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Preface

Many problems in the physical world can be modeled by partial differential
equations, from applications as diverse as the flow of heat, the vibration of a
ball, the propagation of sound waves, the diffusion of ink in a glass of water,
electric and magnetic fields, the spread of algae along the ocean’s surface,
the fluctuation in the price of a stock option, and the quantum mechanical
behavior of a hydrogen atom. However, as with any area of applied mathe-
matics, the field of PDEs is interesting not only because of its applications,
but because it has taken on a mathematical life of its own. The author has
written this book with both ideas in mind, in the hope that the student will
appreciate the usefulness of the subject and, at the same time, get a glimpse
into the beauty of some of the underlying mathematics.

This text is suitable for a two-semester introduction to partial differen-
tial equations and Fourier series for students who have had basic courses in
multivariable calculus (through Stokes’s and the Divergence Theorems) and
ordinary differential equations. Over the years, the author has taught much of
the material to undergraduate mathematics, physics and engineering students
at Penn State and Fairfield Universities, as well as to engineering graduate
students at Penn State and mathematics and engineering graduate students
at Fairfield. It is assumed that the student has not had a course in real
analysis. Thus, we treat pointwise convergence of Fourier series and do not
talk about mean-square convergence until Chapter 8 (and, there, in terms
of the Riemann, and not the Lebesgue, integral). Further, we feel that it is
not appropriate to introduce so subtle an idea as uniform convergence in this
setting, so we discuss it only in the Appendices.

Approach and Suggestions for Instructor

One may approach the teaching of PDEs in one of two ways: either based
on type of equation, or based on method of solution. While appreciating the
importance of the former idea, we have chosen the latter approach, as it

1. allows us to treat problems in one spatial dimension before dealing with
those in higher dimensions, and

Tl
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2. allows the text to be used for a one-semester course without the need
to jump around.

A typical one-semester course would cover the core Chapters 1-6. Beyond
that, one might consider doing Chapter 7, or the beginnings of Chapters 9
and 10, or Chapter 11. Alternatively, if the students already are familiar with
special functions, one may wish to cover Chapter 8 or most of Chapter 9.

Motivation

The author believes that it is essential to provide the students with motivation
(other than grade) for each of the various topics. We have tried, as far as
possible, to provide such motivation, both physical and mathematical (so, for
example, the Fourier series is introduced only after the need for it, through
solving the heat equation via separation of variables, has been established).
Further, we begin by considering PDEs on bounded domains before looking
at unbounded domains, because

1. This approach allows us to get to Fourier series early on.

2. Problems on bounded domains are more natural than those on un-
bounded domains, at least in one dimension.

Further, and in this same vein, we have provided a Prelude to each chapter,
the purpose of which is to describe the topics to be covered in the chapter,
so as to tell the student what is coming and why it is coming, and to put the
material into its historical setting, as well.

Exercises

Of course, mathematics is not a spectator sport, and can only be learned by
doing. Thus, it goes without saying that the exercises are a key part of the
text. Basically, they are of four types:

1. “solve-the-problem” exercises,
2. proofs,
3. “extend-the-material” exercises,

4. graphical exercises.
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Types (1) and (2) are self-explanatory. As for type (3), there are some topics
that we choose to present as exercises. In some cases, these will be problems
that are similar enough to those already solved in the text. In others, they
may involve material which we feel is important, but which is not necessary
in later parts of the text. As some of these may be quite difficult, we make
sure to lead the student through them when necessary. Alternatively, the
instructor may choose to present the material herself in class.

Lastly, as PDEs is such a visual subject, we’ve provided a number of graph-

ical exercises. Some of these can be done by hand, but the majority are to be
performed using MAT LAB® (and these are labeled MATLAB).

MATLAB

This text has been written so that it can be used without access to software.
That said, it makes little sense to write a book on such a visual and intu-
itive subject as PDEs without taking advantage of one of the multitude of
mathematical software packages available these days. We have chosen MAT-
LAB because it is, by far, the most user-friendly of the packages we’ve tried,
because of its excellent graphics capabilities, and because it seems to be the
software-of-choice among the engineering community (while making strong
inroads in math and physics, as well). While we have used the latest version
of MATLARB, 8.0, most, if not all, of the code will run in many of the earlier
versions.

This text does mot pretend to be an introduction to MATLAB. There are a
number of good books available for that purpose (for example, that by Davis
listed in the Bibliography). For those wishing to use the MATLAB exercises,
we assume that the student is familiar with the rudiments of the package—how
to get it up-and-running, how M-files work, etc. What we have done is to use
MATLAB to generate the tables and the more “mathematical” figures in the
book, for which we’ve supplied the MATLAB code in Appendix E, and also
on the author’s website at

www.faculty.fairfield.edu/mcoleman

The exercises labeled MATLAB, then, are to be done using this code, with
slight variations provided by the student (for example, changing the input
function, the viewing window, the number of steps in a for loop and the like).
Little actual programming is required of the student.
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Prelude to Chapter 1

We have seen how physical problems often give rise to ordinary differential
equations (henceforth, ODEs). These same and similar physical problems,
when involving more than one independent variable, lead us to, instead, par-
tial differential equations (PDEs). A PDE, therefore, will look very much like
an ODE, except that the unknown function will be a function of several vari-
ables - and, of course, any derivatives that appear must be partial derivatives.
Although we shall find a number of PDEs which are solved in the same way
that we solved ODEs, this happy state of affairs will be short-lived. Indeed,
two- and higher-dimensional mathematical objects exhibit a wealth of behav-
ior which we do not see in one-dimensional objects. Similarly, PDEs, as a
rule, will exhibit much more complicated behavior and, therefore, be much
harder to solve than ODEs.

In this first chapter, we introduce PDEs, and we point out those which
can be solved like ODEs. Historically, many of these simpler PDEs were
overlooked by earlier mathematicians, simply because they weren’t interesting
(they already knew how to solve ODEs) or important (the really interesting
physical problems led to PDEs which could not be solved in this manner).
So, in the 18th century, we see famous mathematicians jumping right into the
more difficult equations, those which we will begin to discuss in Chapter 2.

We also treat in this chapter the PDE analogs of other ideas that were
studied in ODEs: initial and boundary conditions, and the important concept
of a linear PDE. We then introduce one of the most important tools for solving
linear PDEs, the method of separation of variables. The so-called product
solutions which are derived via separation of variables were studied as early
as the first half of the 18th century, first by Daniel Bernoulli (1700-1782,
son of John Bernoulli) in his study of the vibrating chain, then by the great
Leonhard Euler (1707-1783) and, most notably, by Jean Le Rond d’Alembert
(1717-1783), in their work on the wave equation (which models the vibrations
of a string).

Finally, we turn back to ODEs and look at the so-called eigenvalue problems
which arise when we apply separation of variables to PDEs. At this point, we
consider only simpler special cases of this type of problem, reserving a more
complete study for Chapter 8.
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Introduction

1.1 What are Partial Differential Equations?

Roughly speaking, a partial differential equation (PDE) is similar to an or-

dinary differential equation (ODE), except that the dependent variable is a

function of not just one, but of several independent variables. Let’s be more

precise. Given a function v = u(z1,z2,. .., 2, ), a partial differential equa-

tion (PDE) in u is an equation which relates any of the partial derivatives

of u to each other and/or to any of the variables z1, z2, ..., z, and u.
Before doing some examples, we introduce a bit of notation: Instead of the

somewhat unwieldy %, (,f%gy and the like, we will use subscripts whenever

possible. We write

_ Ou

- 0z’

For higher order derivatives, we read the subscripts from left to right. So, for

example,
0 (ou)_ o
W oy \ox ) Oyox’

However, for all practical purposes, the order of differentiation will not matter
to us. So, for example, we’ll have

Uy

Ugzyx = Uzzxy = Uyzza, etc.
Examples

1. ug+u =0is a PDE in u = u(z,y). However, it also could be a PDE
in u = u(x,y, z). In general, we only know the number of independent
variables from the context.

2. 2u, + 3u, = 0 is a PDE in u(z, z), although, more likely, it is a PDE in
u(zx,y, z).
3. Ugtlyy — zyPu = e® is a PDE in u(z, y).

3

4. 2%Upyy — T COSYUyy + Uy — €3u = tany?z is a PDE in u(z,y, 2).

5. Ud,, + Upzys = Uzz» is a PDE in u(z,y, 2).
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Very important in the categorization of PDEs, as it is for ODEs, is a PDE’s
order. We define the order of a PDE to be the order of the highest derivative
which appears in the equation. So, for example, the orders of the PDEs in
Examples 1-5 are, respectively, 1, 1, 2, 3 and 4.

As with ODEs, the dependent variable in a PDE generally is unknown and
we wish to solve for it. A solution of a PDE, then, is any function « which
satisfies the PDE identically, that is, for all possible values of the independent
variables.

Examples

x x

6. u(r,y) = e % u(r,y) = e % u(r,y) = ye ® and u(x,y) = y>cosy e~
all are solutions of u, + u = 0, since, in each case, u, = —u.

7. u(z,y,z) = y? and u(x,y,2) = y°cosy are both solutions of 2u, +
3u, = 0. In fact, so is u(z,y, z) = f(y) for any (well almost any—see
below) function f. Also, u(z,y, z) = €3*~2* and u(x,y, 2) = ye3*~2% are
solutions.

8. u(x,y) = cx + d is a solution of

5
Uyprn + Ugpyz = Uzzz

for any choice of the constants ¢ and d.

Frequently, we will seek functions which are solutions of a given PDE in
some restricted region. Also, in order to ensure that there is never a problem
with the order of differentiation, we will require any solution u of an n'"-order
PDE to have the property that all of the n*® partial derivatives of u exist and
are continuous.

We conclude this section with a list of important PDEs which arise from
physical problems (most of which we will study in some detail):

U +cuz =0 convection (or advection or transport)
equation
Uy + uugy =0 Burger’s equation (from the study
of the dynamics of gases)
uZ 4 ul =1 eikonal equation (from optics)
U = P uyy heat equation (in one space variable)
gt = (U + Uyy) wave equation (in two space variables)
Uy + Uyy + Uz Schrédinger’s equation (time independent,
+[E-V(z,y,2)|]lu=0 in three space variables; from
quantum mechanics)
Upy + %ur + %ueg =0 Laplace’s equation (in polar coordinates)
Ut + 0 ugpry =0 Euler—Bernoulli beam equation

In Appendiz D we provide a complete list of the PDEs covered in this text,
along with many other important PDEs, organized by application.
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Exercises 1.1
1. Find the order of each PDE:
a) The convection or advection equation, u; + cuz =0
b)
¢)
d)
)

8 6 _
€) Ugzpyy: — u° +uy, =0

The wave equation, ut = c*uyy
The eikonal equation, u? + uz =1

The Euler-Bernoulli beam equation, s + 0 tgpze = 0

2. Show that each given function is a solution of the corresponding PDE:

a) u= 2%y, zu, — 2yu, =0
b) u=xsiny, ups — Uyy =u

c) u=yf(z),uy, =0 (where f is any function with continuous second
derivative)

d) u=e"" + e Quy, — uy, =0

e) u = e*cosy + ax + by, Laplace’s equation in two dimensions in
rectangular coordinates ugz; + uy, = 0 (where a and b are any
constants)

f) u=2yz, 2zu; —yuy — 2u, =0

g) u=2?y32? — 123,30 Uy + 2yuy + 22y32%u,,, =0

3. Consider the convection equation u; + cu, = 0, where ¢ is a constant.
a) Show that u = sin(x — ct),u = cos(z — ct) and u = 5(z — ct)? are
solutions.

b) Show that u = 7sin(z — ¢t),u = 3cos(x — ct) and v = Tsin(x —
ct) — 3 cos(x — ct) also are solutions.

¢) Show that u = f(x — ct) is a solution for “any” function f.
d) Why is “any” in quotation marks in part (c)?

4. Consider the one-dimensional wave equation uy = c*uyy, where ¢ is a
constant.

a) Show that all of the functions in Exercise 3 are solutions of this
equation, as well.

b) Show that u = g(x + ct) also satisfies the wave equation for “any”
function g.

5. Consider the eikonal equation u? + uz =1

a) Show that u = 2 and u = y are solutions.

b) Are u = 3z and u = —4y solutions?
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¢) Is u =2z + y a solution?
d) Find all solutions of the form w = ax + by, where a and b are
constants.

6. Consider the simple first-order PDE u, = 0, where u = u(z,y).

a) Find all solutions. (Compare this problem with that of finding all
solutions of the ODE % = 0.) Describe them (compare to Exercise
3).

b) Describe the set of solutions which satisfy the additional require-
ment that «(0,0) = 0. How many are there?

c¢) Do the same, but for the requirement u(0,y) = y? — cosy.
d) Do the same, but for u(z,0) = 3.

1.2 PDEs We Can Already Solve

Let’s go back and look at Exercise 6 of the previous section. However, first,
remember how we would solve the ODE

dy _

0.
dx

We integrated both sides to get y = constant (after having proved in calculus
that y = constant is the only function whose derivative is identically zero).

We can do the same with PDEs—except that we must remember that the
derivatives are partial derivatives, so any antiderivatives we take will be, in
a sense, “partial antiderivatives” or “partial integrals.” That is, we “anti-
differentiate” with respect to one variable while treating the other variables
as constants.

So for the PDE u, = 0, any function which is independent of z will be a
solution. (Further, similarly to above, these will be the only solutions.) To
be more precise, in order to find all functions u = u(x, y) which solve

ug =0, (1.1)

we get
u= /O dx = f(y) (1.2)

where f is any* arbitrary function of y (and where [ ...dz is, as we’ve men-
tioned, any antiderivative with respect to = while treating y as a constant).

* Again, from our definition of solution, f/ must be continuous.
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Since
u=f(y) (1.3)

represents all possible solutions of (1.1), we call (1.2) the general solution of
(1.1). So, where the general solution of an ODE involves arbitrary constants,
the general solution of a PDE involves arbitrary functions.

With these ideas in mind, there already are plenty of PDEs we can solve.

Example 1 Find all solutions u = (z,y) of u, = 22 + y2. We have

3
u= /(ﬂv2 +y*)dz = % +zy® + f(y),

where f(y) is an arbitrary function of y.

Example 2 Find the general solution of u, = xz + yz. We have

Y2z
u = /(wz +yz)dy = ayz + == + f(=,2),

where f is an arbitrary function of x and z.

We need not restrict ourselves to equations of the first order.

Example 3 Find the general solution of u,, = 12xy. We integrate twice, of
course:

ue = [ 120y do = 6%y + 1 (0.
where f is an arbitrary function of y, then
u= [(6%y + fu)do =22 + 2f(w) + 9(0).

where ¢ is an arbitrary function of y.

Example 4 Do the same for u,, = cosz. First, we have

Uy = /cosx dy =ycosz + f(x).
Then,

u= /(ycosx + f(z))dx.

Now, what is | f(z)dz? If we antidifferentiate f(z) with respect to z, we just
get another function of z. However, we also get an “arbitrary constant,” that
is, in this case, an arbitrary function of y. So

/fqu:ﬁ@»+mm
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and our general solution is
u=ysinz + fi(z) + g(y).
Finally, since f, f1 and g are arbitrary, we drop the subscript:
u=ysinz + f(z) + g(y),
where f and g are arbitrary functions.
Example 5 Find the general solution of u, + 2u = y. Remember that we

would solve the ODE Z—g + 2y = 5 by using the integrating factor e2*. We
may do the same here:

Uy +2u =1y
2x 2x
= —(e*Fu) =ye
5 & W=y
1
= u=zye™ + f(y)

2
or

1 —zT
w= gyt e f(y)

for arbitrary f.

Example 6 Find the general solution of u,,, = * +y — z. We have

22

Then, ) 9
Uy = % + zyz — % + filz,y) +9(y, )
and Bz atyr 2222
u=—+—— =+ falzy) +agly. 2) + by, 2).

Example 7 There are many other types of PDEs that we may solve at this
point. For example, the PDE u,, + u = 0 looks like the ODE y"” +y = 0.
Since the latter has solution y = ¢; cos z+c5 sin x, the former will have general
solution
u= f(z)cosy+ g(z)siny

for arbitrary f and g. Similarly, the PDE w?u, = z will behave like the
separable ODE yzg—z = z, which has solution y = {/ %a:Q + c¢. Therefore, the
PDE’s solution is

u=\ g:r2+f(y)

for arbitrary f. (However, we must remember that, while we may multiply
and divide by the differentials dz and dy in the ODE, this generally is not
ou )

true of the “numerator” and “denominator” in the partial derivative .
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Exercises 1.2

Find the general solution of each PDE. The solution u is a function of the
variables which appear, unless otherwise stated.

1. uy =2z

2. uy =sinx + cosy

3. uy =sinz + cosy,u = u(x,y, z)
4. uy, = 2%y

O Ugy =T — Y

6. Upgy =0

7. Uggyy = sin 2z

8. Upoz =2 —yz+y°

9. Ugyz> =0

>—~
e

Ugyyzz = TYZ

11. uy —4u = 0,u = u(z,y)

12. ug +3u = €%, u = u(z,y)

13. up —y2u=0

14. uy +3u=2y*+y

15. uy +2u =2

16. uy —2zu=9y—=2

17, Upy + Uy — 2u = 0,u = u(x,y)

18. Find all solutions of the PDE wu, = 2z which also satisfy the additional

requirement that
a) u(z,0) =sinz
b) u(z,3) =sinz
c) u(0,y) =3y
19. Find all solutions u(x,y) of the PDE u, — 2u = 0 which also satisfy the
additional requirement that
a) u(0,y) =y
b) u(l,y) =y
c) u(z,1) = a?
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1.3 Initial and Boundary Conditions

In some of the exercises in the previous sections, we were asked to solve a
PDE and then to find the subset of those solutions which also satisfied an
additional requirement. These side conditions are part and parcel of the
study of PDEs. As these conditions arise naturally in physical settings, let’s
introduce them by way of a specific physical problem.

In Section 1.1 we mentioned the heat equation

Up = PUgy. (1.4)

Here, « is a constant and u = u(x,t) represents the temperature at any point
z along a narrow piece of material, at any time t. (See Figure 1.1—we will
have much more to say about this equation in Chapter 2 and beyond.) We
are asked to find the temperature function, that is, to solve the PDE. Now,
as we would like to predict the temperature of a particular piece of material,
we would like to find the one solution of the PDE that does so. Certainly,
there must be some additional requirements at our disposal to narrow down
the general solution to one, unique solution.

xX—axis

x=0 x=L

FIGURE 1.1
Metal rod; u(z,t) = temperature at point z, at time .

First, it seems fairly clear that we cannot know the temperature at later
times if we don’t know the temperature now or, at least, at some definite
point in time. So we should hope that we are given, or can measure, the so-
called initial temperature of the material at each point z, at some specified
time ¢t = ty. That is, we would like to be given the function f for which

u(z, to) = f(x), 0<z<L. (1.5)

We call this an initial condition. In practice, the initial time generally is
taken, or arranged, to be tg = 0.

What additional requirements will we need? Well, it will turn out that
PDE (1.4) is derived under the assumption that the whole piece of material
is insulated except, possibly, at its ends, and that the heat “flows” only in
the z-direction. Therefore, it seems that we will need to know what is going
on at the endpoints. In fact, the endpoints generally are under the control of
the experimenters—so, for example, the left end may be held at a constant
temperature of uy degrees, that is,

u(0,t) = uo, t>0. (1.6)
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Alternatively, the right end may be insulated. We will see that, mathemati-
cally, this means that
ug (L, t) =0, t> 0. (1.7)

Equations (1.6) and (1.7) are called boundary conditions, and a system
like the one consisting of PDE (1.4), subject to conditions (1.5), (1.6) and
(1.7), is called an initial-boundary-value problem.

As for simpler equations, in Exercises 18 and 19 in the previous section
we were asked to solve a first-order PDE subject to only one side condition.
In practice, one of the variables often will represent time, so the side con-
dition will be an initial condition, and the problem will be an initial-value
problem. (In fact, when treating first-order PDEs in Chapter 5, we will al-
ways refer to the side condition as an initial condition and the system as an
initial-value problem.)

Now, it turns out that the initial-boundary-value problem (1.4), (1.5), (1.6),
(1.7) has a unique solution. We call such a problem a well-posed problem.
Similarly, the problems in Exercises 6¢ of 1.1, and Exercises 18a, 18b, 19a and
19b of 1.2 all are well-posed. Those in Exercises 6b and 6d of 1.1 and 18c and
19¢ of 1.2 are not well-posed.

To be precise, an initial-value or initial-boundary-value problem is well-
posed if

1) A solution to it ezists.
2) There is only one such solution (i.e., the solution is unique).
3) The problem is stable.t

Property (3), the stability condition, need not concern us. (Most, but not all,
of the problems considered in this book will be stable.)

By the way, remember from ODEs that, if an equation is of order n, we
generally need n initial conditions to determine a unique solution. For PDEs,
the situation is much more complicated. However, notice that our heat equa-
tion example has one time derivative and one initial condition, while it has
two z-derivatives and two z-boundary conditions. This often is the case. So,
for example, in order that the finite vibrating string problem be well-posed,
we will require two initial and two boundary conditions.

Exercises 1.3

The idea of well-posedness applies to ODEs, as well. Again, remember that
an n*P-order linear ODE, with n conditions assigned at the same z-value—
initial conditions— “usually” has a unique solution. This may not be the case,

TBasically a problem is stable if, whenever we change the initial or boundary conditions
by a “little bit,” the solution also changes by only a little bit—where we can, of course,
quantify what we mean by a little bit.
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however, for the ODE problems in Exercises 1-4. Each of these problems is
called a boundary-value problem, and we will study these problems in
detail in Section 1.7. For now, decide whether each of these problems is well-
posed, in terms of existence and uniqueness of solutions.

Ly +y=0,y0)=y2)=00<z<2
2.y +y=0,y(0)=y(m)=0,0<z<m
3.y +y —2y=0,5(0)=0,5/(1) =0,0< z <1
4. y"+25y=0,9(0) =1y(r)=-1,0<z<n

5. For which values of the constant L is the following boundary-value prob-
lem well-posed?

y" + 4y = 8z,y(0) = A, y(L) = B, 0<z<L

Explain why each of the following problems is not well-posed.
6. uzz = 0,u(0,y) = %, u(l,y) =3y, u(z,0) =2+2,2>0,0<y <1

7. Ugz + Uyy = 0,uz(0,y) = uz(1,y) = uy(x,0) = uy(x,2) = 0,0 <z <
LL0<y<2

1.4 Linear PDEs—Definitions

Almost every PDE which we have met so far is what is called a linear PDE,
which is defined in exactly the same manner as a linear ODE. Remember that
the latter was any ODE which could be written in the form

ao(x)y(n) +ar (m)y(n_l) +e an—l(m)y/ +an(z)y = f(2),

where y = y(z) and y*) = %. However, a more fruitful way of looking at it
is to define the so-called operator,! L, by

Lly] = ao()y™ + a1 (2)y" P + - + ap_1(2)y + an(2)y.

It is then easy to show that, if ¢ is any constant and y any function in the
domain of L, then
Lley] = cL[y],

T An operator is a “function of functions,” as it were. That is, it is a function which has the
property that its domain and range each consists of a certain class of functions.
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and that, if y; and ys are any functions in the domain of L, then
Llyr + y2] = Lly1] + Lly].

We use the idea of an operator to define linear PDEs. First, given a PDE
inu=u(xy,x9,...,2,), we write the equation in the form

Lu] = f(x1,2a,...,2,),

where f is a given function.

Example 1 The heat equation, u; = &®uy,, can be written as

where L is the operator defined by

Lu] = us — APgy.

Example 2 The PDE u, + yu, — 2y? + siny = 0 can be written as
Llu] = zy* —siny,
where L is defined by
Liu] = ug + yuy,.

Then, we define a linear PDE as follows:

Definition 1.1 The PDE
Llu] = f
is a linear PDE if

1) Llcu] =cLlu], (1.8)

for all constants ¢ and all functions u in the domain of L, and

2) L[u1 + UQ] :L[ul] + L[UQ], (19)

for all functions w1 and uy in the domain of L.

Also, if an operator satisfies both (1.8) and (1.9), we say that it is a linear
operator. If an operator or PDE fails to be linear, we call it a nonlinear
operator or PDE (and we do not call the operator L—for “linear”—if we
know that it is nonlinear).
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We will prove, in Exercise 8, that L is linear if and only if

L[clul + C2U2] = clL[ul] + CQL[UQ], (110)
for all constants ¢; and ¢o, and all functions
w1 and us in the domain of L.

We note that any discussion of linearity of PDEs is based upon the theorems

from calculus that tell us that first partial derivatives are linear (that is, that

%(cu) = cu, and 8%(1;1 + ug) = u1, + ug, ), from which it also follows that

all higher-order partial derivatives are linear (see Exercise 9).

In Examples 3-5, determine if the given PDE is linear or nonlinear.

Example 3 u, + 5u = x%y. The operator is L[u] = u, + 5u and we have

Liciuy + cousz] = (c1ug + coua)s + 5(crug + caus)
= ciuy, + caua, + dciug + Scaug
= c1(u1, + bur) + ca(ue, + Hus)
= ¢1 L[uy] + eaL]us]

and L is linear, so the PDE is linear, as well.

Example 4 The eikonal equation, u2 + u2 = 1. We have L[u] = uZ + u}.
Consider, then, L{cul:
Licu] = (cu)? + (cuy)®
= cQui + cQuf/.

The question is, do we have L[cu] = ¢L[u] for all constants ¢ and all functions
u (in the domain of L)? That is, is

Al + c2u§ = cu? + cui?

Certainly, the answer is no. To be more precise, the equation may be true for
certain constants ¢ and/or functions u, but we need only find one counterex-
ample, that is, one case involving a particular ¢ and a particular u for which
the equality doesn’t hold (e.g., try ¢ = 2 and u = x). Therefore, the PDE is
nonlinear.

Example 5 y?u,, + uyy = 1. Here, L{u] = y?uy, + uyy and
Lleyuy + caus] = 4 (crur + couz)ge + (Crus + caus)yy
= cly2u1m + 02y2u2m +ciuy,, + couz,,
= c1(yu,, +ui,,) + c2(y’us,, +us,,)
= ¢1 L[uy] + eaL]us),
so this PDE is linear.
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In practice, the things that make ODEs nonlinear also make PDEs nonlin-
ear, for example, powers of u and its derivatives (1/u, %,uzy, ...), products
involving u and its derivatives (uzuUy, Ullggzy, - - .), various functions of u and
its derivatives (€%, cosuy,...) and the like.

As with linear ODEs, we distinguish between homogeneous and nonhomo-
geneous equations.

Definition 1.2 Given the linear PDE L[u] = f, if f = 0 on some region
(that is, f is the zero-function on some region), we say that the PDE is
homogeneous on that region. Otherwise, the PDE is nonhomogeneous.

Example 6 The PDE zu,, — 5ugy + y*u, = 0 is homogeneous (on the z-y
plane).

Example 7 The PDE u, + 5u = 22y is nonhomogeneous (on the x-y plane).

1, if <0 or y<0

0. otherwise is nonhomogeneous on the z-y plane, but

Example 8 u, = {

it is homogeneous on the first quadrant.

Example 9 u2 + u% = 0 cannot be said to be homogeneous or nonhomoge-
neous, because it is not a linear PDE to start with.

Exercises 1.4

In Exercises 1-7, determine whether the PDE is linear or nonlinear, and prove
your result. If it is linear, decide if it is homogeneous or nonhomogeneous. If
it is nonlinear, point out the term or terms which make it nonlinear.

1. Burger’s equation, u; + uu, = 0
2. Uggy — (sinZ)uyy +x—y=0

3. 2uy —bud =x

4. uyy =sinu

5. The three-dimensional heat equation, u; = o (Ugz + Uyy + Usz2), Where
o? is a constant.

6. Poisson’s equation is two dimensions (in polar coordinates),

1 1
Upy + ;ur + r—zugg = f(r,6).

7. /14 22y ugyy — cos(xy> ) gy + eV uy — (522 — 22y + 3y*)u =0
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8. Prove that the operator L[u] is linear if and only if it satisfies property
(1.10), that is, prove that L[u| satisfies properties (1.8) and (1.9) if and
only if it satisfies property (1.10).

9. We know from calculus (and from Exercise 8) that %(clul + coug) =
ciu1, + caus,, for all constants ¢; and ¢y and all differentiable functions
u (and that the same is true not only for x but, of course, for any
independent variable).

a) Use this fact to prove that the following higher-order derivatives
are linear operators, as well.
i) Llu] = uy,
il) Lu] = tugay
b) Use mathematical induction to prove that the operator L{u] =
% = Ugg...q 18 linear.
—~~

n times

10. Prove that, if u; and ug are solutions of the homogeneous PDE L{u] = 0,
then so is the function cjuy + cous, for any choice of the constants ¢;
and cg. Is this true for nonhomogeneous PDEs, as well?

11. If u; and wus are solutions of the nonhomogeneous equation Llu] = f,
what can we say about the function uy — us?

12. Use mathematical induction to prove that, if L is linear,
Llciuy + coug + - - - + cpuy] = ¢1 L[ug] + caLua] + - - - 4+ ¢ Luy]

for all constants ¢1, cs, ..., ¢, and all functions uy, us, ..., u, in the do-
main of L.

1.5 Linear PDEs—The Principle of Superposition

Here, again, we take our cue from the theory of linear ODEs.

Definition 1.3 Given functions ui,us, ..., u,, any function of the form
ClU1 + CoU2 + -+ + Cplp,

where c1,co,...,cy are constants, is called a linear combination of u1, us,
ey Uy

The following theorem follows immediately from the result of Exercise 12
of the previous section.
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Theorem 1.1 Ifuy,us,...,u, are solutions of the linear, homogeneous PDE
L[u] = 0, then so is any linear combination of uy,ua,...,u,. (This is the
principle of superposition of solutions for linear PDEs.)

PROOF The fact that uy,us,...,u, are solutions gives us
Then, for any linear combination ciu; + cots + - -+ + CpUn,

Llciuy + coug + - - + cpun] = e1 L[ug] + caLua] + - - - 4+ ¢, Luy]
=c1-0+c-04+---4+¢,-0=0.

Now, in the theory of ODEs, for an nt"-order linear, homogeneous equation,
we need only find n linearly independent solutions. Then, the general solution
consists of all possible (finite) linear combinations of these solutions. However,
life is much more complicated in the realm of PDEs. Often, we will need to
find infinitely many solutions, u1, us, . .., of a linear, homogeneous PDE before
we are in a position to construct a general solution

oo
u=61u1+02u2+~-~=chun. (1.11)
n=1

And since this infinite linear combination actually is an infinite series, ques-
tions of convergence come to the forefront. Indeed, for any given choice of
the coefficients, expression (1.10) may diverge for all values of z, or it may
converge for some values of « but not for others.

Suffice it to say that, throughout this book, we will assume that, whenever
(1.11) converges, it satisfies the linearity condition

Z cnunl = Z enLlug) (1.12)

and, therefore, that if each w, is a solution of L[u] = 0, then so is the linear
combination, (1.11), of these solutions. When (1.12) holds, we say that we
may differentiate the series term-by-term.

L

Exercises 1.5

In Exercises 1-4, verify directly that the principle of superposition holds for
any two solutions, u; and ue, of the given PDE.

1. yum—xzuy—l—Zu:O
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The heat equation in two space variables, uy = o2 (Ugy + Uyy)
Laplace’s equation in three space variables, uzz + tyy + .. =0

The wave equation in three space variables,

gy + (e + Uyy + Uszz) =0

o0
Use (1.12) to show that the function u(z,t) = 3. che ™ tsinnz is a
n=1

solution of the heat equation u; = s, (whenever the series converges,
of course).

Show directly that the principle of superposition does not hold for the
PDE u, +u? =0, u = u(x,y), by finding two different solutions, then
finding a linear combination of them that is mot a solution.

. We may also prove theorems for solutions of nonhomogeneous PDEs

that are analogous to those for ODEs. Prove that the general solution
of the nonhomogeneous PDE L{u] = f is u = up, + up, where u,, is any
one particular solution of L[u] = f, and uy, is the general solution of the
associated homogeneous PDE L[u] = 0, as follows:

a) First, prove that uj, + u, always is a solution of Lu] = f.

b) Next, prove that, if v is any particular solution of L[u] = f, then
we can always write
U = Up + Uyp,

where uy/ is a particular case of the solution wy,.

Tllustrate the theorem that we proved in Exercise 7 for the nonhomogeneous
PDEs in Exercises 8-12. You may refer to the corresponding exercises in
Section 1.2.

8.
9.
10.
11.
12.
13.

Uy = 2T

Uy = SINT + cosy

Uggy = 122

Uy, =T+ Y

Ugy + Uy — 2u = 6,u = u(z,y).

a) If v is a solution of the PDE L[u] = f, and w is a solution of
L[u] = g, find a solution of the PDE L{u] = af + B¢, where o and
B are any two constants.

b) Use what you did in part (a) to find a solution of the PDE u,, +
Uyy = 3T — DY.
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1.6 Separation of Variables for Linear,
Homogeneous PDEs

In the mid-1700s, Daniel Bernoulli and, later, Jean le Rond d’Alembert exper-
imented with a new technique for producing solutions of linear, homogeneous
PDEs. This method, called separation of variables,’ entails the reduction
of a PDE to an ODE (or, more commonly, to a number of ODEs, each corre-
sponding to a different independent variable), a recurrent theme in the study
of PDEs.

Definition 1.4 Given a PDE in u = u(x,y), we say that u is a product
solution if

u(z,y) = f(x)g(y)

for functions f and g. More generally, w = u(x1,xa,...,x,) is a product
solution of a PDE in the n variables x1,%2, ..., Ty if

w(xy, 2, ... xn) = fi(z) fa(2) . folzn)
for functions f1, fa,..., fn. (See Exercise 23.)

In practice, it is more common to write u(x,y) = X (2)Y (y), u(z,y,2) =
X(2)Y (y)Z(2), ete.
How does the method work? Let’s look at some examples.

Example 1 Find all product solutions of the first-order, linear, homogeneous
PDE ug +uy = 0.
We search for all solutions of the form u(x,y) = X (2)Y (y). Using the facts
that
uy; = X'Y and w, = XY,

we substitute into the PDE and get
XY +XY' =0. (1.13)

How does this help us? Well, a little algebra (specifically, dividing both sides
by XYT) gives us
X’ Y’
S - (1.14)
X Y
§When studying a linear, homogeneous PDE, the first question that a mathematician usu-
ally asks is, “Is the equation separable?”
90f course, if either X or Y is the zero-function, then we may not divide by XY. However,
in this case, u is the zero-function, which is already known to be a solution to any linear,

homogeneous PDE. “Officially,” we may use this method only on two-dimensional regions
where X (2)Y (y) # 0 although, in practice, this turns out not to be an issue.
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that is, we have managed to separate the variable x from the variable y.
We say that the equation is separable and that we have separated the
variables. Now, we have a situation where a function of = equals a function
of y, that is, where

f(@) =9g(y)
for all values of z and y in the domain of the problem. So choose any such
z-value, x = xg. We then have

f(zo) = g(y)

for all values of y, that is, that ¢g(y) is a constant function! Then, it follows
that f(x) is a constant function, as well!
So, at this point, we have
X’ Y’
u(z,y) = X(2)Y (y) is a solution = — = —— = A (1.15)
X Y
for some real constant A\. Conversely, given any real constant A, if (1.15) is
satisfied, then u = XY is a solution of the PDE (why?).
Equation (1.15) actually is two equations:
X’ Y’
y = A and ? = —A
Therefore, we conclude that ©v = XY is a solution of the PDE if and only if
X and Y satisfy the ODEs

X' —-AX =0 and Y +AY =0
for the same A. The product solutions, thus, are
X(z)=e and Y(y)=e N

or
u(z,y) = M),

for any real constant, A. Further, any linear combination of these solutions
is, again, a solution.

As we shall see in the following chapter, although it looks as though we have
found only solutions which are linear combinations of product solutions, in
many cases that will be enough to solve any well-posed problem involving the
given PDE. In the process of solving these initial-boundary-value problems,
we shall find that only certain values of A will lead to montrivial solutions of
the problem, that is, to solutions other than the zero-function.

Example 2 Find all product solutions of the heat equation, u; = .
We let u(x,t) = X (x)T'(t) and substitute:

X(2)T'(t) = X" (2)T(t).
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Again, dividing both sides by u gives us

T/ X//
? = Y = constant.

For the sake of convenience (we’ll see why later), we call the constant —A:

TI X/I
—_— = — = —A
T X

or
X"+ XX =0 and T'+ T =0.

So, for each real number A\, we must solve these two ODEs. Now, the form of
the solution of the first PDE will depend on the sign of A (this did not happen
in the previous example), so we must consider three cases.

Case1l: A>0

X =ccosVAz+dsinV\z, T =e M
and

u=e Mecos VA z + dsin v\ .
Case 2: A=0

X=cx+dT=1
and
u = cx +d.

Case 3: A <0

X =ceV M 4 de_‘/__)‘z,T =e M
and

u=e M [ce\/jr + de_‘/j‘z].

In each case, ¢ and d are arbitrary constants. Again, any linear combination
of solutions is a solution.

Example 3 Separate the PDE 3uyy — Stuggzy + TUzey = 0.
Again, let u = XY

3XY" —5X"Y' +7X"Y' = 0.
Then, dividing by XY doesn’t help us, but dividing by XY’ gives us

gyll 5XI/I _ 7XI/

-A
Y’ X

or
5X" —7X"+AX =0 and 3Y"+)\Y' =0.
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Example 4 Separate the PDE (in u(x,y, 2)),
Uy — 2Uyy + 3u, = 0.
We let u(x,y, z) = X(2)Y (y)Z(z) and, substituting, get
X'YZ-2XY"Z+3XYZ' =0.

Let’s divide by © = XY Z and see what happens:

§_2Y"+3Z'_0
X Y z

At the very least, we can separate any one of the variables from the other
two. For example, we can write
X' 2y" 37
X Y Z

= _Ala

where we have concluded, as before, that each side of the separated equation
must be constant. Now, we immediately get the ODE

X'+ X =0.
As for the second half, we can rewrite it as

2" 37
Y ~ Z

_)\17

and we have separated the variables y and z. Hence, we conclude that

2" 37
Y ~ Z

— A1 =2
for any real Ao, or
2Y" + XY =0 and 37 + ()\2 — /\1)Z =0.

Therefore, u = XY Z is a solution if and only if there exist constants A; and
A2 such that XY and Z satisfy the three ODEs above (with, of course, the
same A1 and the same Ay in each).

We do not want to give the impression that all linear, homogeneous PDEs
are separable—in fact, “most” are not separable. However, many of the equa-
tions which are important in applications are separable (rather, many of the
simplifications which are made in deriving PDEs are made so that the re-
sulting PDEs are linear and, often, separable). It is very easy to prove that
a PDE is separable—by separating it! However, it is more difficult to prove
that a PDE is not separable.
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Exercises 1.6

In Exercises 1-21, separate the PDE into a system of ODEs.

1.

10.
11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.

© »® N o oo W

3y — 2uy =0

Suy +4uy —2u =0

yzuz + xQuy =0

Ugg — Uy +u =0

The wave equation, ug — Uge = 0
Laplace’s equation, tzz + tyy = 0
Ugg + 2Uyy — Uy + 3uy =0

Ugg — Ty + U =0

—iuy = Uge — x%u (This is the one-dimensional Schrédinger’s equation
for a harmonic oscillator. Here, ¢ is the imaginary constant with the
property i2 = —1.)

22 Ugy + 2y — 3uy —yu =0
Laplace’s equation in polar coordinates, ., + %ur + T%ugg =0

rupr + ur — Tuy = 0 (this equation gives the intensity of the magnetic
field inside a solenoid)

The Euler—Bernoulli beam equation, us + Ugzze = 0
Uy + Uy —u, =0

Uy + Uy +u, +u=0

Ugy — Uy + Uy =0

22Uy — y3uy —4zu, =0

The two-dimensional heat equation, us = Ugy + Uyy
The two-dimensional wave equation, ug = Uz + Uyy

The three-dimensional Laplace equation, tzg + Uyy + .. =0

Schrédinger’s equation (with zero potential), ugy + Uyy + Uz +u =0

In Exercises 22-35, find all product solutions of the PDE (each PDE already
was separated in Exercises 1-21).

22.

3y — 2uy =0
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23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

37.

38.
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Suy +4uy —2u =0

yguz + x2uy =0

Ugy — Uy +u =10

The wave equation, ug — Uge = 0

Laplace’s equation, tzgz + tyy = 0

Ugg + 2Uyy — Uy + 3uy =0

Laplace’s equation in polar coordinates, ., + %ur + T%ugg =0
Uy + Uy —u, =0

Uy + Uy +u, +u=0

Ugy + Uy + Uy =0

The two-dimensional heat equation, u; = Uz, + Uyy

The two-dimensional wave equation, Uy = Uz + Uyy

The three-dimensional Laplace equation, gy, + tyy + ., =0

Prove that if f(z) = ¢(y, z) for all z,y and 2, then f and g both are
constant functions.

One also may try to separate variables in other ways.

a) Find all solutions of the PDE u, + u, = 0 of the form u(z,y) =
X(x)+Y(y).

b) Do the same for the eikonal equation, uZ + uy = 1.

In Section 1.3, we saw that we often are interested in solving a PDE
subject to certain auxiliary conditions, namely, initial and boundary
conditions. In fact, when we solve an initial-boundary-value problem
using separation of variables, we will find it much easier to solve if
we also separate the boundary conditions. For each of the boundary
conditions given below, separate the variables, that is, decide what each
of them tells you about product solutions u(z,t) = X (x)T'(t). (In each
case, a is a constant.)

a) u(a,t) = 0 (the so-called Dirichlet boundary condition)
b) ug(a,t) =0 (the Neumann condition)

¢) aug(a,t) + Bu(a,t) = 0, where @ and 3 are constants (the Robin
condition)

d) uzz(a,t)=0
€e) Upzz(a,t) =0
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(The last two boundary conditions are encountered in connection with
the Euler-Bernoulli beam PDE, for example.)

39. Decide whether the given function is a product function, that is, if it
can be written in the form f(x)g(y) for functions f and g. If it is not,
justify your answer.

a) u(z,y) = e™

b) u(z,y) = e** =%

c) u(r,y) =y? —ay+1
d) u(z,y) =sin(z + y)

1.7 Eigenvalue Problems

In Section 1.3, we discussed the heat equation, subject to initial and boundary
conditions. Suppose, for instance, we're solving the heat equation u; = g,
on the interval 0 < z < 1. Suppose, further, that the equation is subject to
the boundary conditions

uw(0,t) = u(l,t) =0
for t > 0. We first separate the PDE, resulting in the ODEs
X"+XX =0 and T+ AT =0.

Then, as in Exercise 38 in the previous section, we separate the boundary
conditions, as follows:

w(0,t) = X(0)T(t) = 0 for all t >0 = X(0) =0, or T(t) = 0 for all ¢ > 0.

So we have two types of product solutions of the PDE which satisfy the
left boundary condition: those which satisfy X (0) = 0 and those for which
T(t) = 0, that is, those for which T'(¢) is the zero-function. But the latter
gives us the zero-solution (which we already know is a solution). So the only
nontrivial product solutions which satisfy the left boundary condition are
those which satisfy X (0) = 0.

Similarly, the only nontrivial product solutions which satisfy the right bound-
ary condition will satisfy X (1) = 0. So, we actually need to solve the system

X"4AX =0 T+ =0
X(0) = X(1) = 0.

The X-system looks like the problems in Section 1.3, Exercises 1-5. Essen-
tially, then, it is an ODE boundary-value problem. However, it differs from
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the latter in that it includes the parameter A\. Remember that we solve the
X-ODE for each real number A. For each A, the ODE has infinitely many
solutions. Now, though, we need to find which of these solutions “survive”
the boundary conditions—that is, we shall see that, for “most” real numbers
A, the only solution that also satisfies the boundary conditions is the zero-
solution, X (x) = 0. Thus, we need to identify those values of A\ for which
the X-system has nontrivial solutions (and, of course, find those solutions).
Then we will solve the T-equation, but only for these values of A, and form
the nontrivial product solutions of the PDE and boundary conditions.

These values of \ are called eigenvalues!l of the X-system, and the corre-
sponding nontrivial solutions are the eigenfunctions associated with A. The
system itself is an example of an ODE eigenvalue problem.

Let’s calculate some eigenthings.

Example 1 Find all eigenvalues and eigenfunctions of the eigenvalue problem

v+ =0, y=uyx), 0<zr<1
y(0) =y(1) = 0.

As with ODE initial-value problems, and the boundary-value problems from
the exercises in Section 1.3, we first find the general solution of the ODE;,
then apply the boundary conditions. To do this, we set y = ¢"* and find the
characteristic equation 2 + A = 0. It now becomes apparent that we need to
treat the cases A > 0, A =0 and A < 0 separately.

Case 1: A <0

If A < 0, then we can write A = —k? for some real number k with k& > 0.
Then, the characteristic equation 72 — k? = 0 leads to the two independent
solutions e** and e~%*. However, it turns out that life is much ecasier if we
use, instead, the functions

kx —kx
Yy = % = cosh(kz)

and . i
Yya = ¢ _26 = sinh(kz)

(see Exercise 22). Then, the general solution is

y = ¢1 cosh(kx) + co sinh(kx).

IThese eigenvalues are similar to those which we see in Linear Algebra, where the eigen-
values of a matrix are those real numbers for which the matrix equation A¥ = A¥ has a
nontrivial solution. Here, we are looking for real numbers for which the functional equation
Ly = )y has a nontrivial solution, where Ly = —y’.
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Applying the left end boundary condition, we have

y(0) =0 = ¢y cosh 0+ ¢ sinh 0

=C1.

So the only solutions that survive this boundary condition are those of the
form
y = c2 sinh(kz).

Then, applying the right end boundary condition gives us
y(1) =0 =cy sinh k

and, since k > 0, we have sinh k # 0 and, therefore, co = 0. Therefore,
for each negative number A, the only solution which survives the boundary
conditions is the zero-function

y=0.

Therefore, there are no negative eigenvalues.

Case2: A=0
In this case, the ODE is just y” = 0, with general solution

Y = 1T + Ca.

Then,
y(0)=0=cy and y(1)=0=c1+ ca,

soc1 =co =0, and A =0 is not a eigenvalue.

Case 3: A>0

If A > 0, we can write A = k2 for some real number k with & > 0. Then,
the characteristic equation 72 + k% = 0 leads to the two linearly independent
solutions cos(kx) and sin(kzx) and, therefore, to the general solution

y = ¢y cos(kx) + cosin(kx).
Applying the left end boundary condition, we have

y(0) =0=c1cos0+ co8in0

=cj.
So the only solutions which survive this boundary condition are
y = cosin(kx).
Then, the other boundary condition gives us

y(1) =0 = cgsink.
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As in Case 1, this forces co = 0 except in those cases where k is a number with
the property sink = 0. For these latter values of k, we need not have co = 0; in
fact, there is no restriction on c¢a, so the term ¢y sin(kx) survives both boundary
conditions. In other words, these values of k give us the eigenvalues \ = k2
of the problem; for each such k, the functions

y = csin(kx)

are the associated eigenfunctions. In practice, we say that the eigenfunction
is y = sin(kx), realizing that any constant multiple of an eigenfunction is an
eigenfunction (why?).

So the eigenvalues are those numbers A = k? where sink = 0. Therefore,
we have

k=m2m3nm,...=nmr, n=123,... (remember: k > 0)

and
N=m2 47?972, ... =n?r%, n=1,2,3,....

We write the eigenvalues as
Ap = n’n?, n=123,...
and the corresponding eigenfunctions as
Yn = sin(nmz), n=123,....
Example 2 Do the same for

y'+ Xy =0,
y'(0) =y'(3) = 0.
Casel: A<0,A=—-k%Ek>0

We have
y = ¢1 cosh(kx) + co sinh(kz),

so that
y' = c1k sinh(kz) + cok cosh(kz).

(See Exercise 22.) Then,
Y(0)=0=ck=c2=0

and
y'(3) = 0 = 1k sinh 3k = ¢; =0,

so there are no negative eigenvalues.
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Case 2: A=0
The general solution is
y=czx+c
so that
Yy = c1.
Then,
y'(0)=y(B)=0=c1.
Therefore, the function y = ¢ survives both boundary conditions, so A = 0
is an eigenvalue. We write
A =0
with eigenfunction
yo = 1.
Case3: A>0,A=k%2k>0
We have the general solution

y = ¢y cos(kx) + cosin(kx),

so that
y' = —ci1ksin(kx) + cok cos(kx).
Then,
y'(0) =0 = c2k = ¢ = 0;
y'(3) = 0= —ciksin(3k) = c¢; =0
unless
sin(3k) = 0, that is, 3k = 7, 27, 37, . ..
or nr
k=T, n=123...
Therefore, we have eigenvalues
2 2
Ap = ”977 . n=1,2,3,...

with associated eigenfunctions

nwT
yn:cosT, n=123,....

Example 3 Do the same for

22y 4y — Ay =0

y(1) =y(e) = 0.
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First, note that this is a Cauchy—Euler equation, for z > 0. We let y = z”
and determine the values of r that give us solutions. So
T 2 r—2 r—1 ro_
y=2" =z r(r—a" " +z-rz" " — A" =0
=r(r—-1)4+r—A=0
=72 - A=0.

Again, we must consider three cases.

Casel: A>0,A=k%k>0
We have r = £k, so our two linearly independent solutions are 2* and z =%,
giving us the general solution

Yy = clxk + 02;16*]“.

Then,

which imply

Since k > 0, the latter implies that ¢; = 0, so ¢co = 0 as well, and we have no
positive eigenvalues.

Case 2: A=0
In this case, we have the repeated root r = 0, giving us the linearly inde-
pendent solutions x° and 2" Inz. So the general solution is

y=c1+calnx.
Then,

y(1)=0=¢,
yle) =0=rc1 + ¢
so, again, ¢c; = ¢ =0, and A = 0 is not an eigenvalue.

Case3: A<0,A=—-k%k>0
Here we have the roots r = +ik and corresponding linearly independent
solutions cos(kInz) and sin(kInz). The general solution is

y=cicos(klnzx)+ cosin(klnx).
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Applying the boundary conditions, we have

y(l):0201:>01=0
y(e) =0 =cosink

and the latter equation forces co = 0, except for those values of k satisfying
sin k = 0; that is, cs is arbitrary when

k=m2m3m,...
or
A= —n? —4r? —972 ... .
Therefore, the eigenvalues are
A\p = —n’n2, n=1,23,...,

and the associated eigenfunctions are
Yn = sin(nmInx), n=123,....
Example 4 Do the same for

y' 4+ Ay =0
y(0) =y(1) +¢'(1) = 0.

Casel: A<0,A=—-k%k>0
We have
y = ¢1 cosh kx + co sinh kzx.

Then,
y' = ci1k sinh kz + cok cosh kx

and, applying the boundary conditions, we have

y(0)=0=c¢
y(1) = 0 = co(sinh k + k cosh k).

So we must have co = 0, except for those values of k£ > 0 satisfying
sinh k + k cosh k = 0.
Essentially, then, we wish to find all positive roots of the function
f(z) =sinh z + x cosh z.
Now, f(0) = 0. For x > 0, let’s consider f’:

f'(z) =2 cosh z + x sinh z > 0 for z > 0.
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Therefore (see Exercise 23), f(z) has no roots when x > 0 and the problem
has no negative eigenvalues.

Case 2: A=0
The general solution here is

Y = C1T + C2
and, since 3’ = ¢1, the boundary conditions give
y(0)=0=cy
y(1) +9'(1) =0 = 2¢1 + ca.
Therefore, ¢y = co = 0, so A\g = 0 is not an eigenvalue.
Case 3: A>0,A=k%k>0.

Here, as usual,
y = ¢y coskx + cosinkx,

SO

Yy = —ciksinkz + cok cos z.

Then,
y(0)=0=c
y(1) =0 = co(sink + kcosk).
This system has only the solution ¢; = ¢ = 0 unless k is such that
sink 4+ kcosk = 0.
Therefore, the eigenvalues correspond to those values of k satisfying
—k =tank.

How do we solve for k7 We don’t—because we can’t! However, we can show
that there are infinitely many such values of k, by looking at the graphs of
y = —k and y = tank for £ > 0, which we have plotted in Figure 1.2. In
fact, it looks as though y = —k intersects each branch of y = tank exactly
once. Therefore, our eigenvalues correspond to values of k,, n = 1,2,3,...,
satisfying

g <k < 3;

3T o

— < ko < —
2 2> 79

(2n;1)7r <k < (2n—;—1)7r '
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FIGURE 1.2

33

MATLAB graph of the intersection of the functions y = —k and

y=tank for k > 0.

Therefore, the eigenvalues are those A\, > 0 satisfying —v/\, = tanv/A,,

with associated eigenfunctions

Yn = sinm x.

We have also solved this same problem using the MATLAB routine BVP4C.
The first five eigenvalues are given in Table 1.1, and the first five eigenfunctions
(normalized by requiring that y'(0) = 1) are plotted in Figure 1.3. Note that

the solutions do seem to satisfy the condition y'(1) = —y(1).

4.116

n
1
2
3.
4
5

. 201.863

TABLE 1.1

An

24.142
63.664
122.897

First five eigenvalues of the problem in Example 4, computed using

the MATLAB routine BVP4C.
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ark e i, TN 4

42 Dl TR

FIGURE 1.3
MATLAB graph of the first five eigenfunctions in Example 4, using
the routine BVP4C (highest to lowest, respectively, at z = 0.2).

It may seem odd to include such an example, but this problem illustrates
the fact that many eigenvalue problems cannot be solved explicitly.

Further, this type of eigenvalue problem often shows up in applications.
See, for example, Exercises 5e and 5f in Section 4.1.

Example 5 Here, we briefly introduce a more general technique for solving
these eigenvalue problems. Suppose we wish to find the positive eigenvalues
of

y' + Ay =0,
y(0) +4'(0) = y(1) = 0.

Proceeding as before, we have
y = cp coskx + cosinkx, )\:kQ,
and we must find those values of k for which the system

c1+ck=0
crcosk + cosink = 0.



Introduction

Now, if we write these equations in matrix form,

costsn] 2] = [o)-

we see that A\ = k? is an eigenvalue if and only if

1 k|
cosk sink|

This leads to the equation
k =tank,

35

with solution similar to that in the previous example (with one additional

concern—see Exercise 24).

Exercises 1.7

In Exercises 1-14, solve the eigenvalue problem, that is, find all eigenvalues

and associated eigenfunctions.

Loy + X y=0,9(0) = y(5) =
2. y"+ 2y =0,y(0)
Y+ Ay =0,y'(0) =y(m) =0
Yy +Ay=0,y0)=y(4)=0
y" + Ay =0,y(0) — y'(0)
Y+ Ay =0,9(0)+y'(0) =y(2) +¥'(2) =0
22y" 4+ 3xy’ 4+ My = 0,y(1) = y(e?) =0

Y %)=

y' +2 +(A+1)y=0,90) =y(r) =0
y'+ Ay =0,y(-1)=y(1)=0
10. y" +2y" + Ay =0,y(-2) =y(2) =0

.“390.\'@9”5“90

1Ly + Xy = 0,9(0) = y"(0) = y(1) = y"(1) =

k40, —k4)
12, y®@ 4+ Xy = 0,5/(0) = y"(0) = ¢/ (7) = y"'(n) =
13. y" + Ay =0,y(0) = y(2) —¥'(2) =0

14. y™ + Ay (0) = 0,y(0) = y"(0) = y(1) = " (1)

0

=0

0 (Hint: Let A =

15. Solve each eigenvalue/eigenfunction problem two ways:
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i) by hand
ii) MATLAB: Using the MATLAB routine BVP4C
a) "+ Ay =0,9(0) +y(0) =y(1) =0
b) 4" + Ay = 0,2y(0) - y'(0) = y(2) = 0
¢) Exercise 13
d)

y @+ xy” =0,y(0) = y"(0) =y(1) =y'(1) =0

16. Find all eigenvalues and eigenfunctions of the ODE y” 4+ Ay = 0 subject
to the boundary conditions (where L > 0)

a) y(0) =y(L) =
b) y(0) =y'(L) =0
c) y'(0) =y(L) =

17. Find all product solutions of the heat equation u; = w,, which also
satisfy the boundary conditions u(0,t) = u(5,t) = 0. (Refer to Exercise
1, above, and to Example 2 of the previous section.)

18. Find all product solutions of the wave equation uy = ., which also
satisfy the boundary conditions u(0,t) = u(1,t) = 0. (Refer to Example
1, and to Exercises 5 and 26 of the previous section.)

19. a) Show that the ODE y” + Ay = 0 has nontrivial periodic solutions
of period L, that is, which satisfy

ylx+ L) =y(x) forall x

A=A, = (22)? n=0,1,2,....

b) Show that the statement actually is an if and only if. (Hint: Write
c1 coskx + casinkx = cg cos(kx — ¢q).)

Hence, show that the only solutions of y” + Ay = 0 of period 27 are the
functions

yo=1, y, = cicosnz+ cysinnz, n=12,....
¢) Solve, instead, the eigenvalue problem
y'+xy=0

y(=m) = y(m)
y'(=m) =y'(m)

and show that we get the same eigenvalues and eigenfunction as
above.
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20.

21.

22.

23.

24.

25.

Sturm Comparison Theorem: The Sturm Comparison Theorem (due
to Jacques Charles Francois Sturm, whom we’ll meet in Chapter 8) says,
as a special case, that if y; and y2 are nonzero solutions of y” + A1y = 0
and ¢ + A2y = 0, respectively, with 0 < A; < Ao, then, between any
two consecutive roots of y1, there is a root of ys.

a) Show that the theorem is true for the eigenvalues and eigenfunc-
tions of each problem in Exercise 16.

b) MATLAB: Exhibit this theorem graphically for the first 10 eigen-
functions from Example 4.

Suppose we are asked to solve the eigenvalue problem

y' + Ay =0, a<x<b
y(a) =y(b) = 0.

a) Show that the change of variable 2 = L= (z — a) transforms the

problem to what, essentially, is the problem in Exercise 16a.
b) Use this transformation and the solution of Exercise 16a to solve
this problem.

¢) Use this method to solve Exercise 9.

a) Explain why we may say that y = c¢jcosh kx + c2 sinh kz is the
general solution of y” — k?y = 0.

b) Show that - (cosh z) = sinh z and - (sinh z) = cosh z.

Use Rolle’s Theorem to prove that if f(0) =0 and f'(x) > 0 for = > 0,
then f has no positive roots.

a) MATLAB: Graph y =z and y = tanz, > 0, on the same set of
axes.

b) Prove that f(z) = x and g(x) = tanz do not intersect on the
interval 0 <z < 3.

In this exercise we prove that if y; and y- are eigenfunctions, corre-
sponding to different eigenvalues, of the problem 3" + Ay = 0 subject
to either y(0) = 0 or y'(0) = 0 at the left end and either y(L) = 0 or
y'(L) = 0 at the right end, then

L
/ y1y2 dz = 0.
0

(In this case, we say that y; and y2 are orthogonal on 0 < z < L.)
To this end, suppose that y; and y, are eigenfunctions corresponding to
the eigenvalues \; and Ag, respectively, with A\; # Az. Then,
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L L
a) Show that (A1 — X2) [ w1y2 dz = [ (y1y5 — yi'y2)dz.
b) Use integration by parts to prove Green’s first identity

o=l g ro 0
—/ Y1Ys dz.
—0 0

r=

L
/ Y1ys dr = y1y,
0

¢) Now prove Green’s second identity

=L

L
/ (y1vs — yiy2)dz = (y1y5 — Y1 y2) s
o _

L
/ y1y2 dzr = 0.
0

e) Show that we cannot do anything similar for

d) Conclude that

b
/ (Y195 — Yoy} )d.
a

How about for ,
/ (195 + y2y1 )dx?

(Note that the second integral results from replacing ¢} by —y] in
the first. We’ll see the significance of this in Chapter 8.)

26. Rayleigh quotient: Suppose that A, is an eigenvalue, with eigenfunc-
tion y,, of any of the four eigenvalue problems
Yy + My =0, O0<z<L,
y(0)=0 or y'(0)=0,
y(L)y=0 or ¢'(L)=0.

a) Use Green’s first identity, from the previous exercise, to show that
L
_ ol (@)Pda
=00 =
Jo lyn(@))?da

This is the Rayleigh** quotient for \,, in terms of y,,.

b) Conclude that we must have A\, > 0, that is, that the problems
have no negative eigenvalues. In which case(s) is 0 an eigenvalue?

An

** After the great British scientist John William Strutt, Lord Rayleigh (1842-1919).
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¢) Show that the eigenvalue problem

Yy’ 4+ My =0, 0<z<L,
y(0) —ay'(0) = y(L) + by'(L) =0

has no negative eigenvalues if ¢ > 0 and b > 0. (These boundary
conditions will show up in our discussion of the heat equation.)

27. Counsider the nonhomogeneous boundary-value problem

y" +ay = f(t),a = constant
y(0) =y(L)=0

(where f(t) is continuous on 0 < z < L).

a) Show that if « is not an eigenvalue of the associated homogeneous
problem y” + Ay = 0, y(0) = y(L) = 0, then the nonhomogeneous
problem has a unique solution.

b) Show that if « is an eigenvalue of the homogeneous problem, then
the nonhomogeneous problem may or may not have a solution. In
this case, for which functions f(¢) will the problem have a solution?
Is the solution unique?

(Compare this problem to the nonhomogeneous problem from Linear
Algebra, B
(A= Av=0.)






Prelude to Chapter 2

In this chapter, we provide physical derivations for the three most important
PDEs, the heat equation, the wave equation and Laplace’s equation, each in
two independent variables. We also derive the appropriate initial and bound-
ary conditions in order that these problems be well-posed on finite domains.
Finally, we’ll solve special cases of these initial-boundary-value problems, and
we’ll see that we are only one step away from solving them in general—with
that last step to be filled in Chapter 3.

Although many mathematicians in the late 18th and early 19th centuries in-
vestigated the problem of heat conduction, the name of Joseph Fourier (1768
1830) has become synonymous with this particular problem. Fourier played an
important role in the French Revolution and, when Napoleon came to power,
Fourier was appointed Chair of Mathematics at the newly formed Ecole Nor-
male. Fourier became so successful that Napolean decided to take him along
on his ill-fated invasion of Egypt in 1798. The French had a successful land-
ing and met almost no resistance, but the British destroyed the French fleet
in Alexandria harbor, stranding Napoleon’s army, most of whom—including
Fourier — were stuck in Egypt for more than two years!

During this time and after, motivated by the problem of better designing
cannons so that they would cool quickly after firing, Fourier continued think-
ing about the conduction of heat. He soon was able to derive the heat equation
and to solve it using trigonometric series about which we’ll say much more in
Chapter 3.

The study of the vibrating string seems to have been prompted by the
writings of French composer and music theorist Jean-Philippe Rameau (1683—
1764) and, in particular, by the appearance in 1722 of his famous textbook on
harmony. In 1727, John Bernoulli (1667-1748, brother of James and father
of Daniel) approximated a continuous string by a massless string loaded with
a finite number of discrete masses. Although Bernoulli seems to have “taken
the limit,” the wave equation as we know it did not appear until the 1760s,
in the works of Euler and d’Alembert.

Laplace’s equation, or the potential equation, actually appeared first in
1752 in a paper by Euler. The paper dealt with the motion of fluids and was
influenced by Daniel Bernoulli’s seminal work Hydrodynamics, which appeared
in 1738 and in which he coined the term “potential function.” Pierre-Simon
de Laplace (1749-1827) got his name attached to the equation through his
rederivation and use of it in connection with the problem of gravitational
attraction. He wrote a number of important papers on the topic in the 1770s
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and 1780s, but his greatest contribution was his landmark five-volume work,
Traité de mécanique céleste (Treatise on celestial mechanics), in which Laplace
compiled all of the important work, since Newton, on Newtonian gravitation
and its role in the solar system. In particular, Laplace’s main goal was to
prove that the solar system is stable, a problem that has returned to the
forefront with recent advances in dynamical systems and the study of chaos.

Of course, these are but a few of the highlights of the rich and varied history
of the Big Three PDEs.



2

The Big Three PDEs

2.1 Second-Order, Linear, Homogeneous PDEs
with Constant Coefficients

In this chapter we begin to look at the “Big Three PDEs”—the heat equa-
tion (or diffusion equation), the wave equation and Laplace’s equation (or the
potential equation)—each in two independent variables. Each is a second-
order, linear, homogeneous PDE with constant coefficients. The general such
equation is

AUgy + bUgy + cuyy + dug + fu, + gu =0, (2.1)

where, again, u = u(z,y) and, of course, a,b,¢,d, f and g are constants.

We study equation (2.1) in detail in Section 5.4. In particular, there we’ll
classify these equations as in the following definition and give reasons for such
a classification.

Definition 2.1 Equation (2.1) is said to be:
Hyperbolic, if b> — 4ac > 0
Parabolic, if b*> — 4ac =0
Elliptic, if b*> — 4ac < 0

We mention this classification now because, as we’ll see in the exercises,
the heat equation is parabolic; the wave equation is hyperbolic; and Laplace’s
equation is elliptic. In fact, each of these equations is, in some sense, the
standard example or “prototypical equation” of its type. As a result, the
mathematical importance of these three PDEs goes far beyond their connec-
tion with physical problems.

Exercises 2.1

1. a) Show that the heat equation in one space variable, u; = 0Py,
where « is a constant, is parabolic.

b) Show that the wave equation in one space variable, uy = c*tzy,
where c is a constant, is hyperbolic.

c) Show that Laplace’s equation in two space variables, ugy +uyy = 0,
is elliptic.
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d) Show that, in each of the above, if we interchange the independent
variables, the classification remains the same.

2.2 The Heat Equation and Diffusion

Although we know that heat is a form of energy which results from the motion
of molecules, at a macroscopic level it appears to flow from warmer to cooler
regions. We would like to use this idea of heat flow in order to study its
conduction throughout a long, thin piece of material—a rod. We will derive
a PDE which must be satisfied by the temperature function of the rod.

First, a word on the derivations found in this book. We will be providing
the simplest, “barebones” derivations, the purpose being to give the student
who is approaching these ideas for the first time an intuitive feel for what
is involved. As such, we will make some approximations which may seem
ad hoc or based on hindsight (we already know what the heat equation is!).
Be assured that our assumptions are reasonable and that they can be made
rigorous; we’ll provide more rigorous derivations in the exercises, or we’ll point
the student to an appropriate reference.

We begin with a very brief derivation of the heat equation, filling in the gaps
afterwards. Along the way, we’ll introduce certain simplifying assumptions,
as needed.

We have, then, a rod of length L, placed along the z-axis (as in Figure 1.1).
We wish to determine the temperature function

u(x,t) = temperature at point x, at time ¢.

See Figure 2.1. As with most PDE derivations, we start by looking at an
arbitrary small piece of the rod, from x to x 4+ Az, as in Figure 2.2 (this piece
often is called a differential element of the rod). We will measure, in two
different ways, the rate at which heat enters the element.

} u(x,t)

f X

L

u

| JEN

FIGURE 2.1
Temperature function for a rod of length L.
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FIGURE 2.2
Differential element of length Azx.

First, heat content will be defined so that the amount of heat contained in
the element (at any time t) is proportional to its temperature and its length.
Then, the rate at which heat is entering the element is its time derivative,
that is,

rate ~ g(qu) = uAz.

ot

As for the second way to calculate this rate, we assume that the rod is
insulated except, possibly, at its ends. Therefore, heat enters or leaves the
element only at its endpoints. Fourier’s Law will tell us that the rate at
which heat flows across a given cross section is proportional to u, at that
point. Therefore, the above rate also is proportional to the

rate at which heat enters the right end
+ rate at which heat enters the left end
~ U (@ + Az, t) — ug(z, t).
Therefore, we have

W AT ~ uz(x + Az, t) — uz(x,t)

or

Ug(x + Az, t) — ug(x,t)
Az ’

Ug ~
and, letting Az — 0, we have
Ut ~ Ugy
or
ur = constant - Uy,
which is the heat equation!

Okay, let’s go back and clean things up a bit. (What is the constant and,
in particular, what is its sign?) First, suppose we have a homogeneous piece
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of material of mass m, at constant temperature 7. Then, we define the heat
content of the material to be
omT,

where the proportionality constant o is called the specific heat of the given
substance. Applying this to the element in Figure 2.2, and supposing that the
element’s cross sectional area A, mass density (mass per unit volume) p and
specific heat are constant, we arrive at a heat content of approximately

opAAT u <:17 + %,t) , (2.2)

where pAAz is the mass of the element, and where we have approximated the
variable temperature using the temperature at the element’s midpoint (but
see Exercise 4). The time rate of change of this heat content, then, is

opAAT uy <x + %,t) . (2.3)

Now, for Fourier’s Law: First, in defining the temperature function as we
have done, we are assuming that the rod is sufficiently thin so that the tem-
perature is essentially constant throughout any cross section. This, in turn,
coupled with the assumption that the rod is insulated (except, possibly, at
the ends), allows us to assume that heat flows only in the z-direction.

