2] = 0

there (why?). So we have found Green’s function for the problem,

G(x, y; ξ, η) =
1

2π

[
ln
√
(x− ξ)2 + (y + η)2 − ln

√
(x− ξ)2 + (y − η)2

]

=
1

4π
ln

(x− ξ)2 + (y + η)2

(x− ξ)2 + (y − η)2 .

Note: One may use Fourier transforms to show that the solution of ∇2u = −f
on the plane or half-plane is, again, given by

u =

∫∫
D

G(x, y; ξ, η)f(ξ, η)dξdη,

where D is the region in question. If D is the plane, then, of course, G = F .
Alternatively, one may use Green’s second identity by taking a finite bounding
curve and then letting it “become infinite.”

Example 4 Let’s use the same approach to find Green’s function for the
interior Dirichlet problem (on a disk). Specifically, we’d like to solve

∇2G = −δ(x− ξ, y − η) on x2 + y2 < R2,

G = 0 on x2 + y2 = R2.

Again, for (ξ, η) inside the circle, we look for a point (ξ′, η′) outside the circle
such that the solution of

∇2u = −δ(x− ξ, y − η) + δ(x− ξ′, y − η′)

is zero on C. First, it should be clear that, if there is such a point, it should
be of the form (ξ′, η′) = (αξ, αη) for some constant α. (See Figure 10.6.)
Then, our solution is

u = − 1

2π
ln
√
(x− ξ)2 + (y − η)2 + 1

2π
ln
√
(x− αξ)2 + (y − αη)2,

= − 1

2π
ln r1 +

1

2π
ln r′1,

=
1

4π
ln

(r′1)
2

r21
.

For this to be zero along the boundary, we need

r′1
r1

= 1
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for every point on the boundary, which is impossible. What can we do?
Remember that we set the arbitrary constant to zero when deriving the log-
arithmic potential. So our solution really can be written

u =
1

4π
ln

(r′1)
2

r21
+ c

for any constant c, and we need only choose things so that r′/r is constant
along the boundary.

(0,0)

r
R

   

θ−θ0

θ0

1

1

(ξ,η)
r0

0

ξ η

r   ’

r   ’
(   ’,    ’)

FIGURE 10.6
Finding the image point (ξ′, η′)(ξ′, η′)(ξ′, η′) for a point (ξ, η)(ξ, η)(ξ, η) inside the circle
x2 + y2 = R2x2 + y2 = R2x2 + y2 = R2.

So for any point (R, θ) on the boundary we have, via the law of cosines,

r21 = R2 + r20 − 2Rr0 cos(θ − θ0)

and

(r′1)
2 = R2 + α2ρ20 − 2Rαr0 cos(θ − θ0).

We wish to choose α so that

(r′1)
2 = kr21

for some constant k, that is, so that

R2 + α2r20 − 2Rαr0 cos θ = k(R2 + r20 − 2Rr0 cos θ)
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for all values of θ. Letting θ = π
2 + φ tells us that

R2 + α2r20 = kR2 + kρ20,

while θ = φ then implies that

2Rαr0 = 2kRr0

or
k = α.

Finally,
R2 + α2r20 = αR2 + αr20

or

α =
R2

r20
.

Our solution is then

u =
1

4π
ln

(r′1)
2

r21
− 1

4π
ln k =

1

4π
ln

(r′1)
2r20

r21R
2

=
1

4π
ln

⎡
⎢⎣
(
x− R2

r20
ξ
)2

+
(
y − R2

r20
η
)2

(x− ξ)2 + (y − η)2
r20
R2

⎤
⎥⎦

and, in polar coordinates (where, of course, (x, y) now represents any point
in the disk),

u =
1

4π
ln

[
r2 + α2r20 − 2rαr0 cos(θ − θ0)
r2 + r20 − 2rr0 cos(θ − θ0)

r20
R2

]

=
1

4π
ln
r2r20 +R4 − 2rr0R

2 cos(θ − θ0)
R2[r2 + r20 − 2rr0 cos(θ − θ0)] .

In retrospect, what we’ve really done is to choose r′0 so that r0r
′
0 = r0αr0 =

R2, or
r0
R

=
R

r′0
.

This tells us that the triangle with vertices (0, 0), (ξ, η), (x, y) is similar to
the triangle with (0,0), (x, y), (ξ′, η′), from which it follows that

r′1
R

=
r1
r0

and, taking logs,

ln r1 = ln
r′1r0
R

.
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This means that, in order to cancel out the effect of the potential

− 1

2π
ln r,

at the point (x, y), we need only add the potential

1

2π
ln
r′1r0
R

.

Thus, our Green’s function is

G =
1

2π
ln
r′1r0
r1R

,

which is what we found above.
Recapping, Green’s function for the Dirichlet problem on a disk of

radius RRR is

G(r, θ; r0, θ0) =
1

4π

r2r20 +R4 − 2R2rr0 cos(θ − θ0)
R2[r2 + r20 − 2rr0 cos(θ − θ0)] ,

where (r0, θ0) are the polar coordinates of the point (ξ, η). Note that

G(r, θ; r0, θ0) = G(r0, θ0; r, θ)

for all points in the disk.
It follows that the solution of

∇2u = −f on x2 + y2 < R2,

u = g on x2 + y2 = R2

is given by

u(x, y) =

∫∫
x2+y2<R2

G(x, y; ξ, η)f(ξ, η)dξdη

−
∮
C

x2+y2=R2

g(ξ, η)
∂T

∂n
ds.

Now, what happens if f ≡ 0? Changing to polars in the second integral, we
have

u = −
∮
C

g(R, φ)
∂

∂ρ
G(r, θ; ρ, φ)ds

= −
∫ 2π

0

g(R, φ)
∂G

∂ρ

∣∣∣
ρ=R

R dφ.

(The polar coordinates of (ξ, η) are, here, (ρ, φ).)
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Now,

∂G

∂ρ
=

1

4π

2ρr2 − 2R2r cos(θ − φ)
ρ2r2 +R4 − 2R2ρr cos(θ − φ) −

1

4π

2ρ− 2r cos(θ − φ)
r2 + ρ2 − 2ρr cos(θ − φ)

and, at ρ = R, we have

∂G

∂ρ

∣∣∣
ρ=R

=
1

2π

r2 −Rr cos(θ − φ)
Rr2 +R3 − 2R2r cos(θ − φ) −

1

2π

R − r cos(θ − φ)
r2 +R2 − 2Rr cos(θ − φ)

=
1

2πR

r2 −R2

r2 +R2 − 2Rr cos(θ − φ) .

It follows that the solution is

u =
1

2π

∫ π

0

g(R, φ)
R2 − r2

r2 +R2 − 2Rr cos(θ − φ)dφ,

which should look familiar.

Exercises 10.3

1. Use the fact that∫
I

δ(x − ξ)dx = 1 and

∫
I′

δ(x − ξ)dx = 0

for any open intervals I and I ′ with ξ ∈ I and ξ /∈ I ′ to show that

∫∫
D

δ(x− ξ, y − η)dxdy = 1

for any domain D with (ξ, η) ∈ D.

2. a) Use Green’s Theorem to show that

∫∫
D

∇2u dxdy =

∮
C

∂u

∂n
ds,

where D is any domain with boundary C.

b) Do the same, but use Green’s second identity.

c) Show that Green’s function for the Laplacian, on any bounded
domain D, is symmetric, that is, show that

G(x, y; ξ, η) = G(ξ, η;x, y)

for all pairs (x, y) and (ξ, η).



514 An Introduction to Partial Differential Equations with MATLAB R©

d) Establish the translation property of the fundamental solution for
the Laplacian,

F (x, y; ξ, η) = F (x− ξ, y; 0, η) = F (x, y − η; ξ, 0)
= F (x− ξ, y − η; 0, 0)

for all (x, y) and (ξ, η); more generally, show that

F (x, y; ξ, η) = F (x+ a, y + b; ξ − a, η − b)
for any (x, y), (ξ, η), a and b.

3. Fill in the details in the solution of Example 2.

4. a) Find a double Fourier series representation of Green’s function for
the problem

∇2u = −f, 0 < x < π, 0 < y < π,

u(x, 0) = u(x, π) = ux(0, y) = ux(π, y) = 0.

b) Modifying the solution given in Theorem 10.8, solve the problem

∇2u = −f, 0 < x < π, 0 < y < π,

u(x, 0) = h1(x), u(x, π) = h2(x),

ux(0, y) = h3(y), ux(π, y) = h4(y).

c) One cannot find a double Fourier series representation for Green’s
function for the Neumann problem on the same rectangle. Why is
this the case?

5. Often, the double Fourier series in these problems don’t possess the
nicest convergence properties, whereas single Fourier series behave much
better.

a) Solve for Green’s function for the Dirichlet problem on the square
0 < x < π, 0 < y < π by, instead, using a single Fourier sine series

G(x, y; ξ, η) =

∞∑
n=1

bn(y; ξ, η) sinnx

and using Green’s function derived in Example 3 of Section 10.2.

b) Proceed similarly, but for the infinite strip −∞ < x <∞, 0 < y <
π.

6. a) Show that

δ(x − ξ, y − η) = 1

r
δ(r − r0, θ − θ0),

where (r, θ) and (r0, θ0) are the polar coordinates of (x, y) and
(ξ, η), respectively.
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b) More generally, explain heuristically why, if x and y are trans-
formed to the new coordinates x′ and y′, then

δ(x− ξ, y − η) = 1

|J |δ(x
′ − ξ′, y′ − η′),

where J is the Jacobian of the transformation.

7. Find Green’s function for the Laplace operator on the unit disk by,
instead, expanding u and δ(x− ξ, y − η) in double Fourier series of the
form

∞∑
n=0

∞∑
m=1

[An,m(r0, θ0)Jn(xn,mr) cosnθ +Bn,m(r0, θ0)Jn(xn,mr) sinnθ],

where, of course, the Jn-part comes from the Fourier–Bessel expansion.
Here, (r0, θ0) is the polar representation of (ξ, η), and xn,m is the mth

positive zero of Jn.

8. Use the method of images to find Green’s function for the exterior
Dirichlet problem

∇2u = −f, r > R,−∞ < θ <∞,
u(R, θ) = 0.

9. a) Use the method of images with three image points to find Green’s
function for the Dirichlet problem on the first quadrant.

b) Do the same, but with boundary conditions

u(x, 0) = 0, x > 0,

ux(0, y) = 0, y > 0.

10. Repeat Exercise 5b but, this time, use the method of images (with
infinitely many image points).

11. Find Green’s function for the Dirichlet problem on the interior of a
semicircle, that is, on the domain 0 < r < R, 0 < θ < π.

12. Compute

F−1

[
1

α2 + β2

]
.

13. Justification of fundamental solution: Using Green’s second iden-
tity on the disk of radius R centered at (ξ, η), and then letting R→∞,
show that the solution of

∇2u = −f, −∞ < x <∞,−∞ < y <∞
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is, in fact,

u(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (x, y; ξ, η)f(ξ, η)dξdη,

provided we have

lim
R→∞

[u(R, θ)−Rur(R, θ) lnR] = 0.

14. Poisson kernel for the upper half-plane, revisited

a) Calculate ∂G
∂n

∣∣∣
η=0

for the Green’s function in Example 3, and show

that the result is the Poisson kernel from Exercise 8, Section 6.4.

b) Supposing that u→ 0 quickly enough as x2 + y2 →∞, reproduce
the solution of that same exercise, using the method of this section.

c) Show that the Poisson kernel itself is the solution of the problem

uxx + yyy = 0, −∞ < x <∞, y > 0,

u(x, 0) = δ(x− ξ).

10.4 Green’s Functions for Elliptic PDEs (II): Poisson’s
Equation in Three Dimensions; the Helmholtz
Equation

POISSON’S EQUATION IN THREE DIMENSIONS

Not surprisingly, the solution of the 3-D Poisson equation proceeds very much
like the 2-D case. We need Green’s second identity in three dimensions,∫∫∫

D

(u∇2v − v∇2u)dxdydz =

∫
©
∫
S

(u∇v − v∇u) · n̂ dS

=

∫
©
∫
S

(
u
∂v

∂n
− v ∂u

∂n

)
dS,

which we prove in Exercise 8, using the Divergence Theorem. Here, of course,
D is now a 3-D domain, with boundary surface S.

As before, we begin by finding the fundamental solution of the Laplace
operator in three dimensions, that is, the function F (x, y, z) satisfying

∇2F = −δ(x− ξ, y − η, z − ζ), −∞ < x <∞,
−∞ < y <∞,−∞ < z <∞.
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The 3-D Dirac delta function δ(x− ξ, y− η, z − ζ) = δ(x− ξ)δ(y − η)δ(z − ζ)
possesses all of the obvious properties.

Again as before, F is determined by the two properties

∇2F = 0, (x, y, z) �= (ξ, η, ζ)

and ∫
©
∫
Sε

∂F

∂n
dS = −1,

where Sε is now the sphere of radius ε centered at (ξ, η, ζ). We switch to
spherical coordinates and use the radial symmetry of F to write the first
condition as

1

ρ2
d

dρ

(
ρ2
∂F

∂ρ

)
= 0,

which has general solution

F = c1 +
c2
ρ
.

Then, ∫
©
∫
Sε

∂F

∂n
dS =

∫ π

0

∫ 2π

0

∂F

∂ρ
ρ2 sinφ dθdφ

= −4πc2 = −1,
so the fundamental solution is the well-known Newtonian potential

F =
1

4πρ
=

1

4π
√
(x− ξ)2 + (y − η)2 + (z − ζ)2 .

Physically, F represents the gravitational (Newtonian) potential at (x, y, z)
due to a unit point mass, or the electric potential due to a unit charge, placed
at (ξ, η, ζ).

As with the 2-D problem, we now find Green’s function for

∇2G = −δ(x− ξ, y − η, z − ζ) on D,

G = 0 C = ∂D

by letting G = F + z with z satisfying

∇2z = 0 on D,

z = −F = − 1

4πρ
on C.

Alternatively, we may apply the method of images when the geometry is
appropriate. And we may show that the theorems of the previous section hold
for the 3-D Green’s function, as well (with appropriate dimensional changes:
line integrals to surface integrals, area integrals to volume integrals, etc.).

Before moving on, let’s find Green’s function for the Laplace operator on a
ball.
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Example 1 Solve

∇2G = −δ(x− ξ, y − η, z − ζ), x2 + y2 + z2 < R2,

G = 0 on the sphere x2 + y2 + z2 = R2.

We use the method of images, often referred to as the method of electro-
static images, for the Laplacian in three dimensions. Letting xxx = (x, y, z)
and xxx0 = (ξ, η, ζ), we solve

∇2G = −δ(xxx− xxx0).

It should be clear that we proceed exactly as we did in the 2-D case, and we
may use the same similar-triangle argument. Thus, we again need

ρ1 =
ρ′1ρ0
R

,

so the Newtonian potential 1
4πρ1

is cancelled on the boundary by adding the
potential

− 1

4πρ1
= − R

4πρ0ρ′1
.

Physically, we’ve added a negative change of magnitude R
ρ0

at the image point

x′0x
′
0x
′
0.

Our Green’s function then is

G(xxx,x0x0x0) =
1

4π

(
1

ρ1
− R

ρ0ρ′1

)

=
1

4π

(
1

|xxx− x0x0x0| −
R

ρ0|xxx− R2

ρ2
0
x0x0x0|

)

=
1

4π

⎛
⎝ 1

|xxx− x0x0x0| −
1∣∣∣ ρ0

R xxx− R
ρ0
x0x0x0

∣∣∣

⎞
⎠ .

Of course, this means that the solution of the problem

∇2u = −f, on x2 + y2 + z2 < R2,

u = g on x2 + y2 + z2 = R2

is given by

u(x, y, z) =

∫∫∫
D

G(x, y, z; ξ, η, ζ)f(ξ, η, ζ)dξdηdζ
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−
∫
©
∫
S

g(ξ, η, ζ)
∂G

∂n
(x, y, z; ξ, η, ζ)dS0,

‡

where S is the sphere of radius R,D is its interior and ∂G
∂n = ∂G

∂ρ0
(where ρ0 is

the spherical radial coordinate, if we write G = G(ρ, θ, φ; ρ0, θ0, φ0)). And, as
we did at the end of the previous section, we may recover the 3-D Poisson’s
integral formula if f ≡ 0 (see Exercise 4).

HELMHOLTZ EQUATION

Now we consider that other important elliptic problem, the Helmholtz equa-
tion, which, as mentioned earlier, arises from separating variables in the heat
and wave equations. So we need to see what Green’s second identity becomes
for the Helmholtz operator. Writing

L[u] = ∇2u+ k2u,

we have

uL[v]− vL[u] = u∇2v − v∇2u,

so Green’s second identity is, again,

∫∫
D

(uL[v]− vL[u])dA =

∮
∂D

(u∇v − v∇u) · n̂ ds

=

∮
∂D

(
u
∂v

∂n
− v ∂u

∂n

)
ds

(and, equivalently, in three dimensions). As a result, the Helmholtz Green’s
functions will satisfy the same properties as those of the corresponding Laplace
Green’s functions. In particular,

1. They will be symmetric.

2. They will exhibit the same discontinuity in ∂G
∂n at the source point.

We begin by computing the fundamental solution for the 2-D Helmholtz
equation. So, we want F that satisfies

∇2F + k2F = −δ(x− ξ, y − η).

Again, radial symmetry makes life easier. As with Poisson’s equation, F must
satisfy

∇2F + k2F = 0, (x, y) �= (ξ, η)

‡Again, dS0 represents integration with respect to the variables ξ, η and ζ.
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and (see Exercise 9) ∮
Cε

∂F

∂n
ds = −1.

The PDE gives us Bessel’s equation of order 0,

r2Frr + rFr + k2r2F = 0,

with general solution
F = c1J0(kr) + c2Y0(kr).

The second condition becomes

ε
dF

dr
(ε) = − 1

2π
.

From Section 7.5, we may write F as

F = c1

(
1− 1

2
k2r2 + · · ·

)
+ c2

2

π

[(
1− 1

2
k2r2 + · · ·

)
(γ − ln 2)

+

(
1− 1

2
k2r2 + · · ·

)
(ln k + ln r)−

(
φ(1)− φ(2)

2
k2r2 + · · ·

)]
,

so that

dF

dr
=

2c2
πr

+
2c2
π
r ln r · (terms involving nonnegative powers of r)

+ r (terms involving nonnegative powers of r).

So the only way that

ε
dF

dr
(ε) = − 1

2π

for all ε > 0 is if 2c2
π = − 1

2π or c2 = − 1
4 . (Or take lim

ε→0+
ε dFdn (ε) and go from

there. To be precise, though, we’ve only shown that if there is a fundamental
solution, then we must have c2 = − 1

4 .
§) So we take our fundamental solution

to be

F = −1

4
Y0(kr)

= −1

4
Y0(k

√
(x− ξ)2 + (y − η)2).

We plot the graph of F in Figure 10.7 (using k = 1).
What about the 3-D Helmholtz equation? We have

∇2u+ k2u = −δ(x− ξ, y − η, z − ζ) = −δ(xxx− xxx0)

§Again, see Kanwal’s Generalized Functions: Theory and Technique.
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and, as in the 2-D case, we’ll have radial symmetry. So F = F (ρ) will satisfy
the two conditions

∇2F + k2F = Fρρ +
2

ρ
Fρ + k2F = 0, ρ �= 0,

and

lim
ε→0+

∫
©
∫
Sε

∂F

∂n
dS = lim

ε→0+

∫ π

0

∫ 2π

0

∂F

∂ρ
ρ2 sinφ dθdφ

∣∣∣
ρ=ε

= 4π lim
ε→0+

ε2
∂F

∂ρ
(ε) = −1.
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Two different MATLAB views of the graph of the fundamental so-
lution F = − 1

4Y0(r)F = − 1
4Y0(r)F = − 1
4Y0(r) of the 2-D Helmholtz equation.
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The ODE can be solved by rewriting it as

(ρF )′′ + k2(ρF ) = 0,

which gives us

F =
c1 cos kρ+ c2 sinkρ

ρ
.

Then,

lim
ε→0+

ε2
∂F

∂ρ
(ε) = lim

ε→0+
[(kc2ε− c1) cos kε− (kc1ε+ c2) sin kε]

= −c1
and, letting c2 = 0 (for the sake of convenience), we’ve found that

F =
cos kρ

4πρ
=

cos k|xxx− xxx0|
4π|xxx− xxx0| .

Note that, as k → 0 in both Helmholtz equations, the 2-D solution ap-
proaches − 1

2π ln r, while the 3-D solution tends to 1
4πρ , as we might expect.

Now we’re in a position to solve the nonhomogeneous Helmholtz equation,
of course.

NEUMANN PROBLEMS

What about the Neumann problem? Let’s look at

∇2u = −f on D,

∂u

∂n
= g on C = γD.

Integrating the PDE and using Green’s Theorem gives us

∮
C

g ds = −
∫∫
D

f dA.

Of course, this is just a more general version of the compatibility condition
we’ve seen before (in Sections 4.4 and 9.3). Therefore, if f and g do not
satisfy the condition, then there can be no solution. However, if the condition
is satisfied, it turns out that we do have a solution (and, hence, an infinite
number of solutions—why?). What’s happening is that λ = 0 is an eigenvalue
of the system

∇2u+ λu = 0 on D,

∂u

∂n
= 0 on C,
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or, equivalently, that the associated homogeneous problem has a nontrivial
solution. So how does Green’s function play into this? Well, we need to solve

∇2u = −δ(x− ξ, y − η) on D,

∂u

∂n
= 0 on C.

But the compatibility condition is not satisfied here because

∫∫
D

δ(x− ξ, y − η)dA = 1 �= 0.

However, we know that the original system always has a solution when the
compatibility condition is satisfied. So we proceed as we did at the end of
Section 10.2—we introduce the idea of the Neumann function for this problem.
We look at the problem

∇2H = −δ(x− ξ, y − η) on D,

∂H

∂n
= c1 on ∂D,

where c1 is a constant to be determined. The compatibility condition becomes

−1 = −
∫∫
D

δ(x− ξ, y − η)dA = c1

∮
∂D

ds,

which is satisfied by

c1 = − 1∮
∂D

ds
.

Note that the denominator is just the arc length of ∂D.
Solving for H , for this value of c1, and using Green’s second identity, we’re

led to

u =

∫∫
D

H(x, y; ξ, η)f(ξ, η)dξdη + c2

for any constant c2.
Of course, for the Helmholtz problem

∇2u+ k2u = 0 on D, k �= 0,

∂u

∂n
= 0 on ∂D,

there are no problems unless k2 is an eigenvalue of the Laplace operator, with
Neumann condition, on D. (See Exercise 5.)
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Exercises 10.4

1. Following Example 2 in the previous section, use Fourier series to com-
pute the solution of

∇2u = −f, 0 < x < π, 0 < y < π, 0 < z < π,

u = 0 on the boundary.

2. a) Compute Green’s function for the exterior Dirichlet problem

∇2u = −f, ρ > R.

b) Find the electric potential due to a point charge q outside a con-
ducting sphere held at constant potential V .

3. Compute Green’s function for the Laplace operator

a) On upper half-space, z > 0

b) On the first octant, x > 0, y > 0, z > 0

4. Use this Green’s function approach to derive Poisson’s integral for-
mula

u(ρ, θ, φ) =
a(a2 − ρ2)

4π
·

∫ 2π

0

∫ π

0

g(α, β) sinα

{a2 + ρ2 − 2aρ[cos θ cosα+ sin θ sinα cos(β − φ)]}dαdβ

for the solution of the Laplace BVP

∇2u = 0, 0 < ρ < a,

u(a, θ, φ) = g(θ, φ).

5. a) Without doing too much work, solve the Helmholtz problem

uxx + uyy + 5u = sin 4x sin 6y, 0 < x < π, 0 < y < π,

u(x, 0) = u(x, π) = u(0, y) = u(π, y) = 0.

b) Try to do the same for

uxx + uyy + 5u = sinx sin 2y.

What’s going on?

c) What restriction(s) on f is (are) necessary in order that

uxx + uyy + 5u = −f, 0 < x < π, 0 < y < π,

subject to the same boundary conditions, has a solution? What
will the solution be?
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6. Compute Green’s function for the Helmholtz operator ∇2u+k2u on the
given domain, with Dirichlet boundary condition.

a) The upper half-plane, y > 0

b) Upper half-space, z > 0

c) The disk, 0 < r < a

d) The wedge, r > 0, 0 < θ < α

e) The infinite 2-D strip, 0 < x < 1, −∞ < y <∞
7. a) Show that Green’s function for the 3-D Laplace operator, on any

bounded domain D, is symmetric, that is, that

G(x, y, z; ξ, η, ζ) = G(ξ, η, ζ;x, y, z)

for all ordered triples (x, y, z) and (ξ, η, ζ).

b) Do the same for the 2-D Helmholtz operator.

c) What is the general translation property for the fundamental solu-
tion of each of these operators?

8. Use the Divergence Theorem to prove Green’s second identity in three
dimensions.

9. a) Use Green’s second identity to prove that
∮
Cε

∂F

∂n
ds = −1,

where F is the fundamental solution of the 2-D Helmholtz operator
and Cε is the ε-circle about the singularity (ξ, η).

b) Proceed similarly for the 3-D Helmholtz operator.

10.5 Green’s Functions for Equations of Evolution

HEAT EQUATION

Let’s begin by just solving the heat/diffusion problem

Ft − k2Fxx = δ(x − ξ)δ(t− τ), −∞ < x <∞, t > 0,

F (x, 0) = 0.

The solution F (x, t; ξ, τ) will be called the fundamental solution of the heat
equation, of course. Although we couldn’t use Fourier transforms for Laplace’s
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equation (we had no idea how to invert the transforms and, in the exercises,
we used the solutions to find these inverse transforms), it turns out that we
may use them here. That being the case, why not just solve the general
problem

ut − k2μxx = g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = 0,

and then just let g(x, t) = δ(x− ξ, t− τ) . . .?
So we transform and get

Ut + k2α2U = G(α, t),

U(α, 0) = 0,

where F [u(x, t)] = U(α, t) and F [g(x, t)] = G(α, t). This is the nonhomoge-
neous version of the first-order ODE from Section 6.4. Using the integrating
factor ek

2α2t, and applying the initial condition, we have

U(α, t) =

∫ t

0

ek
2α2(s−t)G(α, s)ds

=
1√
2π

∫ t

0

ek
2α2(s−t)

∫ ∞

−∞
e−iαyg(y, s)dyds (why?).

