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Praface

Control :n,gm:mng 15 an cmlmg and a challenging field. By its very nature, con-
trol ing is a inary subject, and it has taken its place as a ocm:
course in the engi Itis ble to expect diff
o mnster.mg and pracucmg the art of control engineering. Since the sub;ccl has a
strong ion, we might h it from a s(n::ly theoretical
point of view, emphasizing theorems and proofs. On the other hand, since the ulti-
mate objective is to i llers in real systems, we might take an ad hoc
approach relying only on i and hands when designing feed-
back control systems. Our approach is to present a control engineering melhodoaogy
that, while based on mathematical fundamentals, siresses physical system modeling
and practical control system designs with realistic system specifications.

We believe that the most important and p pp! h to ing is for
each of us to rediscover and re-creale anew lhe answers and methods of the past.
Thus, the ideal is to present the student with a series of problems and questions and
point to some of the answers that have been obtained over the past decades. The
traditional method—to confront the student not with the problem but with the fin-
ished solution—is to deprive the student of all excitement, to shut off the creative
lmpulsc. to reduce the adventure of humankind to a dusly heap of theorems. The
issue, then, is to present some of the 1 and i b that we
cunlmue ln coufront. for l! may be asserted that what we have :ruly learned and

WC

The purpose of this book is to present the structure of feedback control theory
and to provide a sequence of exciling discoveries as we proceed through the text
and problems. If this book is able to assist the student in discovering feedback con-
trol system theory and practice, it will have succeeded.

WHAT'S NEW IN THIS EDITION

This latest edition of Modern Control Systems incorporates the following key updates:

a a new section in Chapter | on grun zngm:cnngT‘h: role of control systems | in green
ing will continue apand as g require ever
levels of ion and

3 New design problems in key chapters that illustrate control design to support green
enginecring applications, such as smart grids, environmental monitoring, wind power
and solar power generation,

O A new section in each chapter entitled “Skills Check™ that allows students to test their
knowledge of the basic principles. Answers are provided at the end of cach chapter for
immediate feedback,

O A new section on the negative gain root locus.

O A new section on PID tining methods with emphasis on manual tuning and Zicgler-
Nichols tuning methods.

O Owver 20% of the problems updated or newly added. With the Iw:lflll =d|l|nn we now
have a total of over IDCIZI d-of-chapter exercises, probl
design prok blems. I will have no difficulty finding
different problems 1o nssugn semsler after semester.

O Video solutions of representative homework problems are available on the companion
wehsile: www.pearson highered .com/dorl.

Cantents ix
chapTer 11 The Design of State Variable Feedback
Syst 834
111 Introduction 835
112 Controllability and Observability 835
113 Full-State Feedback Control Design 841
114 Observer Design 847
115 Integrated Full-State Feedback and Observer 851
1.6 Reference Inputs 857
1.7  Optimal Control Systems 859
1L8 Internal Model Design 869
119 Design Examples 873
1110 State Variable Design Using Control Design Software 882
11.11 Sequential Design Example: Disk Drive Read System 838
1L12 Summary 8%
Skills Check 8% o Exercises 894 = Problems 89 * Advanced
Problems 900 * Design Problems 903 * Computer Problems 906 «
Terms and Concepts 908
cHapTer 12 Robust Control Systems 910
121  Introduction 911
122 Robust Control Systems and System Sensitivity 912
123 Analysis of Robusiness 916
124 Systems with Uncertain Parameters 918
125 The Design of Robust Control Systems 920
126  The Design of Robust PID-Controlled Systems 926
127 The Robust Internal Model Control System 932
128 Design Examples 935
129 The Pseudo-Quantitative Feedback System 952
1210 Robust Control Systems Using Control Design Software 953
1211 Sequential Design Example: Disk Drive Read System 958
1212 Summary 960
Skills Check 961 = Exercises 965 = Problems 967 » Advanced
Problems 971 « Design Problems 974 * Computer Problems 980
Terms and Concepts 982
cuapter 13  Digital Control Systems 984