Fourier’s Law then states, for the heat problem, that the rate of left-
to-right flow of heat per unit area, i.e., the flux of heat, through any cross
section, is

O(x,t) = —kuy(z, 1), (2.4)

where the ratio k is called the material’s thermal conductivity and —u, is
called the temperature gradient (Why gradient? We’ll see, in Chapter 9).
See Figure 2.3.

u

&—1 I N —

direction of heat "flow"

FIGURE 2.3
Fourier’s Law and the direction of heat flow.
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Then, assuming that k is constant along the rod (and remembering the
assumption that A is constant), the rate of change of the element’s heat
content is the

rate at which heat enters the right end
+ rate at which heat enters the left end
= —Ad(z + Az, t) + AD(x,1)

= kAfug(z + Az, t) — uy(z,t)]).* (2.5)

Finally, we equate (2.3) and (2.5):
Az
opAAzus | x + T,t = kA[uy(z + Az, t) — ug(x,t)],

and, dividing by Az and letting Az — 0, we have the heat equation

U = Uy, (2.6)
where the constant o2 = Gip is called the thermal diffusivity of the material.
Heat flow is not the only application of this PDE.

OTHER APPLICATIONS OF THE HEAT EQUATION

Diffusion

Heat conduction is a specific example of the process of diffusion—we say
that heat diffuses through the rod, just as a drop of ink diffuses throughout
a container of water. In general, let u(x,t) represent the concentration (mass
per unit volume), at point = at time ¢, of whatever it is that’s diffusing. In
this case, equation (2.4) is known as Fick’s Law (actually, Fick’s First Law
of Diffusion), and the constant k' is called the coefficient of diffusion. The
resulting PDE is
Uy = ktgg.

(So, for example, temperature can be thought of as the concentration of heat.)

*But see Exercise 3.
T Not the k from the heat equation derivation.
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Electric current in a long, insulated cable

If i(x,t) and E(x,t) represent the current and voltage in a long, insulated
cable, it can be shown that both ¢ and E satisfy the telegraph equation

Uge = LCuy + (RC + LG)u; + RGu.

The constants are defined in Exercise 10. If we may neglect L and G, we see
that ¢ and E satisfy
Uy = ROUt,

the heat/diffusion equation. Again, see Exercise 10.

Financial mathematics—the Black—Scholes equation

In the study of options pricing, a very important—and relatively new (1973)—
model is the so-called Black—Scholes equationt

o2s?

TVSS—i—rsVS—rV—i—Vt:&

Here, V =V (s,t), t is time, s is the market value of the asset being optioned,
o is the constant volatility of the asset and r is the constant interest rate.
Although the equation is separable, it’s possible via a change of variable to
turn it into the heat equation

See Exercise 11.

It’s nice to interpret the heat equation graphically. If we plot u in terms of
x, for fixed t, then u,, is just the concavity of the graph. Since u; = 0Py,
we have the following possibilities:

u concave down = u; < 0 = u decreasing

u concave up = u¢ > 0 = wu increasing.

Thus, heat flows in such a way that it smooths out the temperature function.
See Figure 2.4.

tFor a derivation see, e.g., Financial Calculus by Baxter and Rennie.
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u

Uk >0
= u >0
| 11T
u, <0
= u <0

FIGURE 2.4
Relationship between temperature change and concavity of temper-
ature graph.

We’ll discuss initial and boundary conditions for the heat equation in Sec-
tion 2.4.

EQUATIONS OF CONTINUITY AND CONSERVATION LAWS

When deriving the heat equation, if there is no source, we arrive at the state-
ment

opAuAx = —A[®(x + Az, t) — O(x,t)]
(see (2.3) and (2.5)), or, letting Az — 0,

opus + P, =0.
If o and p were not constant, we would have
(opu) + @, = 0.

This is the one-dimensional version of what is called the equation of con-
tinuity for heat flow and, since it really is a statement of the conservation
of heat energy, we refer to it as a conservation law. In general, the one-
dimensional equation of continuity/conservation law in any similar situation
is

Pt + ‘I)z = 0, §

where p is the concentration and ® is the flux of the “substance” involved.
(Convince yourself that opu is, in fact, the “heat concentration.”)

Examples abound—the equation of continuity shows up whenever we have
something which is diffusing or flowing.

$In higher dimensions we have p; +V - ® = p; + div & = 0.
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Fluid flow

Suppose we have a liquid in one-dimensional flow through a pipe with constant
cross sectional area A. If p(z,t) is the mass density (mass per unit volume) of
the liquid, and if v(x, t) is the velocity at point x, time ¢, then p and v satisfy
the continuity equation

pt + (pv)z = 0.

See Exercise 13.

FElectric current

If electricity flows along a very thin wire, with charge density p(z,t) (charge
per unit length) and current i(x, t), then p and i satisfy the continuity equation

pt +i, = 0.

See Exercise 12.

One final note: The heat equation is homogeneous, of course. However, if
we suppose there is an additional heat source/sink along or within the rod,
given by

f(z,t) = time rate at which heat is added /removed,

per unit volume, at point x at time t,
then the result is the nonhomogeneous heat/diffusion equation
g = Uy + F(z,t), (2.7)

where 1
ap

(see Exercise 8). Of course, any source terms will appear in the equation of
continuity, as well. So, for example, with heat source/sink f, the equation
becomes

(cpu)t + @, = f.

Exercises 2.2

1. a) What are the dimensions of o2 in the heat equation? (Use calories
for heat content; you can use “time” and “length” for the remaining
quantities.)

b) What are the dimensions of the specific heat, o7
¢) What are the dimensions of the thermal conductivity, k7

d) What are the dimensions of the source term F(z,t) in the nonho-
mogeneous heat equation?
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e) What are the dimensions of k in the diffusion equation?

2. Write down the heat equation (homogeneous) which corresponds to the
given data. (Throughout, heat is measured in calories, temperature is
measured in °C and the other basic units are measured in centimeters,
grams and seconds.)

a) Thermal diffusivity = .72 cm? /sec
b) Specific heat = .215 cal/g-°C

Density = 2.7 g/cm?

Thermal conductivity = .63 cal/cm-sec-°C
¢) Specific heat = .09 cal/g-°C

Density = 8.9 g/cm?

Thermal conductivity = .92 cal/cm-sec-°C

3. Use Taylor series to show that we’re justified in writing
fla+Az) - f(z) = f'(2)Az
in these physical derivations. Thus, in (2.5), we can immediately write

Ug (T + Az, t) — ug(x,t) = ugq(x, t)Az.

4. Show that if u is a solution of the heat equation u; = a?uy, + F(x,t),
then so is u + c1x + ¢o for any choice of the constants ¢; and cs.

5. Show that if u satisfies the heat equation u; = ®ug,, and if we make
the change of variable 7 = t — ¢y, where tg is any constant, then the
new function of x and 7 still satisfies the same PDE. (This will mean
that it doesn’t matter what we call the initial time in our heat equation
problems.)

6. Give the details in the derivation of the diffusion equation (2.7).

7. When deriving expression (2.2) for the heat content of the rod element,
we approximated the temperature of the element using the tempera-
ture at its midpoint. However, we did not (and could not) use a simi-
lar approximation for u, in expression (2.5). Provide a more rigorous
derivation of the heat equation as follows:

a) Write down an integral which represents the exact heat content of
the element at time ¢.

b) Replace expression (2.2) with this integral, and arrive at the heat
equation, using the equation

o b b
&/ g(x,t)d;v:/ gi(z, t)dt,

as well as the Mean Value Theorem for Integrals.
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8. a) Derive the nonhomogeneous heat equation (2.7). You will need to
write down an approximate expression similar to (2.2) in order to
deal with the source term f(x,t).

b) Do the same as in part (a) but, instead, proceeding as in Exercise 7
and using an integral to represent the effect of the source term.

9. In order to generalize a PDE like the heat equation, so that it is ap-
plicable to a greater variety of problems, it is necessary to relax the
simplifying assumptions.

a) Suppose that o and p are not constant, but are functions of ,0 =
o(xz) and p = p(x). Show that the heat equation still takes the
same form

U = 0Py,
where a? = o?(z) = W.

b) Suppose, instead, that o and p are constant, but that the thermal
conductivity k depends on x, k = k(x). Show that, in this case, the
heat equation becomes

10
Uy = — —(k(z)uy).
= g ()
(Hint: Remember the proof of the product rule.) Note: One
easily can imagine more complicated situations where these basic
quantities depend on ¢ and even on the temperature, u. In the
latter case, the heat equation will be nonlinear.

10. Electric current in a long, insulated cable: Suppose we have an
insulated wire with current ¢ = i(x,t) and voltage E = E(x,t). Let R
be the resistance, L be the inductance, C' be the capacitance and G be
the conductance (or leakage), all per unit length and all constant, of the
wire. Then, if we look at a differential element of the wire from z to
x + Az, the potential drop along this element gives us

i

—AFE =i(z,t)RAz + La(x, t)Azx.

Also, the capacitance and inductance lead to

OE
ot

a) Show that letting Az — 0 gives us the two first-order PDEs:

—Ai = GEAz + C—(z,t)Ax.

E.+ Ri+ Li; =0,
i, +GE+CE; = 0.
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11.

b)

Differentiate the first equation by x and the second equation by ¢,
then, along with the second equation above, eliminate i, and i,
to arrive at

Eye = LCEy + (RC + LG)E, + RGE.

Instead, differentiate the first equation in part (a) by ¢ and the
second equation by z, then, along with the first equation in (a),
eliminate F; and F,; to arrive at

ine = LCiy + (RC + LG)i, + RGi.

Thus, E and ¢ both satisfy the telegraph equation.

If the inductance and leakage are very small and can be neglected,
show that E and i both satisfy the heat/diffusion equation.

Use separation of variables to turn the Black—Scholes equation

2.2
T Vg rsVe =1V 4+ Vi =0

into two ODEs.

Instead of separating variables, it is possible via change-of-variables
to turn the Black—Scholes equation into the heat equation, as fol-
lows:

(i) Show that the change of variables = In(cys), 7 = ¢g — t, for
any choice of the constants ¢; and ¢z, turns the Black—Scholes
equation into the PDE

o? o?
VT—7VM—|— (r—;) Vo —1rV.

(ii) Now show that the V,, and V terms can be eliminated by choos-
ing appropriate constants a and 8 for which the substitution

Viz,7) =U(x, T)eo‘“BT

2

turns this PDE into the heat equation U, = % Upy.

12. Derive the equation of continuity for electric current.

13. Derive the equation of continuity for fluid flow. (Hint: The volume of

liquid flowing through a cross section at = during time interval At is,
approximately, length - cross sectional area - density = [v(x,t)At] - A -

p(z,t).)
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2.3 The Wave Equation and the Vibrating String‘H

Suppose we have a perfectly flexible string which, for the time being, is nailed
down at both ends. If we pluck the string, or pull it and let it go, it will
begin to wvibrate. We would like to be able to determine the shapes of these
vibrations. To that end, we derive a PDE—the wave equation—which must
be satisfied by the position function of the string.

To be precise, suppose our string has length L and that it is nailed down
at the endpoints (0,0) and (L,0), as in Figure 2.5. The string’s motion is
described by its position function

u(x,t) = height of string at point z, at time ¢.

(Here we are tacitly assuming that each point of the string moves only in the
u-direction and that the motion is restricted to the x-u plane. Thus, each
point on the string occupies the same z-coordinate at all times; therefore, the
statement “string at point z” is unambiguous.)

Now, we proceed as we did for the heat equation, that is, we look at an
arbitrary differential element of the string, of length Az, as in Figure 2.6.
We intend to apply Newton’s 2** Law, F = ma, to the vertical motion of the
string.

u(x,t)

Sk 1o
ol

FIGURE 2.5
Displacement function for a string of length L.

YFor a very rigorous derivation of the wave equation, see A First Course in Partial Differ-
ential Equations by H. F. Weinberger.
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T sin 0, ~ u, (X+AX,t)

FIGURE 2.6
Forces acting on a differential element of length Azx.

We see that the only forces acting upon the isolated element are due to the
pull of the rest of the string at either end—that is, the tension at each end.
Assuming that the tension 7T is constant along the string (an approximation),*
and that it is tangent to the string at each point (a consequence of the perfect
flexibility of the string), we see that the vertical force components are T sin 6,
at the left end and T sin 6 at the right end, as in Figure 2.6. Now, u, is the
slope of the string, so we have

tan 6y = ug(x,t)
and

tan by = ug(x + Az, t).

This gives us a nonlinear relationship between the angles 6; and 6> and the
function u. In order to get a linear relationship, we make the following as-
sumption: wu, is small. In this case, 6; and 0 are small, as well, and for
small values of 0, we have

tanf ~ 6 ~ sin 6.

(Remember the Taylor series for these functions: tanf = 6+ ? +---,sinf =
0 — g + -+ .) Therefore, T'sin0; ~ Tu,(x,t) and T'sin by ~ Tu,(x + Ax,t),
and the sum of the vertical forces acting on the element is

Tlug(z + Az, t) — ug(x,t)].

The mass of the element is pAx, where p is the constant linear mass den-
sity (linear because, here, it represents mass per unit length of the string)

*This actually follows from Hooke’s Law, along with the assumption, which we make below,
that ug is small.



56 An Introduction to Partial Differential Equations with MATLAB®

and, since uy; is the acceleration at each point, we approximate mass times

acceleration by
Az
PAT uy |z + T’t .

Newton’s 2"4 Law applied to the element gives

A
PAT uy <x + ;,t) = T(uz(x + Az, t) — ugy(z, 1))

and, dividing by Az and letting Az — 0, we have the wave equation
Ut = g,

T
P

Notice that we have neglected, among other possible effects, the force of
gravity. Suppose that we do wish to include such an external force, referred

to as a load, given by

where ¢ = is called the wave speed (we’ll see why in Section 5.3).

f(x,t) = vertical force per unit length at point z, at time ¢.
Then, the result will be the nonhomogeneous wave equation
Ut = gy + F(x,1), (2.8)
where F(z,t) = %f(;v,t).

OTHER APPLICATIONS OF THE WAVE EQUATION
Longitudinal vibrations of a rod

Take a rod like the one we used in our derivation but, instead, attach one end
to a wall and hit the other end with a hammer (horizontally, as in Figure 2.7).
Then, each cross section will vibrate horizontally. If we let

u(z,t) = left-right displacement of the cross section which

originally was at x, at time ¢,

then u satisfies
Ut = kuwwa

the wave equation! Here, the constant %k is a measure of how elastic the rod
is, and is called Young’s modulus.’

T After the scientist Thomas Young (1773-1829), who also made major contributions to the
study of light.
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/:\ A . @ <> vibration
\/ \/ * x =
X
u(x,t)
(a) rod at rest (b) points displaced during vibration
FIGURE 2.7

Longitudinal vibration of a rod.

Torsional vibrations of a rod

Take the same rod (in this case, assuming its cross sections are circular) and,
instead, twist it and release. The rod then undergoes torsional vibration (see
Figure 2.8). If we let

O(xz,t) = angle of twist of the cross section which is at z, at time ¢,

then 0 satisfies ... surprise ...

Ot = 029m7
where ¢? = %, p is the density and G is called the shear modulus of the
material.
FIGURE 2.8

Torsional vibration of a rod.

Electric current in a long, insulated cable

In the previous section, we showed that the current ¢ and voltage E both
satisfy the telegraph equation

If, instead of neglecting L and G, we are able to neglect R and G (which turns
out to be the case when dealing with high frequencies), then ¢ and E both
satisfy

Ugpr = LC’utt.
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Again, it’s good to look at a graphical integration of the wave equation.
Fixing ¢, we again have that u,, is the concavity, and it is proportional to the
acceleration ugy. Hence,

u concave down = uy < 0= downward force/acceleration

u concave up = uy > 0 = upward force/acceleration.

See Figure 2.9.

u, <O
=u, <0

FIGURE 2.9
Relationship between acceleration and concavity of string.

Exercises 2.3

1. Write down the homogeneous wave equation for the following data:
tension = 6 dynes
density = 2 g/cm

2. Show that, if u is a solution of the wave equation uy = c?uz, + F(x, 1),
then so is u + c1x + cot + c3 for any choice of the constants ¢y, co and
C3.

3. As in Exercise 9 of the previous section, consider what happens with
the homogeneous wave equation when the assumptions are relaxed.

a) Suppose that the tension remains constant, but the density is a
function of x, p = p(z). Show that the form of the wave equation
remains the same, that is, that the resulting PDE is

T

Ut = Ugy-

b) Suppose instead that the density is constant, but that T = T'(x).
Show that, in this case, the PDE becomes

10
Ut = ;%(T(x)uw)
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4. In deriving the homogeneous wave equation, suppose that the string is
vibrating in a medium which offers resistance. The simplest model for
such frictional resistance is a force per unit length which is proportional
to the velocity. Show that the inclusion of such a damping term leads
to the damped or dissipative wave equation

2
Ut = C Ugy — Py

(You should assume that the medium is homogeneous so that the damp-
ing coefficient is constant.)

2.4 Initial and Boundary Conditions for the Heat
and Wave Equations

As we suggested in Section 1.3, in order for the heat equation for a finite
rod to be well-posed,* we must be supplied with an initial condition and two
boundary conditions, one at each end. The initial condition generally is of
the form

u(z,to) = f(x), 0<z<L

and specifies the initial temperature at each point of the rod.

It turns out that the wave equation for a finite string requires two initial
conditions, as well as two boundary conditions, in order to be well-posed.
These initial conditions generally are of the form

u(z, to) <z< (2.9)
ue(z,t0) = g(x), 0<z<IL, (2.10)

|
=
&
o
8

A
~

and specify, respectively, the initial shape of the string and the initial velocity
at each point.

BOUNDARY CONDITIONS FOR THE HEAT EQUATION

Temperature/concentration specified at an end (Dirichlet condi-
tionf)

*Most of the problems we consider will be well-posed. For a detailed discussion of the
issues involved, you may want to look at some of the higher level books mentioned in
the references. In particular, the classic text by Churchill and Brown, Fourier Series and
Boundary Value Problems, contains an excellent treatment of the uniqueness of solutions
of the Big Three PDEs. Also, see Appendix C.

T After the Prussian mathematician Peter Gustav Lejeune-Dirichlet (1805-1859).
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Suppose the left or right end is held at 0° throughout the duration of the
experiment. We then have the homogeneous Dirichlet boundary condition

w(0,t) =0,  t >t
or

uw(L,t) =0,  t>t. (2.11)

More generally, an end may be held at any temperature. In fact, the temper-
ature need not be constant, but can be a given function of ¢, in which case we
have the nonhomogeneous Dirichlet condition

’U,(O, t) = gl(t), t> to
or

w(L,t) = ga(t),  t>to (2.12)

Flux specified at an end (Neumann condition?)

If an end of the rod is insulated, so that no heat enters or leaves the rod at that
end, then the flux is zero there. From (2.4), we then have the homogeneous
Neumann boundary condition

u(0,t) = 0, t>to, 8

or
ug(L,t) =0,  t>to. (2.13)

As with the Dirichlet condition, the flux need not be zero, but may be
any specified function of ¢, in which case (2.4) gives us the nonhomogeneous
Neumann condition

kuz(O,t) = gl(t), t > to,
or

—k’Um(L, t) = gz(t), t > 1p. (214)

T After another Prussian/German, Carl Gottfried Neumann (1832-1925).

§You may notice that the boundary conditions are specified in some cases for ¢ > to and
in others for ¢ > tg. Although this need not concern us, it is a consequence of the various
existence-uniqueness-of-solution theorems connected with these problems.
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End in contact with material held at constant temperature/concen-
tration (Robin condition)

Suppose, instead, that an end of the rod is immersed in a large container
of water which is held at 0°. (We suppose the container is of sufficient size,
and the water is in motion, so that the water in contact with the end of
the rod remains at 0°.) To deal with this type of condition, we assume that
Newton’s Law of Cooling applies, namely, that the outward flux of heat
at such a boundary is proportional to the temperature difference between the
two media. In this particular case, then, we have the homogeneous Robin
boundary condition

ku,(0,t) = hlu(0,t) — 0], t > to,
or
—kuy(L,t) = hlu(L,t) — 0], t > to,

where h is called the heat-exchange coefficient.

Again, more generally, the temperature of the water /medium may be spec-
ified as a function of ¢, in which case we get the nonhomogeneous Robin
condition

ku,(0,t) = h[u(0,t) — g1(t)], t > to,
or

—kug(L,t) = h[u(L,t) — g2(8)], > to.

Figure 2.10 illustrates a typical set of boundary conditions.

Note that each of these three types of boundary conditions is linear. In the
following examples, we have some typical heat equation initial-boundary-value
problems for a finite rod.

Example 1
Ut = Uggs 0<x<b,t>01

u(z,0) = x(5 — x), 0<z<5b
u(0,t) = u(5,t) =0, t>0.

YFrom now on we will not include the domain a < = < b, t > tg, unless it is not obvious.



62 An Introduction to Partial Differential Equations with MATLAB®

(surrounded by insulation)

T (insulated end)
0 )

ku, (0,6) =h[u(0,1) = T] u, (Ly=0

FIGURE 2.10
A typical setup for the heat problem.

Example 2

U = 1.1TUgpy
u(x,0) = sinx — 3cosdx
uz(0,t) = 3,uz(9,t) — 2u(9,t) = e "

BOUNDARY CONDITIONS FOR THE WAVE EQUATION

It turns out that the Dirichlet, Neumann and Robin boundary conditions
are applicable to the wave equation, as well. The most common conditions
found in connection with the vibrating string are the homogeneous Dirichlet
condition

u(0,¢) =0 or w(L,t)=0, t > 1o, (2.15)

and the homogeneous Neumann condition
ug(0,8) =0 or wuy(L,t) =0, t > to. (2.16)

The physical meaning of each is fairly obvious: (2.15) just means that the end
is nailed down at height zero, exactly as in Figure 2.11, while (2.15) means
that the slope of the end is held at zero. Alternatively, since Tu,, is the vertical
component of the tension, (2.16) may be interpreted as saying that there is no
such force exerted upon the end of the string and, thus, nothing is “pulling”
the slope away from zero.

It is not difficult to imagine generalizing these boundary conditions to (2.10)
or (2.12). Similar ideas are used to derive the Robin condition for the wave
equation, as well. |

IFor a more comprehensive, physical look at the boundary conditions, see Stanley Far-
low’s excellent physical/intuitive book, Partial Differential Equations for Scientists and
Engineers.
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The following, then, are typical examples of the wave equation initial-
boundary-value problem for a finite string.

u(0,t) =0 u (L)=0
FIGURE 2.11
Boundary conditions for the vibrating string.
Example 3
Utt = Ugy
u(z,0) = z(1 —x)
ug(z,0) = sinx
w(0,t) = 2,u(1,t) = —3.
Example 4
Upp = DUgy
u(z,0) =0

ug(2,0) = 22

u(0,t) = te” " uy(3,t) = 0.

Exercises 2.4

1. Set up the heat/diffusion initial-boundary-value problem for the given
data:

a) Length of rod = 5 cm
Thermal diffusivity = 1.2 cm? /sec
Left end: held at 20°
Right end: insulated
Initial temperature: 50°

b) Length = 3.7 cm
Specific heat = .215 cal/g-°C
Density = 2.78/cm3
Thermal conductivity = .63 cal/cm-sec-°C
Left end: in container of water at 0° (h = .8 cal/cm?-sec-°C)
Right end: held at 0°
Initial temperature: f(z) = x(3.7 — x)
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¢) Length = 22 ¢cm
Specific heat = .09 cal/g-°C
Density = 8.9 g/cm?
Thermal conductivity = .92 cal/cm-sec-°C
Left end: insulated
Right end: in container of water at 15° (h = .65 cal/cm?2-sec-°C)
Initial temperature: linear function, 0° at left end, 15° at right
end

2. Two rods, each 7 cm long, are identical, except that one is at a constant
temperature of 40° and the other is at a constant temperature of —20°.
Our experiment starts when these two rods are placed in perfect contact
with one another, end to end, so that they form, in effect, one rod. If the
other ends of the rods are insulated, write down the initial and boundary
conditions for this problem.

3. Steady state solutions of the heat equation (or any other equation in-
volving time, for that matter) are solutions which are time independent,
that is, of the form u = u(z). Find all steady state solutions of the heat
equation for a rod of length L, if

a) The left end is held at constant temperature Ty, and the right end
is held at T5.

b) The left end is insulated, and the right end is held at constant
temperature 7.

¢) The left end is held at constant temperature T', and the right end
satisfies the Robin condition ku(L,t) + hu(L,t) = 0.

4. a) Set up a wave initial-boundary-value problem for the following
plucked string. Suppose we have a string of length = 8 cm, with
wave speed = 1 cm/sec, with each end held at the same height.
The string is set into motion by the act of plucking it, that is, by
holding it at its midpoint, pulling up a distance of 2 cm and releas-
ing it. (This act of plucking is essentially what goes on when one
plays a guitar, mandolin, harp or similar instrument.)

b) Do the same for a string of length = 4 c¢m, with tension = 3 dynes
and density = 1 g/cm. Suppose that the left end is held in position
1 cm below the z-axis, while the right end is held 2 cm above the
z-axis. The motion is started by taking the taut string at rest and
hitting it with a long, flat object which has a downward velocity of
5 cm/sec and which hits, simultaneously, each point on the string
(excepting the endpoints).

¢) Do the same for the string in part (b), except suppose that the
object with which the string is struck is only 2 ¢m long and that
it hits the string symmetrically with respect to its midpoint. (A
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piano string is sounded this way, by a hammer striking a segment
of the string. Of course, in this case, the string is much longer
than 4 cm, and the hammer hits a very small fraction of the total
length.)

5. Suppose we include the effect of gravity on a string of length L, with
wave speed ¢ and constant density p.

a) Show that the string satisfies the PDE uy = c*uy, — g, where g is
the constant acceleration due to gravity at the earth’s surface.

b) If the ends of the string are nailed down at the same height, what
shape does the string take if it just hangs and doesn’t vibrate?

6. Apply the change of variable 7 = ¢t — ¢y to the problem

=< =0,

Thus, without loss of generality (mathematicians say WLOG), we need
only consider such heat/diffusion problems with initial time ¢, = 0.
(You should convince yourself that this is true for any of the initial-
boundary-value problems we have discussed.)

7. a) Given the heat problem with nonhomogeneous boundary conditions

u(0,t) = 10, u(5,t) = 30,
find a function v(x) = ¢1z + ¢2 so that the new unknown

w(z,t) = u(z,t) — v(z)
satisfies the heat problem with homogeneous boundary conditions.
What is the new initial condition for w?

b) Do the same for the general problem

Uy = ozzum

u(z,0) = f(z)
U(O,t) = Tl,u(L,t) = Tg,

where T7 and T, are constants. Therefore, if we can solve the
heat problem with homogeneous Dirichlet conditions, then we know
how to solve it when it has monhomogeneous, constant Dirichlet
conditions.
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8. a) Do the same as in Exercise 7 for the problem with mixed conditions

Ut = SUgy

u(z,0) = f()
u(0,t) = 12, uy(5,t) + u(b,t) = —2.

b) Do the same for the problem

U = dUgy

u(z,0) = f(x)
g (0,t) = 5, u.(2,t) = 3.

What’s the trouble in this case?

9. Suppose that we have a rod immersed in a large container of water which
is held at a temperature of 0°, and suppose that the rod is not insulated
at all. Then, it turns out, the temperature function satisfies a PDE of
the form

Up = P Uyy — Bu.

Briefly explain where the term —fu comes from.

2.5 Laplace’s Equation—The Potential Equation
In Chapter 9, when we generalize the heat and wave equations to higher
dimensions, we’ll get
two-dimensional heat: up = o (Ugy + Uyy),
three-dimensional heat:  u; = o2 (Ugy + Uyy + Uszz),
two-dimensional wave: g = ¢ (Ugy + Uyy ),
three-dimensional wave: wuy = ¢ (Uzaz + Uyy + Uszz).
It should not be hard to imagine, then, that the expression on the right side

of these equations is an important one. Indeed, it may be the most important
such expression in all of applied mathematics and mathematical physics.

Definition 2.2 Given the function u = u(x,y), the function

is called the two-dimensional Laplacian of u. (Similarly, the one-dimensional
Laplacian is ugy, and the three-dimensional Laplacian is tzg + Uyy + Uszz.)
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The formal notation for the Laplacian is
Vi =V - Vu = gy + Uy, *

where, from vector analysis, V is the operator

.0 .0
V—Z%—F]a—y,

so that the gradient of the scalar field u(x,y) is written
grad v = Vu = uzt + uyj,
while the divergence of the vector field F = Fy(x,y)i + Fa(z,y)j is written
div F=V.-F=F, + Fy,.
From now on, we may write the heat equation as
u = o*V3u

and the wave equation as
Upp = c2V2u,

where the number of space dimensions should be obvious from the setting.

Now, when Fourier began to study the heat equation, he first looked for
steady state solutions of the two-dimensional heat equation. These are time-
independent solutions of the heat equation and represent, in some sense, the
“final state” of the heat problem, after it has “settled down.” These solutions
will satisfy u; = 0, so they also must satisfy

Ugy + Uyy = VZu = 0. (2.17)

The same is true, of course, for steady state solutions of the three-dimensional
heat equation, as well as the two- and three-dimensional wave equations.

Equation (2.17), the third of the Big Three PDEs, is known as Laplace’s
equation’ (in two dimensions). Its appearance as a limiting case of the heat
and wave equations is interesting, but of much greater importance is the role
that Laplace’s equation plays in potential theory.

*There is no ambiguity in the notation V-V = V2, since, of the three possibilities V(Vu),
V x (Vu) and V - (Vu), the first makes no sense and the second is identically zero. By
the way, the Laplacian shows up often in the theory of elasticity. For example, the PDE
for a vibrating plate is (V2)2u = V*u = —cus, while for a vibrating so-called shallow
spherical shell we have VOu —c1V2u = —caugs. One often uses the notation A = V2. Here,
the Laplacian A sometimes is called the harmonic operator, and A% = V4 is called the
biharmonic operator.

tSolutions of Laplace’s equation are called harmonic functions.
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Again, from vector analysis, remember that a potential for a vector function
F' is a scalar function ¢ for which

grad ¢ = Vo =F.

In physical problems, involving gravitation, electricity and magnetism, fluid
flow and the like, it is very convenient if we can find a potential for a force
field or velocity field because

(1) It reduces the number of functions that we must deal with.
(2) It makes it very easy to calculate line integrals of the vector field.

Suppose, for example, that we’d like to find the electric field E= E(x, Y, z2) =
Fri+ Eqoj+ nge due to a certain distribution of electric charges. To be more
specific, suppose that electric charge is distributed along the boundary of a
rectangular box, and we’d like to calculate E inside the box. We will need
two of the four famous Mazwell’st equations from the theory of electricity and
magnetism. (See Appendix D.)

One of Maxwell’s equations says that

curl E =V x E = (Esy — E2.)i+ (B1. — F32)] + (Bay — Eyy)k = 0.
This, in turn, implies that E does, indeed, have a potential, ¢ = ¢(z,y, z), so
—grad ¢ = —Vo = E.b

Then, another of Maxwell’s equations says that, in regions where there is no
charge, we must have
div E=V-E=0. (2.18)

Hence,
—div E =V - (V¢) = V?¢ =0,

and ¢ satisfies Laplace’s equation. We may then solve this equation and
determine ¢ from its given values on the boundary. The function ¢ is called
the electric potential.

Not every potential function ¢ satisfies Laplace’s equation, but since the
potential functions in many important applied problems do satisfy it, the
Laplace equation often is referred to as the potential equation.

We’ll concentrate on solving the two-dimensional Laplace equation on a
rectangle; in Chapter 9 we will solve it inside a circle.

#James Clerk Maxwell (1831-1879), probably the greatest theoretical physicist of the 19th
century, and one of the greatest of all time.

8From a theorem in vector analysis: This will follow if the region throughout which VxE =10
is simply-connected. The minus sign is a convention; see footnote on page 70.
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BOUNDARY CONDITIONS FOR LAPLACE’S EQUATION

Since time is not involved, we have only Laplace boundary-value problems. As
with the heat and wave equations, at this point we are interested in solving
Laplace’s equation on finite domains and, in particular, on a rectangle (we
shall treat the circle in Chapter 9, where we consider polar coordinates). The
examples below are typical Laplace boundary-value problems on rectangular
domains.

Example 1

Ugg + Uyy = 0, 0<zr<3,0<y<2,
u(z,0) =0, 0<z<3,

uy(z,2) =0, 0<z<3,

u(0,y) = v, 0<y<2,

u(3,y) =2, 0<y<2.

See Figure 2.12.

y
5 Lg,(x,2) =0
uOy)=y> |  Vu=0 uG.y) =2
X
ux,0)=0 3

FIGURE 2.12
The Laplace equation boundary-value problem from Example 1.

Example 2
Ugg + Uyy = 0, 0<zr<4,0<y<b,
uy(z,0) — 2u(z,0) = 2z,
u(x,5) = 3,
u(0,y) = y?,

uz(4,y) + 3u(4,y) = 0.

In practice, we often encounter Laplace’s equation in situations where we
have just one type of boundary condition along the entire boundary. These
problems are so important that they are just called the Dirichlet Prob-
lem or the Neumann Problem (or, sometimes, the Interior or Exterior
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Dirichlet Problem, etc., depending on whether we are solving the PDE on the
interior or the exterior of the boundary).

Finally, going back to the problem of finding the electric potential, if we
are doing so throughout a region that does contain electric charge, then we
must use the more general version of Maxwell’s equation (2.18), which is

div E =V - E = 47,

where p = p(x,y, z) is the density of electric charge in the region. Then, we
have

V- E=V?¢=—4rp.

This is the nonhomogeneous Laplace equation. The general equation of this
form,

Viu=f.9

is called Poisson’s! equation.

Exercises 2.5

1. Find all w = u(x) which are solutions of Laplace’s equation tyy + Uy, =
0.

2. Find all polynomials of the form ax? + bzy + cy? + dz + fy + g which
satisfy Laplace’s equation.

3. Show that the function u = —Iny/22 + 92 satisfies Laplace’s equation
(except at the origin, of course). This function is called the logarithmic
potential.

4. Show that if v is a solution of Poisson’s equation ugy + uyy = F(z,y),
then so is w + cizy + cax + c3y + ¢4 for any choice of the constants
c1,Co,c3 and cy.

5. In the field of complex analysis, we consider complex-valued functions of
the form f(z,y) = u(x,y) + iv(z,y). In order to decide if f is differen-
tiable, we need to see if u and v satisfy the Cauchy—Riemann equations
Uy = vy and uy = —v,. Show that if u and v satisfy these equations,
then u and v both are solutions of Laplace’s equation. (Assume that u
and v have continuous second derivatives, so that the order of differen-
tiation doesn’t matter.)

9 Actually, we usually write V2u = —f or, commonly in more advanced texts, —Au = f.
There are various reasons: Signs of eigenvalues, the fact that an electron is negatively
charged, etc.

Il After Siméon-Denis Poisson (1781-1840), known also for his contributions to probability
theory.
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6. a) Show that the two-dimensional Laplacian is translation-invariant,
that is, show that if the independent variables undergo a translation
to the new variables ' = = + a, ¥ = y + b, where a and b are
constants, then

Ugg T Uyy = Ugrg! + Uyryr-

b) Show that the two-dimensional Laplacian is rotation-invariant, that
is, show that if the independent variables undergo a rotation through
angle « to the new variables 2’ = xcosa + ysina, y = —zsina +
1y cos &, where «v is a constant, then

Ugy + Uyy = Ugrgr + Uyryr-
7. Show that Poisson’s equation in polar coordinates is
1 1
Upr + —Uyr + —ugg = F(r,0),
r r

where F(r,0) = f(rcosd,rsinf).

8. Use the polar form from Exercise 7 to find all #-independent solutions
of Laplace’s equation, that is, all solutions u = u(r).

9. Show that, by separating the time variable in the two-dimensional heat
and wave equations, that is, by looking for product solutions of the
form u(x,y,t) = T(t)¢(x,y), we are led to the Helmholtz equation,
V2¢ + \¢p = 0.

2.6 Using Separation of Variables to Solve
the Big Three PDEs

We will solve the Big Three PDEs as we started to solve the heat equation in
Sections 1.6 and 1.7, that is, we’ll separate the PDE and boundary conditions
and then see what happens. Let’s look, again, at an example of the heat
problem.

Example 1 Try to solve the heat initial-boundary-value problem

,0) = f(z) (2.19)

(we'll look at specific cases of the function f(x) when the time is right).
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Again, we separate the PDE and boundary conditions. We let u(z,t) =
X (x)T'(t), and the PDE becomes

XT'=X"T
or
T/ X//
T=x = —J, constant
or

T'+ AT =0,X"4+XX =0 (for the same ).

The boundary conditions become

We first solve the boundary-value problem

X" +AX =0
X(0) = X(n) = 0.

Proceeding as in Example 1 in Section 1.7, we find that the eigenvalues and
eigenfunctions are
A\ =n?  X,(z) =sinnz, n=123,....

(You should carry out the calculations yourself.) Therefore, these A, are
the only values of A for which the X-boundary-value problem has nontrivial
solutions, so we need only solve the T -equation for these values of \! We have

T +)\T=0

or

which has solution
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Therefore, the nontrivial product solutions of the original problem, including
the boundary conditions (but not the initial condition), are

— 2 .
un(x,t) = e " sinnz, n=123,....

Also, since the PDE and boundary conditions are homogeneous, any linear
combination of these functions is again a solution. So any function of the form

o0
u(z,t) = Z cne ™ U sinna (2.20)
n=1
=cie tsinx + 0267“ sin 2t + 6367975 sin3t+ ---

is a solution (as long as it “converges nicely enough,” which turns out to be
the case).

Now, at this point we have found only linear combinations of product so-
lutions of the system

Ut = Ugy
u(0,t) = u(m,t) = 0.
However, surprisingly, we’ll see in the next chapter that, for just about any
function f(z), the solution of the original problem (2.19) must be of the form

(2.20). More precisely, for “any” function f(x), we’ll be able to determine the
constant c,, so that

u(z,0) = f(z) = icn sin nx
n=1

is satisfied! That being the case, we will call (2.20) the general solution
of the heat initial-boundary-value problem (2.19) (realizing, of course, that,
since (2.19) is well-posed, there really will be only one solution).

The question we must answer, then, is: Can we find values of ¢,, n =
1,2,3,..., for which

o0
flz) = Z ¢ sinnx?
n=1

The answer will have to wait until Chapter 3 for most functions f. However,
there are some special cases for which we already can find the values of ¢,.

Example 2 Suppose f(z) = 2sinz —5sin 3z in the previous example. Then,
we’d like to find the values of ¢,, for which

o0
2sinx — 5sin3z = E Cy, SINNT
n=1

=c18inx + co8in2x + cgsindx + - - - .
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It should be clear that ¢y = 2, co =0, c3 = —5, ¢4 = ¢5 = --- = 0 does the
job.* Therefore, the unique solution to (2.19), with f(z) = 2sinz — 5sin 3z,
is just (2.20) with these values plugged in, that is,
u(z,t) = 2~ sinx + 0e~* sin 22 — 5¢ " sin 3z
+0e ' sindt +0+0+ -

=2e tsing — 5e % sin 3.
Example 3 Solve the initial-boundary-value problem

Ut = Suww
u(z,0) = 17sinmx
u(0,t) = u(4,t) = 0.

We begin by separating the PDE and the boundary conditions. Letting
u(z,t) = X (2)T(t), the PDE becomes

X" T
XT' = 3X''T 2
3 R e

so the separated ODEs become
X"+ XX =0, T'+3)\T=0.

Separating the boundary conditions gives us

We now solve the X-boundary-value problem. The result is (see Exercise 1)
that the eigenvalues and corresponding eigenfunctions are

)\n:nw, Xn(x):sin@, n=123,....

Then, solving the T-equation for each A, gives us

3n27x2¢

To(t) = e 3t == 716 n=1,23,....
So the general solution is
(7.0) = 3 cne™ 56 i 12 (2.21)
u(z,t) = Cne sin —— :
) — n 4

*Are these the only numbers ¢, that do the job? The answer is yes—we’ll say more in
Chapter 3.
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and, applying the initial condition, we see that we need to find the values of
Cn,n=1,23,..., for which

u(z,0) = 17sinme = Z Cp Sin ——.

n=1

We see that we get the term sin 7z on the right side when n = 4. Therefore,
ca=17,¢c1 =cy =c3 =c5 =cg =--- =0, and our solution is

u(z,t) = 173t sin o

(which, as before, is the general solution (2.21), with the particular values of
¢n, plugged in).

Exercises 2.6

1.

Solve the X-eigenvalue problems in Examples 1 and 3, as was done in

Section 1.7.
Solve the heat equation initial-boundary-value problem
Up = 2Ugy
. 1.
u(x,0) = —sin 37z + 750 6mx
u(0,t) = u(1,t) = 0.

(Refer to Example 1 in Section 1.7.)

. Solve the heat equation initial-boundary-value problem

Ut = Ugy
u(z,0) = 3 4 cos 2mx
ug(0,t) = uy(3,t) = 0.

(Refer to Example 2 in Section 1.7.)
Solve the heat equation initial-boundary-value problem
Ut = Ugx
u(z,0) = 7COS57:E
ug(0,t) = u(m,t) = 0.

(Refer to Exercise 3 in Section 1.7.)

Find the general solution of the heat equation u; = o?u,,, subject to

the boundary conditions u(0,¢) = u(L,t) = 0.
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10.

11.

12.

An Introduction to Partial Differential Equations with MATLAB®

Do the same as in Exercise 5, but subject to u.(0,t) = u,(L,t) = 0.

Find the general solution of the wave equation uy = wugs, subject to
the boundary conditions u(0,t) = u(1,t) = 0. (Refer to Example 1 in
Section 1.7.)

Find the unique solution of the wave equation problem in Exercise 7,
subject to the initial conditions

u(z,0) = 2sin37rz  and w(x,0) = 5sinrwa.

Solve the wave equation initial-boundary-value problem

Ugt = dUzy
u(z,0) = 5sin 2z — 7sindx
ug(z,0) =0

u(0,t) = u(m,t) = 0.

a) In Exercise 27 of Section 1.6, you were asked to find all product
solutions of Laplace’s equation ug, + uyy = 0. Now, find which of
the product solutions also satisfy the boundary conditions u(0, y) =
u(m,y) = 0, and use these to form the general solution of Laplace’s
equation subject to these conditions.

b) Solve the Laplace boundary-value problem

Ugg + Uyy = 0

u(z,0) = sin 3z

u(z,1) =sinzx

u(0,y) = u(m,y) = 0.
MATLAB: Plot the solutions of the heat problems in Exercises 2, 3
and 4. You should plot them in two ways:

i) As surfaces u = u(z,t) in three-dimensional space

ii) As functions of x in the z-u plane, for various (fixed) values of ¢

In each case, investigate the behavior as t — oo, that is, the steady state
behavior.

MATLAB: Plot the solution of Exercise 9 in the xz-u plane, for various
values of ¢.



Prelude to Chapter 3

In this chapter we show that many of the “usual” functions with which we
are familiar or which occur in physical problems can be rewritten as—that
is, expanded in—infinite series of cosines and/or sines. Thus, the Big Three
PDEs, as well as other important PDEs, may be solved using separation of
variables for a wide variety of initial conditions.

These trigonometric series are called Fourier series, as they were investi-
gated by Fourier in conjunction with his application of separation of variables
to the heat equation. In fact, trigonometric series of this form had been used
by a number of mathematicians throughout the latter half of the 18th cen-
tury, including Euler, Daniel Bernoulli in his work on the vibrating string, and
Alexis-Claude Clairaut (1713-1765) in his study of the motion of the planets.

However, Fourier, in his 1807 paper on heat conduction, made the claim
that “any function” can be expanded in a trigonometric series and showed
how to do so. This paper was rejected by its reviewing committee—consisting
of Laplace, Joseph-Louis Lagrange (1736-1813), Gaspard Monge (1746-1818)
and Francois Lacroix (1765-1843), the first three of whom we shall meet again
soon. However, they encouraged Fourier to continue to develop these ideas,
and he responded with an award winning revision in 1811. Finally, in 1822
Fourier published his masterpiece, La Théorie Analytique de Chaleur (The
Analytic Theory of Heat).

Fourier and his series were here to stay. However, there still was no rig-
orous proof of the convergence of these series. More to the point, there still
was no precise definition of function, without which rigor is impossible. Much
of what was needed was provided by Dirichlet. In fact, mathematicians were
realizing that calculus needed a complete overhaul, in order for its arguments
to be mathematically justified. This overhaul continued unabated into the
20th century, by which time we had a new theory of integration (initially
spurred, by the way, by the integral coefficients in Fourier’s series), a precise
definition of real number and of limit, and a “new” calculus based on these
notions. This whole process—this “arithmetization of analysis” as it is some-
times called—had its roots in the trigonometric series of Joseph Fourier and
his contemporaries.
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3

Fourier Series

3.1 Introduction

At the end of the previous chapter, we were given an arbitrary function f(x)
defined on 0 < z < L, and we wanted to know if there is a linear combination
(possibly with infinitely many terms) of the functions sin 222 that is identical
to f(z) on 0 < & < L. That is, can we find coefficients ¢,, n = 1,2,3,.. .,
such that

oo
) = Cp Sin nre 3.1
f£) =3 ensin ] (3.1)
for0 <z <L?

Fourier’s affirmative answer to this question in 1807, while not quite correct,
marks a pivotal moment in the history of mathematics. Indeed, this surprising
and profound result not only disturbed Fourier’s mathematical contemporaries
but, ultimately, rocked the very foundations of mathematical analysis.

What we would like to do is to assume that (3.1) is true and actually find
the values of the coefficients ¢, for which it is, in fact, true. Let’s do this and
worry about serious mathematical issues afterwards. (We say that we proceed
formally.) To this end, we will fix positive integer N, multiply both sides of
(3.1) by sin Ngw and then integrate both sides from x = 0 to = L, resulting

mn

L oo L
N Nmx
[ sin = 3 [ e 52
Then, it is easy enough to calculate the integrals in (3.2). It turns out that
L .
nwT N7z 0, ifn#N,
sin — sin dr = 3.3
/0 L L {%, ifn=N, (3:3)

50 (3.2) becomes

L
N L
/ f(a:)sin%dxzcl-0=cz~0—|—-~-—|—cN_1-0—|—cN~§—|—CN+1-O+-~-
0

or

2 [ . Nmz
CN_E/O f(z)sin T dx. (3.4)
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Therefore, we have determined the values of ¢, for which (3.1) is true. Or
have we?

Many readers will notice that we assumed the truth of (3.1) and then cal-
culated the values that the coefficients must take on. This, of course, says
nothing about the truth of (3.1). Further, the series in (3.1) is an infinite
series of functions. As we know, an infinite series of constants may not even
converge; an infinite series of functions may, then, converge for some values
of x and diverge for others.

Finally, there is a more subtle problem with the above argument. We
actually skipped a step in going from (3.1) to (3.2)—we assumed that we
could integrate the right side term-by-term, i.e., that

L [ % o0 L
N N
/0 <,§_1 Cp Sin ? sin %) dx = E Cn, /0 sin % sin ;jx dx.

n=1

It turns out that, even if an infinite series of functions converges for all ap-
propriate values of x, it still may not have this property.

Fortunately, for “most” of the functions that we deal with in calculus and,
in particular, for functions which arise in physical problems, we will see that
we need not be concerned with these issues.

Now, instead of working directly with (3.1), or with the analogous series
involving cosines, we will first consider the following related question:

Given f(x) on —L < x < L, is it possible to find constants ¢,, and
dn, n=0,1,2,..., so that

oo

flz) = Z (cn cos ? + d, sin %)

n=0

=co+ Z (cn cos n_;r;x + d,, sin nLﬂ) (3.5)

n=1

on —L<x<L?

(This series will be called the Fourier series of f(z) on —L < z < L;
similarly, (3.1) will be called the Fourier sine series of f(z) on 0 < z < L.)

3.2 Properties of Sine and Cosine

We start by looking at the properties of sine and cosine that will be relevant
to this discussion. There are three such properties: periodicity, symmetry and
orthogonality.
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PERIODICITY

Remember that the functions y = sin pz and y = cos px are periodic, as can
be seen from their graphs in Figure 3.1. We see there that, for any value of x,

. , < 277) , ( 47r>
smpr=smmp|x+ — ) =smp|lx+ — | =---
p p

v (%) = (= 5)
=sinp|lzx— — | =sinplz—— ) =---
p p

and, similarly, for cos pzx.

X X t t t t X
) l\/ 2n 3n %/ E 2\
p - p p p _1 P P p
fundamental period fundamental period

(a) y =sin px (b) y =cos px

FIGURE 3.1
Graphs of y = sinpx and y = cospx, showing the fundamental period
2n

r

Definition 3.1 If there exists a number T # 0 for which f(x+T) = f(x) for
all x in the domain of f, then we say that f is periodic of period T. The
smallest positive period of f is called its fundamental period.

The fundamental period of sinpx, as well as of cospz, is T = 27” (see

Exercise 5). Now, since we are interested in linear combinations of functions
of this form, let’s look at a few examples of such.

Example 1 Is f(z) = 2 4 3sinz periodic? If so, what are its periods?
We know that 27 is the fundamental period of 3sinz. Also, the constant
function 2 seems to be periodic, with every possible period! (Hence, it has no
fundamental period. Why not?) So we suspect that the fundamental period
of f is 2m. Let’s see:

flz+27) =2+ 3sin(z + 27)
=2+ 3sinz.

Therefore, f has period 2km for any nonzero integer k. It is easy to show that
these are the only periods of f.
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Example 2 Do the same for f(z) = sin2z + cos4x. The first function has
fundamental period 7; the second, 5. Therefore, f has fundamental period
(why 7 and not 7). See Figure 3.2.

WANAVAWAVAN.

VRNV

FIGURE 3.2
MATLAB graph of y =sin2x + cos4z, with fundamental period .

It follows that sin “7* and cos “7* each has fundamental period T' = %
Also, since sin ¥ and cos %* have fundamental period 2L, and since any

integral multiple of a period also is a period, we find that any finite series

N
nwx . nmx

Fy(z)=co+ nzl (cn cos < +d,, sin T)

has period 2L. Tt follows that, if the infinite series in (3.4) converges, it also

must be periodic of period 2L. (This is not hard to show and should be

“relatively obvious.”)

SYMMETRY

We notice that the graph of y = cos *7* is symmetric with respect to the

y-axis, while that of y = sin “7% is symmetric about the origin.

Definition 3.2 f(x) is even if its graph is symmetric with respect to the y-
azis, that is, if f(—x) = f(x) for all x in the domain of f; f(x) is odd if its
graph is symmetric with respect to the origin, that is, if f(—x) = —f(x) for
all x in the domain of f. (See Figure 3.3.)
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) ' f(=x) X

x — 0|

(a) feven (b) fodd

FIGURE 3.3
Typical even and odd functions.

Example 3 1,22, 2%, ... are even functions (hence the name “even”).
Example 4 x,23 2%, ... are odd functions (hence the name “odd”).
(Note that the same is true for negative powers, on the restricted domain
x #0.)

It is easy to show that any linear combination of even/odd functions is

even/odd. What about products and quotients? Suppose f(z) and g(z) are
even functions, and look at the product h(z) = f(z)g(x). We have

h(—z) = f(=z)g(-x)
= f(z)g(x)
= h(z) for every z in the domain of h.

(Similarly for the quotient of two even functions.) Thus,

f(x),g(z) even = f(x)g(x) even.
A similar argument (see Exercise 12) gives us

f(x),9(x) odd = f(x)g(x) even
f(x) even, g(z) odd = f(z)g(z) odd.

Now, back in (3.2), we needed to integrate products of functions. Similarly,
when finding the coefficients in (3.5), we will be integrating such products,
but on the interval —L < x < L. Even and odd symmetries not only will make
our life easier now but, more importantly, will allow us to make an easy jump
from Fourier series to Fourier sine and cosine series. So, looking at Figure 3.4,
the following simplification should be “obvious”:

f even on —L§$§L:>/L f(x)dx:2/Lf(x)d;v:2/0 f(z)dzx
L 0 —L
(3.6)

L
f odd on —Lgng:/ f(z)dz = 0.
L
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>
o

(a) feven (b) fodd

FIGURE 3.4
Integrals of even and odd functions on —L <z < L.

Let’s prove the second statement—the first is left to Exercise 13. Suppose f
is integrable and odd on —L <z < L. Then

/_LL f(z)dz = /_OL f(z)dz + /OL F(a)da
- _/_OL f(—z)dz + /OL f(z)dz, since f is odd

0 L
= / flw)du +/ f(x)dz, from the substitution v = —x
L 0

= —/OL f(u)du+/0Lf(x)d;v
=0.

ORTHOGONALITY

Back in equation (3.3) we mentioned that

L
/Osinn—?sinmzxdxz() if n#m.

We say that the functions sin “7* are orthogonal on 0 < z < L. But let us

be more precise, while introducing some new terminology.

Definition 3.3 Given two functions f and g which are integrable on a < x <
b, their inner product on a < x < b is the real number

b
(f,9) =/ f(x)g(z)d.

The inner product is motivated by the fact that Riemann sums of this integral
are of the form

Az~ flwi)g(w),
i=1



Fourier Series 85

which has the same form as the dot product of two n-dimensional vectors.
Indeed, the inner product is an infinite-dimensional analog of the dot prod-
uct in R™. Then, analogous to the concept of perpendicularity, we have the
following definition.

Definition 3.4 If (f,g) = 0, we say that f and g are orthogonal on a <
x <b. Given a set of functions {fn(z)} ona <z <b, if

(fa, fm) =0 whenever n #m,

we say that the functions f,(x) are pairwise orthogonal and that the set
{fn(z)} is an orthogonal set.

Now, just as we needed the fact that the functions in (3.1) form an orthog-
onal set on 0 < z < L (as we saw from (3.3)), so we will need to show that the
functions appearing on the right-hand side of (3.5) are pairwise orthogonal on
—L <z < L, that is, that the functions

1 ™ 2mx . T . 27z
, COS —, CO0S —, ..., sin —,sin —, . ..
L L L L
form an orthogonal set on that interval.
For example, let’s look at
L
nmwx mmnx nwx mmx
sin —,sin —— ) = sin — sin dz. 3.7
< L L > /_ L L L (37)

Since sin *7* sin 77 is even (why?), we can write

L
<sin n_Zx’ sin $> = 2/0 sin ? sin mgw dzx. (3.8)

To deal with these integrals, we will need the trigonometric identities

sin(a 4+ b) = sina cosb + cosasinb, (3.9a)
sin(a — b) = sina cosb — cosasinb, (3.9b)
cos(a + b) = cosacosb —sinasinb, (3.9¢)
cos(a — b) = cosacosb+ sinasinb. (3.9d)

Now, the integrand in (3.8) is of the form sina sin b, so we use identities (3.9¢)
and (3.9d); specifically, subtracting (3.9¢) from (3.9d) gives us

1
sinasinb = §[cos(a —b) —cos(a+b)].
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Therefore, (3.7) becomes

< . hmxr o o, m7TJ?> /L |: (’I’LT('J? mwx) (’I’LT('J? + mwx)} d
S ——, S1n = cos|—— ——) —coS | —— —_— X
L' L 0 L L L L

L
{/ {COS W — cos (”ﬂf)m} dz, ifn#m,
—JJo

L
/ [l—cos%%]d:v, ifn=m

0, ifn#m
L, ifn=m,forn=1,2,....m=1,2,..

.(.3.103)

For example, see Figure 3.5 where we look at (sin2z,sin4z) on —7 < x < 7.

Similarly (see Exercise 14),

<1,cos$> —0, forn=1,2,... (3.10D)
<1,sm n_7IT/a:> =0, forn=1,2,... (3.10¢)
<sin@,cosmm> —0, forn=1,2,...;m=1,2,... (3.10d)
L L
< mwx> 0, ifn=#m,
€os ——, cos = i
L L, ifn=m,forn=12,...;m=1,2,...
(3.10e)

and, of course,

(1,1) = 2L. (3.10f)

So we see that the functions in (3.5) do, indeed, form an orthogonal set.
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1

0.8 -

0.6 u

RTATRTAY

—-0.8 -

FIGURE 3.5
MATLAB graph showing the orthogonality of the functions sin2z
and sin4z on —w <z < 7: (sin2z,sindx) = ffﬂ sin2zsindz dz =0

Exercises 3.2

In Exercises 1-4, determine whether or not f(x) is periodic. If so, find its
fundamental period.
MATLAB: Afterwards, check your answer by graphing the function.

L. f(x) =2sinme —3cos F + 7
2. f(x) =cos§ +sinw

3. f(z) =xsinzx

4. f(z) = cosdx + cos 3z

5. a) Use the identities in (3.9) to prove that sinpz and cos pz are peri-
odic of period T' = %T’T for any nonzero integer k.

b) Use the fact that sin pz and cos pz are linearly independent to prove
that these functions have no other periods.

6. True or false? Prove, or provide a counterexample.

a) If f(x) and g(z) are periodic of period T, then so is ¢ f(x) + cog()
for any choice of constants ¢; and cs.

b) If f(z) and g(z) are periodic of period T, then so are f(z)g(x) and
f(@)/g(x) (on their domains).
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¢) If f(z) and g(z) are periodic with fundamental period T, then
f(x)g(x) is periodic with fundamental period T

7. Use mathematical induction to prove that if f(z) has period T', then
f(x) also has period kT for any nonzero integer k.

In Exercises 811, determine if f(x) is even, odd or neither.
8. f(z) =5z*—922+6
9. f(x)
10. f(z) =cos3 (z— %)
11. f(x)
12. Prove:

a) If f(z) and g(z) are odd, then f(z)g(z) is even.
b) If f(x) is even and g(z) is odd, then f(z)g(z) is odd.

13. Prove statement (3.6).

14. Fill in the details in the derivation of (3.10a), then derive equations
(3.10b) through (3.10f).

15. a) Show that the functions f(x) = 2™ and g(z) = 2™, where n,m € N,
are orthogonal on the interval —L < x < L if and only if n is even
and m is odd (or vice versa, of coursel!).

b) Show that the functions {1, x, 22, 23, ...} do not form an orthogonal
seton —1 <z < 1.
16. a) Show that the functions 1 and z are orthogonal on —1 <z < 1.

b) Find a quadratic polynomial which is orthogonal to both 1 and z,
on —1<z<1.

¢) Show that the quadratic in part (b) actually is orthogonal to any
linear function f(z) =azx+b,on -1 <z <1.

d) Find a cubic polynomial which is orthogonal to 1, z and the quadratic
from part (b), on —1 < z < 1. (If we continue in this manner,
we generate a set of orthogonal polynomials called the Legendre
polynomials, which we treat in Chapter 7.)

Suppose we are given a (fixed) function w(z) > 0 on @ < & < b. We may
generalize the idea of inner product by defining

b
<f79>:/ f(@)g(z)w(x)dx.
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This is called the inner product with respect to the weight function w(x)
and, if (f,g) = 0, we say that f and g are orthogonal with respect to w
ona <z <b (If wx) =1, then we’re back to the original definition of
orthogonal—in the present context, we will then say that f and g are simply
orthogonal.)

17. Find the inner product of f and g, with respect to the weight function
w, on the given interval.

a) f(z) =z,g(z) =2%w(@) =z, 0<z<4
b) f(x)=1+z,9(x)=2+z,w(x) =22 0<z<1

18. a) Show that the functions 1,z,2x? — 1 form an orthogonal set on
—1 < 2 < 1, with respect to the weight function w(x) = \/11_7
(Hint: Use a trigonometric substitution.) These are the first three

Chebyshev polynomials of the first kind.

b) Show that the functions 1,1—z,1—2z+ %xz form an orthogonal set
on [0, 00), with respect to the weight function w(z) = e~*. These
are the first three Laguerre polynomials.

3.3 The Fourier Series

Now we are ready to look at the question from Section 3.1, namely, given any
function f(x) on —L < 2 < L, can we find coefficients ¢,,, n = 0,1,2, ..., and
dn,n=1,2,..., such that

= nmx . nhmx
f(x) =co+ 7; (Cn cos ——+ dp sin T) (3.11)

on —L < x < L? Fourier asserted that the answer is yes for any func-
tion f(x) and, thus, that the corresponding series always converges, and he
provided formulas for the coefficients. Actually, the coefficients already had
been determined much earlier by Euler and Clairaut, with Euler employing
the now-standard method that we use here. However, as mentioned, Euler,
Clairaut and others were more circumspect with regard to which functions
f(x) could be so expanded.

All of this talk ultimately led to a more precise idea of what we mean by
a function and to a much closer look at what it means for a function to be
integrable. Also, as we shall soon see, Fourier was overly ambitious in his
claims, although he was “more-or-less correct” if f(x) is the kind of function
that we are familiar with from calculus.
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Again, let us proceed formally, assuming that there are constants ¢,, d,, for
which (3.11) is true, and go about finding these constants.

So, in order to determine a coefficient, we multiply (3.11) by the function
associated with that coefficient. Then, we integrate both sides from x = —L
to x = L, assuming that we may do so term-by-term. For example, to find
cn, for N > 1, we multiply through by cos =% N 2 and integrate, resulting in

/L f(zx)cos chdx =cp /L cos chdx
—L _L L
+ icn/_L cosn—zxcos Ngxdx
+Zd / smﬂcos Ngxdx
:co<1,cos N7rx> —i—icn <cos nLix,cos N;er>

n=1

> nwT Nrnx
dn i Y
—I—; <sm i cos 7 >
=c-0+c-0+---+cy_1-04+cyp-L+ceysr -0+
-+dy-0+dy-0+---

and, solving for ¢y, we have

L
—l/ f(x)costcd
LJ_p

Similarly, we can find ¢y and each dy:

1 L
E/—L f(z)dzx
L
= %/_Lf(a:)sin ?dm.

We summarize these results in the following definition.

Definition 3.5 Given a function f(x) on —L < x < L, the Fourier series
of f on —L < x < L is the series

294 Z (an cos X 4 b, sin n_j;m) ) (3.12)
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where the coefficients are given by
1 L
:Z/fo(gC)COS?dw’ n=0,1,2,...
1 L
:flLf(ﬁ)Sian:vdx’ n=12...

(assuming these integrals exist).

By definition, the Fourier series of a function is unique, and from
the above it follows that, if f can be expanded in such a series of sines and
cosines, then this series must be its Fourier series.* (Also, see Exercise 14.)

Actually, we shall see later (in Chapter 8) that it is possible to expand f
in series involving functions other than sine and cosine. It is because of these
generalized Fourier series that we often refer to (3.12) as the trigono-
metric Fourier series of f on —L <z < L.

At this point, we have not answered the questions: Does the Fourier series
actually converge? If so, does it converge to f(x)? In fact, we really should
not even write F(z) = --- in (3.12) until we know that the series does, indeed,
converge. Therefore, we write

~ 2y Z (an COb— + by, sin n_Zm) . (3.13)

Let’s compute some. Calculate the Fourier series for the given function on
the given interval.

Example 1 f(z)=2zon -7 <z <
Our coefficients are

1 s
ag = —/ x dxr =0,
m —Tr
1 s
ap = — xcosnx dr =0, since x cosnz is odd,
™ —Tr
1 ™
b, = — rsinnx dr
T
2
=— rsinnx dz, since zsinnx is even
T Jo
2 1 1 [
= — |——xcosnx +— cosnz dz| ,
T n n Jo

*To be precise, this is true so long as term-by-term integration of the series is justified. This
certainly is the case if the series is finite (and, more generally, if it converges uniformly to
fon —L <z< L. See Appendix A.)
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where we have integrated by parts

2 {_lmsm] — 2y

T n n
and we have

n+1

x ~ i (—%) (-1) smn;v—2z sin nz.
n=1

Example 2

1, ifo<z<2

aO:%/ x)dx = = /f Ydx + = /f
——/ 0d +1/1d
BN RSN N

—0+1=1,

/f cos—dx

1 /2
:E/_2Oc05n7d +2/0 lcosn—;mda:

1 2
—0+—-sinEz =0,
2 o

ﬂ@:{m%ﬁ4§x<Q

b, = / f(x)sin —dx

1 /2
2/7208111”%(11'4-2‘/0 1sinn—72mdx

1 mmc’2 1—-(=n"
08 _—
nw

and

We’ll wait until the next section to answer the big questions about conver-
gence of the Fourier series.
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Exercises 3.3

In Exercises 1-12, calculate the Fourier series of f(z) on the given interval.

10.

11.
12.
13.

14.

2 if-1<z<0
f(x)_{Q fo<z<l1

1, if-3<z<0
f(gc)_{z ifo<z<3

fl@)=2,on -5<z <5

fl@)y=2z+1,on -7 <z<7

Cf@)=2%on-1<z<1

2?2, if2r<a<0
22, if0<z<2r
f@)=lz],on -1 <z <1

flx)=22+z,on —n<z <7

f(x)z{o’ if —m<x<3

1, if§§x<7r

0, if m<wr< -3
: s T
lf—§<$<§
0, ifggxgw

fl@) =2+43sin2x —5cosdz, on —r < x <
f(x) =sinz,on -5 <z <3

In Example 1, we saw that, for the odd function f(z) = z, the Fourier
series contains only sine terms, i.e., we had a,, =0,n =0,1,2,.... Such
a Fourier series is called a pure sine series.

a) Show that the Fourier series of any function which is odd on —L <
x < L is, in fact, a pure sine series.

b) Show that the Fourier series of any function which is even on —L <
z < L is a pure cosine series, i.e., that b, =0, n=1,2,....

¢) Is the function in Example 2 even or odd? Is its Fourier series a
pure cosine or pure sine series?

a) Explain why the functions 1, cos 7%,

linearly independent on —L < x < L.

c . NTIT _
sin "7, n = 1,2,3,..., are
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b) Show that, if

o0
?04—2(0,”(:05?4—1) banLx)
n=1
= nwx
50 Z(cncos——i—d smT),
we must have a, = ¢,, n=20,1,2,...,and b, =d,, n =1,2,....

15. Given f(x) on —L < = < L, let z = ax, where a is a constant, and
9(z) = f(z/a).
a) Find a so that g(z) has domain —7 < z < 7.

b) Using the value for a, compute the Fourier series for g on —7 <
z < 7. Then, use this series to recover the Fourier series of f on
—L<x<L.

Thus, WLOG, we need only know how to compute Fourier series on
—nm<x<T.

16. Fourier Series on Other Intervals

a) Show that the functions 1, cos “T%, sin 7% n = 1,2,..., are pair-

wise orthogonal on any mterval of length 2L.

b) Show that any piecewise smooth function f(x) on a < z < b can
be expanded into a series

:70 Z[ancos + by, s 1n$ ,

where L = b*T“; in particular, find expressions for the constants
Qp, by
¢) Compute this series for f(z) =z on 1 <z <4.
17. Complex Fourier Series: Using Euler’s formula, e? = cos + isin 6, we
can rewrite the Fourier series in the form

o0
ikmx
E cpe L .

k=—o0

Using L =,

a) Find the coefficients ¢ in terms of the coefficients a,, and b,, of the
original Fourier series (where k = £n).
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It turns out that, when complex functions are involved, we must change
the definition of inner product, so that it has certain desirable mathe-
matical properties which are satisfied by the real inner product and the
vector dot product. Actually, this complex inner product turns out to

be
L
(F(2), g() = / Tgte) de.

where f(z) is the complex conjugate of f(z). Note that if f and g both
are real, then this turns out to be the same as the inner product from

Definition 3.3.

b) Show that etk = e~k

[e.°]

c) Assume that f(z) = Y. cpet*® on —7 < r < 7. Find the

k=—oc0

coefficients by way of the complex inner product (e**, f(z)) on

—r<x<m.

3.4 The Fourier Series, Continued

Now we are ready to deal with the question of convergence for Fourier series.
Specifically, we’ll state in this section, and prove in the next section, the
famous theorem of Dirichlet” from 1829, in which he proved that if f(z)
consists of a finite number of smooth arcs, then the Fourier series converges
for all z, and it converges to f except, possibly, at a finite number of z-values.

But let’s be more precise.

Definition 3.6 Given f(x) and a point x = xg, not necessarily in the domain

of f, we define

f(xo+) = lim_f(z)

+
I—>E0

flwo—) = lim f(z).