The solution, then, is

u(x, t) = F−1[U(α, t)] =
1√
2π

∫ ∞

−∞
eiαxU(α, t)dα

=
1

2π

∫ t

0

∫ ∞

−∞
g(ξ, τ)

[∫ ∞

−∞
ek

2α2(τ−t)+iα(x−ξ)dα

]
dξdτ,

where we have done some order-of-integration switching. Then, back in Sec-
tion 6.4, we showed that

F−1[e−k2α2t] =
1√
2π

∫ ∞

−∞
e−k2α2t+iαx dα

=
1

k
√
2t
e−

x2

4k2t ,

the heat kernel ; so, using this to rewrite the α-integral above, we have the
solution

u(x, t) =
1

2k
√
π

∫ t

0

∫ ∞

−∞
g(ξ, τ) · 1√

t− τ e
− (x−ξ)2

4k2(t−τ) dξdτ.
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Now, what about the original problem? Again, we take g(x, t) =
δ(x− ξ)δ(t − τ), with the result that

F (x, t; ξ, τ) =
1

2k
√
π

∫ t

0

∫ ∞

−∞

δ(y − ξ)δ(s− τ)√
t− s e

− (x−y)2

4k2(t−s) dyds

=
1

2k
√
π(t− τ)e

− (x−ξ)2

4k2(t−τ)H(t− τ).

We have killed two birds with one stone, showing that

a) F (x, ξ; t, τ) is the solution of the original δ-function problem.

b) The solution of the more general nonhomogeneous problem is

u(x, t) =

∫ t

0

∫ ∞

−∞
g(ξ, τ)F (x, t; ξ, τ)dξdτ.

So we’re justified in calling the heat kernel F the fundamental solution of
the one-dimensional (1-D) heat equation. Note the presence of H(t−τ) in the
solution—this is due, of course, to the fact that F is the response to a heat
impulse at the point x − ξ and at time t = τ . Thus, we expect no response
before time τ .¶

Now, remember that the solution of the homogeneous heat problem

ut = k2uxx, −∞ < x <∞, t > 0,

u(x, 0) = φ(x)

is

u(x, t) =
1

2k
√
πt

∫ ∞

−∞
e−

(x−y)2

4k2t φ(y)dy.

Therefore, we may write the solution of the general heat problem

ut = k2uxx + g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = φ(x)

as

u(x, t) =

∫ t

0

∫ ∞

−∞
F (x, ξ; t, τ)g(ξ, τ)dξdτ

+

∫ ∞

−∞
F (x, ξ; t, 0)φ(ξ)dξ.

¶It’s standard practice to write
∫ t
0
. . . dτ instead of

∫∞
0

. . . dτ , even though the H(t − τ)
term is then redundant. The formal notation shows more clearly the causal nature of the
effect of g. Because time behaves differently from the space variables in these problems,
Green’s function often is called the causal Green’s function. To be consistent, then, we
should talk about the causal fundamental solution.
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The obvious relationship between the homogeneous and nonhomogeneous so-
lutions is another version of Duhamel’s Principle (see Section 6.1), which we
discuss further at the end of this section and in the exercises.

The result is easily generalized to higher dimensions, as

F−1[e−k2(α2+β2+γ2)t] =
1

(2π)3/2

∫ ∞

−∞
e−k2α2t+iαx dα

∫ ∞

−∞
e−k2β2t+iβy dβ

·
∫ ∞

−∞
e−k2γ2t+iγz dγ.

Therefore, the solution of

ut − k2∇2u = δ(x − ξ)δ(y − η)δ(t− τ),
−∞ < x <∞,−∞ < y <∞, t > 0,

u(xxx, 0) = 0

is

F (x, y, t; ξ, η, τ) =
1

4k2π(t− τ)e
− (x−ξ)2+(y−η)2

4k2(t−τ) , t > τ,

=
1

4k2π(t− τ)e
− (x−ξ)2+(y−η)2

4k2(t−τ) H(t− τ),

while the solution of the general nonhomogeneous problem

ut − k2∇2u = g(x, y, t),

u(x, y, 0) = 0

is

u(x, y, t) =

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
g(ξ, η, τ)F (x, y, t; ξ, η, τ)dξdηdτ.

(Similarly for three dimensions. See Exercise 1.)

WAVE EQUATION

Now let’s do the same for the wave equation,

utt − c2uxx = g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = ut(x, 0) = 0.

Transforming gives us

Utt + c2α2U = G(α, t),

U(α, 0) = Ut(α, 0) = 0.
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Using variation of parameters, we have (see Exercise 2)

U(α, t) =

∫ t

0

G(α, s)
sin cα(t− s)

cα
ds.

Then,

u(x, t) =
1√
2π

∫ ∞

−∞

∫ t

0

G(α, s)
sin cα(t− s)

cα
eiαx dsdα

=
1

2
√
2π c

∫ t

0

∫ ∞

−∞
G(α, s)

∫ x+c(t−s)

x−c(t−s)

eiαz dzdαds.

(Why? This should look familiar—see Section 9.6.)

=
1

2
√
2π c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

∫ ∞

−∞
G(α, s)eiαz dαdzds

=
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

g(z, s)dzds

(where, again, we have taken liberties with changing the order of integration).
Note that the region of integration, in z-s space-time, is the domain of de-
pendence, or past history, of the point (x, t); see Figure 10.8 and compare to
Exercise 14, Section 5.3.

s

(x,t)

x+ctx−ct

z

z+cs = x+ctz−cs = x−ct

FIGURE 10.8
Domain of dependence or past history of the point (x, t)(x, t)(x, t) in zzz-sss space-
time.

We may write Green’s function here using Heaviside functions. Now, we
need

x− c(t− s) ≤ z ≤ x+ c(t− s)
and

t− s ≥ 0.
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It follows that Green’s function is

F1(x, t; ξ, τ) =
1

2c
H [c(t− τ) − |x− ξ|].

(Here, the subscript 1 represents the spatial dimension of the problem. See
the comments following the derivation of the 3-D solution.) F1 will, of course,
satisfy the problem when g(x, t) = δ(x − ξ)δ(t− τ). (See Exercise 5.)

Also, note the similarity between our solution and that part of d’Alembert’s
solution due to the ut(x, 0) boundary condition—this, again, is Duhamel’s
Principle in action! (See Exercise 6.)

It follows that the solution of the general problem

utt = c2uxx + g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = φ(x),

ut(x, 0) = ψ(x)

is just the above solution, added to d’Alembert’s solution:

u(x, t) =

∫ t

0

∫ ∞

−∞
F1(x, t; ξ, τ)g(ξ, τ)dξdτ

+
1

2
[φ(x + ct) + φ(x − ct)] + 1

2c

∫ x+ct

x−ct

ψ(ξ)dξ.

As with the heat equation, the last term can be rewritten using F . Further,
as before, the middle term looks like the derivative of the last term. Thus, we
have

[φ(x + ct) + φ(x− ct)] = 1

2c

∂

∂t

∫ x+ct

x−ct

φ(ξ)dξ

=
∂

∂t

∫ ∞

−∞
F1(x, t; ξ, 0)φ(ξ)dξ

and our solution can be written

u(x, t) =

∫ t

0

∫ ∞

−∞
F1(x, t; ξ, τ)g(ξ, τ)dξdτ

+
∂

∂t

∫ ∞

−∞
F1(x, t; ξ, 0)φ(ξ)dξ +

∫ ∞

−∞
F1(x, t; ξ, 0)ϕ(ξ)dξ.

Once again, Duhamel’s Principle is at work.
As for higher dimensions, consider the 3-D problem

utt = c2∇2u, −∞ < x <∞,−∞ < y <∞,−∞ < z <∞,
u(x, y, z, 0) = ut(x, y, z, 0) = 0.
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Proceeding as in the 1-D case, we arrive at

U(ααα, t) =

∫ t

0

G(ααα, s)
sin c|ααα|(t− s)

c|ααα| ds,

where ααα = (α, β, γ) and, below, xxx = (x, y, z). So

u(xxx, t) =
1

(2π)3/2

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(ααα, x)

sin c|ααα|(t− s)
c|ααα| eiααα·xxxdαααds.

But, just as in the 1-D case, we may rewrite the sine-exponential combination
as an integral. In fact, we already did this in Section 9.6. Here, we get

sin c|ααα|(t− s)
c|ααα| eiααα·xxx =

1

4πc2(t− s)
∫∫

|zzz|=c(t−s)

eiααα·(xxx+zzz)dS.

Again, we switch the order of integration and write

u(xxx, t) =
1

(2π)3/2
1

4πc2

∫ t

0

1

t− s
∫∫

|zzz|=c(t−s)

⎡
⎣

∞∫
−∞

∞∫
−∞

∞∫
−∞

G(ααα, s)eiααα·(xxx+zzz)dααα

⎤
⎦ dSds.

=
1

4πc2

∫ t

0

1

t− s
∫∫

|zzz|=c(t−s)

g(xxx+ zzz, s)dSds

=
1

4πc2

∫ t

0

∫∫
|zzz−xxx|=c(t−s)

g(zzz, s)

t− s dSds.

(Here, zzz in the dS integration variable.) Note that here, again, the region of
integration is the domain of dependence of the point (xxx, t) = (x, y, z, t) (in
x-y-z-t space-time, of course).

At this point, we may write Green’s function as

F3(xxx,ξξξ; t, τ) =
δ[c(t− τ)− |ξξξ − xxx|]

4πc2(t− τ) (why?).

However, it’s common practice, instead, to use spatial variables wherever

possible. So on the sphere, we have t− s = |ξξξ−xxx|
c ; thus,

F3(xxx,ξξξ; t, τ) =
δ[c(t− ξ)− |ξξξ − xxx|]

4πc|ξξξ − xxx| .

In Exercise 9 we show that the 2-D fundamental solution is

F2(xxx,ξξξ; t, τ) =
H [c(t− τ)− |xxx− ξξξ|]

2πc
√
c2(t− τ)2 − |xxx− ξξξ|2 .
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Note that, in contrast with the heat equation, the fundamental wave solutions
depend qualitatively on the space dimension.

Now, we may write u as an iterated integral, using the spherical coordinates
θ and φ, with the result being

u(xxx, t) =
1

4πc2

∫ t

0

∫ π

0

∫ 2π

0

q(zzz, s)

t− s · c
2(t− s)2 sinφ dθdφdt.

This is almost a volume integral over the ball of radius ct, and we can get
there by substituting ρ = c(t− s), dρ = −c ds, to arrive at

u(xxx, t) =
1

4πc2

∫∫∫
|zzz−xxx|≤ct

g
(
zzz, t− |zzz−xxx|

c

)
|zzz − xxx| dV.

In this form, we see that the function

1

4πc2ρ
=

1

4πc2|zzz − xxx|
behaves much like the Newtonian potential for the 3-D Poisson equation. Here,
though, we also have

t− |zzz − xxx|
c

instead of just t. We say that time is retarded by the amount |zzz−xxx|
c , and we

call this last form of the solution the retarded potential representation of
u.

Finally, in order to relate our solution u to the homogeneous solution from
Section 9.6, note that

1

4πc2(t− s)2
∫∫

|zzz−xxx|=c(t−s)

g(z, s)dS = ḡc(t−s)

is the average value of g on the sphere |zzz − xxx| = c(t − s), so the solution of
the general problem

utt = c2∇2u, −∞ < x <∞,−∞ < y <∞,−∞ < z <∞, t > 0,

u(xxx, 0) = φ(xxx),

ut(xxx, 0) = ψ(xxx)

can be written as

u(xxx, t) =

∫ t

0

(t− s)ḡc(t−s) ds+
1

(2π)3/2

[
∂

∂t
(tφ̄ct) + tψct

]
.

From this representation, it is again clear that Huygens’s Principle holds for
these problems, as well.

In order to find Green’s function and solve problems on proper subsets of
the domain in question, we may again use the method of images, series of
orthogonal functions, and the like. We do so in the exercises.
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DUHAMEL’S PRINCIPLE

To arrive at an “official” statement of Duhamel’s Principle in this setting,
it’s helpful to start with the special case where the forcing (source) function
depends only on x. We compare the solutions of the problems

ut = k2uxx + g(x), vt = k2vxx, −∞ < x <∞, t > 0,

u(x, 0) = 0, v(x, 0) = g(x).

We find that the Fourier transforms of the solutions are

V (α, t) = G(α)e−k2α2t, U(α, t) =
G(α)

k2α2
[1− e−k2α2t].

Therefore, we have

U(α, t) =

∫ t

0

V (α, τ)dτ

and, transforming back,

u(x, t) =

∫ t

0

v(x, τ)dτ.

Of course, things are not so obvious when the forcing/source function in-
volves time, as well. So, given

ut = k2uxx + g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = 0,

and solving by Fourier transforms, we have

U(α, t) =

∫ t

0

e−k2α2(t−τ)G(α, τ)dτ,

where G(α, t) = F [g(x, t)] (in just the space variable, of course). This suggests
that we look at the homogeneous problem with initial temperature g(x, τ), for
values of τ in 0 ≤ τ ≤ t. So, we let vτ (x, t) be the solution of the problem

vt = k2vxx, −∞ < x <∞, t > τ,

v(x, τ) = g(x, τ),

and we see that the Fourier transform of the solution is, indeed,

Vτ (α, t) = e−k2α2(t−τ)G(α, τ).

It follows that

u(x, t) =

∫ t

0

vτ (x, t)dτ.
‖

‖It’s common practice to write v(x, t; τ) instead of vτ (x, t).
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We may do the same for higher dimensions, and we may proceed similarly
for the wave equation—we do so in the exercises.

One may ask about reciprocity or symmetry for Green’s functions for the
heat and wave equations. This turns out to be a delicate affair because of
the presence of the time variable and the fact that, in that variable, these
problems are initial -value problems.

Exercises 10.5

1. Write down the fundamental solution for the 3-D heat problem, and use
it to solve the problem

utt = k2∇2u+ g(x, y, z, t), −∞ < x <∞,−∞ < y <∞,
−∞ < z <∞, t > 0,

u(x, y, z, 0) = φ(x, y, z).

2. Fill in the details of the derivation of the variation of parameters solution
of the 1-D wave problem.

3. Use the method of images to find Green’s function for the heat/diffusion
problem

a) ut = k2uxx + g(x, t), 0 < x <∞, t > 0,

u(x, 0) = u(0, t) = 0

b) ut = k2uxx + g(x, t), 0 < x <∞, t > 0,

u(x, 0) = ux(0, t) = 0

c) ut = k2∇2u+ g(x, y, t), x > 0, y > 0, t > 0,

u(x, y, 0) = u(x, 0, t) = u(0, y, t) = 0

4. Find Green’s function for the problem

ut = k2uxx + g(x, t), 0 < x < π, t > 0,

u(x, 0) = 0,

u(0, t) = u(π, t),

in two different ways:

a) Using the method of images

b) By expanding g(x, t) = δ(x− ξ)δ(t− τ) in a Fourier sine series in x

5. Show that the solution of the wave problem

utt = c2uxx + δ(x− ξ)δ(t− τ),
u(x, 0) = 0

is, indeed, u = F1(x, t; ξ, τ) =
1
2cH [c(t− τ)− |x− ξ|].
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6. Write down and justify Duhamel’s Principle for the wave problems

utt = c2uxx + g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = 0,

ut(x, 0) = 0

and

vtt = c2vxx, −∞ < x <∞, t > τ,

v(x, τ) = 0,

vt(x, τ) = g(x, τ).

7. Source functions and convolutions: The source function for an
evolution equation is the solution of the homogeneous problem on all of
space, subject to an initial condition δ(xxx). So, for example, the source
function for the 1-D heat operator is the solution of

ut = k2uxx, −∞ < x <∞, t > 0,

u(x, 0) = δ(x),

and we found that the solution is the heat kernel

S(x, t) =
1

2k
√
πt
e−

x2

4k2t .

a) Show that the solution of the heat problem

ut = k2uxx + g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = φ(x)

can be written as

u(x, t) =

∫ t

0

S(x, t− τ) ∗ g(x, τ)dτ
+ S(x, t) ∗ φ(x),

where the convolution is in the space variable(s) only.

b) Show that the solution of the wave problem

utt = c2uxx + g(x, t), −∞ < x <∞, t > 0,

u(x, 0) = φ(x),

ut(x, 0) = ψ(x)

can be written as

u(x, t) =

∫ t

0

S(x, t− τ) ∗ g(x, τ)dτ

+
∂

∂t
S(x, t) ∗ φ(x) + S(x, t) ∗ ψ(x),
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where the source function S, called the Riemann function, is the
solution of the problem

utt = c2uxx, −∞ < x <∞, t > 0,

u(x, 0) = 0,

ut(x, 0) = δ(x).

8. Adjoints and self-adjoint problems: We may extend the idea of
adjoint to PDEs, as well. For the linear, second-order operator

L[u] = a11uxx + 2a12uxy + a22uyy + b1ux + b2uy + cu,

we define its adjoint to be the operator

L∗[u] = a11uxx + 2a12uxy + a22uyy − b1ux − b2uy + cu.

Note that, as before, self-adjointness is “ruined” by the presence of a
first derivative.

a) Show that, for any such operator, we have a version of Lagrange’s
identity of the form

uL[v]− vL∗[u] = ∇ ·www,

where www(x, y) = (w1(x, y), w2(x, y)).

b) Show that Green’s formula can be written as

∫∫
D

(uL[v]− vL∗[u]) =
∮
∂D

www ·nnn ds,

where D is any bounded domain.

c) Note that we already used the self-adjointness of the Laplace op-
erator in Sections 10.3 and 10.4. Are the heat and wave operators
self-adjoint?

9. Find the solution of the 2-D wave problem

utt = c2∇2u+ δ(x− ξ)δ(y − η)δ(t− τ), −∞ < x <∞,
−∞ < y <∞, t > 0,

u(x, y, 0) = 0,

ut(x, y, 0) = 0

by treating it as a 3-D problem, with a vertical line source.



Prelude to Chapter 11

In actual practice, most PDEs cannot be solved exactly, and we must resort
to approximate methods of solution, that is, to numerical methods. In fact, in
most cases where we can find an exact solution, it is an infinite series, which
must be approximated anyway in any practical applications.

While many numerical methods arrived recently, due to the advent of the
computer (and its predecessor, the differential analyzer), some are quite old.
In fact, the finite difference method, which employs various difference quotients
to approximate derivatives, was used to solve problems in astronomy and car-
tography even before the derivative had been invented/discovered! However,
theoretical work on finite difference schemes began in earnest only at the turn
of the 20th century, and, as it is with so much of modern mathematics, the
names of those involved are too numerous to list (although of particular note
is Richard Courant (1888–1972). We should also mention Phyllis Nicolson,
who helped to devise the Crank–Nicolson numerical scheme.).

The finite element method is like the finite difference method insofar as it
involves breaking up the domain of the problem into discrete pieces, but the
similarity ends there, as we’ll see. This method dates to the years 1915–1925
and, particularly, to the work of Boris Grigorievich Galerkin (1871–1945) and,
again, Richard Courant.

The last numerical methods that we look at are the spectral methods, so-
called because they entail approximating solutions with truncated series of
eigenfunctions—indeed, with truncated (generalized) Fourier series. Impor-
tant contributions in this area were made by Galerkin and by Cornelius Lanc-
zos (1893–1974), among others.
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Numerical Methods

11.1 Finite Difference Approximations for ODEs

We begin by looking at finite difference approximations for ordinary differen-
tial equations, as they involve most of the pertinent ideas from PDE methods,
yet are easier to implement. The first question we ask is the somewhat ob-
vious question of how to approximate the first derivative. But remember the
definition of f ′ using the difference quotient,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

Thus, we should have

f ′(x) ≈ f(x+ h)− f(x)
h

,

with the approximation getting better as h gets smaller.
How will this work? Let’s get right to an example.

Example 1 Approximate the solution of the initial-value problem

dy

dt
+ y = 3, t > 0,

y(0) = 5.

Of course, the exact solution is y = 2 + 3e−t, with which we’ll compare our
approximation.

So let’s break the t-axis into intervals of constant length h and form the
grid points as in Figure 11.1, just as we did when developing the Riemann
integral back in calculus. Thus, we have

t0 = 0, t1 = t0 + h, t2 = t1 + h = 2h, . . . , ti = ih, i = 0, 1, 2, . . . .

t−axis
0 h 2h 3h 4h . . .

FIGURE 11.1
Grid for Example 1.

539



540 An Introduction to Partial Differential Equations with MATLAB R©

Now we replace dy
dt by the difference quotient, and the ODE becomes

y(t+ h)− y(t)
h

+ y(t) ≈ 3

or

y(t+ h) ≈ h[3− y(t)] + y(t).

We’re now in a position to move step-wise from t0 to t1, t1 to t2, t2 to t3, etc.
We have

y(t1) = y(h)

≈ h[3− y(t0)] + y(t0)

= h[3− y(0)] + y(0)

= 5− h,
y(t2) = y(2h)

≈ h[3− y(t1)] + y(t1)

= 5− 4h+ 2h2,

y(t3) ≈ . . . ≈ 5− 6h+ 6h2 − 2h3,

...

In any single step, from y(ti) to y(ti+1), an obvious source of error is our
approximation of the derivative. We should be able to reduce this error by
taking smaller values of h. A more mundane, but equally important, error
source is the fact that these computations will, in general, be performed on a
real computer, which always rounds to a certain number of decimal places.

Each of these errors will accumulate and, since reducing the size of h will
increase the number of steps necessary to reach a given time, taking smaller
values of h will increase the latter error. Thus, we have two competing types
of errors:

1. Truncation or discretization error:∗ due to approximation of deriva-
tive, reduced by choosing lesser values of h

2. Roundoff error: due to the computer’s rounding at each calculation,
reduced by choosing greater values of h

∗“Discretization” because we’re changing a continuous problem into a discrete problem;
“truncation” because, as we’ll see below, we can look at this process as a truncation of the
Taylor series for y. Also, we actually have various types of truncation errors, each a result
of the process of discretization. We’ll say more at the end of this section.
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Finally, an additional concern is a very practical one, that of computation
time. Here, as with roundoff error, decreasing h means adding more steps to
get to a given value of t and, thus, more run-time for the computer program.

Example 1 (cont.) Continuing our first example, it’s customary to write

y(ti) ≈ yi, i = 0, 1, . . . ,

so that y(ti) will be the exact solution at ti, while yi is the approximate
solution there. In this case, the finite difference approximation is written

yi+1 = h(3− yi) + yi, i = 0, 1, 2, . . . .

In Table 11.1, we compare the “exact” solution on 0 ≤ t ≤ 1 with the ap-
proximate solution, for various values of h. In this case, i = 0, 1, . . . , n, while
h = 1

n .

t n = 10 n = 100 n = 1000 3 + 2e−t

.1 4.8 4.8088 4.8096 4.8047

.2 4.62 4.6358 4.6373 4.6375

.3 4.458 4.4794 4.4814 4.4816

.4 4.3122 4.3379 4.3404 4.3406

.5 4.1810 4.2100 4.2128 3.2131

.6 4.0629 4.0943 4.0973 3.0976

.7 3.9566 3.9897 3.9928 3.9932

.8 3.8609 3.8950 3.8983 3.8987

.9 3.7748 3.8095 3.8128 3.8131

1.0 3.6974 3.7321 3.7354 3.7358

TABLE 11.1
Results of Example 1 on 0 ≤ t ≤ 10 ≤ t ≤ 10 ≤ t ≤ 1. Note that the approximate values
seem to converge to the “exact” values (calculated by computer) as
hhh becomes smaller.

Notice that we start at the initial time and march to the right, one step at
a time. This type of method is called an explicit one-step method—the
value of yi+1 is given explicitly, and it depends only on the values ti and yi.
(More generally, we have explicit k-step methods, where yi+k depends on tj
and yj for j = i, i + 1, . . . , i + k − 1.) By the way, the particular explicit
one-step method used here is called Euler’s method.
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On the other hand, implicit methods will have yi+1 on both sides of the
equation, and it often will be difficult or impossible to solve for yi+1. In this
case, yi+1 usually is approximated again. See Exercise 12.

We need to be careful in the h-large-vs-h-small struggle, as the following
example shows.

Example 2 We use the method of Example 1, but for the IVP

y′ = −2y, t > 0,

y(0) = y0,

the exact solution of which is y = y0e
−2t. The approximation gives us

yi+1 − yi
h

= −2yi or yi+1 = (1− 2h)yi

and, in this simple case, it’s easy to show that

yi+1 = (1 − 2h)i+1y0

(see Exercise 7). Now, as i increases, we see that the behavior depends very
much on the value of h. Specifically,

lim
i→∞

(1− 2h)i+1 =

⎧⎪⎪⎨
⎪⎪⎩
0, if 0 < h ≤ 1

2
,

±∞, if h >
1

2
;

so, if our time step is too large, our approximate solution oscillates with
increasing magnitude and, if h = 1

2 , we get yi = 0 for i = 1, 2, 3, . . . . Thus,
unless h < 1

2 , our approximation is worthless. This type of behavior often
is a signal that we should be using another difference approximation for the
problem.

Now, remember that PDEs often are initial-boundary-value problems, so
we’ll need to look at ODE BVPs, the more interesting of which seem to
involve y′′. Thus, we must recast our approximation of f ′ in a more general
setting that will allow us to approximate higher order derivatives. For this,
we turn to the Taylor series.

Remember that, if f is well-enough behaved, we can write

f(x+ h) =

∞∑
n=0

f (n)(x)

n!
hn

= f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + . . . ,

the series being the Taylor series for f , about the point x. Of course, when
this series converges, the terms → 0 as n → ∞, so we may approximate



Numerical Methods 543

f(x + h) to any desired degree of accuracy just by computing enough terms
on the right. In the process, we ignore the remaining terms—we truncate the
series. We can be more precise, though, by introducing notation that will
allow us to keep track of the effect of truncating the series.

Definition 11.1 Given functions f(h) and g(h), if there exist constantsM >
0 and δ > 0 such that

|f(h)| ≤M |g(h)| for |h| < δ,

then we write
f(h) = O(g(h)) as h→ 0

and we say “f is big-oh of g as h approaches 0”† (and, of course, g(h)→ 0⇒
f(h)⇒ 0). Note that an equivalent statement is that

lim
h→0

f(h)

g(h)
= constant.