131  Introduction 985

132  Digital Computer Control System Applications 985
133  Sampled-Data Systems 987

134  The z-Transform %90

135 Closed-Loop Feedback Sampled-Data Systems 995

Preface

MODERN CONTROL SYSTEMS—THE BOOK

Glubal issues such as climate change, clean water waste B

duction, and minimizing raw material and energy use have caused many
engineers 1o re-think existing appronchns to engineering design. One outcome of
the wolwng design sirategy is to oon«»dcr green mgmeemrg The goal of green engi-
neering is to design prod that F reduce the risk to human
Ith. and improve the environment. Applying the principles of green engineering

lights the power of feedback control systems as an :nahlmg ltchnnlngy
To reduce g gases and mini pollution. it is necessary to improve
haoth the qunlily and guantity of our environmental monitoring systems. One exam-
ple is tn use. wireless measurements on mobile sensing platforms to measure the
. Another le is to monitor the quality of the delivered

power to measure leading and lagging power, voltage variations, and waveform har-
monics. Many green engineering systems and ¢ require careful monitor-
ing of current and voltages. For example, current I!ansfnllll:u are used in various
capacitics for measuring and monitoring current within the power grid network of
interconnected systems used to deliver electricity. Sensors are key components of
any feedback control system because the measurements provide the required infor-
mation as to the state of the system so the control system can take the appropriate
action.

The role of control systems in green engineering will continue to expand as the
global issues facing us require ever increasing levels of automation and precision. In
the book, we present key :mmplcs from green cngineering such as wind turbine
control and modeling of a i for feedbuck control 1o achieve
maximum power dn.lm.-ry as the sunlight varies over time.

The wind and sun are important sources of renewable energy around the world.

Wind energy conversion to electric power | is achleved by wind energy turbines con-
nected to electric The i istic of the wind makes
smart grid development essential to bring the energy to the power grid when it is
available and to provide energy from other sources when the wind dies down or is
disrupted. A smart grid can be viewed as a system comprised of hardware and soft-
ware that routes power more reliably and eﬂ'mntly to homes, businesses, schools,
and other users of power in the p of i and other disturt
The irregular character of wind d:rcclinn and power also results in the need for reli-
able. steady electric energy by using control systems on the wind turbines them-
selves. The goal of these control devices is to reduce the effects of wind
intermittency and the effect of wind dlrcctmn change. Energy storage systems are
also critical tech gies for green ing. We seek energy storage systems that
are renewable, such as fuel cells Active control can be a key element of effective
renewable energy storage systems as well,
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process, sensors, and actuators. In the ing chapters, we inue the design
process. siressing the main poims of the chupters.

Teack a
Track b
Hesd shider

In the same spirit as the Sequential Design Example, we present a design prob-
lem that we call the Contintons Design Problem (ideatified by an arrow icon in the
text) to give students the opportunity to build upon a design problem [rom chapter
to chapter. High-precision machinery places stringent demands on table slide sys-
tems. In the Continuous Design Problem, students apply the techniques and tools
presented in each chapter to the development of a design solution that meets the
specified requirements.

The computer-aided design and analysis component of the book continues (o
evolve and improve. The end-of-chapter f blem set is i by the
graphical icon in the text. Also, many of the 'iulutluns to various components of
the Sequentiol Design Example utilize m-Oles with corresponding scripts included
in the figures.

A new feature of the twelfth edition is a Skills Check section at the end of each
chapter. The section is noted with a check mark jcon. In each Skills Check section,
we provide three sets of problems to test your knowledge of the chapler material.
‘This includes True of False. Multiple Choice, and Word Match problems, To obtain

Preface
For example, the pmbl:m set for The Root Locus Method, Chapter 7 (see Ppage
443) includes 28 39 prob) 14 d probl 14 design p
and 10 computer-based problems. The iscs permit the students to readily uti-
lize the pts and hods i duced in each chapler by solving n.lallucly
ightfl d before pling the more plex p
to one-third of the ises are provided, The probl requu'c an ion of the
concepts of the chapter to new i The ad i prot prob-
lems of i 2 plexity. The design p P the deﬁlgn task: the

computer-based problems give the student practice with problem solving using
computers. [n total. the book contains more than 1004 problems. The abundance of
problems of increasing pl gives studs confid in their probl
solving ability as they work their way from the cxercises to the design and computer-
based problems An instructor’s manual, available to all adopters of the text for
course use, contains complete solutions to all end-of-chapter problems.