I—>E0

See Figure 3.6.

T Actually, the theorem we state is not exactly Dirichlet’s Theorem. For a very nice historical

treatment of the latter, see David Bressoud’s A Radical Approach to Real Analysis.
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y
3 f2+) =3
O
1——\' f(2-) =1
1 X
2

FIGURE 3.6
A typical jump discontinuity.

Definition 3.7 Given f(x) with domain a < x < b, we say that f is piece-
wise continuous on a < x < b if

1) f has a finite number of discontinuities in a < x < b.

2) At each point of discontinuity xo, a < o < b, f(xo+) and f(zro—) both
exist (and, therefore, are finite).

3) f(a+) and f(b—) both exist (and are finite).

(Actually, f meed not exist at the points of discontinuity.) If f'(x) also is
piecewise continuous on a < x < b, we say that f is piecewise smooth

there.

1, if—-2<zx<3
Example 1 f(z)={"’ -7
ple 1 f(z) {5, if3<2<6
is piecewise smooth on —2 < x < 6.

Example 2 f(z) = 22 is piecewise smooth on any interval a < x < b (in
fact, it is smooth on any interval a < x <b).

x, ifl1<a <2,
fley=49"1 .
T—2 1f2<x§3

Example 3

is not piecewise continuous on 1 < z < 3, since f(2+) = co. See Figure 3.7.
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6

FIGURE 3.7
MATLAB graph of the function from Example 3.

Example 4
1, ifx=—4,
r if—-4<z<l,
F@) =939 ifp-1,
—2/ifl <z <4

is piecewise smooth on —4 < z < 4. See Figure 3.8.

y

FIGURE 3.8
Graph of the function from Example 4.

Example 5 f(z) = ¢/x is piecewise continuous but not piecewise smooth on
any interval containing x = 0, since f'(0+) = f/(0—) = oo. See Figure 3.9.
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1.5 -

0.5+ -

2 I I I I I I I
-2 -1.5 -1 -0.5 [o] 0.5 1 1.5 2

FIGURE 3.9
MATLAB graph of the function f(z) = ¥/=z.

From calculus, a very important property of piecewise continuous functions
is that they are integrable. More precisely, if f(x) is piecewise continuous on
a < z < b, with discontinuities at x1,...,x,—1 (and, possibly, at zop = a or

Zn = b), then
b n x;
/ flz)dz = Z/ f(z)dx.
a i=17/%i-1

(A “typical” example is shown in Figure 3.10.) Also, many of the theorems
on continuous functions have their analogs for piecewise continuous/smooth
function, e.g., if f and g are piecewise continuous/smooth, then so is their
sum, their product and the like.

FIGURE 3.10
Evaluating the definite integral of a piecewise continuous function.
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Now we are ready to state the big theorem.

Theorem 3.1 If f(x) is piecewise smootht on —L <z < L, then its Fourier
series, F(z), converges on —L < x < L, and
1) F(x) = f(z) for all x in —L < x < L where f is continuous.
2) F(x) = % forall x in —L < x < L where f is discontinuous.
_ _ f=LP)+Hf(EL—
8) F(=L) = F(L) = H==tH i),

(The proof will be given in Section 3.5.) It also can be shown that the Fourier
series converges uniformly, and that’s all we need to be able to integrate it
term-by-term. See Appendix A.

Let’s get right to some examples. In each case, we draw the graph of
y = f(z) and the graph of its Fourier series, y = F(z).

Example 6 f(z) =z,-2 <z <2.
See Figure 3.11.

y y
)L
5 )
+ 22
(a) y=1(x) (b) y=F(x)
FIGURE 3.11

The function from Example 6 and its Fourier series.

Example 7
, if —2<z<1,
f(gc)_{:c—L fl<z<2.

See Figure 3.12.

It actually turns out that the assumption that f be piecewise smooth can be relaxed,
without too much difficulty.
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We note that the Fourier series is “blind” to the discontinuous points of f,
i.e., if we change the value of f at a discontinuous point, it does not change
the Fourier series. In fact, we may change f at a finite number of points
without effecting a change in the Fourier series. The reason for the behavior
is that the coeflicients are determined by integrals involving f, and the value
of an integral is unaffected by changing the values of the integrand at finitely
many points.

y y
2 ’ . . . .
1+ / L] L] ]
-2 -1 1 2 -6 -5 -4 3 -2 -l 1 2 3 4 5 6
(@) y=1£(x) (b) y=Fx)
FIGURE 3.12

The function from Example 7 and its Fourier series.

Now, when we graphed the Fourier series above, we graphed them on —L <
x < L. However, the domain of each term of the Fourier series is all real
numbers. Also, we mentioned earlier that the Fourier series is periodic
of period 2L. Hence the actual graph of the Fourier series is the graph on
—L <z < L extended periodically.

Definition 3.8 Given a function f(x) defined on a < x < b, the function
g(x) defined by

gx) = f(x), a<z<b, and
gla+T)=g(x), forallx, where T =b— a,
is called the periodic extension of f (of period T ). See Figure 3.13. (We’re

being a bit sloppy here, since we may have f(a) # f(b). Again, though, we’re
not so concerned about the points of discontinuity.)

So the Fourier series of f actually is the periodic extension of f (of period
2L, of course), with the possible exception of what happens at the points
where f is discontinuous, as well as the endpoints x = £+ L.

Finally, we may restate Theorem 3.1 more succinctly. First, if x is a point
in —L < x < L where f is continuous, then

PR (LY (D)

Next, letting fy,(z) be the periodic extension of f, we can write

f(=L+) = fp(L+)
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and

f(L=) = fp(=L—-).

We then have the following corollary.

Corollary 3.1 If f(z) is piecewise smooth on —L < x < L, and fp(x) is the
periodic extension of f(x), then the Fourier series F(x) converges for all x

and
F(z) = fp(33+) ‘g fp(x_)

for all =x.

Exercises 3.4

In Exercises 1-6, determine if f(x) is piecewise continuous and if it is piecewise
smooth (assume that L > 0). (If f is actually continuous or smooth, say so.)

1. f()=lzl,on —L<z <L

—22 f—-L<x<0
2. = ’ - ’
f(@) {x2, fo<z<L

3. f(x):x2/3, on —L<z<L

. x
5. flx) = tan x, ?f—§<x<§,
0, ifr==+35
2, ifx=-3,
6. f(x)=q=z, if-3<x<l,
1, ifl<az<3
7. f(0)=0and, for x #0,—-L <z < L,
a) f(z) =sing
b) f(z) =asin
¢) f(z) =a®sinl

In Exercises 8-13, sketch three periods of the graph of the Fourier series of
f().

8. f(z)=2?on —2<x <2

9. f(e)=2x4+1lon -2<x<2

0 if —3<x<0
10. — 7 = ’
/(@) {1—@ fo<z<3
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11.

12.

13.

14.

An Introduction to Partial Differential Equations with MATLAB®

f@)=3—z|on -1<z<1

24z, if-3<z< -1,
flx) =144, if —1<z<2,
66—z, f2<x<3
e 4 3 2 12
w, ifz=-1,-4 -8 2 _1q12 1

_1
f ) = . 5 5 57 5 » 57 50
(@) 2, otherwise

on—-1<zx<1

3 4
55

MATLAB: Redo Exercises 10 and 12 using MATLAB.

In Exercises 15-17, decide if the statement is true or false. Assume that f is
piecewise smooth on —L <z < L.

15.
16.
17.

18.

19.

If f is continuous, then so is its Fourier series.
If f is discontinuous, then so is its Fourier series.

If f is even and continuous, then its periodic extension is identical to
its Fourier series.

Although each term in the Fourier series is a continuous function for
all z, the (infinite!) sum of these terms can be (and “usually” is) a
function which is not continuous. This was surprising and unacceptable
to mathematicians of the 18th century. Looked at more precisely, we
have a sequence of continuous functions

N
_ag nmx T
F,(x) = ) + Z (an €08 —— + by, sin T)
n=1
which converges pointwise to a discontinuous function. Actually, there
are examples of this phenomenon which are closer to home. Consider
the functions

falz)=2" on 0<z<ln=12....
What function does this sequence tend to as n — 0o?

In the 17th and 18th centuries, starting even before the discovery /inven-

tion of calculus, finding the sum of various infinite series was a hot topic.

For example, as early as 1736, Euler quite cleverly came up with the sum
g0

—n 6

a sum that other famous mathematicians had been unable to evaluate,

the most notable being the Swiss mathematician James Bernoulli (1654
1705). (By the way, the Bernoulli family is to mathematics as the Bach
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family is to music. The most well-known of the Bernoullis are James;
his brother John who, incidentally, had been Euler’s teacher; and John’s
son, Daniel, the last two of whom we have already met.) Around this
same time, Euler also came up with

4

1 7 1 76
= =" and - -
;n“ 90 M ;nﬁ 945

a) Many of these infinite series are much easier to deal with using
Fourier series. Use the Fourier series for f(z) =2?on -1 <z < 1
and Theorem 3.1 to derive Euler’s sum

ii—u fipe= T
22 9 6

b) Use the same Fourier series to find the sum

i n+1_ _1+1_i+
- R R T

that is, the alternating version of the sum in (a).

¢) Even before he discovered/invented calculus, Gottfried Wilhelm
Leibniz (1646-1716) was working on summing infinite series; in-
deed, this work led him to his development of calculus. Along
the way, in 1673, Leibniz used a beautiful geometric argument to
conclude that
i 1)+t L1 1
—( 2k-— 1) 35 7 47

Post-calculus, there are various ways to determine this result. Use
the Fourier series for f(z) =z on —7 < & < 7 to prove it.

20. Establish the result

1 n 1 n 1 P 2
12732 52 -8
two different ways.

a) Using the Fourier series for f(z) = |z| on —1 <z < 1.
b) Algebraically, using the results from Exercises 19a and 19b.
21. MATLAB: Gibbs phenomenon. If you plan on skipping the follow-

ing section, read Example 1 of that section. Then do the same for the
following functions.
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if —2<z <1,
r—1, ifl<zr<2

14z, if-1<z<0,

d)ﬂm:{1—% ifo<z<1

~1, if-3<z< -2,
1, if-2<z<2,
~1, if2<z<3

3.5 The Fourier Series—Proof of Pointwise Convergence’

We now prove the results given in the previous section. We do so for the
interval —7m < x < 7, that is, for L = m, realizing that the proof for arbitrary
L proceeds similarly (or realizing that we may transform a problem on —L <
2 < L to a problem on —7 < x < 7). Further, we may assume at the start
that f(z) already has been extended to a function on the real line, with period
2m—in essence, then, we are proving Corollary 3.1.

We proceed as follows. First, we list the steps required to prove Corol-
lary 3.1 for those x where f is continuous. Next, we fill in the proof of these
steps. Finally, we modify the proof in order to deal with those values of x
where f is discontinuous.

PROOF that f(z) = F(z) at all points where f is continuous
For each such 2 we wish to prove that the n*® partial sum
sn(z) = % + ];(ak cos kx + by sin kx)

converges to f(x), that is, that

lim [s,(z) — f(x)] =0

n—oo

for each (fixed) x at which f is continuous. To this end we will

§This section may be skipped without loss of continuity (no pun intended).
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[1] Rewrite s,(z) as

1+2 i cosk(t —x)| f(t)dt.

k=1
[2] Show that
n i 2n+41
Sin t—x
1+2ZCosk(t—a:) = %* (for —m <t—a <mt+#ux).
sin 52
k=1 2

[3] Use a substitution to rewrite s, (z) as

T in 2n+1
sn(x):i/ Sln72uf(gc—|—u)du.

ip &
2 J_, sing

[4] Show that

1 [T sin anlud )
R —_—adu =

3 u
2 J_, sing

so that we may write

T gin 2ntly,
on(@) — f2) = - / T2 Y+ w)du — ()

= — ——u
2 J_. sing

2
1 T sin %u
—= du

27 J_p sing

I sin 2ttly

[f(@+u) = f()] du.

sin 2

2 J_, )

[5] Show that this last integral — 0 as n — oo.

PROOF of [1] Remember that the Fourier coefficients are

1 [ 1 [

ap = — fyde, ap=— f(t) coskt dt,
TJ TJ
1 [ .

by = — f(t)sinkt dt, k=1,2,...,n.
™ —T

*This is 2Dy (t — x), where Dy, (z) is the well-known Dirichlet kernel.
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Therefore,

sn(x) = — + ) (arcoskzx + by sinkx)

_i/
o ),

1 us
+sinkx - — f(t)sinkt dt]
™ J)—x

ao
2

NE

1

fl)dt + i {coskx- %/ﬂ f(t)coskt dt

k=1 -

3 =
Il

1 ™

2 ),

_1/”
2 )

where, in the last step, we have used the trigonometric identity

1+2 Z(cos kx cos kt + sin kx sin kt)] ft)de
k=1

142 cosh(t— a:)] F(t)dt
k=1
cos(A — B) = cos Acos B + sin Asin B.

PROOF of [2] We need to show that

- sin 2t1g
1+42) coskd = —=2—, for —7m<0<70#0.
=1 Sl 5

Now, we could use trig identities to do this, but this approach presupposes
that we know what the right side should be. Instead, as is the case with
so many situations which involve trig identities, life is much easier if we get
things in terms of complex exponentials. Remember Euler’s formula

e = cosf +isinb.
Replacing 6 with —6 gives us
e = cos(—0) + isin(—0) = cosf — isinb.

Finally, adding these two equations, we get
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Then,

n n
1+ 2Zcos kO =1+ Z(eika + e
k=1 k=1

_ efine + efi(nfl)G 4.+ efie +1+ eie 4.+ ein@
= emIO(1 4 el | 20 4y 2nif), (3.14)

The sum in parentheses is geometric, of the form

1— ,’,2n+1
I+r4+rm 4. r"=———
1—r
Therefore, (3.14) becomes

—in@l _ e(2n+1)i9
N 1—e®

e—inf _ o(n+1)if
- 1— et ’

and, multiplying top and bottom by e%w, we get

e(n+3)i0 _ o—(n+3)i0  gjp ntly
es — e sing

PROOF of [3] Letting u =t — x, du = dt, we have

1 [ sin 2% (¢ — 1)
%f(t)dt

2 J_, sin *5*

1 [™® sin 2%ty
= — —_— du.
2m /_,T_m sinu/2 f@+u)du

sn(x) =

i 2n+1
But f has period 27, as does % (why?), so we may write the above as

1 i sin—2”2+1u
n —_— du.
sn () /F S flx 4+ u)du
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PROOF of [4]
/77 sin 2n2+1 U /77
——du =
_, sinu/2 o
0

1 —I—QZcosku] du
k=1

1+2Zcosku] du

k=1

and

r

1+22cosku] duz/o du+2Z/0 cos ku du
k=1

k=1

s

4 2i sinkku

0

k=1
=T.
i
PROOF of [5] We must show that
T sin 2Lty
li — 2 du=0.
am [ et u) = f(@)] o

In order to do this, we’ll need the following well known lemma.
Lemma (Riemann-Lebesgue)’ If g is piecewise continuous on [a,b], then

b
lim g(x)sin Axdz = 0.

A—oo J,

Then, we need only show that

flz+u) - f(z)

sinu/2

is piecewise continuous (in u, of course—z is fixed) on —7 < u < 7.

PROOF of Lemma  Since g is piecewise continuous on [a,b], we can
write
b n Zq
/ g(z) sin Azxdx = Z/ gi(z) sin Azdz,
a i=1 Y Ti—-1

fThis is the Riemann-Lebesgue Lemma for the sine function.
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where g;(z) = g(z) on (z;_1, ;) and g; is continuous on [z;_1, 2], i = 1,...,n.
It follows that each g; is uniformly continuous on [z;_1, x].
We now wish to prove that

x;
lim / gi(z)sin \adx| =0, i=1,...,N.
A—00 Zi1
First, letting = 2z + § and noting that sin Az = —sin Az, we can write

X Ii—g T
I:/ gi(a:)sin/\a:da::—/ Gi (z+—
Ti_1 Ti—1—% A

) sin Azdz
so that

x

x; zi—%
21 = / gi(x) sin Azdx —/ Ji (z + ;) sin \zdz
Ti—1 i—1—%

Ti—1 xT;
—/ gi (x + %) sin Axdx —i—/ gi(z) sin Axdx
Ti-1—% zi—%
;=% T
+/ {gz(@ — i ($ + X)} sin Axdx
Ti-1
- —Il + IQ + Ig.

Now, g; continuous on [z;_1, z;] implies that g;(x) is bounded there
there exists M such that
|gi (:E)| < M,

™
’ ™ <,
g (“”LA)‘—

Then, 2|I| < || + |I2| + |I3] and

Ti—1
I| < gi z+ )| |sin Ax|dz
A

i1 S x < wy
and

T T
$i—1—X§$§$z‘——-

i—1— %
Ti—1

§/ M dx (why?)
Ti—1—%

< @ (why?).

Similarly, |[I3] < % Thus, I; — 0 and I — 0 as A — co.

. Thus,

Finally, we must show that, for every e > 0, there is a constant k such that

A> k= |3 <e.
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Now, as ¢ is uniformly continuous on [z;_1,;], we know that for all ¢; > 0,
there is a 6 > 0 such that

s
— <6
S <9=

5) g (o4 5| <

for all z € [z;_1,x;]. So, given € above, let ¢; = ;71 and let & = §; be the

corresponding value of §. Then,

Tq—

o o
A> — —<4é
>51:>)\<1:>

| P

i — Li—1

for all x € [x;_1, 4]

< ) —q: Z
:>|I3|7/1 1 gi(z) — g; (x—l—/\)‘dx

i—

|
Now, all that’s left is to show that ms’;‘iw

is piecewise smooth and the sine is smooth, we need only be concerned when
the denominator vanishes, which occurs only at u = 0 (since we’re restricted
to the interval —m < u < 7).

The trick here is to use the following two facts:

is piecewise smooth. Since f

1) f'(z+) and f'(x—) exist (since f is piecewise smooth) and
2) lir% S82 — 1 (using ’'Hopital’s rule—but see Exercise 5).
z—

With these in mind, we rewrite

fletuw) —flz) _ fletuw) - flz) u

9(w) = sinu/2 N u sing
Then,
lim g(u) = lim flatu) - f@) . lim .uu
u—0t u—0t u u—01 sIn 3
= f'(z+) -2
and

lim g(u) = f'(v—) -2,

u—0—

each of which exists. Therefore, g is piecewise continuous, and we are done!
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Now, what happens at a point x where f is not continuous? Life is a bit
more complicated, since at least one of

O e { O N (CE 3 B

u—0*t u u—0— u

will not exist. (In fact, we would like to be able to include points where f(x)
doesn’t even exist.) However, we need only look at the expression

sn(a) = 317 (@) + Fa-)L,

which we may rewrite as

1 /™ sin 2ntly 1
o ﬁf(x +u)du — 3[f (@) + f(at)]

1 0 gin 2ntly, 1
2 f(;v+u)du—§f(:v—)

2 J_, sing

1 T gin 2n2+1 U 1
it i Wit du — =
# 5 | o et = 3 f(o)
1 [0 sin2ndly

o ) ﬁ[f(f +u) — f(z—)]du
1 T gin 22tly,
+ o= %[f(ﬂf +u) — f(z+)]du,

2 sin %

where we have used the fact that

2n+1 2n41
2

1 0 gin
2T

U 1 T sin u

1
——du = — ——=2—du = = (why is this true?).
el | em I u=3 (why is this true?)

-7 2 2

We proceed pretty much as we did above and use the Riemann-Lebesgue
Lemma to show that each of the integrals — 0 as n — co. We do so here for
the second integral (the first is dealt with in the same way).

As above, we write

2n+1 T
/ Sm.iu[f(a:—ku)—f(a:—k)]du:/ g(u)sin 2n2+1u du,
0

Sin

2 -
where
0, Hf—-rm<u<0
g(U) B f(x ha U)u_ f(x+) sin “ ) 1f 0 <u < .

We need only show that g is piecewise continuous on —7 < u < m, and, as
before, we need only be concerned with what happens as u — 07. But
fle+u) — fla+) u

lim
u—0*t u—0*t u u—0+ Sin = 2

=2f'(z+),
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which exists as f is piecewise smooth.* So we are done!

Now that we know what the Fourier series of a function converges to, we
may ask how it converges (that is, does it converge “quickly” or “slowly,” and
what do the partial sums look like as the value of n increases?). It turns out
that the Fourier series of f converges “nicely” to f at those points where f
is continuous. However, remembering that each sine and cosine function in a
Fourier series is continuous for all values of x, it should come as no surprise
that the Fourier series may behave somewhat strangely near those z-values
where f has a jump.

Example 1 The Fourier series for

0,if —m<x <0

f(x):{IZif()g;gﬂ

is

In Figure 3.13 we have graphed the function

n

1 2 sin(2k — 1)z
(@) =5+ 2> o
k=1

for n = 5,n = 20 and n = 200, respectively. We can see, in each case, that
the function s, (z) exhibits a noticeable overshoot just to the right (and left)
of z = 0 (with similar behavior near x = ). We also see that, while most
of the humps in the graph of s, (z) tend to flatten out as n increases, this
first overshoot, although also shrinking, seems to remain fairly large. So what
happens as n — co?

fNote that f’(z+) is not the same as the right-hand derivative that you learned in calculus.
The latter,
fim @D~ I@)

h—0+ h
need not exist even if f is piecewise smooth and, therefore, is less interesting and less useful
than the former (which, by the way, is the “old” right-hand derivative of the function whose
value at z is f(z+)). See Exercises 6-9 for a more in-depth look.
8To be more precise, we should have s2;,—1(x) = s2,(z), instead of sy (z).
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1.2
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0.4 -

0.8 4

0.4 -

FIGURE 3.13
MATLAB graphs of the truncated Fourier series for the function
from Example 1, for (a) n =235, (b) n =20 and (c) n = 200.
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FIGURE 3.13 continued

This overshoot is known as the Gibbs phenomenon, after Josiah Willard
Gibbs¥ who, in 1899, pointed out this behavior and stated that the overshoot
approaches a quantity involving foﬂ Si%dx as n — oo. We’ll examine the
Gibbs phenomenon as it applies to this particular example.l

So, let’s look at the function

gn(z) = sp(z) — f(2),

find its least positive critical point = x,, show that g,(z,) is a relative
maximum and, finally, relate lim g, (z,) to foﬂ =L dx.
n—oo

First, we restrict ourselves to the interval 0 < x < 7, where

2 Gsin(2k— D)z 1
g(x)_w; ok — 1 2

Hence, on 0 < z <,

! 2 =
= 2k — 1)x.
gn(x) - ,}Zl cos(2k )x

9Josiah Willard Gibbs (1839-1903) is often considered to be the first American mathe-
matician of note. Gibbs actually treated the case where f(z) = z, and he gave no proof
of his claims. Later, in 1906, Maxime Bocher proved Gibbs’s statement and showed that
this phenomenon occurs at any jump discontinuity. (Actually, a British mathematician
named Wilbraham had discovered the phenomenon in 1848! Thus, it is sometimes called
the Wilbraham—Gibbs phenomenon.)

IFor a more detailed treatment, see, e.g., Introduction to the Theory of Fourier’s Series
and Integrals by H. S. Carslaw.
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Next, we may use an argument similar to the proof of [2], above (see Exer-
cise 1), to show that

2 sin2nx
gn(x) = =

- on O<zxz<m.
7T sinx

The critical points are those values of x for which 2nz is an integral multiple
of m, and the least such value is z,, = g-. Further, g, attains a relative
maximum here (see Exercise 2).

We would like to relate lim g, (£) to [ S2%dz. The easiest way to see
this is to notice that the sum

n

T 2 1 . 2k-1)m 1
gn(%)_;;%_lsm om 2

can be made to look like a Riemann sum for the integral foﬂ %dm To that
end, break the interval [0, 7] into n equal subdivisions and, on each subinterval,
choose x; = midpoint of that subinterval. We then have Az = = x; = % -
i=1,2,...,n and

T sinx L 1 . (2i—-Drm 7
/0 . dr = nh_)n;o; (21;1% - 8in o™ =

. 1 (2D
—nlingo2; 5 1 sin e

It follows that

. 7 2 1 @k—Dr 1
Jm g0 (57) = Jim 230 gt 5

which turns out to be approximately .09 (see Exercise 4). Therefore, the
Gibbs overshoot here is approximately 9% of the jump in the graph of f.
More generally, it can be shown that this is always the case (for functions on
- <z<m).

The true mathematical significance of the Gibbs phenomenon is to show
that if f has any jump discontinuities, then its Fourier series will not converge
uniformly to f. We discuss this important type of convergence in Appendix B.

Exercises 3.5
1. MATLAB: Do Exercise 22 of the previous section.
2. Proceed as in the proof of [2] to show that

sin 2nx

Zcos(Qk—l)x: on 0<z<m.
k=1

sinx
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3. Show that the function

n

%—1 0 2y
k=1

has 2n — 1 critical values in the interval 0 < x < m, that the least of
these corresponds to a relative maximum and that each thereafter is,
alternatively, a relative min or a relative max.

4. Evaluate f T sz go by expanding sinz in its Maclaurin series. Then

show that & fﬂ sinz g % ~ .09.

n .
5. Explain why 2 ) ﬁ sin (ZE=Dm converges down to foﬂ 2E dr, e,

2n

why the sequence is monotonic decreasing.
6. a) Use L’Hopital’s rule to show that hH%J sinz _

b) As you did in calculus, show that

sinh cosh—1
2 (sinz) = li i e
(sinx) Jim cosz - — +sinx o

sm x

(Therefore in order to apply L’Hopital’s rule to you need to
compute - (sinz). However, in order to compute 4 (sinz), you

already need to know hrr%J sinz) Ig this circular reasoning?)
r—

In Exercises 7-9 we look more closely at the difference between f’(zo+) and
the right-hand derivative of f at xo, fr(z0). Remember, the latter is just

Th(eo) = tim TN =T (00

while the former is

f(xot) = zligh f'(x).

(Of course, we can deal with

fulon) = i

fwo +h) = (o)
h

and f'(zo—) in a similar manner.)

7. For each function below, compute f%(0), f7(0), f'(0+), f(0—) and
£/(0), if they exist.
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a) f(x) =23+ 5z
22 +3,ifz<0
b) f(x)_{x—L if2>0

22, ifx<0
©) f(x)_{a:2+1,ifx>0

8. In Exercise 7, we've seen that it’s possible that f/(zp+) exists while
fr(z0) doesn’t exist. But the opposite can occur, too! Do the same as
in Exercise 7 for each function below.

xrsin L, if x #0
a)f(x):{ Owifa:i()

2l
résin o, ifz # 0

b) f(x):{ 0, ifx=0

3ain 1l :
r’sin ., if 2 # 0

c) f(x):{ 0, ifzx=0

9. Decide if the statement is true or false. In each case, f is piecewise
smooth.
a) If f'(zo+) = f'(zo—), then f'(zo) exists and f'(zg) = f'(zo+).
b) It f4(wo) = f}(w0), then f'(xo) exists and f'(xo) = ff(0)-
c) If fr(zo) = f'(xo+) and f] (x0) = f'(zo—), then f’(z) exists.

3.6 Fourier Sine and Cosine Series

At last we are in a position to answer the questions posed at the end of the
previous chapter.

Given a function f(z) on 0 < z < L, is it possible to find constants
cn,n=0,1,2,...,and d,, n =0,1,2,..., so that

o0 oo
) = E Cp, COS —— = ¢ E Cp, COS ——
L L
n=0 n=1

and

flx) :nz_odnsinn—zx = Zdnsin?

n=1

on0<x<L?
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What we do is this: If f is piecewise smooth, then we extend it to a
piecewise smooth function on —L < xz < L. Then, we can find the Fourier
series of the latter, which will be identical to f(x) on 0 < x < L (except
possibly, of course, at finitely many points).

But—how do we extend f7 Further, since the Fourier series contains both
sines and cosines, how will this answer our question, anyway? Our key can
be found in Exercise 13 of Section 3.3:

If f(z) is even on —L < < L, then its Fourier series is a pure
cosine Series.

If f(x)is odd on —L < x < L, then its Fourier series is a pure sine
series.

Obviously, if we want to expand f in a cosine series, we need only extend it
to an even function on —L < x < L; similarly for a sine series, we extend it
to an odd function on —L < x < L.

Definition 3.9 Given f(x) on 0 <z < L, the even function

(z) = f(z), f0<xz <L,
g = f(=z), f—-L<x<0

h@):{f(x)’ Jo<z<L,
—f(=z), if-L<z<0

is called the odd extension of f to —L <x < L. (See Figure 3.14.)

e =

(a) y=1(x) (b) even extension (c) odd extension

FIGURE 3.14
Even and odd extensions.

Note that if f is piecewise smooth, then so are g and h. Also, technically,
h(z) is not an odd function unless f(0) = 0. However, remember that what
happens at one point has no effect on the Fourier series of the function.
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Let us calculate the Fourier series of g and h, with an eye toward getting
everything in terms of f. For g we get the series

G(z) = a_20 + Z (ancosnLﬂ +bnsinn—zm) ,
n=1

where

L
nnx
—d
/_Lg(x)cos 7 dz

o -

L
nrx
= / g(z) cos Tdac, since the integrand is even

L Jo
2 [F nwT
:z/ f(a:)cosTd:c, since g(z) = f(zr) on 0 <z <L,n=0,1,2,... .
0

Furthermore,
Gx)=gx)* on —L<zx<L

and so
G(z)=f(x) on 0<z<L.

We can do the same for the function h(z), resulting in the series
= nmwx
H(z) = bysin o,
(x) 2 sin —

where .
2
bn:f/o f(;v)sinnLﬂdx, n=1,23,...
(see Exercise 13).

Definition 3.10 Given f(x) on 0 <z < L, the series
F.(z) = 20 4 ia cos oL where ap, = E/Lf(oc)cos@dac
C - 2 — n L ) n — L 0 L
is called the Fourier cosine series of f on 0 < x < L. The series
Fy(z) = ib sin 22 where by = 2 /Lf(x)sin@dx
S - — n L ) n — L O L

is called the Fourier sine series of f on 0 <z < L.

w__»

*Here, and following, we write “=,” realizing, of course, that the two functions may differ
at finitely many points.
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Corollary 3.2 If f is piecewise smooth on 0 < x < L, we have

Fe(x)=f(x) on0<z <L
and

Fy(z) = f(x) on 0 <z < L.

Of course, we can be precise—as we were in Theorem 3.1—as to the value of
F.(z) and Fs(z) at the discontinuous points of f and the endpoints. Further,
since F,(x) and Fg(x) are also Fourier series, as in Section 3.4, each is periodic
of period 2L. See Figure 3.15.

y y
| L —2L -L | L 2L 3L
(@) y =1(x) ) y=EX)
y
L_/ \/
; ; } 1 1 X
—2L -L L 2L 3L
ﬂ S
© y=E®)
FIGURE 3.15

The graphs of the Fourier cosine and sine series (ignoring the points
of discontinuity).

Example 1 Calculate the Fourier sine and Fourier cosine series of f(xz) =3
on 0 <z <.

oo 2 s
Fy(z) = Z bn sinnx, where b, = — 3-sinnx dx
n=1 ™Jo

12 if n is odd.

nm’

{O, if n is even

So

12 12
Fs(x):—sina:+0+3—sin3a:—|—0—l—~-~
7 7

12 e 1
=23 sin(2k + 1)a.
w];)%—klsm( + 1z
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Also,

o0 2 T
F.(z) = % + Zan cosnx, where a,, = ;/0 3cosnx dz.

n=1
Now, we could do the calculation and find that
ap=6, a,=0 for n=1,2,3,....

However, life is much easier if we notice that f(x) already is in the same form
as F.(z) (compare Exercise 9 in Section 3.3) and, in light of Corollary 3.2, we
must have

F.(x) =3 = f(x).

Example 2 Calculate the Fourier sine and cosine series of f(z) = x on
0<x<1.

2(_1)n+1

oo 1
Fy(z) = Z b, sinnmwz, where b,, = 2/0 rsinnmr dr = e

n=1
[e'S)

1
agp
F.(z) = 5 + an cosnmx, where a, = 2/ xcosnwx dx,
0
1

n=

S0
1
ag = 2/ z dr =1,
0
1
an = 2/0 xcosnmx dr = W[(}osnw— 1]
2 n
= m[(_l) —1]
0, if n is even,
N ——t, ifnisodd,
and
1
F.(z) = g~ 3 COSTT — 555 cos 3rx 2.2 €08 S — -+
1 o4& 1
=5 "= Z T cos(2k — 1)mx
k=1

Example 3 Draw the graph of y = f(z), along with the graph of its Fourier
cosine series, y = F.(x), and the graph of its Fourier sine series, y = Fi(x),
for f(x) =1 -2 on 0 <z < 1. See Figure 3.16.
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y y
1 '\ /\/11\/\
X A f A f » X
‘ 1 -3 -2 -1 ‘ 1 2 3

(@) y=1f(x) (®) y=Fe(x)
y
14
-3 Y_2 - 1 g 3‘
8)
(©) y=Fs(x)
FIGURE 3.16

The graphs for Example 3.

Exercises 3.6

In Exercises 1-3, calculate the Fourier sine and Fourier cosine series of f(x).

1, if0<z<?2
1. — 9 — b
/(@) {Q if2<z<4

2. fla)=2%20<z<m
3. f(z) =sinz,0<z <7

In Exercises 4-7, proceed as in Example 3.
4. f(x)=a224+1on0<x <1

5. f(x)=x—1on0<z <2

3, ifr=0o0rx=1,

x4+ 1, otherwise,on 0 <z <2

T ) 1, if0<z<3,
. X)) =
2, if3<z<5
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8.

MATLAB: Following Example 1, Section 3.5, use MATLAB to graph
the truncated Fourier sine and cosine series, for various values of n,
for the functions in Exercises 1-7. When is the Gibbs phenomenon
exhibited?

In Exercises 9-12, decide if the statement is true or false. Assume that f is
piecewise smooth on 0 < x < L.

9.

10

11.

12.

13.

14.

15.

Fs(kL) = 0 for every integer k.
F.(2kL) = f(0) for every integer k.

F.(2kL) = f(0+) for every integer k.

The constant term % in Fi.(z) actually is the average value of f on

0 <z < L. (Similarly, true or false? The constant term %" in the Fourier

series is the average value of piecewise smooth fon —L <z < L.)

Derive the Fourier sine series summation and coefficients, as we did for
the Fourier cosine series.

a) Show that the functions 1,cos £, n = 1,2,..., are pairwise or-
thogonal on the interval a < x < b. Do the same for the functions

c . NTT _
singZ2, n=1,2....

b) Given piecewise smooth f(z) on a < x < b, show that it can be
expanded in a series of functions 1,cos 77, n = 1,2,..., and also
in a series of the functions sin 775, n =1,2,... . (See Exercise 18,
Section 3.4.)

¢) Compute both series from part b, for the function f(x) = = on
1<z <4

Suppose we wanted to do this whole process the other way around, that
is, suppose we start with a theorem which tells us that every piecewise
smooth function on 0 < x < L has a Fourier sine and Fourier cosine
series, and we want to show that it follows that any piecewise smooth
f(z) on —L < 2 < L has a Fourier series. Show that this can be
accomplished using the fact that f(x) = g(z) + h(x), where

f(@) + f(=2)
2

g(x) = is even

and
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3.7 Completeness

So far, in our discussion of the various types of Fourier series, we’ve had to
qualify all of our convergence statements with “except, possibly, at finitely
many points.” So, although the Fourier series of a function is unique, many
different functions—infinitely many, of course—have the same Fourier series.
While not a problem for physical applications, this state of affairs is not at
all satisfying from a mathematical standpoint.

In order to remedy the situation, mathematicians introduce a new setting,
based on a different type of convergence (which we’ll study in Chapter 8, when
we look at generalized Fourier series). In this weaker setting, two functions
which differ from each other at finitely many points are considered to be
the “same” function. Thus, we are able to say that the Fourier series of f
converges to f, without qualification.

Although it is more appropriate to wait and discuss the idea of completeness
in this new setting, we briefly introduce it now, as it is such an important

concept. Thus, we will use this weaker definition of “=" throughout this
section.

So, as we have seen, given any piecewise smooth function f(z) on0 <z < L,
we can find constants by, bo, b3, ..., such that

flz) = i by, sin o

I
n=1
Therefore, the functions sin “7%, n = 1,2, 3,. .., essentially span the space of
piecewise smooth functions on 0 < x < L. We say, then, that the set
nmwr >© T 2w 3rx
sin —— = ¢ sin —,sin —, sin —, . .. 3.15

is complete in this space of functions. Further, as we have seen, these func-

tions form an orthogonal set. We say, then, that (3.15) forms a complete

orthogonal set (in the space of piecewise smooth functions on 0 <z < L).
Similarly, the functions

nmx | > T 2mx
{COST} —{l,cosf,cosT,...} (3.16)

n=0

form a complete orthogonal set (in the same space).
Now, let’s go back to Chapter 1, where we solved the eigenvalue problem

y'+ Ay =0
y(0) =y(L) =0
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and got (3.15) as our set of eigenfunctions. Similarly, (3.16) are the eigen-
functions of the problem

v+ Ay =0

y'(0) =y'(L) =0.
It is natural to ask if the set of eigenfunctions of such an eigenvalue problem
always forms a complete orthogonal set in some space of functions on the
interval in question. Well, the answer is “sometimes,” and we’ll give a precise
treatment in Chapter 11. However, there are two other eigenvalue problems
which need to be addressed now, as they also arise in connection with the

heat, wave and Laplace’s equations.
In Exercise 15b of Section 1.7, we solved the problem

y'+ Xy =0
y(0)=y'(L) =0

and found that the eigenfunctions are

_@2n—Drz ™ X 3rx . bmx
{sm 5T = sm2L sin DT AT AR (3.17)

n=1

Similarly, the eigenfunctions for
y'+xy=0
y'(0)=y(L)=0
and (Exercise 15¢, Section 1.7)

(2n — V)mrz ™ T 3rx Smax
- — S —— ... 1
{cos 5T €08 5, CO8 — =, €08 s (3.18)

n=1

Does each of (3.17) and (3.18) form a complete orthogonal set in the space
of piecewise smooth functions on 0 < z < L? We’ll prove that the answer
is “yes,” in the exercises (although we’ll see that this affirmative answer also
follows from a general result of Chapter 11—also, orthogonality was already

established in Exercise 22 of Section 1.7).
As a result, we'll see:

1) That any piecewise smooth function f(x) on 0 < 2 < L can be expanded
in series of the form

f(z) = g cp, Sin (2n ;Ll)ﬂx
and
flo) = i 4. cos (2n ;Ll)ﬂ'a:
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2) That the coefficients ¢,, and d,, are given by

2 [F . (2n—1)mzx
cn—z/o f(;v)sdex

and

2 [ o2n—1
dn:—/ f(x)costx, n=123,....

Exercises 3.7
o0

1. Prove directly by integration that each of the sets {sin (2"%)1} and

n=1

(2n—1)z o
COS “—5—— ) forms an orthogonal set on 0 < x < 7.
n=

2. Prove that the set of functions

. (2n—-1)2 ™ .xr . 3x . bz
sin ———— = {sin —,sin —, sin —, . ..
S PP R R

forms a complete set in the space of piecewise smooth functions on
0 <z <m, as follows.

We must show that there exist constants ci, co, cs, ..., such that
= . 2n-1)z
= n SN ———— 3.19
@) = 3 ensin = (3.19)
. X . ST
:clslni—l—cQsm?—i—--- 0<z<m.

In order to accomplish this,
a) Let F(x) be the even extension of f(z) to 0 < = < 2, that is,
extend f so that F' is symmetric about the line x = .
b) Find the Fourier sine series of F on 0 < z < 2.

¢) Show that (3.19) follows; what are the constants, ¢,?

3. Prove that the set of functions

(2n— 1)z~ x 3z 5x
cos ———— =< Cos =, CO8 —,COS —, ...
2 [ 2 " T

forms a complete set in the space of piecewise smooth functions on
0<z<m.



Prelude to Chapter 4

Now, with the introduction of Fourier’s sine and cosine series, we are able to
solve the Big Three PDEs, along with many others, for fairly arbitrary initial
and boundary conditions. So, in this chapter, we solve the one-dimensional
homogeneous heat equation for a finite rod, the one-dimensional homogeneous
wave equation for a finite string and the two-dimensional Laplace’s equation
on a rectangle, in each case with homogeneous boundary conditions. After
that, we consider how to deal with nonhomogeneous boundary conditions.
Finally, we treat the case where the PDE itself is nonhomogeneous.

As we have seen, the nonhomogeneous Laplace’s equation actually is called
Poisson’s equation. Laplace had been under the mistaken impression that
the gravitational potential of, say, a planet must satisfy Laplace’s equation
everywhere—in particular, he thought it must be satisfied in the interior of
the attracting body. In 1813, Siméon-Denis Poisson (1781-1840) pointed out
Laplace’s error and showed that the PDE must be nonhomogeneous. Although
we solve Poisson’s equation in this chapter, we must wait until Chapter 8 in
order to treat this gravitational problem, as it occurs most naturally in the
setting of spherical coordinates.

And so, without further ado, ... .
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4

Solving the Big Three PDEs
on Finite Domains

4.1 Solving the Homogeneous Heat Equation
for a Finite Rod

Finally we are in a position to solve the PDE problems which were derived in
Chapter 2. We start with some examples involving the heat equation, leaving
the general case for the exercises.

Example 1 Solve the heat equation initial-boundary-value problem

Ut = Uy,
u(z,0) = z(r — z),
u(0,t) = u(m,t) =0.

As before, we separate the PDE:

T/ X//
u(z,t) = X(2)T(t) = T —A
= X" $AX =0, T +3\T =0,

Next, separate the boundary conditions:

So we have

X"+AX =0, T +3)\XI'=0,
X(0) = X(m) =0.
Now we solve the X-eigenvalue problem. We get (see Example 3, Section 2.6)

eigenvalues: Ap = n?

eigenfunctions: X, (z) = sinnz, n=123,....

129
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Next, we go back and solve the T-equation for A = A,:
T +302T =0=T,(t) = >""

Then, for each eigenvalue \,, we form the product solution X,7T,,, and use
them to form the general solution

o0
u(z,t) = Z ne 3" sinna. (4.1)
n=1
Finally, we determine the coefficients from the initial condition,

u(z,0) =x(r —z) = Z cpsinnz, on 0 <z < 7. (4.2)

n=1

Now, we know that the Fourier sine series for f(z) =z(r —2z) on 0 < x <7
is

o 2 v 8 3 .f . dd
Fs(a:)=anSinm:, bn = —/ x(m—x)sinnz dov = /s 1S 06d,
n=1 0 0, if n is even.

In other words, we must have

b 8/mn?, if n is odd,
Cn = Op =
0, if n is even,

that is, (4.2) must be the Fourier sine series for f(z) = x?! Our final solution
is the general solution (4.1), with these particular values of the c,:

8N L s o ?
u(z,t) = - ; ok = 1)36 sin(2k — 1)z (why?).

(Of course, we can evaluate the integrals using integration by parts or an
integral table.) Figure 4.1 shows the solution for various values of ¢. For
more, see Exercises 4 and 9. Note that we're actually plotting the truncated
10
solution (using > ).
k=1
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2.5

FIGURE 4.1

MATLAB graphs of the solution of Example 1, in the z-u plane, for
t=0, 1, 2, 3 and 4 (from top to bottom). We can see how quickly
the solution approaches the steady state solution u=0. (We have
used the truncated solution, with n =10 terms.)

Example 2 Do the same for

Ut = Ugg,
u(z,0) =z,
ug(0,t) = uz(3,8) = 0.

Again, we separate:

X"4+AX =0, T +\XT =0,
X'(0) = X'(3) = 0.

Solve the X-problem (see Example 2 in Section 1.7):

22
eigenvalues: MN=0, A\, = nr , n=123,...
. . nw
eigenfunctions: Xo(z) =1, X,(x) = cos 5 n=123,....
Solve the T-equation for each eigenvalue:
A =0: T/:0:>T0(t):1
n?n? n?n? n2x2t
An = 9 :T’+TT:O:>Tn(t):e_ I n=1,23....
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Form the product solutions:

uo(x,t) = Xo(x)TQ(t) =1

Un(@,1) = Xp ()T (t) = =5 cos$, n=1,2,3,....
Form the general solution:
=2 T _an?t 2rx
u(z,t) =co-1+c1e” 7 cos— + coe” 9 cosT+~-~
_ s 7n2g2t nmxr 4 3
_co—i—;cne cos —=. (4.3)

Finally, apply the initial condition:

o0
nwx
u(z,0) =z =co+ E Cn COS ——,
n=1

and the right side must be the Fourier cosine series of f(x) =z on 0 <z < 3.
(Alternatively, expand z in its Fourier cosine series on 0 < x < 3, then equate
corresponding coefficients.) So we have

ao
00:?, Cn = Qp, n=12,3,...,

where

2 3
an:—/ xcos@dx, n=0,1,2,... .
3 Jo 3

Therefore, our solution is (4.3) with these coefficients plugged in:

agp > _ n2x2¢ nmwT 12 & 1 _ (2k—1)272¢ nmx
u(x,t) = ?‘FZ an€ 9  COS T = 3-; me S 3
n=1 k=1

See Figure 4.2 for plots of the solution for various values of ¢. Here, we use
50

5.

k=1

9 COS ———.
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FIGURE 4.2

MATLAB graphs of the truncated solution from Example 2, using
n =50 terms, in the z-u plane for t=0, 1, 2, 3 and 4. Again, we
see its very fast approach to the steady state solution u = 3. (Note
the not-so-good Fourier approximation to the initial straight line

u(z,0) =z.)

Example 3 Do the same for

U = 2Ugy,
u(z,0) =z + 1,
u(0,t) = uy(4,t) = 0.

First, separate:

X" 4+AX =0, T +2)\T =0,
X(0) = X'(4) = 0.

Then, find the eigenvalues and eigenfunctions for the X-system (see Exercise
4 in Section 1.7):

eigenvalues: A\, =

eigenfunctions: X, (x) = sin
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Solve the T-equation for each \,:

(2n — 1)271'2 _(@n-1)2x2¢

T T =0Tt = =

Form the product solutions and the general solution:

(@en-1)2x2¢ (2n—1)7rx
Z Cne w s

Finally, apply the initial condition:

(2n — 1)mx

0) = 1= 1 S
u(z,0) =x + Zc sin S

n=1
From the discussion in Section 3.7—that is, that the functions {sin %=1 -
form a complete orthogonal set on 0 < x < 4—we are guaranteed that there
are coefficients that satisfy this equality (from completeness) and that they
are (from orthogonality)

2 ! 2n — 1
Cn = —/ (x +1)sin Mdm.
1), 8

How do we deal with more complicated heat problems, for example, those
with nonhomogeneous boundary conditions or nonhomogeneous PDEs? We’ll
take these up in Section 4.4.

Exercises 4.1

1. Solve the heat equation u; = 2ug, for a rod of length L with both ends
held at 0°, if
a) L =m,u(z,0) =20
b) L =1,u(z,0) =z (See Example 2, Section 3.6.)
2,if0<z <1
c) L—2,u(x,0)—{ 0, if1<z<?2

2. Solve the heat equation u; = 4u,, for a rod of length L with both ends
insulated, if
a) L =m, u(z,0) =2? (See Exercise 2, Section 3.6.)
b) L =1,u(z,0) =10
10,if0<z <1
¢) L'=2u(x,0)= { 0, ifl<ae<2

3. Solve the heat equation u; = u,, for a rod of length 7, subject to
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a) u(0,t) = ug(m,t) = 0,u(x,0) = 100
b) u.(0,t) = u(m,t) =0,u(z,0) =z

4. MATLAB: Plot the truncated solution for each heat problem, in the
z-u plane, for various values of . What happens as t — co?

a) Exercise 1c

b) Exercise 2a

d

e

)
)

c¢) Exercise 2¢
) Exercise 3b
)

Exercise 3¢

5. Solve the general heat equation u; = au., subject to initial condition
u(x,0) = f(x) and to the boundary conditions
a) u(0,t) =u(L,t) =
b) ug(0,t) =ugy(L,t) =0
) u(0,t) = ug(L,t) =0
d) uy(0,t) =u(L,t) =0
)
)

C

e) u(0,t) = u(L,t) + u.(L,t) = 0*

£) uz(0,t) = u(L,t) + uy(L,t) = 0*

6. In quantum mechanics, if we have a particle of mass m, then its wave
function u = u(z,y, 2, t) satisfies the famous Schrédinger’s equation

2

. I3
—ihuy = %VQU —V(z,y, 2)u.

Here, 7 is the imaginary number, A is Planck’s constant divided by 27
and V is a potential for the force acting on the particle.

For now let’s consider the case of a “particle in a box, with zero po-
tential,” where the box is long and narrow enough to be considered
one-dimensional. In this case, V?u = 4., and the PDE becomes
ih
Ut = %uzz;
which looks suspiciously like the heat equation! If the wave function is
zero at both ends of the box, then we have the initial-boundary-value

*You should assume that we have completeness and orthogonality here. This will be justified
in Chapter 8.
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problem
Up = ﬁu
t — om T
u(z,0) = f(x),

u(0,t) = u(m,t) =0,

where f(z) is the initial state and L is the length of the box. Solve this
problem.

In Exercise 9 of Section 2.4, we saw that a rod whose sides are not
insulated satisfies the PDE u; = ®ug, — Bu. Solve the problem

Ut = Ugye — U,

u(z,0) = f(z),
u(0,t) = u(m,t) =0.

If a pollutant is spilled into a still body of water, it will diffuse through-
out the water and, thus, its concentration will satisfy the heat/diffusion
equation. Suppose, instead, that it is spilled into a moving stream. The
pollutant is then carried downstream; this process is called convection or
advection. If there is no diffusion, then its concentration satisfies the con-
vection or advection equation (discussed in Section 5.1). Finally, if the
pollutant undergoes both diffusion and convection—which is what we
would expect—its concentration will satisfy the diffusion-convection
equation u; = a’ug, — vug,. Here, v is the velocity of the stream (v
may depend on z or t).

Solve the diffusion-convection problem

Ut = Ugpy + Ug, O<zx<m,
u(z,0) = f(z)
subject to the (not very realistic!) boundary conditions

u(0,t) = u(m,t) = 0.

. Remember that the steady state temperature of a rod is the time-

independent function which solves the problem and which represents
the temperature distribution of the rod “after a long time.”

a) Find the steady state temperature of the system

Ut = Uy, O<zxz< L,

U(JJ,O) = f(x)v
u(0,t) = u(L,t),

in two different ways:
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b)

(1) Letting u¢ = 0 and solving the PDE uy, = 0

(2) Using the Fourier method of this section, and then allowing
t — oo (you may assume that you may interchange the sum
and the limit, that is, you may assume that

Jim Z_%gn(w,t) = Z_%tlggo In(7,t))

What role does the initial temperature distribution play in the
result? What’s happening, physically?

Show that the steady state temperature of the system

Ut = Ugq,

u(z,0) = f(x),
uz(0,t) = uyp (L, 1)

is just the (constant) average value of the initial temperature dis-
tribution. Explain what’s happening, physically.

What happens when the boundary conditions are mixed, that is,
when we have u(0) = «/(L) = 0 or v/(0) = w(L) = 0?7 Again,
what’s happening, physically?

Given the heat problem

_ 2
Ut = O Ugy,

U(JJ,O) = f(x)v
u(0,t) = u(L,t) =0,

show that, when we change variables to s = 7~ and 7 = %t, the

PDE and boundary conditions become

Ur = Uss,

v(0,7) =v(m,T) =0,

where v is the new dependent variable, v(s,7) = u (%s, aﬁ—;r)
Thus, we need only know how to solve the heat problem on 0 <

x < m, with ® = 1. What is the new initial condition?

Redo each part of Exercise 1 but, this time, first solve the v-problem
in part (a), and then transform back to u(x,t).
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4.2 Solving the Homogeneous Wave Equation
for a Finite String

The solution of the wave equation is quite similar to that of the heat equation.

Example 1 Solve the wave equation initial-boundary-value problem

Uty = 4uww7
u(z,0) = z(1 — z),
ug(z,0) = cos,
u(0,t) = u(1,t) = 0.
We begin by separating the PDE:
u(z,t) = X (x)T(t) = XT" =4X"T
T// X//
T X
= X" 4+AX =0, T"+4\T =0.

= — ), constant

Then, separating the boundary conditions gives us
X(0)=X(1)=0.
Next, solve the X-boundary-value problem (see Example 1, Section 1.7):

eigenvalues: A, = n?xw>

eigenfunctions: X,, = sinnnz, n=123,....

Now we solve the T-equation for A = \,, and it is here that we find that the
wave equation’s solution differs from that of the heat equation:

T" + 40T = 0= T" + 4n’7*T = 0
= T'(t) = c1 cos 2nmt + co sin 2nmt.

Since we must do this for each positive integer n, we write
T, (t) = ¢p, cos2nnt + d,, sin 2nrt, n=1,23,....
Our product solutions, then, are
un (2, t) = sinnwx(c, cos 2nwt + d,, sin 2nmt), n=123,...,
so the general solution is the linear combination

u(zx,t) = Z sin nwx(c, cos 2nmt + d,, sin 2n7t). (4.4)

n=1
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Finally, we apply both initial conditions. First, we need to calculate wu;:

oo

ug(x,t) = Z sin nrx(—2nme, sin 2nmt + 2nwd,, cos 2nmt).
n=1
Then, we have
u(z,0) =z(1 —2) = i epsinnmx, on 0 <z <1 (4.5)
n=1
and -
ug(z,0) = cosz = Z 2nmd, sinnmr, on 0 < x < 1. (4.6)
n=1

So the right-hand side of (4.5) must be the Fourier sine series for the function
2(1—z) on 0 < 2 <1 and similarly for (4.6) and the function cos z. Or, if you
prefer, expand z(1 — x) and cosz into their Fourier sine series on 0 < z < 1,
and (4.5) and (4.6) become, respectively,

o0 o0
E b, sinnmr = E cp sinnmz,
n=1 n=1

where
2 1
bn:i/ z(1 — ) sinnrx dz, n=123,...,
0
and - -
Z b, sinnmr = Z 2nmd, sinnrzx,
n=1 n=1
where
9 [l
bn:I/ cosxsinnwx dx, n=123,....
0
Therefore,

1
cn:2/ z(1 — z)sinnrz dz, n=123,...,
0

1
2nm dn:Z/ cosxsinnmx dr, n=123,...,
0

and our solution is just the general solution (4.4) with these values for the
coefficients, that is,
o0
u(z,t) = Z sin nwx(cy, cos 2nmt + d,, sin 2n7t),

n=1
1
cn:2/ z(1 — z)sinnrz dz, n=123,...,
0
1

dp = — coszsinnrx dx, n=123,....
nmw Jo
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Example 2 Solve the system. Describe the string’s motion.

Utt = Ugq,
u(z,0) =0,
ug(z,0) =1,

Uz (0,t) = ug(m,t) = 0.

Physically, it looks like there will be nothing to cause the string to vibrate,
and it should just continue moving vertically at the initial velocity, without
changing shape (not very realistic!). Let’s make sure that the Fourier method

actually gives us this solution.
So, first, separate:

X" +AX =0, T+ =0,
X'(0) = X'(r) = 0.

Solve the X-problem:

eigenvalues: =0, M\ =n? n=123,...,

eigenfunctions: Xo(z) =1, X,(z)= cosnz, n=12,3,....

Solve the T-equation for A = \,;:

A =0: T/I:0:>T0(t):CQ+dot

A =n2:T"+n?T =0= T,(t) = cpcosnt +dysinnt, n=1,273,....

Form the product solutions:

ug(w,t) = Xo(x)To(t) = co + dot
Un(z,t) = Xpn(z)Tn(t)

= cosnx(cy, cosnt + d,, sinnt), n=123,....

Then the general solution is

u(z,t) = co + dot + Z cos nz(cy, cosnt + d, sinnt).

n=1
Now, the initial shape gives us
o0
u(z,0) =0=1co+ Z Cp COSNT,
n=1

which means that we have

cn, =0, n=20,1,2,....
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The initial velocity is

u(z,0) =1=dp+ ann CcoS N,

n=1

and, remembering that the Fourier cosine series for 1 on 0 < x < 7 is

a o0

0

1= 5 + E an COSNX,
n=1

where 5 /7
an:—/ 1-cosnz dx, n=0,1,2,...,
™ Jo
we have
1 s
dO:@:—/ 1de =1
2 7T 0
and
1 2 [T
dp =—an, = — cosnx dr =0, n=123,....
n nm 0

Therefore, our solution is the general solution (4.7) with the above values
of the coeflicients plugged in:

u(z, t) =t,

so the string does not vibrate but, instead, retains its initial shape and con-
tinues to move upward at a velocity of 1.

Of course, we can’t look at steady state solutions of the wave equation, but
we can get some very important physical (and mathematical) information if
we use our Fourier series solution to decompose u into its various wvibration
modes.

So, setting g(z) = 0 for the sake of convenience (and it won’t make a
difference as far as what we’d like to show), we look at the solution

> nmw nmct
)= a,sin —-
u(z,t) nz_:la sin —— cos —
of the string problem
uttZCQum, O<z<L,t>0,
u(x, 0) = f(x),
ug(z,0) =0,

u(0,t) = u(L,t) = 0.
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The individual product solution

. nmx nmct
Up(z,t) = sin oS,

n=12,3,...,

of the PDE and boundary conditions, is called the nt® normal mode of
vibration for the problem. What do these modes look like?

1. The functions
nmwT

Un(x,0) = X, (x) = sin A
are, of course, standard sine waves. The first few can be seen in Fig-
ure 4.3. The points where each curve intersects the z-axis (including

the endpoints, for the string which is nailed down) are called its nodes.
More on these below.

X T
! L S A

.o2mx 3
(a) y=sin X (b) y=sin (c) y=sin 21X
L L L

FIGURE 4.3
First three vibration modes for the vibrating string.

2. The function ;
T, (t) = cos nme

is what tells us how the n** mode wibrates. Figure 4.4 gives snapshots
of the second mode each at various time t. Note that the nodes remain

fixed!
i
L L L L L
]
" - L bt L
@ t= = © 1= @ =3 @t=¢
FIGURE 4.4

Vibration of the second mode. The three nodes remain fixed.
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The time that it takes for the n*® mode to go through one cycle of
vibration—the vibration period of the mode—is just the (least positive)
period of the cosine function. Thus, it’s the value ¢,, for which % =

2w, or

2L
period of n*® mode: ¢, = —.
ne

Then, the mode’s vibration frequency, or number of vibrations per
unit time, is just

1 ne
frequency of n'® mode: v, = — = —.
requency of n*" m Un Y
We see that each frequency is an integral multiple of the fundamental
frequency

vy = 2L7

the frequency of the first or fundamental mode. The complete set of
frequencies is called the frequency spectrum of the string, and it is
a discrete, as opposed to continuous, spectrum (the separation between
consecutive frequencies being the fundamental frequency—we say they
are “spaced according to n”).

Thus, regardless of the initial displacement and velocity of the string,
its motion can be decomposed into these modes and frequencies, and,
since each frequency is an integral multiple of the fundamental fre-
quency, the string actually vibrates at this frequency (why?). So, what
tells us the difference between two different vibrations?

3. The coefficients a,, of course! The number |a,| gives us the ampli-
tude of the corresponding mode and, since the Fourier series solution
converges, we must have a, — 0 as n — oo. Thus, the lowest modes
contribute most to the motion of the string. (One may also show that
the total energy of the vibrating string is equal to the sum of the ener-
gies of the individual modes and that the latter — 0 as a,, — 0, so as
n — 00.)

A nice real-world illustration of the situation can be seen (and heard!) in
the case of a violin string. Every note played by the violinist corresponds
to a specific vibration frequency of the string, and the higher the frequency,
the higher the note. For example, “concert A” (the A above “middle C”)
corresponds to a frequency of 440 hertz. So, suppose she plays this A—what
do we actually hear? We hear the A, of course! The string is vibrating at
440 hertz. However, it’s virtually impossible for anyone to cause any string to
vibrate in a single mode. Thus, we should be able to decompose the motion
into many—infinitely many—frequencies and modes. It turns out that 440
hertz is the fundamental frequency (which makes sense, since the A turns
out to be the loudest note we hear) and that, in principle, the string also
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sounds the notes corresponding to all integral multiples of this frequency. In
practice, we actually do hear the first few of these higher notes, with the
various contributions dying out and becoming inaudible as the frequencies
increase (again, the lower modes contribute more than the higher modes).

It is the relative contributions of the notes of various frequencies that give
the violin string its unique sound. (To be more specific, striking the string
differently will lead to different relative contributions, and we can hear these
differences. More generally, though, the possible relative contributions at vari-
ous frequencies for a violin string are different from those of other instruments.
If we play the same A on a piano and a violin, and if we arrange things so
that someone with a trained ear hears them only after they’ve been struck,
then that person still can tell the difference between the two.)

In our example, we call A the fundamental and the higher tones the
overtones of the particular string. As it turns out, the first few overtones
turn out to be

22d; A (an octave above the original, 880 hertz)

3'4: E (above the second A, 1320 hertz)*
4%: A (two octaves above the original, 1760 hertz)
5'h: D (above this last A, 2200 hertz).*

These notes are harmonically consonant with the original—when sounded
together, they are pleasing to the ear. Hence, the fundamental and overtones
have come to be known as the harmonics of the particular string (although,
if we go high enough, we start to encounter overtones which form a dissonance
with the original A; however, these generally are inaudible).

Exercises 4.2

1. Solve the wave equation us = buy, for a string of length L with both
ends nailed down along the z-axis, if
a) L =m,u(z,0)=3sin2x,u(r,0) = sinx — 7sindx

T ifo<x<2

b) (the plucked string) L = 4,u(x,0) = { S

) (the plucked string) u(z,0) {4_% fo<a<d

ug(z,0) =0
¢) L =2,u(x,0)=0,us(zx,0)=3
2. Solve the wave equation uy = 4uy, for a string of length m, subject
to the boundary conditions u,(0,t) = u,(7,t) = 0 and to the initial
conditions

*For the equal-tempered scale, these values are approximately 1318.51 and 2349.32, respec-
tively.
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a) u(x,0) =4cos3x ui(x,0) = 6cos2x — cosbx
b) u(z,0) =sinz wz, O) 0 (See Exercise 3, Section 3.6.)
¢) u(z,0) =1 wuy(z,0) =

3. Solve the wave equation us; = uz, subject to
a) u(0,t) =uy(1,t) =0, w(z,0)=0, w(x,0)=1
b) u.(0,t) = u(m,t) =0, u(z,0)=7%—2% wu(z,0)=0
4. Solve the general wave equation uy = c?u., subject to the initial condi-
tions u(z,0) = f(z) and u;(z,0) = g(x) and to the boundary conditions
a) u(0,t) =u(L,t) =0
b) ug(0,t) = ugy(L,t) =
¢) u(0,t) = u,(L,t) =0
d) u.(0,t) = (L,t) =0.
5. In Exercise 4 in Section 2.3, we derived the damped wave equation
Ut = gy — Bug.

a) Solve the initial-boundary-value problem
Utt = Ugy — dUz,
u(z,0) =1
u(x,0) =0,
u(0,t) = u(m,t) = 0.
What happens as t — 0o?
b) Solve the initial-boundary-value problem

Utt = Ugy — 2Ut,
u(x,0) = 5sinx — 3sindx,
ug(z,0) =0,
u(0,t) = u(m,t) = 0.
Again, what happens as t — oo?
¢) Solve the same problem as in part (b), but with initial conditions
u(x,0) =0, ug(z,0) = sinx + sin 2x. Once more, what happens as
t — oco?
d) Remember that uy = c*uy, — Bus —yu is the telegraph equation.
Solve the initial-boundary-value problem
Upt = Ugg — 2Up — U,
u(z,0) ==z
ug(z,0) =0,
u(0,t) = u(m,t) = 0.
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6. MATLAB: Plot the truncated (unless it’s not necessary to truncate)
solution for each problem, in the z-u plane, for various values of t.
a) Exercise la
b
¢
d

e

) Exercise 1b
) Exercise 1c
) Exercise 3a
) Exercise 5b
f) Exercise 5¢
7. MATLAB: Plot the first four modes of the vibrating string of length
1 with boundary conditions u(0,t) = u,(1,t) = 0.

8. Using trigonometric identities (as in Section 3.2), show that the solution
of the wave initial-boundary problem

Ut = Uy,

u(x,O) = f($)7
ut(xv O) = g(x),
u(0,t) = u(L,t) =0

can be written as
x+ct

[F(xz+ct)+ F(x —ct)] + 2_0/ G(s)ds,

r—ct

u(z,t) =

DN | =

where F(z) and G
respectively.

—~

x) are the odd periodic extensions of f(z) and g(x),

9. Vibrating Euler—Bernoulli beam: From Appendix D, we know that
a simply-supported vibrating E-B beam, given an initial displacement
with zero initial velocity, is

utt+a4ummmmzo, 0<x<77,t>0,
u(z,0) = f(x),
ut(z,0) =0,

w(0,t) = Uz (0,8) = u(m,t) = Ugy(m, t) = 0.

a) Solve this problem. (Hint: Let the separation constant be A\ =
—k*,0,k%, for k > 0. For each eigenvalue ), the corresponding k is
called the wave number.)

b) What is the vibration spectrum? Are the frequencies of the over-
tones integral multiples of the fundamental frequency? Conversely,
is every integral multiple of the fundamental also the frequency of
an overtone?

¢) Which musical instrument is, essentially, a series of such beams?
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4.3 Solving the Homogeneous Laplace’s Equation
on a Rectangular Domain

Let’s start by looking at a particular case of the Dirichlet problem on a rect-
angle:

Ugg + Uyy = 0, 0<z<a,0<y<d
u(z,0) = f(),
u(z,b) = g(x),

u(0,y) = ula,y) = 0.

(See Figure 4.5.) First, separate the PDE:

u(z,y) = X(@)Y(y) = = =—5-=-A
= X"4+AX =0, Y=Y =0.

Next, separate the left and right side boundary conditions, as we’ve been
doing. We now have

X"+XX =0, Y'-)XY =0,

X(0) = X(a)=0.

b u(x,b) = g(x)
u(0,y) =0 VZu=0 u(a,y) =0
u(x,0) = f(x) a

FIGURE 4.5
The Dirichlet problem on a rectangle (with homogeneous BCs along
left and right edges).

Solving the X-eigenvalue problem, we get

. 2_2
eigenvalues: An = "5,
eigenfunctions: X, (x) = sin 22%, n=123,....

Again, we now must solve the Y-equation for A = \,:
n?n?

"
Y — 2

Y=0=Y.(y) =cn coshw + d,, sinh nry .
a a
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The penultimate step, as usual, is to form the product solutions and use them
to form the general solution:

oo
u(z,y) = Z sin 2% (cn cosh 2™ 4 d. sinh @) .
n=1 a a a

Finally, we use the remaining two boundary conditions to determine the co-
efficients ¢y, d,, n =1,2,3,...

= nwT 2 [¢ nwT
,0) = = p Sin—— = ¢, = — in—dz, n=1,2,3,...,
u(z,0) = f(z) ;C sin— ¢ a/o f(z)sin odz, n

nmT nmb nmb
u(z,b) = g(x) ng_l sin o (c cos p +d,, sin — >

b 2 [ b
= d sinh —— = _/ g(z) sin == dx — ¢, cosh "~
a a fo a o
or
2 “ . nmx nﬂ-b
dnzw/ g(x)sm—a dx—cncothT, n=1,23,... .1

Of course, this example is by no means the most general Dirichlet prob-
lem. Specifically, the conditions involving u(0,y) and wu(a,y) need not be
homogeneous. We’ll look more closely in the exercises.

Suppose, instead, we have the Neumann problem

Ugy + Uyy = 0,

Uy(x,0) = uy(z,b) =0,
uz(0,y) = f(y),
ug(a,y) = g(y).

Again, we separate, but we do so with an eye toward the fact that the homo-
geneous boundary conditions are u,(z,0) = uy(z,b) = 0:

ule.y) = X@Y() = o= A =

=Y 4+)Y =0, X"—-)X=0.

-2

Now, separating these two boundary conditions, we see that we must solve
Y4+ AY =0, X" —-)2X =0,
Y'(0)=Y'(b) = 0.

cosh x

fRemember, the hyperbolic cotangent is coth z = h o
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As before, we see that the eigenvalues and eigenfunctions of the Y-problem
are:

eigenvalues: Ao =0, X\, = "7, n=123,.
eigenfunctions: Yy(y) = 1, ( ) = cos “7¥, n = 1, 2,3,....