Now, for fixed x, since the terms in the Taylor series → 0, we can show
(with a little work) that, for example,

h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + . . . = h2

[
1

2
f ′′(x) +

h

3!
f ′′′(x) + . . .

]

= O(h2)

and we write
f(x+ h) = f(x) + hf ′(x) +O(h2).

Similarly,

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +O(h4),

and we say that the truncation is O(h4).
So, let’s get back to approximating derivatives. We see that we can repeat

our original approximation to f ′ by writing

f(x+ h)− f(x)
h

= f ′(x) +
O(h2)

h

or

f ′(x) =
f(x+ h)− f(x)

h
+O(h) (why O(h)?).

We call this the forward difference approximation to f ′. Of course, we
can replace h by −h, and get

f(x)− f(x− h)
h

= f ′(x) +O(h),

†We may generalize the definition to include h approaching any value h0, including ±∞.
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the backward difference approximation. However, we can do better.
Expanding f(x+ h) and f(x− h) in their Taylor series, and subtracting, we
get (see Exercise 8a)

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2),

the central difference approximation.
How about f ′′? We now take the Taylor series out to the f ′′ term, for

both f(x + h) and f(x − h), resulting in the central (second) difference
approximation

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)

(see Exercise 8b). Of course, there are other f ′′ approximations, as well (like
the forward and backward ones for f ′).

Let’s look at an example involving a BVP.

Example 3 Approximate the solution of the BVP

y′′ + xy = 0, 0 < x < 1,

y(0) = 0, y(1) = 1.

We don’t know how to solve this problem (well, we’ll say a bit more, below),
so a numerical approximation seems to be the best we can do.

Here, x0 = 0, xn = 1, y0 = 0, yn = 1 and xi = ih = i
n , i = 0, 1, . . . , n. We

choose to use the central difference approximation

yi+1 − 2yi + yi−1

h2
+ xiyi = 0, i = 1, . . . , n− 1.

Although we can’t march forward as we did before, we do have n−1 equations
in n−1 unknowns, so we may solve simultaneously. In matrix form, for n = 6,
we have h = 1

6 , xi =
i
6 , and our system looks like

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2x1 − 2 1 0 0 0

1 h2x2 − 2 1 0 0

0 1 h2x3 − 2 1 0

0 0 1 h2x4 − 2 1

0 0 0 1 h2x5 − 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

.

We solve this system, instead, for n = 10, 100 and 1000 (that is, for h =
.1, .01 and .001), and we give the results in Table 11.2. There we see that
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the approximation seems to have converged to five decimal places. So, even
for problems that we cannot solve exactly, the seeming convergence of the
numerical results

1) Suggests that the problem does, indeed, possess a solution
2) Provides us with a useful, practical representation of the

solution.

x n = 10 n = 100 n = 1000

.1 .013382 .013467 .013467

.2 .046762 .046931 .046932

.3 .100124 .100371 .100374

.4 .173396 .173712 .173716

.5 .266390 .266759 .266763

.6 .378719 .379113 .379117

.7 .509683 .510067 .510071

.8 .658151 .658473 .658476

.9 .822406 .822605 .822607

TABLE 11.2
Results of Example 3, which seem to converge to an accuracy of
five decimal places.‡

To be certain of what’s going on, we could bring existence-uniqueness theory
to bear on the problem, and we also have theoretical ways to decide if the
numerical solution does, indeed, converge. In practice, for many problems it
suffices to perform a seat-of-the-pants numerical approximation, as we often
have experimental data with which to compare the results.

Finally, it turns out that we actually can find an explicit solution to this
particular problem. This solution, however, involves certain Fourier-like in-
tegrals called Airy functions, and the numerical solution may turn out to be
more useful to us.

Before moving on, let’s go back to the matrix in Example 3 and note two
important properties.

1) There are three nonzero bands running diagonally from top left to bot-
tom right. (In this case, the bands are the main diagonal and those

‡MATLAB code for the approximation is given with the rest of the MATLAB programs in
Appendix E.
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diagonals on either side of it—we say the matrix is tridiagonal.) We say
that the matrix is banded. The advantage of having a banded matrix
will be obvious to you, once you try to program these problems.

2) “Most” of the entries of the matrix are zero and, as n increases, the ratio
of the number of nonzero entries to the total number of entries decreases
(in fact, it → 0 as n → ∞!). We say that the matrix is sparse. Not
surprisingly, computers can handle much larger sparse matrices than
those which are nonsparse, allowing us to achieve greater accuracy by
choosing greater values of n.

Example 4 Approximate the solution of the BVP

y′′ + xy = 2, 0 < x < 1,

y′(0) = 3, y(1) = 1.

This is the problem from Example 3, except for the Neumann condition at
the left end. How do we deal with this condition? We approximate it! We
could write

y1 − y0
h

= 3

using the standard forward difference approximation. Then, we’ll have the
n − 1 equations as we had in Example 3, along with this nth equation. But
now, of course, we don’t have a value for y0, so we have the n unknowns
y0, y1, . . . , yn−1, and all is well.

However, remember that the forward difference first derivative approxima-
tion is O(h), while the central difference approximation that we’re using for
the second derivative is O(h2). In order to be consistent, we may want to use
an O(h2) approximation for the left end boundary condition, and the central
difference

y(x+ h)− y(x− h)
2h

is the only one available. But if x = 0, how do we deal with y(x − h)? We
introduce the new point

x−1 = −h, yi−1 = y(x−1),

which, by virtue of its being outside the domain of the problem, is called a
ghost point. Then, the new boundary condition

y1 − y−1

2h
= 3,

along with the additional ODE equation

y1 − 2y0 + y−1

h2
+ x0y0 = 2,
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gives us n+1 equations in the n+1 unknowns y−1, y0, . . . , yn−1. See Exercise
6.

Although we’re not in a position to have a detailed discussion on error
analysis, we should at least be aware of the concerns. We do so in a specific
setting, realizing that the ideas are easily generalized.

So, suppose we’re approximating the solution of the ODE

y′ = f(t, y)

with Euler’s (explicit) method,

yi+1 − yi
h

= f(ti, yi).

The local truncation error Ti at each step is what we get when we replace
yi by the exact solution, y(ti), in the difference approximation:

Ti(h) =
y(ti+1)− y(ti)

h
− f(ti, y(ti)), for each i.

The global truncation error Ei results from the accumulation of local
truncation error and is the difference between the exact solution of the ODE
and the exact solution of the difference approximation:

Ei(h) = y(ti)− yi, for each i.§

Of course, each of these depends on (1) the ODE, (2) the size of h and (3)
the difference approximation (the last of which depends on (4) the truncation
originally performed on the Taylor series).

Of course, we would like to have

Ti → 0 and Ei → 0 as h→ 0.

We say the approximation is

convergent if Ei → 0 as h→ 0,

and

consistent if Ti → 0 as h→ 0.

(Consistency generally is fairly easy to establish. If we derive a difference
scheme from Taylor series or from other consistent schemes, then the result
should be consistent.)

§Be careful–some books refer to Ti as the truncation error and Ei as the discretization
error. (And you may even see the Taylor remainder for y referred to as the local truncation
error!)
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Now, it turns out that a numerical approximation can be consistent without
being convergent, and convergence is difficult to prove directly. So we need to
introduce a third idea, that of stability. Without going into too much detail,
an approximation is stable if the total error (including the machine’s roundoff
error), which propagates as t increases, remains small. More specifically, it
is stable if Ti → 0 implies that the total error → 0. As with consistency,
stability is easier to establish than convergence, and our life is made easier by
the very important Lax¶ Equivalence Theorem which states, in essence,
that if an approximation is consistent, then it is convergent if and only if it
is stable.

By the way, when dealing with PDEs, we’ll have discretizations in each
independent variable and, thus, we’ll be looking at errors as h1, h2 → 0,
for example. A given approximation may have, say, E → 0 no matter how
h1, h2 → 0; however, it may also be the case that E → 0 only when h1, h2 → 0
in a certain manner (e.g., maybe we need h2 → 0 faster than h1). In the latter
case, the approximation is said to be conditionally convergent (and, similarly,
conditionally consistent or stable).

Exercises 11.1

1. Proceed as in Example 1 and use Euler’s method, with n = 4, to approx-
imate the solution on 0 ≤ t ≤ 1. Compare with the exact (or “exact,”
if a calculator is needed) solution.

a) y′ = 4t+ 2, y(0) = 2

b) y′ + y = t, y(0) = 3

c) y′ = ty2, y(0) = 1

2. MATLAB: Repeat each problem from Exercise 1, using n = 10 and
n = 100 subdivisions, and compare with the exact solution at ti =

i
10 ,

i = 1, . . . , 10.

3. Given the BVP

y′′ = 6, 0 < x < 1,

y(0) = 2, y(1) = 5,

a) Follow Example 3 and find the approximate solution for n = 4
subdivisions.

b) MATLAB: Repeat part (a) for n = 10 and n = 100.

c) Compare all three approximations with the exact solution. What’s
going on? Use Taylor series to explain what’s happening.

¶Peter Lax, 1954.
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4. MATLAB: Proceed as in Example 3 and approximate the solution of
the BVP using n = 10 and n = 100 subdivisions. In each case, compare
with the exact solution

a) y′′ = sinπx, 0 ≤ x ≤ 1, y(0) = y(1) = 0

b) y′′ − y = 2x, 0 ≤ x ≤ 3, y(0) = 4, y(3) = −2

c) y′′ =

⎧⎪⎨
⎪⎩
0, if 0 ≤ x < 1,

x, if 1 ≤ x ≤ 2,

, y(0) = 1, y(2) = 5

5. MATLAB: Perform the approximation for the problem in Example 4,
for n = 10 and n = 100 subintervals.

6. Proceed as in Example 4 to set up the linear equations for the approxi-
mation of the solution of the given problem, using the central difference
approximation, with ghost points where necessary. In each case, how
many equations are there, and what are the unknowns?

a) y′′ + x2y = x− 1, 2y(0)− 3y′(0) = 0, y(4) = 0

b) y′′ − y = x, y(0)− y′(0) = 2, y(1) + 4y′(1) = 0

7. Use mathematical induction to show that if

yi+1 = (1− 2h)yi, i = 0, 1, 2, . . . ,

then

yi+1 = (1− 2h)i+1y0, i = 0, 1, 2, . . . .

8. a) Derive the central difference approximation by showing that

f ′(x) =
f(x+ h)− f(x− h)

2h
+O(h2).

b) Derive the formula

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2).

c) Repeat part (b) but, instead, by using the central difference ap-
proximation twice.

9. a) Use Taylor series to decide if the forward, central and backward
difference formulas are the only approximate formulas for f ′(x)
involving a linear combination of f(x), f(x+ h) and/or f(x− h).
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b) Do the same as in part (a), but for the formula

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)
h2

.

10. a) Find the most accurate approximation of f ′(x) of the form

af(x+ 2h) + bf(x+ h) + cf(x) + df(x− h) + ef(x− 2h).

b) Find the most accurate approximation of f ′′(x) of the same form.

11. a) Show that if f1(h) = O(g1(h)) and f2(h) = O(g2(h)) as h → 0,
then f1(h) + f2(h) = O[g1(h) + g2(h)] as h→ 0.

b) Show that if f1(h, k) = O(g1(h)) as h→ 0 and f2(h, k) = O(g2(k))
as k → 0, then

f1 + f2 = O(g1 + g2) as h, k→ 0.

12. a) Given the ODE y′ = f(x, y), use the fact that

y(xi+1)− y(xi) =
∫ xi+1

xi

y′(t)dt,

along with the trapezoidal rule approximation, to derive the im-
plicit method

yi+1 = yi +
h

2
[f(xi, yi) + f(xi+1, yi+1)].

b) Show that a forward difference approximation turns the above
method into Heun’s method or the improved Euler method

yi+1 = yi +
h

2
[f(xi, yi) + f(xi+1, yi + hf(xi, yi))].

c) Generalize part (a) and derive the approximation

yi+1 = yi + h[af(xi, yi) + (1 − a)f(xi+1, yi+1)]

for the above ODE, where a is any constant such that 0 ≤ a ≤ 1.
The term in the brackets is a weighted average of f(xi, yi) and
f(xi+1, yi+1). What difference method is used in the case a = 0?

d) Generalize part (b) and derive the approximation

yi+1 = yi + h[(1− α)f(xi, yi) + αf(xi + αh, yi + αhf(xi, yi)],

where α is any constant such that 0 ≤ α ≤ 1.
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e) Combine parts (a) and (d), with α = 1
2 , to derive the modified

Euler method

yi+1 = yi + hf

(
xi +

1

2
h, yi +

1

2
hf(xi, yi)

)
.

Each of these methods is a special case of, or related to, the so-
called Runge–Kutta methods.

13. MATLAB: Approximate the solution of Example 1 using Heun’s
method and the modified Euler method, for n = 10 and n = 100 subdi-
visions, on 0 ≤ t ≤ 1. Compare the results to those in Table 11.1.

11.2 Finite Difference Approximations for PDEs

We may approximate partial derivatives just as we did ordinary derivatives.
So, for example, given u = u(x, t), we have

ux(x, t) =
u(x+ h, t)− u(x, t)

h
+O(h)

=
u(x+ h, t)− u(x− h, t)

2h
+O(h2)

=
u(x, t)− u(x− h, t)

h
+O(h)

and

uxx(x, t) =
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
+O(h4)

(and similarly for ut and utt). Here, however, we also have mixed partials,
such as uxt, which we leave to Exercise 8b.

The shorthand we use is similar, as well. If we have a rectangular domain we
break it up into a grid, with each x-interval of length Δx and each t-interval
of length Δt. Without loss of generality (WLOG), let’s take the domain to
be the rectangle 0 ≤ x ≤ L, 0 ≤ t (for the heat and wave equations). The
x-grid points will be

x0 = 0, x1 = Δx, . . . , xi = iΔx, . . . , xn = nΔx = L,

while, for the t-coordinates, we have

t0 = 0, t1 = Δt, . . . , tj = jΔt, . . . .

Finally, we write
u(xi, tj) = ui,j.
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THE HEAT EQUATION

Explicit scheme

We’d like to begin by discretizing the heat equation

ut = k2uxx.

The standard explicit scheme entails using the forward difference approxi-
mation for ut and the central difference approximation for uxx, so that we
have

ui,j+1 − ui,j
Δt

=
ui+1,j − 2ui,j + ui−1,j

(Δx)2
+ Ti,j(Δx,Δt),

where the local truncation error Ti,j(Δx,Δt) = O[Δt + (Δx)2] (see Exercise
7b). Thus, the scheme is consistent, the definition of which is that

lim
Δx→0,Δt→0

Ti,j(Δx,Δt) = 0

(in the two-variable setting). This method is explicit (in time), since ui,j+1

is given in terms of the values of u at the previous time step. Thus, beginning
with the initial condition at j = 0, we may march step by step in the t-
direction. (Thus, we talk about the time variable in these kinds of equations,
when distinguishing between explicit and implicit.)

Solving for ui,j+1, we have

ui,j+1 =
k2Δt

(Δx)2
ui+1,j +

(
1− 2k2Δt

(Δx)2

)
ui,j +

k2Δt

(Δx)2
ui−1,j .

We say that the quantities ui,j+1, ui+1,j , ui,j, ui,j+1 form a computation
molecule for the given scheme—see Figure 11.2.

x x x

x

i−1 i i+1

y

j+1t

jt

FIGURE 11.2
Computation molecule for the explicit scheme for the heat equation.
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In actual practice, we must choose values for Δx and Δt. As before, smaller
values of Δx and Δt should reduce the local truncation error, while larger
values of Δt will reduce both the number of times that roundoff error is
accumulated and the run-time of the computations. However, here there is
another issue, one that did not show up when dealing with ODEs: we now
have to deal with the ratio Δt

(Δx)2 . One can imagine that, if (Δx)2 is much

smaller than Δt, the coefficients above may be “too big” and may lead to
troublesome behavior. Indeed, this turns out to be the case, and we look
more closely in Exercise 1c. It can be shown that we must take

k2Δt

(Δx)2
≤ 1

2

in order for the scheme to be stable.∗ (Thus, the scheme is conditionally
stable.) Note that this choice guarantees that the coefficients are nonnegative.
Note also that the number 1/2 does not depend on the units or scale that we

use, as the number k2(Δt)
(Δx)2 is dimensionless (why?). This is a severe restriction.

For example, letting k2 = 1, even if we choose Δx to be fairly large, say,
Δx = .1, we’re required to take Δt ≤ 1

2 (.1)
2; if Δx = .01, instead, the Δt is

miniscule, with Δt ≤ 1
2 (.01)

2. The number of time steps required to march
even a short distance in the t-direction makes this scheme quite impractical.

At any rate, once we choose this ratio, the rest of the approximation is
fairly easy. The initial condition

u(x, 0) = f(x)

tells us, of course, that

u(xi, 0) = ui,0 = f(xi), i = 0, 1, . . . , n,

while the Dirichlet boundary conditions

u(0, t) = u(a, t) = 0

give us the equations

u(0, tj) = u0,j = u(L, tj) = un,j = 0, j = 0, 1, 2, . . . .

If we have a Neumann or Robin boundary condition, we proceed as in
Example 4 of the previous section and use a forward, central or backward
difference to approximate the derivative in the boundary condition. In fact,
since the local truncation error for the explicit scheme is O[Δt+ (Δx)2] (see
Exercise 7b), it’s customary to choose the boundary approximation to be
consistent with this error. Thus, we again use the central difference, as its

∗See, e.g., G.D. Smith’s Numerical Solution of Partial Differential Equations.
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truncation error is O[(Δx)2]. Of course, this necessitates the introduction of
the ghost points

u(−Δx, tj) = u−1,j or u(L+Δx, tj) = un+1,j, j = 0, 1, 2, . . . ,

allowing us to write

u1,j − u−1,j

2Δx
≈ ux(0, tj) or un+1 − un−1

2Δx
≈ ux(L, tj).

We work out the details in Exercise 2, for example.
The result, for any time T = mΔt, is a system consisting of the (n − 1)m

equations

ui,j+1 = εui+1,j + (1− 2ε)ui,j + εui−1,j, i = 1, . . . , n− 1; j = 0, . . . ,m− 1

in the (n− 1)m unknowns

ui,j+1, i = 1, . . . , n− 1; j = 0, . . . ,m− 1.

Here, ε = k2Δt
(Δx)2 . Of course, we need not solve the equations simultaneously,

as we can march in the time variable by using the results in the jth row to
compute those in the (j + 1)st.

By the way, if we choose ε = 1
2 , we get the very simple Bender–Schmidt

explicit scheme

ui,j+1 =
1

2
(ui+1,j + ui−1,j).

And, of course, there are numerous other explicit schemes for the heat equa-
tion, a few of which we’ll meet in the exercises.

Implicit scheme: Crank–Nicolson

We would rather have schemes that are stable for any choice of ε = k2Δt
(Δx)2 . To

this end, we proceed as in Exercise 12c from the previous section and look at
consistent implicit schemes of the form

ui,j+1 − ui,j
Δt

= k2
[
a
ui+1,j − 2ui,j + ui−1,j

(Δx)2

+(1− a)ui+1,j+1 − 2ui,j+1 + ui−1,j+1

(Δx)2

]
,

where 0 < a < 1. Thus, the right side is essentially a weighted average of
the approximations for uxx(xi, tj) and uxx(xi, tj+1). It turns out that, for
0 < a ≤ 1

2 , the scheme is (unconditionally) stable. The computation molecule
can be seen in Figure 11.3.
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x x xi−1 i i+1

j+1t

jt

FIGURE 11.3
Computation molecule for the implicit schemes (including Crank–
Nicolson) for the heat equation.

For various reasons, the most popular such scheme is that corresponding to
a = 1

2 , the Crank–Nicolson scheme

(1 + ε)ui,j+1 = (1 − ε)ui,j + ε

2
(ui+1,j+1 + ui−1,j+1 + ui+1,j + ui−1,j),

where ε = k2tΔt
(Δx)2 .

Let’s illustrate with an example.

Example 1 We’ll use Crank–Nicolson on the problem

ut = uxx, 0 < x < 1, t > 0,

u(x, 0) = sinπx,

u(0, t) = u(1, t) = 0,

with Δx = .2 and Δt = .08, and we’ll compare the solution at time t = .16
to the values of u(x, .16) at the x-grid points.

The numerical scheme becomes

3ui,j+1 = −ui,j + ui+1,j+1 + ui−1,j+1 + ui+1,j + ui−1,j

for i = 1, 2, 3, 4 and j = 0, 1. The resulting linear system is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0 0 0 0 0

−1 3 −1 0 0 0 0 0

0 −1 3 −1 0 0 0 0

0 0 −1 3 0 0 0 0

1 −1 0 0 3 −1 0 0

−1 1 −1 0 −1 3 −1 0

0 −1 1 −1 0 −1 3 −1
0 0 −1 1 0 0 −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u11

u21

u31

u41

u12

u22

u32

u42

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f2 − f1
f3 − f2 + f1

f4 − f3 + f2

−f4 + f3

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where fi = sinπxi = sin .2πi, and we solve it as we did in Section 11.1. The
results are given in Table 11.3.†

xi ui,2 u(xi, .16)

.2 .118 .121

.4 .190 .196

.6 .190 .196

.8 .118 .121

TABLE 11.3
Crank–Nicolson approximation for the problem in Example 1.

THE WAVE EQUATION

Explicit scheme

For the wave equation
utt = c2uxx,

it seems reasonable that we approximate each second derivative via the central
difference, so our scheme will be

ui,j+1 − 2ui,j + ui,j−1

(Δt)2
= c2

ui+1,j − 2ui,j + ui−1,j

(Δx)2
+ Tij(Δx,Δt)

or

ui,j+1 = εui+1,j + 2(1− ε)ui,j + εui−1,j − ui,j−1,

where, here, ε =
(
cΔt
Δx

)2
. One might suspect that we’ll need to have 1− ε ≥ 0

in order to have stability and, indeed, this turns out to be the case.‡ However,
the restriction on the mesh size is much less severe here as, taking c2 = 1, we
need only take Δt ≤ Δx.

By the way, notice what the condition ε ≤ 1 says graphically. First, if
ε = 1, then cΔt = Δx and the characteristics through the point (xi, tj+1)

†Of course, if we were to perform this approximation in earnest, we would use a much
smaller mesh size and solve it for a much greater value of t. The problem here is that the
matrix is not quite as nice as the matrices in the previous section. While it is banded
and (with small enough mesh size) sparse (why?), life would be much easier if it were,
say, tridiagonal. In fact, there are tricks that one can use to turn more complicated linear
systems into such simpler systems.

Also, here, again, we may march in t, although it requires solving simultaneously for all
quantities in row j + 1, in terms of those in row j.
‡This is the well-known Courant–Friedrichs–Lewy condition.
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pass directly through the points (xi−1, tj) and (xi+1, tj). If ε < 1, then the
characteristics pass between these points. We say that the analytical domain
of dependence is a subset of the numerical domain of dependence. See Figure
11.4. This says that disturbances must propagate “through the numerical
scheme” at a speed ≥ c in order for the scheme to be stable.

The initial condition

u(x, 0) = f(x)

gives us, as in the case of the heat equation,

ui,0 = f(xi), i = 0, 1, . . . , n.

However, the second initial condition, of course, involves the time derivative,

ut(x, 0) = g(x).

Since the explicit scheme is O[(Δt)2 + (Δx)2] (see Exercise 8d), we again
choose the central difference approximation for ut. Thus, we introduce the
ghost points

u(xi,−Δt) = ui,−1, i = 0, 1, . . . , n.

There are, of course, implicit schemes for the wave equation. However, since
the stability condition for the explicit scheme is not strict and allows us to
be flexible in our choice of grid, it is not so crucial to find alternatives to this
scheme.

x

  i    j(x  , t  )

FIGURE 11.4
The solid lines are called the numerical characteristics and bound
the numerical domain of dependence. Here, we have ε < 1ε < 1ε < 1, i.e.,
cΔt < ΔxcΔt < ΔxcΔt < Δx, so the analytic characteristics, represented by the dashed
lines, are steeper than the numerical characteristics. Thus, for ε < 1ε < 1ε < 1,
the actual domain of dependence is a proper subset of the numerical
domain of dependence.
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LAPLACE’S EQUATION

Given Laplace’s equation
uxx + uyy = 0

on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b, we set up the grid as we usually do (of
course, both variables are bounded here). So we have

xi = iΔx, i = 0, 1, . . . , n,
(
so Δx =

a

n

)
,

yj = jΔy, j = 0, 1, . . . ,m,

(
so Δy =

b

m

)
,

and we see no compelling reason not to use a central difference in each variable.
Then, our scheme is

ui+1,j − 2ui,j + ui−1,j

(Δx)2
+
ui,j+1 − 2ui,j + ui,j−1

(Δy)2
= 0

or

ui,j =
1

2[(Δx)2 + (Δy)2]
[(Δx)2(ui,j+1 + ui,j−1) + (Δy)2(ui+1,j + ui−1,j)].

Notice that the right side is a weighted average of the four quantities there
(why?) and, if we choose Δx = Δy, we have

ui,j =
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

4
,

the average of the four neighboring points (see the computation molecule in
Figure 11.5). This should come as no surprise, given the mean value property
for harmonic functions (Section 9.3). It’s not hard to show (try it!) that the
maximum (minimum) value of ui,j must occur on the rectangle’s boundary.

x x xi−1 i i+1

j

y
j−1

y

yj+1

FIGURE 11.5
Computation molecule for the given scheme for Laplace’s equation.
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Notice that we do not distinguish between explicit and implicit here, be-
cause of the bounded domain (so neither variable plays a role similar to t in
the heat and wave equations).

As for the boundary, Dirichlet conditions again pose no problem, while for
Neumann or Robin conditions, we again need to introduce ghost points in
order to use the central difference approximation for the first derivative.

Now, for the sake of simplicity, let’s look at the Dirichlet problem, with
Δx = Δy. In this case, the quantities u0,j, un,j, ui,0 and ui,n are known for
all values of i and j, and we thus have the (n− 1)2 equations

ui,j =
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

4
, i = 1, 2, . . . , n−1; j = 1, 2, . . . , n−1,

in the (n− 1)2 unknowns

ui,j , i = 1, . . . , n− 1; j = 1, . . . , n− 1.