A set of m-files, the Madern Control Systems Toolbox, has been developed by
the authors to supplement the text. The m-files contain the scripts from each com-
puter-based example in the text. You may retrieve the m-files from the companion
website: www.pearsonhighered.com/dorf,

Emp without Comy g Basic Princip The all-important topic
of design of real-world, complex control systems is a major theme throughout the
text. Emphasis on design for real-world applications addresses interest in design by
ABET and industry.

The design process consists of seven main building blocks that we arrange into
three groups:

1. Establishment of goals and variables to be lled, and definition of
specifications (metrics) against which to measure performance

2. System definition and modeling

3. Control system design and integrated system simulation and analysis

In each chapter of this book, we b the ion b the design
process and the main topics of that chapter. The objective is to demonstrate differ-
ent aspects of the design process through illustrative examples. Various aspects of
the control system design process are illustrated in detail in the following examples:

smart grids (Section 1.9, page 28)

photoveliaic generators (Section 2.8, page 91)

space station orientation modeling (Section 1.8, page 193)
bilood pressure control during anesthesia (Section 4.8, page 259)
attitude control of an airplane (Section 5.9, page 346)
robot-controlled motorcyele (Section 6.5, page 406)

wind turbine rotor speed control (Section 7.8, page 497)
maximum power pointing tracking (Scction 8.6, page 583)

PID control of wind turhincs (Section 9.8, page 674)

milling muchine contral system {Section 10,12, page 79
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Praface xiii

This text is designed for an i | v undergi © course in control systems for

:nsrnocnns sludcnls. There is  very Ilule !
and

ing in control system pracme. there-
fore, this text is wrllt:n without any conscious bias toward one discipline. Thus, it is
hoped that this book will be equally useful for all engineering disciplines and, per-
haps, will assist in illustrating the utility of control engineering. The numerous prob-
lems and examples represent all fields, and the examples of the sociological,
biological, ecological, and economic control systems are intended to provide the
reader with an awareness of the general applicability of control theory to many
facets of life. We believe that exposing students of one discipline to examples and
P from other disciplines will provide them with the ability to see beyond
their own ficld of study. Many students pursue careers in engineering fields other
than their own. For example, many electrical and mechanical engineers find them-
selvei in the aerospace industry working alongside aerospace engineers. We hope this
ion to control engineering will give stud, a broader und

control system design and anulysm

In its first eleven editions, Modern Control Systems has been used in senior-level
courses for enginecring students at more than 400 colleges and universities. It also
has been used in courses for engineering g1 dents with no previous back-
ground in control engineering.

THE TWELFTH EDITION

PEDAGOGY

A panion website is and faculty using the twelfth edition.
The website contains all the m-files in the book, Laplace and z-transform tables.
written materials on matrix algebra and complex numbers, symbols, units. and con-
version factors, and an introduction to the LabVIEW MathSeript RT Module.
An icon will appear in the book margin whenever there is additional related mate-
rial on the website. The companion website also includes video solutions of repre-

ive | L blems and a complete Pearson eText. The MCS website
address is www.p:nrwn highered.com/dorf.

With the twelfth edition. we continue to evolve the design emphasis that his-
torically has characterized Mad'cm Control Systems. Using the real-world engi-
neering p d with designing a ller for a disk drive read
system, we present the Sequential Design Example (identified by an arrow icon in
the text), which is considered sequentially in each chapter using the methods and
concepts in that chapter. Disk drives are used in computers of all sizes and they

P an important application of control engineering. Various aspects of the
design of controllers for the disk drive read system are considered in each chapter,
For example, in Chapter 1 we identify the control goals, identify the variables to
be controlled, write the control specifications, and establish the preliminary sys-
tem configuration for the disk drive. Then, in Chapter 2. we oblain models of the
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direct feedback, you can check your answers with the answer key provided at the
conclusion of the end-of-chapter problems.