Solving the X-ODE for each of these eigenvalues, we have

A =0: XQ(JJ)ZCQ—FCIQQJ
2,2
)\n:nb—;r: Xn(x):cncoshn—;:x—i—dnsinh?, n=1,2,3,...,

and the general solution becomes
u(z,y) = co + dozx + Z cos n_7bry (cn cosh n_;rx + d,, sinh n_gac) .

n=1

Finally, the other boundary conditions determine the constants:

uz(0,y) = —d0+z 5 d COS@, 0<y<b
=>d0——/ f(w)dy,
2
dp = — f( )cos—dy, n=123
nm

ug(a,y) = g(y _do-i-z— OS—(cnSinhn—;m—l—dncosh?)

1 b
= dy = 3/ 9(y)dy,
0
nm 2 [P nmy
(Cnblnh 2 + d,, cosh T) =3 g(y) cos Tdy
0

or

nmd,, nmwa
n = —d — h—, =1,2,3,....
c mrsmh T / ) cos 2 cos 5 n

Now, we notice two important differences between this example and the
previous one:

1) ¢o is arbitrary! Therefore, there are infinitely many solutions, so this
Neumann problem is not well-posed. In fact, this is a property of all
Neumann problems.
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2) There seem to be two expressions for dy. Indeed, f and g must satisfy

the compatibility condition

/Obf(y)dy = /Obg(y)dy

or else the problem has no solution. See Exercises 12—-14.

Again, we’ll look at problems with more than two nonhomogeneous bound-
ary conditions in the exercises.

Exercises 4.3

In Exercises 1-10, solve Laplace’s equation subject to the given boundary
conditions. Work each problem out completely, rather than referring to the
solutions in this section.

1.

2.

10.

11.

=0, u(z,2)=10, u(0,y)=u(l,y)=0

x,0) =3sinmz, wu(r,3)=0, u(0,y)=u(4,y)=0
=u(z,7) =0, u(0,y)=y, u(l,y)=0

r,0) =cosz, wu(x,1)=-sing —sin2z, u(0,y)=u(r,y)=0
z,0) =u(z,2) =0, u(0,y)=vy, u(l,y)=2y

u(z,0) =u(z,7) =0, u(0,y) =0, u,(5,y)=3siny—5sindy
Uy(2,0) =0, wu(z,1)=2, u0,y)=u(l,y)=0

Uy(2,0) = uy(x,m) =0, uzx(0,y) =0, ugy(2m, y)=cosdy
uy(2,0) =2, uy(z,m) =3, ua(0,y) = ua(27,9) = 0

MATLAB: Plot the (truncated) solution of the given problem. Where
do the maximum and minimum values of u seem to occur?

a) Exercise 3

b) Exercise 6

a) Use the solution to Exercise 6 to solve

Ugg + Uyy = 0,

u(z,0) =0,

Uy (z,5) = 3sinx — 5sindz,
u(0,y) = u(m,y) = 0.
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b) Use the solution to the first example in this section to solve
Ugg + Uyy = 0,
u(x,0) = u(z,b) =0,
u(0,y) = f(y),
u(a,y) = g(y).

Hint: Don’t work too hard—look at part (a)!

¢) More generally, solve
Ugg + Uyy = 0,
u(x,0) = u(z,b) =0,
u(0,y) = f(y),
u(a,y) = g(y)-

12.  a) Use the solutions to Exercises 1 and 5 of the Dirichlet problems

Ugg + Uyy = 0, Ugy + Uyy = 0,
u(z,0) = u(z,2) =0, u(z,0) =0,

u(0,y) =y, u(z, 2) = 10,

u(l,y) =2y, u(0,y) = u(l,y) =0,

to solve

Ugy + uyy =0,

u(z,0) =
u(z,2) = 10
U( ) - y7
u(l,y) = 2y.

b) More generally, what is the solution of the Dirichlet problem

Ugg + Uyy = 0,

u(z,0) = fi(z),
u(z,b) = fa(),
u(0,y) = g1(y),
u(a,y) = g2(y)?

¢) What is the solution of the Neumann problem

uy(m,()) = fi(z),
uy(z,b) = fa(z),
uz(0,y) = g1(y),
ug(a,y) = g2(y)?
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Note: There may be compatibility conditions. See the following
two exercises.

13. Solve the problem
Uz + Uyy = 0,
u(0,y) = u(a,y) = 0,
subject to

a) uzy(r,0) = f(x),ug(z,b) = g(x). What restrictions, if any, are
there on the functions f and g7

b) w(z,0) = f(z),us(x,b) = g(x). Again, what restrictions, if any,
are there on f and g7

14. a) Show that the Neumann problem

Ugz + Uyy = 0, 0<z<a,0<y<b,
uy(z,0) = fi(x),
uy(z,b) = fa(z),
uz(0,9) = 91(y),
uz(a,y) = g2(y),

must satisfy the compatibility condition

b

/ o) — fr(@))da + [ )~ antwty =0,
0 0

as follows: write

b a
0= Upg + Uyy = 0= / / (Upa + Uyy)dzdy
0o Jo

b ra a pb
0 Jo 0 JO

and then integrate.

b) Instead, use Green’s Theorem on

b a
0= / / (Uga + Uyy)dzdy
a 0

to arrive at the same result.

¢) More generally, show that, if D and C are well-enough behaved,
Green’s Theorem says that

//Vzu dA = f—auds,
on
D c
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where D is a two-dimensional region, C' is its boundary curve and
g—z is the outward normal derivative of u along C. Therefore, the
above result is just a special case of the more general compatibility

condition
ou

—ds = 0.
on iy
o}

This says, of course, that the total flux across C is zero, which
makes sense as solutions of Laplace’s equation can be looked at as
steady state temperatures.

4.4 Nonhomogeneous Problems

The heat and wave equation problems can be nonhomogeneous in one of two
ways: the PDE itself may be nonhomogeneous or the boundary conditions
may be nonhomogeneous. Let’s first consider the simplest nonhomogeneous
boundary conditions, leaving the more general case for the exercises.

NONHOMOGENEOUS BOUNDARY CONDITIONS

We start with the heat equation, with each end held at a constant temperature
(see Exercise 7 in Section 2.4):

2
Ut = & Ugg,

u(z,0) = f(z),
'LL(Oﬂf) = Tl, ’U,(L,t) = Tg,

where T and T, are not necessarily zero. We plan to transform the problem
into a homogeneous problem in a new unknown w(z, t). In order to accomplish
this, we wish to find the “simplest” function v(x,t) so that w = u — v satisfies

Wy = QP wyy
and

w(0,t) = w(L,t) = 0.

The first condition certainly will be satisfied if vy = v,, = 0, and this will
require v to be a linear function in x,

v=v(x) =1z + ca.
Then, if w(x,t) = u(z,t) — (c1z + ¢2), we have

w(0,t) = u(0,¢t) — co
= T1 — C2
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and

w(L,t) =u(L,t) — (c1L + ¢2)

= TQ — ClL — C2.
Solving the two equations

Tl—CQZO,
TQ—ClL—CQZO

for ¢; and ¢y gives us

T, -1
c=—-
1 i3 )
co =11,
so our new unknown w is given by
T — T
w(z,t) = u(z,t) + LT,
See Figure 4.6.
y Y
T, /
T, a
W
f X X
L L
T,-T,
(a) graph of u(x,t) (b) graph of w(x,t) =u(x,t) + x =Ty
FIGURE 4.6

Transforming nonhomogeneous boundary conditions into homoge-
neous BCs.

Finally, the initial condition in w becomes

T —T
w(z,0) = u(z,0) + %x—ﬂ
- T - T

Therefore, we need only solve the problem

{E—Tl.

2
Wy = O Wy,
T - 1T

w(z,0) = f(z) + T
w(0,t) = w(L,t) =0,

ZE—Tl,
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and the solution to the original problem will be

u(z,t) = w(z,t) + v(z),

-1

=w(x,t) + x + 1.

Of course, the wave equation with nonhomogeneous boundary conditions
can be treated in the same way. Also, it is not difficult to extend this method
to more complicated boundary conditions.

Example 1 Transform the wave equation initial-boundary-value problem

u(z,0) = f(x),
Ut($7 O) = g(l’)7
ug(0,8) =10, . (2,t) —u(2,t) =3

into one with homogeneous boundary conditions. Again, we try w(x,t) =
u(x,t) — c1x — ¢co. The boundary conditions become

we(0,t) =1y (0,8) — 1 =10 — ¢4,
we(2,t) —w(2,t) = ug(2,t) —u(2,t) —c1 +2¢1 +ca =3+ ¢1 + o,
which become homogeneous in w if and only if ¢; = 10 and ¢, = —13. So our

transformation is
w(z,t) = u(x,t) — 10z + 13.

Finally, the new initial conditions are

w(z,0) = u(x,0) — 10z 4+ 3 = f(r) — 10z + 13,
wi(z,0) = w(z,0) = g(x).

In the exercises we treat more general boundary conditions, including those
which involve functions of .

NONHOMOGENEOUS PDEs

A more difficult question is how to solve an initial-boundary-value problem
when the PDE is nonhomogeneous. Again, let’s begin by considering the heat
problem

Up = Ugy + F (2, 1), (4.8)

u(z,0) = f(x), (4.9)
u(0,t) = u(L,t) = 0. (4.10)
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Now, if the problem were, instead, homogeneous, it would have a solution of
the form

Z T ( sm (4.11)

where we have sin 7 because of the boundary conditions (4.10) (and, of

2.2

course, in the homogeneous case, T, (t) = bpe™ "L—gt, where the constants b,
are the Fourier sine coefficients of f(z) on 0 < x < L). These boundary
conditions, then, suggest that the solution of the nonhomogeneous problem
also will have the form (4.11) (for different functions T;,(¢), of course). Our
goal is to determine the functions T,(t) so that (4.11) is the solution of the
problem (4.8)—(4.10).

To this end, for each value of ¢t we expand F(x,t) into its Fourier sine series
on 0 < x < L. Thus, we have

where

L

Next, we substitute (4.11) into the PDE (4.8) and, assuming we may differ-
entiate term-by-term, we get

L
m@:—AF@wm%?m (4.12)

© 2 2
ZT’ binw:_ nLZ T,(t 51n——|—ZF bln
n=1
ZTA( binw: { +F():|bln$.
n=1

Equating coefficients of sin £ (which, by the way, is equivalent to forming the

inner product of each side with sin 7=,

on 0 <z < L) we have

T T,(t)=F,(t), n=12....

Again, we have reduced a PDE to a problem involving ODEs. We may solve

each ODE by multiplying through by the integrating factor e 2 t, resulting
in
d n2n2¢ n2n2¢
ﬁ%LG@wazFU

or

n2n2¢ b 22,
T TL(t) = / e 1z Fo(r)dr +k,
0
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or

2 ’!127\'

n 7r2t ¢ T n27rzt
T.(t) =€ 12 / e 12 F,(r)dr +kpe 22, n=1,23,.... (4.13)
0

Note that we could have chosen any constant as the value of the lower limit
of integration. We choose it to be zero for the sake of convenience, because
the initial condition is given at time ¢ = 0.

Now, what’s the value of each k,,? The initial condition (4.9) implies that

IN

and, since this must hold for all z in 0 < z < L, we must have

2 L
= z/o f(z)sin nLﬂd:c, (4.14)

that is, the constants k, must be the Fourier sine coefficients of f(x) on
0<z<L.

So, our solution is (4.11), with each T}, (¢) given by (4.13), each k,, by (4.14)
and each function F,(t) by (4.12).

Again, we may treat the nonhomogeneous wave equation, as well as the
nonhomogeneous Laplace’s equation (i.e., Poisson’s equation), in a similar
manner (and we do so in the exercises).

Exercises 4.4

1. Suppose we are given the wave equation initial-boundary-value problem
Utt = Ugg, u(z,0) = f(x), u(x,0) = g(x), subject to the given nonho-
mogeneous boundary conditions. Transform each problem to one with
homogeneous boundary conditions.

a) uw(0,t) =u(L,t)=T

b) u(0,t) =T, u(L,t) =a
¢) uz(0,t) =a,u(L,t) =T
d) ug(0,t) =uy(L,t) =a

(In each case, T' and a are constants.)

2. Do the same as in Exercise 1 for the boundary conditions u;(0,t) =
a # uy(L,t) = b. (Note: The PDE in the transformed system will be
nonhomogeneous.)
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3. Consider the general heat problem

Ut = Ugy + F (2, 1),

u(a:, O) = f(x)v
U(O,t) = g(t)a
(L) = h(t).

Determine functions A(t) and B(t) so that the transformation
w(z,t) = u(x,t) — A(t) — xB(t)

leads to a problem with homogeneous boundary conditions. Write down
the initial-boundary-value problem for w.

In Exercises 4-10, solve the nonhomogeneous heat initial-boundary-value prob-
lem. In each case, rather than following the example in the text, start from
scratch by assuming a solution of the correct form, as in (4.11). Also, cal-
culate the steady state temperature, tlg{)lo u(x,t); if the limit doesn’t exist,

describe the system’s behavior as ¢ — co. (Hint: Use 'Hopital’s rule and the
fundamental theorem of calculus.)

4. U = Ugy + T,
u(x,0) = sin 2z,
u(0,t) = u(m,t) = 0.

5. Ut = Ugy + 10,
u(z,0) = 3sinz — 4sin 2z + 5sin 3z,
u(0,t) = u(m,t) = 0.

6. Ut = Ugy + 10,
u(zx,0) = 50,
u(0,t) = u(m,t) = 0.

T. Ut = Uge + 2+ 1,
u(z,0) =z,
u(0,t) = u(m,t) = 0.

8. U = Uy, + CcOS2x — cos Dz,
u(z,0) = cos 3z,
Uz (0,t) = uy(m,t) = 0.

9. U = Uy, + 10,
u(x,0) = —15,
Uz (0,t) = ugy(m, t) = 0.

10. u = Ugy,

2
u(z,0) = g%,
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ug(0,) =0,
ug(m, t) = 10.
(Hint: See Exercise 2.)

In Exercises 11-15, solve the nonhomogeneous wave initial-boundary-value

[ee]
problem. In each case, start by letting u(x,t) = > T, (t) sinna and proceed
n=1

from there.

11.

12.

13.

14.

15.

Upt = Ugqe + SIN T,
u(x,0) = sin 3z,
ug(xz,0) = sin bz,
u(0,t) = u(m,t) = 0.

Ut = Ugg + T,
u(z,0) =1,

ut(z,0) =0,

u(0,t) = u(m,t) = 0.

Ut = Ugy + sinxsint,

u(z,0) =0,

ut(xz,0) = sin 3z,

u(0,t) = u(m,t) = 0.

(Explain why this system is said to exhibit resonance.)

MATLARB: Plot snapshots of the (truncated) solution in the z-u plane,
for various values of ¢, for the following problems. What happens as
t — oo?

a) Exercise 5
b)
c¢) Exercise 11
)

d

Exercise 9

Exercise 15

Show that the solution of the general nonhomogeneous wave initial-
boundary-value problem

Ut = Uy + F(z, 1),
u(z,0) = f(z),

u(z,0) = g(z),
u(0,t) = u(m,t) =0

is

o0
u(zx,t) = Z sin nz[c, cosnt + d,, sinnt + p,(t)],

n=1
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118

where, if F'(z,t) = F,(t) sinnz, then p,(t) is any particular solution

1

n

of the ODE
T! +n°T, = F,,
and where
2 [T .
Cn = —/ f(z)sinnz dz — p,(0)
™ Jo
and
2 [T , 1,
dp = — g(x)sinnx de — —p, (0), n=1,2,3,....
nrw J, n

In Exercises 16 and 17, solve the Poisson’s equation boundary-value problem.
You will want to let u(x,y) = > X,(z)sinny or u(z,y) = Y. Y, (y)sinnz,
n=1 n=1

depending on the boundary conditions.

16. Ugy + Uyy = sin 2z,
u(x,0) = sin 3z,
u(z,m) =0,
u(0,y) = u(m,y) = 0.

17, gy + uyy = x2y2,
u(x,0) = u(z,7) =0,
u(0,y) = u(m,y) = 0.



Prelude to Chapter 5

This chapter is devoted to the idea of characteristics of a PDE. For our pur-
poses, these characteristics are curves in the domain of the PDE—here, the
-y plane—along which solutions of the PDE have certain “nice” properties.
For example, for some equations, solutions are constant along these charac-
teristics.

We begin with first-order linear equations, which were studied by many no-
table mathematicians in the late 18th century, particularly Lagrange, who, as
in all of his work, used an analytical approach, and Monge, whose geometrical
ideas were quite fruitful.

The method of characteristics can be generalized to equations of higher or-
der. We do so only for second-order linear equations with constant coefficients,
starting with Jean Le Rond d’Alembert’s (1717-1783) famous solution for the
infinite vibrating string, which he actually derived around 1746, before any of
the important work on characteristics. Although he did not call them such,
it is implicit in d’Alembert’s work that he understood the behavior of the
characteristics of the wave equation. Daniel Bernoulli, Euler and Lagrange
also made important contributions in this area.

Finally, we classify second-order linear PDEs according to how many fam-
ilies of characteristics they have. It is here that we see that the wave, heat
and Laplace equations have a mathematical importance far beyond their con-
nection with specific physical problems.

161






5

Characteristics

5.1 First-Order PDEs with Constant Coefficients

In Chapter 1, we saw that there are many first-order PDEs which we can
already solve. In particular, the linear equation

(I((E, y)uﬂﬂ + b($7y)u = f((E, y) (51)

can be treated as an ODE. What about more general linear, first-order PDEs?
And why would we be interested in these equations?

The PDE au, + bu, = 0 often is called the convection equation (as
in “convey”) or advection equation (where advection is a synonym of the
noun transport). Imagine a very narrow stream flowing at constant velocity
v. Suppose there is a chemical that has polluted the stream and that this
chemical is carried downstream without diffusing at all. Let

u(z,t) = concentration of chemical per unit length, at point z

along the stream, at time ¢

(we are assuming that the stream is narrow enough so that the concentration
is the same along any line across its width, so we may treat the stream as
one-dimensional). See Figure 5.1. What can we say about the function u?
Consider a short length of the stream, from x to x + Az, and calculate the
change in the amount of chemical present from time ¢ to time ¢ + At. First,
the amount present at time ¢ is approximately

u(z, t)Azx,
so the change is approximately

[u(z,t + At) — u(z, t)]Az.

163
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o bank
N -
stream velocity: v
bank

X—axis

FIGURE 5.1
Narrow stream flowing at constant velocity v.

Now, during the time interval At, a particle in the stream travels a distance
vAt. Therefore, the amount of material passing a point z during this time

interval is approximately
u(z, t)vAt,

so the net change in the amount of chemical in our length Az, during the
interval At, is approximately

— (Amount leaving right end)
+ (Amount entering left end)
= [—u(z + Az, t) + u(x, t)|vAt.

Divide through by AzAt and take limits as At and Az go to 0, and we get
Uy + v, =0

(see Figure 5.2).

U At U At
V—/;\ ’—/;‘
T T
I I
I I
| |
I I
I I
1 1
X X+ AX
AX

FIGURE 5.2
Differential element of stream, “before” and “after.”

So how do we solve the convection equation? Let’s look at some examples.
Example 1 Find all solutions of the PDE
2ug + 3uy = 0. (5.2)

We'll try to reduce this equation, via a transformation of the independent
variables, to one which we know how to solve, namely, to (5.1). Let

=
n = Ax + By
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and let’s choose the constants A and B so that the transformed PDE has no
u, term. We have

Uy = Ug + Auy,

uy = Buy,
and the PDE becomes

2ue + (2A+ 3B)u, = 0.

We may choose, for example, A = 3 and B = —2, and the transformation
g =X xr= S
or
n=3x—2y y=36—3n

reduces our PDE to
2u5 = 0

Integrating by £ (and treating n as a constant), we have our solution

(3z — 2y), (5.3)

where g is any arbitrary function (with certain restrictions). We can always
check our solution:

uy =393z — 2y), wuy, = —2¢'(3x — 2y)
and
2uy + 3uy = 0.

Note that the above implies that g must be differentiable. (We may refer to
(5.3) as the general solution of the PDE.)

First, you should convince yourself that we could have interchanged the
roles of x and y and used a transformation

E=Czx+ Dy
n=y

to eliminate the u¢ term and arrive at the same solution. Now, let’s look more
carefully at the solution. Notice that, for all points on the line 3x — 2y = ¢,
where c is a given constant, we have

u(z,y) = g(3r — 2y)
= g(c),

that is, u is constant along each of the lines 3z —2y = ¢. These important lines
are called the characteristics or characteristic curves of the PDE, while &
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and 7 are called characteristic coordinates. (We will give the “official” def-
inition of characteristics in Section 5.2. See Definition 5.1.) Essentially, what
has happened is that the PDE (5.2) has been turned into an ODE “along”
these characteristics (an ODE which, in this particular case, has solution u =
constant along them).

Example 1 (cont.) Continuing with our example, suppose that the PDE is
to be solved subject to the additional condition

u(z,0) = sinz.
Then,
u(z,0) = g(3z) =sinz

and, letting z = 32,z = 12, we have

3
1= (1)

So the unique solution to the system

2u, + 3uy =0,
u(z,0) =sinz (5.4)

is

u(z,y) = sin %(3;10 —2y)

. 2
=sin({z—-y].
3y

The condition u(z,0) = sinz is called a side condition or, in the case
where y is replaced by the time variable, ¢, an initial condition. We shall
use the latter, even when the variable does not necessarily represent time.
Then, the curve along which the condition is given will be called the initial
curve, and the system (5.4) is called an initial-value problem.*

Looking at Figure 5.3, we see the relationship between the solution in the
transformed coordinates and the actual solution. In the &-n plane, u is con-
stant along the characteristic = constant. To get the graph of the actual
solution, we “tilt and stretch” the latter until they coincide with the lines
3x — 2y = constant.

* Alternatively, the system often is called a Cauchy problem, after Augustin-Louis Cauchy
(1789-1857), and the initial condition is called the Cauchy data.
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= o/
m=3 YA YEY BNYAN
4 "ou N\ ) ou ) ) e
n=2 AR A A ]
! Y 7 i 7 < S
&5/ 5/ &5/ 4D
n=1 ’ Ny
n=0 E *
n=-1
n=-2
(a) characteristics in &-m plane (b) characteristics in x—y plane

Characteristics for Example 1 in (a) characteristic coordinates and
(b) Cartesian coordinates.

Also, we have a nice physical interpretation of the solution if we replace y
by the time variable, ¢t. Then, if we take “snapshots” of the solution u(z,t) =
sin (ﬂc — %t) at various times ty, we see that we can think of our solution as
an initial curve u = sinx which moves to the right at constant velocity. See
Exercise 11. Here, we can see the phenomenon in three dimensions in Figure
5.4, which graphs the solution in z-t-u space.

N
\
), 4
S

FIGURE 5.4

MATLAB graph of the function u(z,t) = sin (:1: - %t), for t>0. We
see that the cross sections t =constant are copies of the initial shape,
traveling to the right.

More generally, given the first-order, linear PDE

auy + buy + cu = f(z,y), (5.5)
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where a,b and ¢ are constant, we may always proceed as above. We find that
the transformation

E=x
n=bxr —ay

r=¢
or
Y=g~
(for example) reduces the PDE (5.5) to
aug + cu = F(&,n),

where F'(£,n) is just the function f(z,y) with 2 and y replaced by = £ and
Yy = gﬁ — %n. Rather than memorizing, let’s apply the basic principle to some
examples.

Example 2 Solve u; —4u, +u =0
u(0,y) = cos 3y.
Again, we let

E=u
n = Ax + By

and the transformed PDE becomes
u§—|—(A—4B)u,7—|—u=0.

We may choose A =4, B =1, so that

E=u
n=4x+vy
and the PDE becomes
ug +u = 0.

Its solution is
xT

u=g(me* or u=gdr+yle ",
where g is any function. Then, applying the initial condition, we have
u(0,y) = g(y) = cos 3y,
so our final, unique solution is
u(z,y) = e"*cos3(dx + y).

Figure 5.5a shows the graph of u = e~¢cos3n. Along each characteristic
n = constant, we have the exponential solution v = e~¢ . constant. Then,
tilting these lines clockwise, and stretching them until they coincide with the
lines 4x+y = constant, gives us the graph of our actual solution in Figure 5.5b.
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FIGURE 5.5
MATLAB graphs of (a) u=e ¢cos3n and (b) u = e *cos3(4z + y).

The initial condition need not be given along one of the coordinate axes.

In fact, as we shall see shortly, it can be given along almost any curve. For

example, the values of our solution u could be given along the curve y = 3,

in which case the side condition would be of the form
u(x,x3) = f1(z)
or

u(y,y) = f2(y),

where f; and f5 are given functions.
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Example 3 Solve
Uy — Uy — 2y =0,
u(z, 2z + 1) = €”.
We see that the transformation

f=2 =t
n

T
n=z+y y=n—-=¢

reduces the PDE to
ug = 2n — 2¢.

Integrating both sides with respect to &, we have

u=2¢n— &+ g(n),

or
u(z,y) = 2a(x +y) - 2* + g(z +y)
=2+ 2zy + g(x +y).
Then,
w(z,2z4+1) =e® =2 + 222z + 1) + gz + 2z + 1),
0

g3z 4+ 1) = e* — 62 — 22.

Letting z = 3z + 1,z = 25%, we have

o (5 ().

and our solution becomes

oty —1\? -1
u(x,y)=z2+23:y+e +g1_6(7x+y ) —2(758—“/ )

3 3
Example 4 Solve
Uy — Uy — u =0,
u(x,—x) =sinz.
As in Example 3, we use the transformation
€ =7, or T = 57
n=a+y, y=n-=¢

to reduce the PDE to
ug —u = 0.
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The solution is

Then,

u(x, —x) = sinz = g(0)e”.

But ¢g(0) is a constant. Rather than determining g, the initial condition seems
to require that sinx be a multiple of e” for all z, which is impossible (why?).
Therefore, it seems that this problem has no solution. Why did this happen?

Notice that the characteristic curves are the lines x + y = constant. Also,
notice that the initial condition is given along the line y = —x, which happens
to be a characteristic of the PDE.

Basically, what’s going on is this. As mentioned before, the PDE becomes
a first-order ODE along each of the characteristic curves. In order to have a
unique solution, the initial condition must specify the value of u at exactly
one point on each of these characteristics. Therefore, it seems that the curve
along which the side condition u is given must intersect each characteristic at
exactly one point. This, indeed, is the case. We state the following theorem
without proof.

Theorem 5.1 Given the initial-value problem

aug + buy + cu = f(z,y)
u(z, fi(x)) = fa(@),

where a,b and c are constant, suppose that
1) fz, fy, f1 and f} are continuous.

2) Each characteristic of the PDE intersects the initial curve y = fi(x)
exactly once.

3) No characteristic is tangent to the initial curve.

Then, the initial-value problem has a unique solution u, with the property that
Uy and uy are conlinuous.

Note that, by interchanging the roles of z and y, the theorem is also true for
initial conditions of the form u(f1(y),y) = f2(y). Further, it is easy to gener-
alize the theorem to include parametric initial curves which are continuously
differentiable.

We generalize the convection equation in Exercise 18.
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Exercises 5.1

In Exercises 1-10, first find all possible solutions of the PDE, and check your
answer. Then, solve the initial-value problem, and check your answer, or say
why the initial-value problem cannot be solved.

BN

© » N o

10.
11.

12.

13.

14.

. Bugy — Tuy = 0,u(x,0) = 4sin b5z

uz +uy =0,u(4d,y) = eV’
Uy — 2uy = 0,u(z, 2z +4) =2 +3x—1

—2uy + 6uy = 0,u(dy,y) =2y +1
Uy — Uy + 2u = 0,u(z,3) = 2

2

2uy + uy — 5u = 0,u(y?, y) = 3(—y* + 2y)e 5
2z +uy = 1221 + y), u(z, —1) = 4z

Uy + duy — 2u = "V, u(z,0) = cosx

Uy + Uy +u =y, u(0,y) =siny

duz — 3uy + du = O,U(—gy,y) = ﬁ

In the remarks following Example 1, it is mentioned that the solution
u(x,t) = sin (z — 2t) can be viewed as a sine wave moving to the right
at constant speed. Why is this so? What is this speed?

MATLAB: Plot the solution, in z-y-u space, of the given problem.

a) Exercise 2
b) Exercise 5
c¢) Exercise 9
MATLAB: Plot snapshots of the solution in the z-u plane, for various

versions of ¢, for the given problem. In each case, what is the velocity
of the moving wave?

a) Exercise 1 (first, change x to t and y to z)
b)
)
)

(
Exercise 2 (change z to ¢t and y to x)
c (
d) Exercise 9 (change = to t and y to x)

Exercise 5 (change y to t)

If we solve the PDE u; — uy +u = 0, we get u = g(x + y)e™®, for
arbitrary g. However, if, instead, we let £ = Ax + By and n = y and
solve, we get u = g(x + y)e¥. What’s going on?
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In Exercises 15 and 16, solve each initial-value problem two ways. First,
solve each as we’ve been doing; then, transform both the PDE and the initial
condition in terms of £ and 7; solve that problem; and substitute back. (Make
sure you get the same answer!) Hint: When using the second method, it may
help to rename wu, i.e., write u(z,y) = v(&,n) and work with v.

15. uy — uy = 0,u(z, 3z) = 22
16. ug + uy = u, u(z,23) = 5(x — 23)e”

17. Solve the initial-value problem u, —u, = 0,u(z, 2® — x) = 22. Where is
the solution not differentiable? Why does this example not contradict
Theorem 5.17

18. a) In the derivation of the convection equation, suppose that the ve-
locity of the stream depends on position, that is, that v = v(z).
Show that the PDE becomes

ut + v(x)uy = 0.
b) If, in addition, there is a source of pollutant of the form

f(x,t) = amount added at point x at time ¢,
per unit length per unit time,

show that we get the nonhomogeneous equation
up + v(T)uy = f(z,t).

19. In Example 1, we solved 2u; + 3u, = 0 using the transformation
E=x n=3z—2y.
Solve this same equation using various other transformations
E=Ax+ By n=3z—2y.

Which transformations “don’t work,” that is, for which values of A and
B are we unable to solve the problem?

20. a) Solve the problem

aug +buy, =0 x>0,y >0,
u(z,0) = f(z), x>0,
w(0,y) = 9(y), y=0,
where @ > 0 and b > 0 are constants, and where f(0) = g(0).

Hint: Follow the characteristics.
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b) Solve the problem

Up — Uy = U, x>0,y >0,
u(z,0) =sin2z, = >0,
u(0,y) =sindy, y=>0.

5.2 First-Order PDEs with Variable Coefficients

In Exercise 18 of the previous section, we derived the more general version of
the convection equation

ug + v(x)uy, = f(z,t).

Can we extend the method of Section 5.1 to deal with equations where the
coefficients are not all constant? Let’s see.

Example 1 Try to solve u, + yu, = 0.
We let

E=u
n = Ax + By

and the u, coeflicient becomes A + By. However, it is impossible to choose
constants A and B which will make A + By = 0 for all y (why?). We meet
with a similar fate if we try

£ =Ax + By
n=y.

What can we do?

In the previous section, our transformation was chosen so that the charac-
teristics were the curves n = constant. This suggests that we try the same
thing for equations with variable coefficients. The obvious question, then, is,
“What are the characteristics?”

Remember that the characteristics were curves along which the PDE could
be treated as an ODE. Let’s go back to Example 1 of Section 5.1 and see if
we can look at that problem in a different way.

Example 2 2u, + 3u, = 0.
Notice that we can write this equation as

(284 37) - (uxt+uyj) =0
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or

(2i + 37) - grad u = 0.

The left side of the PDE is just a constant multiple of the directional deriva-
tive, ¢ of w, in the direction 2i + 3j, so the PDE says that

’dS’

du
ds
in this direction. More precisely, u is constant along curves which have tangent
vector 27 4+ 37 at each point, i.e., along curves with slope
dy 3
de 2

These curves are, of course, the characteristics

> +
=—-x+ec
Y73
Therefore, the value of u at any point (z,y) depends only on the characteristic
on which (z,y) lies; in other words, u depends only on the value of %x -,

ie.,
I
=9(3 Y

for any arbitrary function g. Notice that this says the same thing as does
equation (5.3).

This approach is a nice geometric way of looking at the problem. However,
it may seem somewhat ad hoc, and it may not be clear how it generalizes to
equations with more terms. For example, what, exactly, does an equation like

75 +u=0
mean, since we expect PDEs to have at least two independent variables?

We will recast this geometric method slightly, so that it looks like what
we have been doing in Section 5.1. To that end, remember, again, that we
chose the transformation so that the characteristics were given by = ¢ in the
transformed coordinates. We shall make the same choice for n in equations
with variable coefficients, and we shall see that £ plays a role similar to that
of the arc length variable s in the notation for the directional derivative of u.

Example 3 Find all solutions of u,+4zuy,—u = 0. Again, the term u,+4zu,
is the directional derivative of u in the direction of the vector 7 + 4zj. We
expect curves with this vector as tangent vectors to be the characteristics.

They satisfy
dy 4x

de 17
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so the characteristics are the curves
y=2z’>+c¢ or 2z°—y= constant.
Now, let
E=2
n=22"—y
Then

Uy = Uge + 4aUy

Uy = —Uy
and the transformed PDE is
us —u =0
with solution
u=g(n)et
= g(22® — y)e”

for arbitrary function g. So the curves 222 — y = ¢ are, indeed, characteristic.
More precisely, given the first-order linear PDE

a(x,y)ug + b(x, y)uy + c(z, y)u = f(z,y),

we define the characteristic curves to be those curves satisfying

dy _ b(z,y)

dr  a(z,y)
or, as is traditionally written,

dx dy

- . (5.6)

Definition 5.1 The characteristics or characteristic curves of the first-
order linear PDE

a(@, y)ua + b(z,y)uy + c(z,y)u = f(z,y)
are those curves satisfying the ODE

dx dy
a(z,y)  blz,y)




Characteristics 177

Then, supposing that the ODE (5.6) has general solution h(z,y) = ¢, we
make the transformation
(==
n = h(x,y).
In this case, we have
Uy = Ug + Uphy
Uy = Unhy
and
aug + buy = aug + (ahy + bhy)uy,.
But

d d
%z%éh(x,y):c

= dh =0=h, dx+h, dy
dy
=dx (hz+hy%)

= dx (hm + hﬂ)
a

dx
(ahgy + bhy)

a
and we have

aug + buy = aug,

so the PDE has been reduced to an ODE.

We haven’t been very rigorous here. For example, what happens at points
where a = 0 or b = 07 Theorem 5.1 can be extended somewhat to the case
of variable coefficients.” It turns out that a necessary condition for existence
and uniqueness of a solution throughout a neighborhood of a point is that
a # 0 or b # 0 at that point.

Example 4 Solve

Uy + YUy = T,

u(1l,y) = cosy.

The characteristics are given by

TSee, e.g., Introduction to Partial Differential Equations with Applications by E. C. Zach-
manoglou and Dale W. Thoe.
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with solution

y=ce® or ye ¥=c.

Then, our transformation is

fzzxv_z or xzzgag
n=ye -, y=rne
and our PDE becomes
u§::§
with solution
52
U= +9(n),
2
€ —x
=5 tolye™)

Finally,
1 _
u(l,y) = cosy = 3 + g(ye 1),

a.nd, le“].ng Z = eay 627 we get
g zZ)=cosez — —.

Therefore, our unique solution is

22
U= + cos(ye

171)

N~

Exercises 5.2

In Exercises 1-6, first find all possible solutions of the PDE, and check your
answer. Then, solve the initial-value problem, and check your answer. Also,
sketch the initial curve and some of the characteristics.

L. yu, — zuy = 0,u(z,22) = 24

2. (14 2%)ug +uy = 0,u(l,y) = cosy
3. Uy + 3z%uy = 0,u(0,y) = sin 3y

4. (1 +y*uy +uy = 0,u(z,0) =e™*
5. uy + 3z?uy —u=0,u(2,y) =3y + 1
6. uz + Uy, = 2%y, u (x,2x + %) = bz

7. MATLAB: Plot the solution of the given problem in z-y-u space. On
a separate graph, plot some of the characteristic curves.
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a) Exercise 1
b) Exercise 3

8. Solve the problem wu; +zu, = 0, u(z,0) = sinz; draw the characteristics
in the z-t plane (the first quadrant will suffice); and compare the solution
with the solution of u; + vu, = 0, u(x,0) = sinx, where v is a constant.
Specifically, describe what happens to the initial sine wave in both cases.

We may extend the methods of Sections 5.1 and 5.2 to equations in higher
dimensions. For example, for the PDE

aug + buy + cu, + du = f,

where a,b,c,d and f are functions of z,y and z, it can be shown that the
characteristics can be determined by the three ODEs (one of which is redun-
dant)

der  dy dz

a b ¢’
More precisely, solving any two of the ODEs gives us two families of surfaces,
the intersections of which give the characteristic curves. This suggests solving,

say, %w = 4 regulting in hi(z,y) = ¢, and %ﬂ” = d—cz, resulting in ho(z, 2) = ca,

b’
and transforming via the characteristic coordinates

E=z
n= hl(irvy)
¢ = ha(z, 2).

Use this method to solve the following PDEs, making sure to check your
answers, then solve each initial value problem, again checking your answers.

9. ug + 2uy + 3u, =0,u(r,y,0) = zy
10. Bug — 3uy +u, = 0,u(l,y,2) =ycosz
11. ugy + 322uy — u, = 0,u(z,0, 2) = 2* + 232
12. 2uy +uy —4u, = 0,u(z,y,0) =y
An important type of first-order PDE in physical applications is the equation
a(x,y, u)ug + b(x, y, uw)uy = c(z,y, u).

This equation is, of course, nonlinear, but it s linear in the derivatives u,
and uy. It is called a quasi-linear equation. A class of quasi-linear equations
which describe certain conservation laws consists of PDEs of the form

e+ S F (] =+ fl)us =0,
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where F' is a given function with F/ = f. Lagrange, in the late 1700s, de-
vised a method of transforming the general quasi-linear equation into a linear
PDE involving three independent variables. Instead, we will solve the simpler
conservation equation as a special case. In fact, it can be shown that the
characteristic equations are given by

dt  dx
L f(u)
where u is treated formally as a constant.

13.  a) Given Burger’s equation from the study of gas dynamics,
ug + utty, = 0,
u(z,0) = g(z),
show that the characteristics actually must be the straight lines
x —tg(xo) = xo,
that is, show that the solution is constant along these lines.

b) Using part (a), and given the Burger’s problem

ug + utty, = 0,
u(z,0) = 2z,

(a rather unrealistic initial condition!), compute u(6,8), u(0,5).
¢) More generally, what is u(z,t) for any point (x,t)?
Note that the characteristics do not intersect each other in this partic-
ular example. They will for “most” functions g(z), in which case life
becomes more complicated (specifically, the solution develops what we
call shock waves, or just shocks).

5.3 The Infinite String

We have solved first-order equations by considering curves along which the
PDE and its solutions have certain nice properties. The obvious question now
is whether we can extend this idea of characteristics to higher order equations.
To this end, let’s look at how d’Alembert cleverly solved the wave equation
for an infinitely long string. The well-posed system for the infinite string is

Ut = gy, —o0 < < o0o,t>0, (5.7)
u(z,0) = f(x), (5.8)
u(z,0) = g(z), (5.9)
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where each term has the same meaning as in Chapter 3. There are no bound-
ary conditions, as we are supposing the string to have infinite length. (How-
ever, it turns out that we do need certain “conditions at infinity.” We’ll say
more, later.)

D’Alembert suggested the following change in coordinates:

E=x+ct
n=x— ct,
in which case we have (see Exercise 1)
Uy = (uge — 2ugn + uny)
Ugz = Ugg + 2Ugn + Uny-
The PDE in the transformed coordinates becomes
gy = 0, (5.10)
which can be solved by integrating twice! Doing so leads to
u=¢(&) +v(n) (5.11)
= ¢z + ct) +p(z —ct),

where ¢ and v are arbitrary functions (again, with certain restrictions).
Now, if we choose 1) = 0, we have that

u=¢(x+ct)

is a solution for any ¢. These solutions, of course, will be constant along the
lines
x + ct = constant,

so that these lines behave very much like the characteristics we have already
met. Similarly, if ¢ = 0, our solutions are constant along the lines

x — ct = constant.

We call these lines the characteristics for the wave equation. Of course,
if neither ¢ nor 1 is the zero-function, we do not expect the solution to be
constant along the characteristics.
Before we finish solving the initial-value problem and looking more closely
at the characteristics, let’s look at the physical interpretation of our solution.
Suppose, first, that ¢ = 0. Then, again, we have the solution

u=1(x — ct).

Further, suppose the initial shape u(z,0) = ¥(x) has the graph given in
Figure 5.6a, and let © = x(y be the point where the “hump” is, initially. What
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will the shape be at any time ¢ > 0?7 For starters, consider what happens
at time ¢ = 1, when the shape is u(z,1) = ¥(z — ¢). As can be seen in
Figure 5.6b, this is just the initial curve shifted ¢ units to the right. More
generally, u(z,ty) = ¥(x — ctp) is the initial curve moved cty units to the
right. Therefore, our solution represents a wave whose shape is unchanged
and which moves to the right with velocity ¢. (Compare with Exercise 11 in
Section 5.1.)

u

} X f f X

X
X0 0

(@) ux0) =y (x) (b) u(x,1) =y (x—c)

FIGURE 5.6
Hump moves to the right at velocity c.

Similarly, u = ¢(x 4 ct) is a wave moving to the left with velocity c. It is
this physical interpretation that gives the wave equation its name.
Finally, let’s apply the initial conditions. Equation (5.8) becomes

u(@,0) = f(z) = 6(x) + (). (5.12)
As for (5.9), we need to calculate uy first. Using the chain rule, we have
up = @ (z + ct) — e’ (x — ct),
and (5.9) becomes
ue(z,0) = g(x) = c¢'(z) — ' ().

We must solve for ¢ and v in terms of f and g. Therefore, we first differ-
entiate (5.12) with respect to z, and we solve

f(@) =¢/(z) + ¢'(x)
g(x) = c¢'(z) — ().

With a little algebra, we get
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and, upon integrating, we have

o(x) = %f(:v) + 2%/; 9(z)dz + ¢ (5.13)
v =370 - 5 [ gzt

(Remember that the Fundamental Theorem of Calculus says that

2 [ gtrt = gta)

for any constant a. We choose a = 0 for the sake of convenience.) Are ¢; and
¢co arbitrary constants? Well, (5.12) and (5.13) say that

f(@) = ¢(z) + ¢(2)
%f(x) + 2%/0 g(2)dz +c1 + %f(:v) - 2%/0 g(z)dz + c2

:f(ﬂj)"‘Cl"'CZ,

so we must have
c1+cy=0.

Our solution, then, is

u=¢(x+ct) +(x — ct)
1 1 xr+ct 1 1 r—ct
:§f(x+ct)+2—c/0 g(z)dz + §f(x—ct)—2—c/0 9(z)dz

or

x+ct
/ g(z)dz. (5.14)

—ct

1
U= §[f(x+ct) + flx —ct)] + %

We can check this function to show that it does, indeed, satisfy the original
system (see Exercise 2).

Example 1 Solve
Uty = 5uww7
u(z,0) =sinz,

ut(xz,0) = sin 3z.

We have
1 et
u = =[sin(z + V/5t) + sin(z — V/5t)] + — / sin3z dz
2 10 Jo— 5t
1. . ) 1 z=x++/5t
= g[sm(x +V/5t) + sin(z — V5t)] — 3 €05 3z e

= %[sin(m + V/5t) — sin(z — V/5t)] — ;_O[COS 3(z + V/5t) — cos 3(z — V/5t)).
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Example 2 Let’s look graphically at the solution of

Utt = Uz,
u(z,0) = f(z),
ug(z,0) =0,

where

2, if -3<u<3
f(x)_{o, if |2] > 3,

for various times ¢t. Note that the function f(x) is known as a square wave
(although maybe it should be called a rectangular wave!). Of course, a real
string can only approximate such a shape; however, square waves are very
important in many wave phenomena, in fields like electronics and acoustics.
Also, this system technically does not have a solution, since f’ (and, therefore,
") does not exist at = £3. However, d’Alembert’s solution still “works,”
and the square wave makes it easy to see what’s going on in these problems.

Now, our solution is

[f(x+1)+ flz —1)].

u =

N =

Therefore, at any time ¢, the graph of u is the superposition of two identical
waves, one shifted ¢ units to the right, the other shifted ¢ units to the left,
and each a copy of the initial shape but half its height. So, for example, we
have (see Figure 5.7)

E=0: u(2,0) = f(a),
t=1 u(a:,l):%[f(x—kl)—i—f(f—l)],
t=2 () = 3l + 1)+ S -2)
t=3 u(w3)=5[f+3) + S -3),
—y u(z,4):%[f(3:+4)+f(:c—4)]

and, by this point in time, we clearly see that the initial shape has broken
into two half-waves, traveling in opposite directions. We continue this example
below.
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(a) t=0

) t=1

(c) t=2

(@ t=3

(e) t=4

FIGURE 5.7
Breaking up of square wave into two half-waves, traveling in oppo-
site directions.

Now let’s look more carefully at the characteristic curves. We ask the
following question: How do the initial conditions affect the solution at points
(zo,t0), where tg > 07 We will treat u(x,0) and u.(x,0) separately (more
precisely, we know that we may deal with the initial conditions

u(z,0) = f(x),

ug(z,0) =0
and

u(z,0) =0,

ui(x,0) = g(z)

separately because of the principle of superposition).
The contribution of f to our solution w gives us

u(l‘o, to) = [f(CEO + cto) + fxo — Cto)]

[u(:vo —+ cto, 0) + U(CEO — cto, 0)]

N~ N~
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In other words, the value of u(xo,tyo) depends only on the values of f at
T = xg — ctg and x = xg + ctg. We have a nice geometrical interpretation of
this fact in Figure 5.8a. There are two characteristics which pass through the
point (2o, o), and these intersect the initial line ¢ = 0 at the above-mentioned
z-values. We can think of the initial disturbance of the string at these
points as propagating “along” the characteristics to the point (z, to),
with velocity c.

From g(x), we have

1 zo+cto
u(xo, to) = —/ g(z)dz,

2C o—cto

which tells us that the solution u(zo,to) depends on the values of g along the
interval zg — ctg < x < xg + cto. This fact is illustrated in Figure 5.8b.

(X q:ty)
. (x o-to )
X—Ct=X; —Cty X+Ct=X+cty
& A4 X X
) —CIO X g*cCly

interval of dependence
(a) characteristics through (x,t;)
(b) interval of dependence for (x ,t,)

FIGURE 5.8
The characteristics and interval of dependence of the point (zg,t)-

This interval often is called the interval of dependence or domain of
dependence of the point (zg,tp). More generally, though, we may think of
all points in the triangle in Figure 5.9 as having an effect on the solution at
(zo,to). That is why this whole triangle, and not just its base, is sometimes
referred to as the domain of dependence.
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X+Ct=X+ct —
0*clo x—ct=x,—ct,

region
of
influence

domain
of
dependence

XO—CtO X0+Ct0

FIGURE 5.9
Domain of dependence and region of influence of the point (g, ).

With the latter idea in mind, we may turn the question around and ask,
instead, at which points (z,t) is the solution affected by what has “happened”
at the point (z9,%0)? Of course, (z,t) will be such a point if and only if (zo, to)
is in the domain of dependence of (z,t). Therefore, this region of influence
of the point (zg,to) will consist of the (infinite) region in Figure 5.9.

Example 2 (cont.) Let’s go back to Example 2, and use these ideas to
get a different look at our solution. Indeed, we see that we may represent
our solution in the x-t plane as given below. In Figure 5.10, we take three
representative points and use the characteristics and initial data to show that

[f (zo + cto) + f(zo — cto)] = 2,

and

’U,(l‘g, tg) =0.
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t

(x,.5)
(x.4)
(Xg-)
1 /\ | X
X -t X,=t 3 XpH X— X, * 3 X,+t,

FIGURE 5.10
Graphical solution of Example 2.

Then, using these ideas, we see in Figure 5.11 a graphical solution of the
problem on its domain. We leave the case where the initial velocity is a
square wave to Exercise 13.

So we have shown that a solution of the wave equation can be thought of as
a superposition of two waves (5.11) traveling in opposite directions, each with
velocity c¢. That they do not interfere with each other is implicit in (5.11)—we
say that the waves do not scatter each other. This is a consequence of the
fact that the equation is linear.

FIGURE 5.11
Complete graphical solution of Example 2.
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Also, these waves—and all disturbances—travel at the same speed. This
need not be the case for linear PDEs with wave solutions. When wave so-
lutions move at different speeds, the PDE is said to exhibit the property of
dispersion. (See Exercise 14.)

Exercises 5.3

1. Carry through the computations that transform PDE (5.7) into (5.10).

2. Show that the function u given by (5.14) does, indeed, satisfy equations
(5.7), (5.8) and (5.9).
In Exercises 3 and 4, find the solution of

2

Utt = C Ugy, —o0o < x < —0Q,
u(x,O) = f(x),
ut(ﬁvo) = g(x)7

where ¢, f and g are given by
3.c=1,f(z) = 36*w2,g(x) =0

4. c=3,f(z)=0,g(x) = ze *
In Exercises 57,

a) Graph, by hand, snapshots of the solution in the x-u plane, for
various times ¢, as in Example 2.

b) MATLAB: Plot the solution in z-t-u space—make sure you can
see the “characteristic directions.”

5. Use f(z) = 3e™".

6. Use
[4—z|, if —4<x<A4,
€Tr) =
f@) {O, if |z > 4.
7. Use
2, if —4<x<0,
flz) =13, if4<z<8,
0, otherwise.

8. a) Show that if f(z) and g(z) are both even, then the solution (5.14)
also is even.

b) Show that if f(z) and g(x) are both odd, then the solution (5.14)
also is odd.
In Exercises 9 and 10, find and sketch the (triangular) domain of de-

pendence and the region of influence of the given point (zg,to) for the
given PDE.
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10.

11.

12.

An Introduction to Partial Differential Equations with MATLAB®
Ut = 4uII7 (ZEO, tO) = (5) 4)
Ut = 3uww7 ($07t0) = (07 5)

For the problem in Example 2, use only characteristics to find the fol-
lowing: (0, 2), u(0,4), u(5,5), ©(10,6), u(—5,3). See Figure 5.10. By
the way, again, notice that, in those cases where u:(z,0) = 0, the value
of u(xo, to) depends only on the values of u along the two characteristics
containing (xg,tp). This means that a disturbance at some point on the
string arrives at, and leaves from, the point * = z¢ instantaneously. In
this particular example, a square wave hits the point x = x¢, moves
through it and leaves as sharply as it arrived—we say that it has sharp
leading and trailing edges. When all disturbances propagate in this
manner, the system is said to satisfy Huygens’s! Principle.

We wish to show that Huygens’s Principle is not satisfied when u(z, 0) is
not the zero-function. Specifically, consider the problem in Example 2,
but with f(z) and g(z) interchanged. Show that the solution w is as
given in Figure 5.12, and then describe what the graph of u looks like
for various times t.

uzxb
+x[ n
) %

Y
b,
N

y, UsxH3 U= —X+t+3 ”
Vi
¥ u=0
u=0 u=2
T T X
3 3
FIGURE 5.12

Graphical solution of the problem in Exercise 12.

fNamed after Christiaan Huygens (1629-1695), famous Dutch scientist and contemporary
of Newton.
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13. Green’s Theorem and the nonhomogeneous wave equation:
There’s another, elegant method for deriving d’Alembert’s solution for
the infinite string, a method which can be extended to solve the nonho-
mogeneous equation, as well. Suppose that we’re given the problem

Upp = c2um, —oo < x <oo,t>0,
’U,($,0) = f(ﬂ?),
ui(z,0) = g().
a) Integrate both sides of the PDE over any simple closed region D

in the upper half of the a-t plane, then use Green’s Theorem to
conclude that we must have

7{(02% dt + u, dx),
oD

where 0D is the boundary of D with positive (counterclockwise)
orientation.

Now, which region D will do something for us? Given a point
(z0,t0), it seems the most logical choice would be the domain of
dependence (or characteristic triangle or past history) of (xo,to),
given in Figure 5.9.

b) Show that the line integral on the bottom line segment gives us

To+cto
/(czum dt + vy dx) = / g(2)dz.

o—cto
c1

¢) Parametrize ¢y as
t=t,
T =T + ctg — ct, 0<t<ty,
to show that

/(czuz dt 4+ uy dz) = cu(xo, to) — cf (xo + cto).

C2

d) Similarly, show that

/(czuz dt + vy dz) = cu(xo, to) — cf (xo — cto),

c3

and conclude that we, indeed, end up with d’Alembert’s formula
for the solution w(zg, to).
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e) Proceed similarly to show that the solution of the nonhomogeneous
problem

utt=c2um—|—F(x,t), —o < r<oo,t>0,
u(z,0) = f(),
ut(z,0) = g(z)

is

r+ct

)+ fa—c+ g [ g
— // x, t)dxdt,

where, again, D is the domain of dependence of the point (z, ).

u(z,t) =

DN | =

14. a) Find all solutions of the wave equation of the form sin(kz —wt) and
cos(kx —wt), then use this information to find all complex solutions
of the form ¢'**=“%  where s and w are constants (remember
Euler’s formula: ¢ = cos +isinf). The number & is called
the wave number of such a solution, while w is called its angular
frequency. Show that, regardless of the wave number s, these
solutions all travel at velocity c.

b) Remember the Euler—-Bernoulli beam equation
Ugt + Ugzze = 0.

Find all solutions of this equation of the form e*(**~«%) What is
the velocity of a solution with given wave number 7 (Solutions of
this PDE exhibit dispersion, and we say that the Euler—Bernoulli
beam equation is a dispersive equation.)

5.4 Characteristics for Semi-Infinite and
Finite String Problems

Now let’s see how characteristics relate to the wave equation on more restricted
intervals. We begin with the interval > 0.
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SEMI-INFINITE STRING

We would like to solve
Upp = c2um, xz>0,t>0,
u(x70) = f(ﬂ?),
ut(z,0) = g(x),
u(0,t) =0

and, proceeding as in the previous section, we arrive at the same solution so
long as x — ct > 0. So if ¢ > cty, we have

u(zo,10) = L F(zo +cto) + f(ao — cto)]

1 zo+cto

* o

g(2)dz,

xo—cto

and the domain of dependence is the same as earlier. The problem arises, of
course, if xg < ctp, as f(z) and g(x) are not defined for < 0. In that case,
we need to do something with the term ¢ (z —ct) in (5.11). Now, note that we
still have the boundary condition at our disposal. So, using (5.11), we have

u(0,t) = ¢(ct) + P(—ct) =0 forall t>0,

on
P(z) = —¢(—z) forall z<O0.

Then, from (5.13),
Q/J(ZL'Q — Cto) = —¢(Ct0 — {E())

1 1 cto—xo
—gf(cto —x0) — 2—6/0 g(z)dz

and, combining, we have

w(zo, to) = %[f(a:o +eto) — fleto — 70)]

1 xo+cto

+ % g(z)dz, xg < cto.

Ctof‘TQ

We see that the solution depends on the initial interval cty — zo < z <
o + cto. In the z-t plane, we see that the characteristic

xr —ct =x9 — cty
comes about via a reflection of the characteristic
xr+ct =cty — xg

against the ¢-axis. The two-dimensional domain of dependence no longer is a
triangle, as can be seen in Figure 5.13. Further, the region of influence of any
point (zg, tp) is no longer a triangle (see Figure 5.14).
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t

(xo,to)

ct 0 %o )
t= :
¢ domain X+ct = x0+ct 0
of
dependence
X+ct =ct X0
X
ct O_XO X0 +ct 0
FIGURE 5.13

Domain of dependence for the semi-infinite string, for a point (zg, to)
“above” the line = = ct.

region
X—Ct = —XO—C[O of

influence

X—Ct =Xt

X+ct =X 0+ct 0 Gt

(xqtp)

FIGURE 5.14
Region of influence for the semi-infinite string, for any point (o, o).

It’s interesting to see that the word reflection is no misnomer, as the initial
disturbance actually does reflect at the boundary. We look closely at this
phenomenon in Exercises 4 and 5.
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Example 1 Let’s look at an analog of the problem in Example 2 of the
previous section,

Utt = Uga, x>0,t>0,
2, if2<zx<

ule,0) =4 D=t =S
0, otherwise,

ug(z,0) =0,

u(0,t) =0

We follow the characteristics and their reflections and arrive at the z-t repre-
sentation of the solution given in Figure 5.15. To be sure, look at the shaded
region. Here, we have x < t and

2<x+1t <3,
2<t—a <3,

so the solution at any point here is

u(e,t) = 1f (e + )~ £t - o)

t x—t=-3

FIGURE 5.15
Graphical solution of the problem in Example 1.

Before moving on, we mention that there’s a more elegant approach to
problems on semi-infinite intervals—the so-called method of images, which
we deal with in Exercises 10 and 11.
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FINITE STRING

We can extend this principle of reflection to a finite string easily enough.
Consider the problem

Upp = cQum, O<x<L,
u(z,0) = f(x),

ut(z,0) = g(z),

u(0,t) = u(L,t) = 0.

Here, now, the original d’Alembert’s solution is only good for those points
(20, o) for which
0<zo+cto <L

and
0 S i) —Ct() S L,

and we must reflect the characteristics at both boundaries in order to find the
solution elsewhere. Let’s begin by looking at a point (xg,to) situated as in
Figure 5.16. We see that

0 S o — Cto S L,

but

L < x4+ ctyg <2L.

T
X( —ct 2L—x - ct I X+ C
0~ %% 0~ | R

FIGURE 5.16
Reflection of characteristic for the finite string.

Therefore, we use u(L,t) = 0 to give us
d(L+ct) +Y(L—ct)=0

or
¢(z) =—y(2L—z) for L<z<2L (why?).
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So we have

u(zo,to) = (o + cto) + Y(zo — cto)
= —(2L — xo — cto) + P (w0 — cto)

_ %[f(xo — cto) — f(2L — xp — cto)]

1 2L—xo—cto

* o

g(2)dz.

‘Tofcto

Now, let’s take a point that requires two reflections. Here, we must bounce
off both ends; since xg — ctg < 0, while xg + ctg > L, we use

Y(z) =—¢(-2), —L<z<0

and
o(z) =v(2L — 2), L<z<2L

in order to write

u(zo,to) = ¢z + cto) + ¥(zo — cto)
= —w(2L — Xy — Cto) — ¢(Ct0 — $0)

= —l[f(ctg —x9) + f(2L — zo — cto)]

2
1 2L—xo—cto
+ — g(2)dz.
2¢ cto—xo

Figure 5.17 shows the domain of dependence of the point (zg,ty) (although
we need not always have ctg — xg < 2L — xg — ctg, as we do in this particular
case).

(X tp)

domain

of
dependence

) CthXg 2L-xy—cty Xptety
2L

FIGURE 5.17
Reflection of two characteristics for the finite string.

We may, of course, continue the process indefinitely. In order to get a simple
picture of what’s going on, let’s look at the following example.
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Example 2 Suppose that we have the problem

Ut = Ugy, O0<ax<3,t>0,
ug(z,0) =0,
u(0,t) = u(3,t) =0,

where the initial shape u(z,0) is given by a “point-impulse” of “magnitude
2” at © = 1. (These ideas will be made more precise in Section 6.5, where
we introduce the Dirac delta function, §(x). Then, this initial shape would
be written as u(z,0) = 2§(x — 1).) We should then have two pulses, each
of magnitude 1, traveling in opposite directions from the point x = 1. In
the x-t plane, each disturbance travels along a characteristic and, as earlier,
each undergoes a change of sign as it reflects off either boundary. Thus, the
solution will be u = 0 everywhere except along the characteristics z £¢ =
constant, with values as given in Figure 5.18.

We investigate more complicated problems in the exercises.

FIGURE 5.18
Graphical solution of the problem in Example 2.
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Exercises 5.4

In Exercises 1-3, find the solution of
Upp = cQum, xz>0,t>0,
U(CC, 0) = f(:v),
ut(xﬂ 0) = g(;v),
u(0,t) =0,

where ¢, f and g are given by

1. c=2,f(z) =3e7,g(x) =0

2, if0<z<l,

0, otherwise,

2.0:1,f(m):{ ’ g(z) = 0.

3. c=4,f(z) =0,g9(z) =e "

In Exercises 4 and 5, proceed as in Exercises 5-7 of the previous section for
the problem

Ut = Ugy, xz>0,t>0,
u(x,O) = f($)7

ug(z,0) =0,

u(0,t) = 0.

That is,
a) Draw snapshots of the solution for various time t.

b) Graph the solution in z-t-u space—make sure you can see the “charac-
teristic directions,” both before and after reflection.

2, if2<z<5,

0, otherwise.

9

4. For f(z) = {

12— 2|, if4<z<S8,

0, otherwise.

5. For f(x) = {

In Exercises 6 and 7, proceed as in Exercises 4 and 5 for the finite string
problem on 0 < x < 8.

2, if2<x<4,

0, otherwise.

6. For f(z) = {

2, if0<z<4,

0, otherwise.
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8. a) Proceed as in Example 1 to find a graphical representation of the
solution of that same problem, but with the initial displacement
changed to

w(,0) = 2-2)3—x), if2<z<3,
U 0, otherwise.

b) Do the same, but with initial conditions

u(z,0) =0,

(2,0) 2, if2<x<3,
ug(x,0) =
! 0, otherwise.

9. Do the same as in Exercise 8, but for the finite string problems in Ex-
ercises 6 and 7. You need only go “up” to two reflections.

10. Method of images: Given the semi-infinite string problem
Upp = c2um, xz>0,t>0,
u(x70) = f(ﬂi),

ut(xﬂ 0) = g((E),
u(0,t) =0,

solve, instead, the infinite string problem

Uy = cQum, —o0o < x < o00,t >0,
u(z,0) = F(x),
ut(z,0) = G(z),
where I’ and G are the odd extensions of f and g, respectively. Then,

show that your solution, when restricted to = > 0, is the solution of the
original problem on z > 0.

11. Semi-infinite string with Neumann condition

a) Solve the problem with free end

Upp = czum, xz>0,t>0,
u(z,0) = f(z),

ut(ZE,O) :g($)7

uz(0,8) =0

as in the text.

b) Solve the same problem, but use the method of images.
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12. Use Green’s Theorem, as in Exercise 13 of the previous section, to solve
the nonhomogeneous semi-infinite string problem

Ut :czum—i—F(x,t), r>0,t>0,
u(x,O) = f($)7

ut(x,0) = g(x),

u(0,t) = 0.8

5.5 General Second-Order Linear PDEs
and Characteristics

The general second-order linear PDE in z and y is
AUgg + bUgy + clyy + dug + fuy + gu+ h(z,y) =0, (5.15)

where a,b,c,d, f,g and h are functions of x and y. For now, let’s assume
that they are constant. The question we would like to answer is: Is there a
transformation similar to that in Section 5.3 which will reduce PDE (5.15) to
some simple form? Let’s try. First, if any two of a,b and ¢ are zero, then the
PDE already is in the simplest form. So we assume this is not the case, and
we set

£ = Az + By, n=Cx+ Dy,

where A, B,C and D are constants to be determined. Proceeding as in Exer-
cise 1 from Section 5.3, we have
Uy = Uy + UpNy
= Aug + Cuy,

and, similarly,
Uy = Bug + Duy,.

Then,
Uz = (Uz)e = (Aug + Cuy)g
= A(Aug + C’un)g + C(Aug + C“n)n
= APuge + 2ACug, + Cuyy,.
Similarly,

Ugy = ABuge + (BC + AD)ug, + CDuyy, (5.16)
Uyy = B2u55 + 2BDug, + D2u,m.

81t turns out that we need to assume that f(0) = g(0) = 0.
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The second-derivative part of PDE (5.15) then transforms to

(A%a + ABb + B®c)uge + [2ACa + (BC + AD)b + 2BDcug,
+ (C?%a + CDb + D*c)uyy,. (5.17)

Now, notice that the ug¢ and u,,, coefficients are such that if we can elimi-
nate one, then we can eliminate both. For what values of a, b and ¢ will we be
able to do this? We are considering only cases where a # 0 or ¢ # 0; suppose
the former (the latter case will proceed similarly). Then, a # 0 implies that
B # 0 (because, if B = 0, we would need A = 0 as well, to eliminate ug¢) and
D # 0. Dividing the uge- and u,y,-coefficients by B? and D?, respectively, we
see that we need to solve the equations

A\? A
c\’ C
that is, we need to look at the quadratic equation

azz—l—bz—i—c:o,

which has roots
L —b 4+ Vb% — dac
- 20

Case 1: b2 —4ac>0
In this case, the quadratic has two distinct real roots, so we may take

é _ —b+Vb? —dac

B 2a e (5.18)
g _ —b~— Vb2 — 4ac
D 2a '

So, for example, we may take

&= (=b+ V% — 4dac)z + 2ay (5.19)
n=(—b—Vb%—4ac)x + 2ay,

in which case the PDE (5.15) reduces to its standard or canonical form
Ugy + lower order terms = 0.
In particular, the PDE

AUgy + DUgy + cyy =0
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reduces to

Ugn =

and, thus, has solution

u= (&) +¢(n) (5.20)
= ¢[(=b+ Vb2 — dac)r + 2ay] + Y[(—b — /b2 — dac)z + 2ay]

for arbitrary ¢ and . Actually, we will show that, in this case, equation
(5.15) reduces to the alternate canonical form

Uge = /<a2um7 + lower order terms =10

(see Exercise 11).

Definition 5.2 If b> — 4ac > 0, we say that PDE (5.15) is hyperbolic.

Examples
1. The wave equation s — c?ug, = 0 is hyperbolic
2. The telegraph equation or dissipative wave equation u;; — %y, +
yus = 0, where v > 0 is a constant, is hyperbolic.
3. Consider the equation 2wy, — gy + 2uy, = 0. We have b? — 4ac = 9,

so the equation is hyperbolic. In order to reduce it to standard form,
we solve the quadratic
222 —5242=0

which gives us

+
2:5 \/§Z5i3

2 272
Then, we determine the coefficients of our transformation by
A 5 3 cC 5 3
B 33~ % pT2 3"
so we may choose A =4, B =C = D =1, arriving at
E=4dx+y
n=x+y.

Our solution, then, is

u=¢(&§) +(n)
= ¢4z +y) +¥(z +y).

Often, PDEs which model vibrations and wave phenomena are hyperbolic,
and the wave equation is a “standard example” of a hyperbolic equation.
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Notice that, in Example 3, the lines
4x + y = constant, x + y = constant

play the same role as did the lines « & ¢t = constant for the wave equation.
In general, this will be true of the lines

& = constant, 1 = constant

for hyperbolic equations and, thus, these lines are called the characteristics
of the PDE. In general:

Hyperbolic equations have two families of characteristics.

Case 2: b> —4dac=0

In this case, the quadratic has one repeated root, z = —%. The problem
here is that, although we may choose
A b
B 2a

and eliminate the uge term, we may not choose

c b

D 2a

since this choice will make n a multiple of £ and, thus, the new variables

will not be independent (we say that the transformation to £, 7 is singular

because it cannot be inverted to give us  and y in terms of £ and n).
However, by choosing only the former, for example,

A=b, B=-2a¢ and & =bx— 2ay, (5.21)
we get lucky—the coefficient of u¢, becomes

2ACa + (BC + AD)b + 2BDC
= 2Cab+ (—2aC + bD)b — 4Dac
= (b® —4ac)D =0

and, by letting n = x (or anything else that is not a constant multiple of ),
the PDE (5.15) reduces to the standard form

Upy + lower order terms = 0.

In this case, the PDE
AUgg + gy + cuyy =0

transforms into
Upy = 0
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with solution
u=nd(&) + P(§) (5.22)
= z¢(bx — 2ay) + Y (bx — 2ay)

for any functions ¢ and .

Definition 5.3 If b> — 4ac = 0, we say that PDE (5.15) is parabolic.
Examples
4. The heat equation u; — o®us, = 0 is parabolic.

5. Consider the equation 9uy, + 12Uy + 4u,, = 0. We have b? — 4ac = 0,
so it is parabolic. Let’s reduce it to standard form:

922 +1224+4=0
has the repeated root z = —%. We choose A and B to satisfy
A 2

B 3
so the transformation
E=2x -3y, n==
reduces the PDE to canonical form
Upy =0
with solution

u=ne(§) +¥(§)
= x2¢(2z — 3y) + Y2z — 3y).

In general, PDEs which model heat flow and other dissipative phenom-
ena are parabolic. The heat equation is a “standard example” of a parabolic
equation.