As there is no way to march, we must solve them as a simultaneous system.
So here we have no option but to solve the linear system

AY = B.

Of course, as we’ve said all along, with a small enough grid size the matrix A
will be quite large.

In order to expedite the approximation, certain iterative methods have
been developed. These actually involve approximating the solution of the
approximate scheme. However, it can be shown that the iterative solution
does converge to the solution of the difference scheme in each case.

Jacobi iteration

This is the simplest of the iterative methods. Basically, we begin with an
initial guess for the solution at each point,

u
(0)
i,j , i = 1, . . . , n− 1; j = 1, . . . , n− 1.

Next, we update this guess by letting

u
(1)
i,j =

u
(0)
i,j+1 + u

(0)
i,j−1 + u

(0)
i+1,j + u

(0)
i−1,j

4
.

We continue this process as long as we’d like, stopping when the

max
i,j

[u
(N+1)
i,j − u(N)

i,j ]

is small enough.
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Gauss–Seidel iteration

When we implement Jacobi iteration, we have to start somewhere and move
to other points in an orderly fashion. Standard practice is to start at u1,1 at
the bottom left, then proceed along the first row to un,1, then start the second
row at u1,2 on the left, move along that row, etc. So what happens when we
get to u3,2, say? We have

u
(1)
3,2 =

u
(0)
3,3 + u

(0)
3,1 + u

(0)
4,2 + u

(0)
2,2

4
.

However, at this point, we’ve already updated u
(0)
3,1 to u

(1)
3,1 and u

(0)
2,2 to u

(1)
2,2. It

may make computational sense to use these updated values in our calculation

for u
(1)
3,2. Indeed, it turns out that proceeding in this manner does speed up

the convergence—we call this method Gauss–Seidel iteration. In general,
it says to take

u
(N+1)
i,j =

u
(N)
i,j+1 + u

(N+1)
i,j−1 + u

(N)
i+1,j + u

(N+1)
i−1,j

4
.

Successive overrelation iteration

S-O-R iteration is a generalization of Gauss–Seidel in that, instead of look-
ing only at

u
(N+1)
i,j = u

(N)
i,j +

1

4
[u

(N)
i,j+1 + u

(N+1)
i,j−1 + u

(N)
i+1,j + u

(N+1)
i−1,j − u(N)

i,j ]

(i.e., Gauss–Seidel), it considers looking at

u
(N+1)
i,j = u

(N)
i,j + ω[u

(N)
i,j+1 + u

(N+1)
i,j−1 + u

(N)
i+1,j + u

(N+1)
i−1,j − u(N)

i,j ]

for various values of the relaxation parameter ω, in order to find ω which
gives the fastest rate of convergence.

FIRST-ORDER EQUATIONS

Let’s look at the simple first-order PDE

ut + cux = 0.

We have the option of approximating each of ut and ux by a forward, central or
backward difference scheme. If the central difference is used in both directions,
we have the well-known leap frog method (Why the name? See Figure
11.6.). We investigate these schemes in the exercises.
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x x xi−1 i i+1

j−1

j+1

t

t

t

j

FIGURE 11.6
Computation molecule for the leap frog scheme.

Lax–Wendroff method

Of course, the ultimate goal, beyond the scope of this book, is to solve nu-
merically equations that are difficult or impossible to solve analytically. So,
for example, it would be nice to derive a method for the above equation that
can be generalized to the setting of the ubiquitous conservation law equation

ut + f(u)ux = 0.

To this end, the Lax–Wendroff method was developed. This method entails
starting off with the t-Taylor series

u(x, t+Δt) = u(x, t) = Δtut(x, t) +
(Δt)2

2!
utt(x, t) +

(Δt)3

3!
uttt(x, t) + . . .

and then using the PDE to replace ut, utt, etc., by ux, uxx, etc. How is this
done? We know that

ut = −cux.
Then,

utt = −cuxt = −c(ut)x = −c(−cux)x = c2uxx

and, in general,
∂nu

∂tn
= (−1)ncn ∂

nu

∂xn
.

Thus,

u(x, t+Δt) = u(x, t)− cΔtux(x, t) + (cΔt)2

2!
uxx(x, t) +O[(cΔt)3]

and, replacing ux and uxx with central differences, we have the Lax–Wendroff
method:

ui,j+1 = ui,j − cΔt

2Δx
(ui+1,j − ui−1,j)

+
1

2

(
cΔt

Δx

)2

(ui+1,j − 2ui,j + ui−1,j)
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or

ui,j+1 = (1− ε2)ui,j + ε

2
(1 + ε)ui−1,j +

ε

2
(ε− 1)ui+1,j,

where ε = cΔt
Δx . It can be shown that the local truncation error is O[(Δt)2 +

(Δx)2] and that the scheme is stable for 0 < ε ≤ 1.

Exercises 11.2

1. Consider, again, the problem from Example 1,

ut = uxx, 0 < x < 1, t > 0,

u(x, 0) = sinπx,

u(0, t) = u(1, t) = 0.

a) Apply the explicit scheme

ui,j+1 = εui+1,j + (1− 2ε)ui,j + εui−1,j, ε =
Δt

(Δx)2

to the problem, using Δx = .2 and Δt = .02; compute by hand the
approximate solution at time t = .04, by marching from each time
step to the next.

b) MATLAB: Extend part (a) and write a program which approx-
imates the solution for any tn = .02n. Compute the solution for
t = .16 and compare the results to those in Table 11.3.

c) Use the same scheme, but with Δt = .08, and compute the ap-
proximate solution at t = .16. Compare to the results above and
in Table 11.3. What’s going on?

2. Here we apply the same explicit scheme to the heat problem with Neu-
mann boundary condition

ut = uxx, 0 < x < 5, t > 0,

u(x, 0) = cos
2πx

5
,

ux(0, t) = ux(5, t) = 0.

a) Use Δx = 1 and Δt = 1
3 , and march to the solution at t = 2

3 .
Approximate the ux terms using a scheme which has truncation
error consistent with that of the PDE scheme. Compare with the
exact solution.

b) MATLAB: Extend part (a) to approximate the solution at time
t = 10. Again, compare with the exact solution.
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3. Given the wave equation problem

utt = uxx, 0 < x < 1, t > 0,

u(x, 0) = sinπx,

ut(x, 0) = 0,

u(0, t) = u(1, t) = 0,

use the explicit scheme

ui,j+1 = εui+1,j + 2(1− ε)ui,j + εui−1,j − ui,j−1, ε =

(
Δt

Δx

)2

to approximate its solution.

a) Use Δx = .2 and Δt = .1, and compute by hand the solution at
time t = .2. Compare with the exact solution.

b) MATLAB: Extend part (a) and write a program to approximate
the solution at any time tn = n(.1). Compare the approximate
solution with the exact solution for time t = 1.

c) Repeat part (a), but for the initial conditions

u(x, 0) = 0,

ut(x, 0) = sinπx.

Make sure that the scheme you use for ut is consistent with that
used for the PDE, as far as truncation error is concerned.

d) MATLAB: Repeat part (b), but for the problem in part (c).

4. In matrix form, write down the equations for the approximation of the
potential problem

∇2u = uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = u(1, y) = u(x, 1) = 0,

uy(x, 0) = f(x),

using the scheme

4ui,j = ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

with Δx = Δy = .25. (Hint: Your coefficient matrix should be 15× 15.)

5. Given the first-order problem

ut + ux = 0, x > 0, t > 0,

u(x, 0) = f(x),

u(0, t) = g(t),
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use the Lax–Wendroff scheme

2ui,j+1 = 2(1− ε2)ui,j + ε(1 + ε)ui−1,j + ε(ε− 1)ui+1,j ,

ε =
Δt

Δx
,

to approximate its solution on 0 ≤ x ≤ 1. (Hint: You will need to use
an initial x-interval which is bigger than 0 ≤ x ≤ 1. If we’d like to
compute the solution after n time steps, we need to consider the initial
x-interval 0 ≤ x ≤ 1 + nΔx.)

a) Use f(x) = sinπx, g(t) = − sinπt, Δx = .2 and Δt = .1, and
compute the approximate solution at time t = .2. Compare your
results with the exact solution.

b) MATLAB: Extend part (a) and approximate the solution at time
t = 1. Again, compare with the exact solution.

c) MATLAB: Instead, use f(x) = 1−x and g(t) = 1+ t and repeat
part (b). What’s going on?

d) MATLAB: Repeat part (c), but using Δx = .1 and Δt = .2.
What’s going on here?

6. Burger’s equation: Apply the Lax–Wendroff scheme to the Burger’s
equation problem

ut + uux = 0, x > 0, t > 0,

u(x, 0) = 3x,

u(0, t) = 0,

on 0 ≤ x ≤ 1. (Note that the exact solution is u = 3x
1+3t .) Use Δx = .2

and Δt = .1, and compute the solution at t = .2. Compare with the
exact solution

7. a) Write out the approximating equation for the leap frog method.

b) Show that its local truncation error is Ti,j(Δx,Δt) = O[(Δt)2 +
(Δx)2].

c) How would you go about implementing the leap frog method?
Specifically, supposing Δx = .2 on 0 ≤ x ≤ 1 and Δt = .1, how
would you find the values of the approximating solution at a later
time, say, t = .3?

8. Verify the local truncation error for the given scheme.

a) For ut + cux = 0, the scheme using explicit forward differences in
both x and t; Ti,j(Δx,Δt) = O[Δt + (Δx)]
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b) The explicit scheme for the heat equation (Exercise 1); Ti,j(Δx,Δt)
= O[Δt+ (Δx)2]

c) Crank–Nicolson; Ti,j(Δx,Δt) = O[(Δt)2 + (Δx)2]

d) The explicit scheme for the wave equation (Exercise 3); Ti,j(Δx,Δt)
= O[(Δt)2 + (Δx)2]

e) The scheme for Laplace’s equation, with Δx = Δy (Exercise 4);
Ti,j(Δx,Δy) = O[(Δx)2]

9. a) Derive the double Taylor series for a function f(x, y) formally by,
first, expanding f(x + Δx, y + Δy) in a Taylor series in the x-
coordinate and then expanding each term in a Taylor series in the
y-coordinate. Include terms out to the fourth partial derivative.

b) Derive the formula

uxy(x, y) =
1

4(Δx)(Δy)
[u(x+Δx, y +Δy)− u(x+Δx, y −Δy)

− u(x−Δx, y +Δy) + u(x−Δx, y −Δy)]

+O[(Δx)2 + (ΔY )2].

11.3 Spectral Methods and the Finite Element Method

Although finite difference approximations are, in some sense, the “easiest,”
most straightforward numerical methods for ODEs and PDEs, they are by
no means the only ones. In this section, we introduce two classes of methods
which, in the right circumstances, are quite powerful.

SPECTRAL METHODS

To make a long story short, spectral methods essentially involve plugging
in a truncated Fourier series for the unknown function and determining the
coefficients so that we have a solution. This is really the same as the method
we used in Section 4.4 to solve nonhomogeneous PDEs, except that we now
cannot solve the problem exactly and must use a computer to calculate the
approximate coefficients.

But let’s return to the nonhomogeneous heat equation to remember what
we did.
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Example 1 Given the heat problem

ut = uxx + F (x), 0 < x < π, t > 0,

u(x, 0) = f(x),

u(0, t) = u(π, t) = 0,

we know that the functions {sinnx}∞n=1 span the interval 0 ≤ x ≤ π. Thus,
we look for a solution of the form

U =
∞∑

n=1

bn(t) sinnx.

Then, we “plug” U into the PDE and compare coefficients, the latter being
possible because the functions {sinnx}∞n=1 are (simply) orthogonal on 0 ≤
x ≤ π. Finally, we solve the resulting ODEs and use the initial condition to
determine the arbitrary constants.

This is an example of a Fourier sine spectral method. It works because

1) The functions {sinnx}∞n=1 form a basis for the set of functions on 0 ≤
x ≤ π.

2) Each function sinnx already satisfies the boundary conditions.

One can imagine a situation where we can’t determine analytically the
coefficients bn(t) and will need to approximate them numerically. Or, it may
happen that the only way to get the coefficients bn is by solving a linear system
of equations. In either case, the best we can do is to compute

uN (x, t) =

N∑
n=1

bn(t) sinnx ≈ u(x, t).

Note the two sources of error: the truncation of the series and the approxi-
mation involved in computing the coefficients.

In general, any spectral method requires a set of basis functions. However,
it may be difficult to find basis functions which also satisfy the boundary
conditions. As a result, we give a special name to spectral methods that
employ basis functions which satisfy the boundary conditions—they are called
Galerkin∗ methods, and the method used in Example 1 is called a Fourier–
Galerkin (or Fourier-sine-Galerkin) spectral method.

∗Galerkin methods refer to numerous numerical methods that involve the use of basis
functions which also satisfy other useful properties. Most commonly, the “useful property”
is that they satisfy the boundary conditions. If we cannot find such basis functions, then
we may use the tau or collocation spectral methods, and we meet the former method
below.
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In general, the Galerkin spectral methods produce, in theory, exact solu-
tions, with numerical approximation being necessary for the same reason that
we estimate Fourier series to N terms. However, it may not always be feasible
to require that the basis functions also satisfy the boundary conditions, as in
the following example.

Example 2 Let’s consider the ODE boundary-value problem

y′′ = −f, 0 < x < π,

y(0)− y′(0) = y(π) + 2y′(π) = 0.

A straightforward way for finding basis functions which satisfy the boundary
condition is, as always, to solve the eigenvalue problem

y′′ + λy = 0, 0 < x < π,

y(0)− y′(0) = y(π) + 2y′(π) = 0.

However, we cannot solve for the eigenvalues explicitly (try it), and so the
Galerkin method is not feasible.

We still know, though, that the functions {sinnx}∞n=1 form a basis for
functions on 0 ≤ x ≤ π, so we let

y ≈ yN =

N∑
n=1

cn sinnx

in the ODE. We have

−
N∑

n=1

n2cn sinnx ≈ −
∞∑
n=1

fn sinnx, fn =
2

π

∫ π

0

f(x) sinnx dx,

and we know from Chapter 3 that the best we can do is to take

n2cn = fn, n = 1, 2, . . . , N.

However, yN does not satisfy the boundary conditions. The way around
this is, instead, to require that

cn =
fn
n2
, n = 1, 2, . . . , N − 2,

and determine cN−1 and cN by requiring that yN satisfy the boundary con-
ditions. Thus, we replace the n = N − 1, N equations with the two equations

y(0)− y′(0) = 0 = −
N∑

n=1

ncn
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and

y(π) + 2y′(π) = 0 = 2

N∑
n=1

(−1)nncn.

This method was invented by Cornelius Lanczos in 1938 and is called the
(Lanczos) tau method.† Thus, the method of the example is referred to as
the Fourier-tau method (or Fourier-sine-tau method).

As we’ve seen, the trigonometric functions are certainly not the only sets of
basis functions. For example, we also have the orthogonal polynomials from
Chapter 7.

Example 3 Here we approximate the solution of the convection problem

ut + ux = t, −1 < x < 1, t > 0,

u(x, 0) = f(x),

u(−1, t) = 0.

As we’re on the interval −1 ≤ x ≤ 1, we have both kinds of Chebyshev
polynomials, as well as the Legendre polynomials, at our disposal. Here we
use the Legendres—remember that they are the polynomials

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x, . . .

and, in general,

nPn(x) = (2n− 1)xPn−1(x)− (n− 1)Pn−2(x).

We also know that each Pn satisfies

Pn(±1) = (±1)n.

Finally, we’ll need the facts, which we prove in Exercise 5, that if

f(x) =
N∑

n=0

anPn(x),

then

f ′(x) =
N−1∑
n=0

(2n+ 1)

N∑
p=n+1
p+n odd

apPn(x).

†“Tau” only because Lanczos used the letter τ to represent the error.
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Now, we may use either the Galerkin or the tau method at this point. As the
functions Pn(x) don’t satisfy the boundary conditions, we choose the latter
(although the Galerkin method is easy here, as we’ll see in Exercise 2), so we
set

uN(x, t) =
N∑

n=0

bn(t)Pn(x)

and, substituting u = uN into the PDE, we have

N∑
n=0

b′n(t)Pn(x) +

N−1∑
n=0

(2n+ 1)

N∑
p=n+1
p+n odd

bp(t)Pn(x) = tP0(x).

Thus, we have the N equations, in N + 1 unknowns,

b′0 +
N∑

p=1
p odd

bp = t,

b′n + (2n+ 1)

N∑
p=n+1
p+n odd

bp = 0, n = 1, . . . , N − 1,

along with the boundary condition

uN(−1, t) = 0 =

N∑
n=0

bn(t)(−1)n.

Spectral methods also turn out to be extremely useful in solving eigenvalue
problems. See Exercise 3.

FINITE ELEMENT METHOD

A very powerful and popular method for the numerical solution of PDEs is
the finite element method, about which much has been written. We don’t
pretend to cover the method here with any sophistication; rather, we scratch
the surface, with the intent of giving a very basic idea of how it works.

The finite element approach is somewhat more difficult to implement than
finite difference or spectral methods. However, this disadvantage is more than
compensated for by the fact that this method is much more broadly applicable.
It does share similarities with both—with difference methods, in that the first
step is to break the domain into subdivisions, and with spectral methods, as
the solution again is approximated by a finite sum of function. However, the
similarities end there because

1. The subdivisions need not be rectangular (allowing the method to be
applied to domains of more-or-less arbitrary shape).
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2. The approximating sum is not smooth, but is a continuous, piecewise
polynomial function. (Note that, in the spectral methods that we used,
the basis functions were infinitely differentiable).

The second point means that the approximating sum cannot be “plugged
into” the differential equation. In fact, if the sum is piecewise linear (which
often is the case), then the second derivative will be either zero or nonexistent
at each point. Thus, a reformulation of the problem is necessary; it is recast
in its so-called weak formulation. But let’s introduce these ideas in an
example.

Example 4 We’ll illustrate the finite element method as applied to the simple
BVP

y′′ = −f(x), 0 < x < L,

y(0) = y(L) = 0.

We begin by breaking the domain into n equal subdivisions xi−1 ≤ x ≤ xi of
length h = L

n , and we’d like to approximate the solution by a function v(x)
that is continuous on 0 ≤ x ≤ L and linear on each subdivision. Thus, v will
be piecewise linear.

The standard way to do this is to create a set of functions vi, i = 0, 1, . . . , n,
which span the space of functions which are continuous and linear on the
subintervals. Although not obvious, this can be accomplished by taking the
vi to be the tent functions or hat functions

v0(x) =

⎧⎪⎨
⎪⎩
1− 1

h
(x− x1), if x0 = 0 ≤ x ≤ x1,

0, otherwise,

vn(x) =

⎧⎪⎨
⎪⎩

1

h
(x− xn−1), if xn−1 ≤ x ≤ xn = L,

0, otherwise,

vi(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

h
(x− xi−1), if xi−1 ≤ x ≤ xi,

1− 1

h
(x− xi), if xi ≤ x ≤ xi+1,

0, otherwise,

as in Figure 11.7. (See Exercise 8.) However, in this problem, the boundary
conditions y(0) = y(L) = 0 allow us to neglect the functions v1 and vn (thus,
v1, . . . , vn−1 spans the subspace consisting of the above-mentioned functions
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that also satisfy these boundary conditions). Thus, we form the finite ele-
ment Galerkin approximation

v(x) =

n−1∑
i=1

civi(x).

v  (x)

LLLLL

v  (x)v  (x)v  (x)v  (x) 1 1 1 1
 0  1  2  3  41

FIGURE 11.7
The tent functions v0v0v0 through vnvnvn for n = 4n = 4n = 4.

Now, how do we reformulate the ODE? Basically, we use that smoothing
operator, the integral. Instead of searching for functions which satisfy

y′′ = f(x),

we begin by multiplying both sides by any piecewise smooth function φ that
satisfies the boundary conditions, that is, for which

φ(0) = φ(L) = 0.

Then we have ∫ L

0

y′′(x)φ(x)dx = −
∫ L

0

f(x)φ(x)dx

and, upon integrating by parts,

〈y′, φ′〉 =
∫ L

0

y′(x)φ′(x)dx =

∫ L

0

f(x)φ(x)dx = 〈f, φ〉.

Thus, a weak solution of the problem is any function that satisfies this last
equation, for all such φ, and which satisfies the boundary conditions.

What of an approximate solution, v(x)? We require only that it satisfy

〈v′, v′i〉 = 〈f, vi〉, i = 1, 2, . . . , n− 1.

Thus, our finite element approximation to the solution is the function v(x),
with the n− 1 constants c1, . . . , cn−1 satisfying the n− 1 linear equations

n−1∑
i=1

ci〈v′i, v′j〉 = 〈f, vj〉, j = 1, 2, . . . , n− 1.

We rewrite this system as
Accc = bbb,
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where

ccc =

⎡
⎢⎢⎢⎢⎢⎣

c1

c2
...

cn−1

⎤
⎥⎥⎥⎥⎥⎦
, bbb =

⎡
⎢⎢⎢⎢⎢⎣

〈f, v1〉
〈f, v2〉

...

〈f, vn−1〉

⎤
⎥⎥⎥⎥⎥⎦

and the so-called stiffness‡ matrix A satisfies

Aij = 〈v′i, v′j〉, i = 1, . . . , n− 1; j = 1, . . . , n− 1.

One may try, instead, piecewise quadratic or cubic polynomials, for exam-
ple, and one need not use equal subdivisions (for example, we may need a
finer mesh at one end than at the other). But a major concern is that we
choose our polynomials and mesh so that the stiffness matrix is sparse.

Let’s close with a look at one more example, this one in two dimensions.

Example 5 Consider the two-dimensional Dirichlet problem

∇2u = −f, on D,
u = 0 on ∂D,

where D ∪ ∂D is the convex polygonal region in Figure 11.8a. As in Example
3, we begin by choosing the functions which will appear in our approximating
sum. Again, we choose piecewise linear functions (knowing that we also could,
instead, use quadratic, cubic, etc. functions).

The standard idea is as follows. We’ll triangulate D∪∂D, as in Figure 11.8b.
Note that any vertex of a triangle is also only a vertex of other triangles, as
well; no vertex lies along the edge of another triangle.

(a) (b)

D

FIGURE 11.8
Polygonal domain (a) and one possible triangulation of it (b).

‡The name comes from the fact that the finite element method was first used to solve
problems in the theory of elasticity.
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1

 j    j

 i    i

2S

S

 k   k(x  ,y )

(x , y )

(x , y )

 l  l(x , y )

FIGURE 11.9
The determination of vi(x, y)vi(x, y)vi(x, y) on S1S1S1 and S2S2S2.

Now we create our (Galerkin) linear approximating functions as follows.
Given any interior vertex (xi, yi), we define vi(x, y) so that it is nonzero on all
triangles which share (xi, yi) as a vertex and zero elsewhere. So, for example,
on triangle S1 in Figure 11.9, we define vi(x, y) = a1x+ b1y + c1 and require
that

a1xi + b1yi + c1 = 1,

a1xj + b1yj + c1 = 0,

a1xk + b1yk + c1 = 0.

Similarly, on triangle S2, we have vi(x, y) = a2x+ b2y + c2, where a2, b2 and
c2 are determined via vi(xj , yj) = vi(x�, y�) = 0 and vi(xi, yi) = 1. Thus,
each vi is a tent function, with a height of one at vertex (xi, yi) and with sides
that are planes which “stop” at a height of zero along each edge opposite the
shared vertex (xi, yi).

In this particular example in Figure 11.8b, we have only n = 2 approxi-
mating functions, v1 and v2. Then the approximation to our solution is given
by

v(x, y) =

n∑
i=1

civi(x, y).

Next, we must give the weak formulation of the PDE as, again, the functions
vi are not smooth. As before, we multiply both sides by any φ(x, y) which
satisfies the boundary condition (again, it’s a Galerkin approximation that
we’re doing) and integrate over D:∫∫

D

φ∇2u dA = −
∫∫
D

φf dA.

Then, Green’s first identity for the Laplacian (Section 10.3) is our 2-D inte-
gration by parts formula. Thus, we have∫∫

D

∇φ · ∇u dA =

∫∫
D

φf dA (why?).
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Finally, as before, this equation suggests that we require v and vi to satisfy

∫∫
D

∇v · ∇vi dA =

∫∫
D

fvi dA, i = 1, . . . , n,

or, if you prefer,

〈∇v,∇vi〉 = 〈f, vi〉.

As with finite difference approximations, we may use finite elements when
the domain has a curvilinear boundary. This, along with the flexibility we have
in triangulating the domain and in choosing the degree of the approximating
functions, is what makes the finite element method so powerful and so popular.

Exercises 11.3

1. a) Use the functions {sinnx}Nn=1 and perform the Fourier-sine-Galerkin
spectral approximation for the problem

2y′′ + y = −f(x), 0 < x < π,

y(0) = y(π) = 0.

(Write down the equations satisfied by the constants cn.)

b) Instead, use the functions {cosnx}Nn=0 to write down the tau equa-
tions for the same problem.

c) Why can’t we use the functions {sinnx}Nn=1 to perform the Fourier-
sine-Galerkin method on the system

y′′ + y = −f(x), 0 < x < π,

y(0) = y(π) = 0?

2. Here we repeat Example 3, but using the Galerkin method.

a) Show that the functions

φn(x) = Pn(x) − (−1)n
= Pn(x) − (−1)nP0(x), n = 1, 2, . . . , N,

span the space of “reasonably behaved” functions f on −1 ≤ x ≤ 1
which also satisfy f(−1) = f(1) = 0.

b) Use these functions to perform the Legendre–Galerkin approxima-
tion for the problem given in Example 4. Write down the ODEs
satisfied by the functions bn(t).
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3. Use the Legendre-tau or Legendre–Galerkin spectral method to approx-
imate the eigenvalues of the problem

y′′ + λy = 0, −1 < x < 1,

y(−1) = y(1) = 0.

Write down the basic equations for the constants cn and then explain
how to compute values for λ.

4. a) Reformulate the BVP

y′′ + 2y′ − 3y = −f(x), 0 < x < 4,

y(0) = y(4) = 0,

so that one may perform a Legendre spectral method to approxi-
mate its solution.

b) Reformulate the BVP

y′′ + xy = −f(x), 1 < x < 2,

y(1) = y(2) = 0,

so that one may perform a Fourier-sine spectral method to approx-
imate its solution.