The book is organized around the concepts of control system theory as they have
been developed in the frequency and time domains. An attempt has been made to
make the selection of topics, as well as the systems discussed in the examples and
problems, modern in the best sense. Therefore, this book includes discussions on
robust control systems and system sensitivity, state variable models, controllability
and observability, computer control systems, internal model control, robust PID con-
trollers, and computer-aided design and analysis, to name a few. However, the classi-
cal topics of control theory that have proved to be so very useful in practice have
been retained and expanded.

Building Basic Principles: From Cllsaiﬂl to Modern.  Our goal s to present a clear

ition of the basic principl | an:l d dm,gn
Thcdassml hod: o[nonlrol il ing are th hi d: Laplace I.runs-
forms and transfer functions; root locus design: Routh-Hurwitz stability analysis;
fi hods, i ing Bode, Nyquist, and Nichols; steady-state
=rmr for slandnrd test sugn.nls second-order system approximations; and phase and
gain margin and bandwidth. In addition, age of the state variable method is
significant. Fundamental notions of oontm]!abilily and observability for state vari-
able models are discussed. Fu1.1 state feedback design with Ackermann’s formula for
pole pl isp d. along with a di ion on the limitations of state vari-
able feedback. Observers are introduced as a means to provide state estimates when
the complete state is not measured,

Upon this strong foundation of basie principles, the book provides many oppor-
tunities to explore topics beyond the traditional. Advances in robust control theory
are introduced in Chapter 12. The impl ion of digital P control sys-
tems is discussed in Chapter 13. Each chapter (but the first) introduces the student
to the notion of computer-aided design and analysis. The book concludes with an
extensive lcf:mnccs section, divided by chapl:r to guide the student to further
sources of i ion on control engineering.

Py ive Devel Problem-Solving Skills. Reading the chapters, attending
lectures and uﬂ:mg notes, and working thmush the illustrated examples are all part of
the learning process. But the real test comes at the end of the chapter with the prob-
lems. The book takes the issue of problem solving seriously. In each chapter, there are
five problem types:

Exercises

Problems

Advanced Problems

Design Problems

Computer Problems.

oDocuop
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Learning Enhancement. Each chapter begins with a chapter pmnew deseribing
the topics the student can expect to The de with an
end-of-chapter summary. skills check, as well as tenns and concepts. These sec-
tions rei the i juced in the chapter and serve as a
reference for later use.

A second color is used to add emphasis when needed and to make the graphs
and figures easier to interpret. Design Problem 4.4, page 297, asks the student to de-

termine the value of K of the ller 5o that the resg denoted by ¥(s). to a
step changc in the position, denoted by R(s].:s sahsfnclary and the effect of the dis-
Tils).is mini 1. The inted Figure DP4.4, p. 298, assists

the student with (a) visualizing the problem and (b) taking the next step to develop
the transfer function model and to complete the design.

Preface

Chapter 5 The Perfe of Feedback Control Sy In Chapter 5, the per-
formance of control systems is examined. The performance of a control system is
correlated with the s-plane location of the pales and zeros of the transfer function of
the system.

Chapter 6 The Stability of Lincar Feedback Systems.  The stability of feedback sys-
tems is investigated in Chapter 6. The relationship of system stability to the charac-
teristic equation of the system transfer function is studied, The Routh-Hurwitz
stability eriterion is introduced.

Chapter 7 The Root Locus Method. Chapter 7 deals with the motion of the roots
of the characteristic equation in the s-plane as one or two parameters are varied,
The locus of roots in the s-plane is determined by a graphical method. We also
introduce the popular PID controller and the Ziegler-Nichols PID tuning method,

Chapter 8 Frequency Response Methods. In Chapter 8, a steady-state sinusoid
input signal is utilized to examine the steady-state response of the system as the fre-
quency of the sinusoid is varied. The develo of the freq p plot,
called the Bode plot, is considered.

Chapter 9 S!dﬂ:ly h the huqnantj Domain. System stability utilizing frequency
is i d in Chapter 9. Relative stability and the Nyquist
criterion are discussed.