In Example 5, the lines 2z — 3y = constant play the role of characteristics
of the PDE and, in general, the lines

& = constant

are the characteristics of a parabolic PDE. The lines n = constant are not
characteristic, for various reasons, one of which is the fact that our choice of n
is arbitrary (with minimal restriction). In fact, in many parabolic problems,
the line n = 0 will correspond to the initial line ¢ = 0. Thus,

Parabolic equations have one family of characteristics.
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Case 3: b2 —4dac<0
In this case the quadratic has no real roots and there is no transformation

¢ = Ax + By
n=Cz+ Dy

(with A, B, C' and D real) that will eliminate the u¢e and u,, terms. Can we
simplify the PDE, nonetheless? Let’s try

n=4a,

ie.,
C=1 and D=0,

and see what that does to (5.17). We get
(A%a + ABb + B?c)uge + (2Aa + Bb)ug, + auy,.
Next, choosing Bb = —2Aa eliminates the middle term, resulting in

4A%a%c
(—Aza + 02 ) Uge + AUy

or
A%q

b—2(4a,c — b uge + atyy.
(Here we have assumed that b # 0. If b = 0, things are much easier.) Then,
choosing

2 _ b?
4ac — b?
or

P
Vdac — b?

reduces (5.17) to
a(uge + ),

the Laplace operator! Therefore, the transformation

b 2a
p— x_
¢ Vdac — b? Vidac — be
n=x

reduces the PDE (5.15) to its canonical form

Ugg + Uyy + lower order terms = 0.
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Definition 5.4 If b> — 4ac < 0, we say that PDE (5.15) is elliptic.

Examples

6. The Laplace equation gy + uy, = 0 is elliptic.
7. The equation 4uz, — Sugy + 3uyy = 0 is elliptic.

8. The Helmholtz equation or reduced wave equation u,; + uyy +
Au = 0 is very important in the study of wave motion and shows up in
the fields of elasticity theory, electricity and magnetism, acoustics and
quantum mechanics. It is elliptic.

Elliptic PDEs arise in steady state problems and in other problems involving
two (or more) space dimensions in which the time behavior is neglected or has
been separated from the original PDE. The Laplace equation is a “standard
example” of an elliptic equation.

Unfortunately, there are no characteristic coordinates, like (5.19) and (5.21),
for elliptic equations, so elliptic equations cannot be integrated as we did to
get (5.20) and (5.22). (More precisely, the transformation

A —b+ Vb —dac g_—b—\/b2—4ac

B 2a D 2a

leads to a complex transformation and, hence, to complex characteristics—see
Exercise 13.)

Elliptic equations have no (real) characteristics.

Now, what if the coefficients in (5.13) are not constant? Well, pretty much
the same as what we’ve been doing, except that, since the quantity b — 4ac
is now a function of z and y, it may have different signs in different parts of
the z-y plane.

Example 9 What can we say about the PDE uy, + zu,, + yzuyy =07 We
have

b — dac = * — 4% = (x — 2y)(z + 2y),
so, looking at Figure 5.19, we see that the equation is hyperbolic in the region

marked H, elliptic in the region marked E and parabolic along the boundary
of these regions.
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y
x—2y =0
P § J U & X
x+2y =0

FIGURE 5.19
Regions where the PDE of Example 9 is hyperbolic (H) and elliptic

(E).

Example 10 An important equation from hydrodynamics is the Tricomi
equation, yuz,; + uyy = 0. We have

b — dac = —4y,

so this equation is hyperbolic in the lower half-plane elliptic in the upper
half-plane, and parabolic along the z-axis.

Although we mentioned that each of these last two equations is parabolic
along certain curves, in practice we are only interested in two-dimensional
regions throughout which an equation is hyperbolic, parabolic or elliptic.

Exercises 5.5

In Exercises 1-6, determine if the PDE is hyperbolic, parabolic or elliptic.
Then, transform the equation to canonical form. If hyperbolic or parabolic,
find its solution.

1. Ugy + Bugy + 161y, =0
21uge — 10uUgy + uyy =0
6Uyy — Ugy — Uyy = 0
25Uz — 30Uzy + Yuyy =0
Ugg + HUgy + Slyy = 0
2Ugg + SUgy + Uyy = 0

Solve Ugy — Ugy — Buyy = 0,u(0,y) = sin 3y, ux(0,y) = sin 2y.

© N ot W

Solve gy — dtugy + 4y, = 0,u(0,y) = y%, u,(0,y) = 1 — 3y.



Characteristics 209

10.

11.

12.

13.

Derive formulas (5.16).

Prove that the classification of the PDE
AUgg + Dugy + cuyy + lower order terms = 0,

where a,b and ¢ are constant, is invariant with respect to coordinate
transformations
= Ax+ By, n=Cz+ Dy,

where A, B,C and D are constant. In other words, prove that the
transformed equation

a1Uge + bﬂl,gn + CiUpy + - = 0
has the same classification as the original PDE.

We showed that the hyperbolic PDE
Ugy + DUzy + cuyy = 0,a,b, c constant,
can always be transformed to the PDE
’LLE77 =0.
Show that the latter equation can always be transformed into the equa-
tion
Ut — f<:2uss = 0, k constant

and, therefore, that the original also can be put in this form. In other
words, the original PDE is just the wave equation in disguise and the
equation uge — K>upy,+ lower order terms = 0 is an alternate canonical
form for any hyperbolic equation.

What is the graph, in the z-y plane, of the equation
az? +bxy 4+ cy> =0

when b2 — 4ac > 07
when b2 — 4ac = 07
when b2 — 4ac < 07

Show that, by way of the transformation

E=wt+iy, n=x—iy,
the Laplace equation has solution

u = ¢(z+iy) +(z —iy).
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We say that the “lines” x + iy = constant and = — iy = constant are
the complex characteristics of the Laplace equation. More generally, for
any elliptic equation

AUgy + Dgy + CUyy = 0,

show that we may use a complex version of equations (5.18) which re-
duces the PDE to

Ugn = 0.
(Hint: If z < 0, then /z = \/(—1)(—x) = iv/—x, where i, as always,
has the property that i = —1.)

Find and sketch the regions in the x-y plane where the PDE is hyperbolic,
parabolic or elliptic.

14, 2ugy — 4ugy + 2yuy, =0
15. Upy + Y2 uyy +u =0

16. 2ugy + 2ugy + TUyy — TUL + nyuy =siny



Prelude to Chapter 6

Although the previous chapter was somewhat of a detour from our Fourier
path, we did meet PDEs which were to be solved on unbounded intervals.
There, we had no problem solving the infinite and semi-infinite string prob-
lems, but what happens with parabolic or elliptic equations on such domains?

Specifically, we ask whether we can extend the idea of the Fourier series
to functions on unbounded domains, and we see that an affirmative answer
was given by Fourier, Cauchy and Poisson in the second decade of the 19th
century. We now call this representation the Fourier integral, although all
three seemed to have discovered it more or less independently. (Of course,
they were all in Paris at the time and knew each other—the idea was in the
air.)

The Fourier integral immediately gives us the Fourier transform which, like
the Laplace transform (introduced by Laplace in 1782), turns ODEs into al-
gebraic equations (and, as we’ll see, PDEs into ODEs). In turn, we use the
Fourier transform to solve the infinite and semi-infinite heat equation. Fur-
ther, it gives us the perfect opportunity to introduce the theory of generalized
functions or distributions, which began its life as the operational calculus of
the British scientist Oliver Heaviside (1850-1925) and, ultimately, was given
a firm mathematical footing around 1950, in the setting of Fourier transforms.
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6

Integral Transforms

6.1 The Laplace Transform for PDEs

In Chapter 4, we used separation of variables and Fourier series to solve PDEs
on finite intervals. Then, in Sections 5.3 and 5.4, we solved the wave equa-
tion on unbounded intervals using the method of characteristics. An obvious
question is, how do we solve more general PDEs on unbounded intervals?

We assume that the reader has seen the Laplace transform in connection
with the solution of ODEs (specifically, with initial-value problems). It turns
out that these and other integral transforms play a crucial role in the study
of PDEs, on both bounded and unbounded domains.

Since we mean to concentrate on the Fourier transform, the natural ex-
tension of the Fourier series to functions on unbounded domains, we use the
Laplace transform only as a brief introduction to the application of integral
transforms to PDEs.

Actually, to get an idea of how transforms work, one need only look at the
logarithm function. Back in the old days, before computers and calculators
were available, mathematicians made extensive log tables. Then, supposing
one of these mathematicians wanted to do a quick calculation of the product
of two numbers, a and b, she would start by writing

P = ab.
Then, she would take the log of both sides:
logyo P = logy ab,
the point being to use the property of logs:
log;o ab = log, a + logy b.
Thus, transforming both sides of the equation would result in a multiplication
problem being transformed into an (easier) addition problem. Next, she would

look up the values of log;,a and log;, b and add them, resulting in

logy P =C.

213
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The last step is to transform back, that is, to find in the table the number P
whose log is C.

Now, let’s define the Laplace transform and give some of its properties, for
functions u(z,t). We write

Llu(z,t)] = /000 e *tu(x,t)dt = U(z,s), s>0.

Sufficient conditions for U(z, s) to exist are that, for each x,
1) u(z,t) is piecewise continuous on any interval 0 < ¢ < T.

2) u(zx,t) is of exponential order as t — oo, i.e., there exist constants « and
M such that u(z,t) does not grow more rapidly than Me* as t — oco.
(We write u = O(e“?), and we say that u is “big-oh” of e®t.)

Now, when we applied the Laplace transform to ODEs, in order to transform
back to the solution we needed to have at our disposal a table of inverse
transforms. (Actually, there is an integral formula that gives the inverse
transform for “any” function F(s). However, we need to know some complex
analysis in order to evaluate this integral.*) We provide a short table of these
inverse transforms before the exercises (Table 6.1).

Let’s look at two examples involving the temperature distribution in a semi-
infinite rod. In the process, we’ll introduce two important functions often
arising in problems in applied mathematics, and then, in the second example,
we’ll use a special case of what is known as Duhamel’s Principle.

Example 1

Ut = Ugyg, x>0,t>07
u(z,0) =0, x>0,
w(0,t) =1, t>0,
lim w(z,t) =0, ¢>0.
xr—r 00
Here, u represents the temperature of a very long rod which, initially, is at
a temperature of 0° and for which, at time ¢t = 0, the one end that is “near”
us is raised to, and held thereafter at, 1°. Note that we require u — 0 as
T — 00.
We transform the PDE and, using the initial condition and Property 1 in
Table 6.1, we get

sU(x,8) = Upy(z,8).T

*Due to Poisson. See, e.g., Ruel V. Churchill’s excellent text, Operational Mathematics, for
a detailed treatment of the Laplace transform.

tSo long as % o e Stu(z, t)ydt = [ e tuge (x, t)dt.
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This equation can be treated as an ODE and has general solution
Uz, s) = C1(s)e™V® + Cy(s)e V5,

Next, let’s apply the “boundary condition at z = co.” We know, via hindsight,
that if we take the inverse transform of the first term, we will get a function
that grows without bound as ¢ — oo. Therefore, we must have Cj(s) =
0. What we have done, essentially, is formally to transform the “boundary
condition at z = 00” to whjlg() U(z,s) = 0. Then, applying the other boundary

condition, we have

ie.,

1
Ulz,s) = = =V5,
s

Finally, transforming back (using Property 13 in Table 6.1), our solution is

2 e 2
u(z,t) = — e * dz.
\/E/L
/i

Actually, this is a well-known function. First, let us look at a very important
function, the so-called error function or probability integral

2 r 2
erf(z) = ﬁ/o e 7 dz.

The latter name is based on the fact that the function
1 2

flz) = ﬁf/’_r

is related to the normal density function, or Gaussian, from probability (the
famous bell-shaped curve). As such, we must have erf(oo) = % I e dz

= % [ e * dz =1 (see Exercise 6).
Then, the function

erfe(z) =1 —erf(z) = %/ e dz
™ x

is called the complementary error function. So the solution to our prob-

lem is
u(zx,t) = erfc (i>
) - 2\/5 .

We graph both functions in Figure 6.1.
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I
(o] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

FIGURE 6.1
MATLAB plots of the error function (solid) and the complementary
error function (dashed).

Now let’s change the previous example slightly by considering, instead, a
left end condition which varies with time.

Example 2

i, 0) = 0
w(0.1) = (1)

wl;n;o w(z,t) = 0.

The solution is identical to that in Example 1, until we get to the left end
boundary condition:

W(0,s) = LIw(0,t)] = L[f(t)] = F(s) = Ca(s).
In this case, we have
W (x,s) = Llw(x,t)] = F(s)e V.

Rather than performing the inverse transform directly, we, instead, try to use
the solution U(z, s) from Example 1:

1
Wz, s) = F(s)e ®V* = sF(s);e‘gE‘/g

= F(s)-sU(x,s).
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Now, from Property 1 in Table 6.1, L{us(z,t)] = sU(z, s) —u(z,0) = sU(z, s).
Then, from Property 3, our solution is the (finite) convolution of f(¢) and
ug(x,t), that is,

w(z,t) =we(x,t) x f(t) = /0 ft —1)u(z, 7)dr.

This method of solution is a special case of what is known as Duhamel’s?
Principle, which, in some cases, involves relating the solution of problems
with variable boundary or initial conditions to those with constant boundary
or initial conditions. (We’ll meet a more important version of this principle
in Section 10.5.)

Before getting to the exercises, one may ask why we chose to transform the
t, and not the x, in these problems—since both ¢ and 2 have domain [0, o).
It’s a good exercise to try to do these problems by transforming x, instead.
You'll see why we generally choose to transform ¢ when using the Laplace
transform.

Finally, most of the exercises will be solved formally. We won’t be able to
check our answers until we’ve covered Section 6.5

Suppose L[g(t)] = G(s) and L[h(t)] = H(s). We have the Laplace transform
formulas in Table 6.1.

Exercises 6.1

1. Use Laplace transforms to solve the (unrealistic!) convection problem

a) ug +2u, =0,z >0,t>0,

u(z,0) = 3,
u(0,t) = 5.
b) us + (1 +2*)u, =0, 2 > 0,t > 0,
u(z,0) =0,
u(0,t) = 1.

2. Use Laplace transforms to solve the following heat problem:

a) Ut = Ugy, x>0,t>0,
u(z,0) = 10e™%,
u(0,t) =0,
lim wu(z,t) = 0.
xTr—r 00

b) ut = Uz,
u(z,0) = 10e~*,
w(0,t) = 10,

lim wu(z,t) = 0.
Tr—r00

#Jean Marie Constant Duhamel (1797-1872).
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C) Up = Ugg,

u(x,0) = 10e™%,
u(0,t) = f(t),
lim wu(z,t) = 0.
Tr—r00
f(t) = L[F(s)] F(s) = LIf(?)]
L. g™i(t) 1. s"G(s)—s""1g(0)—...
—s9(0) ~ gD (0)
2 fog 2 (s)/s
3 fog h(t —7)dr | 3.  G(s)H(s)
4 t" 4. nl/s"Hl
5. e 5. 4
6. sinat 6. wto
7. cosat 7 s2ia2
8. e%g(t) 8. G(s—a)
Jift>a” —as
9. H(t—a)= { it <a 9 /s
_Jglt—a),ift>a* Cus
10- 0, ift<a 10 G(s)
= H( g(t—a)
1 —a®/4t —a/s
11. 726 11. e o
12, erf(t/2a)** 12. %% erfc(as)/s
13. erfe(a/2v/t)* 13. e~ *V5/s

*H is the well-known Heaviszide function, named after Oliver Heaviside.
**Again, erf(z) = % Jo €77 dz and erfe(z) = 1 — erf(x).

TABLE 6.1
Laplace transforms.
3. Use Laplace transforms to solve the semi-infinite wave problem

a) Ugy = gy, x>0, t>0,

u(z,0) = uy(x,0) =
u(0,1) = f(1),
hm u(z,t) = 0.

b) u = uga — g,
u(x,0) = ue(x,0) =0,
u(0,t) =0,

lim wuy(z,t) = 0.

Tr—r00
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This, of course, is the equation for a string which is tied down at
one end and which falls under its own weight (see equation (2.8),
Section 2.3). The constant g is the gravitational constant. (Note
the difference between the limit condition here and the one above.)

¢) In part (b), replace the constant gravitational force with a force
F(t) (units of force per unit mass of string), so that the PDE
becomes
Ut = gy — F(t).

Show that the solution is u(xz,t) = H (t—2%)G (t— %) — G(¢),

where .o
G(t):/o /0 F(z)dz dr.

4. Show formally that the solutions in Examples 1 and 2 actually do satisfy
the PDE and side conditions.

5. Prove that the finite convolution is commutative, that is, that fx g =
g * f. (Formula 3 in Table 6.1.)

6. If you haven’t done so in multivariable calculus, show that erf(0) = 0
and erf(co) = 1. (Hint: If I = [~ e~ dz, then 12 = (ffo e‘mzdx)

oo

( ffooo e‘yzdy). Rewrite I2 as a double integral, and change to polar

coordinates.)

7. a) Prove Formula 2 in Table 6.1: £ Ug f(r)dr| = LL[f(t)].

b) Prove Formula 9 in Table 6.1: L[H (t — a)] = e~ %% /s.
¢) Prove Formula 10 in Table 6.1.

8. We also may use Laplace transforms to solve problems on finite x-
domains, as we did earlier using Fourier series. Use the Laplace trans-
form to solve

a) Uy = 3Ugs,
u(z,0) = 17sin7z,
u(0,t) = u(4,t) = 0. (This is Example 3, Section 2.6.)

b) us = duyy,
u(x,0) = 5sin 2z — 7sindx,
ut(x,0) =0,
u(0,t) = u(m,t) = 0. (This is Exercise 9, Section 2.6.)

9. a) Use Laplace transforms to solve
Ut = Ugg, x> 0,>0,
u(z,0) =
uz(0,1)

= ]‘7
wlirgo u(z,t) = 0.
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b) Use part (a) and Duhamel’s Principle to solve
Wy = Wgg, > 0,1>0,
w(z,0) =0,
ww(O, t) = g(t)u

wlirgo w(z,t) = 0.

(Note: You need not use Duhamel—try to solve it directly, too,
and make sure you get the same answer.)

10. MATLAB: For each problem,

i) Plot snapshots of the solution in the z-u plane for various time t.

ii) Plot the solution in z-t-u space.

a) Exercise la
b)
¢) Exercise 2b
)

d

Exercise 2a

Exercise 9a

6.2 Fourier Sine and Cosine Transforms

What has all this to do with Fourier series? Well, Laplace transforming an
ODE or PDE can be looked at as multiplying both sides of the equation by
e~ %t and then integrating. Similarly, solving a PDE by Fourier series can be
made to look like multiplying both sides of the equation by the appropriate
trigonometric function and integrating. In fact, the various Fourier coefficients
are referred to as finite Fourier transforms (while the inverse transform would,
in a sense, be the corresponding Fourier series).

As the Laplace transform involves functions on [0, 00), it is not unnatural
to ask if we can extend Fourier’s idea to functions on unbounded domains.
The answer, of course, is yes (or we wouldn’t have asked the question!). So,
remember that any piecewise smooth function on a finite domain, or any
piecewise smooth periodic function, can be expanded in a Fourier series. Now,
what if f is neither? For definiteness, suppose f(z) has domain [0, 00) and is
not periodic. For any L > 0, we have

f(:c):Fs(x):;bnsin$ on 0<z<IL, (6.1)

where .
2
b”:E/O f(a:)sinnLﬂ dz
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and, of course, Fy(x) is the Fourier sine series for f on [0,L]. Since this

statement is not true on (L, 00), let’s see what happens as L — co. Rewriting
(6.1), we have

nmx
E M 1o gin 2T
/ fz sm Zsin—

Since % — 0 as L — oo, this looks a little like a Riemann sum. If we let
Aa = T, we then have
) 0 w/ Ao
flx) == Z/ f(z)sin(nzAa) dzsin(nzAa)Ac, (6.2)
n=1"0

which looks a lot more like a Riemann sum-—specifically, we’ve broken up
the nonnegative «-axis into pieces of length Aq, and the function inside is
evaluated at each grid point nAca. Letting Aa — 0, it should not be too
surprising (although we must be very careful with that 7/Aa term) that
(6.2) becomes

2 o0 o0 . ‘in
= ;/0 /0 f(z)sinaz dzsin ax da (6.3)
or
flx) = /0 Fy(a)sinax da (6.4)
with 5 o0
= — sin v dzx. 6.5
= [ s@sinas ds (65)

Note the beautiful symmetry! Of course, what we have done is not a proof.

Equation (6.3) is called the Fourier sine integral formula for f(z); (6.5)
is the Fourier sine transform of f, while (6.4) is the inverse transform
or the Fourier sine inversion formula. We often will write

Fy(a) = Flf()], flz) = F [Fo(a)],

similar to the notation for the Laplace transform.
One also can show that

= /OOO F.(a)cosax da = F, 'F.(a)], (6.6)
where 5 foc
F(o) =2 /O (@) cosaz dz = F[f(z)]. (6.7)

These, of course, are the Fourier cosine transform and inverse (Fourier
cosine) transform. Note that the placement of the % is arbitrary; for ex-
ample, we could, instead, have chosen to write

2 oo o0
- - s in d ) s = in d
fx) 7T/0 Fi(a)sinax da, Fg(a) /0 f(x)sinax do
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or, to make the symmetry perfect,

o) = \/E/OOO Fu(a)sinaz do, Fi(a) = \/g/om () sinaz da.

It should not be surprising that, analogous to the Fourier series of a function
on —L < z < L, we have the Fourier transform of a function on —oo < z < oc.
We derive the trigonometric form of this Fourier transform in Exercise 10.
However, it is much more convenient to deal with the complex form of the
transform (analogous to the complex form of the Fourier series) for which we
wait until the next section.

Now, what properties must f possess in order that its Fourier sine and
cosine transforms exist and, in each case, for which values of x will we get
(6.3) and (6.6)? We have the following theorem, whose proof will be given in
Section 6.6.

Theorem 6.1 Suppose f(x) is piecewise smooth on every interval [0, L], and
suppose that fooo |f(z)|dx is finite (we say that f is absolutely integrable).
Then,

[f (z+) + f(2—)]

N~

/ Fy(a)sinazr da =
0
and

/OO F.(a)cosazr da = %[f(x-&-) + f(z—)]
0

for each x > 0. (Also, when =0, the first integral is 0, while the second is

flo+).)

At this point, we must mention that, in some cases, these integrals may not
converge. We will give a precise treatment in the final section of this chapter,
where we prove these Fourier inversion theorems. For now, we’ll continue to
use the notation fooo (and, later, ffooo), realizing that it may not, technically,
be correct.

Also, in practice, it turns out that the condition that f be absolutely inte-
grable is too strict—there are many situations where this is not the case, but
where it is useful to be able to talk about f’s Fourier transform, anyway.

Therefore, until we get to Section 6.6, we’ll take a purely formal approach
and not concern ourselves with problems of convergence.

Before deciding for which functions f these statements are valid, let’s com-
pute some Fourier sine and cosine transforms.

—CIT

Example 1 Compute the Fourier sine and cosine transforms of f(z) = e
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First, fooo e dx = 1 (why?), so f is absolutely integrable. We compute
the transforms directly (although there’s a simple and more elegant way to
do the problem—see Exercise 1):

2 (o)
Fi(a) = —/ e “sinax dz.
T Jo

Integrating by parts twice gives us

2 2 1 _ oo c .. oo 2
—I=—q——e cosax‘ - —e€ cr smowc‘ - —2I
0 « 0 «

T T| a
5 2 «
Flo=2ora
Similarly,
F.(a) = %/OOO e~ “cosar dr = %0427?#02

Note that Theorem 6.1 then tells us that

o0 o0
ew 2 e ) 2 c )
e = — —— 5 sinax doa = — —— cosax dor.
T Jo of+c T Jo of+c

Example 2 Compute F; (IJT) and F, (ﬁ)

It appears that we must compute the difficult integrals
T 2 [ zsinax
IRy
22 + 2 7 Jo 22+

1 2 [ cosax
()2 [T ey,
22 + 2 )y x?+c?
However, notice that we’ve already done them in the previous example! There-
fore,
€ _ _—ca
Fs <x2 + 62> -

1 1
Fol —— ) = e
<x2—|—c2> c*

(By the way, note that f(z) = -37- is not absolutely integrable.)
What about transforms of derivatives? Suppose that Fs[f(x)] = Fs(«) and
Felf(x)] = Fo(a). Then it is easy to show (see Exercise 3) that

and

Falf'(@)] = —aFe(a)
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and

FIf@) = aFy(a) - 2f(0)}

from which it follows that

and
Felf"(2)] = —a®Fo(a) — % £ (0)e.

As with the Laplace transform, these transforms essentially turn differenti-
ation into multiplication, thereby allowing us to turn PDEs into ODEs, and
ODEs into algebraic equations. Let’s look at an example of the latter.

Example 3 Solve the boundary-value problem

y”_y:ei2w7 0§{E<OO,
y(0) =1,
zlggo y(x) = 0.

The presence of y(0) suggests we use the sine transform. Letting Fi(a) =
Fsly(z)] and transforming the ODE, we have

2 2 «

2

—a“F —a—Fi(a) = ————
@ (a)—l—?Ta () Ta?+4
or, after using partial fractions,

_ 4 « n 2 «
T 31ra2+1  3ma2+4

Fs(a)
The inverse transform, then, is

2 —T —2z
=-e "+ e 7.
Y73 3
It is interesting to note that there are infinitely many solutions to y"” —y =
e~2% y(0) = 1 (the reader should find some), but the method we used seemed
to find the only bounded solution (note the limit “boundary condition”).

§Since f (or, below, f') may not be continuous at z = 0, we really should have f(0+) and
f/(0+), respectively.
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Of course, we would like to solve not ODEs, but PDEs. It turns out that
it is easiest to use the Fourier transform, rather than the sine and cosine
transforms, both for problems on —co < x < 0o and for many on 0 < x < co.
We'll look at the semi-infinite heat equation below, then we’ll solve it again
in Section 6.4 using the Fourier transform.

Here, as with the Laplace transform, we run into the question of which
variable to transform. It turns out that, due to the nature of the Fourier
transforms and the problems we solve with them, it is the space variable(s)
that is transformed, instead of time.

Okay, let’s solve the heat equation for a semi-infinite rod. Specifically, let’s
start with the problem in Example 4.

Example 4
Ut = Ugy, x>0,t>0,
u(z,0) = f(z),z >0,

w(0,1) = 0,t > 0,
lim w(z,t) = 0.

Tr—00

We choose to transform z and, since we're given u(0, t) (as opposed to u,(0,1)),
we use the sine transform. Specifically, we define

Ula,t) = Fslu(x,t)]

2 o0
= —/ u(x,t) sinax dx, for each t.
T Jo

As with Laplace transforms, we will need the property

%U(a,t) = %/0 ug(z, t) sinax dz.

Then, the transformed PDE is

2
Uy = —a*U + Zu(0,t)a
T

or
U, + o?U =0,

with solution ,
U(a,t) = e 'G(a),G arbitrary.

Then, the initial condition gives
U, 0) = Fi()

which implies that
U(a,t) = e_o‘QtFS(a).
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Therefore, we may transform back:
> 2
u(z,t) = / e 'Fy(a)sinazr da
0

oo 2 o0
= / e*"‘%—/ f(z)sinaz dzsin azx da.
0 T Jo

This is our not-so-satisfying solution. However, let’s switch the order of inte-
gration (if it’s actually allowed! More, later.):

2 [ee) [ee)
u(z,t) = —/0 f(z)/o e~ sin ez sin oz dadz

™

= /OOO f(z) /000 e‘"‘zt[cos alz —x) — cosa(z + z)|dadz.

™

Now, we’ll show in the next section that
o0 2
/ e~ coscr dr =
0

So we can rewrite u as

5

9]
Ao
ES

é

2

o —e 4 |dz.

_(-=)? _ (z+m)?
u(z,t)

2\/_/

So it seems that the sine transform is the transform of choice for the problem
with Dirichlet boundary condition. We hope it’s relatively obvious that the
cosine transform is appropriate for the Neumann condition (see Exercise 5).
(However, we also may solve these problems using the full Fourier transform
and the method of images, which we do in Section 6.4.)

Exercises 6.2

1. Derive the Fourier sine and cosine transforms of f(x) = e~“* by writing
e!®® = cos ax + i sin axr and computing the integral fo e~ el dy,
—x

2. Find the Fourier sine and cosine transforms of f(z) = ze

3. a) Derive the formulas

and

@) = aFi(a) = 27(0+).

b) Verify the formulas for F[f”(z)] and F.[f"(z)], as well.
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¢) Show that

FlfD@)] = a*Fy(a) — 20’ 7(0) + 2af"(0)

and 9 5
Felf W (@)] = a*Fe(a) + ;a2f'(0) - ;f”’(o)-

4. Solve the boundary-value problem.

a) y// —y = 36—4957

y'(0) =0,
Ilgr;o y(x) = 0.

b) y" =3y =e"",
y(0) =4,
wlirgo y(z) = 0.

c) y® —5y" 4 4y = 3e73%,
y(0) =0,
y//(O) — 17
A5, yl@) = Jig o) =0

5. Solve the problem with Neumann BC,

Ut = Ugg, x>0,t>0,

u(z,0) = f(z),
uz(0,t) =0,
zll)n;o u(z,t) = 0.

6. a) Use Fourier sine or cosine transforms to show that

2 [®1—e ot
u(z,t) = —/ ———sinazx da
m™Jo «

is the solution of Example 1 in Section 6.1, i.e., of

Ut = Ugz,
u(z,0) =0,
Ut (33, 0) = 1;
wlirgo u(z,t) = 0.
b) Conclude from part (a) that if we, indeed, have found the solution,
then )
1—eco

(07

T 2
fs |:€I‘fC 2—\/E:| = ;
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7. Derive the following properties of Fourier sine and cosine transforms.

a) Falof(r)] = —Fi(a)
b) Fe[zf(z)] = Fi(a)

8. Do the same for the following properties:

a) Fslf(z)coska] = §[Fs(a+ k) + Fs(a — k)]
b) Fe[f(z)sinkz] = 3[F.(a+k) — F.(oa — k)]
¢) What would the corresponding formula be for
Fslf(@)sinkz] and F.[f(z)coskz]?
9. Convolution and Fourier sine and cosine transforms: We wish to
derive the inverse Fourier transforms of a product, that is, if F[f(z)] =

Fs(a) and F.[g(z)] = Gs(a), we wish to find out how to inverse trans-
form Fy(a)Gs(a). To this end,

a) Suppose that we’re given f(z) on & > 0, and let fi(z) be the odd
extension of f to the interval —oco < < co. Show that

Fe {%[fl(ﬂi-l-k) — filx — k)]} = Fy(a)sin ka

for any constant k.
b) Show that

2F(a)Gs(a) = /OOO 9(y) /Ooo[fl(a: +y) — fi(z — y)] cos ax dxdy
and, therefore, that
FLR@G @] = [ gl + o) - Al -l

Thus, we have found out how to find the inverse cosine transform
in this case. Similarly, one can show that

Fr Fu(0)Go(0)] = / T )l +y) + Al —y)ldy
- / " f@)la(z — o)) — gla + y)ldy
and

FF(0)Ge(0)] = / " W)z — yl) + £z + v)ldy.
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10. Given f () piecewise continuous on any interval, and [~ _|f(x)|dz < oo,
show that we can write

flx) = /Oo [A() cos ax + B(a) sin ax]da,

— 00

where
1 o0
Ala) = —/ f(x) cos ax dx
T J_co
and

B(a) = %/_OO f(z)sinax dz.

(Hint: We can write f(z) = f(m)+2f(7m) + f(w)izf(fw). Then, one of those
functions is even and the other is odd. For z > 0, use the Fourier cosine
integral for the even one, and the Fourier sine integral for the odd one;
then extend everything to the interval —oo < z < 00.)

11. Parseval’s equality for the Fourier transform:

a) Show formally that if the Fourier sine and cosine transforms of f
exist, then

%/OOO fQ(x)dx:/OOOFSQ(a)doz:/OOOFf(a)da.

(Hint: [ f2(z)dz = [;° f(z) [;° Fs(o)sinaz dodz; now switch
the order of integration.)

b) Similarly, show formally that if f is as in Exercise 10, then

% [ T P e)ds = / 7 14%(a) + B (a)da

— 00

Each of these is called Parseval’s equality for the corresponding
transforms; compare it to the version of Parseval’s equality for
Fourier series in Section 8.5 and, particularly, in Example 4 and
Exercise 6 of that section.

12. Sampling: Given a function f(z) on x > 0, we say that f is band-
limited if its Fourier sine transform is 0 except on a finite interval.
(Actually, this definition usually refers to functions on —co < = < 0
and their exponential Fourier transform—see Exercise 16 in the follow-
ing section.) Specifically, there exists a positive constant L such that
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Fy(a) = 0 outside of 0 < o < L. The least such LY is called the cut-
off frequency for f.

a) For convenience, suppose that the cutoff frequency for f is L = 7.
Then, we may expand Fy(«) in a Fourier sine series on 0 < a < 7.
Do this and conclude that

flx) = /077 sin aux [i bn, sinna] da,

n=1

where
2 [" .
bn:—/ Fy(a) sinna da, n=123,....
™ Jo
b) Show that we actually have
2
by = =f(n), n=1,23,...1
™

¢) Conclude that

= " in in d
fx) nz_:lf(n)/o sin oz sin na do

and, thus, that if we know beforehand that f is band-limited, then
we can construct f by knowing only its values on the positive in-
tegers! This result is known as the Sampling Theorem.

6.3 The Fourier Transform

One either can define the Fourier sine and cosine transforms and then derive
from them the Fourier transform for functions on —oo < z < oo (as we do
here), or go the other way around (as we do in the exercises, and as we did
with Fourier series). Our procedure is quite similar, not surprisingly, to what
we did in Exercise 14 of Section 3.6.

So, suppose we're given a piecewise smooth function f(z) with domain
—00 < & < oo (as earlier, officially we also would need [~ _|f(z)|dz to be
finite). We write f as the sum of an even function and an odd function:

f(@) = g(x) + h(z),

9 And there always is a least such L—from analysis, it is the least upper bound of the set
of all values of o for which F(a) # 0.
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where

R R
Now, for g we have

g(x) = /000 Ge(a)cosax da, Ge(a) = 2 /000 g(x) cosax dx (6.8)

™

on 0 < x < co. But the fact that g(z) and cosax are even functions (of x)
allow us to rewrite the second half of (6.8) as

G.(a) = l/ g(z) cos ax dx

T J-—c
1 [ —

_! / F@ 1) o da
T J_ oo 2
1 o0

= —/ f(z)cosax dr (why?).
™ — 00

Similarly, for h we have

h(z) = / Hy () sin oz,
0

H(a) = ;/0 h(z)sinax dx (6.9)

and, as above, we may write

1 oo
H(a) = ;/ h(z)sinax dx

:%/j;wsinax dx

1 o0
—/ f(x)sinax dr (again, why?).
L

Combining, we arrive at
f(z) = / [A(@) cos ax + B(a) sin ax]da (6.10)
0

where

Thus we can write

1 o0 oo
flz) == / / f(2)[cos az cos ax: + sin az sin ax|dzde.
™ Jo —oo
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This Fourier integral representation of f is, of course, the analog of the
Fourier series. But we may go still further. In Exercise 17 in Section 3.3,
we derived the complex form of the Fourier series which, ultimately, is more
convenient (and more elegant) than the real Fourier series. With regard to
Fourier integrals, this is decidedly the case, as well.

Now we note that A(a) and B(a) actually are defined for —oco < o < o0,
and that A(—a) = A(a) and B(—a) = —B(«) for all @. Thus, we may rewrite
(6.10) as

flz)== /OO [A() cos ax + B(a) sin azlda.  (why)?

— 00

Then, remembering that

e 4 e~ ) oi0 _ =it
cosH—T, SIHG_T’
we have
1 o] eiaw + efiozw eiaw 67iam
f(x) = B [m [A(a) 5 + B(a) - do

1 [ ) ‘

= 1/ {[A(Oé) - ’LB(a)]elam + [A(OZ) + 'L.B(O[)]eilam}da
1 [ '

= 1/ {A(a) + A(—a) — i[B(a) — B(—a)]}e"*"da
1
2

We then have

1 o0
A(a) —iB(a) = — / f(2)[cosaz — isinaz]dz
™ — 00
1 [ ’
— —'LOLZd

- /_OO f(z)e z

and it follows that

f(z) = % /Z UZ f(z)ei‘”dz} e da. (6.11)

This is the complex Fourier integral representation of f, and we generally
write

1 > iax _ —
f(z) = ﬁ/_OOF(a)e do = F7UF(a)],
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where

Flo)=—= [ f)e do = Ff(w)

is the Fourier transform of f. Again, it really doesn’t matter how we divvy

up the %, as long as we're consistent. We say that the functions f(z) and

F(a) form a Fourier transform pair. It can be shown that if f(x) and
F(a) form such a pair, then so do F(z) and f(—«) (see Exercise 2).

As before, sufficient conditions for the validity of (6.11) are given by the
following theorem.

Theorem 6.2 Suppose that f is piecewise smooth on every finite interval and
75 1f (@)|da is finite. Then, for each x,

% /_O:O /_O:O f(2)e "% dz " da = %[f(:v—i-) + f(z—)].

This is the theorem that we’ll prove in Section 6.6. Again, we must tread
lightly when using ffooo.” Also, as with Theorem 6.1, this theorem actually
is too restrictive, so we won’t take it too seriously.

First, let’s compute some transforms and inverse transforms.

Example 1 Find the Fourier transform of the square wave
L je] <1,
fle) = {0, if |z| > 1.
We have
F(a) = L /00 f(x)e % dg
V2 J oo
Y

= — e "“Tdx

V2T /_1

_ [2sina
Vo oa
Of course, this means that

S BV

Example 2 Find the Fourier transform of f(z) = e=¢l*l, ¢ > 0.
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We have
1 > ,
Fla) = — e clrlg=iow go
( ) V 27T [oo

1 0 ) 00 )
— (c—wz)rd / —(ctia)z :|
— e T + e dx
vV 2 |;/;oo 0

1 1 (c—ia)z 0 1
= — e - —e
Vor |c— i«

T=—00 c+ia
_ 2 c
T Va2 +a?

Again, we have
1 7 e~clzl
Flls—=l|=1/3 :
[(32 + (12} \/; c

Example 3 As the normal density function is such an importaunt2 function in
many applications, let’s find the Fourier transform of f(x) =e™*".

We have

—(ctia)z

00
=0

1 > 2
Fla) = — e T e dx
( ) V 27T [oo
1 > 2,
_ = —(z*+iax) d
= e T.
V2T [m

Now, we know that ffooo e dz = /7, so it looks like we need to complete
the square in the exponent:

2 | . ia\? a2
¥ tiax = |+ — +Z'

2
So
Fla) = =% [ @9
v 2T o
= e T e du
2 NS
1 a2

= — T

N

So the Fourier transform of the Gaussian e~® is another Gaussian—in fact,
we’ll see that this is always the case (see Exercises 3 and 4). More specifically,
we’ll see that a sharply peaked Gaussian has a transform which is “lower” and
more “spread out,” and vice versa. See Figures 6.2 and 6.3.

Each of the Fourier transforms above turned out to be real. This is not
always the case, as we will see below and in the exercises.

Let’s look now at the important properties of the Fourier transforms.
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FIGURE 6.2 y
MATLAB graphs of f(z) = e ** (solid curve) and its Fourier trans-

form F(a) = ﬁ e—o’/16 (dashed curve).

FIGURE 6.3 .
MATLAB graph of f(z) = e~ /16 (solid curve) and its Fourier trans-

form F(a) = 2v2 e—4o” (dashed curve).
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TRANSFORMS AND DERIVATIVES
If F[f(z)] = F(a), let’s find F[f'(x)]:

Al == [ fwe d

_ \/% [ —iaz f (g )‘ —|—za/o:o fl@)eio dx} (why?)

=iaF(a).

So we have
Flf'(@)] = iaF[f(z)].
It follows that
FIf(@)] = (ia)" F(f ()]

(see Exercise 10a). Similarly, we can show that

Fl—izf(x)] = F'(a)

and, more generally, that

CONVOLUTION

As with Laplace transforms, we often need to find inverse transforms of prod-
ucts. Specifically, if

Flf(@)] = F(e) and  Flg(x)] = G(a),

what is

Well, we know that

F(a) = \/% /_OO f(x)e % dg
6a) = o= [ g ay

or [ / G dx] [ 1 N gly)e ' dy}

[ / f(z)eto@+y) dx} dy (why?).

and

SO

=
S
Q
2
||

27T
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Now, we substitute z = = + y in the inner integral in order to make it look
like a Fourier transform (so dz = dx), and we get

PG = 5- [ o) | [ 56— az]ay

= \/%7 /Z [\/%_ﬁ /Z flz— y)g(y)dy] e da,

where we have reversed the order of integration,!l and replaced z by (the new
variable) z. But this is just the Fourier transform of the function of z in the
brackets! So,

F)Gla) = | o= [ 1= oty

and, thus,

FF@GE)] = o= [ 7 fe - ety
1
ﬁf*%

where f x g is called the (infinite) convolution of f with ¢ (as long as the
integral exists).

22
. 1|
Example 4 Find F [H—a‘;] .

From Examples 2 and 3, Fle~I*l] = \/E L and Fle "] = Ze /4,

7 14+a? \/Ee
Therefore,
—a’/4 1 21
(& 2
F|e | = Fol| pet/a 2T
1+ a? v l\/ﬁe Tl+a?

—X

e~ x eIl

1
:\/_m

/ e~ @ e=lul gy

Tt turns out that, in order to switch the order of integration, we need the inner integral to
be a uniformly continuous function of y.

T
1
V2
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TRANSLATION
If F[f(z)] = F(«), what is F[f(x — ¢)], where ¢ is a constant?

A=l == [ fla-e i

1 o .
= e~ F(q).

Example 5 If we would like to find the Fourier transform of

(o= [ Lif —3<w<1,
g\ = 0, otherwise,

we may notice that g(x) = f(x 4 2), where f is the function from Example 1.

Then,
) 2 .. si
G(Oé) _ e2zo¢F(a) _ \/jeZza Slna.
s

(07

Let’s list these properties again. If F[f(z)] = F(a) and Flg(z)] = G(a),
then

Derivative property:  F[f™(x)] = (ia)"F(a)
Convolution: FUF(a)G(a)] = \/%f(a:) x g(x)
Translation: Flf(x —c)] = e F(a)

(as long as the integrals involved do not give us any problems). Finally, given
the symmetry of the various Fourier transform pairs, it should be no surprise
that these properties can be “turned around” (as we mentioned when deriving
the derivative properties). See Exercises 2 and 9.

Of course, as with the sine and cosine transforms, when using Fourier trans-
forms to solve partial differential equations, the functions no longer are func-
tions of a single variable. We treat these problems in the following section.

We include a table of Fourier transforms and properties at the
end of this chapter (see Table 6.3).

Exercises 6.3

1. Calculate the Fourier transform of f, then use Theorem 6.2 to describe
the function

1 > iox > —iaz
glx) = %/7006 /700 f(z)e dzdo.

lifa<z<b
0, otherwise

SFCR
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€2 if 2 <0

b) f(z) = {e‘m, ifz>0
¢) flx)=ze %l c>0

d) f(z) =e l*lcosz and g(z) = e~ 1*lsinx

e) flz) =

i (see Example 1)

2. Suppose that f(z) and F'(«) form a Fourier transform pair. Show that
the following also form Fourier transform pairs:

f(=z) and F(-a),
F() and f(-a),
F(—z) and f(«).

3. The most general form of the Gaussian or normal density function is

where m is the mean and o is the standard deviation.

a) Compute its Fourier transform, F'(«).

b) MATLAB: Investigate graphically the behavior of f versus F as
o varies; in particular, justify the statement made in the text, that
sharply peaked Gaussian’s have flat, spread-out Fourier transforms,
and vice versa.

4. Find a function which is its own Fourier transform, i.e., for which

Flf ()] = fle).
5. Prove that the (infinite) convolution satisfies the following properties:
a) Commutativity: fxg=g=* f.
b) Associativity: f (g*h) = (f xg) * h.

¢) Distributive law: f*(c1g+cah) = c1 f* g+ caf xh, for all constants
c1 and cs.

6. We've been treating all of these transforms as though they’re linear
without even justifying it! Prove that all of the integral transforms in
this chapter are linear, that is, prove that each transform 7T satisfies

T(eifr + cafz) = aT(f1) + c2T(f2)

for all constants ¢; and ce and for all functions f; and fy for which the
transform is defined.
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7. Use the result of Example 1 to show that [*°_ $22dq = 7. Then, find
Fe [%] (Actually, we'll need the first statement when we prove the

. . . . . o0 51
Fourier inversion theorem, so in Section 6.5 we must prove f_oo Ttda =
7 without using transforms.)

8. Show that the Fourier integral representation also can be written
1 o0 o0
Flf(2)] = = / / F(2) cosalx — 2)dzda.
™ Jo —00

9. Prove the following properties of Fourier transforms. In each case,
F(a) = F[f(z)] and G(a) = Flg(z)].

10. a) Use the property F[f'(z)] = iaF(a) to prove that F[f(")(z)] =
(ia)"F(a), n=1,2,3,....

[0} [e3

b) How would you find F~! [M} and, more generally, F 1 [LS)} ?

(We can’t really answer these questions definitively until we get to
Section 6.5.)

11. Calculate the Fourier transform of f.

a) f(x) = (1_:67962)2

b) f(x):/jo Sizye—\z—y\ dy
2

) J@) = 3y

12.  a) Show that if f is even, then F[f] is even, and that if f is odd, then
Ff] is odd.

b) Suppose that f(x) and F(a) form a Fourier transform pair. Show
that if f is even, then F'(z) and f(«) form a Fourier transform pair,
while if f is odd, then F'(z) and — f(«) form a Fourier transform
pair.
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13.

14.

15.

The Laplace transform and the Fourier transform: Of course, the
Laplace transform is defined for functions with domain [0, c0). However,

suppose that
0, ift<D0,
ft) = .
g(t), ift>0.
Show formally that
Llg(t)] = V2r F(—ia),
where F(a) = F[f(t)].
Suppose that we start with the complex Fourier transform and derive

the sine and cosine integral formulas for functions on x > 0. That is,
suppose that

flx) = % /Zoo el /Zoo f(z)e™ % dzda

for any well-behaved function f on —co < z < oo, and show that, for
any well-behaved function g on z > 0, we have

2 oo oo
g(z) = —/ sin ax/ g(2)sinaz dzda
0 0

™

2 oo o0
= —/ cos aa:/ g(z) cosaz dzda.
0 0

™

Parseval’s equality for the complex Fourier transform: If we
allow f(x) and F(a) to be complex-valued functions, then we must
alter slightly the form of Parseval’s equality. Here it becomes

| @ = [ p@)Paa,

— 0o — 0o

where |z| = |a + bi] = va? + b? is the modulus of the complex number
z. Noticing that |2|? = a® + b? = (a + bi)(a — bi), we see that the above
can be rewritten as

/_Z F@)F@) dx = /_Z F(a)Fa) da.

We prove this as follows:

a) Use Euler’s formula to show that €if = ¢~ where 0 is real.
b) Show that Z1Z2 = (2122) for complex numbers z; and zs.

¢) Follow what you did in Exercise 11 of the previous section and,
along the way, use the fact that

| T do= [ fayeon an

to arrive at the above result.
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16. Sampling, revisited: Exercise 12 of Section 6.2 dealt with the sampling
theorem for the Fourier sine series. Here, we do the same for the complex
Fourier transform and series. So, a function f on —oo < z < co will be
band-limited if its Fourier transform F(a) = 0 outside some interval
—L < a < L. The least such (positive) L is f’s cutoff frequency.

a) Supposing that the cutoff frequency for f is L = m, expand F(«)
in a complex Fourier series, as in Exercise 13, Section 3.3, and
conclude that

f(.’L‘) _ \/%_W/OO eiaw [ i cneina‘| da,

n=—oo

where
Cn = L/ F(a)e™™ da n= -1,0,1
n — 27T . b) T ey b b) b
b) Show that
1
Cn = —f('fl)7 n= 7_170517

and, thus, that

@) =5 > f) [ e da,

n=—oo

Again, f is recovered by sampling it on the integers!

6.4 The Infinite and Semi-Infinite Heat Equations

We are now in a position to use Fourier transforms to solve the heat equation
for an infinite rod. So suppose we have the problem

ur = kPugy, —o00 <z <o00,t>0*

u(z,0) = f(z), —oo<z< o0,
lim w(z,t) =0.

|z| =00

*We now use k2, instead of a2, for the thermal diffusivity, in order to avoid confusion.
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Since we have —co < = < oo, we’ll apply the Fourier transform to the z-
variable. The transformed PDE is

Ui(a,t) = —a?k*U(a, t),
where U(a,t) = Flu(z,t)]. This is essentially an ODE, with general solution
Ula,t) = e *1G(a),

where G is an arbitrary function of a and may be determined by transforming
the initial condition. We arrive at

U(e,0) = F(a) = F[f(2)]
='G(a),

So we now have

Ula,t) = e 1 F(q).
Therefore, our solution is a convolution. First, then, we need to compute

2

F e ™ e~ Ktgior g, (6.12)

K2ty _ /

V2T J oo
We can evaluate this directly from the result of Exercise 4 in the previous sec-
tion. However, let’s compute it here. We know from Example 3 in Section 6.3
that

2

a 1 o0 2 .
fﬁl[eiT] = \/5 eiw2 = — eia /461aw dol
V2T J 0o ’

so we need only put (6.12) in this form. Remembering that « is the integration
variable and, therefore, treating x and ¢ as constants, we let

1
g = akvi,  Sdu= kvt da.

Then, (6.12) becomes

2;\/2) du 1 7(2&/?)2

on /_Of ¢ NN

1 o2
= e k2t .,
k2t
So our solution is the convolution (in z, of course)
1 1 2,2 1 1
- - —xt/4KkCt - -
e * f(x) =
o Vi T =575 var!

which can be written

)

({E) % efw2/4k2t

u(z,t) =

u(z,t) = e~ ar f(€)deE (6.13)

2k\/— /
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or

u ) = o= [ ple— e

For various reasons, the solution usually is written as the former. The

2

function G(z,t) = Qk\l/ﬁefﬁ is called the heat kernel, and it’s also called
the fundamental solution for this problem (see Section 10.5). Of course,
for fixed ¢, G is just the normal density function of Exercise 3 in the previous
section, with variance 0 = 2k?t (and variance is the square of the standard
deviation).

Sadly, (6.12) is not the only solution to this problem. It turns out, however,
that it is the only continuous, bounded solution (so long as f is bounded).

There is a very nice physical interpretation of this solution, which we’ll
mention in Chapter 10. Let’s look at an example.

Example 1 Solve the heat problem

Ut = Ugy
B _ J1/2a,if |z] < a,
u(x,())—f(x)—{(L if |2| > a,a > 0,
lim wu(x,t) =0.
|| =00

Note that the initial heat content of the bar is the same for any choice of a.
Using (6.12), our solution is

1 4 (@92
_ e # dE.
dav7t J_q d

It’s interesting to analyze what happens at ¢t — oo, or as a varies. In either
case, let’s first calculate the heat content of the bar (assuming constant cross
section, as always); it is proportional to

/Oo u(z, t)der = L /Oo /a e*(gﬂ;f)2 dédx
—0 ’ 401\/E —oc0 J—a

1 4L woe)?
= — - 4t d d T
4av/mt /_a /_oo ‘ o

Now, in order to 2evaluate the z-integral, we—as usuall—substitute so that we
can use ffooo e~ dx = /7. Then, everything simplifies to

/ u(z,t)dx =1,

— 00

u(z,t) =

T Again, so long as we may reverse the order of integration.
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for any choice of t! Actually, this is not as surprising as it seems; it’s just a
statement of the conservation of (heat) energy.

Of course, the last equation says that the heat content does not depend
on a, as well. This is because we rigged the problem so that the initial heat
content is independent of the choice of a.

Figure 6.4 illustrates u(x, t) for a = 1 and for various values of ¢. Figure 6.5,
on the other hand, shows u(z,t) for the specific time ¢ = 1, but for different
values of a.

FIGURE 6.4
MATLAB graph of the solution of the problem in Example 1, with
a=1, fort=1,3 and 5 (from highest peaked to lowest peaked).

We look more closely at the solution u(z,t), and the conservation of energy,
in the exercises.

Before leaving this example, we should ask what happens as a — 0. Specif-
ically, let’s rewrite some of the functions f(x) by letting a = %, where n is a
natural number:

n/2,if |z| < =,
fn(z) =

0, if|z]>—.

SI=31+
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FIGURE 6.5
MATLAB graph of the solution of the problem in Example 1, at
time t =1, for a = 1,3 and 5 (from highest peaked to lowest peaked).

As n — oo, f seems to be approaching a “function” which is infinite at the
origin and 0 everywhere else—certainly not a function, as far as we’re con-
cerned. (See Figure 6.6.) However, in the more general setting of distributions
or generalized functions, it turns out that it does make sense and, in fact, that
it turns out to be one of the most important ideas in mathematics! We write

where §(z) is called the Dirac? delta function, and the functions f,(z) are
said to form a delta sequence.
Also, as [ fn(z)dz = 1 for each n, it looks as though d(z) has the

property
/ o(z)dx = 1.

We’ll look more closely at these ideas in the next section.

fRealizing that this is not a true “=.”

§ After the great quantum physicist P.A.M. Dirac (1902-1984).
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Now that we’ve solved the heat equation for an infinite bar, we turn to the
case of the semi-infinite bar. Specifically, we’d like to solve the problem

y
y=1, X

T
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
| |
| |
| |
| |
| |
| |
| |
[ [
| |
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| |
| |
[ [
| |
| |
| |
I I

\
I
I
|
1
1 1 1 1l

1 1
2 4 10 10 4 2

FIGURE 6.6 Graphs of y = fp(z) for n=1,2,4 and 10.

Ut = Upe, 0<x<00,t>0,
u(z,0) = f(z), 0<z< oo,
u(0,t) =0,
from Section 6.2. We’ll solve it here using the method of images. (You
may recall that we used the method of images to solve the semi-infinite wave
equation in Section 5.4.) The idea is to solve, instead, the problem
Up = Ugy, —00<x<00,t>0,
u(z,0) =g(x), —oo <z < o0,
where g(x) is either the even or the odd extension of f to the interval —oo <

2 < 0o. Which one? Since we would like the solution to satisfy w(0,t) = 0,
we try the odd extension

f(z), ifz>0,
9(z) = { —f(=z),ifz <0.

We’ve already solved the new problem; from (6.12) we have

_(@—9)?

1 o0
u(z,t) = m/_ooe 7 g(&)de.
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Then, since g is odd, we also have
u(0,t) =0 (why?).

Thus, we have our solution to the original problem. However, we really should
be able to write it in terms of the initial function f. So, we write

0 _ey2 00 )2
wet) = o= | [ et [T e g

— 0o

Substituting z = —¢ in the first integral turns it into

o0 xT z 2 o0 x z 2
/ e g(—2z)dz = —/ e~ f(z)dz
0 0

and our solution becomes

u(w.t) = e e

1 o0
2/t /0
which, of course, is exactly what we got in Section 6.2 using the sine transform.

One final note: It turns out that the heat/diffusion problem on —oco < z <
oo is not well-posed! See Exercise 15.

Exercises 6.4

1. Two identical very long rods are at different temperatures, 77 and 7. At
time ¢ = 0 they are attached; then, the system will satisfy the problem

utszum, —o0 < x < o0o,t >0,
Ty, if 0

u(z,0) = b 1 r<
TQ, if z > 0.

a) Solve the problem.

b) MATLAB: Letting k> = 1,77 = 10° and Ty = 30°, graph the
solution in the z-u plane, for various values of t. (You'll need to
replace +o0o by =M and to choose M judiciously.)

2. Show formally that (6.13) does, in fact, satisfy the PDE and initial
condition. Find another solution to this problem. (Hint: It need not be
continuous at ¢ = 0.)

3. Use the method of images to solve

Ut = Ugy, x>0,1>0,

u(z,0) = f(x),
uz(0,t) =0,
lim u(x,t) =0,

T—r00
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and make sure you get the same answer as before (Exercise 5, Sec-
tion 6.2).

4. Uninsulated rod (In each case, verify formally that your solution
satisfies the problem.)

a) Solve the system

Up = Ugy — U, —00 < x <00,t>0,

U’(xv 0) = f(x)v
lim wu(z,t) =0,

|z|—00
which represents the temperature of an infinite rod whose sides are
not insulated (as we derived in Exercise 9, Section 2.4).

b) Now solve the same problem for the semi-infinite rod, with Dirichlet
condition u(0,¢) = 0.

¢) Do the same, but now for the semi-infinite rod subject to the Neu-
mann condition u,(0,t) = 0.

d) Go back and solve parts (a)—(c) via the substitution w(z,t) =

e tu(x,t).

5. Diffusion-Convection: Repeat Exercise 3, but for the diffusion-convec-
tion equation u; = ug, — u, (see Exercise 7, Section 4.1). Again, verify
formally that your solutions satisfy the system.

6. Infinite and semi-infinite Euler—Bernoulli beam: (Solve each
problem, in terms of Fourier integrals.)

a) The infinite Euler—Bernoulli beam problem

Utt = Ugzzx, —oo <z < o00,t >0,
’U,($,0) = f(ﬂ?),
ut(z,0) = g(x).

b) The semi-infinite E-B beam problem

Utt = Ugzzx, z>0,t>0
u(z,0) = f(z),

ut(z,0) = g(z),

u.(0,t) = 0.
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7. In Section 5.3 we derived d’Alembert’s formula
1 x+ct
u(z,t) = §[f(3:—|—ct)—|—f(a:—ct)]+ %/ g(z)dz

for the solution of the infinite wave problem

Ut = Uga,
U(JJ,O) = f(x)v
ue(z,0) = g(z).

We also may solve this problem using Fourier transforms.

a) Use Fourier transforms to solve

Uy = cQum, —o00 < x <oo,t >0,
u(x,O) = f(x),
ut(z,0) =0,
i0 —i0
| llim u(z,t) = 0. (Hint: Use cosf = %.)
x|—0o0

b) Do the same for
Upp = czum, —oo < x <oo,t>0,
u(z,0) =0,
ui(x,0) = g(x),
‘ l‘im u(z,t) = 0. (Hint: Do not use the above hint!)
T|—00

8. Use Fourier transforms to solve Laplace’s equation on the half-plane:

Ugy + Uyy =0, —00 <z <00,y >0,

u(z,0) = f(x),
‘ ‘lim lu(z,y)| = 0.
z|,y—o00

Then show that you may write this solution explicitly as

u(z,y) = & /OO ﬁdz.

T ) ¥+ (2 —2)?

(When you solve the ODE after transforming, take care to solve it for
a > 0 and for a@ < 0 separately.) This is one form of the Schwarz
integral formula, or Poisson’s integral formula for the upper

half-plane, and the function W is the Poisson kernel.
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9. Solve the semi-infinite heat problem

Up = Ugy, x>0,8>0,
u(z,0) = f(z),
u(0,1) = g(t),
zll)n;o u(z,t) = 0.
(See Example 4 in Section 6.2.)

10. Solve the Laplace equation problem on the first quadrant:

Ugy + Uyy =0, x>0,y >0,

u(z,0) = f(z),
u(0,y) = g(y),
m)lylﬁoou(x, y) =0.
11. Consider the PDE
utt—|—2aut—|—bu:c2um, —oo < x <oo,t>0.

a) What kind of equation is this (hyperbolic, parabolic, elliptic)?

b) Show that, if a®> — b < 0, the Fourier transform of the solution is

Ua,t) = ci(a)e” cos Vb + c2a? — a2 t + ca(a)e” *sin b+ c2a?2 —a2 t
for arbitrary functions ¢; and co.
c) Show that, if > — b = 0, we have
U(a,t) = ci(a)e”* coscat + ca(a)e™* sin cat

(unless a = 0).
d) Show that, if a®> — b > 0, we have

c1(a)e” cos Vb + c2a? —a? t
Ul t) = +ca()e sinvb+ c2a? —a? t, if 2a? > a% —b,
") es(a)e™* coshv/—b — c2a? + a2 t

+ ca(a)e™ @ sinhv/—b — c2a? +a? t, if 2a? < a® —b.

12.  a) Use the results of the preceding exercise to find the solution, in
Fourier integral form, of the one-dimensional telegraph equation

CLuy + (RC + GL)us + RGu = gy
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on —oo < x < 00,t > 0, subject to the conditions

U(JJ,O) = f(:r')v
ut(xﬂo) = g((E),

lim wu(z,t) =0.
|z|— o0

b) A very important PDE from particle physics is the (one-dimensional)
linearized Klein—Gordon equation

2 2
Ut + MU = C Uyy,

where m is the mass of the given elementary particle and c is the
speed of light. Do the same as in part (a) for this equation.

¢) Use the fact that
2 sinva? +1
FU(/T=@)H( - )] =/ 220t
T a*+1
to show that the solution of part (b), with f(z) =0, is

-/ " gl — O do(m/EE D) e,

u(z,t) = %
—ct

13. Fourier transform in higher dimensions; the two-dimensional
heat equation on the plane: As we show in Section 9.6, we may
talk about the Fourier transform of a function of several variables. For
instance, for f = f(z,y), we have the Fourier transform

= Ff(z,y)],

with the inverse transform of F' given by
1 [ [ )
fen) =5 [ [ Pl dads.
™ —00 —0o0
a) Show that
Flfs) =iaF and F[f,] =1iBF.
b) Show that the formal solution to the two-dimensional heat equation

Ut = Ugy + Uyy, —o0o < x <00, —00 <Yy <00,

u(z,y,0) = f(z,y),
lim  wu(z,y,t) =0,

r24y2— 00
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is
iC y’ / / (e +,6’ Vt+i(az+Ly) dadﬂ

= F U [F(a, e+,

¢) Convolution: Show that

“F(a, B)G( / / flx —u,y — v)g(u,v)dudv,

where F' = F[f] and G = Flg]. Not surprisingly, we call this
integral f * g, the convolution of f with g.

d) Show that the solution to part (b) can be written

w(z, gt 47Tt/ / “le=w?+(y=v)? ]f(u o) dudb.

14. Use the result of the previous exercise to solve the two-dimensional heat
problem on the half-plane

Ut = Ugg + Uyy, —o0o < <00,0<y < oo,
u(z,y,0) = f(z,y),
subject to the boundary condition
a) u(x,0,t) =0
b) uy(z,0,t) =0
15. Here we consider the well-known function

{6_1/062, if x #£0,

1@ =9y if 2 =0,

a) What is lim f(z)?
z—0

b) Show that
lim f(@) = lim 1(z)

x—0 X x—0 !E2

207

then use mathematical induction to show that

lim @

x—0 ™

=0, n=3,4,5....

¢) Show that f is infinitely differentiable and that f(™(0) = 0 for
n=1,2,3,.... (Hint: Look at
FODE) — ()

; — f(n)
lim ; — £(0).)
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d) Show that f is not analytic at x = 0. Remember that f is analytic
at x¢ if the Taylor series

converges to f on some interval g — L < x < z9 + L (L > 0).

e) Now show, by differentiating term-by-term (which, as it turns out,
is legal here), that the function

ug(x,t) = Z
n=0

is a solution of the heat/diffusion problem

(2n)!

Ut = Ugz, —oo < x <oo,t>0,
u(z,0) = 0.

Why does it follow that the problem does not possess a unique
solution?
f) Explain why uniqueness must fail for the general problem
Ut = Ugy, —o0 < x < o0o,t >0,

u(z,0) = f(x).

This famous example is due to A.N. Tychonov (1935).

6.5 Distributions, the Dirac Delta Function
and Generalized Fourier Transforms

We have been lax in our treatment of Fourier transforms. Specifically, we
have paid almost no attention to the “absolutely integrable” requirement.
And now, in the previous section, we introduce the function J(z) which, for
all intents and purposes, looks like

5(@) = {07 if # £ 0,

oo, ifz=0!

Why? Well, as in most situations of this type, it’s because it works (so very
well). Remember that Newton, Leibniz, Euler, et al. used the calculus with
astounding results without even knowing why it worked. (Newton went so
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far as to recast all of the proofs in Principia Mathematica in terms of the
well-established Euclidean geometry.)

Similarly, during the late 19th and early 20th centuries, mathematicians
and scientists used the old classical analysis on problems involving these new
“functions,” with resounding success.*

Finally, in the early 1950s, the mathematician Laurent Schwartz! gener-
alized the idea of function, putting everything into a setting—the theory of
generalized functions or distributions—which made all of the ideas math-
ematically legitimate.

Schwarz defined these generalized functions and these operations in terms
of integrals and, specifically, in terms of inner products. In this setting, our
old classical functions still behave as always.

We begin by defining a test function to be any function ¢: R — R which

1) Has derivatives of all orders.
2) Is zero outside some finite internal (we say that ¢ has finite support).

Then, given any function f: R — R which is locally integrable on (—oo, o),
the inner product

(6= [ f@pla)da
converges for any test function ¢. Further, it is linear in the sense that

(fic1¢1 + caa) = 1 (f, d1) + c2(f, P2)

for any constants c1, co and any test functions ¢1, ¢2. So, if we think of f as
fixed, what we actually have is a function of functions, which maps each test
function ¢ to the real number (f, ¢). (Such a function, with domain equal to
a set of functions and range consisting of a set of real or complex numbers, is
called a functional.) Although the notation is not the usual, we can write

flol = (1, ¢),

and the linearity property becomes

fleidr + cago] = ey f[d1] + ca f[o2].

*Heaviside was the “leader of the pack.” (As Heaviside said, “Should I refuse a good dinner
simply because I do not understand the process of digestion?”) The downside of all this
is that they could only show formally that they had the right answer, and that only by
“plugging it back in.”

THis famous article “Théorie des distributions” appeared in two parts, in 1950 and 1951.
fThat is, integrable on any bounded subset of the number line.
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Now, to generalize, we look again at the delta sequence

S il s
n
fn(z) = 1
0, if|z]>—.
n
For any test function ¢,

1

n n
Gty =2 [ o)

3=

and, classically, we may write

lim (fn,$) = ¢(0)

n—r oo

(see Exercise 4). Then, formally,

60) = Jim () = [ fu@)o(e)ie
= [ i fa@ots
= [ s,

suggesting that we define the generalized function §(z), the Dirac delta
function, by

d[¢] = (0(x), ¢(x)) = $(0).
Certainly, this is defined for any test function ¢. Further,

deigr + cago] = [c101(x) + cada()]|2=0
= c10[¢1] + c20[a],

S0 ¢ is a linear functional on the space of test functions.
Generally, we define a generalized function or distribution to be any
linear functional on the space of test functions.® We use the notation

flol=tr.0r= [ 7 f@)(a)de,

realizing that the integral may not make sense, classically. It is more than
mere notation, though, in the sense that this generalized integral still behaves
like a classical integral (so we may substitute, integrate by parts, etc.).

§ Actually, we need more—we define what we mean by a continuous functional and then
define a distribution to be any continuous, linear functional on the space of test functions.
For a very nice brief treatment, see the excellent book Mathematical Methods in Physics
and Engineering by John W. Dettman.
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MULTIPLICATION OF A DISTRIBUTION BY A FUNCTION

If f and g are integrable, then we have

g0 = [ " @)g(@)(a)dz = (g, fo).

Therefore, we define the multiplication of the distribution g by the integrable
function f by

(fg,0) =g, f¢)."

In particular, it’s interesting to note that the distribution z"d(x), for any
r > 0, is given by

(270(x), ¢(x)) = (6(x), 2" p(x)) =0 (why?).

Therefore, there are infinitely many distributions which behave as the “zero
distribution.” In fact, it follows that

(f;0) = (f + ca"6(x),¢)

for any constants ¢ and r, with » > 0.

TRANSLATION OF A DISTRIBUTION

If f(x) is integrable, then so is f(z — x¢) for any constant xg. Then

(a0, 0(a@) = [ f@)ola + zo)do = (F(z). oo + z0).
So we define the translation of the distribution f via

(f(x = z0),¢(x)) = (f(2), p(x + 20))

for all test functions ¢. In particular, we have

(0(z — wo), d(x)) = (6(2), ¢(z + 20)) = ¢(20),
and we write

/_OO 0(x — x0)p(x)dx = (o).

This is called the sifting property of 6.l

Y0f course, we must show that this is a distribution, too.
' We generalize this statement below, to functions ¢ which are not test functions.
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DERIVATIVE OF A DISTRIBUTION

Now, given an integrable and differentiable function f(x), what distribution,
in terms of f, is defined by f’? Well,

o) = [ r@oad
and, integrating by parts, we have

-/ T f@) @) (why?)
= {4

Therefore, we define the derivative of any distribution f to be the distribution
f'll =—=(f,¢).
For the delta function, we have
(0, 0) = —(0,¢) = =¢(0)
and, more generally,
(6™, ¢) = (-1)"¢™(0), n=1,2,3,...