5. One may use Rodrigues’s formula (Section 7.6) to prove that the Leg-
endre polynomials satisfy

P ′
n(x) − P ′

n−2(x) = (2n− 1)Pn−1(x).

a) Use this, along with mathematical induction, to show that

P ′
n(x) = (2n− 1)Pn−1(x) + (2n− 5)Pn−3(x) + . . .

+

⎧⎪⎨
⎪⎩
· · ·+ 7P3(x) + 3P1(x), if n is even,

· · ·+ 5P2(x) + P0(x), if n is odd.

b) Thus, show that

P ′
n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Pk(x).

c) More generally, derive the formula given in the text, that

d

dx

∞∑
n=0

anPn(x) =

∞∑
n=0

(2n+ 1)

∞∑
p=n+1
p+n odd

apPn(x).

(Hint: You’ll need to switch the order of summation.)
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6. a) Work through the Galerkin finite element method to approximate
the solution of

y′′ = x, 0 ≤ x ≤ 2,

y(0) = y(2) = 0,

using only the one tent function v1(x) =

⎧⎪⎨
⎪⎩
x, if 0 ≤ x ≤ 1,

2− x, if 1 ≤ x ≤ 2.

Compare your result with the exact solution.

b) Do the same, but use three tent functions (so, one each on 0 ≤
x ≤ 1, 1

2 ≤ x ≤ 3
2 and 1 ≤ x ≤ 2). Again, compare with the exact

solution.

7. a) Work through the Galerkin finite element approximation of the
solution of the Poisson Dirichlet problem

uxx + uyy = 1, 0 < x < 2, 0 < y < 2,

u(x, 0) = u(x, 2) = u(0, y) = u(2, y) = 0

using piecewise linear functions and the triangulation of Figure
11.10.

2

x

y

(1,1)

2

FIGURE 11.10
Triangulation of domain for Exercise 7a.

b) Proceed as in part (a), but for the problem

uxx + uyy = 1, 0 < x < 4, 0 < y < 2,

u(x, 0) = u(x, 2) = u(0, y) = u(4, y) = 0,

using the triangulation of Figure 11.11.
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2

y

2

x

4

FIGURE 11.11
Triangulation of domain for Exercise 7b.

8. a) Show that any continuous piecewise linear function

f(x) =

⎧⎪⎨
⎪⎩
ax+ b, 0 ≤ x ≤ 1,

cx+ d, 1 ≤ x ≤ 2,

can be written as a linear combination of the tent functions

v0(x) =

⎧⎪⎨
⎪⎩
1− x, if 0 ≤ x ≤ 1,

0, if 1 ≤ x ≤ 2,

v1(x) =

⎧⎪⎨
⎪⎩
x, if 0 ≤ x ≤ 1,

2− x, if 1 ≤ x ≤ 2,

v2(x) =

⎧⎪⎨
⎪⎩
0, if 0 ≤ x ≤ 1,

x− 1, if 1 ≤ x ≤ 2.

b) Generalize part (a) to any interval 0 ≤ x ≤ N , where N is a
natural number, and where f is continuous and piecewise linear on
the intervals i− 1 ≤ x ≤i, i = 1, . . . , N .

c) Show that any piecewise continuous function

f(x) =

⎧⎪⎨
⎪⎩
ax+ b, 0 ≤ x ≤ 1,

cx+ d, 1 ≤ x ≤ 2,

with f(0) = f(2) = 0, is just a constant multiple of the tent func-
tion v1(x) from above.

d) Generalize part (c) as we did part (a).
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Uniform Convergence; Differentiation and
Integration of Fourier Series

Here we look at uniform convergence and its relation to trigonometric Fourier
series. Most results are stated without proof. If you’re interested in looking
deeper, see the references listed at the end of this appendix.

UNIFORM CONVERGENCE AND FOURIER SERIES

Before defining uniform convergence of a sequence of functions, we look at an
example.

Example 1 We saw that the sequence of continuous functions

fn(x) = xn, n = 0, 1, 2, . . . , 0 ≤ x ≤ 1,

converges to the discontinuous function

f(x) =

⎧⎪⎨
⎪⎩
0, if 0 ≤ x < 1,

1, if x = 1.

See Figure A.1. In order to prove this, for each x0 in [0, 1] we must show that,
for any ε > 0, there exists a natural number N such that

n > N ⇒ |xn0 − f(x0)| < ε.

This is easy for x0 = 1, so let’s take x0 in [0,1). Then, given ε, we look at

|xn0 − f(x0)| = xn0 < ε,

and we see that we need only take

N >
ln ε

lnx0

(make sure you work this out for yourself!).

Notice that as x0 → 1, the denominator→ 0; thus, for a given ε, as x0 → 1,
N = N(ε, x0) (since it depends on both ε and on x0) increases without bound.

579
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y
y

0
1

x

1

x

y = f(x)y = f   (x) n

FIGURE A.1
The sequence of continuous functions fn(x)fn(x)fn(x) converges to the discon-
tinuous function f(x)f(x)f(x).

If we, instead, look at exactly the same problem, but on 0 ≤ x ≤ a < 1, the
worst case scenario occurs at x = a, where we need

N >
ln ε

ln a
.

Thus, given ε, this same N works for every x, that is, N = N(ε) depends only
on ε.

We say, in the latter case, that the sequence of functions converges uni-
formly to f , while, in the former case, although the sequence converges to f ,
it does not do so uniformly.

(By the way, convince yourself that using open intervals doesn’t change
anything. In essence, if an interval is not closed, we may close it off without
consequence.)

Definition A.1 Given a sequence fn(x) on a ≤ x ≤ b, we say that fnfnfn con-
verges to fff uniformly on a ≤ x ≤ b if, for every ε > 0 there exists an
N = N(ε) such that

n > N ⇒ |fn(x) − f(x)| < ε for all x in [a, b].

Graphically speaking, if fn → f uniformly, then, given ε, for all n > N
the function fn(x) lies inside an “ε-band” on either side of y = f(x), as in
Figure A.2. Note that uniform convergence implies pointwise convergence.
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fn

f ε

ε

x

y

FIGURE A.2
Uniform convergence.

Now, since we define the sum of a series to be the limit of its nth partial
sums, we may extend our definition to series of functions.

Definition A.2 We say that the series
∞∑
i=1

fi(x) converges uniformly to

f(x) on a ≤ x ≤ b if the sequence

Fn(x) =

n∑
i=1

fi(x)

converges uniformly to f on a ≤ x ≤ b.
How does all this relate to Fourier series? Remember, these are series of con-

tinuous functions which, in many cases, converge to discontinuous functions—
we suspect that, in these cases, the convergence cannot be uniform. In fact,
we have the following theorem.

Theorem A.1 Suppose that fn → f uniformly on a ≤ x ≤ b, and suppose
that each fn is continuous. Then, f must be continuous.

PROOF We must show that, given any x0, for any ε > 0 there is a δ > 0
such that

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε.

We know that
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a) For any ε1 > 0 there is an N such that

n > N ⇒ |fn(x) − f(x)| < ε1 for all x in a ≤ x ≤ b.

b) Each fn is continuous at x0. In particular, if we fix N1 > N then, for
any ε2 > 0, there is a δ > 0 such that

|x− x0| < δ ⇒ |fN1(x)− fN1(x0)| < ε2.

So, the standard trick is to use the triangle inequality:

|f(x)− f(x0)| = |f(x) − fN1(x) + fN1(x)− fN1(x0) + fN1(x0)− f(x0)|
≤ |f(x) − fN1(x)| + |fN1(x)− fN1(x0)|+ |fN1(x0)− f(x0)|
≤ ε1 + ε2 + ε1

if |x − x0| < δ (using the fact that N1 > N , of course). After “cleaning it
up” (e.g., letting ε1 = ε2 = ε

3 ; the reader should do all this), we’ve proven the

theorem.

(Note that this theorem actually says that if a ≤ x0 ≤ b, then
lim
x→x0

[ lim
n→∞ fn(x)] = lim

n→∞[ lim
x→x0

fn(x)].)
∗

Thus, if f is not continuous, the various Fourier series for f cannot converge
uniformly to f . Even if f is continuous, its periodic extension may not be, in
which case we still cannot have uniform convergence (why?).

So when will a Fourier series converge uniformly?

Theorem A.2 Suppose that f is continuous on −L ≤ x ≤ L, f ′ is piecewise
continuous on −L < x < L and f(−L) = f(L). Then the trigonometric
Fourier series of f converges absolutely and uniformly to f on −L ≤ x ≤ L
(and, thus, to its periodic extension on −∞ < x <∞).

You should decide what additional constraints, if any, are necessary to
guarantee uniform convergence of the Fourier cosine and sine series on 0 ≤
x ≤ L.

Now, we can relax the conditions of Theorem A.2 if we’re willing to avoid
any “bad” points of f .

Theorem A.3 Suppose that f is piecewise smooth on −L ≤ x ≤ L. Then the
Fourier series of f converges uniformly to f on any closed interval subset of
[−L,L] throughout which f is continuous (with a similar statement concerning
f ’s periodic extension).

∗If x0 = a, then we have lim
x→a+

; if x0 = b, lim
x→b−

.
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TERM-BY-TERM DIFFERENTIATION AND
INTEGRATION OF FOURIER SERIES

We often want to know if we can interchange the operations of summation
and differentiation, that is, when can we say that

d

dx

∞∑
n=1

fn(x) =
∞∑
n=1

f ′
n(x)?

In particular, when may we do this with Fourier series? The following example
shows that we must be careful.

Example 2 The Fourier sine series for f(x) = 1 on 0 ≤ x ≤ L is

Fs(x) =

∞∑
k=0

4

(2k + 1)L
sin

(2k + 1)πx

L
.

Fs converges to f on 0 < x < L (and uniformly on any closed interval subset
of (0, L), as we saw in Theorem A.3). So, taking L = π, we may write

f(x) =
4

π

∞∑
k=0

sin(2k + 1)x

2k + 1
on 0 < x < π.

Then, f ′(x) = 0 on 0<x<π but, if we try to differentiate the series term-by-
term, we get

4

π

∞∑
k=0

cos(2k + 1)x,

which diverges on 0 < x < π (why? Actually, except at x = π
2—why?).

The following theorem tells us when we’re able to differentiate a Fourier
series term-by-term.

Theorem A.4 Suppose that f is continuous on −L ≤ x ≤ L, f ′ is piecewise
continuous on −L < x < L and f(−L) = f(L). (Then, of course, we know
that

f(x) =
a0
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)

uniformly on −L ≤ x ≤ L, where the an and bn are the Fourier coefficients.)
If f ′′(x0) exists, −L ≤ x0 ≤ L,† then

f ′(x0) =
π

L

∞∑
n=1

n
(
−an sin nπx

L
+ bn cos

nπx

L

)
.

†With obvious extension to −∞ < x < ∞ via periodic extension.
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It’s easier to integrate Fourier series term-by-term.

Theorem A.5 Suppose that f is piecewise smooth on −L ≤ x ≤ L; thus, f
has convergent Fourier series

f(x) ∼ ac
2

+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
.

Then,

∫ x

−L

f(z)dz =
a0
2

∫ x

−L

dz +

∞∑
n=1

(
an

∫ x

−L

cos
nπz

L
dz + bn

∫ x

−L

sin
nπz

L
dz

)
.

Note that the result is not a Fourier series. By the way, it turns out that,
even if f is only piecewise continuous, the formal antiderivative of its Fourier
series actually converges to the function

F (x+) + F (x−)
2

,

where F (x) is the periodic extension of the function
∫ x

−L f(z)dz. (Why is this
the case?)

References: For further study, see the following references listed after Chap-
ter 11: Churchill and Brown; Kirkwood; Marsden and Hoffman; Myint-U and
Debnath; and Pinsky.



B

Other Important Theorems

We begin by giving somewhat informal statements of the three big theorems
from vector analysis—Green’s, Stokes’s and Gauss’s, or the Divergence, The-
orems. In each case, we assume that all regions are bounded and that all
functions, regions and boundaries are smooth enough not to give us any prob-
lems. Further, any boundary integrals go “once around” the boundary, with
standard positive orientation.

Theorem B.1 (Green’s Theorem) In R
2,

∮
C

p dx+ q dy =

∫∫
D

(qx − py)dA,

where p = p(x, y), q = q(x, y) and C = ∂D.

Theorem B.2 (Stokes’s Theorem) In R
3,

∫∫
S

∇×FFF · n̂nn dS =

∮
C

F1 dx+ F2 dy + F3 dz,

where FFF (x, y, z) = (F1(x, y, z), F2(x, y, z), F3(x, y, z)), S is a surface with bound-
ary curve C and

∇×FFF = curl FFF =

∣∣∣∣∣∣∣∣∣

iii jjj kkk
∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
.

Theorem B.3 (Divergence Theorem or Gauss’s Theorem or Ostro-
gradsky’s Theorem) In R

3,

∫∫∫
D

∇ ·FFF dV =

∫∫
S

FFF · n̂nn dS,

585
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where F is as above, D is a three-dimensional region with boundary surface
S and

∇ ·FFF = F1x + F2y + F3y = the divergence of FFF .

It’s interesting to note the following:

1. Green’s Theorem is a special case of Stokes’s Theorem.

2. If, in Green’s Theorem, we let q = F1 and p = −F2, and FFF = (F1, F2),
then we get ∫∫

D

∇ ·FFF dA =

∮
C

FFF · n̂nn dS,

which is just the two-dimensional version of the Divergence Theorem.

3. If, in the Divergence Theorem, we let FFF = ∇×GGG, we get

∫∫∫
D

∇ ·FFF dV = 0 (why?)

=

∫∫
S

∇×GGG · n̂ dS,

where S is the closed boundary of D. Stokes’s Theorem (for GGG) follows
almost immediately (why?).

4. If we take the one-dimensional Fundamental Theorem of Calculus

∫ b

a

f ′(x)dx = f(b)− f(a),

it can be made to look like the Divergence Theorem, since the integrand
is the one-dimensional divergence of f and the right side is an “oriented”
sum of the values of f on the boundary.

But we digress. For a detailed treatment, see any standard book on ad-
vanced calculus.

Theorems B.4–B.12 involve the interchange of limiting operations, while
Theorems B.13 and B.14 provide us with tests for uniform convergence of
series.

Theorem B.4 Suppose that the sequence of continuous functions fn(x) con-
verges uniformly to f(x) on a ≤ x ≤ b. Then, for each x0 in the interval,

lim
x→x0

[ lim
n→∞ fn(x)] = lim

n→∞[ lim
x→x0

fn(x)].

(This is just Theorem A.1.)
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Theorem B.5 Suppose that fn → f pointwise on a < x < b, that each f ′
n(x)

is continuous on a < x < b and that f ′
n → g uniformly on a < x < b. Then,

f ′(x) exists and f ′(x) = g(x) on a < x < b.

We may extend Theorem B.5 for infinite series of functions. As before, we
now look at nth partial sums.

Theorem B.6 Suppose that
∞∑

n=1
fn(x) = f(x) pointwise on a < x < b, each

f ′
n(x) is continuous on a < x < b and

∞∑
n=1

f ′
n(x) = g(x) uniformly on a < x <

b. Then, f ′(x) exists and f ′(x) = g(x) on a < x < b, that is,

d

dx

∞∑
n=1

fn(x) =

∞∑
n=1

f ′
n(x) on a < x < b.

Theorem B.7 Suppose that each function fn(x) is integrable on a ≤ x ≤ b,
and suppose that fn → f uniformly on a ≤ x ≤ b. Then f is integrable on the
same interval, and

∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx,

that is, ∫ b

a

[ lim
n→∞ fn(x)]dx = lim

n→∞

∫ b

a

fn(x)dx.

(Compare Theorem B.7 to Theorem A.5. Theorem B.7, in turn, is a stricter
version of the well-known and very important Lebesgue’s Dominated Con-
vergence Theorem.)

We may extend Theorem B.7 to the case where f is an infinite series of
functions where, as before, fn(x) is replaced by the nth partial sum.

Theorem B.8 Suppose that each function fn(x) is integrable on a ≤ x ≤ b,

and suppose that f(x) =
∞∑
n=1

fn(x) uniformly on a ≤ x ≤ b. Then

∫ b

a

f(x)dx =
∞∑

n=1

∫ b

a

fn(x)dx,

that is, ∫ b

a

[ ∞∑
n=1

fn(x)

]
dx =

∞∑
n=1

∫ b

a

fn(x)dx.

How about interchanging differentiation and integration?
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Theorem B.9 Suppose that f(x, y) is a continuous real-valued function on
the rectangle a ≤ x ≤ b, c ≤ y ≤ d, and suppose that ∂f

∂x is also continuous on
the same rectangle. Then

d

dx

[∫ d

c

f(x, y)dy

]
=

∫ d

c

∂f

∂x
(x, y)dy.

(We may replace c by −∞ or d by ∞, with the additional assumptions that
both integrals converge, with the second converging uniformly∗ on a ≤ x ≤ b.)

Theorem B.10 (Leibniz’s Rule) Suppose that f(x, y) and ∂f
∂x (x, y) are con-

tinuous on the rectangle a ≤ x ≤ b, c ≤ y ≤ d, and suppose that u(x) and v(x)
are functions from a ≤ x ≤ b to c ≤ y ≤ d such that u′ and v′ are continuous
on a ≤ x ≤ b. Then

d

dx

∫ v(x)

u(x)

f(x, y)dy = f(x, v(x)) · v′(x)− f(x, u(x)) · u′(x)

+

∫ v(x)

u(x)

∂f

∂x
(x, y)dy.

Theorem B.11 (Fubini’s Theorem) Suppose that D is the rectangular re-
gion a ≤ x ≤ b, c ≤ y ≤ d, and suppose that f(x, y) is continuous on D. Then

∫∫
D

f dA =

∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy.

Theorem B.12 Given a function f(x, y) on an open set D, if ∂f
∂x∂y and ∂f

∂y∂x
are continuous on D, then

∂f

∂x∂y
=

∂f

∂y∂x
on D.

Theorem B.13 (Weierstrass MMM-test) Given the functions fn(x), n = 1, 2,
3, . . ., on an interval I, suppose there exist constants Mn such that

|fn(x)| < Mn

for all x in I, for each n = 1, 2, 3, . . . , and such that
∞∑
n=1

Mn converges. Then

∞∑
n=1

fn(x) converges absolutely and uniformly on I.

∗∫∞
c g(x, y)dy converges uniformly to G(x) on a≤x≤b if the sequence of functions gn(x) =∫ n

c g(x, y)dy converges uniformly to G(x) on a ≤ x ≤ b.
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Theorem B.14 (Abel’s test) Suppose we have functions fn(t) and gn(t),
n = 1, 2, 3, . . ., on an interval I, such that (a) gn+1(t) ≤ gn(t) for all t in
I, (b) there exists a constant M such that |gn(t)| ≤ M for all t in I and

n = 1, 2, 3, . . . and (c)
∞∑

n=1
fn(t) converges uniformly on I. Then, the series

∞∑
n=1

gn(t)fn(t)

also converges uniformly on I.

Reference: A nice treatment of Theorems B.4–B.14 can be found in the
excellent text by Marsden and Hoffman listed in the References.





C

Existence and Uniqueness Theorems

In this appendix we state and prove theorems concerning the existence and
uniqueness of solutions for the one-dimensional (1-D) heat and wave equations,
and uniqueness for the two-dimensional (2-D) Poisson’s equation, on finite
domains.

EXISTENCE—HEAT AND WAVE EQUATIONS

1-D heat equation on a finite interval

Theorem C.1 Suppose that f(x) is continuous on 0 ≤ x ≤ π, f ′(x) is piece-
wise continuous on 0 < x < π and f(0) = f(π) = 0. Then the heat problem

ut = k2uxx, 0 < x < π, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, t ≥ 0,

has solution

u(x, t) =

∞∑
n=1

bne
−n2k2t sinnx,

where the bn are the Fourier sine coefficients

bn =
2

π

∫ π

0

f(x) sinnx dx.

PROOF We’ll show the following:

(1)
∞∑
n=1

bne
−n2k2t sinnx converges uniformly on 0 ≤ x ≤ π, for any (fixed)

t > 0.

(2)
∞∑
n=1

bne
−n2k2t sinnx converges uniformly on any interval t0 ≤ t ≤ T ,

where 0 < t0 < T , for any (fixed) x in 0 ≤ x ≤ π.

591
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Then, (1) will allow us to differentiate by x, term-by-term, and also to show
that u(0, t) = u(π, t) = 0 for t > 0, and (2) will allow us to differentiate by t,
term-by-term.

So, we prove (1) and (2) as follows. First, we show that the sequence bn is
bounded. Indeed, by Theorem A.2, the Fourier sine series

∞∑
n=1

bn sinnx

converges uniformly to f(x) on 0 ≤ x ≤ π and, thus, bn → 0 as n → ∞.
Of course, any convergent sequence is bounded, so there is some constant M
with

|bn| ≤M for all n = 1, 2, 3, . . . .

Then, choosing t0 and T arbitrarily, with 0 < t0 < T , we have

|bne−n2k2t sinnx| ≤Me−n2k2t0 , 0 ≤ x ≤ π, t0 ≤ t ≤ T.

Using the ratio test, we see that
∞∑
n=1

Me−n2k2t0 converges, so the Weierstrass

M -test (Theorem B.10) tells us that

∞∑
n=1

bne
−n2k2t sinnx

converges absolutely and uniformly on 0 ≤ x ≤ π, t0 ≤ t ≤ T .
Therefore, from Theorem B.3, we may differentiate by x or by t term-by-

term. Then, a similar argument shows that we may do the same for ux.
Thus,

ut = −k2
∞∑

n=1

n2bne
−n2k2t sinnx

and

uxx = −
∞∑
n=1

n2bne
−n2k2t sinnx,

and, since t0 and T are arbitrary, we have

ut = k2uxx on 0 < x < π, t > 0.

As for the boundary conditions, since a uniform limit of continuous func-
tions is continuous (Theorem A.1), we may “plug in” x = 0 and x = π to
get

u(0, t) = u(π, t) = 0 for all t > 0.

Notice that we cannot do the same for t = 0 (why?). But we do know,
again, that

f(x) =

∞∑
n=1

bn sinnx
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converges uniformly on 0 ≤ x ≤ π; for fixed x0, then, it converges uniformly
as a function of t on any interval 0 ≤ t ≤ T . Then, letting

fn(t) = bn sinnx0, gn(t) = e−n2k2t,

we see that gn+1(t) ≤ gn(t) on 0 ≤ t ≤ T , and, thus, fromAbel’s test (Theorem
B.11),

∞∑
n=0

bne
−n2k2t sinnx

does converge uniformly on 0 ≤ t ≤ T so that we may plug in t = 0 and get

u(x, 0) =

∞∑
n=1

bn sinnx = f(x).

Note that if f(x) is only piecewise smooth, or if f(0) �= 0 or f(π) �= 0, then
everything still works except for the last step, where we’ll only have equality in
the mean. Finally, we may proceed similarly for Neumann or Robin conditions
at either end.

1-D Wave equation on a finite interval

Theorem C.2 Given f(x) and g(x) on 0 ≤ x ≤ π, let F (x) and G(x) be their
odd periodic extensions. Suppose that F , F ′, F ′′, G and G′ are continuous
(thus, we must have f(0) = f(π) = 0, etc.). Then, the wave problem

utt = c2uxx, 0 < x < π, t > 0,

u(x, 0) = f(x), 0 ≤ x ≤ π
ut(x, 0) = g(x), 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, t ≥ 0

has solution

u(x, t) =

∞∑
n=1

sinnx(an cosnct+ bn sinnct),

where the an and bn are the Fourier coefficients

an =
2

π

∫ π

0

f(x) sinnx dx, bn =
2

nπc

∫ π

0

g(x) sinnx dx.

PROOF This proof is easier than the one for the heat equation, as we’ll
be able to write our solution in terms of the Fourier sine series for f and g.
So, we know that

f(x) =

∞∑
n=1

an sinnx and g(x) =

∞∑
n=1

ncbn sinnx
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absolutely and uniformly on 0 ≤ x ≤ π (from Theorem A.2). Thus,

F (x) =

∞∑
n=1

an sinnx and G(x) =

∞∑
n=1

ncbn sinnx

absolutely and uniformly on −∞ < x <∞. Now, let’s rewrite u as we did in
Exercise 8, Section 4.2. Using trigonometric identities, we have

∞∑
n=1

an sinnx cosnct =
1

2

[ ∞∑
n=1

an sinn(x− ct) +
∞∑

n=1

an sinn(x+ ct)

]

=
1

2
[F (x+ ct) + F (x− ct)].

Similarly,

∞∑
n=1

bn sinnx sinnct =
1

2

[ ∞∑
n=1

bn cosn(x− ct)−
∞∑
n=1

bn cosn(x+ ct)

]

=
1

2c

∫ x+ct

x−ct

G(z)dz,

where the term-by-term integration is okay because of Theorem B.5. It follows
that each of these series converges absolutely and uniformly for any choice of
x and t. Thus, we can do everything we need to do.

So we may differentiate (term-by-term) to get

ux(x, t) =
1

2
[F ′(x + ct) + F ′(x− ct)] + 1

2C
[G(x + ct)−G(x − ct)]

and

ut(x, t) =
1

2
[F ′(x + ct)− F ′(x − ct)] + 1

2
[G(x+ ct) +G(x− ct)].

Each of them is, essentially, an absolutely and uniformly convergent series
(why?), so we can do it again:

uxx(x, t) =
1

2
[F ′′(x + ct) + F ′′(x− ct)] + 1

2C
[G(x + ct)−G(x − ct)]

and

utt(x, t) =
c2

2
[F ′′(x + ct) + F ′′(x− ct)] + c

2
[G′(x+ ct) +G′(x− ct)],

from which it follows that

utt + c2uxx for all x, t.

The boundary conditions are easy (but you should do them to make sure),

as is the initial condition (ditto).

Of course, our conditions on f and g are fairly restrictive. Again, we may
relax them and still have a solution in the mean-square sense.
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UNIQUENESS—HEAT AND WAVE EQUATIONS

We can prove uniqueness fairly easily for the nonhomogeneous heat and
wave equations, with more general boundary conditions.