(see Exercise 6).
Another important function—and distribution—is the Heaviside™* func-
tion
1, ifz>0,
H) =4,
0, ifz<0.

Classically, of course, H'(z) = 0 except at = 0, where it doesn’t exist. What
is H' as a distribution? We have

(H.6) = ~(H.) = [ d@ds (why?)
—6(0)  (again, why?),
that is, for any test function ¢,
(H', ¢) = (6, ).
We say that H'(z) = §(z), and, more generally, we can write

(H™(x — 20), ¢()) = ((=1)" 16"~V (x — 20), $(2))
= (=) "¢l" D (x0)

for any test function ¢.

** Again, Oliver.
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GENERALIZED FOURIER TRANSFORMS
AND DISTRIBUTIONS

The definition of the Fourier transform is generalized to this setting, as well,
so that we may talk about the Fourier transform of any distribution. So, for
example, we will throw around integrals like

FlH(z)] = /O " eior gy

which clearly make no sense classically.
Let’s begin by looking at the Fourier transform of the function in the delta
sequence fy(z) from earlier. We have

1 n 1/ —iax
Flfn(x)] = \/—275/1/ e dx
1 sina/n
= — hy?
Ver a/n (why?)

and, since

lim sina/n _1

n—00 a/n

3

we have no choice but to define

Flo(2)] = \/LQ_W.H

This suggests that we would like to be able to say that

| st = 50)

even when f is not a test function. This is accomplished by looking at what is
called the principal value of the given integral—an idea discussed classically
in the following section. In particular, we’ll have

/_O; 5(x)dz = 1.

More generally, we have (formally)

Flo(z — 20)] = \/%_ﬁ [ Sl — mo)e— di

1 o ,
= — §(z)e e @teo) gy
V2T [oo (@)

—itax
e 0

Vor

J2% f@)e % do, FHF(a)] =
1.

Wtextschoose to write F[f(z)]
L [ F(a)ei®®dz, so that F[5(x)]
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and we have the transform pairs
efiawo

V2r
€ —— V21 §(a — ¢)

0(x — xg) «—

(see Exercise 7b).

Now, what about the transform of the Heaviside function? Here it turns
out that we must proceed with care. We require that Fourier transforms of
distributions must satisfy the old identity

Flf'(@)] = iaF[f(x)],

so we must have
iaF[H(z)] = Flé(x)] = —.

So it looks like we would get

FIH@)] = —=.

However, consider the function f(z) = H(x) + H(—z) = 1. We have, from

Exercise 2 of Section 6.3,

1
ion/2m

FlH(-2)] = -

from which it follows that
F[1] = V2r §(a) = F[H(z)] + F[H(—z)] = 0,

a contradiction! What happened? It turns out that the presence of é is
what causes the trouble, due to its severe discontinuity at @ = 0. For this
reason, in the distributional settmg, is referred to not as a function, but as a
pseudo function.** For our purposes, it suffices to remember that f(x)+cxd(z)
generates the same distribution as f(z), for any constant ¢. So we see if we
can find ¢ so that

F[H(z)] = + cb(a) = H(w).

za\/_

Back to the equation above, we have

V27 §(a) = F[H(x)] + FIH(~x)]
= H(a) + H(~0)
= 2¢6(a),

HSee, e.g., Green’s Functions and Boundary Value Problems, 2"4 ed., by Ivar Stakgold.
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or

FH@) = ——+ | [35(a)

Finally, the sign or signum function
sgu(z) = H(x) — H(-x)

turns out to be very important, as we’ll see presently. Therefore, let’s look at
its transform:

Flsgn 2] = F[H(x)] — F[H(-x)]
1 /2

waV m

Now we're finally in a position to deal with F~! {%} and the like (which

we tried to do in Exercise 9b of Section 6.3). To repeat, though, we have the
transform pairs

H(z) «— mm

\/>sgnx<—>—
2 o

Then, using the convolution formula, we have

- [iﬂ _ % <\/§ e x> - (@)

! / " sen(e - y)f(y)dy

(7 som ]

1. Show formally, using integrals, that we have no choice but to treat §(z)
as an even function.

Exercises 6.5

2. Suppose that ¢(z) and ¢ (z) are test functions. Decide if each statement
is true or false, and justify your answer.

a

b

) ¢(z + x0) is a test function.

) ¢'(x) is a test function.

) SO d(€)dE is a test function.
d) ¢(z)v(x) is a test function.

o
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e) o(x)/v(x) is a test function.

f) f(x)o(z) is a test function for any infinitely differentiable function
!
3. a) Show that the function

(z) = e~ Mrel/e=1  if 0 <z < 1,
N 0, otherwise,

is a test function.
b) MATLAB: Graph ¢(x).

c¢) Using part (a) as a hint, construct a test function on the more
general interval a < z < b (i.e., such that ¢(x) = 0 outside of
a<z<b).

4. Given the delta sequence

g, it —1/n<2x<1/n,
falz) =

0, otherwise,

use the mean value theorem for integrals to show that

for any continuous function ¢.

5. a) Show that, for any x # 0,

. n
lim —e =0.
n—o00 T

b) What happens for z = 07?
¢) Show that, for any n > 0,

\/E/ e dp = 1.
™ — 00

d) MATLARB: Plot the graph of y = \/g e~” for various values of
n.

e) Describe how you would show that

2 [ ot = o0

for any continuous, bounded function ¢. (Therefore, the sequence

. . _ 2,
of continuous function \/Ze~"*" is a delta sequence.)
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f) More generally, suppose that ffooo f(x)dx = 1. Define

fn(x):%f(%>, n=123,...

and show that
i) lim f,(x) =0 for any fixed = # 0.
n—00

. . oo
ii) nh_)n;o oo fal)de = 1.
6. Use mathematical induction to prove that

(60 (2 — x0), d(x)) = (=1)"™ (x), n=1,23....

7. a) Show that F[6(z + x¢) £ 0(z — z0)] = { SZ.C;);C;ZO
0-
b) Show that, if
—iaxg

e

Flo(x — mo)] = N

then

Flet®] = V2m 6(a — ¢).

8. a) Although we have the classical formula F[f(z—x¢)] = e~ > F[f(z)],
compute F[H(xz — xo)], instead, the same way that we computed
FH (z)].
b) In Example 1 of Section 6.3, we found the Fourier transform of the
square wave
1, fl<az<l,

J(@) = {O, otherwise.

Here, instead, rewrite f as a sum of various Heaviside functions,
then take the Fourier transform (and show that we get the same
answerl).

c¢) If f(x)is a function and g(z) is a distribution, we define the product
fg by (fg,0) = (g, fo) (so long as f is sufficiently well behaved).
Show that the old product rule still holds, that is, that (fg)" =
fg' + gf’, in the distributional sense.

d) Distributional derivatives of general piecewise smooth func-
tions: Suppose f(z) is the piecewise smooth function

fla) = {g(ac)7 if x < xg,

h(z), if z > xg.

Rewrite f using the Heaviside function, as in part (b), then com-
pute its distributional derivative. (Hopefully, it will be identical to
the old f/(z) for every x # xo.)
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e) Generalize part (d) to any piecewise smooth function

fi(z),if x < a4,
( fa(z),if 1 < x < z9,
) = .

fo(z), if x> xH_1.

9. Use Exercise 9d of Section 6.3 to find
a) Fl [L}

a—c

b) F7! |

10. Consider an electric network consisting of a resistor, an inductor and a
capacitor in series. Suppose that the network has a voltage source, so
that the voltage at the terminals of the network is given by E(¢). See
Figure 6.7. Then it turns out that the current I(¢) must satisfy the
differential equation

. .1 )
LI—l-RI—l—aI:E(t), —00 < t < 00.

Here, L, R and C are the inductance, resistance and capacitance.

+

E(t)

FIGURE 6.7
The electrical network in Exercise 10.

a) Suppose, further, that there is a switch and that the voltage is a
constant Fy when the switch is closed. Conclude that, if the switch
is closed at time t = ¢, the equation becomes

. .1
LI—FRI—FEI:EQ(S(t—tQ), —00 <t < 00.

b) Use Fourier transforms, as well as Exercise 9 of Section 6.3, to solve
this problem from the case L =1, R =0, C = 1/4, Ey = 1 and
to = 3.
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11.  a) Show that the heat kernel

]. _ m2

e  4k2t
is the solution of the heat/diffusion problem

ut:kQum, —oo < x <oo,t>0,
u(z,0) = §(z).

b) Show formally that the nonhomogeneous heat problem

wi = k*wg, + 6(z), —00 < x < 00o,t>0,
w(z,0) =0,
has solution w(z, t) fo ), where u is the solution from part

(a).
12. Suppose we start out by defining the Fourier transform/inverse trans-
form formulas for the delta function. That is, formally, we say that

—iax
e 0

Flo(z — zo)] \/_/ §(x — mo)e 1@ dx:ﬁ

efiawo 1 [es} )
o2 21 00

Then it turns out that we can recover (at least formally) the Fourier
transform formulas for arbitrary functions. For example,

a) Given

and

1 [~ .
0z —y) = o / e @Y o,

multiply both sides by f(y), then integrate, to arrive at the Fourier
integral representation of f (6.11).
b) Similarly, starting with
L (% —ive-p)
oo —B) = 5= e dy,

21 J_

multiply both sides by F(a)G(B)e?*, integrate both sides with
respect to 8 and « and then reverse the order of integration on the
right side to arrive at the convolution formula

/00 F(a)G(a)e” da = f(z) * g(z).

— 00

Here, of course, F' and G are the transform of f and g, respectively.



266 An Introduction to Partial Differential Equations with MATLAB®

6.6 Proof of the Fourier Integral Formula *

Now we are ready to prove Theorem 6.2 (whence Theorem 6.1 follows). First,
let’s introduce the idea of the Cauchy principal value.

Definition 6.1 We define

M

to be the Cauchy principal value or Cauchy principal part of the (pos-
sibly divergent—else, why bother?) integral

/_Z f(x)dx

The point is that the integral may diverge, while the Cauchy principal value
converges, as we see in the following example. (Also, see Exercise 2.)

Example 1 As we saw in Section 6.2, f

As a result, we needed to be very careful when we talked about

> asin ax
—— Zda
0o a“+c

and the like. In fact, Theorem 6.2 should really read as the following.

—L + zdx diverges. However, lim
oo T C A)OO

Theorem 6.2’ SuppOSe that f is piecewise smooth on every finite interval,
and suppose that [~ |f(z)|dz < co. Then, for each x,

— lim / Fla e doy
27T M— o0

:—hm/ / f(z *Wdzemda—%[f(:er)Jrf( =)l

2T M—oco

Not surprisingly, there is much similarity between the proof of Theorem 6.2’
and the convergence proof for Fourier series, in Section 3.5. Here, we will need
first to prove a lemma which will allow us to use the same trick we used in
step [4] of that earlier proof. And, in proving this lemma, we’ll rely on the
proof of step [5], as well.

*This section may be skipped without loss of continuity.
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Lemma 6.1 For any real constant M > 0,

/ smxdm :/ sin wdx :/ sin xda: _ I
0 T 0 z U 2

PROOF The proof entails
[1] Showing that [;* Sdz converges;

[2] Rewriting the improper integral as

/’T sinz L /’T sinu/2 sin.%udu
0o n—oo | Jo u/2 2sinu/2

T sin 277,2+1u
+ [ s—=—7du
o 2sinu/a

(remember that Dy, (u) = sin 244 /2sin % is the Dirichlet kernel);

267

[3] Using properties of the Dirichlet kernel to show that the first integral

— 0 and the second — 3.

PROOF of [1]  Write

o< I 1 - oo _:
sinx sinx sinx
dr = dr + dx.
0 T o < 1 €z

Since lim 2%
Tr—r 00

by parts twice and get

o0 : o0
sinx . COST cosx
/ dr =cos1— lim — / ——dx.
1 1

X T—0o0 X {,C2

The limit on the right-hand side is 0 while, for the last integral, we have

/‘Coix‘dxg/ %d$=1.
1 € 1 T

= 1, the first integral is finite. For the second, we integrate

Therefore, the integral is absolutely convergent (which implies it is conver-

gent). |

PROOF of [2] and [3]

* sinzx . B sin g
dx lim dx
0 X R—o0 0 X
2n+1

dr, neN

n—oo Jq T
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(since it converges, we can have the upper limit approach oo any way we’d
like).
Now, we substitute

2 1 2 1
= n2—i— u, dxr= n2—|— du,
and we get
/ ) ST e = lim " sin 2w du
0 T n—oo Jq u
. ™ sinu/2 sin 2%y
= lim
n—oo fo /2 251nu/2

s : 2

= lim sinu/ D,,(u)du,

n—o0 Jq u/2

where D,,(u) is, again, the Dirichlet kernel,

~ i [ /O i (51272/ 2_ 1) Dy (u)du + /O i Dn(u)du] .

To arrive at the last expression, we just added and subtracted 1 inside the
integral. But why? Well, first off, we already computed the second integral
in Section 3.5. As for the other, if we consider the continuous function

sinxz/2

Flz) = x—/z,ifa:;é(),
1, ifx =0,
then )2
sinu
1= () = 10

and the first integral is almost identical to the one from step [5] in Section 3.5.
There, we used the Riemann—Lebesgue Lemma to prove that the first integral
— 0, and, in step [4], we proved that the second — 7.

Finally, it is straightforward to show that

oot 0 . o0 .
sin M x sin M x sinx
dr = dr = dx
0 T oo X 0 T

for any constant M (see Exercise 1). |

Now we prove Theorem 6.2’
PROOF of Theorem 6.2" We must prove that
: 1 M > —iaz [re% 1
lim — f(z)e " **dz e"**da — §[f(a:—|—) + f(z=)]=0. (6.14)
—M J—o0
To this end we shall
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[1] Justify reversing the order of integration, so that we may rewrite the
integral as

/ / f(z)e " *dz "™ dr = / l/ ew‘(z_z)da] f(x)dz
-MJ-—x —o00 —M
[ elelem2) ja=M
B /_Oo i(z — 2)la=
:2/°° sin M (z — z)

r—Zz

f(z)dz T

f(2)dz,
(and, letting u = z — x)

o0 : M
= 2/ s1nu uf(a: + u)du.

— 00

— 00

[2] Use the lemma to write

Flast) = 3/0 SIMu e,

™ u

in which case (6.14) becomes

1  sin M 12 [*®sinM
lim — - 2/ S uf(a: +u)du — = [— / S uf(aH—)du
U 2|7 Jo U

M—oc0 27 — 0o

0 sin
+3/ - M“f( )du]
= lim [ / fa:—i—u f@ )sinMudu

M—o0

/ fx—!—u f( )sinMudu}

[3] Show that each integral — 0.

PROOF of [1] In order to reverse the order of integration, we must be
able to show that -
/ f(z)eio‘(z_z)dz

converges uniformly as a function of o, on —R < a < R. While beyond
the scope of this book (although we briefly discuss uniform convergence in
Appendix B), it turns out that this follows from the fact that

| @ las = [ s < o

— 00 — 00

TNote that, when z = z, the inside integral = 2M, although this is of no concern.
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(Note that the absolute value sign here represents not absolute value, but the

modulus of a complex number. It turns out that |z120| = |21]|22] and that
le??| = 1 for any real number 6.) |

PROOF of [2]  Easy (why?). |

PROOF of [3] We prove here that

lim /oo flatu) — flzt) sin Mu du = 0;
0 u

M—o0

the proof for the second integral is almost identical. First, we write

/C flet u)u— fat) sin Mu du + /OO fletu) — flat) sin Mu du
0 c

u

for constant ¢ > 0. The only “problem” is what happens near u = 0; however,
as we’ve done before, we notice that

g L@+ W) = Sa+)

u—0 U

= /'(x+)

which is finite since f is piecewise smooth. This means that we can apply the
Riemann-Lebesgue Lemma to the first integral (again, see Section 3.5), with
the result being that, regardless of the choice of ¢, the first integral — 0 as
M — oo. As for the second integral, we can make it as small as we’d like just
by taking ¢ large enough (why?). To be more precise, we may choose ¢ and
M = M so that the second integral < %, and choose M = M, which makes

the first integral < §; then, for M = max(My, Mz), the sum is < e. |
And we are finished!

THE FOURIER TRANSFORM, INTUITIVELY

In closing, let’s take an intuitive look at the Fourier transform. As the Fourier
series resolved a function into its discrete spectrum, as well as the contribu-
tion at each frequency, so the Fourier transform may be looked at as resolving
a function into its continuous spectrum, with F(«) being a measure of
the contribution at each frequency . Then, we see two phenomena involving
the Fourier transform which are analogous to those which we found for the
Fourier series:

1) Functions with sharp spikes require a greater contribution from
higher frequencies than do functions without them. So, we saw
that “thin, sharp” Gaussians had transforms which were “wide and flat,”
and vice versa, culminating in the extreme case involving the delta func-
tion. Indeed, d(x) requires the same contribution from each frequency
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(since F[d(x)] = constant), while a constant function requires an infinite
contribution from a single frequency.

The smoother a function, the less of a contribution it requires
from higher frequencies, and vice versa. This phenomenon can
be seen, for example, in the relationship between the square wave and
its Fourier transform, Sigo‘, and is obviously related to the Gibbs phe-
nomenon for Fourier series. Of course, the delta function represents the

extreme case of this phenomenon, as well.

Exercises 6.6

1.

Given that [ S2%dy = I show that [ SmMEdy = ffm s M2 gy =

5, for any real constant M > 0. What can you say about fooo “Edx?

Give three examples of functions f with the property that ffooo f(x)dx

. . M
diverges but I\/[hi>noo J 7o f(@)dx converges.

One also may talk about the principal value of an integral for which the
integrand has a singularity. For example, we may have that [* f(z)dx
diverges, but

lim { f(z)dx + / f(x)dx}
e—0+ _a ¢

converges, in which case this limit is the principal value of the divergent
integral. Give an example of an integral ffb f(x)dx which diverges, but
for which the principal value converges.

OTHER INTEGRAL TRANSFORMS

There are many integral transforms, each determined by (a) the function that
is multiplied by f (this function is called the kernel of the transform) and
(b) the interval over which we integrate the product. In general, given f(x)
on a < x < b, an integral transform of f will be a function

b
F(a):/ K(z,a)f(x)dz.

Here, K is the kernel. For example, for the Fourier transform, a = —oo,
b=ocoand K(z,a) = \/176“’”“. Other transforms are listed in Table 6.2.

us
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Kernel K (z, a) Interval
1. Laplace e [0, 00)
2. Fourier et —00,00)
3. Fourier sine sin o [0, 00)
4. Fourier cosine cos ax [0, 00)
INTT
- . nw
5.  Finite Fourier K (x, T) =e L [—L, L]
6. Finite Fourier sine K (x, n%) = sin n_zx [0, L]
7. Finite Fourier cosine K (;v, %) = cos n_za: [0, L]

Q
|
—

8. Mellin

x [0, 00)
9. Hankel* xdm (ax) [0,00)
10. Hilbert L1 (=00, 00)
T ai—i— « .
11. Weierstrass —"/4a (—00, 00)

2\/7'(()[6

% The function J,, is the m*™-order Bessel function of the first kind; the
Hankel transform sometimes is called the Fourier—Bessel transform.

TABLE 6.2
Some integral transforms.

It turns out that the Mellin transform is very similar to the Fourier transform,
as we see in the following exercise.

4. Given f(z) on [0,00), we define the Mellin transform of f to be

MIf@)) = Fual) = [ fa)e*tda,
where « is purely imaginary, i.e., o = i3, where [ is real.
a) Show via the substitution x = e~* that
Fula) = H) = [ fle)e P,
In other words,

M([f(z)] = V2rF[h(z)], where h(z) = f(e™®).

Therefore, the Mellin transform should have properties similar to
those of the Fourier transform.
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b) Show that it follows from part (a) that the inversion formula for
the Mellin transform is
1 [~ _,
@ =5 [ e HE).

21 J_ oo
¢) Show formally that

MTHEm(a)Gp(a)] = (f x g)(2),

where the multiplicative convolution f x g is defined by

(f x 2)(a / e

5. The Weierstrass transform should look familiar. If we let W[f(z)] be the
Weierstrass transform of f, then describe the pertinence of the function

w(y, @) = W[f(y - =)].

(By the way, the Weierstrass kernel sometimes is called the Gauss—
Weierstrass kernel.)

INTEGRAL EQUATIONS

Frequently, functions which describe certain physical situations are solutions
of what are called integral equations; often, a differential equation problem
will be recast in the form of an integral equation.

The general linear integral equation in the unknown function f(x) can be
written

/ K(z,9)f ()dy + g(x) = h(z)f(z),

where g, h and K are known functions (K is called the kernel of the integral
equation), and A is a parameter (often playing the role of an eigenvalue, as it
turns out). If g(x) = 0, the equation is homogeneous. Often the function K
is of the form K = K(z — y).

Solve the following integral equations.

6. f—oo +a2dy_ m241rb2 = 0, 0<a<hb.

This is an example of a so-called Wiener—Hopf equation.

7. 70 emlemulp( Y)dy + e /2 4 f(z) =0
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f(z) = ﬁ [ F(a)e™® da F(a) = \/% I f@)eio da
L. f'(x) 1. iaF(a)
> zf(®) 2. iF'(a)
3. flx—2¢) 3. e F ()
4. e f(x) 4. Fla—c)
. f(cx) 5. %F (%)
0. < (3) 6. F(ca)
7. f(x)*g(x) 7. V27 F()G()
8. f(x)g(x) 8. A= F(—a) *G(~a)
9. e—clzl 9. \/g ag_icQ
10. e 10. VE eelel/e
11.  exp[—(z —m)?/20%] /o2 | 11.  exp {— ”220‘2 — imoa} /\/ﬂ
o 1, if |z <L, o \/g o
0, if |z| > L.
13. sin L 13, V3. iflal <L,
0, if |a| > L.
14. 3(x) 14. L
15. 1 15. V27 §(a)
16. H(z) 16. L4 /T 5(a)
17. sgn @ 17. \/g 1
18. 1 18. Tsano
19. sgn @+ f () 19. 20 (a)
(10
20. @ 20. —% sgn a x f(—a)
TABLE 6.3

Table of Fourier transforms.



Prelude to Chapter 7

Eventually, we’d like to solve PDEs in higher dimensions. As we show in the
following chapter, applying separation of variables to many of the important
higher-dimensional equations leads to certain special ODEs, the solutions of
which are called the special functions. (Okay, we never said that mathemati-
cians have much originality when it comes to naming things. To be fair,
they’re often called the special functions of mathematical physics.)

The earliest studied of the special functions are probably the Bessel func-
tions. Daniel Bernoulli ran into the first few of these when he solved the
hanging chain problem in 1733, and Euler encountered the modified Bessel
functions around the same time. Then, in 1759, Euler solved the problem of
the vibration of a circular drumhead (as we do in Chapter 9), giving us the
standard solution in terms of the Bessel functions of the first kind.

However, the Bessel functions are named after the well-known Prussian
mathematician and astronomer Friedrich Wilhelm Bessel (1784-1824), who
performed the first systematic study of solutions of Bessel’s ODE during the
decade 1815-1825. (Although he made numerous contributions to mathemat-
ics and the like, during his lifetime Bessel was best known by virtue of his
being the first person to measure the parallax of a star.)

The other special functions we’ll look at are the so-called (we’ll see why in
Chapter 8) orthogonal polynomials—the Legendre, Chebyshev, Hermite and
Laguerre polynomials. The Legendre polynomials seem first to have arisen in
the work of Adrien-Marie Legendre (1752-1833) and also of Laplace, in their
study of gravitational potentials in the 1780s. (In fact, early on they often
were referred to as the Laplace coefficients.)

The Russian mathematician Pafnuti Chebyshev (or Tchebycheff or Chebi-
chev!) (1821-1894) derived both sets of polynomials which bear his name,
while studying the approximation of functions by these polynomials, in the
1850s. Chebyshev also seems to have been the first to consider orthogonal
polynomials as such, in a general setting.

275
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Similarly, the Hermite polynomials were studied by Charles Hermite (1822
1901) in the 1860s, in his work on polynomial approximation of functions,
although Laplace seems to have encountered them in the early 1800s, when
working on probability theory. Incidentally, known for many things, Hermite’s
most famous contribution is his proof, in 1873, that e is a transcendental
number. Finally, the Laguerre polynomials are named after the geometer
Edmond Laguerre (1834-1886). The Hermite and Laguerre polynomials are
involved in the solution of certain versions of Schrédinger’s equation and, thus,
play a key role in the study of quantum mechanics.



7

Special Functions and Orthogonal
Polynomzials

7.1 The Special Functions and Their
Differential Equations

The PDEs describing many important physical problems lead, when sepa-
rated, to ODEs with solutions which are called the special functions (of
mathematical physics). These include the Bessel functions and the sets of
orthogonal polynomials: the Chebyshev, Hermite, Laguerre and Legendre
polynomials. (In Chapter 8, we explain why they are called orthogonal.)

Here we derive these ODEs in the following exercises, in most cases via
separation of variables.

Exercises 7.1

1. Bessel’s ODE: In Chapter 9, we’ll see that the PDE for the motion of
a vibrating membrane is

U = 2 (Uga + Uyy)-

a) Use polar coordinates to change this into the equation

1 1
C_QU/tt = Upp + ;ur + T_QUGG
(see Exercise 11, Section 1.6).
b) Separate variables and show that the separated equations can be
written as
1
T+ AN =0, ©"+70=0, R'+-R + ()\— %)Rzo,
r r
where T'=T(t), © = ©(0) and R = R(r), and XA and +y are separa-
tion constants. The R-ODE is the eigenvalue version of Bessel’s
equation.

c) Use Exercise 18 in Section 1.7 to conclude that v = m?, where
m=0,1,2,....

277
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d) If A > 0, use the change of variable z = v/A r to rewrite the R-
equation in the standard form of Bessel’s equation of order
a7

ZCZyH —|—xy’ + ($2 _ a2)y =0
(where, for the vibrating membrane, of course, « = m =0,1,2,...).

e) If, instead, A < 0, use the change of variable x = v/—\ r to rewrite
the R-equation as

22y 4y — (22 +a?)y = 0.

This is the modified Bessel’s equation, and its solutions are
modified Bessel functions, of order a.

Note: The only reason to change to polars is if we are looking at a
circular membrane/drumhead. Now, from the theory of ODEs, the R-
equation has a singular point (see the following section) at » = 0, which
means that there may be solutions which “blow up” there. As these
solutions are unrealistic, the physical nature of the problem suggests
that we must stipulate the additional “boundary condition” that R be
bounded as r — 0T. Similarly, we must have y bounded as z — 0T for
the equations in parts (d) and (e).

2. Legendre’s ODE: Laplace’s equation in three dimensions is the PDE
Vu = Uy + Uyy + Uz, = 0.
a) Transform this equation, using spherical coordinates, to

2

, 1
(P"up)p + (ugsin @)y + 7 g e = 0.

1
sin ¢ n‘ ¢
b) Suppose we are looking for solutions which are #-independent and

¢-independent. Show that they are of the form u = u(p), where u
satisfies the Cauchy—Euler equation

P2 Upp + 2pu, = 0.

c¢) If, instead, we want solutions which are only 6-independent, show
that they are those functions u = u(p, ¢) which satisfy

1 .
(qup)p + m@% sing)y = 0.

d) Why are there no ¢-independent solutions?

e) Use separation of variables, u(p, $) = R(p)®(¢), to show that the
equation in part (c) can be separated into the ODEs

(p’R') = AR =0, (' sing) + \Psin¢g = 0.

Here, ) is the separation constant.
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f) Using the change of variable x = cos ¢, 0 < ¢ < 7, show that the
¢-equation becomes
[(1=2*)y] + My = 0.

Here, y(z) = y(cos ¢) = ®(¢). This ODE is the eigenvalue version
of Legendre’s equation. Note that our change to spherical coor-
dinates has added the artificial-looking requirement that solutions
be finite at ¢ = nw, n = 0,+£1,..., i.e., at x = +1. These points
correspond, of course, to the north and south poles.

Note: For reasons similar to those above, we also stipulate that y be
bounded as x — 1~ and 2 — —1%". It turns out that the only such
solutions are polynomials!

. Hermite’s ODE: The one-dimensional Schréodinger’s equation for a
harmonic oscillator is
— U = Ugy — xQu,

where u = u(z,t) and i2 = —1. If we solve this equation in —oco <
T < 00, quantum mechanics tells us that the solutions must — 0 as
x — Fo0.

a) Show that this equation separates into the ODEs
T 4+idT =0, X"+(\—2?)X =0,
where u(z,t) = X (2)T(t) and X is the separation constant.
b) Show that, if A=1, X = e~"/2 is a solution. What is

lim e~*"/2?
r—+oo

¢) Show that, for arbitrary A, the change of dependent variable
y(@) = ¥ X (@)
transforms the X-equation into
y' =2z + (N =1y =19" — 22y + My = 0.
This is the eigenvalue version of Hermite’s equation.

Note: Here, from the physics of the problem, it turns out that we need
our solutions to have the property

lim e_zQ/Qy(x) =0

z—+o0

Again, it turns out that the only viable solutions are polynomials.

*Actually, the business of assigning boundary conditions at singular points, especially at
+o00, is not trivial. For a detailed treatment, see either Green’s Functions and Boundary
Value Problems by Ivar Stakgold or Ordinary Differential Equations by E.L. Ince.
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4. Laguerre’s ODE: Quantum Mechanics and The Hydrogen

Atom: Quantum mechanics has shown us that we cannot predict where
a particle (an electron, say) will be at a given moment. Rather, the
best that we can do is to talk about the probability of its being at any
particular location at any given time. Thus, we look at the so-called
wave function of the particle,

¥(z,y, z,t) = probability that the particle is at point (z,y, z) at time ¢.

In the 1920s, Erwin Schrodinger derived (actually, cobbled together!)
the partial differential equation that ¢ must satisfy. Thus, we have
Schrédinger’s equation

hQ
iy = — 5V + Vi,
2m
where

m = mass of particle,
h

h(we say h-bar) = o where h = Planck’s constant,
™

and
V =V(x,y,2) = potential energy of the force field at point (z,y, 2).

We may always choose units so that m = A = 1 in these units. Now,
we would like to study the simplest quantum system, the hydrogen
atom, where our “particle” is the atom’s electron, and the force field
is due solely to the atom’s nucleus, a single proton, located at the ori-
gin. Therefore, we switch to spherical coordinates, and the potential
function is just V = —e—;, where e is the electric charge of a proton
(and, of course, negative the charge of the electron). Again, we choose
units so that e = 1, and we have the simplified Schrédinger’s equation

it = =5V = .

a) Separate out time, that is, let u = T'(¢)v where v is a function
of the space variables. Show that the space part of the equation
becomes

Vzv—l—()\—i—z)vzo,
p

where X is the separation constant.
b) If we write this equation in spherical coordinates, as in Exercise 2,
we get
1 1 .
—(P"Vy)p + —5——(vpsIn
p2 (p P)P p2 squ( ] d))ﬁ‘b

1 2
+ ——5—vpo+ [A+=|v=0.
Psin’g ( p)
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Writing v(p, 0, $) = R(p)©(0)®(¢), show that this equation sepa-
rates into

P’R" 4+ 2pR + (N> +2p— w)R=0

0" +~40=0

®" sin” ¢ 4+ @' sin pcos ¢ + p®sin® ¢ — v = 0.

c¢) Conclude that we must have v = k2, where k = 0,1,2,... .

d) In the ®-equation, change variables via © = cos¢ and show that
the resulting equation is

(1 - 2)y) + (u— %) y=o0.

When k # 0, this is almost Legendre’s equation and is called the
associated Legendre equation of order k, about which we’ll
say more in Exercise 6.

e) Now for the R-equation: As we’ll see in Chapter 9, it turns out
that we must have p=¢(£+1), £=0,1,2,..., and that A < 0. So
we write A = —32, and we have

R+ 2R+ (—ﬁ2+2— th))Rzo.
p p p

Make the change of variable x = 28p, and show that the resulting
equation is

1" z/ 1 i é(ﬂ'i'l) _
R'+ =R + TR - | R=

(where, now, R’ = 42,

f) Next, make the change of dependent variable
R(x) = 2% w(x),

and determine all values of a and b so that the equation becomes
" / ]‘
Tw —|—[(2€—|—1)—|—1—x]w—|—<E—€—1)w=0.

We look at this equation in the following exercise.

5. Laguerre’s ODE, cont.: Laguerre’s equation is the ODE

2y’ + (1 —2)y + Ay =0.
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a) Show that if y is a solution of Laguerre’s equation, then (™ = ¥

b)

 dx™
is a solution of the associated Laguerre’s equation

o+ (14+m—z)u' + (A —m)u=0.
As we'll see, the polynomial solutions of
zy" +(L—2)y +ny=0

are the Laguerre polynomials L,(z), n = 0,1,2,... . Conclude
that the associated Laguerre polynomial

is a polynomial solution of the corresponding associated Laguerre’s
equation.

Note: Similarly, our solutions here must be bounded as z — 07,
and, at the other end, it turns out that we need

lim vz e %/%y(z) = 0.

Tr—r00

Once more, it turns out that the only such solutions are polynomi-
als.

Show that the w-equation in Exercise 4e is, indeed, the associated
Laguerre’s equation.

6. Associated Legendre’s ODE: The three-dimensional wave equation
is, as you might guess,

292 2
U = VU = ¢ (Upg + Uyy + Usz).

Therefore, if we wish to study the vibration of a ball, we should look at
this equation in spherical coordinates. As above, we have

)

1

1
o2 et = (qup)p +

(’LL¢, sin ¢)¢ + mu%.

p?sin ¢

First “separate out” ¢, then p, and show that we have

2
T+ ENT =0, R'+ R +(r—L)R=0,
p p?

. 1
(vgsin @)y + —5—vge +yv =0,
sin” ¢

where v = v(6, ¢) and X\ and v are separation constants.

1
sin ¢
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b) Show that the change of dependent variable w = /2R turns the
R-equation into

1 + 3
w"—l——w’—i—()\—’y 4)sz.
r

r2

What equation is this, essentially?
¢) Now separate v(6, ¢) = ©(0)P(¢), and show that the result is

Q"+ =0, (&sineg) sing+ (ysin?® — 3)® = 0.

d) Similar to what we did in Exercise 2f, use the change of variable
T = cos ¢ to transform the ¢-equation into

=)+ (1= 2 ) =o.

Here, again, is the associated Legendre’s equation: Again, note
that the change to sphericals makes it necessary that we have y
bounded at the poles, that is, at z = +1.

e) Explain why we must have 8 = k2, where k is an integer, so that
we write the equation as

[u—fww+(v——5—)y=o

1— 22
7. Chebyshev Polynomials and ODEs

a) Use Euler’s formula
e = cosf +isinf
to prove De Moivre’s Theorem

cosnf + isinnf = (cos @ + isinfh)".

b) Use De Moivre’s Theorem and the fact that a + bi = ¢ + di if and
only if @ = ¢ and b = d to prove the trig identities

cos20 = 2cos? 0 — 1, sin 260 = 2sinf cos 6,

cos30 = 4cos® @ — 3cosf, sin3f =sinf(4cos’f — 1)
and

cos46 = 8cos?§ — 8cos? O + 1,
sin 46 = sin 6(8 cos® § — 4 cos ).
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In other words, for the polynomials

To(z) =222 — 1, Si(x) =2
Ts(x) = 423 — 3u, So(x) =4 — 1
Ti(z) = 82* — 82 + 1, S3(x) = 82> — 4z,

we have
cosnx =Tp(cosf) and sinnz = (sinfh)S,—_1(cosb).

¢) Use the binomial theorem,

(a+b)"

Z (Z) ankpk,
k=0
to prove that, for n =0, 1,2,. .., there exist polynomials T}, (x) and
Sp(x) such that
cosnf) = Tp(cosd) and sin(n+ 1)0 = Sy, (cosf)sinb.

These are called the Chebyshev polynomials of the first and
second kind, respectively. Further, show that if n is even, then
T,, and S,, are even functions, while if n is odd, then 7, and S,
are odd. (See Exercise 1d, Section 7.6.)

d) Since cosnf = T, (cosf) is a solution of the ODE
y" +n’y =0,

use the substitution z = cos to show that T,,(z) satisfies Cheby-
shev’s equation of the first kind

(1—2?)y" —zy +n’y=0.

e) Although not so obvious, it can be shown that the function f,(6) =
W satisfies the ODE
(sinf)y” + 2(cosb)y’ + n(n + 2)sinfy = 0.
Use the substitution x = cos 8 to show that S, (x) satisfies Cheby-
shev’s equation of the second kind

(1 — 22y — 32y +n(n+2)y=0.

Note: As with Legendre’s equation, we must have y bounded as  — 1~
and z — —17T.
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7.2 Ordinary Points and Power Series Solutions;
Chebyshev, Hermite and Legendre Polynomials

All of the ODEs derived in the previous section have variable coefficients. You
may remember that the method of power series is, in general, used to solve
such equations. So, we look for solutions of the form

o0
y= Z an(z — 20)",
n=0

where = z¢ is the point “about which we expand the series” (and, usually,
an important point, for example, the point where the initial conditions are
given) and the a, are unknown constants to be determined. The resulting
power series is actually the Taylor series of a solution. And we know, from
the theory of ODEs, that if x = x¢ is an ordinary point of the equation, we
can expect to find two linearly independent solutions, while if x = x( is a
singular point, this need not be the case.

Definition 7.1 Given the ODE
Y+ P(x)y’ +Q(x)y =0

we say that x = x¢ is an ordinary point of the equation if P(z) and Q(z)
are analytic at x = xo. Otherwise, we say that x = xy is a singular point.

(Remember that f(z) is analytic at « = xg if the Taylor series of f,
() (g
> L)y,
— nl

converges to f on an interval xg —r < = < zg + r, v > 0. In practice,
polynomials are analytic everywhere, since a polynomial is its own Taylor
series. Also, the functions e”, sinz and cosx are analytic everywhere. One
obvious way for a function not to be analytic at © = zg is if P(z) or Q(x) has
the factor  — x¢ in its denominator.)

Example 1 Hermite’s equation: Hermite’s ODE y” — 22y’ + Ay = 0 has no
singular points.

Example 2 Legendre’s and Chebyshev’s equations: Legendre’s equation can

be written as \
2x
1" !
_ =0
Y 1_22 Y+ 1= a:2y ;
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similarly, we may rewrite Chebyshev’s equations:

1 z /
=0
VoY Ty
and
3z
" /
=0
VorogY Ty

We are interested in solving these equations only for —1 < x < 1. Note that
all three are singular at x = +1, while every z in —1 < # < 1 is an ordinary
point of each.

Example 3 Bessel’s and Laguerre’s equations: We rewrite Bessel’s ODE as

1 z? —a?
y//+§y/+7

2 y=0

and Laguerre’s equation as
1—2 A
y//+ _y/+ —y:O.
x x

Clearly, each is singular at = 0 and nowhere else.

For various reasons, we would like to solve each of these equations at
z = x9 = 0. We may solve the equations from Examples 1 and 2 using
standard power series solutions. Further, from the theory of ODEs, the ra-
dius of convergence of each solution will be r = |z, where x( is the singular
point nearest the origin.

What about using power series for Bessel and Laguerre? Let’s first look at
a simpler example.

Example 4 Solve the Cauchy—Euler equation
22%y" + 3xy’ — 2y = 0.
We let y = 2" and find that our two independent solutions are
y1 =+/]z| and yzzx—12~

Neither of these functions is analytic at @ = 0; therefore, no power series of

the form
o0
5 ot
n=0

will lead to either solution.
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Although occasionally we will find power series solutions at a singular point,
we cannot, in general, expect to do so. Therefore, we need a more general
method to deal with these situations—for this, we wait for the next section.

For now, let’s solve Legendre’s equation, leaving Chebyshev’s and Hermite’s
equations for the exercises.

LEGENDRE’S EQUATION

(1—2%)y" —2xy' + Ay =0, —1<ux<1,ybounded as z — +1.

We let y = 3 a;z° and plug into the ODE. The result is
i=0

205 + (A — 2)ar + Aag + Y _[(i +2)(i + Dairz + (A — % —i)a;]a™ = 0.

i=2
So we have ag, a; arbitrary,
(2 — /\)al — )\CLO
ag = —————,
2
and the recurrence relation is
i(i+1)—A .
Ai42 = 77—~ G4, 1=2,3,....
T2+ 1)

Now, we want solutions that are bounded at x = £1. However, if we look at

. (1) — )
i %2 g SO =A

i—00 A 1—>00 (Z + 2)(1 —+ 1)
we see that if ap # 0, we get an infinite series of even powers of z, which

o0
behaves like the geometric series > 2%'. Similarly, a; # 0 gives us a series

i=0
) .
which behaves like Y 221, Each of these series diverges at * = 41 (and
i=0
is unbounded at z = 1). (This unrigorous treatment can be made precise, of

course.)

So the only way that we can have a bounded solution is if the series termi-
nates, that is, if it is a polynomial. When will this happen?

Suppose A = n(n + 1), where n is a positive integer. Then

nn+1)—n(n+1)

m+t2)n+1) "7 0

Anp42 =

In this case, we’ll have

Qpt2 = Qpyg = ... =0,
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i.e., if n is odd, the series of odd powers will be a polynomial; similarly for n
even and the even powers. In each case, the other half of the series will still
be infinite—the only way to eliminate it will be to choose ap = 0 or a; = 0,
respectively.

Essentially, we have found that the numbers

An =n(n+1), n=0,1,2,...,

are the eigenvalues of the given Legendre boundary-value problem, while the
eigenfunctions are the corresponding polynomial solutions. Since any constant
multiple of an eigenfunction also is an eigenfunction, we define the nt® de-
gree Legendre polynomial P, (x) to be the polynomial solution for which
P,(1)=1.

In order to compute some Legendre polynomials, we remember that, for
each n, we have

(2 —Na1 — Aag _ [2—=n(n+1)]a; —n(n+ 1)ao
2 2

as =

along with the recurrence formula

i(i+1) —nn+1)
Gr2)Gi+1)

Ai4+2 = i:2,3,....

So, we have, for the first few Legendre polynomials:
)\0 =0:

Choose a1 = 0= a3 = a5 = a7y = ... =0. Then,

a2:2a1—0a0=O

=a4=ag=ag=...=0.

So, choosing ay = 1 gives us

)\1 =2
Choose ag = 0 = as = a4 = ag = ... = 0. The recurrence formula
here is
i(i+1)—2
a; = T
PTG+ 1)
so ag = 0, implying that a5 = a7 = ag = ... = 0. Thus,

Pl(ZII) =XT.



Special Functions and Orthogonal Polynomials 289

)\2 = 6:
Choose a1 = a3 = a5 = ... = 0. Letting ag = 1, we have
as = % = —3. The recurrence formula is
i(i+1)—6
Qjpn = ————a;,
)+
so ay = ag = ... = 0. So an eigenfunction is fa(z) = —32% + 1. Dividing

by f2(1) = —2, we have
3 1
P. = g2,
2(2) = 327 3
We may continue computing polynomials in this manner. The next few
turn out to be
1
Ps(x) = 5(53:3 — 3z)
1
Py(z) = g(35334 — 3022 4 3)
1
Ps(x) = g(633:5 — 702° + 152)

(see Exercise 2, below, and Exercise 1 of Section 7.6). We plot Py through P
in Figure 7.1. Notice that if n is even, then P, is even and, if n is odd, then
P, is odd. We prove this in Exercise 1b of Section 7.6.

08 \ r

\ I
0.6~ \ / 4

FIGURE 7.1

MATLAB graphs of the first six Legendre polynomials: (a) Py, P>
and Py and (b) P, P; and Ps. (In each case, solid, dash-dotted and
dashed, respectively.)



290 An Introduction to Partial Differential Equations with MATLAB®

i
/
0.8 /7]
/0
06 ;i
;!
- I
04 N - RS —_
N2 ~ = /I
! A > .7 BN
0.2+ / VRN h 4 \ ror
! ; \ N / \ / !
/ , \ A~ N / !
or \ \ ¥ T
/ N 7N N /
! / N / N \ / ,
7
02t ' \ p ~ N , i
I N . N \ s
I ~ ~ ~ N /
- - ~
—0.4 | / >l // \\// -
Iy -
I
—o6f, ! E
/
i
I
-0.8f7, B
i
1 . . . . . . . . .
-1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8 1

FIGURE 7.1 continued.

One can show (with a lot of work) that the Legendre polynomials them-
selves satisfy a recurrence relation. In fact, as we’ll see, Hermite’s equation,
Laguerre’s equation and both Chebyshev’s equations have polynomial eigen-
functions and, in each case, these polynomials satisfy a recurrence relation.

Each such set of polynomials is called a set of orthogonal polynomials,
for reasons given in Chapter 8, and referred to briefly in Section 7.6. There,
we’ll list the recurrence formulas and other properties of the orthogonal poly-
nomials.

In the exercises, we derive the Chebyshev and the Hermite polynomials.

Exercises 7.2

1. For each equation, classify each point on the z-axis as an ordinary point
or a singular point.

a) (r+2)y" =y +y=0
b) z(x +1)y" +3zy' + (x+1)y=0
c) (2% +1)y" + 22y + 5y =0

2. Derive the Legendre polynomials Ps, Py and Ps.

3. Proceed as we did in the case of Legendre’s equation to find the eigen-
values and eigenfunctions for each of the following:

a) Chebyshev’s equation of the first kind

(1 -2y’ —zy + y=0, —1<z<1,ybounded as x — +1.
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Calculate the first four Chebyshev polynomials of the first
kind, Ty, T1,T> and T3, where, in each case, we normalize the
polynomial so that 7,,(1) = 1.

b) Chebyshev’s equation of the second kind
(1 -2y =32y +\y=0, —1<z<1,ybounded as z — +1.
Calculate the first four Chebyshev polynomials of the sec-

ond kind. So, calculate Sy, S1, .52 and S3, where we normalize by
choosing S, (1) =n + 1.
¢) Hermite’s equation

g —2xy + Xy =0, —oco<z<o0,e ¥ y—0asz— +oo.

That is, calculate the first four Hermite polynomials, Hy, H1, Ho
and Hs. In each case, choose the polynomial so that its leading
term, that is, the term with the highest power, is of the form 2™x™.

4. MATLAB

a) Referring to Exercise 3 of Section 7.1, plot the graphs of the func-
tions )
Yn = €” /2 H, (), n=0,1,2,3,

where H, is the n*"-degree Hermite polynomial from the previous
exercise.

b) Use BVP4C to solve the problem
y' + (A —2%)y =0, —L<z<IL,
y(=L) =y(L) =0,

for various large values of L, and compare the first four eigenfunc-
tions with the functions in part (a).

5. The associated Legendre equation, again, is

]€2
2y, 17/ _
y bounded as x — +1, k a positive integer.

We may solve this as we solved Legendre’s equation, but there is a slicker
way of dealing with it.

a) If y satisfies Legendre’s equation,
(1—a%)y" —2ay + Ay =0,

differentiate this equation k times to show that y*) satisfies the
equation

(1 —22)y**+2 — 2k + Day™ ) + X\ —k(k + 1)y = 0.
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b) Next, make the change of dependent variable
y(x) = (1 - 2*)"?2(x)

in the associated Legendre equation.

c¢) Conclude that if f, () is a Legendre function, that is, a solution
of Legendre’s equation

(1—2?)y" — 22y + vy =0,

then
gh(@) = (1= )" £ ()

is a solution of the associated Legendre equation. In particular,
show that the associated Legendre function of degree n and
order k

Py(z) = (1 - 2*)"2 P (x)

is a solution of

2
(1—22)y" — 22y’ + |n(n+1) —

=2 y = 0.

(It turns out that, as with Legendre’s equation, the associated Leg-
endre’s equation has bounded solutions if and only if v = n(n+1),
n =0,1,2,.... These bounded solutions are the associated Leg-
endre functions.)

7.3 The Method of Frobenius; Laguerre Polynomials

We saw that both Laguerre’s equation and Bessel’s equation are singular at
x = 0. Actually, there are two types of singular points, one “good” and the
other “not so good.”

Definition 7.2 Suppose the ODFE
y' + P(z)y’ + Q(z)y =0
has a singular point at x = xq. Let’s rewrite the equation in the form
(& —20)*y" + (¢ — zo)p(2)y’ + q(z)y = 0.

If p and q are analytic at x = xy, we say that xy is a regular singular point
of the ODE; otherwise, it is an irregular singular point.
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Example 1 The equation

1 , L s
@t+1)2@-2))  (@-227"

y// _|_

is singular at # = —1 and = 2. If we multiply by (z — 2)2, the equation

becomes
z—2 ,

— =y —y=0.
@+12? Y
Since p(z) = m and g(xz) = —1 are analytic at « = 2, this point is a
reqular singular point.
If, instead, we multiply the ODE by (z + 1)2, we get

(:Z? _ 2)2y// +

-2
12// 1CC /o 12 =0.
@+ D% + @+ )7y — (@ +1)7y=0

_ 2 . . _ _ —2 -
Then, g(x) = (z+1)* is analytic at # = —1, but p(z) = 277 is not. Therefore,
x = —1 is an irregular singular point.

Example 2 Bessel’s equation
2y +ay + (27 — )y =0
and Laguerre’s equation

22y +2(1 —2)y + 2y =0

both have a regular singular point at z = 0. Now, it turns out that if an ODE
has a regular singular point at © = x(, then it always possesses one solution
of the form

y=(x—xo)" Z an(z — xo)"

n=0
(and, sometimes, two). The procedure for finding such solutions is called the
method of Frobenius. Let’s begin with an example.

Example 3 Try to find Frobenius series solutions for
22%y" +xy — (x + 1)y =0

about the regular singular point x = 0. We let

oo oo
y=a" E apz” = E anx™tr
n=0 n=0

and we proceed as we did with power series solutions. So,

00
§ TL+T' n+r—1
n=0
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and

y' = Z(n +7)(n+r—1az" 2

n=0
Substituting into the ODE gives us

2(n+7r)(n+r—1a,z"t" + Z(n +r)apz™t"

n=0 n=0
o0 o0

— E a4 E anz™ T =0
n=0 n=0

or, after changing the index in the third series and pulling out the first term
of each of the other three series,

[2r(r—1)4+r—1ag

+ Z{[2(n—|—r)(n+7‘— 1)+ (n+r)—1)a, —ap—1}2" =0.

n=1

Now we can determine the values of r for which a solution is possible. The
first term must be zero and, since we don’t want ag = 0 (else we’ll have the 0
solution!), r must satisfy the indicial equation

2r(r—1)4+r—1=0.

Therefore, the only viable values of r are

S
T 2,

We take each in turn.

Case 1: r =1
In this case, the recurrence formula
R2n+r)(n+r—1)+(n+7r)—1a, —an—1=0

becomes
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(note the similarity between the denominator and the indicial equation).
Therefore, the first few coefficients are

1 1 1 1 1

a; = ga,o, az = ﬂal = 7—000, a3 = ﬁaz = @ao, e

and, letting ag = 1, the corresponding solution is

=z 1+1x+ix2+ix3+
y= 5770 1890 :

Case 2: r = —%

Here, the recurrence formula becomes

D)) e

or )
n = T s av n—1» - 172)
“ n(2n — 3)a ! "
So the first few coefficients are
1 1 1 1
a] = —ag, Gy = =] = ——dg, G3 = —Ay = ——AagQ, . . .
1 0, G2 = 501 50, 03 = 5a2 1890

and the corresponding Frobenius solution is

(See Exercise 3.)

So, in this case, we were fortunate to be able to find two linearly independent
solutions. It’s natural to ask what could have “gone wrong,” that is, under
what circumstances might we not be able to find a second solution this way?
Obviously, if the indicial equation has only one (double) root, we’re stuck, at
least for now. Are there any other such situations?

Take a look at the second recurrence formula in the previous example—
certainly it never gave us any trouble for n = 1,2,... . However, it’s easy
enough to imagine that there may be values of r for which the corresponding
denominator does become zero for a positive integer n. Again, we look at some
examples; however, let us mention that, even if only one Frobenius solution
to a problem exists, it is always possible to derive from this solution a second,
linearly independent solution.

Example 4 Let’s look for Frobenius solutions of

xy" +2y —y=0.
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o0
Plugging in y = Y a,z""", we arrive at
n=0

r(r+1)ag+ Z[(n +7r)(n+r+1a, —ap—1]z" = 0.

n=1

The indicial equation 7(r + 1) = 0 has roots » = 0, —1. Also, the recurrence

formula is )

n+r)(n+r+1

ap = >an,1, n=12,....

For r» = 0, we have

1
n— 7~ dn-1; :1727"'7
“ n(n+1) 4n—1 "
which leads to a solution (see Exercise 2). As for r = —1, the recurrence
formula becomes 1
ap = manfl

and, for n =1, we get a1 = %ao, which is undefined.

Now, what caused this to happen, and is there any way around it? As
we’ll see in Exercise 9, this occurs whenever the two indicial roots differ by
an integer! As for getting around it, we usually can’t. Here, though, let’s go
back and rewrite the troublesome recurrence formula in its original form:

(n— Dna, = ap-1.

Again, n = 1 gives us Oa; = ag. Of course, we could choose agp = 0 but,
in that case, we’ll wind up with the same solution we got from r = 0 (try
it!). However, as the next example shows, there are cases where the right side
already is zero, and the difficulty is circumvented.

Example 5 Find all Frobenius solutions of
22y — 2%y + (2® — 2)y = 0.
Proceeding as usual, we arrive at the equation
(r+1)(r—2)ag+ [(r —1)(r +2)a; — raglz

+ Z[((n +rn+r—1)—2)a, — (n+r—1)ap_1 + an—2Jz™ = 0.

n=2
The indicial roots are r = —1,2. For r = 2, we have no problems (see
Exercise 3). As for r = —1, we get

—2a1+ap =0
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and
nn—3)a, =(n—2)ap—1 — an_2, n=23,....

So we have a1 = ag and, from n = 2, a; = $ag. What happens when n = 3?

We get

0(13 = a2 — aq

1 1
Tl %

that is, the recurrence formula is true for n = 3 regardless of the choice of as.
So ag is arbitrary! Therefore, we may choose az = 0 (although we don’t have
t0).

The question still remains as to how to find a second linearly independent
solution in those cases where there is only one Frobenius solution. It turns
out that, in all cases, there is a so-called logarithmic solution. If y; is the
Frobenius solution then, for the case r1 = 79, the second solution takes the
form

oo
yo=y1lnx + ™ Z cpx”

n=0

while, for the case 11 — 7o = N, an integer, we have
o0
yo = y1Inz + 2" Z dpz".
n=0

There are various ways to derive these solutions—for example, via reduction
of order—and they can be found in most ODE texts. We choose a different
tact when solving Bessel’s equation in Section 7.5, although the resulting y2
will be equivalent to a linear combination of the y; and y, above.

Let’s finish this section with a derivation of the Laguerre polynomials.

Example 6 Laguerre’s equation and the Laguerre polynomials: We
wish to find all polynomial solutions of

2y’ + (1 —2)y + Ay =0, 0<x < oo,
i.e., we wish to find the eigenvalues A\ which have polynomial eigenfunctions.
We let
o0
y=a" Z anz”,
n=0
and the ODE implies that we must have

r2ag + Z[(n + 7+ 121 + (N —n—r)a,)z" = 0.

n=0
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Then the indicial equation 2 = 0 has double root 7 = 0. There will be one
Frobenius solution and a logarithmic solution. The latter, of course, cannot
be a polynomial.
So with r = 0, the Frobenius solution has the recurrence formula
n—A

ndl = ————=0np, =0,1,2,... .
An+t1 (n+1)2a n

Thus, we will have a polynomial solution if and only if A is a nonnegative
integer. Let’s compute the first few of these Laguerre polynomials. Setting
ap = 1, we have

A=0: an+1:ﬁan,n:0,l,27...
=a1=0=ay=a3=... and Lo(z)=1.

A=1: Uny1 = (7’;:11)2an,n: 0,1,2,...
=a=-1, aa=0=ag3=as=... and Li(z)=1-—=z.

A =2 anﬂ:ﬁan,nzo,l,l...
= a1 = —2, agz—lalzl, a3=0=ag4=0a5=0...

4 2

2

1
and Lo(x) :1—2x—|—§x .

More generally, if A = N, we find Ly(z) from the recurrence formula

n—N
Ap41 = m%
_(n-N)(n—1-N)
 (n+1)2 n? fn—1

_(m-N)(n-1-N) (1-N)
(n+1)2 n? 12

Ultimately (see Exercise 5), we have

(—1)kn!
L) = 2 R =

k=0

n

as the polynomial solution of the equation

zy” + (1 —2)y +ny=0.
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Exercises 7.3
1. For each ODE;, classify all singular points as either regular or irregular.
a) 22z — 1)y —y +2y=0
b) 2%y +xy —y =0
) ¥ +y + Graymmy =0
2. Finish finding the Frobenius solution for Example 4, and show that it

can be written as
o0

1 n
v= Zn!(n—i—l)!x '

n=0
3. Write the solutions from Example 3 in summation notation.

4. Use the method of Frobenius to show that the given ODE has the given
general solution:

a) zy” +2y' + 2y =0,y = L(c1cosz + czsinx)
b) 2y" —y' + 423y = 0,y = 1 cos(x?) + co sin(a?)

5. Show that the formula given in Example 5 for the Laguerre polynomial
L, (x) is correct.

6. Each of the following ODEs has an indicial equation with a double root
r =r; = re. Use the formula

o0
Y2 = y1lnz + 2" Z ay, (r1)z"
n=0

to construct a second solution. Is it clear that your two solutions are
linearly independent?

a) (22 —23)y" — 32y +4y =0
b) (22 +23)y” — (x +2%)y +y =0
7. Use the method of Frobenius to solve Bessel’s equation

22y +ay + (2 —a®)y=0

for the given value of a:

=
© o Q

Il
e - N
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8. a) Use the substitution v = y/x y to turn Bessel’s equation into

1 — 40?2
"

b) Use part (a) to show that the solution for Bessel’s equation with
o= % also can be written as

1 .
y=—=(c1cosz + cysinzx).
x

9. Given the ODE
?y" + ap(x)y’ + q(z)y =0,

where p and g are polynomials, show that if the Frobenius indicial equa-
tion is f(r) = 0, then the recurrence formula will be

f(n+r)a, = (term(s) involving ay, with k& < n).

Suppose now that the roots of the indicial equation differ by a integer,
that is, suppose that the roots are r = r1 and r = r; + N, where N is
a natural number. Show that, in the recurrence formula corresponding
to r = ry, we have

0- aN = ... .

7.4 Interlude: The Gamma Function

As you may have seen in Exercise 6 of the previous section, when solving
Bessel’s equations we run into expressions that look very much like factori-
als, except that the individual terms are not integers. The extension of the
factorial to these kinds of expressions is called the gamma function (only
because its symbol is the letter gamma)

F(x):/ t" teTtdL.
0

The integral is improper, of course—possibly at both ends, depending on the
value of . It’s not hard to show that the right end causes no problems, as
et — 0 much more rapidly than any power of t. At the left end, it turns out
that T'(z) behaves like
/ t*=1 dt,
0

which converges for z > 0.
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Now, what about its relation to the factorial? First, we have

I'(1) :/ e tdt =1.
0

Next, let’s relate I'(x + 1) and T'(x), using our old standby, integration by
parts:

I'(z+1)= / tYe~t dt
0
= —tre_t‘go —|—a:/ t*le=t dt
0
= zl(x)

(see Exercise 1). So, for = an integer, we have

r2)=1r(1) =1
r(3)=2I(2)=2-1
[(4)=4I(3)=3-2-1,

and it should be clear (and we prove it in Exercise 1) that
I'n+1)=n!
More generally, it’s easy to see that

MNa+n)=(a+n—1I'(a+n—1)

=(a+n—-1(a+n—-2)--al'(a).

(Again, see Exercise 1.) We may also show that

()

in terms of which we may then find I' (%), where n is an odd integer.

It turns out that the domain —1 < x < oo is not good enough and that we
need to extend I'(z) to the left of —1. Of course, we would like the extension
to satisfy the property I'(z + 1) = 2T'(z), so we actually use this equation to
define the extension! Since I'(x 4+ 1) has domain —2 < z < 0o, we define

I'(z+1)

Mz)=—""2  —2<z<-1.
(x) - z

Now, we've defined I'(z) on —2 < 2 < —1, so we do it again!

r 1
F(x)z%, —3<r< -2
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Of course, we continue this process indefinitely. (Note the use of < and not
<. This is due to the fact that there’s no way to define I'(0), hence no way
to extend the definition as above to the negative integers.)’

See Figure 7.2 for the graph of the gamma function.

4 4

6 B

FIGURE 7.2
MATLAB graph of the gamma function, y =T'(z).

Another function which shows up often is
1/J(x)—iln1“(x—|—1) x>0
Cdx ’ '
What does it look like? Well,

F’(a:)z/o t*le7'Int dt (why?),

It turns out that lim —L+ =0 for n =0, —1,—2,.... Therefore, we often define —+~ = 0
z—n (@) T'(n)

for these values. Then it can be shown that the function is everywhere continuous!

1
I(x)
See Exercise 4.
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where we have interchanged the order of integration and differentiates (it turns
out that we can, here). Then

I+ 1)
Y(x) = m
_al(x) + ()
N al'(x)
@) 1
- T'(2) + x
=1+
If x = n, a positive integer, then
1
b =w(n—1)+
1 1
:w(n_2)+ﬁ+n—1

E

=90+
k=1
We write ¢(n) = Y 1; as for the other term,

P(0) =T"(1) = /000 e tInt dt.

Although it’s not obvious, this integral converges, to a famous irrational num-
ber

—y=—57721... .

The positive number 7 is known as Euler’s? constant. (It can be shown, in
fact, that

. 1 1
y=lm (1+-+---4+——1Inn|.
n—00 2 n
So we may write

Y(n) = =7+ é(n).

fSometimes referred to as the Euler—Mascheroni constant.
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Exercises 7.4
1. Use mathematical induction to prove that

a

P(n+1)=nlforn=1,2,....
b) I

(a+n)=(a+n—-1)a+n—-2)---al'(a) forn=1,2,....

b) Compute I' (%) ,T (g) and I’ (—%)

)
)
2. a) Use the substitution ¢ = u? to show that I' (1) = /7.
)
¢) Generalize part (a) and show that

/ e du=-T (—) .
0 n \n
3. Use mathematical induction to prove that

a) ¥(n) =¢(0)+ i T, forn=1,2,....
k=1

b) ¥(x +n)=¢(z)+ f: w—}rk,fornzl,l... .
k=1

4. MATLAB: Plot the function f(z) = 5.

5. The beta function is defined as
1
B(z,y) = / t" 1 —t)v L, x>0,y > 0.
0

We prove that @)
T'(x)['(y
B(z,y) = Tty

a) Proceed as in Exercise 2a to write

[(z)T(y) = 4/ e 2ol du/ e L gy,

0 0

b) Combine this into a double integral, change to polar coordinates
and then separate the resulting double integral into the product of
two integrals.

¢) Make the substitution t = sin® § in the definition of B(x,y).

d) Let x =y to obtain the Legendre duplication formula

22r—1
N3
e) MATLAB: Plot the graph of z = B(z,y).

I(z)T <x + %) = T'(2x).
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7.5 Bessel Functions
Now let’s bring the method of Frobenius to bear on Bessel’s equation
22y +xy + (2 — a®)y = 0.

o0
Again, we let y = 2" )" apz™, and the ODE implies that we must have

n=0

(r? —a?)ag + [(r +1)® — o?|arz

+ 3 {l(n+7)? = a?ay + an_2}a™" =0.

n=2

So the indicial equation r? — a? = 0 has two roots r = +« (so long as a # 0).
For r = a > 0, we have

[(@+1)*—a?lag =0=a; =0
and

[(n—i—oz)2 —az]an—kan_z =0, n=23,...
or

n(n + 2a)a, = —ap—a, n=23,....

So all of the odd-numbered coefficients are zero:

a1:a3:a5:...:0.
As for the evens, we have
1
n — T — an—2, :2,4,6,...
“ n(n + 2«) tn-2 "
or, letting n = 2k,
asg(a) = —;a = —;a
T ok (2k +20) PP T T2k (k + ) R
_ 1 1
T 2K (2k + 20) (2k — 2)(2k — 2 + 2a)
1
T2k (k- D2kt a)(k—1+a)
—_1)F
) (-1 .

%12+ a)(k —1+a) (1 +a)
(—1)*T(1 + )
2T (k+at1)

k=1,2,....
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(See Exercise 3.) So we have the Frobenius solution

e DM +a)
1= dox ];0 2%KEID(k +a+ 1)

For various reasons, it’s traditional to choose

1

= %l (at+ 1)

giving us the solution

T (iC) _ ﬁ i (_1)k $2k
¢ 20 L PRRID(k + o + 1)

e (—1)* \ 2k+ta
:kzzoklr( +a+1) (5) '

This solution is called the Bessel function of the first kind of order «.
It’s a valid solution of Bessel’s equation of order « for any « > 0. If n is an
integer (n > 0), we have

Q

€T ) 2k+n

(=1
Tn(@) = k; k(% +n)! (5

The graphs of Jy, J1 and Jo can be seen in Figure 7.3.

FIGURE 7.3
MATLAB graphs of the Bessel functions of the first kind, Jy (solid),
J1 (dash-dotted) and J» (dashed).
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For r = —a, we have

[(—a+1)?—a?la; =0

and

[(n—a)* —a*lay = —an—2, n=2,3,...
or

(1-2a)a; =0
and

n(n —2a)a, = —an_2, n=23,....

We suspect there may be a problem if 2« is an integer (that is, if r1 — ro =
a — (—a) is an integer!). So, for now, suppose this is not the case. Then,
proceeding as above, we wind up with

a1:a3:a5:...:0
and

_ (=pfra-o
TO%E(k—at1) "

a2k

and, choosing ag = m, we have the solution

B © (—1)k I 2k—a
@) =Y gy (3)

which is, of course, the Bessel function of the first kind of order —a.
Note that J, is bounded at x = 0, while J_, is not. Therefore, they are
linearly independent and, at least for = > 0, the general solution of Bessel’s
equation is

y = c1Ja(z) + codJ_a(x).

What happens when « is an integer or a half-integer? In Exercise 7 of
Section 7.3 we saw that, for @ = % and o = %, there was a second Frobenius
solution. In general, suppose a = %, m = 0,1,2,... . Then, for r =

2m2+1, the recurrence formulas become

—a = —
—2ma; =0

and
n(n —2m — 1)a, = —anp_2, n=223.4,....
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In the case a = %, that is, m = 0, we have a; arbitrary, and no problems
thereafter. So we may take a; = 0, and J_;5(z) is just given by the J_,(x)
formula, above. Similarly, for a = %, %, %, ..., that is, for m =1,2,3,..., we
have a; = a3 = a5 = ... = 0. Then, the left side of the recurrence formula is
zero only when n is odd, so there is no problem here, either, and J_,(z) is,
again, as above.

Now, when « = m =1,2,3,..., the formulas become

(1-2m)ay =0=a1 =0

and
n(n —2m)a, = —an—2, n=23,....
Soa; = a3 = a5 = ... = 0. However, if ag # 0, then all of the even
as,0ay4, . ..,02,—2 are nonzero, while, for n = 2m, we get the contradiction
0-agm = —agm—2.

Therefore, we will not have a second Frobenius solution. (As in Example 4 of
the previous section, we could choose ag = as = ... = ag;y,—s = 0, in which
case agn, is arbitrary and we can start from there. But it turns out that we
get the solution (—1)"J,,(z). See Exercise 3.)

So we must manufacture a second linearly independent solution. There are
various ways to do this but, for Bessel’s equations, the standard approach is
as follows. First, when « is not an integer, we define the function

(cosma)Jo(x) — J_a(a:).

sin T

Yo(z) =

This function is (a) well defined for all nonintegral o and (b) a solution of
Bessel’s equation of order o (why?). Further, (¢) J, and Y, are linearly
independent (again, see Exercise 3). Y, () is called the Bessel function of
the second kind of order «, or the Weber function of order a.

Next, we extend the idea to a =n = 0,1,2,... by looking at the above as
a function of a. As a = n, Y, (2) —

cosnmdy(z) — J_p(2) .

sinnm
Here, J_,(x) is interpreted to be the second Frobenius solution for oo = n.
We mentioned above that J_,(z) = (—1)"J,(x). Therefore,

cosnmp(z) — Jon(z) _ (=1)"Jn(z) = (=1)"Jn(z) _ 0

sinnm sinnm 0’

S0 we may treat « as a variable and use L’Ho6pital’s rule! Therefore, we define

Y, (z) = Ol(lg}1 Y, (z)
1 9 27 o (x)
=1 —J.(z) — (z) — Qa2
— lim an (z) — mtan T, () p—
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so, realizing that this all can be done rigorously, we write

Volo) = 1 | gmdale) = (41" 5 alo)|

™

For a = 0, it turns out that we get _
) =23 iy g -] (5)°
o Nk 2
:g lJo(x) (’Y+1n§) _kz_o( }l)f!;;(k) (2) ’f]

(See Exercise 12.)
More generally, it can be shown that Y, (z) is of the form

Jn(x)(Alnx—i—B)—i—x*”Zakxk, n=1,2,3,...,
k=0

where the constants A and ag are nonzero. Hence, Y,,(z), n = 0,1,2,..., is
unbounded as x — 0T and, in general, J,, and Y,, are linearly independent.
We plot Yy, Y7 and Ys in Figure 7.4.

FIGURE 7.4
MATLAB graphs of the Bessel functions of the second kind, Y,
(solid), Y; (dash-dotted) and Y> (dashed).

Bessel functions exhibit a number of important properties, some of which
we explore in the exercises. One that we’ll need in order to solve Bessel’s



310 An Introduction to Partial Differential Equations with MATLAB®

eigenvalue problem below is the fact that each function J,(x), o > 0, has
infinitely many positive roots. Although we don’t prove it here,} we can see
why it might be true by looking at what we did in Exercise 8 of Section 7.3.
There we showed that the substitution u = \/z y turns Bessel’s equation into

1 —4a?
"

For large values of x, this equation is “close to” the equation
v’ +u =0,
which, of course, leads to the solution given in Exercise 8b of Section 7.3
namely,
1
= —=(cycosx + casinx).
Y \/E( 1 2Sin )
This solution has infinitely many zeros z1,2,... — oo (why?), and so it’s

not hard to believe that the same is true of the Bessel functions. Further, it
turns out that z,4+1 — z, = ™ as n — oc.

BESSEL’S EIGENVALUE PROBLEM

Now, what about Bessel’s eigenvalue problem from Exercise 1b in Section 7.17
Again, it is the R-equation arising from the application of separation of vari-
ables to the wave (and heat) equation in polar coordinates. Generally, then,
we are asked to find the eigenvalues and eigenfunctions of the problem

22y +zy + (A2 —n?)y =0, 0<z<L,

y bounded as x — 07, y(L) =0,

where n is a nonnegative integer. We proceed as usual:

Case 1: A\ =0

x2y// + xy’ _ n2y =0

is a Cauchy—Euler equation. If n = 0, we have general solution
y=c1+clnzx,

while for n > 0 we have

y=crx" + cox™ ™.

In either case, the boundary condition gives ¢; = co = 0 (why?), and A = 0 is
not an eigenvalue.

§See, e.g., Georgi Tolstov’s excellent book Fourier Series.
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Case 2: A < 0,\ = —k?
This case is treated in Exercise 9, where we see that there are no negative
eigenvalues.

Case 3: A > 0,\ = k?
Here, of course, we have

x2y// + xy' + (k2x2 _ n2)y =0.

Proceeding as in Exercise 1d of Section 7.1, we see that the general solution
is

y = c1dp(kz) + oYy (kx).

As Y, is unbounded as x — 0", we must have c; = 0. Then, the right end
boundary condition gives us ¢; = 0 unless k is such that

Jn(KL) = 0.

As mentioned above, the Bessel function .J,, has an infinite sequence of pos-
itive zeros, x,1,Tn,2,... = 00, so we have an infinite sequence of eigenvalues

knﬂn:xr};m; m:172737"'7

with corresponding eigenfunctions

Yo =Jn(x’z’”x), m=123,... .

ZEROS OF J,(z); STURM COMPARISON
THEOREM, REVISITED

In Chapter 8, we’ll need to know the zeros of the Bessel functions J, (),
n=0,1,2,.... We list the first 20 positive zeros of Jy, J; and J in Table 7.1.9
We note here that the table bears out the results of the Sturm Comparison
Theorem, mentioned in Exercise 20, Section 1.7. In this setting, the theorem
implies that if oy < g, then between any two zeros of J,, there lies a zero
of J,,. Notice, too, that the difference between zeros seems to be tending
toward approximately 3.14, as expected.

Exercises 7.5
1. Write down the general solution of each equation, on 0 < z < co.
a) 22y +xy’ + (22 —5)y=0
b) 2%y + 2y + (22 =9y =0
c) zy' +y +zy=0

9TFrom the Handbook of Mathematical Functions by Abramowitz and Stegun.
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Jo Ji Jo
2.40483  3.83171  5.13562

—_

)
2) 5.52008 7.01559  8.41724
3) 8.65373 10.17347 11.61984
4) 11.79153 13.32369 14.79595
5) 14.93092 16.47063 17.95982
6) 18.07106 19.61586 21.11700
7) 21.21164 22.76008 24.27011
8) 24.35247 25.90367 27.42057
9) 27.49348 29.04683 30.56920
10) 30.63461 32.18968 33.71652
11) 33.77852 35.33231 36.86286
12) 36.91710 38.47477 40.00845
13) 40.05843 41.61709 43.15345
14) 43.19979 44.75932 46.29800
15) 46.34119 47.90146 49.44216
16) 49.48261 51.04354 52.58602
17) 52.62405 54.18555 55.72963
18) 55.76551 57.32753 58.87302
19) 58.90698 60.46946 62.01622
20) 62.04847 63.61136 65.15927

TABLE 7.1
The first 20 positive zeros of Jy,J1 and J.

2. Verify the calculations in deriving agy () for the first solution of Bessel’s
equation.

3. Show that J_,(z) = (—1)"J,(z) (where J_,(x) is constructed by choos-
ingagzazz...:agn_gz()).

4. Establish the following properties of Bessel functions.

a) Jo(0) =1
b) Jo(0) =0 for o > 0
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¢) Jo(x) = =Ji(z)

d) 4o ()] = 2o(x)

dzx

b) Show that [z~ J, ()] = —2~%Jat1(2).

)
)
5. a) Show that £ [2%J,(z)] = 2% Ja_1 ().
)
¢) Use the results of parts (a) and (b) to show that

T(&) = e (@) ~ Jaa(a)].

d) Use the results of parts (a) and (b) to show that
2a
Jat1(z) = 7Ja(a:) — Jo—1(z).

e) Express Ja(z) and Js3(z) in terms of Jo(z) and Jy(z).

6. Show that the functions Y, (z) also satisfy the relations in the previous
exercise.

7. a) Use Rolle’s Theorem to show that if f(x) has infinitely many zeros
on 0 < x < oo, then so does f(x).

b) Solve the Bessel eigenvalue problem
22y 4+ a2y + M2 —n?)y =0, 0<z<L,
y bounded as x — 01, y/(L) = 0.

8. Hankel Functions or Bessel Functions of the Third Kind: The
Hankel functions of order «, of the first and second kinds, are defined
by, respectively,

V(x) = Jo(z) +iYa(z) and
HP (z) = Jo(x) — iYa(z),

where ¢ is the imaginary number satisfying 12 = —1. Show that each of
these functions satisfies Bessel’s equation of order .

9. Modified Bessel Functions: The ODE
22y +ay — (2 + Py =0
is called the modified Bessel’s equation of order a.

a) Use the method of Frobenius to show that

m (2)2k+a
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d)

¢)
)

is a solution for o« > 0 and that

e T\ 2k—o
Lo =3 e (3)

is a solution for a > 0, a not an integer. Each of these is a mod-
ified Bessel function of the first kind of order a or —a,

respectively.

Show that, if & > 0 is not an integer, the function
7 l_a(2) — Ia(2)

2 sin o

K,(z) =

also is a solution. This is the modified Bessel function of the
second kind of order a. We may define K,,(z), n =0,1,2,...,
as we defined Y,,(z), by taking 1131 K, (x).

Verify that I,(xz) > 0 for all z, for any a > 0. Also, show that
1p(0) =1 and 1,(0) = 0 for a > 0.

It turns out that the functions K,(z), n = 0,1,2,..., are un-
bounded as x — 0F. Use this, and the results of part (c), to
show that, for each k =1,2,3, ..., the problem

22y + xy — (K*2? +n?)y =0,

y bounded as # — 01, y(L) = 0,
has only the trivial solution.
Show formally that I, (iz) = i®J,(z).
Use part (e) to show that
Ip(z) = I(),

then do the same using the series in part (a). (One also can show
that K{(z) = Ki(z).)

We provide the graphs of Iy, I;,I> and Ky, K1, K5 in Figures 7.5 and
7.6, respectively.

10. Bessel’s equation in disguise: There are many ODEs which can be
turned into Bessel’s equation via an appropriate change of variables.
Actually, let’s go the other way—Ilet’s start with Bessel’s equation and
try to generalize it.

a)

Let « = at®, for constants a and b, to turn Bessel’s equation into
t2y// + ty/ + (a2b2t2b _ bQOZQ)y — O,

where 3’ = %.
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FIGURE 7.5

MATLAB graphs of Iy (solid), I; (dash-dotted) and I
(dashed), modified Bessel functions of the first kind.

FIGURE 7.6

MATLAB graphs of Ky (solid), K; (dash-dotted) and K,
(dashed), modified Bessel functions of the second kind.

b) Next, change dependent variables via z(t) = t“y(t), for ¢ constant,
to get

122" (1 = 20)t2" + (a*b*t% + 2 — b?a?)y = 0.

(Compare with Exercise 8a, Section 7.3.)
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¢) Show that the general solution of this last equation is
2 = t*[c1Ju(at®) + caVo(at?)].
d) Use these results to find the general solution of Airy’s equation,
Yy + 2y =0.
11. From ODEs, you may remember Ricatti’s equation,
/ 2 m
y +by” = ca™.

a) If m = —2, show that the substitution v(z) = zy(z) turns Ricatti’s
equation into a separable equation.
b) More generally, show that the substitution

1
Y= EU/’ where u = u(z),

transforms Ricatti’s equation into

u” — bex™u = 0.

¢) Use the above, and Exercise 9, to solve the Ricatti equation

12. Derive the expression given for Yy (z).

13. Integral form for Bessel functions: It turns out that

1 T ,

Jo(z) = — / gilweost—nd) gg  p=0,1,2,... .
2min J_

We do so only for the case n = 0, as follows:

a) Use the Maclaurin series for e to expand e**<**? in order to show

that
s

/ e eost g — Z (Z:"L)! / cos™ 0 df.

- m=0 -

(You may assume that we may integrate term-by-term.)
b) Use the binomial theorem and Euler’s formula to show that

cos™ 6 df = ’

/’T 0 if m is odd,
— (%) /2%, if m = 2k is even.

(Remember that (}) is just “n-choose k,” (}) = ﬁlk),)
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¢) Conclude that Jo(z) = 5= [T e <s0 dp.
d) If f is a real function with |f(6)] <1 on —7 < 0 < 7, explain why

1 ™
1< — <1
1<) s <

(One can make a similar statement for complex functions and, thus,
conclude that |J,(z)| <1 for any z, for any n =0,1,2,....)

7.6 Recap: A List of Properties of Bessel Functions
and Orthogonal Polynomials

In this final section, we list a number of the important properties of the
functions we have dealt with in this chapter. We prove some of these properties
in the exercises; others were proven earlier, and some we state without proof.
The various Fourier series are listed here for convenience, but are dealt with
in the following chapter.

BESSEL FUNCTIONS

OF THE FIRST KIND

Jo(z),a >0, and J_,(x), ¢ > 0 and « not an integer.

OF THE SECOND KIND (Weber functions)

cosma - Jo(z) — J_o(x)

Yo(z) = , o >0 and a not an integer,

sin T

Yo(z) = 0%1311 Y, (z),n an integer.

OF THE THIRD KIND (Hankel functions)

Hél)(x) = Jo(z) +1iYa(2),
H? (2) = Jo(z) — i¥s(x).

All are solutions of the ODE

2y’ +ay + (2® —aP)y =0

or
2

(zy") + y =0, 0<z<o0.
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Recurrence relation:
«
far1(@) = S fale) = far(@).

Orthogonality relation:

1 0, if i+ 7,
/ xdp(kix)Jp(kjz)de = < 1 7
0 5Jgﬂ(ki), if i = j
for each n =0,1,2,.... (Here, the numbers k; are the roots
of Jp.)

Series representation:

R e I
Ja@)—,;m(a) ,  az0

Fourier—Bessel series:

f(z) ~ chJa(kna:) (« fixed), 0<z<1,
n=1

9 1
NS /0 xf(x)Jo (kpx)de

2
Ja-i—l

and k,, = n'® positive root of J,.

where ¢,, =

LEGENDRE POLYNOMIALS P,(z), n=0,1,2,...

Solutions of ODE

(1—2?)y" — 22y +n(n+ 1)y =0

or

[(1—2%)y]) +nn+1)y=0, —-l<z<l.
Py(z)=1,P(z) =2
Recurrence relation:

nP,(x) = (2n — 1)zP,_1(z) — (n — 1) P—a(x).

Orthogonality relation:

1 ,if n=m,
/ P, (x) Py, (z)dz = { 2n+1

! 0, if n # m.
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Py (1) = (£1)"

Series representation:

3]
P (z) =
k=0

(=1)*(2n — 2k)! 22k |
27kl(n — k)!(n — 2k)! '

Rodrigues’s formula:

1 ar
T2l dan

P () [(2® = 1)"].

Fourier-Legendre series:

f(a:)NZCnPn(a:), -l<z<1,
n=1

2n+1
2

/_ 11 F(2)Po () da

where ¢,, =

CHEBYSHEV POLYNOMIALS
OF THE FIRST KIND T,(z),n=0,1,...

Solutions of ODE

(1—a)y" —ay +n*y=0

or
[V1—22y] +n*V/1—22y=0, ~l<z<l.
To(z) =1,Ti(z) =2z

Recurrence relation:
Tn(z) = 22T —1(x) — Th_a(x).

Orthogonality relation:

w, if n=m =0,
1
T (x)T,
/de: z,ifn:m>0,
—1 1—332

v 2
0, if n # m.
IHere and following, [%} equals the greatest integer that is < % (remember the greatest

integer function f(z) = [z]).
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Ty (1) = (£1)"

Series representation:

nw-y. (5o 1)

k=0

n n!
where = —— = “n-choose-m.”
m m!(n —m)!

T, (cosf) = cosnb

Fourier-Chebyshev series (first kind):
f@)~) enTu(@), —1<z<l,
n=1

where ¢, = 2 /1 f(z)Ty(x)dx.

TJ-1

OF THE SECOND KIND S, (z),n=0,1,...

Solutions of ODE

(1—2%)y" —3zy' +n(n+2)y=0

or

[(1—22)32y) +nn+2)V1—22y=0, —-l<z<l.

So(z) =1,51(x) =2z

Recurrence relation:
Sp(z) = 22Sp—1(x) — Sp—2(x).

Orthogonality relation:

T

1 —,if n=m,

/ Sy (2) S (2)V/1 — 22 do = { 2
-1

0, if n # m.

Sp(£1) = (£1)"(n + 1)
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Series representation:

[

wl3

]
Sn(x) =

(]

n+1> Coks 2 k
" (xf = )"
Z (2k+1

Sp(cosf) = sin(nt1)0 (where we use L’Hopital’s rule if = 0, %, . ..

sin 6

Fourier-Chebyshev series (second kind):

f(w)’\’icnsn(f)a 1<z <1,
n=1

1
where ¢, = z/ f(x)Sp(z)dx.

T J-1

LAGUERRE POLYNOMIALS L,(x),n=0,1,2,...
Solutions of ODE

vy +(1—z)y' +ny=0
or

(xe™y") +ne Ty =0, 0<z< 0.

L()(ZII) = 1,L1(ZII) =1—z

Recurrence relation:
nLy(x) =2n—1—2)L,_1(x) — (n — 1)Ly_2(x).
Orthogonality relation:

1,if n =m,

/ Ly(x)Ly(z)e™ ™ dox =
0 0, if n # m.

Series representation:

321
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Fourier-Laguerre series:
f(x)NchLn(ir% —1§£L’< 17
n=0
where ¢, = / f(x)L,(x)e™® dx.
0

HERMITE POLYNOMIALS H,(z),n=0,1,2,...
Solutions of ODE

Yy’ —2xy’ +2ny =0

or

—z2 —z?
™™ Y] +2ne " y =0, —00 < T < 0.
H()(ZIJ) = 1,H1(3}) =2z
Recurrence relation:

H,(z) =2zH,_1(z) —2(n — 1)H,_2(x).

Orthogonality relation:

> n ' . _
/ Hn(ff)Hm(ac)e*w2 doe = 2"nly/m, if n =m,

0, if n #m.
Series representation:
(3]
(=1)*n! —2k
H,(x) = 2x)"
@) =3 Hor—gm 2
k=0
Rodrigues’s formula:
2 d" 2
Hn — _ n_x _ —T
() = (~1)"e”’ ()
Fourier-Hermite series:
f(il') ~ Z ann($)7 —o0 < x < 00,
n=0

1 oo
where ¢, = TN /700 f(;zc)Hn(gc)e*w2 dzx.
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Exercises 7.6

1.

a) For each set of orthogonal polynomials, write down the third through
fifth polynomials, and make sure that these match what we got in
Section 7.2. (See Section 7.3 for Lo, L1 and Ls.)

b) For each set of orthogonal polynomials f,,(z) except Laguerre (why
not Laguerre?), use the recurrence relation to show that

n even = f, is an even function,

n odd = f, is an odd function.

¢) MATLARB: For each set of orthogonal polynomials, use the recur-
rence relation to write a MATLAB program which generates the
first N polynomials.

d) MATLAB: Plot the graphs of the first six of each set of orthogonal
polynomials, as we did for the Legendre polynomials in Figure 7.1.

For each set of functions in this section, we gave two differential equa-
tions. Show that the two equations are equivalent in each case. In each
case, the second equation is said to be in self-adjoint form. This idea
is treated in detail in Chapter 8.

Here, we prove the so-called orthogonality relations for Legendre poly-
nomials, for n # m.

a) P, and P, satisfy, respectively,
[(1—2?)P)) +n(n+1)P, =0

and
[(1—2®)P) +m(m +1)P, =0.

Multiply the top equation by P,, and the bottom by P,, and sub-
tract.

b) Integrate the resulting equation from z = —1 to z = 1. You'll need
to use integration by parts.

a) Proceed as in Exercise 3, for the Laguerre polynomials.

b) Do the same for the Hermite polynomials.

a) Use the fact that T, (cosf) = cosnf to prove the orthogonality
relation for the Chebyshev polynomials of the first kind (both for
n # m and for n = m).

b) Similarly, use the property S, (cosf) = Single)e to prove the or-

thogonality relation for the Chebyshev polynomials of the second
kind (both for n # m and for n = m).
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6. a) Use Rodrigues’s formula for the Legendre polynomials to show that
we write the associated Legendre functions as

1 m-+n
Pr(z) = = (1 — 2?2 4

= 5 (2 = 1))

dmern

(m and n are integers, of course).
b) For which values of n and m will P”(z) be a polynomial?

¢) Show that
P” (cosf)

is a polynomial in sin € and/or cos 8, for any choice of n and m.

7. Here we prove the orthogonality relation for the functions J, (k;z), i =
1,2,3,..., where o > 0 and the numbers k; are the positive zeros of the
Bessel function J,(z).

a) Show that J,(k;x) is a solution of the problem
22y + zy + (K22 — o?)y =0,
y bounded as x — 07, y(1) = 0.
b) Letting y; = Jo(kiz) and y; = Jo(kjx), i # j, we have
22y + xyl + (B2a? — a®)y; = 0
2y + xy + (K3a® — a®)y; = 0.

Multiply the first by y; and the second by y;, and subtract. Then,
integrate the resulting equation from 0 to 1 and conclude that we
have

1
/ xJo(kiz)Jo(kjx)dx = 0.
0

¢) More generally, for any L > 0, show that

L
kix kjﬂi _

8. What about when ¢ = j in Exercise 67

a) Multiply the differential equation in Exercise 6a by 3’ and, using
integration by parts, show that it follows that

(1] + (K — a?)[y(1)]? = 282 / vy d.
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b) Conclude that

[ T2 (ko))?.

N =

1
/ 2J2 (kiz)dr =
0

¢) Use the result of Exercise 5b from the previous section to show
that we can rewrite this as

1
1
/O xJ? (kir)de = §J2+1(ki)
and, more generally, as

L 2
ki L
/0 v J? ( Lﬁ) dr = -T2 (ko).

9. Proceed as in Exercises 7 and 8, and show that if k;, ¢ = 1,2,3,... are
the positive zeros of the derivative J/,, then we still have

1
/ 2o (kiz)Jo(kjax)de =0 for i#j
0

and, more generally, that

L . .
/0 xJa<lex)Ja<ijx>dx:O for i #j.

Show that, in this case, for i = j we have

1 2 2
K2 —
/OxJi(kix)dx: 1%; J2 (k).







Prelude to Chapter 8

In the 1830s, Charles Sturm (1803-1852) and Joseph Liouville* (1809-1882),
both in Paris, embarked on a study of second-order boundary-value problems,
resulting in the consolidation and generalization of the ideas from the previous
chapter. Here, we introduce these Sturm—Liouville problems, and we find
that their eigenvalues and eigenfunctions share the same important properties
which characterize the eigenvalues and eigenfunctions of Section 3.7. Indeed,
the sets of trigonometric functions comprising the various Fourier series, as
well as the sets of special functions, all shake out as particular cases in the
Sturm—Liouville theory.

The theory can be extended to higher order equations, where we touch upon
the ideas of adjoint and self-adjoint problems. (This terminology, though,
didn’t arise until the early 1900s, in the work of David Hilbert (1862-1943)
and others.) For our purposes, the most important result is the fact that the
special functions are complete on their defining intervals, in the same sense
as are the trigonometric functions. Sturm and Liouville saw that this was
the case and established Bessel’s inequality and Parseval’s’ equality in this
setting of generalized Fourier series. (Bessel and Parseval had derived them
for the trigonometric case.) However, they were not in a position to state and
prove a general theorem on completeness, due to the problem that Fourier
series converge pointwise only at points of continuity. All of this eventually
was “made nice” following 1907, when Ernst Fischer (1875-1959) introduced
a different kind of convergence, the so-called mean-square convergence, which
entails looking at integrals of the functions involved and, thus, circumvents
the difficulties associated with points of discontinuity. (Actually, the inte-
grals were not Riemann integrals, but the new Lebesque integrals, devised
by Henri Lebesgue (1875-1941) around the turn of the century, and in some
sense the culmination of the work of the great analysts—Dirichlet, Cauchy,
Georg Friedrich Riemann (1826-1866), Liouville, Weierstrass, et al.—whose
investigations had been spurred, initially, by the work of Fourier.)

*Liouville was very productive in many areas of mathematics, but he is also known as the
person who resurrected the work of Evariste Galois (1811-1832). If you're not familiar with
Galois’s story, you really should check it out.

fMarc-Antoine Parseval (d. 1836).
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8

Sturm—Liouville Theory and Generalized
Fourier Series

8.1 Sturm-Liouville Problems

Before moving on to equations in higher dimensions, we pause to look again at
Fourier series, with any eye toward seeing if there are other sets of functions
which behave like the functions discussed in Section 3.7. It may seem strange
that our approach will hinge upon looking again at ODE eigenvalue problems.
However, you will remember that, in Chapters 1 and 3, when dealing with the
separated eigenvalue problems

y' 4+ Ay =0, 0<z<L,
y(0) =0 or y'(0) =0,
y(L)=0or y'(L) =0,

we found that the eigenvalues and eigenfunctions had a number of important
properties—we list these and, in parentheses, we compare them with similar
eigenproperties of matrices.

1) The eigenvalues are real. (A matrix need not have real eigenvalues.)

2) There are infinitely many eigenvalues. (n X n matrices have exactly n
eigenvalues, if we include multiplicities.)

3) Each eigenvalue has multiplicity one, i.e., if y; is an eigenfunction cor-
responding to A1, then the only eigenfunctions corresponding to A; are
of the form cy;. (This was not the case with matrices and eigenvectors.)

4) Ify1 and yo are eigenfunctions corresponding to different eigenvalues Ay
and Ao, then y1 and y2 are orthogonal on [0, L], i.e.,

L
(Y1, y2) = /0 y1(z)y2(x)dz = 0.

*Actually, they are countably infinite, meaning that they can be put into a 1-1 correspon-
dence with the natural numbers.
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(Eigenvectors corresponding to different eigenvalues need not be per-
pendicular.)

5) The eigenfunctions form a complete set in the space of piecewise smooth
functions on [0, L], i.e., for any such f, there exist constants c1,ca, ...,
such that

o0
f(‘r)zzcnyn(x)a OS‘TSIM
n=1
where y,, is the eigenfunction corresponding to A,. (For matrices, we
sometimes found that the eigenvectors of an n X n matrix spanned R™.)
Let’s start by rewriting the ODE y” + Ay = 0 as
Y=y

so that it looks like a matrix eigenvalue problem (modulo the minus sign).
More generally, then, we’ll be looking at eigenvalue ODEs of the form

Lly]l = =)y,

where L is a linear differential operator; so, above, we have L[y] = y”’. Further,

we’ll restrict ourselves to second-order ODEs, as these form the vast majority

of the problems we have encountered which arise from separation of variables.
So we consider eigenvalue ODEs of the form

Lly] = ao(x)y” + a1 (z)y’ + aa(x)y = —Ay. (8.1)

For starters, we may put this equation into a sort of standard form. Remember
that, when solving the first-order ODE

ao(2)y’ + a1 (z)y = b(),
we divided by a¢ and multiplied by the integrating factor

(,
J G da

r(z)=e
to rewrite the equation as
(ry") = r(x)b(z).

Well, we may do the same with the first two terms of any linear ODE. So, we
rewrite equation (8.1) as

" a (:E) / a2($) _ L

ay (2)
and then multiply by the integrating factor r(z) = e’ “0™“* to arrive at

(r(@)y(x))" + q(x)y(x) = —Iw(z)y(z).
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This particular eigenvalue ODE is called a Sturm—Liouville equation and
any operator

Llyl = (ry') +qy
is called a Sturm—Liouville operator, or to have been put into Sturm—
Liouville form. Finally, any eigenvalue problem of the form
Lyl=(ry') +qy= -y, a<az<h,
ary(a) + a2y’ (a) + asy(b) + asy'(b) = 0,
biy(a) + b2y (a) + b3y (b) + bay'(b) = 0,

where a1, ...,a4,b1,...,bs are constants and the two boundary conditions are
independent (i.e., neither implies the other), is called a Sturm—Liouville
problem. We're interested in a few specific types of Sturm-Liouville prob-
lems, as they arise frequently in applications, often via separation of variables.
Specifically, most problems that we run into will be of the form

Lyl = (ry') +qy=—-dwy, a<z<b,
ary(a) + azy'(a) =0,
biy(b) + bay' (b) = 0,

where
1) w(z),q(x),r(x) and r'(x) are continuous on a < x < b.
2) w(z) >0and r(z) >0ona <z <b.

The boundary conditions—one at x=a, the other at x=b—are called sepa-
rated boundary conditions.

Definition 8.1 If, in addition, the Sturm—Liouville problem above also sat-
isfies

1) w,q,r and r' are continuous on a < x < b,
2) w(z) >0 and r(x) >0 forzr=a andx =b

we say that it s a regular Sturm—Liouville problem.
If, instead, the problem satisfies at least one of the following:

1) w(a) =0 or w(d) =0 orr(a) =0 orr()=0
2) any of w,q or r becomes infinite at x =a or x =b
3) a=—00 orb= 00,

we call the problem a singular Sturm—Liouville problem. (Of course,
there are many other ways a problem can become singular, for example, if one
of the functions involved becomes infinite on the interval a < x < b.)
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Example 1 The system

is a regular Sturm-Liouville problem, with r(x) = w(z) = 1, ¢(z) = 0.

Example 2 The Cauchy—Euler equation
2?y” + axy +by = —\y, a,b constant

can be rewritten
(xay/)/ + bxafly _ —/\(Eaily.

So, e.g.,
(xay/)/ 4 bﬂ?a_ly — _/\xa—ly
y(1) =y(e) =0

is a regular Sturm-Liouville problem, while, with boundary conditions

it would be a singular Sturm—Liouville problem.

Example 3 We often need to solve Legendre’s equation
(1—2%)y" =22y + Ay =0
on the interval —1 <z < 1. We can rewrite the equation as
(1 —2?)y] + My = 0,

and we see that the equation, subject to boundary conditions at x = +1, is a
singular Sturm-Liouville problem.

Analogous versions of properties 1-5 hold for the general regular Sturm-—
Liouville problem, as we’ll show in the following section. A few of the exercises
below will serve as preparation or motivation for these proofs.

Exercises 8.1
1. Write each ODE in Sturm-Liouville form:
a) ¥y +3y —2y=0
b) y”’ —zy = 0 (Airy’s equation)

c) 2%y + a2y’ — 6y =0
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d) zy” + (1 — z)y’ + ny = 0 (Laguerre’s equation of order n)

e) y"' — 2xy’ + 2ny = 0 (Hermite’s equation of order n)

)

)

f) 229" +xy’ + (22 — a?)y = 0 (Bessel’s equation of order «)

g) (1 —2?)y"” — 3zy’ + Ay = 0 (Chebyshev’s equation of the second
kmd)

2. Write the ODE in Sturm-Liouville form, then determine if the Sturm-
Liouville problem is regular or singular.

a) ¥+ y=0
y(=1) +3y'(=1) = 5y(2) = Ty'(2) = 0

b) 4+ 2y — Ay =0
y(0) =y'(3) =0

¢) (1—2%)y” —zy’ + Ay = 0 (Chebyshev’s equation of the first kind)
y(=1) =y(1) =0

d) 2%y + 2y + Ay =0
y(0)=y'(1)=0

3. Suppose that y; and yo are linearly independent solutions of
(ry') +ay=0
on a given interval (possibly of infinite extent). If W is the Wronskian

Wlyi, y2] = y1ys — y2v/,
show that
(rW) =0
and, then, that rW is constant on the given interval. (Assume that r

and ¢ are well-enough behaved.)

4. (For the proof of Theorem 8.4 in the following section.) Remember that
every complex number z can be written as z = a + bi, where a and b are
real numbers. We define the complex conjugate of z to be the complex
number

Z=a— bi.

Prove the following:

a) For any complex number z, z - Z is real.

b) For any complex numbers z; and 2o,
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i) 21+ 20 =21+ 29
11) Z122 = Z1 22
¢) If z is real, then z = z.

It follows from the above that any complex function f(x),z real, can be
written as f(x) = g(x) + ih(z), where g and h are real.

d) Show that f'(z) = f(z) .
Finally, putting everything together, and using the definition of the
equality of two numbers

a+bi=c+di ifand onlyif a=candb=d,
prove:

e) If y; is an eigenfunction, corresponding to the eigenvalue A1, of the
problem

ao(x)y” + a1 (z)y’ + ax(x)y = =Ny
Ayy(a) + Asy'(a) = Biy(b) + Bay'(b),

then 7 also is an eigenfunction, corresponding to the eigenvalue
A1

(Perpendicularity /orthogonality of eigenvectors: compare to
proof of Theorem 8.3 in the following section.) Remember that the
inner product of functions is analogous to the dot product of vectors,
and the orthogonality of functions is analogous to the perpendicularity
of vectors. Here, we’d like to prove that the eigenvectors of a symmetric
matrix are orthogonal. Specifically, suppose that the real matrix A is
nxn and symmetric, that is, AT = A, and suppose that v and w are real
eigenvectors, corresponding to real eigenvalues A\; and Ag, respectively,
with A\; # Ao. Let’s agree that all vectors are column vectors, so that
the dot product is the same as a matriz product, that is,

'u-wszw.

a) Show that vAw —wAv = 0. (Hints: (AB)T = BT AT, and v, -v, =
Vo -'Ul.)
b) Show that vAw —wAv = (\y — \)v - w.

¢) Conclude that v and w are perpendicular.

In general, if A is a real n x n matrix, then AT is called the Hermitian
adjoint of A, and A is called self-adjoint if AT = A. What if the
entries are allowed to be complex? First, when we talked about the
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inner product of complex functions (Exercise 15, Section 3.3), we saw
that it had to be defined as

b
(f.9) = / f(@)g(x)da,

or else it would not possess the properties that we would like an inner
product to have. Similarly, the inner product of two complex vectors
must be defined as

(v, w) =" w,
where

U1

(Refer here and below to Exercise 4.) In this setting, the Hermitian
adjoint of a complex matrix A is defined to be

A* = AT,
where A results from taking the complex conjugate of every element of
A. A is said to be self-adjoint if
A" = A
d) Show that if A is self-adjoint, then its eigenvectors are orthogonal.

e) Show that if A is real and self-adjoint, then its eigenvalues are real.

(Actually, it can be shown that the eigenvalues of any complex self-
adjoint matrix must be real.)

6. (For the proof of Theorem 8.3 in the following section.) Generalize
Green’s first and second identities (Exercise 23, Section 1.7) by
showing that the Sturm-Liouville operator

Lyl = (ry") + qy
satisfies
a) [LyiLlyalde = r(@)ys (@) ()5 — [ ryih do+ [7 qyiye de
b) [Y(y1Llya] — yoLlyi))da = r(@)[y1 (2)yh(x) — y2(2)y) ()]]%

(so long as everything is well-enough behaved). The latter is called
Green’s second identity or Green’s formula for L. When written
in differential form

d
y1Llya] — yoLly1] = %[r(ylyé — y20)]

it is known as Lagrange’s identity for L.
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¢) Show that we cannot do anything similar if the operator is first-
order, that is, of the form

Lly] = ao(x)y’ + a1(2)y.

d) However, show that we can simplify

[ttt - o i
if we define
Lly] = ao(2)y’ + ar(z)y,
L*[y] = —ao(2)y’ + a1 (2)y.
(We will call L* the adjoint of the operator L.)

7. The Sturm-Liouville equation (ry’)’ + qy = —Awy, a < xz < b, may be
put into a simpler form, as follows. (We assume r > 0 and p > 0 on
a<z<bh.)

a) Let
tz/ f(z)dz, f(z)>0ona<z<bh.

Show that the equation becomes

!
Y @y/ iy = _/\ﬂy
I R
where Y (t) = y(z) and the prime represents differentiation by t.
b) Show that the specific choice

_ jw(@)
leads to the equation
1 /
yr o 20wl Ly
2 rw T

¢) Now show that the change of dependent variable Y (t) = g(t)z(t)
leads to the equation

1 (rw)’ 1 (rw)’
0" [29' * 5%9] ar [gg 430 g s =
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d) Finally, show that, by choosing

the equation becomes
2"+ Q(t)z = =)z,

where
T[rw)]*  (rw)”

@=- 16(rw)? drw

This is called the Liouville normal form of the original equation.

8.2 Regular and Periodic Sturm—Liouville Problems

It turns out that statements 1-5 of the previous section are “mostly” true for
the regular Sturm—Liouville problem

Lyl = (ry) +qy= - wy, a<z<b,

(8.2)
ary(a) + azy’(a) = b1y(b) + bay'(b) = 0.

We'll state here without proof two of the theorems which are too difficult
to prove at this level. Then we’ll prove the remaining three, using some of
the results from the exercises of the previous section.

Theorem 8.1 The eigenvalues of the regular Sturm-—Liouville problem (8.2)
form an infinite sequence

M <A< A3<...

with

lim A\, = occ.
n— oo

Theorem 8.2 The eigenfunctions of the reqular Sturm—Liouville problem (8.2)
form a complete set in the space of piecewise smooth functions on a < x <b
(complete in the sense that functions which differ at finitely many points are
represented by the same series of eigenfunctions).

For proofs see, e.g., the classic text Theory of Ordinary Differential Equa-
tions by Coddington and Levinson.
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Now we’d like to prove the remaining three results from the previous section
for the regular Sturm-Liouville problem (8.2):

Llyl = (ry') + qy = —Awy,
ary(a) + azy’(a) = by (b) + bay/'(b) = 0.

First, what can we say with respect to orthogonality of the eigenfunctions?
Suppose y; and y- are eigenfunctions corresponding to eigenvalues A; and As,
respectively, with A\ # A2. In Exercise 6 of the previous section, we showed
that we always have

b
b
/ (y1Llya] — y2 L[y ])dx = r(z) [y (2)y5(x) — ya(@)y; (2)]] -
But, from the ODE, we also have, for eigenfunctions y; and yo,

b b
/@MM%W%MWMZQr%Q/w@MWMWMw

a

Let’s show that the boundary terms disappear. They become

r(®)[y1(0)ya(0) — y2(b)y (0)] — r(a) [y1 (a)ys(a) — y2(a)y) (a)).

If we can show that the first bracketed term is zero, then we’re done (why?).
Now, since we do not have by = by = 0, let’s first assume that b; # 0. Then,
from the second boundary condition, we get

b
n(b) = 244 (0)
1
b
ya(b) = =35 u3(b),
1
so that
/ / o ba / / ba / / o
y1(b)y5(b) — y2(b)y1(b) = _ayl(b)yz(b) + ayl (b)yz(b) = 0.
If, instead, by # 0, then
b
vh(b) =~ (0)
2
b
vh(b) =~ ua(0),
2

from which it again follows that

y1(0)y5(b) — y2(b)y1 (b) = 0.

Therefore, we have proved the following.
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Theorem 8.3 Suppose that \y # Ao are eigenvalues, with eigenfunctions iy,
and ya, respectively, of the reqular Sturm—Liouville problem (8.2). Then,

b
/ w(z)y1 (x)y2(x)dx = 0.

So y1 and ys are not necessarily orthogonal unless w(z) = 1. What we say is
that y; and yo are

orthogonal with respect to the weight function w,

and Theorem 8.3 says that the eigenfunctions of the regular Sturm—Liouville
problem (8.2) are pairwise orthogonal with respect to w. Often, we’ll just say
that the functions are orthogonal and, in the case w(z) = 1, we say that they
are simply orthogonal.

Next, using the results of Exercise 5 of Section 8.1, it is easy to show that
the eigenvalues must be real.

Theorem 8.4 The eigenvalues of a reqular Sturm-Liouville problem are real.

PROOF  Suppose that A = ¢+ di is an eigenvalue, with eigenfunction
y(z) = u(z) +iv(x). Then Exercise 5 tells us that A\ = ¢ — di is an eigenvalue,
with eigenfunction u(z) — iv(z).

From the proof of Theorem 8.3, we know that

b
(A — Ao) / w(zy @)y (2)dz = 0
b

= [(c+di) — (¢ — di)] / w(z)[u(x) + iv(z)][u(x) — iv(z)]dz

b
_ 2di/ w(@)[u(@)? + v(z)dz = 0.
The integral is positive (why?), forcing d = 0. Therefore, A = ¢ is real. |

Note that this theorem justifies our considering only the cases A > 0, A =0
and A < 0 back in Section 1.7.
Now, what about the multiplicity of the eigenvalues?

Theorem 8.5 If y1 and ya are eigenfunctions of (8.2) corresponding to the
same eigenvalue A, then ys = cyy for some constant c.

PROOF We're given that
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Then,
y1L[ya] — y2L[y1] = y1(rys) — y2(ry;)" = 0.
Integrating by parts, we get (see Exercise 2)

/w [W1(rys)" = ya(ryy)]de = r(z)[y1 (x)ys () — y2(x)y) (z)]
—r(a)y1(a)yy(a) — ya(a)y;(a)] = 0.

Since we already showed, in proving Theorem 8.3, that the last term is zero,
and since 7(z) > 0 on a < xz < b, we must have

v (2)ya(x) = y2(2)yi(x) =0 on a <z <b.

What does this do for us? Well, it sure looks like a determinant; in fact, it’s
the Wronskian, W (y1,y2; 2)! And remember from ODEs that W = 0 implies

that y; and y, are linearly dependent, i.e., that yo = cy;. |

So far we have considered only problems with separated boundary condi-
tions. These certainly are not the most general types of boundary conditions.
Let’s look at the following important example.

Example 1 Find all eigenvalues and eigenfunctions of the eigenvalue problem

vy + Xy =0,
y(—m) =y(m),
y'(=m) =y (7).

Proceeding as in Chapter 1, we find that there are no negative eigenvalues
(see Exercise 2a, below). We do get Ao = 0, with yo = 1, and, interestingly,
we get

Yn = nQ, Yn = Cn COSNT + dyp, sinnz

for any choice of the constants ¢, and d,,. The eigenfunctions here, of course,
are the functions comprising the Fourier series on —m < z < 7. So, we have
a countably infinite number of real eigenvalues, and the eigenfunctions are
orthogonal and complete. However, each positive eigenvalue has multiplicity
2.

Definition 8.2 The Sturm—Liouville problem

= (ry") + qy = —\wy, a<x<b,
y(a) = y(b), (8.3)
"(a) = ¥/ (b),

where
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1) w(x),q(x),r(x) and r'(x) are continuous on a < x < b,
2) w(x) >0 and r(z) >0 ona<z<b,

3) r(a) =r(b),

is called a periodic Sturm—Liouville problem, and the boundary condi-
tions are periodic boundary conditions.

One may prove analogous versions of Theorems 8.1, 8.2, 8.3 (see Exer-
cise 5) and 8.4 for these problems. Although we do not have uniqueness of
eigenfunctions, we do have the following theorem.

Theorem 8.6 The eigenvalues of a periodic Sturm—Liouville problem form a
sequence
)\0<)\1§)\2<)\3§/\4<...,

“

where, whenever we have “=,” that particular eigenvalue has multiplicity 2;
otherwise, each eigenvalue has multiplicity one.t
Exercises 8.2

1. Solve the regular Sturm—Liouville problem, then verify directly, by in-
tegration, the orthogonality of the eigenfunctions. (Note: Make sure to
use the correct weight function!)

a) ¥+ Ay =0,y(0)+y'(0) =¢'(L) =0
b) a?y” —xy' + (A + 1)y =0,y(1) =y(2) =0

2. Find all eigenvalues and eigenfunctions of the periodic Sturm—Liouville
problem, and show by direct integration that the eigenfunctions are
simply orthogonal.

a) ¥y’ + Ay =0,
y(=L) =y(L),
y'(—=L) =y'(L). (Compare with Exercise 9, Section 1.7.)

b) ¥+ (A =2)y =0,

y(0) = y(L),
y'(0) =y (L).
3. If the functions ¢1, ¢2, ... are orthogonal with respect to w on a given

interval, what can we say about the functions /w ¢1, vw ¢2,...7

4. Show that [ [y1(ryb) — y2(ryt)'ldz = r(yiyh — y2y})|.-

T Again, for a proof, see Coddington and Levinson’s Theory of Ordinary Differential Equa-
tions.
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Prove that the eigenfunctions of the periodic Sturm-Liouville problem
(8.3) are orthogonal with respect to the weight function w, and that its
eigenvalues are real.

. Why can there be no more than two linearly independent eigenfunctions

associated with an eigenvalue of the periodic Sturm—Liouville problem
(8.3)7

. Find all eigenvalues of the following problems. Do the results contradict

Theorem 8.17

a) ¥+ Ay =0,
2y(0) —y(1) =2¢'(0) +4'(1) =0
b) y" + Ay =0,

y(0) —y(1) =¢/(0) +y'(1) =0

Rayleigh quotient, revisited: Here we generalize Exercise 26 of Sec-
tion 1.7, using Green’s first identity from Exercise 5 of the previous
section.

a) Suppose that we are given the regular Sturm-Liouville problem

(ry) + qu = —wy, a<x<b,

a1y(a) + azy’'(a) = biy(b) + bay'(b) =0,
where ajaz < 0 and biby > 0 (and a? + a2 > 0 and b3 + b3 > 0,
that is, we don’t have a; = as = 0 or by = by = 0). If, in addition,

qg(z) < 0on a <z < b, show that the problem has no negative
eigenvalues. When will zero be an eigenvalue?

b) Show that the same is true for the periodic Sturm—Liouville prob-
lem

(ry') + qu = —lwy, a<x<b,
y(a) =y(b),
y'(a) =y'(b),

where, again, we have ¢(x) < 0 on a <z < b. When will zero be
an eigenvalue?

Suppose that y; and y, are solutions of the problem
(ry") +ay = —Aowy
for which y1(a) = 1,¥i(a) = 0,y2(a) = 0, y4(a) = 1. (Assume that

p,q,7 and 7’ are continuous, r > 0 and p > 0, or any intervals a < z < b
in this problem.)
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a) Why are y; and yo unique?

b) Show that the periodic Sturm-Liouville problem (8.3) has two lin-
early independent eigenfunctions corresponding to Ag if and only
if 1 (b) = y2(b) = 0 and y1(b) = y5(b) = 1.

10. In this problem, we consider regular Sturm—Liouville problems where, in
addition, functions y which satisfy the boundary conditions also satisfy

y(b)y'(b) — y(a)y'(a) < 0.

a) Show that any function y which satisfies a Dirichlet or a Neumann
condition at each end also satisfies

y(b)y'(b) — y(a)y'(a) = 0.

b) What conditions must a1, az,b; and be satisfy so that we're guar-
anteed that if y satisfies the Robin conditions

ary(a) + azy'(a) = biy(b) + bay'(b) =0,
then y also satisfies
y(®)y'(b) — y(a)y'(a) < 07

c¢) Use Green’s first identity (Exercise 22, Section 1.7 and Exercise
6 of the previous section) to prove that if an eigenfunction of the
regular Sturm-Liouville problem

y' 4+ Ay =0
ary(a) + a2y’ (a) = bry(b) + b2y’ (b) =0
also satisfies
y(®)y'(b) —y(a)y'(a) <0,
then its corresponding eigenvalue is nonnegative. (Thus, if all func-

tions which satisfy the boundary conditions also satisfy the last
equation, then the problem has only nonnegative eigenvalues.)

d) In part (c), suppose that A = 0 is an eigenvalue. What is its cor-
responding eigenfunction? Further, what can be said about which
boundary conditions we actually must have started with?

11.  a) Show that

4 4 d
1S — yayY = o (y1ys" — y2u" — y1ys + yaul)-

b) Use the above to show that the eigenfunctions of the problem
y Wy =0, y(0)=y'(0) =yL)=y'L)=0

are simply orthogonal.
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¢) List all combinations of simple homogeneous boundary conditions
(of the form y”(0) = 0, y"'(L) = 0, etc.), two at each end, for which
the eigenfunctions of the problem are simply orthogonal.

d) Investigate the above situation, but with the operator y"’ instead of
y® (you may assume that you have the “best possible” boundary
conditions).

12. Suppose that r is continuous and that r(z) > 0 on 0 < x < 1. Show
that the eigenfunctions are simply orthogonal for the problem
(ry™)™ + xy =0,
y(0) =y (0) =---=y"V(0) =y(1)) =¢y/(1) = --- =y (1),
for any positive integer n.
13. Using the properties

Ty (cosf) = cosnb
sin(n + 1)0

Sp(cosf) = "

3

show that

a) The Chebyshev polynomials of the first kind, 7,,(x), are orthogonal

with respect to the weight function w(z) = ﬁ onl—<gz<1.

b) The Chebyshev polynomials of the second kind, S,(z), are or-
thogonal with respect to the weight function w(xz) = v/1 — 22 on
—1<x <1

14. Analogous to the adjoint of a matrix operator, we would like to define
the adjoint of a linear differential operator L. Then, the analog of a
Hermitian matrix will be what is called a self-adjoint linear differential
operator (although the term Hermitian still is occasionally used).

Suppose we have the operator
Lly] = ao(x)y" + a1(2)y’ + az(z)y.
a) Use integration by parts to show that
b
a

b
/ y1L{y2)dx = [yraoys — (y1a0)y2 + yra192]|

b
+ / y2[(y1a0)” — (y1a1)" + yraz)da.

In practice, we hope that the boundary conditions force the non-
integral terms on the right to be zero. Then, the adjoint of L is
the operator in the last integral:

L[yl = (aoy)” — (a1y)" + azy.
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b) Conclude that y; L[y2] —y2L*[y1] is an exact derivative, that is, that

. d
y1L[y2] — y2 L*[11] = @F(ﬂc;yl,yz,yi,y’z)

for some function F'.

¢) L is self-adjoint if L* = L. Show that L is self-adjoint if and only
if a1 = ay.

d) Show that the Sturm-Liouville operator
Llyl = (ry') + qy
is always self-adjoint. What about
Llyl =y +q?

e) In general, what is (L*)* = L**?

8.3 Singular Sturm—Liouville Problems;
Self-Adjoint Problems

There are many important applications which involve Sturm—Liouville prob-
lems which fail to be regular. Specifically, we’ll look at problems

Liy] = (ry") + qy = —\wy, a<z<b,
for which at least one of the following is true:
1) » =0 at an endpoint.
2) w or ¢ becomes infinite at an endpoint.
3) a=—o0 or b= o0.

In each case we have, as mentioned before, a singular Sturm—Liouville prob-
lem. Important examples include the following.

Example 1 Bessel’s equation of order «,

AV a2 2
(wy) - —y=- 'y, O<z<L,

is singular at = = 0.
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Example 2 Legendre’s equation,
[(1—2%)y) = -y, -l<z<1,

is singular at x = +1.

Example 3 Chebyshev’s equations,

-2y =-A—2 _ _l<z<l,
[ =" m=a
and
[(1— 2232y = = \V1 — a2y, -l<z<1,

are singular at z = +1.
Example 4 Hermite’s equation,

(e y) = —Ae "y, —00 < & < 00,
is singular at x = 4o0.
Example 5 Laguerre’s equation,

(e y") = —Xe "y, 0<x< oo,

is singular at * = 0 and at = = co.

Note that we haven’t specified boundary conditions in any of these exam-
ples. The reason, of course, is that solutions often fail to exist at singular
points, so we certainly cannot expect a solution to attain a specified value at
such a point.

In Chapter 7, we saw that certain natural boundary conditions often arise
at singular points, due to the nature of the physical problem being solved.
However, we would like to do something a little more satisfying, mathemati-
cally. To that extent, we put the Sturm-Liouville theory into the more general
setting of adjoint operators.

ADJOINT OPERATORS AND SELF-ADJOINT
EIGENVALUE PROBLEMS

Motivated by Exercise 14 of Section 8.2, we make the following definition.
Definition 8.3 Given the operator

Lyl = ao(2)y" + ar(z)y’ + az(z)y,
the adjoint of L is the operator L* defined by

L*[y] = (aoy)” — (a1y)' + azy.

(The adjoint can be generalized and defined for any linear differential operator.
See Exercise 7.)
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Example 6 Many of our eigenvalue problems entail solving L{y] = " = —\y.
The adjoint of L is
Lyl =y",

that is, L is its own adjoint, whence the following definition.
Definition 8.4 If L* = L, we say that L is self-adjoint.

Example 7 The operator L]y] = ay”+by’'+cy, where a, b and ¢ are constants,
has adjoint
L[yl = ay” — by’ + cy.

Hence, L is self-adjoint if and only if b = 0.

Example 8 The Cauchy-Euler operator L[y] = ax?y"” + bxy’ + cy, where a, b

and c are constant, has adjoint
L*[y] = az*y" + (4a — b)zy’ + (2a — b+ ¢)y.
So L is self-adjoint if and only if 2a = b.

More generally, in Exercise 14 of the previous section we found necessary
and sufficient conditions for L to be self-adjoint.

Theorem 8.7 The operator Lly| = ao(z)y” + a1(x)y’ + az(x)y is self-adjoint
if and only if af = a;.

Therefore, there are many second-order operators which are not self-adjoint.
So, what about Sturm—Liouville operators? We have

Lyl = (ry") +qy=ry" +7'y' + qy;
therefore,

a second-order linear differential operator is self-adjoint
if and only if it is a Sturm—Liouville operator, and any
second-order linear differential operator can be put into
self-adjoint form.

(There is no equivalent statement for higher-order operators.) Of course, L[y]
is self-adjoint if and only if L[y] + Awy is self-adjoint (why?).

Now, we also showed in Exercise 14 of the previous section that L and L*
satisty the following.

Theorem 8.8 For the operators L and L* given in Definition 8.3,

. d
yiLlye] = y2L" ] = ——laoy1yz — aoyryz + aryryr — apyrye]
(Lagrange’s identity)
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and

b
% b
/ (y1Lly2] — y2L* [y1])dx = (aoyrys — aoyiy2 + a1y1y2 — agyry2)| -
a
(Green’s formula)
It’s easy to show that, for L self-adjoint, we have

aoy1Ys — aoYiyz + a1y1ye — agy1ye = ao(y1ys — Y2u),

and it was this expression’s equaling zero at x = a and x = b that was key
to our proving the theorems in Section 8.2 for regular and periodic Sturm—
Liouville problems. As for more general Sturm—Liouville problems, it’s quite
possible that the above expression does not disappear at the boundaries.
Therefore, we have the following definition.

Definition 8.5 The general Sturm—Liouville problem

Lly] = (ry")" + qy = —\py,
ary(a) + a2y’ (a) + asy(b) + asy'(b) = 0,
biy(a) + bay'(a) + bsy(b) + bay'(b) =0

is a self-adjoint problem if all well-behaved y1 and yo which satisfy the
boundary conditions also satisfy

b
r(yrys — yayi)|, = 0.
(More generally, an n'*-order eigenvalue problem is self-adjoint if

1) The operator L is self-adjoint

b
2) [, (1Lly2] — y2Lly1])dz =0
for all y1,y2 satisfying the boundary conditions.)

Example 9 All regular and periodic Sturm-Liouville problems are self-adjoint.

Example 10 Consider the problem

Y+ qy = —wy,
y(0) —y'(1) = ¥'(0) + y(1) = 0.

It has boundary conditions which are neither separated nor periodic—so the
problem is neither regular nor periodic. Nevertheless, we have

Py — 21 s = 91 (1)ya(1) — g2(1)yh (1) — y1(0)yh(0) + y2(0)y} (0),

and this expression is zero if y; and y9 satisfy the boundary conditions (why?).
Thus, the problem is self-adjoint.



Sturm—Liouville Theory and Generalized Fourier Series 349

Now, back to singular Sturm—Liouville problems and their boundary condi-
tions. Although it seems like we're cheating, we try to give conditions at the
singular points which will make the problem self-adjoint. Actually, though,
hindsight is 20-20, and these problems were solved before any talk of self-
adjointness—and the conditions which do make the problems self-adjoint give
us these same solutions. Further, these boundary conditions are consistent
with those derived physically and mentioned in Chapter 7.

So, for Legendre’s equation, the associated Legendre’s equation and both
Chebyshev’s equations, we have singularities of the form r(£1) = 0; thus,
these problems are self-adjoint provided we have

v,y bounded as z — 1~ and x — —17
(see Exercise 3c). The Legendre and Chebyshev polynomials satisfy these
properties, of course, and it turns out that they are the only solutions to do
i
So.
Bessel’s equation is singular both because 7(0) = 0 and because ¢(0+) = oco.
To make a long story short, essentially we need to stipulate that

v,y be bounded as x — 0

and that they be such that any improper integrals involving ¢(z) = —<-
converge. Again, the solutions end up being the Bessel functions.

To be complete, although it is not done in practice, we may do something
similar for equations on unbounded intervals. However, here the situation is
delicate and, for a rigorous discussion, one should consult the references cited
in Section 7.1. That said, and guided by the physics of the problems, Laguerre
becomes a self-adjoint problem if we stipulate the conditions

y,y’ bounded as x — 0+,
Vze iy Jre 2y —0asz— .

Similarly for Hermite, if we have y satisfy

m2 12
e zTy,e 2y = 0aszx — too.

Note that it was the self-adjointness of regular and periodic Sturm—Liouville
problems that allowed us to prove that their eigenvalues are real and their
eigenfunctions orthogonal. So it should be no surprise if the same were true
for self-adjoint problems in general and, indeed, this turns out to be so.

ADJOINT BOUNDARY CONDITIONS

To be more precise, for a given boundary-value problem we may define what
we call its adjoint boundary-value problem. To do so, we look at an
example.

See, e.g., Sagan’s Boundary and Figenvalue Problems in Mathematical Physics.
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Example 11 Given the boundary-value problem

Llya] =y5 + 2y5 — 3y2 = 0,
y2(0) = y5(1) =0,

we wish to find boundary conditions for y; so that (from Green’s second iden-
tity)

/0 W Llys] — 2L [ya])de

1
= ao(y1v — ¥iy2) + (a1 — ag)yryel|,
1
= (Y195 — Y192 + 20192)|, = 0.
Applying the y, conditions, we have
y1(1)ya(1) — ¥ (D)y2(1) + 2y1(1)y2(1)

= 41(0)y5(0) — y2(0)y/1(0) — 2y1(0)y2(0)
=y2(D)[y1(1) = 1(0)] = %5(0)y1(0).

Since there are no restrictions on yo(1) and y5(0), we need to have

y1(0) = 41 (1) — 91 (1) = 0.

We call these adjoint boundary conditions, and “the” adjoint boundary-
value problem is

Ly =y" -2y’ =3y =0,
y(0) =y(1) —y'(1) =0.
We say “the” because the adjoint boundary conditions are not unique (why?).
Finally, we say that a boundary-value problem is self-adjoint if
1) L* = L.

2) The adjoint boundary conditions are equivalent to the given boundary
conditions (in the sense that any function satisfies the latter if and only
if it satisfies the former).

Exercises 8.3

1. Find all eigenvalues and eigenfunctions of the singular Sturm-Liouville
problem

a) 2?y” +xy’ + Ay = 0; y,y’ bounded as x — 0%; y(1) = 0
b) ¥ + Ay =0;9(0) +4'(0) =0; y,y — 0 as x — co
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2. In each case, supposing the boundary conditions are such that the eigen-
functions are orthogonal with respect to the weight functions w, find w.

a) zy’ + Ay =0

b) ¥y +2y +y=0
c) y'+2xy — Ay =0
)

3. a) Suppose that the problem

(ry') + qy = —wy,
v,y bounded as z — a™,
b1y(b) + bay'(b) = 0

has a singularity of the form r(a) = 0. Show that

b
[ i)~ oy = 0

for all y1,y2 which satisfy the boundary conditions.
b) Do the same for the problem

(ry") +qy = —wy,
ary(a) + agy'(a) = 0,
v,y — 0as z — oo.

¢) Show that Legendre’s and both Chebyshev’s equations, subject to
the boundary condition

v,y bounded as x — 1~ and z — —17T,
form self-adjoint systems.

4. Decide if the problem, as it stands, is self-adjoint, and prove your result.

a) y" + Ay =0,y(0) =y'(0) - () 0
b) @?y" + 2z’ + (A = 2%)y = 0,y(2) =y'(3) = 0
) ¥y +2y' + Ay =0,y(0) = ( )=0
d) "+ 2y = 0,9(0) +¢'(0) +2¢'(1) = y'(0) —y(1) = 0
5. What conditions must a and b satisfy if
v+l =0, y(0)+ay' (1) =y'(0) +by(l) =0

is to be self-adjoint?



352

An Introduction to Partial Differential Equations with MATLAB®

6. Here we generalize Exercise 11 of Section 8.2. Remember, the PDE for

the Fuler—Bernoulli beam is

4
Wit + O Wepre = Oa

where o is constant. Letting a* = 1 and separating variables, w =

T(t)Y (z), we arrive at the 2-ODE
y@ + xy = 0.

Now, the four standard energy-conserving boundary conditions for the
beam are:

Clamped: w=w; =0 at x = xg;
Pinned: w = Wy =0 at z = zg;
Roller-supported: w, = Wy = 0 at x = xp;
Free: Wae = Weee = 0 at x = xg.
(It’s easy to see that the first set of conditions is quite reasonable, from
a physical/geometric standpoint. If one digs a little deeper or, still

better, if one knows the physics of the problem, then the other three
make perfect sense, as well. See Appendix D.)

It’s easy enough to separate the boundary conditions, as well. So, prove
that the problem
y W1y =0, O<z<l,

subject to any of the above boundary conditions at z =0 and x = 1, is
self-adjoint.

A different way of looking at what we did in Exercise 12 of Section 8.2
is as follows. Given the ODE

Lly] = ao(2)y" + a1(x)y’ + az(x)y = 0,

we would like to extend the idea of an exact equation to this equation.
Remember, a first-order equation is exact if there is a function F(z,y)
such that the equation can be written in the form %F(m, y) = 0. We
try to do the same for the above equation, realizing that the best we
can expect here is that F = F(z,y,y’). So, we wish to find F so that

d
—F(2,y,9") = ao(z)y” + ar(x)y’ + az(x)y.

dx
However,
d dx dy dz
—F =F—+4+F,~2+4+F,—~=F,+Fy +F,7.
dz (z,9,2) dx + Ydx + dz iyt ez
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Letting 3y’ play the role of z, we have
Fy + Fyy' + Fyy” = ao(2)y” + a1(2)y’ + az(z)y. (8.4)

a) Why can we conclude that F' = ag(z)y’ + g(z, y), for some function
g?

b) Substitute the expression from part (a) back into equation (8.4) to
conclude that g must satisfy

gz = ao(z)y and g, = a1(x) — ap(z).

¢) Conclude that g = (a1 — aj))y + h(x), for some function h, and thus
that we must have

a) —ay =az and h(x) = constant.

Therefore, there is such an F only if a} — aj = a2, and, in this case, we
have F' = apy’ + (a1 — af)y, which reduces the original ODE to

aoy’ + (a1 —ap)y = ¢, c¢= arbitrary constant.

d) Conversely, show that if a} — aj = ag, then F = apy’ + (a1 — af)y
satisfies (8.4) and, therefore, the original ODE is exact.

Now, suppose that the original ODE is not exact, and suppose we’d like
to find an integrating factor, that is, a function v(x) such that

vapy” +vary’ + vasy =0
15 exact.
e) Show that this new equation is exact if and only if v satisfies
apv” + (2ag — a1)v" + (ag — a} + az)v = 0.

In other words, v is an integrating factor for the equation L[y] = 0 if
and only if v satisfies the adjoint equation L*[v] = 0.

t) If L*[v] = 0 is not exact, and u(x) is an integrating factor, what
ODE must u satisfy?

g) Use the above to find the general solution of the equation
zy" + Bz +2)y' + (22 + 3)y =0, x> 0.

8. More generally, we define the adjoint of the n*"-order linear differential
operator

Lly] = ao(2)y™ + ai(2)y" ™D + ...+ an(2)y
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to be the operator
L*[y) = (=1)"(aoy)™ = (=1)" Hary) "V ... + any.

In fact, one can compute this operator in a manner similar to that of
the previous problem.

a) Determine if the operator is self-adjoint:

[yl =y
i) Ly = y® —ay”
iii) Lly] = y®™ m=1,2,...
iv) Lly] = y®™+Y m = 1,2,... (compare with Exercise 11c of

Section 8.2)
b) Show that any operator of the form
Lly] = [ao(2)y"]" + [a1(2)y']" + az(z)y

is self-adjoint.

¢) Show that any operator of the form
L[y = lao(z)y"™ ™ + [a1 (x)y "~ V]
+ oot [an—1(2)y] + an(z)y
is self-adjoint.
9. Find the adjoint boundary-value problem for the given problem:

a) Lly] = aoy” + a1y’ + agy = 0, ag, a1, az constant, y(0) — 3'(0) =
y(1) +y'(1)=0

b) Lly] = ao(x)y” + ar(x)y’ + az(x)y =0, y'(0) =y(1) =0
In each case, what condition on the coefficients will make the problem

self-adjoint? (By the way, it turns out that things are more complicated
for operators of higher order.)

]
8.4 The Mean-Square or L? Norm and
Convergence in the Mean

We have seen that many Sturm-Liouville problems have eigenfunctions which
are complete on the interval in question. So, suppose we have such a problem
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on the interval ¢ < x < b, with eigenfunctions ¢1, ¢2,... . We can expand
“any” function f(x) into a series

n=1

which, as it turns out, will behave just like the various trigonometric Fourier
series, i.e., it will converge to f pointwise except at finitely many points. So,
below, we’ll generalize the idea of Fourier series to include basis functions
@1, P2, ... from any complete, orthogonal set.

However, before doing so, we change the mathematical setting. This will
allow us to consider more than just the piecewise smooth functions. In ad-
dition, the new setting will be more satisfying mathematically, in that we no
longer will have to include the codicil “except at finitely many points.”

We begin by generalizing the idea of inner product.

Definition 8.6 Given the weight function w(z) with the properties w(zx) > 0
and w continuous on a < x < b, the inner product, with respect to w, of
the functions f and g is defined to be

b
(f.9) = / f(@)g(@)w(z)d

(as long as the integral exists).

Of course, if w(z) = 1, this is the inner product defined in Section 3.1. Also,
being analogous to the dot product of vectors, the inner product satisfies the
following properties (see Exercise 1):

(f,9) =9, 1)
<fvg+h> :<f’g>+<f7h>
<Cf7g> :C<fag>~

As defined earlier, if (f,g) = 0, we say that f and g are orthogonal with
respect to w.
Continuing the analogy with the dot product, remember that the length of

a vector is given by
[l = Vv -v.

Vector length is an example of what is called a norm; two of the important
properties of a norm—obviously satisfied by vectors—are

[]] >0
|lv]| = 0 if and only if v = 0.
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The norm automatically leads to the “distance between two vectors” (actually,
the distance between their endpoints, in standard position),

v —wl = v{v —w,v—w).

Of course, |[v —w| = 0 if and only if v =w. (A distance formula is a special
case of what is called a metric on the given vector space; this particular kind
of metric is said to be induced by the corresponding norm.)

We wish to extend these ideas (along with one more vector property, dealt
with in Exercise 6) to inner products of functions. So we define the norm of
a function.

Definition 8.7 With the same conditions as in Definition 8.6, we define the
mean-square or L2 (“L-2”) norm of a function f ona <z <b to be

b 1/2
17l = <f,f>={ / [f(x)]?w(x)dx} .

Now there is a slight problem—there are many functions f which satisfy
£l = 0 (give some examples); so, on the surface, it seems that we cannot
extend the first property of the vector norms to functions. (This, of course, is
intimately related to our “except at finitely many points” problem.) Our way
around this is to alter our definition of “=." Taking our cue from the vector
case, we agree to say that f is the zero-function if and only if || f|| = 0 and that
f=gifand only if || f — g|| = 0. (Actually, we say that we identify g with f.)
This is a common mathematical practice and, although it seems that we’re
cheating, we’re justified because all of our operations are based on integrals.
Also, as we’ve seen, this identification seems to make sense physically. In fact,
we could almost as easily have done it back in Chapter 3, although we would
have had to give up on the beautiful idea of pointwise convergence of Fourier
series.

When dealing with vectors, we found that it was convenient if our basis
vectors were of length one. The same is true here.

Definition 8.8 The set of functions 1¥1,1s, . .. is orthonormal (with respect
tow, ona<xz<b)if

1) They are orthogonal.
2) ol = ll2f| = - = 1.

Remember, we can turn a vector into a unit vector by dividing by its own
length. Here we do the same with functions.

Theorem 8.9 Suppose ¢1, @2, ... are orthogonal with respect to w on a <
x < b. Then the functions

_ P _ 92
“Tel

v Tl
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form an orthonormal set with respect to w, on a < x < b. Here, we say that
we have normalized the set of functions ¢1, ¢, ... .

PROOF If n = m, then

b
(s Wom) = / O Pn

[[@nll {nl
1 b,
G [ #rwa
2
= Taelenl® =
If n # m, then
|
Example 1 The functions ¢,, = sin 7%, n =1,2,..., are simply orthogonal

on 0 < x < L. Therefore, since

L
9 . o NTT L
n = B — d = —,

the functions v, = % sin 2%, n = 1,2,..., are (simply) orthonormal on
0<z<L.
Example 2 The Legendre polynomials P,, n = 0,1,2,..., are simply or-

thogonal on —1 < x < 1. Since

2n+1

Pn = )
1Pl = 2

the polynomials 1, = /2%

P, are (simply) orthonormal on —1 < z < 1.

Example 3 The Chebyshev polynomials of the first kind, T},, n = 0,1,2, ...,
are orthogonal with respect to the w(z) = \/1177 on —1 <z < 1. Since

Vr, if n=0,

[ Tll =
\/g, ifn>1,
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the polynomials

1 2
= — n = —1-’,,Z7 :172,...,
¢0 ﬁa w \/; n

are orthonormal with respect to w(x) = \/11_7 on —1<z<1.

Now, back in Chapter 3, when considering pointwise convergence of a se-
quence of functions, we wanted

Jim_|gn(2) - g(z)] =0
for each value of z. The only distance formula or metric at our disposal was
the absolute value function and, in a sense, we had to look at the above limit
for each x, separately. However, we now have a new metric, induced by the
norm of a function, which looks at functions in a global, as opposed to a
pointwise, sense.