Theorem C.3 Suppose that u(x, t) is a solution of the heat problem

ut = k2uxx + f(x, t), 0 < x < L, t > 0,

u(x, 0) = g(x), 0 ≤ x ≤ L,
a1u(0, t) + a2ux(c, t) = b1u(L, t) + b2ux(L, t) = 0, t ≥ 0,

a1, a2, b1 and b2 constant,

with u continuous on 0 ≤ x ≤ L, t ≥ 0, and with ut and uxx continuous on
0 < x < L, t > 0. Then u is the problem’s only such solution.

PROOF Suppose that u1 and u2 are both such solutions, and let v =
u1 − u2. Then v satisfies the homogeneous problem

vt = k2vxx, 0 < x < L, t > 0,

v(x, 0) = 0, 0 ≤ x ≤ L,
a1v(0, t) + a2vx(0, t) = b1v(L, t) + b2vx(L, t) = 0, t ≥ 0.

Now, v is continuous on t ≥ 0, so the function

I(t) =

∫ L

0

v2(x, t)dx

is a continuous function of t, as well. Further,

I(t) ≥ 0 for t ≥ 0 (why?),

and

I(0) =

∫ L

0

v2(x, 0)dx = 0.

Next, we have, from Theorem B.6, that

I ′(t) = 2

∫ L

0

v(x, t)vt(x, t)dx

and, using the PDE and integration by parts, we see that

∫ L

0

vvt dx =

∫ L

0

vvxx dx

= (vvx)
∣∣x=L

x=0
−
∫ L

0

v2x(x, t)dx.
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Now, back in Section 8.2, we showed that the boundary conditions force the
boundary term to be zero and, as the last integral is nonnegative, we must
have

I ′(t) ≤ 0 for t > 0.

Finally, I(0) = 0 and I ′(t) ≤ 0 for t > 0 imply that we must have I(t) ≤ 0
for t > 0 (prove this!), from which it follows that we must have

I(t) =

∫ L

0

v2(x, t)dx = 0 for all t ≥ 0.

Thus, we must have

v(x, t) = 0 for 0 ≤ x ≤ L and t ≥ 0.

Theorem C.4 Suppose that u(x, t) is a solution of the wave problem

ut = c2uxx + f(x, t), 0 < x < L, t > 0,

u(x, 0) = g(x), 0 ≤ x ≤ L,
ut(x, 0) = h(x), 0 ≤ x ≤ L,
a1u(0, t) + a2ux(0, t) = b1u(L, t) + b2ux(L, t) = 0, t ≥ 0,

where a1, a2, b1 and b2 are constants, u is continuous on 0 ≤ x ≤ L, t ≥ 0
and utt and uxx are continuous on 0 ≤ x ≤ L, t > 0. Then u is the problem’s
only solution.

PROOF Our proof is very similar to that of Theorem C.3, except that
the function I(t) doesn’t pop out of nowhere!

Again, we begin by assuming two solutions u1 and u2 and then showing
that their difference, v = u1 − u2, must be the zero-function. As above, v
satisfies

vtt = c2vxx, 0 < x < L, t > 0,

v(x, 0) = vt(x, 0) = 0, 0 ≤ x ≤ L,
a1v(0, t) + a2vx(0, t) = b1v(L, t) + b2vx(L, t) = 0, t ≥ 0.

As before, v has the same smoothness properties as u1 and u2. Thus, the
function

E(t) =
ρ

2

∫ L

0

(c2v2x + v2t )dx

is continuous on t ≥ 0. Here, ρ is the constant mass density of the string.
Where did we come up with E? It can be shown that E(t) is the energy

(kinetic plus potential) of the string at time t. Further, conservation of energy
suggests that E should be constant, and we show this to be the case.
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First, let

I(t) =

∫ L

0

(c2v2x + v2t )dx.

Theorem B.6 then tells us that

I ′(t) = 2

∫ L

0

(c2vxvt + vtvtt)dx

and, integrating the first term by parts, we have

I ′(t) = 2[c2vxvt]
x=L
x=0 + 2

∫ L

0

vt(vtt − c2vxx)dx.

With a little work, we can again show that the boundary term disappears (try
it) and, using the PDE, the integrand disappears, as well. Thus,

I ′(t) = 0 and I(t) = constant.

What happens when t = 0? We have

I(0) =

∫ L

0

[c2v2x(x, 0) + v2t (x, 0)]dx.

Now, we know that vt(x, 0) = 0 and v(x, 0) = 0, with the latter implying that
vx(x, 0) = 0. So I(0) = 0 and, since I is constant, we must have I(t) = 0 for
t ≥ 0.

Finally, this can happen only if vx(x, t) = vt(x, t) = 0 for all x and t,
implying v(x, t) = constant and, since v(x, 0) = 0, it follows that

v(x, t) = 0 for 0 ≤ x ≤ L and t ≥ 0.

THE MAXIMUM PRINCIPLE FOR THE LAPLACIAN
AND UNIQUENESS FOR THE POISSON
DIRICHLET PROBLEM

Uniqueness for Poisson’s equation on a bounded domain follows immediately
from the maximum principle that we mentioned in Section 9.3.

Theorem C.5 (Maximum Principle for harmonic functions) Suppose
that ∇2u = 0 on a domain D and that u is continuous on D ∪ ∂D. Then u
attains its maximum and minimum values on ∂D.

Let’s get right to the uniqueness theorem and prove Theorem C.5 afterward.
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Theorem C.6 Suppose that u(x, y) is a solution of the Poisson problem

uxx + uyy = f(x, y) on D,

u = 0 on ∂D

with the properties that uxx and uyy are continuous on the bounded domain
D, with u continuous on D∪∂D. Then u is the problem’s only such solution.

PROOF As usual, suppose there are two such solutions u1 and u2, from
which we have that v = u1 − u2 satisfies

vxx + vyy = 0 on D,

v = 0 on ∂D.

Also, u1, u2 and v all share the smoothness properties in the statement of the
theorem, of course. Then, from Theorem C.5, v attains its maximum and
minimum values on ∂D; thus, v = 0 on D.

This result can be generalized to the case where the boundary condition is
au + b ∂u∂n = 0, for constants a and b. If a �= 0, then the solution is unique; if
a = 0, we know from earlier that the solution is not unique, but it turns out
that the difference between any two solutions is a constant.∗

PROOF of Maximum Principle Let

v(x, y) = u(x, y) + ε(x2 + y2), for ε > 0.

Then
∇2v = uxx + uyy + 4ε = 4ε > 0 on D.

Thus, v does not attain a maximum in D (since, for a max to occur at (x0, y0)
in D, we must have vxx(x0, y0) ≤ 0 and vyy(x0, y0) ≤ 0). Thus, the maximum
value of v occurs on ∂D; let’s say that it is M1 = v(x1, y1).

Now, let M be the maximum value of u on ∂D. We know that

M1 = max
∂D

[u(x, y) + ε(x2 + y2)] ≤ max
∂D

u(x, y) + εmax
∂D

(x2 + y2)

=M + εmax
∂D

(x2 + y2).

Then, on D ∪ ∂D,

u(x, y) = v(x, y)− ε(x2 + y2)

≤ v(x, y)
≤M + εmax

∂D
(x2 + y2)

∗See, e.g., Churchill and Brown’s Fourier Series and Boundary Value Problems.
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and, since ε is arbitrary, we must have

u(x, y) ≤M on D ∪ ∂D.

In order to prove that the minimum value of u also occurs on ∂D, apply
the Maximum Principle to −u.

THE HEAT EQUATION REVISITED—THE
MAXIMUM PRINCIPLE

Actually, there also is a maximum principle for the heat equation, and we can
use this principle to prove uniqueness, as well.

Theorem C.7 (Maximum Principle for the heat equation) Suppose
that u satisfies the heat equation

ut = k2uxx, 0 < x < L, t > 0

and, given any T > 0, suppose that u is continuous on the closed rectangular
region 0 ≤ x ≤ L, 0 ≤ t ≤ T . Thus, u attains a maximum value on the
rectangular region. Then, this maximum occurs on the bottom or the sides of
the rectangle, that is, on the set

C = {(x, 0): 0 ≤ x ≤ L} ∪ {(0, t) : 0 ≤ t ≤ T } ∪ {(L, t) : 0 ≤ t ≤ T }.

(Similarly for the minimum value of u.)

PROOF First, let

D = {(x, t) : 0 < x < L, 0 < t < T }.

Now, since C is closed and bounded, we know that u attains a maximum M
on C. We wish to show that

u(x, t) ≤M on D ∪ ∂D.

We begin by letting

v(x, t) = u(x, t) + εx2 on D ∪ ∂D

and noting that
vt − k2vxx = −2k2ε < 0.

So what can we say about v? First, suppose that v attains its maximum at a
point (x0, t0) in D. Then,

vt(x0, t0) = 0 and vxx(x0, t0) ≤ 0,
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so that
vt(x0, t0)− k2vxx(x0, t0) ≥ 0,

a contradiction. Thus, its maximum occurs on the boundary. Can it occur at
(x, T )? If so, we must have

vxx(x, T ) ≤ 0 and vt(x, T ) ≥ 0 (why?).

Again, this leads to a contradiction. So the maximum value M1 of v occurs
on C.

It follows that

M1 = max
C

[u(x, t) + εx2] ≤ max
C

u(x, t) + εmax
C

x2

=M + εmax
C

x2.

Thus, on D ∪ ∂D,

u(x, t) = v(x, t)− εx2
≤ v(x, t)
≤M + εmax

C
x2

and, since ε is arbitrary, we must have

u(x, t) ≤M on D ∪ ∂D.

Uniqueness for the heat problem then follows easily.

Theorem C.8 Suppose that u(x, t) is a solution of the heat problem

ut = k2uxx + f(x, t), 0 < x < L, t > 0,

u(x, 0) = g(x), 0 ≤ x ≤ L,
u(0, t) = h1(t), u(L, t) = h2(t), t ≥ 0,

with u continuous on 0 ≤ x ≤ L, t ≥ 0, and ut and uxx continuous on
0 < x < L, t > 0. Then u is the problem’s only such solution.

By the way, note that the maximum/minimum principle says that, at any
point in time t = T , the maximum/minimum temperatures up until then must
have occurred initially or at an endpoint (in the absence of a source f(x, t),
of course).
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A Menagerie of PDEs

This appendix gathers together all of the PDEs studied in this book, along
with many other important equations that are not covered. In each case,
∇ is the del operator in the space variables. Therefore, in one dimension,
∇2u = uxx; in two dimensions, ∇2u = uxx + uyy; and in three dimensions,
∇2u = uxx + uyy + uzz (in Cartesian coordinates, of course).

D.1 The Big Three and Other Important PDEs

We begin by listing the equations most frequently referred to in this book,
followed by a larger compilation based on areas of application.

Heat/diffusion equation: ut = k2∇2u+ f

Wave equation: utt = c2∇2u+ f

In each of the above, the unknown u and the source term f are
functions of the space and time variables. If f ≡ 0, we have, of
course, the homogeneous versions of these equations.

Poisson’s equation: ∇2u = −f

Here, u and f are functions of the space variables. If f ≡ 0, we
have

Laplace’s equation: ∇2u = 0

When separating out the time variable in the heat and wave equa-
tions, we encountered the

Helmholtz equation: ∇2u+ k2u = 0

601
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We also have the

Convection or advection or linear transport equation: ut + v · ∇u = 0

Here, the velocity v is a function of the independent variables.

A very important first-order equation is the linear

Continuity equation: ρt +∇ · Φ = 0

Here, ρ usually is a concentration or density, while Φ is the flux,
and the equation is just a statement of the conservation of energy,
charge or the like. Examples include the following.

Heat/diffusion: (σρu)t +∇ · Φ = 0

(σ = specific heat, ρ = mass density, u = temperature, Φ = flux)

Fluid flow : ρt +∇ · (ρv) = 0

(ρ = density, v = velocity)

Electric current: ρt +∇ · J = 0

(ρ = charge density, J = current)

These continuity equations are linear examples of the more general

Conservation law: ρt +∇ · Φ(u, x, y, z, t) = q(u, x, y, z, t)

a well-known example of which is the nonlinear

Burger’s equation: ut +
∂
∂x

(
1
2u

2
)
= ut + uux = 0

(see below, under Fluid Dynamics)

RELATED EQUATIONS

Related to the heat equation is the parabolic

Fokker–Planck equation: ut = uxx + xux + u

from statistical mechanics. Two important hyperbolic equations
are the

Telegraph equation: uxx = CLutt + (RC +GL)ut = RGu

(see below, under Electrical Circuits) and the

Hanging chain equation: utt = g(xuxx + ux)

Here, g is the gravitational acceleration.
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Of course, the source term f in the heat equation can depend on
u. In this case, the equation may be nonlinear. An example is the
following nonlinear heat equation:

Fisher’s equation: ut = uxx + u(1− u)

This equation is an example of a so-called reaction-diffusion equa-
tion which arises in cell biology.

D.2 Schrödinger’s Equation

The cornerstone of the wave approach to the study of quantum mechanics is
Schrödinger’s equation (sometimes called Schrödinger’s wave equation), which
is a PDE satisfied by the wave function ψ.

Schrödinger’s equation:

i�ψt +
�
2

2m
∇2ψ − V (x, y, z)ψ = 0

Here,

ψ(x, y, z, t) = wave function of particle
= probability that the particle is at location (x, y, z)

at time t
h = 2π� = Planck’s constant
m = mass of particle
V (x, y, z) = quantum mechanical potential at point (x, y, z)

It’s customary to separate out time by letting ψ = e
−iEt

� Ψ(x, y, z),
resulting in the

Time-independent Schrödinger’s equation:

∇2Ψ+
2m

�2
[E − V (x, y, z)]Ψ = 0

Here, Ψ(x, y, z) is called the quantum state of the particle when
the particle has energy equal to the eigenvalue E.

When the particle is the lone electron in the hydrogen atom, then

the potential is V = − e2

ρ , where e is the electron’s charge and ρ

its (spherical coordinate) distance from the nucleus.
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Schrödinger’s equation for the hydrogen atom:

i�ψt +
�
2

2m
∇2ψ +

e2

ρ
ψ = 0

Another version of Schrödinger’s equation which often leads to
eigenvalues is that for the one-dimensional harmonic oscillator or
“particle in a box.” In this case, x is the only space variable and
V (x) = 1

2mw
2x2, where w is the “classical frequency” of the oscil-

lator. Upon separation of variables, we end up with the following
ODE.

Time-independent Schrödinger’s equation for linear harmonic oscil-
lator:

ψ′′ + α(λ− x2)ψ = 0

for constants α and (eigenvalues) λ.

There also is a nonlinear Schrödinger’s equation, which shows up
in the study of solitary waves or solitons (see below).

D.3 Maxwell’s Equations

Maxwell’s equations are the basic equations of the electromagnetic field. If

EEE(x, y, z, t) = electric field strength at point (x, y, z), at time t

BBB(x, y, z, t) = magnetic field strength at point (x, y, z), at time t

ρ(x, y, z, t) = charge density (per unit volume) at point (x, y, z), at time t

JJJ(x, y, z, t) = current density (per unit area) at point (x, y, z), at time t

then Maxwell showed that the vectors EEE,BBB and JJJ , and the scalar ρ, satisfy
the partial differential equations

∇ ·EEE = 4πρ, ∇ ·BBB = 0,

EEEt = c∇×BBB − 4πJJJ, BBBt = −c∇×EEE.

Here, c is the speed of light. If the configuration is static, so that EEE and BBB do
not change over time and there is no current, the last two equations become

∇×BBB = 000, ∇×EEE = 000.

To be precise, the above are the so-called vacuum or microscopic Max-
well’s equations. These equations work well for a small number of sources of
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charge and current. They are not appropriate when dealing with macroscopic
aggregates of matter. For these cases, we have the so-called macroscopic
Maxwell’s equations

∇ ·DDD = 4πρ, ∇ ·BBB = 0,

DDDt = c∇×HHH − 4πJJJ, BBBt = −c∇×EEE,

where EEE and BBB here are averages of the microscopic EEE and BBB, and DDD and HHH
are vector fields related to EEE and BBB, respectively.

D.4 Elasticity

Among other things, the theory of elasticity studies the static and vibration
behavior of objects like strings, beams and plates—mathematical idealiza-
tions of these real physical objects. As we’ve seen, the motions of strings,
membranes and the like are described by the

wave equation: utt = c2∇2u+ f

Here, the load f is a function of all of the independent variables. If
f ≡ 0, we have our old homogeneous wave equation, while if there
is no time dependence, then utt ≡ 0 and u represents a static
shape (e.g., a string hanging under the influence of gravity).

The difference between a string and a beam is that a beam is stiff, a property
that can be quantified. When deriving the PDE for the vibrating string, we
saw that the only force exerted on a differential element by the rest of the
string is the tension, which, in a perfectly elastic string, is tangent to the
string at each point. Thus, if this tension is instantly removed at a point, the
only reaction would be for the string to unstretch.

Suppose, instead, that we have a cantilever beam, as shown in Figure D.1. If
we pull down on the free end and then let go, the beam has the tendency both
to unbend and to vibrate in the vertical direction. What’s happening is that
there are many small forces acting on any cross section of the beam, in many
different directions. We may sum all of these and decompose the result into
a vertical force, called the shear, and a moment, called the bending moment.
(See Figure D.2.) In the simplest model, we make a number of assumptions—
e.g., that w and wx are small, that the beam is thin—that allow us to say,
e.g., that the shear is, indeed, vertical and that it acts on the midsection of
the beam.



606 An Introduction to Partial Differential Equations with MATLAB R©

FIGURE D.1
The cantilever beam.

x

x−axis

Δ

V(x,t)

M(x,t)
Δ 

x +   xΔ

V(x+   x,t)

M(x+   x,t)

FIGURE D.2
Differential element for the E–B beam, showing the shear force VVV
and the bending moment MMM . These forces/moments are applied to
the element at each end by the rest of the beam.

It’s not hard to show that, in the simplest case, we must have

Mx(x, t) = V (x, t),

where M is the bending moment and V is the shear, and that

M = EIwxx,

where w is the deflection of the beam and E and I are “beam constants,”
related to its composition and shape—in fact, the product EI is referred to
as the beam’s stiffness.

Finally, we may put everything together by, again, summing forces which
act on a differential element. The result is the

Euler–Bernoulli (E–B) beam equation: wtt + α4wxxxx = f(x, t)
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The constant α4 = EI
ρ , where ρ is the density per unit length of the

beam, and f(x, t) is the load. One may incorporate more effects
into the model, resulting in the (linear) Rayleigh and Timoshenko
beams.

There are four sets of naturally occurring boundary conditions for
the beam—you should convince yourself that they do make sense,
physically.

clamped: w(0, t) = wx(0, t) = 0

pinned or simply-supported: w(0, t) = wxx(0, t) = 0

roller-supported: wx(0, t) = wxxx(0, t) = 0

free: wxx(0, t) = wxxx(0, t) = 0

The two-dimensional analog of the E–B beam is the

Kirchhoff thin plate equation: wtt + α4∇4w = f(x, y, t)

Here, ∇4 = (∇2)2 = Δ2, and the constant α4 again is related to
the stiffness of the plate. Note that the bending moment and shear
boundary conditions for the plate are not wxx = 0, wxxx = 0, but
are more complicated.

We note that the longitudinal vibration of beams/bars is also gov-
erned by the wave equation. Another equation which arises in this
context is the

Boussinesq equation: utt − c2∇2u− u∇2utt = 0

We meet this equation in the study of fluid dynamics, as well.

For more information on beam and plate equations, see, e.g., Timoshenko
and MacCullough’s Elements of Strength of Materials, along with Timoshenko
and Woinowsky–Krieger’s Theory of Plates and Shells.

D.5 Electric Current in a Wire

The flow of electricity in a wire or cable is modeled by the

Transmission line equations:

ix + Cvt +Gv = 0

vx + Lit +Ri = 0
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Here, we have

x = position along wire

i(x, t) = current (at location x, at time t)

v(x, t) = potential

C = capacitance per unit length

R = resistance per unit length

L = self-inductance per unit length

G = leakage per unit length.

Then, by elimination, we see that i and v both satisfy the

Telegraph or telephone equation: uxx = CLutt + (RC +GL)ut +GRu

D.6 Fluid Dynamics

There are many PDEs which arise in the study of the dynamics of liquids and
gases.

Convection or advection or linear transport equation: ut + vux = 0,

v = v(x, t) = velocity

Generalized Burger’s equation: ut + f(u)ux = νuxx

If f(u) = u, we have

Burger’s equation (with dissipation): ut + uux = νuxx

If we set the dissipation coefficient, ν, equal to zero, we get

Burger’s equation: ut + uux = 0

We also have the following equations.

Tricomi equation: uxx + xuyy = 0

Euler–Poisson–Darboux equation: uxx − a2uyy − buy = 0

Boussinesq equation: utt − c2uxx − μuxxtt = 1
2 (u

2)xx
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Euler’s equations of motion for a perfect inviscid fluid:

Euler’s equations, in two space dimensions, for the motion of a
perfect inviscid (nonviscous) fluid are

ut + uux + vuy +
1

ρ
px = 0,

vt + uvx + vvy +
1

ρ
py = 0,

ρt + (ρu)x + (ρv)y = 0,(
p

ργ

)
t

+ u

(
p

ργ

)
x

+ v

(
p

ργ

)
y

= 0,

where

u(x, y, t) = x-component of velocity at point (x, y), at time t

v(x, y, t) = y-component of velocity

ρ(x, y, t) = density

p(x, y, t) = pressure

γ = constant, dependent upon fluid, γ > 1

The three-dimensional equations are analogous. For gases, γ is
close to one, while for liquids, it can be much larger. In the latter
case, we often set γ =∞, allowing us to neglect the last equation.
In this case, it can also be shown that ρ is a constant, in which
case we refer to the fluid as incompressible. Note that, for an
incompressible fluid, the third equation becomes

∇ · (u, v) = 0.

We note that the time derivatives in Euler’s equations are not the
standard time derivatives, in the sense that, here, they follow the
motion of the fluid elements. Hence, we give them the special
name Eulerian derivatives. Further, we note that we actually
gave a system of only four equations, in five unknowns. The fifth
equation is a relationship between density and pressure, called the
equation of state.

Now, in the case of sound waves, we assume that the vibrations
involved are small, from which it follows that the changes in ρ will
be small. Under this assumption, we simplify Euler’s equations,
with the result being the

Linearized equations of acoustics:

ut = cρx, vt = cρy, ρt + ρ0(ux + vy) = 0
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Here, ρ0 is the initial density, and c is a constant depending upon
the initial density and pressure.

The simplest two-dimensional model for the flow of an incompress-
ible viscous fluid is the set of

Navier–Stokes equations:

ρut + ρuux + ρvuy + px = μ∇2u

ρut + ρuvx + ρvvy + py = μ∇2v

∇ · (u, v) = ux + vy = 0

We call μ the coefficient of viscosity.

D.7 Solitons

A solitary wave or soliton, famously first observed by J.S. Russell in Eng-
land in 1834, is a single, lone wave which propagates without changing shape.
It is a wave with particle-like behavior in that it is stable, localizable (we can
say where it is) and possesses finite energy. Further, a collision of two solitons
leads to the creation of new solitons and not to the break-up of the original
waves. Because of this wave-particle duality, we should not be too surprised
to see Schrödinger’s equation showing up in this context, as well.

In each case, u(x, t) is the shape of the wave at time t.

KdV (Kortweg–de Vries) equation:

ut + σuxxx + c0

(
1 +

3

2

u

h0

)
ux = 0

This equation often is seen in its canonical form

ut + 6uux + uxxx = 0.

Also, h0 is the constant depth of the water channel. If h0 is large,
we may neglect the term u

h0
, leading to the

Linearized KdV equation:

ut + c0ux + σuxxx = 0

BBM (Benjamin–Bona–Mahony) equation:

ut + ux + uux − uxxt = 0
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Nonlinear or cubic Schrödinger’s equation (canonical form):

iψt + ψxx + γ|ψ|2ψ = 0

(Note that |ψ|2ψ �= ψ3 unless ψ is real!)

Sine-Gordon equation: utt − uxx + sinu = 0

Kadomtsev–Petviashvili equation (two dimensions):

(ut + 6uux + uxxx)x + uyy = 0

D.8 Financial Mathematics—The
Black–Scholes Equation

Prominent these days in the study of financial mathematics is the Black–
Scholes model for options pricing. If we let

t = time

s = market value of given asset

σ = (constant) volatility of the asset

r = (constant) interest rate

v(s, t) = value of option on the asset

then v satisfies the

Black–Scholes equation: vt +
σ2s2

2 vss + rsvs − rv = 0

for s > 0, 0 ≤ t ≤ T . Here, t = 0 represents the time when the
asset is purchased, while t = T is the time when the asset has
reached maturity.

Much of the work done in financial mathematics entails devel-
oping numerical methods to deal with Black–Scholes and other
equations. However, it is possible to reduce Black–Scholes to the
heat equation.

D.9. Particle Physics

Klein–Gordon equation:

utt − c2∇2u+m2u+ gu3 = 0
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Linearized Klein–Gordon equation:

utt − c2∇2u+m2u = 0

In each case, m is the mass of the particle, c is the speed of light and g is
a constant, as well.

Important, too, in the study of the physics of elementary particles are the
Dirac equation and the Yang–Mills equations (from gauge theory).

D.10 Miscellaneous

Here we list a few other interesting PDEs.

Airy’s equation: ut + uxxx = 0 (optics)

Eikonal equation: |∇u|2 = 1
c2

(geometrical optics; c is a function of the space variables)

Minimal surface equation: (1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy = 0

(from the calculus of variations and related to the famousPlateau’s
problem)

Hamilton–Jacobi equation: ut +Hu = 0

(from mechanics—H is a differential operator, in the space vari-
ables, known as the Hamiltonian of the system)

Bratu’s equation: ∇2u+ eu = 0

(which models spontaneous combustion and is very important in
the theoretical study of nonlinear PDEs)
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MATLAB Code for Figures and Exercises

SECTION 1.7

Figure 1.2

hold off;

% The hold off command clears any previous graphs.

% The domain interval and mesh:

x = 0:.01:12;

T = tan(x);

Y = -x;

Z = 0;

% Without the following two lines, the asymptotes will appear.

I = find(abs(T)>16);

T(I)=NaN;

plot(x,T); % Plots y = tan x.

hold on; % Keeps all plots on the same graph.

plot(x,Y,’-.’); % Plots y = -x.

plot(x,Z); % Plots x-axis.

axis([0 12 -12 12]);

Figure 1.3

function sol = Fig1_3

% The following line makes all of the plots different: solid,

% dash, dot, etc

set(0,’DefaultAxesColorOrder’,[0 0 0],...

’DefaultAxesLineStyleOrder’,’-|-.|--|:’)

for n = 1:5

% This code generates all five graphs of figure 1.3, but each

% will be solid

613



614 An Introduction to Partial Differential Equations with MATLAB R©

% In order to differentiate graphs using dashes and/or dots,

% each graph must be done individually, then overlaid.

% Here we provide an initial guess for the eigenvalue:

lambda = (((2*n-1)^2)*(pi)^2)/4;

solinit = bvpinit(linspace(0,1,10),@guess,lambda);

sol = bvp4c(@odes,@bcs,solinit);

xint = linspace(0,1,100);

Sxint = deval(sol,xint);

axis([0 1 -.3 .6]);

plot(xint,Sxint(1,:));

hold all;

end;

% The subroutine bvpinit needs an initial guess and

% its derivative:

function v = guess(x)

v = [ sin(5*pi*x); 5*pi*cos(5*pi*x) ];

% The eigenvalue differential equation:

function dydx = odes(x,y,lambda)

dydx = [y(2); -(lambda)*y(1) ];

% The boundary conditions:

function res = bcs(ya,yb,lambda)

res = [ ya(1); yb(1)+yb(2); ya(2)-1];

% We compute the eigenvalues in Table 1.1 individually, rather

% than in the for loop. (The eigenvalue will appear in the

% command window.)

SECTION 3.2

Figure 3.2

x=0:.001:3*pi;

S = sin(2*x) + cos(4*x);

Y = 0.0;

plot(x,S);

hold on;

plot(x,Y);

axis([0 3*pi -3 2]);



MATLAB Code for Figures and Exercises 615

Figure 3.5

x=-pi:.001:pi;

S = sin(2*x).*sin(4*x);

Y = 0;

plot(x,S);

hold on;

plot(x,Y);

axis([-pi pi -1 1]);

SECTION 3.4

Figure 3.7

x=1:.001:2;

F = x;

Y = 0;

plot(x,F);

hold on;

plot(x,Y);

x = 2:.001:3;

F = 1./(x-2);

plot(x,F);

axis([1 3 0 6]);

Figure 3.9

x = -2:.001:2;

F = sign(x).*abs(x.^(1/3));

% The function sign(x) is -1 if x < 0 and 1 if x > 0. Writing F

% in this way allows MATLAB to select the real (and not a

% complex) cube root.

Y = 0

plot(x,F);

hold on;

plot(x,Y);

axis([-2 2 -2 2]);

SECTION 3.5

Figure 3.13

t = -3*pi:.001:3*pi;

fs = (1/2) * ones(size(t));
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% Here we use only n = 40.

for n = 1:40

fs = fs + (2/pi)*sin((2*n-1)*t) / (2*n-1);

end;

plot(t,fs);

SECTION 4.1

Figure 4.1

x = 0:.001:pi;

u = (0) * ones(size(x));

for t = 0:4

u = 0;

for k = 1:10

u = u + (8/pi) * (exp(-(2*k-1)*(2*k-1)*t)) *

sin((2*k-1)*x)/(2*k-1)/(2*k-1)/(2*k-1);

% This last statement must be entered on one line.

hold on;

end;

plot(x,u);

hold all;

end;

Figure 4.2

x = 0:.01:pi;

u = (3) * ones(size(x));

% The following line makes all the plots different: solid,

% dash, dot, etc.

set(0,’DefaultAxesColorOrder’,[0 0 0],...

’DefaultAxesLineStyleOrder’,’-|-.|--|:’)

axis([0 3.15 1.5 4.2]);

for t = 0:4

u = 3;

for k = 1:50

u = u - (12/(pi^2)) * exp((-(2*k-1)*(2*k-1)*

(pi^2)*t)/9) * (cos((k*(pi)*x)/3))/
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((2*k-1)^2);

% Again, the last statement must be entered on one line.

hold all;

end;

plot(x,u);

hold on;

end;

SECTION 5.1

Figure 5.4

x=(-10:.2:10)’;

t=(0:.2:5)’;

[x,t] = meshgrid(x,t);

R=x-(2./3).*t;

z= sin(R);

mesh (x,t,z,’EdgeColor’,’black’);

SECTION 6.1

Figure 6.1

x = 0:.01:2;

Y = erf(x);

Z= erfc(x);

plot(x,Y);

hold on;

plot(x,Z,’-.’);

axis([0 2 -.1 1.1]);

SECTION 6.3

Figure 6.2

x = -10:.01:10;

Y = exp(-4.*x.^2);

Z= (1/(2.*sqrt(2))).*exp(-(x.^2)/16);

plot(x,Y);

hold on;

plot(x,Z,’:’);

axis([-10 10 0 1.2]);

SECTION 6.4

Figure 6.4
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% f = 1/(4*a*sqrt(pi*t)) * e^((-x-y)^2)/4t

% This particular code is for t=5.

f = ’(1./(4.*1.*sqrt(pi.*5))).*exp((-(x-y).^2)./(4.*5))’;

F = inline(f,’y’,’x’);

a = 1;

for x = -10:.02:10;

u = quad(F,-a,a,[],[],x);

plot(x,u);

axis([-10 10 0 .28]);

hold on;

end;

hold all;

% Run the program for t=1, t=3 and t=5. As usual, the hold on

% command will keep each graph. The result will be a grid

% with three graphs on it, one for each value of t.

Figure 6.5

% This particular code is for a=1.

f = ’(1./(4.*1.*sqrt(pi.*1))).*exp((-(x-y).^2)./(4.*1))’;

% a must be changed above. For example, for a=3,

% f = ’(1./(4.*3.*sqrt(pi.*1))).*

% exp((-(x-y).^2)./(4.*1))’;

F = inline(f,’y’,’x’);

a = 1;

for x = -10:.02:10;

u = quad(F,-a,a,[],[],x);

plot(x,u);

axis([-10 10 0 .28]);

hold on;

end;

SECTION 7.2

Figure 7.1a

x = -1:.05:1;

P0 = ones(size(x));

P2 = .5*(3*x.^2 - 1);
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P4 = .125*(35*x.^4 - 30*x.^2 + 3);

plot (x,P0,’k’);

hold on;

plot (x,P2,’k-.’);

plot (x,P4,’k--’);

axis([-1 1 -.6 1.2]);

hold off;

SECTION 7.4

Figure 7.2

x = -4:.001:5;

y = gamma(x);

plot(x,y);

hold on;

axis([-4.4 5 -10 10]);

SECTION 7.5

Figure 7.3

axis([0 20 -1 1])

x=0:0.01:20;

for k = 0:2

y= besselj(k,x);

hold on;

if k == 0

plot(x,y,’k’);

end;

if k == 1

plot(x,y,’k:’)

end;

if k == 2

plot(x,y,’k--’)

end;

end;

Figure 7.4

axis([0 20 -2 1])

x=0:0.01:20;

for k = 0:2

y= bessely(k,x);

hold on;

if k == 0
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plot(x,y,’k’);

end;

if k == 1

plot(x,y,’k:’)

end;

if k == 2

plot(x,y,’k--’)

end;

end;

Figure 7.5

axis([0 4 0 10])

x=0:.1:4;

for k = 0:2

y= besseli(k,x);

hold on;

if k == 0

plot(x,y,’k’);

end;

if k == 1

plot(x,y,’k:’)

end;

if k == 2

plot(x,y,’k--’)

end;

end;

Figure 7.6

axis([0 2 0 10])

x=0:.01:4;

for k = 0:2

y= besselk(k,x);

hold on;

if k == 0

plot(x,y,’k’);

end;

if k == 1

plot(x,y,’k:’)

end;

if k == 2

plot(x,y,’k--’)

end;

end;
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SECTION 9.2

Figure 9.4

[X,Y] = meshgrid([0:.1:2],[0:.1:3]);

colormap([1 1 1]);

subplot(3,3,1)

V = sin((pi.*X)./2).*sin((pi.*Y)/3);

surf(X,Y,V);

subplot(3,3,2)

V = sin((pi.*X)./2).*sin((2.*pi.*Y)/3);

surf(X,Y,V);

subplot(3,3,3)

V = sin((pi.*X)./2).*sin((pi.*Y));

surf(X,Y,V);

subplot(3,3,4)

V = sin((pi.*X)).*sin((pi.*Y)/3);

surf(X,Y,V);

subplot(3,3,5)

V = sin((pi.*X)).*sin((2.*pi.*Y)/3);

surf(X,Y,V);

subplot(3,3,6)

V = sin((pi.*X)).*sin((pi.*Y));

surf(X,Y,V);

subplot(3,3,7)

V = sin((3.*pi.*X)./2).*sin((pi.*Y)/3);

surf(X,Y,V);

subplot(3,3,8)

V = sin((3.*pi.*X)./2).*sin((2.*pi.*Y)/3);

surf(X,Y,V)

subplot(3,3,9)

V = sin((3.*pi.*X)./2).*sin((pi.*Y));

surf(X,Y,V)

Figure 9.6

[X,Y] = meshgrid([0:.05:1],[0:.05:1]);
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V1 = sin((pi.*X)).*sin((2.*pi.*Y));

V2 = sin((2.*pi.*X)).*sin((pi.*Y));

colormap([1 1 1]);

subplot(1,2,1)

surf(X,Y,V1);

axis normal;

view(-37.5,16);

subplot(1,2,2)

surf(X,Y,V2);

axis normal;

view(-37.5,16);

Figure 9.8

[X,Y] = meshgrid([0:.05:1],[0:.05:1]);

V1 = sin((pi.*X)).*sin((2.*pi.*Y));

V2 = sin((2.*pi.*X)).*sin((pi.*Y));

colormap([1 1 1]);

subplot(1,2,1)

V = -V1 - V2;

surf(X,Y,V);

axis normal;

view(15,15);

subplot(1,2,2)

V = V1 - V2;

surf(X,Y,V);

axis normal;

view(15,15);

SECTION 9.4

Figure 9.11

We would like to thank Udaak Z. George, and her adviser, Dr. Anotida
Madzvamuse, University of Sussex, UK, for pointing out that this figure was
incorrect in the first edition, and for providing us with the correct MATLAB
code.

[Th,r] = meshgrid([0:10:360]*pi/180,[0:.1:1]);
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[X,Y] = pol2cart(Th,r);

colormap([1,1,1]);

subplot(3,3,1)

V1 = besselj(0,2.40483.*sqrt(X.^2+Y.^2)).*cos(0*Th);

surf(X,Y,V1);

hold on;

hold off;

subplot(3,3,2)

V2 = besselj(1,3.83171.*sqrt(X.^2+Y.^2)).*cos(1*Th);

surf(X,Y,V2);

hold on;

hold off;

subplot(3,3,3)

V3 = besselj(2,5.13562.*sqrt(X.^2+Y.^2)).*cos(2*Th);

surf(X,Y,V3);

subplot(3,3,4)

V4 = besselj(0,5.52008.*sqrt(X.^2+Y.^2)).*cos(0*Th);

surf(X,Y,V4);

subplot(3,3,5)

V5 = besselj(1,7.01559.*sqrt(X.^2+Y.^2)).*cos(1*Th);

surf(X,Y,V5);

subplot(3,3,6)

V6 = besselj(2,8.41724.*sqrt(X.^2+Y.^2)).*cos(2*Th);

surf(X,Y,V6);

subplot(3,3,7)

V7 = besselj(0,8.65373.*sqrt(X.^2+Y.^2)).*cos(0*Th);

surf(X,Y,V7);

subplot(3,3,8)

V8 = besselj(1,10.17347.*sqrt(X.^2+Y.^2)).*cos(1*Th);

surf(X,Y,V8);

subplot(3,3,9)

V9 = besselj(2,11.61984.*sqrt(X.^2+Y.^2)).*cos(2*Th);

surf(X,Y,V9);

SECTION 9.5
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Figure 9.16

axis([0 10 -.4 1])

x=0:0.01:10;

k = 0;

Y= sqrt(pi./(2.*x)).*besselj(k+.5,x);

hold on;

plot(x,Y,’k-’);

k = 1;

Y= sqrt(pi./(2.*x)).*besselj(k+.5,x);

hold on;

plot(x,Y,’k:’);

k = 2;

Y= sqrt(pi./(2.*x)).*besselj(k+.5,x);

hold on;

plot(x,Y,’k-.’);

k = 3;

Y= sqrt(pi./(2.*x)).*besselj(k+.5,x);

hold on;

plot(x,Y,’k--’);

SECTION 10.3

Figure 10.4

subplot(1,2,1)

[X,Y] = meshgrid([-3:.01:3],[-3:.01:3]);

Z = (-1./(4.*pi)).*log(X.^2 + Y.^2);

surf(X,Y,Z);

axis([-3 3 -3 3 -.5 1]);

view(-24, 19);

subplot(1,2,2)

[X,Y] = meshgrid([-3:.15:3],[-3:.15:3]);

colormap([1,1,1]);

Z = (-1./(4.*pi)).*log(X.^2 + Y.^2);

surf(X,Y,Z);

axis([-3 3 -3 3 -.5 1]);

view(-24, 19);

SECTION 10.4
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Figure 10.7a

[X,Y] = meshgrid([-5:.14:5],[-5:.14:5]);

colormap([1,1,1]);

Z = (-1/4).*bessely(0,sqrt(X.^2+Y.^2));

surf(X,Y,Z);

Figure 10.7b

[X,Y] = meshgrid([-10:.2:10],[-10:.2:10]);

colormap([1,1,1]);

Z = (-1/4).*bessely(0,sqrt(X.^2+Y.^2));

surf(X,Y,Z);

SECTION 11.1

Table 11.2

% n = number of rows of A = number of columns of A.

n = 9;

% Read zeros into coefficient matrix A:

A = zeros(n,n);

% Main diagonal of A:

for i = 1:n;

for j = 1:n;

if i == j;

A(i,j) = (i./(n.^3)) - 2;

end;

end;

end;

% Diagonals above and below main diagonal:

for k = 1:n;

for m = 1:n-1;

if k == m+1

A(k,m) = 1;

A(m,k) = 1;

end;

end;
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end;

% Read in column vector B, the right side of the matrix

% equation:

B = zeros(n,1);

for k = 1:n

if k == n

B(k,1) = -1;

end;

end;

% Compute A-inverse:

C = inv(A);

% Left-multiply B by A-inverse. D is the solution vector.

D = C*B;

fprintf(’The solution matrix is: \n’);

fprintf(’\n’);

for a = 1:n

fprintf(’%g\n’,D(a,1));

end;

% D will appear in the command window. You can check

% your matrices in workspace.

%The solution matrix is:

%0.224487

%0.336037

%0.446205

%0.553924

%0.657844

%0.756349

%0.847592

%0.929534
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Answers to Selected Exercises

CHAPTER 1

Section 1.1

5. d) a2 + b2 = 1

6. a) u(x, y) = f(y), where f is an arbitrary function

b) infinitely many solutions (need f(0) = 0)

c) u(x, y) = y2 − cos y

d) no solution

Section 1.2

1. u(x, y) = 2xy + f(x)

3. u(x, y, z) = − cosx+ x cos y + f(y, z)

5. u(x, y) = x2y
2 − xy2

2 + f(x) + g(y)

7. u(x, y) = − y2

8 sin 2x+ yf(x) + g(x) + xh(y) + k(y)

9. u(x, y, z) = zf(x, y) + g(x, y) + h(x, z) + k(y, z)

11. u(x, y) = e4yf(x)

13. u(x, y) = exy
2

f(y)

15. u(x, y) = 2
x + e−xyf(x), x �= 0

17. u(x, y) = e−2xf(y) + exg(y)

19. a) u(x, y) = e2xy2

c) no solution

627
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Section 1.3

1. yes

4. no

5. sin 2L �= 0

Section 1.4

1. nonlinear

5. linear

Section 1.5

9. up = − cosx+ x cos y

11. up = −3

Section 1.6

1. 3X ′ + λX = 2Y ′ + λY = 0

3. X ′ + λx2X = Y ′ − λy2Y = 0

5. X ′′ + λX = T ′′ + λT = 0

7. X ′′ −X ′ + λX = 0 = 2Y ′′ + 3Y ′ − λY = 0

9. X ′′ + (λ− x2)X = T ′ + iλT = 0

11. r2R′′ + rR′ − λR = Θ′′ + λΘ = 0

13. X(4) + λX = T ′′ − λT = 0

15. X ′ + λ1X = Y ′ − λ2Y = Z ′ + (1 − λ1 + λ2)Z = 0

17. x2X ′ + λ1X = y3Y ′ + λ2Y = 4zZ ′ + (λ1 − λ2)Z = 0

19. X ′′ + λ1X = Y ′′ + (λ2 − λ1)Y = T ′′ + λ2T = 0

22. uλ = ce−λ(x
3 +

y
2 )

24. uλ = ce
λ
3 (y3−x3)

26. λ > 0: uλ = (c1 cos
√
λ x+ c2 sin

√
λ x)(c3 cos

√
λ t

+c4 sin
√
λ t),

λ = 0: u0 = (c1x+ c2)(c3t+ c4),
λ < 0: uλ = (c1 cosh

√−λ x+ c2 sinh
√−λ x)(c3 cosh

√−λ t
+c4 sinh

√−λ t)
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28. λ < − 9
8 : uλ = (c1 cosh

√
1− λ x+ c2 sinh

√
1− λ x)e− 3y

4

(c1 cos
√−9−8λ

4 y − c2 sin
√−9−8λ

4 y),

λ = − 9
8 : u−9/8 = (c1 cosh

17x
8 + c2 sinh

17x
8 )e−

3y
4 (c3y + c4),

− 9
8 < λ < 1: uλ = (c1 cosh

√
1− λ x+ c2 sinh

√
1− λ x)e− 3y

4

(c3e
√

9+8λ y
4 + c4e

−
√

9+8λ y
4 ),

λ = 1: u1 = (c1x+ c2)e
− 3y

4 (c3e
√

17 y
4 + c4e

−
√

17 y
4 ),

λ > 1: uλ = (c1 cos
√
λ− 1 x+ c2 sin

√
λ− 1 x)e−

3y
4 (c3e

√
9+8λ y

4 +

c4e
−

√
9+8λ y

4 )

29. λ > 0: uλ = (c1r
√
λ + c2r

−√
λ)(c1 cos

√
λ θ + c2 sin

√
λ θ),

λ = 0: u0 = (c1 + c2 ln r)(c3θ + c4),

λ < 0: uλ = (c1 cos ln
√−λ r + c2 sin ln

√−λ r)(c3 cosh
√−λ θ+

c4 sinh
√−λ θ)

31. uλ = ce−λ1x+λ2y+(λ1−λ2−1)z

37. a) u = c1(x− y) + c2

38. a) X(0) = 0, or T (t) = 0 for all t

39. a) no

Section 1.7

1. λn = n2π2

25 , yn = sin nπx
5 , n = 1, 2, . . .

3. λn = (2n−1)2

4 , yn = cos (2n−1)x
2 , n = 1, 2, . . .

5. λ0 = −1, y0 = coshx+ sinhx;
λn = n2π2, yn = nπ cosnπx+ sinnπx, n = 1, 2, . . .

7. λn = n2π2

4 + 1, yn = x−1 sin nπ
2 lnx, n = 1, 2, . . .

9. λ2k−1 = (2k−1)2π2

4 , y2k−1 = cos (2k−1)πx
2 , k = 1, 2, . . .

λ2k = k2π2, y2k = sin kπx, k = 1, 2, . . .

11. λn = −n4π4, yn = sinnπx, n = 1, 2, . . .

13. λn :
√
λn = tan2

√
λn, yn = sin

√
λn x, n = 1, 2, . . . ;λn > 0

16. a) λn = n2π2

L2 , yn = sin nπx
L , n = 1, 2, . . .

b) λn = (2n−1)2π2

4L2 , yn = sin (2n−1)πx
2L , n = 1, 2, . . .

c) λn = (2n−1)2π2

4L2 , yn cos
(2n−1)πx

2L , n = 1, 2, . . .

d) λ0 = 0, y0 = 1;λn = n2π2

L2 , yn = cos nπx
L , n = 1, 2, . . .

18. un(x, t) = sinnπx(cn cosnπt+ dn sinnπt), n = 1, 2, . . .
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CHAPTER 2

Section 2.2

1. a) distance2

time

c) calories
distance·time·degrees

2. b) ut =
.63

(.215)(2.7)uxx

11. a) σ2s2S′′(s) + 2rsS′(s) + 2(λ− r)S(s) = T ′(t)− λT (t) = 0

Section 2.4

1. a) u(x, 0) = 20, ux(5, t) = 0, t > 0,
u(x, 0) = 50, 0 ≤ x ≤ 5,
u(0, t) = 20, ux(5, t) = 0, t > 0

3. a) u(x, t) = T2−T1

L x+ T1

4. a) utt = uxx, 0 < x < 8, t > 0,

u(x, 0) =

⎧⎪⎨
⎪⎩
x/2, if 0 ≤ x ≤ 4,

4− x/2, if 4 ≤ x ≤ 8,

ut(x, 0) = 0,
u(0, t) = u(8, t) = 0

7. a) v(x) = 4x+ 10, w(x, 0) = f(x)− 4x− 10

9. Fourier’s Law

Section 2.5

8. u(r) = c1 + c2 ln r

Section 2.6

3. u(x, t) = 3 + e−4π2t cos 2πx

5. u(x, t) =
∞∑
n=1

cne
−α2n2π2t

L2 sin nπx
L

7. u(x, t) =
∞∑
n=1

sinnπx(cn cosnπt+ dn sinnπt)

9. u(x, t) = 5 sin 2x cos 4t− 7 sin 4x cos 8t

10. b) u(x, y) = sin 3x cosh 3y + 1
sinh 1 sinx sinh y − cosh 3

sinh 3 sin 3x sinh 3y
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CHAPTER 3

Section 3.2

1. fundamental period = 4

3. not periodic

9. neither

17. a) 1024
9

Section 3.3

1. F (x) = 1− 4
π

∞∑
k=1

1
2k−1 sin(2k − 1)πx

3. F (x) = 10
π

∞∑
n=1

(−1)n+1

n sin nπx
5

5. F (x) = 1
3 + 4

π2

∞∑
n=1

(−1)n

n2 cosnπx

7. F (x) = 1
2 − 4

π2

∞∑
k=1

1
(2k−1)2 cos(2k − 1)πx

9. F (x) = 1
4 − 1

π

∞∑
n=1

1
n

{
sin nπ

2 cosnx+
[
(−1)n − cos nπ

2

]
sinnx

}

11. F (x) = f(x)

13. c) neither, neither

Section 3.4

1. continuous and piecewise smooth

3. continuous, not piecewise smooth

5. none

7. b) continuous, not piecewise smooth

13.

y

x

y=2

15. false

17. true
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Section 3.5

7. a) each = 5

c) f ′
L(0) = f ′(0−) = f ′(0+) = 0, f ′

R(0) does not exist

9. a) false

c) false

Section 3.6

1. Fs(x) =
2
π

∞∑
n=1

1−cos nπ
2

n sin nπx
4 , Fc(x) =

1
2 + 2

π

∞∑
k=1

(−1)k+1

2k−1 cos (2k−1)πx
4

3. Fs(x) = sinx, Fc(x) =
2
π + 4

π

∞∑
k=1

1
1−4k2 cos 2kx

9. true

10. false

CHAPTER 4

Section 4.1

1. a) u(x, t) = 80
π

∞∑
k=1

1
2k−1e

−2(2k−1)2t sin(2k − 1)x

c) u(x, t) = 40
π

∞∑
n=1

1
n

(
1− cos nπ

2

)
e−

n2π2t
2 sin nπx

2

2. a) u(x, t) = π2

3 + 4
∞∑
n=1

(−1)n

n2 e−4n2t cosnx

3. a) u(x, t) = 400
π

∞∑
n=1

1
2n−1e

− (2n−1)2t
4 sin (2n−1)x

2

5. a) u(x, t) =
∞∑
n=1

bne
−α2n2π2t

L2 sin nπx
L , bn = 2

L

∫ L

0
f(x) sin nπx

L dx

c) u(x, t) =
∞∑
n=1

cne
−α2(2n−1)2π2t

L2 sin (2n−1)πx
2L ,

cn = 2
L

∫ L

0
f(x) sin (2n−1)πx

2L dx

e) u(x, t) =
∞∑
n=1

cne
−α2k2

nt sin knx, kn = nth positive zero of k+tankL,

cn = 2
L

∫ L

0 f(x) sin knx dx

7. u(x, t) =
∞∑
n=1

bne
−(1+n2)t sinnx, bn = 2

π

∫ π

0 f(x) sinnx dx

9. b) conservation of heat energy
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Section 4.2

1. a) u(x, t) = 3 sin 2x cos 2
√
5 t+ 1√

5
sinx sin

√
5 t− 7

4
√
5
sin 4x sin 4

√
5 t

c) u(x, t) = 24√
5 π2

∞∑
k=1

1
(2k−1)2 sin

(2k−1)πx
2 sin (2k−1)π

√
5 t

2

2. b) u(x, t) = 2
π + 4

π

∞∑
k=1

1
1−4k2 cos 2kx cos 4kt

3. a) u(x, t) = 8
π2

∞∑
n=1

1
(2n−1)2 sin

(2n−1)πx
2 sin (2n−1)πt

2

4. a) u(x, t) =
∞∑
n=1

sin nπx
L

[
cn cos

nπct
L + dn sin nπct

L

]
,

cn = 2
L

∫ L

0 f(x) sin nπx
L dx, dn = 2

nπc

∫ L

0 g(x) sin nπx
L dx

c) u(x, t) =
∞∑
n=1

sin (2n−1)πx
2L

[
cn cos

(2n−1)πct
2L + dn sin

(2n−1)πct
L

]
, cn =

2
L

∫ L

0
f(x) sin (2n−1)πx

2L dx, dn = 4
(2n−1)πc

∫ L

0
g(x) sin (2n−1)πx

2L dx

5. a) u(x, t) = 4
πe

−2t
[
sinx cosh

√
3 t+

∞∑
k=2

1
2k−1 sin(2k − 1)x

· cos√4k2 − 4k − 3 t
]

c) u(x, t) = e−t
[
t sinx+ 1√

3
sin 2x sin

√
3 t
]

9. b) Each overtone’s frequency is an integral multiple of the fundamen-
tal frequency, but not every integral multiple of the fundamental
gives an overtone.

c) xylophone, e.g.