Definition 8.9 Given a sequence of functions g1, gs,9gs, ..., we say that the
sequence converges in the mean to g if

lim ||gn, —g| = 0.
n—oo

Actually, to be more precise, we call this convergence mean-square conver-
gence or L? convergence to distinguish it from other types of convergence
in the mean (e.g., mean-cubed convergence or L® convergence).

Can we say that either pointwise or mean-square convergence is stronger
than the other, that is, that any sequence of functions which converges point-
wise also must converge in the mean, or vice versa? Surprisingly (well, not if
you've done a fair amount of analysis), the answer is no, as we’ll see in the
exercises.

Exercises 8.4

1. Prove the following properties of the inner product with respect to a
weight function, w:

a) (f,9) =9, f)
b) (f,g+h)=(f,9) +(f;h) =(g+h,[)

¢) (cf.g) = (f.cq) = e(f,g), for any constant ¢

) The functions 1, cos Z£, cos Q’TT“”, ... are simply orthogonal on 0 <
2 < L. Use them to construct a set which is (simply) orthonormal
on0<x<L.

2. a

b) Construct a set of functions which is (simply) orthonormal on —L <
x<L.
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3. Construct a set of polynomials which is orthonormal with respect to the
weight function w, on the given interval.
a) wx)=v1—-a%2,on-1<z<1
b) w(z) =e*, on0 <z <00

x

¢) w(z) =e*, on —00 <z < 00

4. Given the set of functions g, (z) =2", n=1,2...,on 0 <z < 1:
a) Show that the sequence converges in the mean to g(z) = 0 (with
respect to the weight function w(z) = 1).
b) Show that the sequence does not converge pointwise to the function

g(z) = 0.
5. Given the set of functions
. 1
n,if0 <z < —,
Jn(x) = n on 0<z<1,
0, otherwise,

a) Show that the sequence converges pointwise.

b) Show that the sequence does not converge in the mean (with re-
spect to the weight function w(x) = 1).

6. a) Show that ||f — g|| = 0 implies that || f|| = ||g]|.

b) Remember that the vector dot product satisfies v-w = ||v||||w|| cos 6,
where 6 is the angle between the vectors. Therefore, we always have
[v - w| < ||v||||w|. Prove that the inner product of functions, with
respect to the weight function in (z), satisfies

IFal < gl

This is the Schwarz inequality. (Hint: F(\) = |f + \g||? =
(f + Mg, f + Ag) > 0; therefore, I is a quadratic polynomial in A
with only one root.)

¢) Using the Schwarz inequality, and comparing || f + ¢||? and (|| f|| +
llgl)?, prove the triangle inequality

1+ gl < 111+ Nlgll-

7. Give a different proof of the Schwarz inequality by using the fact that

b b
/ / F@)a(y) — g (@) w(z)w(y)dzdy > 0.
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Cauchy’s inequality
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n 2 n n

=1 =1 =1

Use mathematical induction to prove this inequality.

9. Suppose we start with the R3 vector v = ai + bj + ck.

a) Show that the vector in the z-y plane which most closely approx-

imates v is the vector v1 = a& + bj, i.e., show that the quantity
|lv — (A% + Bj)|| is minimized by choosing A = @ and B = b. (vq,
of course, is the projection of v onto the z-y plane.)

b) Conclude that |jv1]] < ||v]|]. When are they equal?

¢) We generalize the above result as follows. Suppose v = aiiy + biie +

ciig for a set 4, g, @13 of orthonormal (i.e., perpendicular and of
length one) vectors. Show that the quantity

v — (Ada + Bas)|

is minimized when A =v -4 and B = v - 3.

d) Conclude that

(v - di1)Ela + (v - G2)d2 < [v]].

“_m»

Then conclude that we have if and only if v is perpendicular

to ’0,3.

e) Conclude that

(0-i1)> + (v -i2)? < o] >

When we extend this idea to functions in the following section, this
inequality will be called Bessel’s inequality.

f) Conclude that we have “=” in the above statement if and only if

v is perpendicular to 3. The equation
(v-u1)? + (v-u2)® = |v|?

will be generalized, in the case of functions, to what will be Par-
seval’s equality. Actually, though, this equation, here, is a very
famous theorem, in disguise. Which theorem?

10. Given the function f(z) on 0 < z < 7, using weight function w(x) = 1,

a) Find the value of ¢; which minimizes

| f — c1sinz|®

What’s the significance of this number?
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b) Find the values of ¢; and ¢ which minimize
| f — c1sinx — g sin 2z

two different ways:

i) Using calculus of two variables, with ¢; and ¢ the independent
variables;

ii) Using algebra, by completing the square in each variable, ¢;
and cs.

Again, what is the significance of these numbers?

In each case, we are trying to find the linear combination which most
closely approximates f in the mean-square or L? sense. The quantity
being minimized is called the mean-square error.

11. Do the same as in Exercise 10, but for the given function f on —1 < x <
1, and where Py, P, and P; are the first three Legendre polynomials.

a) f(z)=a*

0,if —1<z<0,
r,if0 <z <1
c) f(z) =a?

In each case, what is the mean-square error?

b) f(x) =

8.5 Generalized Fourier Series;
Parseval’s Equality and Completeness

Now we are ready to look at generalized Fourier series in the setting of mean-
square convergence. We begin with an orthogonal set of functions, with re-
spect to the weight function w(x), on an interval a < z < b, where we may
have a = —oo or b = oo. Then, given any function f, we wish to see if we
can expand f into an infinite series of the functions ¢1, ¢2,... . Remembering
that an infinite series is defined in terms of the limit of its partial sums, we
first try to determine, for each IV, the values of ¢y, co, ..., cy which minimize

N
Hf - Z cn¢n

n=1

We can do this in a number of ways (see Exercise 10b in the previous section),
and we choose to do so algebraically.
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Since the above expression is nonnegative, we may look at
N 2 N N
Hf_zcn(bn = <f_zcn¢naf_zcn¢n>
n=1 n=1 n=1
N N M
= <fa f> -2 <fa ch¢n> + <ch¢n7 Z Cm¢m>
n=1 n=1 m=1

(why m?)

= _2ch f,(bn +chncm (bnv(bm

n=1m=1

However, (¢, o) = 0 unless n = m, so we have

N N
f> - 22 Cn<.f7 ¢n> + Zci<¢na¢n>
n=1

n=1

e

=Y [ lénll? = 2¢u(f.du)] + (f. ).

Now, we complete the square inside the summation:

v o) (0" _ (.00
_ 2 2 _ L - .
=3 poni? [ - R O -

+(f, )

N N
— 2 f ¢n ] f ¢n
2_lionl o =2

Finally, since the variables ¢, appear only in the squared term of the first
sum, it should be clear that the expression is minimized when each term in
this sum is zero. Therefore, the coefficients we're after are

_ (fidn)
Cn = 5 -
[l
Definition 8.10 Given an orthogonal set of functions ¢1, ¢, ... on an inter-
val a < x < b, and any function f defined on this interval, the constants
cnzM n=12,...,

I$nll?’
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are called the Fourier coefficients of f with respect to the orthogonal set
1,02, ... (as long as they are defined). The sum

o0
> cntn
n=1

is called the Fourier series of f with respect to these functions and, as before,

we write
o0
f ~ Z Cn(brw
n=1

Of course, if the functions ¢, are orthonormal, the Fourier coefficients are

Just cn = (f, én).

Example 1 Given the simply orthogonal set {sin %}zozl on 0 <zx< L,
the Fourier coefficients of any function f are

(f:sin 22)
T
Jsin =7=]|

2 L
= z/o f(a:)sin? dx,

which, of course, are just the Fourier sine coefficients derived in Chapter 3.
So the Fourier series is just the old Fourier sine series.

In fact, our derivation of the Fourier coefficients here really is just a “cleaner”
and more general version of that used in Section 3.3 to derive the trigonomet-
ric Fourier coefficients.

Example 2 With respect to the simply orthogonal set of Legendre polyno-

mials P,, n = 0,1,2,..., on —1 < z < 1, the Fourier coefficients of any f
are

(f, )

Cp = , n=0,1,2,...,
P02
2n+1 !
ik / f (@) Py ()da,
-1

and the Fourier—Legendre series for f is

f~ i cnPy.
n=0

The big question, of course, is, “When does the generalized Fourier series
of f actually converge in the mean to f7” Obviously, it does so if and only if

N
f - Z Cndnl|| =0, cp= <f7 ¢n2>7
— [l

lim
N—oo
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but under what conditions on f and the ¢, will this happen? Going back

to where we minimized the quantity inside the limit, we have, from letting
_ {fdn)

C =
T lgall??

0<

(f, ¢n>r
16l

2 N
— A1 = S 6l [
n=1

N
= IF17 =D enlignll®.
n=1

N
f - Z Cnd)n
n=1

This makes sense so long as || f|| is finite, in which case we rewrite it as

N
> Al < [f]12 for any N =1,2,3,... .

n=1

Now, the left side is the N partial sum of an infinite series of nonnegative
terms, and these are bounded above (by ||f||?). Therefore, the infinite series
must converge and must satisfy the famous Bessel’s inequality:

> allgall® < 11

n=1
For convergence to f, we need

2

N N
Hf =S cadal] =117 =3 Rlgul? 5 05 N - oo,
n=1 n=1
that is, we need to have “=" in Bessel’s inequality. This is the equally famous

Parseval’s equality:
o0
> alienll® = 1117,
n=1

and we have proved the following theorem.

Theorem 8.10 Suppose that || f|| < oco. Then the Fourier series for f, in
terms of the orthogonal set {¢,}52 1, converges to f if and only if Parseval’s
equality holds, that is, if and only if

{f; bn)
lénll*

o0
> Elgall® = 1£117, where ¢, =
n=1

Now we may talk about completeness in the mean-square or L? sense.
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Definition 8.11 Given the set ¢1, ¢, ..., orthogonal with respect to w on
a <z <b, we say that this set is complete in the mean-square sense if,
for every function f satisfying ||f]| < oo, the Fourier series for f converges
in the mean to f. In other words, the set is complete if and only if, for
every f satisfying | f|| < oo, Parseval’s equality holds.

Unfortunately, there is no general method for proving that a given set of or-
thogonal functions is complete. However, it has been proven, for example, that
the eigenfunctions of any regular or periodic Sturm-Liouville problem form a
complete set, and the same has been proven for various sets of orthogonal poly-
nomials. In particular, the trigonometric functions of Chapter 3, and
the Legendre polynomials, associated Legendre functions,® Cheby-
shev (both kinds), Laguerre and Hermite polynomials all form com-
plete sets in the mean-square or L? sense. So, too, do the functions
{Jn(E2Z)}oo_y, for any n=0,1,2,..., where {x,,}so_, is the set of the
positive roots of J,.

There is a fairly easy way to show that a set ¢1,¢o,... is not complete.
Let’s first think about vectors; given a set of k perpendicular vectors in R™,
how do we know if they span R"? Easy—if k < n, it doesn’t span the space.
However, we can’t use the same argument in these function spaces because
they are infinite dimensional. But, going back to vectors, if k& < n, then
there’s at least one dimension unaccounted for—we can produce a nonzero
vector which is perpendicular to the given vectors. The same idea holds here.

Theorem 8.11 If the orthogonal set ¢1, @2, ... is complete, and if f is or-
thogonal to each of the ¢, then we must have f = 0 (in the mean-square
sense).

PROOF Since ¢1, ¢o, ... form a complete set, we have

V)
lfnll*

f= Z Cnn, Where ¢, =

n=1

But f is orthogonal to each ¢,, so (f,®,) = 0 for each n. It follows that
f=0.

Example 3 Do the functions cosz,cos2x,... form a complete set on 0 <
x < w? Take f(x) = 1. Then

<f,cosmc>:/ cosnr dr =0 foreach n=1,2,....
0

§P,;"7 for firted m, forn=m,m+1,....
91n fact, they all actually converge pointwise in the same way as the trigonometric series.
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Therefore, f is orthogonal to each function cosnx; thus, the set of functions
is not complete.

Before getting to the exercises, let’s look at a few examples involving Par-
seval’s equality.

Example 4 Parseval’s equality for the trigonometric Fourier series: Given
f(z) or =1 < <, with || f|| < oo, we have

flz) = % + Z(an cos nx + by, sinnzx).

n=1

Then, [|1]|? = 27, || cosnz|* = ||sinnz||? = 7 for n = 1,2,... . So Parseval’s
equality becomes

117 = ()" 24wy (a2 +82)

n=1

or
Lisp =% 4 i (a2 +82).
™ 2 ot

We extend this idea in Exercise 6.

Example 5 Use the above version of Parseval’s theorem, and the function
f(z) = z, to rederive Euler’s series

2 oo

s 1

6 an
n=1

(see Exercise 19, Section 3.4).

™ 2 3
1P = [ o de =22

Also, the Fourier coefficients were computed in the above-mentioned exercise:

First,

ag = an =0, n=12,...,
1 [ 2

by, = —/ rsinnr de = = (—1)"T1
TJ n

Then, Parseval’s equality becomes
f: 1
—~ n?

which, after a little algebra, gives us what we want.
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Exercises 8.5

1. Show that the Fourier coefficients for both the trigonometric Fourier

series and the Fourier cosine series are the same as what we get using

IR
Cn = Ygal%

2. Calculate the first four terms of the Fourier-Legendre series (in parts a
and b) for

0,if —1<z<0,
r,if0 <z <1.
b) f(x) = cosmax.

2

¢) Calculate the complete Fourier—Legendre series for f(z) = x*.

a) f(z) =

3. Generalized Fourier Series: In Example 2 we showed that if
f(x):chPn(a:), —1<z<1,
n=0

then the Fourier—Legendre coefficients of f are

2n+1
2

Cp =

1
/ f(z) Py (z)de, n=0,1,2,... .
-1
a) For a function f(z) on 0 < z < oo, if
flx) = Z cnLn (),
n=0
show that the Fourier—Laguerre coefficients of f are
Cp = / f(@)L, (x)e "dz, n=0,1,2,....
0
b) For a function f(x) on —oco < x < oo, if
flx) = Z cnHyp(2),
n=0
show that the Fourier—Hermite coefficients of f are

1 oo
Cn = W‘/ioof(gy)Hn(it)eiw2d(E, n:071’2"" :
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c)

For a function f(z) on 0 <z <1, if

= i cido(kix)
i=1

where the numbers k; are the positive roots of the Bessel function
Jo, show that the Fourier—Bessel coefficients of f are

2 /1
Ci = ———— xf(x)Jq(kix)d.
TE O Jo T bie)
(Refer to Exercises 7 and 8, Section 7.5.)

Use the properties established in Exercise 4 of Section 7.5 to derive
the following Fourier—Bessel series:

1
1~2% ————Jo(knt), 0 L
;kmh(kn) o(kn) <z <
— k2 -4
2~ L Jo(kn, 0<z<1
o L e 0<e<t
= 1
ma2N = Jo(kez), O<az<1, m=0,1,2,....
x ;knJ 0 (knx) x m

The numbers k,, are the positive zeros of Jy in the first two, and
of J,, in the last.

MATLAB: Plot the graphs of

2ZkJ1 o(knz) and Zk3J1 Jo(knx)

on —1 < x < 3, for various values of V. Refer to Table 7.1, Section
7.5.

MATLAB: Do the same as in part (e) for

1
2ZkJ2 Ji(kpz) and 227]c NACS

where, in the first sum, the k,, are the positive roots of Jy, while in
the second, they’re the positive roots of Jo. Again, refer to Table
7.1, Section 7.5.

Suppose, instead, that the numbers k;, i = 1,2, 3, ..., are the roots
of J,. Show that the Fourier—Bessel series for f(z), 0 <z <1, in

this case is -
x) ~ ZciJa(k x)
i=1

Jg(knx),
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with
= s, e s

(Refer to Exercise 9, Section 7.5.)

4. One may derive the Fourier—Chebyshev coefficients as in the previ-
ous exercise. However, we proceed as follows:

a) Suppose we have

=2 +Zlchn(x), 1<r<l.

Let x = cosf, 0 <60 <, and use the more familiar looking result
to conclude that

1
Cn = z/ f(2)Ty(x)dx, n=0,1,2,... .

b) Similarly, supposing that

z):chSn(a:), -1<z<1,
n=1

use the same substitution to show that we have

5. Find the first three terms of the Fourier-Laguerre series for f(r) = e~ 2¢
(don’t forget the weight function).

6. a) Explain why every piecewise continuous function f(z) ona <z <b
also satisfies || f[|? = f f2(z)w(x)dr < oo for any weight function
w.
b) Give an example of a class of functions f(z) on 0 < z < 1 such
that fol |f(z |dx is infinite (and, therefore, f is not piecewise con-
tinuous), but fo f2(z)dx < oo.

7. a) Show that Parseval’s equality for the trigonometric Fourier series
of a function f on —L <z < L is

1 [E 2 =
E/LfQ(x)d;v = “—20 + (a2 +b2).
- n=1

Tt turns out here that, for o = 0, we must include k; = 0. One may then use I'Hépital’s
rule in the “variable” ki, if need be. (For a more general treatment of this situation, see
Pinsky’s Partial Differential Equations and Boundary-Value Problems with Applications.)
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b) Show that Parseval’s inequality, for the Fourier sine and Fourier
cosine series of f on 0 <z < L, gives us

/f2 dw—2b2—%% iai.
n=1

8. In Exercises 19 and 20 of Section 3.4, we talked about some of the won-
derful results involving infinite series that Euler had derived, without
the benefit of Fourier analysis. We saw that, using Fourier series, we
could duplicate some of these results rather easily. Now, with Parseval’s
equality, we add yet another weapon to our arsenal.

a) For a warmup, use the Fourier sine series for f(z) =1lon0 <z <7
to rederive the sum

2 > 1
N Z 12
8 = (2n-1)
b) Now use the Fourier cosine series for f(z) = 22, on 0 < z < 7, to

show that .y
T =1
90 nzz < nt’

¢) Next, use the Fourier cosine series for f(x) =z, on 0 <z <1, to

derive
4

T = 1
96 n; (2n — D4
d) Use the results of parts (b) and (c¢) to find the sum

1 1 1 1
STRPTINT I T
9. Remember that, in Exercise 3, Section 8.2, we showed that if ¢1, ¢2, ...
are orthogonal with respect to w on an interval, then v/w ¢1, \/w ¢2,. ..
are simply orthogonal on the same interval. Now, supposing that ¢1, ¢o, ...
are complete with respect to w, show that the functions \/w ¢1, v/w @2, . ..
are (simply) complete on the same interval.

10. If ¢1, o, ... is an orthogonal set on a given interval, and if (f, ¢,) =
(g, pn), m = 1,2,..., must the functions f and g be identical, in the
mean-square sense, i.e., must || f — g|| = 0?7 Why or why not?

11. Generalize Parseval’s equality and show that if

=Y cadn(z) and g(x den
n=1
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on a given interval, where {¢,}22; is a complete orthogonal set on the

interval, then

<f7 g> = Z cndnH(an2
n=1

12. The Hanging Chain: Bessel functions first arose in the study of the
hanging chain (by Daniel Bernoulli in 1732). So, suppose we have a
chain of length L, attached at the top and able to swing. Letting

u(z,t) = location of point = at time ¢
as in Figure 8.1, it turns out that u satisfies the boundary-value problem

Ut = §TUzz + UL, O<ax< L,t>0,
u(z,0) = f(x),

ut(xv O) = h(ﬂl‘),

u(0,t) bounded, u(L,t) = 0.

X

L
u(x,t)

X & -~

FIGURE 8.1
The hanging chain.

Here, g is the constant gravitational acceleration at the earth’s surface.

a) Solve this problem.
b) MATLAB: Letting L = 1, graph the first five vibration modes.

¢) What is the vibration frequency of the n*® mode?






Prelude to Chapter 9

Armed with the special functions, we're now in a position to solve the Big
Three PDEs in two and three spatial dimensions. We look mostly at problems
on bounded domains with simple geometry—rectangular, spherical and the
like—and we’ll find that, again, we can use the Fourier method to solve them.

Fourier, in fact, after deriving the two- and three-dimensional heat equa-
tions, proceeded to solve them as he had solved the one-dimensional version.
Poisson followed with solutions of heat problems in polar and spherical co-
ordinates and, ultimately, with his 1835 treatise Théorie Mathematique de la
Chaleur (Mathematical Theory of Heat). As for the wave equation, Euler had
dealt with the vibrating drumhead much earlier and gave the product solu-
tions for the rectangular and circular drumhead in 1759, solving the latter
which eventually would be known as the Bessel functions of the first kind. It
remained only to look at infinite linear combinations of these solutions.

In that same year, Euler and Lagrange independently provided cylindrical
and spherical wave solutions of the wave equation on all of three-dimensional
space. And in the early 19th century, Poisson derived the three-dimensional
version of d’Alembert’s solution, from which it’s easy to see that solutions sat-
isty Huygens’s Principle (which Christiaan Huygens (1629-1695) had shown
is satisfied by light waves, based on his wave theory of light).

FEuler and Lagrange both had written Laplace’s equation in polar and spher-
ical coordinates. It was then Legendre, while studying gravitational attrac-
tion, who solved the spherical version in the 1780s, with some help from
Laplace. And it was here that he encountered the polynomials which now
bear his name and which are a special case of the spherical harmonics which
form part of the solution to the spherical heat and wave equations.

As we’ve seen, Poisson was responsible for showing that the gravitational
potential must satisfy the nonhomogeneous Laplace’s equation—that is, Pois-
son’s equation—in regions where mass is present. It was while studying these
problems that he also provided his elegant closed form solution to Laplace’s
equation in polar coordinates, a solution now referred to as Poisson’s integral
formula. Also, around 1813, Poisson was the first to apply Laplace’s and
Poisson’s equations to the study of electricity.
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9

PDFEs i Higher Dimensions

9.1 PDEs in Higher Dimensions: Examples and
Derivations

THE HEAT/DIFFUSION EQUATION IN
THREE DIMENSIONS

We now derive the heat equation in three space dimensions. Suppose we
have a solid three-dimensional piece of material, with constant mass density
p, specific heat o and thermal conductivity k& (all as defined in Section 2.2).
Suppose also that there is a heat source/sink throughout the material, given
by

f(x,y, z,t) = rate at which heat is added/removed, per unit volume,

at point (z,y, z) at time ¢.
We wish, then, to determine the temperature function
u(zx,y, z,t) = temperature at point (z,y, z), at time ¢,

by computing in two different ways, the rate at which heat enters a typical
differential element. Our element, in this case, is the rectangular “box” shown
in Figure 9.1.

Ay
FIGURE 9.1
Three-dimensional differential element.

Proceeding as in Section 2.2, the time rate of change of the heat content of
the box, at time t, is
opAxAyAzu(z,y, 2, t).

375
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(Actually, we probably should, as in (2.3), use u; (a: + %, Y+ %, z+ %, t)
here. However, it really doesn’t matter (why?). Also, as then, we may ap-
proach things more rigorously, which we do in Exercise 1.)

Now we need the general statement of Fourier’s Law, which states that the
heat flux across any differential element of area at the point (x,y, z) is

du
O(z,y,2,t) = —k—(x,y, 2, 1),
(2,y,2,t) 7 (29, 2,1)
where j—z, of course, is the directional derivative of u in the direction normal
to the area element (realizing that there are two such directions). So,
O(z,y,2,t) = —kVu-n.*

Here, 7 is the unit normal, and Vu is the temperature gradient (hence the
use of this terminology in the one-dimensional case). Figure 9.2 illustrates
the flux for various orientations of the differential area and Vu, letting k = 1.
(Actually, we graph the vector ®fi, making clear the direction.)

FIGURE 9.2
Flux, including direction, for various orientations of the face of the
differential element.

Now we go back to Figure 9.1 and compute the inward flow across the front
and the back, that is, across the two faces x = constant. For the front, the
inward flow is

O(z+ Ax,y, 2, ) AyAz = —kVu - (=) AyAz = kuy (v + Az, y, z,t) AyAz;
for the back, it is
—kVu - 1AyAz = —kug(x,y, z,t) AyAz.
The total contribution is

kAyAz[ug(z + Az, y, z,t) — u.(z,y, 2,t)],

*In all cases, V involves only the space variables, z,y and z.
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which, of course, is essentially the same as (2.5). In fact, it should be fairly
obvious that each component behaves the same way:.
Finally, the rate at which heat is added to the box is

flz,y, 2z, t) Az AyAz.
Putting everything together, we have

u(x + Az, y, z,t) — u(x,y, z,t)

opu(z,y,z,t) =k

Az
+ u(x,y + Aya Zat) B u(x,y, Z,t)
Ay
U(HZ‘, Y,z + AZ,t) _ U(Hj‘, Y, th)
+
Az

+ f(x7 y7 z) t)
and, letting Ax — 0, Ay — 0 and Az — 0, we have the heat equation
u = &*V3u + f,

where the thermal diffusivity, as before, is a? = Uip and V2w is the Laplacian

2
VU = Ugy + Uyy + Usz.

Of course, the heat equation in two dimensions can be derived in the same
manner.

OTHER APPLICATIONS OF THE
HEAT /DIFFUSION EQUATION

Diffusion in three dimensions

As with the one-dimensional heat equation, if we replace “temperature” by
“concentration,” then Fourier’s Law is known as Fick’s Law and the derivation
of the diffusion equation for the substance proceeds almost exactly as above.

Diffusion-convection/mathematical biology
Suppose we are looking at algae on the surface of the ocean. Let
u(z,y,t) = concentration of algae at point (x,y), at time ¢.

The algae certainly are carried along by ocean currents and, in addition, they
are particle-like and undergo diffusion. Thus, they satisfy the two-dimensional
diffusion-convection equation, which turns out to be

up = &®V2u — viuy — VoUy,

where v(x,y,t) = v1(x,y, t)i+v2(x,y,t)] is the velocity of the current at point
(z,y), at time ¢. See Exercise 3.
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THE WAVE EQUATION IN TWO DIMENSIONS

Here we derive the equation for the vibrations of a membrane (or drumhead).
We now have what, essentially, is a two-dimensional problem, with the mem-
brane being the two-dimensional analog of the string. As such, we make the
same assumption, that is, if we let

u(z,y,t) = height of membrane at point (x,y), at time ¢,

we assume that each point (x,y) of the membrane possesses only vertical
motion.

As always, we consider a differential rectangle of the membrane, as in Figure
9.3a. The only forces acting on this element are those due to the rest of the
membrane pulling on it, that is, due to the tension along the four edges.
Assuming that the tension per unit length 7 is constant, we can “add these
up” along each side. The resultants are, by symmetry, at the center of each
edge. See Figure 9.3b.

FIGURE 9.3
The (a) forces per unit length and (b) resultants of those forces
acting along the edges of a differential element.

As in the case of the string, the horizontal components of these forces
must sum to zero. As for the vertical components, we treat each direction
separately, as in Section 2.3 and Figure 2.5. Thus, the sum of the vertical
forces is

T{AY[us(x + Az, y, 1) — ua(z,y, )] + Axfuy (2,y + Ay, t) — uy(2,y,1)]}.
Using Newton’s 2"¢ Law, we must equate this to

mass - acceleration = pAzAy - uy(z, y,t).
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Here, p is the mass per unit area, and, again, we approximate u; at the
corner, rather than the midpoint, of the rectangle. So the result is

Uy (v + Ar,y,t) —ue(w,y,t) | uy(w,y+ Ay, t) —uy(z,y,t)
+
Ax Ay

PUtt = T

and, letting Az — 0 and Ay — 0, we arrive at the wave equation
Upp = czvzu,
where ¢? = \/T—/p is the wave speed and V2u is the Laplacian
V2u = ugy + Uyy -

As with the one-dimensional wave equation, we may include the effect of a
load
f(z,y,t) = force per unit area at point (x,y), at time ¢,

resulting in the PDE
1
Ut = C2v2u + ;f((E, yvt)

OTHER APPLICATIONS OF THE WAVE EQUATION

One might expect that the propagation of waves in three-dimensional media
is described by the three-dimensional wave equation, and this certainly is the
case.

Compression waves in liquids and gases

Given a fluid with negligible viscosity, let
p(z,y,2,t) = P(z,y,2,t) — Py(z,y, 2, 1).

Here, P is the hydrostatic pressure, Py is the equilibrium hydrostatic pressure
(in the absence of motion) and p is called the incremental pressure. Then it
can be shown that, in certain circumstances, p satisfies the wave equation

Dttt = 02v2p7

where c is the wave velocity. In particular, the propagation of sound waves is
governed by the wave equation. See Exercise 6.

FElastic waves in solids

In the study of the vibrational motion of an elastic solid, we let

R(x,y, z,t) = displacement of point initially at (z,y, z), at time ¢.
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It can be shown that any vector field can be resolved into the gradient of
a scalar and the curl of a zero-divergence vector, that is, that there exist
potentials ¢ and H such that

R=V¢+V xH, with V-H =0.
If no body force is present, it can be shown that ¢ and H satisfy
A+ 2u

e = V2, Hy = %VZH,

where A and u are the so-called Lamé constants for the material and p is
the constant mass density. See Exercise 7.

Electromagnetic waves
The general form of Maxwell’s equations in a vacuum is given in Appendix D:

V- -E =A4mp V-B=0
E,=cVxB—4nJ B, = —cV X E,

where c is the speed of light. It can be shown that
E; = AV2E — 4nJ; — 4nc*Vp
and

By = ¢*V?B + 4ncV x J.
In particular, if p = 0 and J = 0, we have
Ett = C2V2E and Btt = 02V2B.

See Exercise 8. (For a vector function F' = Fii + Fbj + F3I:7 and V2F =
V2Fi+ V2Fj+ V2F3k.)

THE LAPLACE/POTENTIAL EQUATION AND
POISSON’S EQUATION

Back in Section 2.5 we derived Laplace’s and Poisson’s equations in electro-
statics. If the magnetic field does not change with respect to time, so that
B; =0, two of Maxwell’s equations become

V-E=4rp and V xE=0.

Again, p is the change density. The latter equation implies that E has a
potential —¢:
E=-V¢'

T Again, so long as the domain is simply-connected.
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Then the former gives us Poisson’s equation
V2¢p = —4np.
OTHER APPLICATIONS OF LAPLACE’S AND
POISSON’S EQUATIONS
Steady state problems

Of course, when looking at steady state solutions of any of the homogeneous
heat and wave equation examples, we see that they must satisfy Laplace’s
equation. Similarly, steady state solutions of the nonhomogeneous heat and
wave equations, with time-independent source terms, will satisfy Poisson’s
equation.

Magnetostatics
From Appendix D, the static Maxwell’s equations are
V- -E =A4mp V-B=0

VxB=0 VxE=0.
We already used the first and last to show that there is an electric potential
¢ such that V2¢ = —4mp. Similarly, it is easy to show that B has a magnetic
potential, B = —V1, and that v satisfies Laplace’s equation V2 = 0.
Newtonian gravity

It can be shown that the Newtonian gravitational field

F(x,y, z) = force per unit mass at (z,y, 2),

due to a distribution of mass, has a gravitational potential ¥ = ¥ (z,y, z), so
that
F =V,

and that ¢ must satisfy Laplace’s equation V2 = 0 in empty space, while it
satisfies V29 = —4mp in regions where the density of matter is p = p(x, v, 2).

Velocity of an incompressible and irrotational fluid (i.e., of a
perfect fluid)

If a fluid is incompressible, its velocity satisfies V - v = 0; similarly, if irro-

tational, its velocity satisfies V x v = 0. Thus, v has a velocity potential ¢

which satisfies V2¢ = 0. See Exercises 4 and 5.

EQUATIONS OF CONTINUITY

We may generalize to two and three dimensions the continuity equations dis-
cussed in Section 2.2.



382 An Introduction to Partial Differential Equations with MATLAB®

Fluid flow

If there is no source, the equation of continuity is

where, again, p is the fluid’s density and v its velocity. See Exercise 4.

FElectric current

In general, the equation of continuity relating charge density p with current
density J, again, with no source term, is

pt +V-(pd)=0.
(The derivation is similar to that of the fluid flow continuity equation.)

Exercises 9.1

1. Here we provide a more rigorous, and more general, derivation of the
heat equation in three dimensions. Suppose we have a simply-connected
piece of material with mass density p = p(z,y, 2), specific heat ¢ =
o(x,y, z) and thermal conductivity k = k(x,y, z). Let V be an arbitrary
subset of the material, with boundary S.

a) Conclude that the rate at which heat enters V is

/V/ [ opus o

(vou may assume that & [[[ f(z,y,z,t)dv = [[[ fi(z,y,z,t)dv).
b) Show that this must equal

/ kVu-n ds.

S

¢) Use the Divergence Theorem on the result from part (b), and the
arbitrariness of V', to conclude that we must have

1
uy = —V - (kVu).
op

2. Here, we do the same as in Exercise 1, but for the two-dimensional
wave equation. Let D be any subset of a two-dimensional vibrating
membrane, with boundary curve C. Let p = p(z, y) be the mass density
(per unit area) of the membrane. We apply F' = ma to D.
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a) Conclude that we have

ma = // puse dA.
D

b) Show that the vertical force at each point along C' is Tj—:‘f and,
thus, that the total vertical force acting on the piece of membrane

is
/ TVu-n ds.
c

¢) Use Green’s Theorem in part (b), and the arbitrariness of D, to
conclude that we must have

TV?u = PUtt.

(Note: T" will be constant—again, an approximation—as in the
one-dimensional case.)

3. Two-dimensional diffusion-convection equation: We'd like to de-
rive the contribution of convection to the diffusion-convection equation,
and we proceed very much as in Section 5.1. So, suppose we have a
differential rectangle of size Az x Ay, and suppose the velocity of the
current is the constant

v = v1l + v2].

Show that the net inflow into the element is approximately
ut(xv Y, t)AZCAy = _’UlAt[u(‘r + AZIJ, Y, t) - U(ZIJ, Y, t)]Ay
— v At[u(z,y + Ay, t) — u(x,y,t)|Ax
+ terms of order (At)2AzAy

and, thus, upon dividing by AxAyAt and letting each term go to zero,
we have

—

ur = —U - Vu = —01u,; — vauy,.
4. Derive the equation of continuity

pi+ V- (pw) =0

for a fluid with density p = p(z,y, 2,t) and velocity v = v(x,y, z,1t).
Show that if the fluid is incompressible, that is, if its density doesn’t
change, then we have

V-v=0.

(See Exercise 13, Chapter 2, Section 2.2.)

¥Since we assume the membrane to be perfectly flexible.
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5. a) Suppose we have a fluid with two-dimensional velocity field v =
v(x,y,t) = v1% 4+ vyy. Use Green’s Theorem to show that if

fv-d'r:fvl dx +vy dy =0
c c

around any simple closed curve C', then we must have
Viy = V2g-

b) Now use Stokes’s Theorem to show that if the three-dimensional
velocity field satisfies
7{ v-dr=20
c

around any simple closed curve C', then we must have
Vv =0.

Of course, part (a) is a special case of part (b); in each case we say
that the fluid is irrotational. Explain why this term makes sense.

6. Compression waves in fluids and gases: Suppose we’d like to con-
sider waves in a nonviscous fluid, for example, sound waves in air. We
let

P(z,y,z,t) = hydrostatic pressure at point (z,y, 2), at time ¢
and
Py(z,y, z) = equilibrium pressure in the absence of motion.
We look at the incremental pressure
p(z,y,2,t) = P(z,y,2,t) — Pi(x,y, 2).
Now, if
R(z,y, z,t) = displacement of fluid initially at (z,y, z), at time ¢,
Hooke’s Law for a fluid says that
p=—-BV-R

(as long as V- R is small), where the proportionality constant B is called
the bulk modulus
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a) Counsider the incremental pressure forces acting on the differential
element of size Az X Ay x Az in Figure 9.1. Realizing that pressure
is essentially a negative tension, show that the z-direction compo-
nent of force is

—po(z,y, 2, t) AzAyAz

and, therefore, that the total force due to p on the element is
—VpAzAyAz.

We call Vp the pressure gradient, for obvious reasons.

b) Use Newton’s 2"¢ Law to show that we must have
—Vp = pRy,

when p = p(z,y, z,t) is the density of the fluid.

¢) Finally, eliminate R and show that the result is that p satisfies the
wave equation
pu = cVp,§

where ¢2 = %.

7. Elastic waves in solids: Supposing we have a homogeneous and isotropic
solid, the normal stresses 0,0, and o, and the shearing stresses 7.,
T2z and T,y satisfy

0r = AV - R+ 2uuy, Ty> = p(wy + vs),

oy = AV - R+ 2uv,, Tow = WUy + wy),

0, = AV - R+ 2pw,, Toy = (Vg + uy).
Here, R(z,y,2,t) = u(z,y, 2, )i + v(z,y, 2, t)j + w(x, y, 2, t)k is the dis-
placement of the point initially at (x,y, z), and A and p are the so-called
Lamé constants for the material. If f(z,y,z2,t) = f,2 + foj + fsk is the

load or body force, then it can be shown that the total force at each
point is given by

a-direction: (04)g + (Tay)y + (T22)- + pf1,
y—direction: (O'y)y + (sz)z + (Tyz)z + pra
z-direction: (o), + (Toa)z + (Tyz)y + pf3-

a) Show that the equation of motion for the solid is

A+ u)V(V - R) +uV?R + pf = pRy;.

$You may interchange the order of differentiation wherever needed.
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b) Show that V2R = V(V - R) — V x (V x R) and, thus, that the
equation of motion can be rewritten as

(A+2u)V(V-R) —uV x (VX R)+ pf = pRy.

c) It turns out¥ that we may find potentials ¢ and H and 1 and K
such that

R=V¢+V xH and f=Vy+VzK.
Show that the equation of motion can be rewritten as
V[ +2u)V2¢ + ptp — pdy] + Va[uVZH + pK — pHy) = 0
and, thus, will be satisfied if ¢, H, ¢ and K satisfy

A2
b1t = i UV2¢+7/)7 HttZEVQH‘FK-
8. Electromagnetic waves: Show that Maxwell’s equations in a vacuum
imply that
E; = *V?E — AnJ; — 4nc*Vp
and

By = *V°B + 4mceV x J.
(You’ll need the identity established in Exercise 7b.)

9.2 The Heat and Wave Equations on a Rectangle;
Multiple Fourier Series

Now we solve the heat, wave and Laplace equations on two- and three-
dimensional domains with rectangular and circular/spherical boundaries. This
may seem much too restrictive. Although it is natural to solve one-dimensional
problems on intervals, the situation in higher dimensions is much more com-
plicated, with there being infinitely many possible shapes. It turns out, how-
ever, that there are so-called conformal mappings! (from complex analysis)
which may be used to transform more complicated domains into these simpler
regions, or combinations thereof.

We begin by considering the heat and wave equations on a rectangle in this
section.

9See, e.g., Methods of Theoretical Physics by Morse and Feshbach.

IIn fact, the Riemann Mapping Theorem guarantees that any simply connected region
in the plane, of finite extent, can be mapped conformally onto a circle, where the problem
can be solved and then mapped back to the original region.
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THE TWO-DIMENSIONAL HEAT EQUATION

Let’s start by solving the two-dimensional heat equation on a finite rectangle,
with the temperature held at zero along the edges. It will proceed almost
exactly as did the one-dimensional case—separation of variables, boundary-
value problems, superposition of solutions—and, at the end, we’ll find the
need for an extended version of the Fourier series.

So, holding off on the initial condition, we begin with

U = 2 (Ugy + Uyy) = V3, 0<zr<al<y<bt>D0,
u(0,y,t) = u(a,y,t) = u(x,0,t) =u(x,b,t) =0, 0<z<a,0<y<bt>0.

First, separate variables by letting u(x,y,t) = X (z)Y (y)T'(t). As in Exercise
18, Section 1.6, the PDE leads us to

T/ X// Y//
—_— = — —_— = —)\
o?T X + Y
X// Y//
= T/+OZQAT:0, YZ—T—A:—’}/

= T'+*2\T=0, X"+4X=0, Y'+(y=NY =0.

Similarly, we separate the boundary conditions:

So we’re led to the two eigenvalue problems

X"+4X =0 Y'+(A=7)Y =0
X(0)=X(a)=0 Y(0)=Y() =0,

which we’ve solved many times. The X-boundary-value problem has eigen-
values and eigenfunctions

Tl27T2 nmwx

ryn:?’ Xn(x):SinTa n=1,2,3,....

Then, for each such v, the Y-ODE is

n?n?

Y”+<)\— 2>Y:0, n=123,...,
a

and, for each n, we must have

n’n?  m2n?

A_—QZ = b2 y m:172,3,...

that is, for each pair n, m, we have the eigenvalue

Tl2772 m271'2
a—2 b—2, n=1,2,3,...,m:1,2,3,...

)\n,m =
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with corresponding eigenfunction

Y (y) = Yi(y) = sin ?

Now, for each pair n, m, the solution to the T-equation is
—a?n? (Z—z + 7;‘—22) t

Tom(t) = @t = ¢

giving us the product solutions

n=1,23...;m=1,23,....

Finally, any linear combination of these solutions is a solution of the PDE and
the boundary conditions, so we have the general solution

oo 00
u(xvyvt) = Z Z Cn)mun)m(ZIJ,y, t)

n=1m=1

o0 o

Z —a?r?(2ppmd)e o MTT L MTY
= E Cn,me a b sstm T,

n=1m=1

where the numbers ¢, », are, of course, arbitrary constants.
Now, how about the initial condition? As in Section 2.6, for certain special
initial conditions, we can solve the problem immediately.

Example 1 Solve the initial-boundary-value problem
uy = V3u, 0<z<1,0<y<2t>0,
w(0,y,t) = u(l,y,t) = u(,0,t) = u(z,2,t) =0,

3
u(z,y,0) = 3sin 67w sin 2wy + 7sin e sin %y

The general solution is

o0 o0
— (242 )m2e . mmy
u(z,y,t) = E Cn,m€ SlnmrxsmT.
n=1m=1
Then,
o0 oo
u(z,y,0) = E E Cp,m SINNTT Sin ——
n=1m=1

3
= 3sin 67 sin 27y — 7sin 7 sin %y
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Thus, we have that each ¢, ,» = 0 except for two cases:
n=6m=4=cs=3 n=1lm=3=c3=—T.

So our final solution is

3m
u(z,y,t) = 3¢~ sin 6rra sin 2y — Te™ 2™ !sinrzsin Ty

Of course, the big question is, what happens when the initial condition is
not so amenable, that is, what happens for general initial condition

U(l‘,y, O) = f(‘r, y)?

Here we need to extend the concept of Fourier series to functions of several
variables. We will not give a detailed treatment here. Suffice it to say that
multiple Fourier series behave quite like the one-dimensional kind with similar
convergence properties. But how do we calculate the coefficients?

We could proceed as we did before, this time by considering functions
sm%sm%, n=123,...;m=1,2,3,..., on the rectangle 0 < z < a,
0 <y < b. Specifically, we can show that these functions are orthogonal on
the rectangle, etc. (see Exercise 8).

However, our nonrigorous derivation follows directly from the one-variable
case. So, given f(x,y) on the rectangle 0 <z < a, 0 <y < b, for each (fixed)
y we can expand in a Fourier sine series in z:

o0
. nmx
g ) sin 7

where, for each y,
2 [ . nmx
= - f(z,y) sin —dx, n=12,....
a Jo a

Then, for each n,d,(y) also can be expanded as a Fourier sine series:

with

Chom = T

’ b
2 ["T2 [
= 5/0 [5/0 f(x,y)sin ?dx] sin? dy,

n=123,....m=1,2,3,....

|
[l )
S—
o
1SN
3
—~
NS
@
=}
3
3
=2
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Thus, putting everything together, we have the double Fourier sine series
for f on the rectangle 0 < x <a, 0 <y <b,

oo o0

f(z,y) ~ Z Z cmmsin?sin m;ry’

n=1m=1

4 a b
Cnm = — / / f(z,y)sin DT Gin 7Y dydzx.
’ ab 0 0 a b

It follows that the solution of the initial-boundary-value problem

where

Uy = a2(um + Uyy),

u(z,y,0) = f(z,y),

u(0,y,t) = u(a,y,t) = u(z,0,t) = u(z,b,t) = 0

® i —o?n? (2 m)e onTE Ny
u= Z Z Cn,m€ aZ T b2 sinT sin —=,

b

n=1m=1

with the above values for the constants cj, .

THE TWO-DIMENSIONAL WAVE EQUATION

The two-dimensional wave equation, modeling the vibrations of a rectangular
membrane, is solved analogously. So, suppose we're given

g = *(Uge + Uyy) = 2V2u,

u(z,y,0) = f(z,y),

ut(ira Y, 0) = g(xﬂ y)7

u(0,y,t) = u(a,y,t) = u(z,0,t) = u(z,b,t) = 0.

Separating the PDE and boundary conditions leads to the ODEs
T"+ANT =0, X"+4X =0, Y'+(A=7)Y =0
and boundary conditions
X(0)=X(a)=Y(0)=Y(b) =0.
Proceeding as above (see Exercise 2), we arrive at the general solution

u(z,y,t) = Z sin ? sin ? [€n,m €OS e/ An,m t + dpm SIDC/ Ay B,

n=1m=1

where, as above,
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and

cmm:ab//fxysm—sdeyd

x
(z,y)sin — nr sin—Wy dydzx,
a

b

dmm

ab\/ TL”TI/ /
n=123,...;m=1,23,....

It’s interesting to look at the X-Y eigenfunctions

. nmx . mmy
Un.m (2, y) = sin —, sin—=

for each of these problems and, in particular, to look at the role they play

in the case of the vibrating membrane. Remember that the solution of the

one-dimensional wave equation is

o0
nwx nmct nmct
t) = sin — [ ¢, cos —— + d,, sin .
) n§:1 7 (n 7+ T )

There, the X-eigenfunction

Xn(a:):sinn—?, n=1,2,3,...,

is the n'" mode of vibration, corresponding to the n'™ vibration frequency

ne

oL

For the present case, vy, m,(x,y) is called the (n,m)*™ mode of vibration of
the membrane, corresponding to the (n, m)th frequency

v o )\n,m _ cvV n2b2 + m2a2
Y S 2ab
(why?). In Table 9.1 we list the frequencies and modes for n = 1,2,3 and

m = 1,2,3 for a 2 x 3 membrane, with ¢ = 1. Figure 9.4 shows these nine
vibration modes.

Vp =

)th

v1,1 = sin &F sin T“ v1,2 = sin &F sin %T“ v1,3 = sin &F sin y
V1,1=# V1,2=% V13—r

V2,1 = sin 7 sin % V2,2 = sin Tz sin %Ty v2,3 = sinmx sin my
V2,1:@ l/22—\/_ V23—\/_

v3,1 = sin 3’;” sin & | w30 = sin 3’;” sin % v3 3 = sin 3’;9” sin 7y
V3,1=@ V32—\/_ VS,BZg

TABLE 9.1
The vibration modes, and corresponding vibration frequencies, for
a 2 x 3 membrane, for n=1,2,3 and m=1,2,3.
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FIGURE 9.4
MATLAB graphs of the vibration modes given in Table 9.1.

Now, in the one-dimensional case, you’ll remember that, for each mode,
there are points along the string which remain fixed—the nodes for that par-
ticular mode. As can be seen in Figure 9.4, the modes in the two-dimensional
case possess curves which have this property; these are the nodal lines (or
nodal curves) corresponding to each mode. Figure 9.5 shows the nodal lines
for each of the modes in Figure 9.4.

+ + - + | = +
Via Vi,2 Vi3
— — + - + j—
+ + - + | = +
Vo Voo V23
+ - +] — ] +
+ - + | — | +
Va1 Vi Vi3

FIGURE 9.5
The nodal lines for the modes in Figure 9.4. The +/— signs give
the sign of the mode throughout each cell.
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The “+” and “—” signs represent those regions where vy, n,, > 0 and vy, m <
0, respectively.

An interesting special case is that of the square membrane. Specifically, we
take a = b = 1, along with ¢ = 1, and we plot the (1,2)*™" and (2,1)*" modes
in Figure 9.6, along with the corresponding nodal lines in Figure 9.7.

J Al
0ol f (0K

Illlll’"
g
0.6 \\\\\ “\"’l/

S

l
z il

FIGURE 9.6
MATLAB graphs of the modes v, 2 = sinmzsin 2y and v = sin 27z
sinmy for a 1 X 1 membrane.

Viz Vo

FIGURE 9.7
Nodal lines and signs for the modes in Figure 9.6.

Here, it’s immediately obvious that 112 = 151 and that the corresponding
modes are symmetric. What is the significance of this? In the one-dimensional
case, to each frequency there corresponds a unique mode. In other words, each
eigenvalue has multiplicity one. Here, however, we have A1 2 = A2 1, so that
this number is an eigenvalue of multiplicity two (at least!). What this means
is that any linear combination of the eigenfunctions v; 2 and vy ; also is an
eigenfunction corresponding to this particular frequency. So, instead of v; o
and vg 1, we could use, for example, the linearly independent eigenfunctions

w1 = V1,2 + V21, W2 = V1,2 — V2,1
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(see Exercise 17). These functions** are shown in Figure 9.8; their nodal lines
are in Figure 9.9.

i:’.’if/// / /
N
A\‘\\§\\\\~. / //”
Ny

Ns /
N
A i”” -

ll
VT
s | I‘II

FIGURE 9.8
MATLAB graphs of the linear combinations w; = —v;2 —v2,;; and
w2 = V1,2 —V2,1.

+ +

W1 Wo

FIGURE 9.9
Nodal lines and signs for the modes in Figure 9.8.

In general, of course, determining the multiplicity of the (n, m)®™ frequency
requires finding all pairs (n1,m;) satisfying n?b? + m2a? = n?b? + m?a®. It
can be shown that no frequency has multiplicity greater than one if the ratio
b/a is irrational. Conversely, if b/a is rational, then one may use elementary
number theory to determine multiplicities. '

One may use double Fourier series to solve Laplace’s equation on a rectan-
gular solid, as well. See Exercise 10.

**Actually, we graph w1 = —v1,2 — v2,1 to get a better picture.

TTFor a nice treatment, see Partial Differential Equations and Boundary- Value Problems
by Mark A. Pinsky.
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EIGENVALUES AND EIGENFUNCTIONS OF
THE LAPLACE OPERATOR

Note that, in both the heat and wave equations, if we began by separating
only time from the space variables, that is, if we had let

u(x,y,t) =T(t)®(z,y)

at the start, then we would be led to the Helmholtz PDE, with Dirichlet
boundary conditions,

V2P 4+ AP =0, 0<z<a0<y<b,
©(0,y) = ®(a,y) = ®(z,0) = &(z,b) = 0.

Then, in solving this system, we actually found that the eigenvalues and eigen-
functions of the Laplace operator, subject to the Dirichlet condition, on the
rectangle 0 < x < a,0 <y < b, are

n?r?  m2n? nwT mmy

Anym = > + 5z (2, y) = sin — sin -

We’ll say much more in Section 9.6.

Exercises 9.2

1. Helmholtz equation: When solving the two- (or three-) dimensional
heat and wave equations, we may choose to begin by separating time
from the space variables. Given the three-dimensional wave equation

Ut = szzu,

show that letting u(z,y, z,t) = ®(z,y, 2)T(t) leads to the Helmholtz
equation y
V20 + A0 =0,

where \ = A/c and ) is the separation constant.

2. Work through the derivation of the general solution of the two-dimensional
wave equation.

3. Find the general solution of the two-dimensional heat equation u; = V2u
subject to the boundary conditions
a) u(0,y,t) = u(a,y,t) = uy(z,0,t) = uy(z,b,t) =0
b) uz(0,y,t) = ug(a,y,t) = u(z,0,t) = u(z,b,t) =0
c) uz(0,9,t) = uz(a,y,t) = uy(x,0,t) = uy(z,b,t) =0
d) u(0,y,t) = ug(a,y,t) =u(z,0,t) = u(z,b,t) =0
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4. Find the general solution of the two-dimensional wave equation uy; =
V2u subject to the boundary conditions

a) u(0,y,t) = u(a,y,t) = uy(z,0,t) = u(z,b,t) =0
b) uI(Oa yvt) = um(avya t) = u($7 Oa t) = U(Ia b7 t) =0
a) Solve the two-dimensional heat IBVP
Up = V2u,
u(z,y,0) = 2 + 5 cosma cos Ty,
uz(0,y,t) = ug(1,y,t) = uy(x,0,t) = uy(x,2,t) = 0.
What’s the steady state solution?
b) MATLAB: Plot the solution of part (a) for various values of t.
¢) Solve the two-dimensional wave IBVP
Ut = VQU,
u(z,0) = 3sindy — 5 cos 2z siny,
u¢(x,0) = 7 cosx sin 3y,
uz (0,9, 1) = ua(m,y, 1) = u(,0,t) = u(z, 7,t) = 0.
d) MATLARB: Plot the solution of part (b) for various values of t.

6. Compute the double Fourier sine series for f(z,y) on the rectangle 0 <
z<m 0<y<m

a) f(z,y) =1

b) (e, =4 TSV
1,ifx >y

c) flz,y) =y

n=1
for each function above, on the rectangle —7 < x < 3w, —

N M

d) MATLAB: Plot the truncated double Fourier series (Z > )
1

<

3w, for various values of N and M.

<y
7. Show that any well-enough behaved function f(z,y) on 0 < z < m,
0 <y < 7 can be expanded into the following double Fourier series:
a) f(z,y) ~ X 5=

o0 o0
SLsinmy 4+ Y D Cn,m cOsnx sinmy, where
m=1 n=1m=1

4 ™ ™
Cnym = —2/ / f(z,y) cosnzsinmy dydz,
™ Jo Jo

n=20,1,2,3,....m=1,2,3,... .



PDFEs in Higher Dimensions 397

[e.e] o0 (oo}
b) f(x,y) ~ > Stsinnz+ > Y cnmsinna cosmy, where
=1 n=1m=1

4 T T
Cnym = —2/ / f(z,y) sinnz cosmy dydz,
™ Jo Jo

n=1,2,3....m=0,1,2,3,... .

3

€o,m

o0
Cn,0 . o
i cosmy + 21 —%% cosnx
n=

) flz,y) ~ <+

M8

[e.e] o0
+ > > cn,m cosnx cos my, where
n=1m=1

4 s s

Cmm:_z/ / f(z,y) cosnz cos my dydz,
™ Jo Jo
n=20,1,2,...;m=0,1,2,... .

AT gin Y po= 1,2,3,..

8. Show that the functions vy, (z,y) = sin “2% .
m = 1,2,3,... are orthogonal on the rectangle 0 < x < a, 0 < y <
b. Use this orthogonality to derive the formula for ¢, ,,, the (n,m)th

coefficient in the double Fourier sine series, for a function f(z,y).
9. Use the results of Exercise 6 to solve the following IBVPs.

a) up = Vu,

u(z,y,0) =1,

u(0,y,t) = u(my,t) = u(z,0,t) = u(z,m,t) = 0.
b) Ut = Vzu,

u(z,y,0) = zy,

ut(xa Y, O) = 17

u(0,y,t) = u(my,t) = u(z,0,t) = u(z,r,t) = 0.
¢) MATLAB: Plot each (truncated) solution for various values of ¢.

10. Laplace’s equation on a rectangular solid: Here we solve the three-
dimensional Laplace equation on a rectangular solid.

a) First, we solve the Dirichlet problem where v = 0 on the boundary,
except on the two faces z = constant. Specifically, show that the
solution of the problem

V2u:um+uyy+uu:0, 0<zr<a,l<y<bl<z<e,
u(x,y70) = f(x, y)7u(x7y, C) = g(ac, y)7
u(z,0,2) = u(x,b,2z) = u(0,y,2) = u(a,y,2) =0
is
u(z,y,z) = Z Z sin 2% gin w[cn)m cosh may, mz + dy,m sinh oy, m 2],
a

b

n=1m=1
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where
4 a b
cnm:—/ / f(x,y)sin@sinw dydx
’ ab 0 0 a b
and
dnm = —cnmcothwan mC
T
— — d dx,
abblnhﬂ'an mc/ / (@,y) sm sm b yaz
n=123,....m=1,2,3,... .

Here, ap,m = 1/2—3 + T—;, and coth is the hyperbolic cotangent,

cosh z

cothz = 502

b) Without doing too much work, write down the solution to

V2u =Ugpy + Uyy + Uy = 07
u(z,0,2) = f(z,2),u(z,b,2) = g(x, 2),
u(0,y,2) = u(a,y, 2) = u(z,y,0) = u(z,y,c) = 0.

¢) Solve the Dirichlet problem

V22U =y, + Uyy + Uz = 0,
u(z,y,0) = 3sinwrsiny, u(x,y, 27) = 0,
u(z,0,2) = 2sindrxsin z, u(z, m,z) =0,
u(0,y,2) =0, wu(l,y,2z) =sin3ysin3z.

11.  a) Calculate the first (lowest) nine frequencies, and draw the corre-
sponding nodal patterns, for the vibrating membrane modeled by
the PDE wu = uzs + uyy, subject to the boundary conditions

u(0,y,t) = u(m,y,t) = uy(z,0,t) = uy(x,m,t) = 0.

b) MATLAB: Plot the corresponding modes from part (a).

¢) In general, what seems to be the relationship between the pair
(n,m) and the corresponding number of nodal lines? (To be con-
sistent, if u = 0 along an edge, we call the edge a nodal line.)
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12. Solve the diffusion-convection IBVP

Ut =Ugy + Uyy + 20Uy + 20Uy — ku,

u(r,y,0) = f(z,y),
u(0,y,t) = u(a,y,t) = u(x,0,t) = u(x,b,t) = 0.

Here, a, 8 and k are nonnegative constants.

13.  a) Show formally that any well-enough behaved function f(z,y, z), on
the rectangular solid 0 < x < 7, 0 <y <7, 0 < 2z <7, can be
expanded into the triple Fourier series

[c ol oo o)

E E Cn,m,p SINNT sin my sin pz,
n=1m=1p=1

where

8 s s s
Cnym,p = —3/ / / f(z,y, 2) sinnx sin my sin pz dzdydzx,
™ Jo Jo Jo

n=1,2,3...:m=123..:p=123,....
b) Solve the three-dimensional heat IBVP

Ut = Ugg + Uyy + Uszz, O<zr<mli<y<mO<z<m,
u(z,y,2,0) = f(z,y,2),
u(z,y,0) = u(z,y, ) = u(z,0,2) = u(z,m,2)

=u(0,y,2) = u(m,y,z) = 0.

14. a) Given f(z,y) on 0 < z < a,0 < y < b, perform a change to new
variables &, n so that

F(&mn) = f(x(£),y(n))

on the square 0 < ¢ < 7m,0<n < 7.

b) Compute the double Fourier sine series for F(£,7), then change
back to the variables x,y and show that we have the same coeffi-
cients ¢, that were derived in this section.

¢) Use the same idea on each of the double Fourier series in Exercise
7 to calculate each kind of double Fourier series for a function on
the more general domain 0 < x < a, 0 < y < b. Thus, without
loss of generality, we may assume in any of these double Fourier
series problems that we have a function with domain 0 < x < 7,
0 <y < 7 (similar to the one-variable case).

15. Given f(z,y) on 0 <z <7, 0<y <,
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a) Consider the function

fla,y), if0<z<m0<y<m,
—z,—y),if 1<z <0,—7<y<0,
gi(z,y) = i v) Y
—f(—x,y),if 71 <2x<0,0<y <,
—fz,—y),if0<z<m,—71<y<0

i) What does the graph of z = g1 (x, y) look like?
ii) Show that if we have

oo oo

flz,y) ~ Z Z Cnm SIN DT sin MY,

n=1m=1

then this same series converges to gi(x,y) (except, possibly,
on the boundaries and at discontinuities). Compute the coef-
ficients ¢, in terms of the function g;.

This is the two-variable analog of the statement that the Fourier
series of an odd function is a pure sine series.

b) Similarly, construct a function ga(z,y) on —7m <z <7, -7 <y <
m, for the series in Exercise 7a. Again, what are the coefficients, in
terms of g7

¢) Do the same, but for a function gs, for the series in Exercise 7b.
d) Do the same, but for a function g4, for the series in Exercise 7c.

Again, each of these is a special case of what is the general double
Fourier series for a function on —a <z <a, —b <y <b.

16. General double Fourier series: Given a function f(x,y) on —7 <
z<m —m<y<m,

a) Find functions ¢1, 92,93 and g4 which exhibit the symmetries in
Exercises 15a, b, ¢ and d, respectively, and for which we have

f(z,y) = g1(z,y) + 92(z,y) + g3(x, y) + ga(z, ).

b) Use the series in Exercise 14 to show that we have

1 oo
Fa9) ~ 222+ 1 5 (0, g conme + a0 cosmy
n=1

+ bo.n sinny + c,,0 sinne)
oo o0
+ Z Z (@n,m cosnx cosmy + by, m cOs N sinmy
n=1m=1

+ Cpm sinnx cosmy + dy, m sin na sinmy),
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where
4 s s
Anm = — f(z,y) cosnz cosmy dydz,
™ Jo Jo
n=0,1,2,....m=0,1,2,...;
4 s s
bpm = —2/ / f(z,y) cosnz sinmy dydz,
™ Jo Jo
n=0,1,2,...;om=1,2,...;
4 s s .
Cnom = =5 f(z,y) sin nz cosmy dydz,
™ Jo Jo
n=123,....m=0,1,2,...;
and

4 s s

dmm:_z/ / f(z,y) sin nz sin my dydz,
™ Jo Jo
m=123,....om=1,2,....

17. Prove that if fi(z,y) and fa(x,y) are linearly independent on a region,
then so are

gi(z,y) = fr(z,y) + fa(2,9),
92(x7 y) = fl(ﬁvy) - f2($,y).
More generally, for which choices of constants a, b, ¢ and d will
hl(xa y) = afl(ivvy) + bf2($7y)a
hZ(xa y) = Cfl(irvy) + df2($7y)
be linearly independent?
18. Nonhomogeneous equations:

a) Proceed as in Section 4.4 to solve the heat equation problem with
source term
u; = V2u + sin 2z sin 3y, O<z<miO<y<mt>0,
u(z,y,0) = sin 4z sin Ty,
u(z,0,t) = u(z,m,t) = u(0,y,t) = u(r,y,t) = 0.
b) MATLAB: Plot the solution of part (a) for various values of ¢.
¢) More generally, solve the problem
Uy = V2U + F(xa Y, t)a
u(z,y,0) =0,
u(z,0,t) = u(z,7,t) = u(0,y,t) = u(r,y,t) = 0.
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You may assume that F' can be expanded in a double Fourier series

F(z,y,t) = Z Z F,, m (t) sin na sin my.

n=1m=1

9.3 Laplace’s Equation in Polar Coordinates:
Poisson’s Integral Formula

In order to solve these problems on domains which have circular boundaries,
we must resort to polar coordinates. Let us then compute the Laplacian in
polar coordinates (which, in fact, we already did in Exercise 7 of Section 2.5).
So, given

2
VU = Uy + Uyy,
we let

= z(r,0) = rcosé,

y=1y(r,0) = rsiné.
It turns out to be easier to do this backwards, that is, write

Up = Ugp Ty + UyYr

= u, cosf + uysin b
and

Uy = UgTo + UyYo

= —Ugrsind + uy,r cos .

Then, solving for u, and u,, we have

1 .
Uy = Uy cOSO — —ugsin b,
r

1 .
Uy = ;ue cos 6 + u, sin 6.
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It follows that
0 .
Ugy = %(um) =5 <ur cost — —Uo sin 9)

1
= (ur cosf — —ug sin 9) cosf
r

T

1 1
- - <ur cos ) — —ug sin 9) sin 6
r r 0

1 . 2 .
= Upp cOSZ 0 + 7“_2u99 sin? 6 — ;urg sin 6 cos 6
1 . 2 .
+ Zu,sin? 0 + —Up sin 6 cos 6
r r
and, similarly,
.2 1 2 2 .
Uyy = Upp 8in“ 6 + —5 Ugy COS 0+ —u,gsinfcos b
r r

1 2
+ Zu,cos? 0 — —uo sin @ cos 6.
r r

Adding, we have
1
Uz + Uyy = Upy + ;ur + T_2u99-
Now we may solve the two-dimensional heat, wave and Laplace equations
on a disk. We begin with Laplace, the least involved.
LAPLACE’S EQUATION ON A DISK

Here we solve the Laplace equation, on the disk 0 < r < a, with a Dirich-
let boundary condition—the so-called interior Dirichlet problem—leaving
other types of boundary conditions (as well as somewhat more complicated
geometries) for the exercises. So we must solve

1 1

Upr + —Up + —ugp = 0, 0<r<a,—oo <6< o0,
r r

u(a,0) = f(0), —00 < § < oo0.

However, the change to polars necessitates further restrictions. First, since
the point (r,6) is the same as the point (r, 6 + 27), we must require

u(r, 0+ 2m) = u(r,0)

for each 0, and each r in 0 < r < a. Also, why have we been avoiding r = 07
From our experience with polar coordinates, we see that it’s possible to have
equations with solutions that are unbounded at the origin. These solutions
certainly are not continuous, so we must require

lim u(r,0) = L < oo, —00 < 0 < o0,
r—0
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or, in short,
u(0,0) < oco.

Much of the separation of variables work already was done in Exercises 11
and 29, Section 1.6. There, we separated the ODEs and got

rPR'+rR —AR=0, ©"+X0=0.
Here, we also need to separate the auxiliary conditions:
u(r,0+2m) = u(r,8) = R(r)0(0 + 2m) = R(r)O(0)
= O(0 + 27) = (), —00 < 0 < 00,

and

lim u(r,8) = Th_r)r%) R(r)©(0) = ©(0) Th_% R(r) (why?)

r—0

<00 = lirnO R(r) < oo (again, why?).
r—

Again, in short, we write R(0) < oo.
We also showed that the eigenvalues and eigenfunctions of the ©-problem

0"+ X0 =0,
O(0 + 2m) = (), for all 6,

are

Ap=n%n=0,1,2,...; ©9(8) =co,0,(0) = c,cosnd + d, sinnd,
n=1,2,3,....

Then, from our earlier solution of the R-equation, we have

M =0,7"R"+rR =0= Ro(r) =ap+bolnr,
A =02, r’R" 4+ 1R —n?R=0= R,(r) = apr™ + b7 ",

n=123....
However, the condition lim+ R(r) = 0 forces b, =0, n =0,1,2,... . So our
r—0

surviving product solutions are

uo(r, 0) = co,
Un(r,0) = r"(c, cosnb + d,, sinnb), n=123,...,

and, thus, our general solution is

u(r,0) =co + Z " (¢, cosnb + dy, sinnd).
n=1
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Finally, we apply the Dirichlet condition:

u(a,0) = f(0) = co + Z a"(cn, cosnb + dy, sinnf).

n=1

First, it follows that we must have started with an f of period 2m, or the
original problem would not have been well-posed (why?). Then, we may
restrict ourselves to the interval —m < 0 < 7, in which case it is clear that the
series must be the Fourier series of f on —7 < 6 < 7, that is, that we must
have

coz%, a"c, =a, and a"d, = by, n=123,...,
where
1 21
p = — f(6) cosnf do, n=0,1,2,...,
™ Jo
and
1 27
b, = — f(0)sinnb db, n=123,....
T Jo

Our solution, then, is
u(r, 9) 2 Z (a)n(a cosnf + by, sinnb)
k) — n n .

(By the way, we could, instead, have used the equivalence of our #-problem
with the periodic Sturm-Liouville problem

0" + X6 =0, —T<f<m
O(—m) = O(n)
O'(—n) =0'(n)

—see Exercise 19, Section 1.7 and Example 1, Section 8.2—in order to set the
problem on —7 < § < 7 from the start.)

We may, instead, have a Neumann or a Robin boundary condition (or any
combination of boundary conditions, of coursel). We leave these for the exer-
cises, except that we must mention that the Neumann problem here, as when
we solved it in Chapter 4, requires a consistency condition. Specifically, if our
boundary condition is of the form

ur(a,0) = f(0),

j"iVVhy may we integrate on 0 < 0 < 27 instead of —m < 6 < 7?7 Actually, we need to be
careful-—see Exercise 19h.
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then we will find that we must have

g f@0)do = [ F)do = o.
0 -7

As before, all this says is that there is no net flux across the boundary. More
generally, as we saw in Exercise 14c, Section 4.3, we must have

ou
%ds = 0,
C

where C' is the boundary curve of the region in question. This sometimes is
called the theorem of the vanishing fluz.

Interestingly, it turns out that we may rewrite the solution to the interior
Dirichlet problem as an integral. Specifically, the solution is given by the
famous Poisson’s integral formula

a7 7()
u(r,0) = o /0 a? — 2ar cos(6 — @) + r? 4o,

which we prove, after a few remarks.
Poisson’s formula tells us that the value of v at any point in the interior
of 