Section 4.3

1. u(x, y) = 40
π

∞∑
k=1

sin(2k−1)πx sinh(2k−1)πy
(2k−1) sinh 2(2k−1)π

3. u(x, y) = 2
∞∑
n=1

(−1)n+1

n sinny(coshnx− coth n sinhnx)

5. u(x, y) = 4
π

∞∑
n=1

(−1)n+1

n sin nπy
2

[
cosh nπx

2 + 1
sinh nπ

2

(
2− cosh nπ

2

)
sinh nπx

2

]

6. u(x, y) = 3
cosh 5 sin y sinhx− 5

4 cosh 20 sin 4y sinh 4x

9. no solution
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11. a) u(x, y) = 9
π

∞∑
n=1

sin nπx
3

(−1)n+1

n

[
cosh nπy

3

+
(
2 csch 2nπ

3 − coth 2nπ
3

)
sinh nπy

3

]

− 72
π3

∞∑
k=1

1
(2k−1)3 csch 2(2k−1)π

3 sinh (2k−1)πy
3 sin (2k−1)πx

3

12. a) u = u1 + u2, where u1 = solution of Exercise 1 and u2 = solution
of Exercise 5

13. a) u(x, y) =
∞∑

n=1
sin nπx

a

(
cn cosh

nπy
a + dn sinh

nπy
a

)
,

where cn = 2
nπ

∫ a

0 f(x) cos
nπx
a dx, cn cosh

nπb
a + dn sinh nπb

a

= 2
nπ

∫ a

0
g(x) cos nπx

a dx; must have
∫ a

0
f(x)dx =

∫ a

0
g(x)dx = 0

Section 4.4

1. b) w(x, t) = u(x, t) − ax − T ; wtt = wxx, w(x, 0) = f(x) − ax − T ,
wt(x, 0) = g(x), w(0, t) = wx(L, t) = 0

5. u(x, t) = 40
π

∞∑
k=1

1
(2k−1)3 [1− e−(2k−1)2t] sin(2k − 1)x+ 3e−t sinx

−4e−4t sin 2x+ 5e−9t sin 3x

7. u(x, t) = 2
π

∞∑
n=1

(−1)n+1

n3

[
1 + (n2 − 1)e−n2t

]
sinnx

+ 4
π

∞∑
k=1

1
(2k−1)

[
t+ 1

(2k−1)3 {e−(2k−1)2t − 1}
]
sin(2k − 1)x

9. u(x, t) = −15 + 10t

11. u(x, t) = sinx(1− cos t) + sin 3x cos 3t+ 1
5 sin 5x sin 5t

17. u(x, y) = 4π
∞∑

n=1

(−1)n+1

n5 sinnx[coshny + (csch nπ − coth nπ) sinhny]

+2π3
∞∑

n=1

(−1)n+1

n3 csch nπ sinnx sinhny

+ 16
π

∞∑
k=1

1
(2k−1)7 sin(2k − 1)x{− cosh(2k − 1)y

+[coth(2k − 1)π − csch(2k − 1)π] sinh(2k − 1)y}
−8

∞∑
k=1

csch(2k−1)π
(2k−1)5 sin(2k − 1)x sinh(2k − 1)y

CHAPTER 5

Section 5.1

1. u(x, y) = 4 sin 5
7 (7x+ 5y)
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3. no solution; y = −2x+ 4 is a characteristic

5. u(x, y) = (x+ y − 3)2e2(y−3)

7. u(x, y) = 3x2(y + 1)− 1
2x

3 + 4(x− 2y − 2) + 1
2 (x − 2y − 2)3

9. u(x, y) = y − 1 + [1 + x− y + sin(y − x)]e−x

11. speed = 2/3

15. u(x, y) = (x− y)2/4
19. can solve ⇔ 2A+ 3B �= 0

Section 5.2

1. u(x, y) = (x2+y2)2

25 ; characteristics: x2 + y2 = c

3. u(x, y) = sin 3(y − x3); characteristics: y = x3 + c

8. sine wave spreads out as t→∞
9. u(x, y, z) = 1

3 (2x− y)(z − 3x) + 2
9 (z − 3x)2

11. u(x, y, z) = (x3 − y)(x+ z)

13. b) u(6, 8) = 12
17 , u(0, 5) = 0

c) u(x, t) = 2x
1+2t

Section 5.3

3. u(x, t) = 3
2 [e

−(x+t)2 + e−(x−t)2 ]

11. u(5, 5) = 1, u(10, 6) = 0

Section 5.4

1. u(x, t) =

⎧⎪⎨
⎪⎩

3
2 (e

x−2t + e−x−2t), if x ≥ 2t,

3
2 (e

−x−2t − ex−2t), if x < 2t

11. u(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 [f(x+ ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct g(z)dz, if x ≥ ct,
1
2 [f(x+ ct) + f(ct− x)]

+ 1
2c

[∫ x+ct

0 g(z)dz +
∫ ct−x

0 g(z)dz
]
, if x < ct
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Section 5.5

1. parabolic, u(x, y) = xφ(4x − y) + ψ(4x− y)
3. hyperbolic, u(x, y) = φ(x+ 2y) + ψ(x − 2y)

5. elliptic

7. hyperbolic, u(x, y) = φ(3x+ y) + ψ(2x− y)
15. hyperbolic for |y| > 4

√
4, parabolic for |y| = 4

√
4, elliptic for |y| < 4

√
4

20. u(x, y) =

⎧⎨
⎩
f
(
x− a

b y
)
, if bx− ay ≥ 0,

g
(
y − b

ax
)
, if bx− ay < 0.

CHAPTER 6

Section 6.1

1. a) u(x, t) = 3 + 2H
(
t− x

2

)

2. b) u(x, t) = 10et−x + 10
∫ t

0 (1 + t− τ + et−τ ) erfc
(

x
2
√
τ

)
dτ

3. b) u(x, t) =

⎧⎪⎨
⎪⎩
− gt2

2 , if x ≥ ct,
g

2c2 (x
2 − 2cxt), if x < ct

9. a) u(x, t) = − ∫ t

0
1√
πτ
e−x2/4τ dτ

Section 6.2

2. Fc(α) =
2(1−α2)
π(α2+1)2

4. b) y = 1
2 (9e

−√
3 x − e−x)

5. u(x, t) = 1
2
√
πt

∫∞
0 [e−

(x−z)2

4t + e−
(x+z)2

4t ]f(z)dz

Section 6.3

1. a) F (α) = 1√
2π α

(e−ibα − e−iaα), g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if a < x < b,

1
2 , if x = a or x = b,

0, otherwise

c) F (α) = −2
√
2 icα

(α2+c2)2 , g(x) = f(x)
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e) F (α) =

⎧⎪⎨
⎪⎩
√

π
2 , if |α| ≤ 1,

0, if α > 1,

g(x) =

⎧⎪⎨
⎪⎩
f(x), if x �= 0,

1, if x = 0

3. a) F (α) = 1√
2π
e−imα−σ2α2

2

11. a) F (α) = − iα
√
π

2
√
2
e−α

d) F (α) = 1
2π

√
π

∫∞
−∞

e−(α−β)2

β2+1 dβ

Section 6.4

1. a) u(x, t) = T1

2 erfc
(

x
2k

√
t

)
+ T2

2

[
1 + erf

(
x

2k
√
t

)]

4. a) u(x, t) = e−t

2
√
πt

∫∞
−∞ e−

(x−ξ)2

4t f(ξ)dξ

5. u(x, t) = 1
2
√
πt

∫∞
−∞ e−

(x−ξ−t)2

4t f(ξ)dξ

6. a) u(x, t) = 1
2π

[
f(x) ∗ ∫∞

−∞ eiαx cosα2t dα+ g(x)

∗ ∫∞
−∞ eiαx sinα2t

α2 dα
]

8. u(x, t) = 1
2
√
πt

∫∞
−∞ e−

(x−ξ)2

4t f(ξ)dξ + 2x√
π

∫ t

0
τ−3/2e−

x2

4τ g(t− τ)dτ

11. b) u(x, t) = 1√
2π

∫∞
−∞

[
F (α) cos

√
m2 + c2α2 t

+ G(α)√
m2+c2α2

sin
√
m2 + c2α2 t

]
eiαx dα

13. b) u(x, y, t) = 1
4πt

∫∞
0

∫∞
−∞ e−

(x−ξ)2

4t [e−
(y−η)2

4t + e−
(y+η)2

4t ]f(ξ, η)dξdη

Section 6.5

2. a) T c) F e) F

9. a) i
√
2π eicxH(x)

10. b) I(t) = 2H(t− 3) sinh t−3
2

Section 6.6

5. w(y, α) satisfies the heat problem

wα = wyy, −∞ < y <∞, α > 0,

w(y, 0) = f(y)

6. f(x) =
√

2
π

1
ab

b−a
x2+(b−a)2
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CHAPTER 7

Section 7.1

4. f) a = �, b = − 1
2

Section 7.2

1. a) x = −2 singular point

3. a) λn = n2, n = 0, 1, 2, . . .; T0(x) = 1, T1(x) = x, T2(x) = 2x2 −
1, T3(x) = 4x3 − 3x

b) λn = n(n + 2), n = 0, 1, 2, . . .; S0(x) = 1, S1(x) = 2x, S2(x) =
4x2 − 1, S3(x) = 8x3 − 4x

c) λn = 2n, n = 0, 1, 2, . . . ;H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 −
2, H3(x) = 8x3 − 12x

Section 7.3

1. b) x = 0 irregular

3. y2 = x−1/2

[
1− x−

∞∑
n=2

2n−2

n(n−1)(2n−3)!x
n

]

6. a) y1 = x2
∞∑
n=0

(n+ 1)xn, y2 = y1 lnx+ x2
∞∑
n=0

xn

7. a) y1 = xπ
∞∑
k=0

π(−1)k

4kk!(0+π)(1+π)···(k+π)
x2k

c) y2 = x−3/2
[
1 + 1

2x
2 − 1

8x
4 + · · · ]

Section 7.4

2. b) Γ
(
5
2

)
= 3

√
π

4

Section 7.5

1. a) y = c1J√5(x) + c2J−√
5(x) = c3J√5(x) + c4Y√5(x)

7. b) λ0,0 = 0, y0,0 = 1;λn,m =
zn,m

L , where zn,m is the mth positive zero
of J ′

n(x), yn,m = Jn
( zn,m

L x
)

11. a) dv
v−bv2+c = dx

x
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Section 7.6

1. P4(x) =
1
8 (35x

4 − 30x2 + 3), P5(x) =
1
8 (63x

5 − 70x3 + 15x);
T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 6x;
S4(x) = 16x4 − 12x2 + 1, S5(x) = 32x5 − 32x3 + 6x;
H4(x) = 16x4 − 48x2 + 12, H5(x) = 32x5 − 160x3 + 120x;
L3(x) = 1− 3x+ 3

2x
2 − 1

6x
3, L4(x) = 1− 4x+ 3x2 − 3

2x
3 + 1

24x
4,

L5(x) = 1− 5x+ 5x2 − 5
3x

3 + 5
24x

4 − 1
120x

5

6. b) m = 0, 1, 2, . . .; n = 0, 2, 4, . . .

CHAPTER 8

Section 8.1

1. a) (e3xy′)′ − 2e3xy = 0

e) (e−x2

y′)′ + 2ne−x2

y = 0

2. c) (
√
1− x2y′)′ + λ√

1−x2
y = 0, singular

Section 8.2

1. b) λn = n2π2

(ln 2)2 , yn = x sin nπ lnx
ln 2 , n = 1, 2, . . .

7. a) no real eigenvalues; does not contradict Theorem 8.1 (of course!)

10. b) a1a2 ≤ 0, b1b2 ≥ 0

Section 8.3

1. a) none

2. b) w(x) = e2x

4. a) no b) yes

5. ab = 1

8. a) i) yes ii) no

9. a) a0y
′′− a1y′ + a2y = 0, (a0 + a1)y(0)− a0y′(0) = 0, (a1 − a0)y(1)−

a0y
′(1) = 0

Section 8.4

2. a) ψ0 = 1√
L
, ψn =

√
2
L cos nπx

L , n = 1, 2, . . .
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3. a) ψn =
√

2
πSn, n = 0, 1, 2, . . ., where Sn is the nth Chebyshev poly-

nomial of the second kind

10. a) c1 = 2
π

∫ π

0 f(x) sinx dx (which should look familiar!)

11. a) c0 = 1
5 , c1 = 0, c2 = 4

7

Section 8.5

2. a) 1
4P0 +

1
2P1 +

5
4P2 + 0P3 + · · ·

5. 1
3L0 +

2
9L1 +

4
27L2 +

8
81L3 + · · ·

10. no

12. c) νn = kn

4π

√
g
L , kn = nth positive zero of J0

CHAPTER 9

Section 9.2

3. a) u(x, t) =
∞∑
n=1

cn,0e
−n2π2t

a2 sin nπx
a +

∞∑
n=1

∞∑
m=1

cn,me
−π2(n2

a2 +m2

b2
)t

sin nπx
a cos mπy

b

4. a) u(x, y, t) =
∞∑

n=1

∞∑
m=1

sin nπx
a cos (2m−1)πy

2b [cn,m cos
√
λn,m t

+dn,m sin
√
λn,m t], where λn,m = n2π2

a2 + (2m−1)2π2

4b2

5. a) u(x, y, t) = 2 + 5e−2π2t cosπx cosπy

6. a) F (x, y) = 16
π2

∞∑
j=1

∞∑
k=1

1
(2j−1)(2k−1) sin(2j − 1)x sin(2i− 1)x

9. a) u(x, y, t) = 16
π2

∞∑
j=1

∞∑
k=1

1
(2j−1)(2k−1)e

−[(2j−1)2+(2k−1)2 ]t

sin(2j − 1)x sin(2k − 1)y

12. u(x, y, t) = e−(αx+βy)
∞∑

n=1

∞∑
m=1

cn,me
−λn,mt sin nπx

a sin mπy
b ,

where λn,m = n2π2

a2 + m2π2

b2 + α2 + β2 + k and

cn,m = 4
ab

∫ a

0

∫ b

0 f(x, y)e
αx+βy sin nπx

a sin mπy
a dydx
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15. b)

g2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f(x, y), if 0 ≤ x ≤ π and 0 ≤ y ≤ π,
f(−x, y), if −π ≤ x < 0 and 0 ≤ y ≤ π,
−f(−x,−y), if −π ≤ x < 0 and −π ≤ y < 0,

−f(x,−y), if 0 ≤ x ≤ π and −π ≤ y < 0

16. a) start with g1(x, y) = [f(x, y) + f(−x,−y)− f(−x, y)− f(x,−y)]

18. a) u(x, y, t) = 1
13 sin 2x sin 3y(1− e−13t) + e−65t sin 4x sin 7y

Section 9.3

1. a) 0

2. a) 2r4 sin θ(18 sin θ + cos θ)

3. c) u = 4

4. u(r, θ) = a0

2 +
∞∑
n=1

(
a
r

)n
(an cosnθ + bn sinnθ),

where an = 1
π

∫ π

−π f(θ) cosnθ dθ, bn = 1
π

∫ π

−π f(θ) sinnθ dθ

6. u(r, θ) = c+
∞∑

n=1

rn

nan−1 (an cosnθ + bn sinnθ),

where an = 1
π

∫ π

−π g(θ) cosnθ dθ, bn = 1
π

∫ π

−π g(θ) sinnθ dθ; must have∫ π

−π g(θ) = 0

8. a) u(r, θ) =
∞∑
n=1

bn
(
r
a

)nπ
α sin nπθ

α , where bn = 2
α

∫ α

0 f(θ) sin nπθ
α dθ

17. for 0 < r < a,

EEE = −
∞∑
n=1

nrn−1

an
[(anı̂+ bnĵ) cos(n− 1)θ + (bnı̂− anĵ) sin(n− 1)θ],

where an = 1
π

∫ π

−π
f(θ) cosnθ dθ, bn = 1

π

∫ π

−π
f(θ) sinnθ dθ

19. b) hyperbolas xy = c

h) lines y = c(x + 1) and x = −1
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Section 9.4

1. b) u(r, θ, t) = 2
∞∑
n=1

1
knJ0(kn)

J0(knr) sin knt, where kn = nth positive

zero of J0

2. a) u(r, θ, t) =
∞∑

n=1
cnJ0(knr)e

−α2k2
nt, where kn = nth positive zero of

J0 and cn = 2
J2
1 (kn)

∫ 1

0
f(r)J0(knr)dr

4. a) u(r, θ, t) = 5J4(x4,1, r) cos 4θ cos cx4,1t − J2(x2,3r) sin 2θ cos cx2,3t,
where xn,m = mth positive zero of Jn

6. a) u(r, θ, z) =
∞∑
n=1

cnJ0(knr) sinh knz, where kn = nth positive zero of

J0 and cn = 2 csch knL
J2
1 (kn)

∫ 1

0
f(r)J0(knr)dr

7. a) u(r, θ, z) =
∞∑
n=0

∞∑
m=1

Jn(xn,mr)(an,m cosnθ + bn,m sinnθ)

·[tanh(xn,mL) coshxn,mz − sinhxn,mz],

where xn,m = mth positive zero of Jn and

a0,m =
coth x0,mL

πJ2
1 (x0,m)

∫ 1

0

∫ π

−π
rf(r, θ)J0(xn,mr)dθdr,

an,m =
2 coth x0,mL

πJ2
1 (xn,m)

∫ 1

0

∫ π

−π rf(r, θ)Jn(xn,mr) cosnθ dθdr,

bn,m =
2 coth x0,mL

πJ2
1 (xn,m)

∫ 1

0

∫ π

−π rf(r, θ)Jn(xn,mr) sinnθ dθdr

Section 9.5

3. a) u(ρ, θ, φ) = 3ρ5P5(cosφ)− 7ρ2P2(cosφ)

4. a) u(ρ, θ, φ) =
∞∑
n=0

cnρ
−n−1Pn cosφ, where

cn =
2n+ 1

2

∫ π

0

f(φ)Pn(cosφ) sinφ dφ

8. u(ρ, θ, φ) =
∞∑
k=1

∞∑
n=0

∞∑
m=0

Hn
m(θ, φ)jm(ym,kρ)(cn,m,k cos kθ+dn,m,k sin kθ),

where ym,k = kth positive root of Jm+ 1
2

10. a) 3xz c) 0 f) 0, if n = 0; m, if n �= 0

12. c) j2(x) =
(3−x2) sin x−3x cosx

x3



Answers to Selected Exercises 643

Section 9.6

3. b) u(x, y, z, t) = 1
8(πt)3/2

∫∞
−∞

∫∞
−∞

∫∞
−∞ e−

(x−ξ)2+(y−η)2+(z−ζ)2

4t

f(ξ, η, ζ)dξdηdζ

7. b) −4i
α2+β2−k2

Section 9.7

1. b) λn,m = π2
(

n2

a2 + m2

b2

)
, un,m(x, y) = sin nπx

a cos mπy
b ;

n = 1, 2, . . . ;m = 0, 1, 2, . . .

2. a) λn,m =
x2
n,m

a2 , un,m(r, θ) = Jn
(xn,m

a r
)
(cn cosnθ + dn sinnθ), n =

0, 1, 2, . . . ;m = 1, 2, . . . , where xn,m = mth nonnegative zero of Jn

4. λm,k = y2m,k, um,k,n(ρ, θ, φ) = Hn
m(θ, φ)jm(ym,kρ), k = 0, 1, 2, . . . ,m =

0, 1, 2, . . . , for all n = 0, 1, 2, . . . , where ym,k = kth positive zero of Jm+ 1
2
.

Multiplicity of each λm,k is infinity.

CHAPTER 10

Section 10.1

1. a) G(x; ξ) =

⎧⎪⎨
⎪⎩
x, if 0 ≤ x ≤ ξ,
ξ, if ξ ≤ x ≤ 1

c) Gg(x; ξ) =

⎧⎪⎨
⎪⎩
x2/2, if 0 ≤ x ≤ ξ,
ξ − x+ x2/2, if ξ ≤ x ≤ 1

d) G(x; ξ) =

⎧⎪⎨
⎪⎩

sinkx cos kL−ξ)
k cos kL , if 0 ≤ x ≤ ξ,

sin kξ cos k(L−x)
k cos kL , if ξ ≤ x ≤ 1

3. b) G(x; ξ) =

⎧⎪⎨
⎪⎩

πJn(kx)[Yn(k)Jn(kξ)−Jn(k)Yn(kξ)]
2Jn(k)

, if 0 ≤ x ≤ ξ,
πJn(kξ)[Yn(k)Jn(kx)−Jn(k)Yn(kx)]

2Jn(k)
, if ξ ≤ x ≤ 1

4. a) G(x; ξ) = 8
π2

∞∑
n=1

1
(2n−1)2 sin

(2n−1)πx
2 sin (2n−1)πξ

2

13. b) G(x; ξ) =
∞∑

n=1

φn(x)φn(ξ)
λn‖φn‖2
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Section 10.2

5. b) y =
∫ b

a G(x; ξ)f(ξ)dξ − βr(b)Gξ(x; b) + αr(a)Gξ(x; a)

6. b)

G(x; ξ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
x3ξ3 − 1

2
x2ξ3 − 1

2
x3ξ2

+ x2ξ2 +
1

6
x3 − 1

2
x2ξ, if 0 ≤ x ≤ ξ,

1

3
x3ξ3 − 1

2
x3ξ2 − 1

2
x2ξ3

+ x2ξ2 +
1

6
ξ3 − 1

2
xξ2, if ξ ≤ x ≤ 1

7. b) F (x; ξ) = − 1
2

√
π
2 sgn(x− ξ) ∗ sgn(x− ξ)

11. a) y = −x3

6 + x2

4 + c

b) y = −x3

6 + x2

4

13. a) z(x; ξ) =
√
2π[ sgn(x+ ξ) sin k(x+ ξ)− sgn(x− ξ) sin k(x− ξ)]

Section 10.3

4. a) u(x, y) = 8
π2

∞∑
m=1

sinmy
m2

∫ π

0

∫ π

0 f(ξ, η) sinmη dξdη

+ 4
π2

∞∑
m=1

∞∑
n=1

cosnx sinmy
n2+m2

∫ π

0

∫ π

0
f(ξ, η) sinnξ sinmη dξdη

5. a) G(x, y; ξ, η) = 2
π

∞∑
n=1

sinnx sinnξ Gn(y; ξ), where

Gn(y, ξ) =

⎧⎪⎪⎨
⎪⎪⎩

sinhny sinhn(π − η)
sinhnπ

, if 0 ≤ y ≤ η,
sinhnη sinhn(π − y)

sinhnπ
, if η ≤ y ≤ π

8. G(r, θ; r0, θ0) =
1
4π ln

r2r20+R4−2rr0R
2 cos(θ−θ0)

R2[r2+r20−2rr0 cos(θ−θ0)]

9. a) G(x, y; ξ, η) = 1
4π ln [(x−ξ)2+(y+η)2][(x+ξ)2+(y−η)2]

[(x−ξ)2+(y−η)2][(x+ξ)2+(y+η)2]

Section 10.4

2. b) u(xxx) = 1
4π

(
1

|xxx−x0x0x0| − R

ρ0|xxx−R2

ρ20
x0x0x0|

) ∫∫
|x0x0x0|=R

V (R2−ρ2
0)

4πR|xxx−x0x0x0|3 dS0, where x0x0x0 is

the location of the charge and ρ0 = |x0x0x0|
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3. a) G(xxx;x0x0x0) =
1
4π

[
1√

(x−ξ)2+(y−η)2+(z−ζ)2
− 1√

(x−ξ)2+(y−η)2+(z+η)2

]

5. b) λ = 5 is an eigenvalue of ∇2, sinx sin 2y is a corresponding eigen-
function

Section 10.5

1. G(xxx, t;x0x0x0, τ) =
1

8k3[π(t−τ)]3/2
e
− |xxx−x0x0x0|2

4k2(t−τ)H(t− τ)

4. b) G(x, t; ξ, τ) = 2
πH(t− τ)

∞∑
n=1

e−n2k2(t−τ) sinnx sinnξ

CHAPTER 11

Section 11.1

1. b) y
(
1
4

)
= 2.36520313, y

(
1
2

)
= 1.92612264, y

(
3
4

)
= 1.63946621,

y(1) = 1.47151776, y1 = 2.25, y2 = 1.75, y3 = 1.4375, y4 = 1.265625

3. a) y
(
1
4

)
= y1 = 2.1875, y

(
1
2

)
= y2 = 2.75, y

(
3
4

)
= y3 = 3.6875

6. a) 2y0−3 y1−y−1

h = 0, yi+1−2yi+yi−1

h2 +x2i yi = xi−1, i = 0, 1, . . . , n−1,
n+ 1 equations in n+ 1 unknowns y−1, y0, y1, . . . , yn−1

Section 11.2

1. a)

xi ui,2 e−.04π2

sin(.2)iπ

.2 .385 .396

.4 .622 .641

.6 .622 .641

.8 .385 .396

5. a)

xi ui,2 sinπ(xi − .2)
.2 .140 0.0

.4 .607 .588

.6 .953 .951

.8 .935 .951

1.0 .560 .588
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8. a) f(x+Δx, y+Δy) ∼
∞∑
n=0

∞∑
m=0

(Δx)n

n!
(Δy)m

m! Dn
xD

m
y f(x, y), whereD

n
x =

∂n

∂xn

Section 11.3

1. b) y ∼ a0

2 +
N∑

n=1
an cosnx, where

an(2n
2 − 1) =

2

π

∫ π

0

f(x) cosnx dx, n = 0, 1, . . . , N − 2,

N∑
n=0

an = 0,

N∑
n=0

(−1)nan = 0

4. a) 1
4
d2y
dz2 + dy

dz − 3y = −f ( z+1
2

)
,

y(−1) = y(1) = 0

6. a) v(x) =

⎧⎪⎨
⎪⎩
− 1

2x, if 0 ≤ x ≤ 1,

1
2x− 1, if 1 ≤ x ≤ 2
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