Chapter 10 The Design of Feedback Control Systems. Several approaches to
designing and compensating a control system are described and developed in
Chapter 10. Various candidates for service as compensators are presented and it is
shown how they help to achieve improved performance,

Chapter 11 The Design of State Variable Feedback Systems. The main topic of
Chapter 11 is the design of control systems using state variable models. Full-state
feedback design and observer design methods based on pole placement are dis-
cussed. Tests for controllability and observability are presented, and the concept of
an internal model design is discussed.

Chapter 12 Robust Control Systems. Chapter 12 deals with the design of highly
accurate control systems m the presence of significant uncertainty. Five methods for
robust design are di luding root locus, freq ITAE meth-
ods for robust PID controllers, internal models, and pseuﬁo-quamllnlwa feedback.

Chapter 13 Digital Control Systems. Methods for describing and analyzing the
performance of computer control systems are described in Chapter 13, The stability
and performance of sampled-data systems are discussed.

Appendix A MATLAB Basics
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Each chapter includes a section 1o assist students in utilizing computer-aided
design and analysis concepts and in reworking many of the design examples, In
Chapter 5, the Sequential Design Example: Disk Drive Read System is analyzed
using computer-based methods An m-file script that can be used (o analyze the design
is presented in Figure 5,47, p. 362, In general, each script is annotated with comment
boxes that highlight important aspects of the serpt. The m:tumpan)mguu[pul of the
seript (generally a graph) also contains boxes 2 oul ele-
ments. The seripts can also be utilized with mudul'mlmns s the foundation for solv-
ing other related problems.
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Chapter 11 | to Control §; Chupter | provides an introduction to

the basic history of control theory and practice. The purpose of this chapter is to
describe the general approach to designing wnd building a control system,

('Il.ple: 2 Models of Syst Math ieal models of physical sys-
lems in input—output ot 1mns!’u I‘unmlun l'un'n are developed in Chapter 2. A wide
range of systems (incl and fluid) are d

Chapter 3 State Variable Models,  Mathematical models of systems in state vori-
able form are developed in Chaprer 3, Using matrix methods, the transient response
of control systems and the performance of these systems are examined,

Chapier 4 Feedback Control System Ch i The ch risties of feed-
hack control systems are deseribed in Chaprer 4. The advantages of feedback are
discussed, and the concept of the system error signal is introduced.
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Chapter 1 Intreduction 1o Control Systems

1.1 INTRODUCTION

Engineering is d with und ding and lling the ials and
forces of nature for the benefit of humankmd Control system engineers are con-
cerned with und Jing and 2 of their envi often
l:allcd systems, Lo provide uscful eoonnmv: products for society. The twin goals of

g and iling are P y bel:auu ffective systems con-
trol requires that the systems be d and h control en-

gineering must often consider the control of poorly understood sys(ems such as
chemical process systems, The present challenge to control engineers is the model-
ing and control of modern, complex, interrelated systems such as traffic control sys-
tems, chemical processes, and robotic systems. Simultaneously, the fortunate
engineer has the opportunity to control many useful and interesting industrial au-
tomation systems, Perhaps the most :hara:lcnstsc qualliy of control engineering is
the opportunity to control machines and i | and ic processes for the
benefit of society.

Control engineering is based on the foundations of feedback theory and linear
system analysis, and it integrates the concepts of network theory and communica-
tion theory. Therefore control engmcermg 13 ncv( J.umled o any engmeermg d:m-

pline but is equally applicable to
civil, and electrical engmecnng For exnmple a mnlroa system often includes elec-
trical, mechanical, and ch as the und ding of

the dynamics of business, social, and pohucnl syslems increases, the ability to control
these systems will also increase.
A control system is an i tion of comp forming a system configu-
ration that will provide a desired system response. The basis for analysis of a system
is I.'hc foundation provided by linear system theory, which assumes a cause—effeet re-
I hip for the p of a system. Therefore a p or process to be
cmlm]led can be represented by a block as shuwn in Figure 1.1. The input-output
the fect ship of the process, which in turn
represents a proussmg of the input signal to prowd: an output signal variable, often
with a power amplification. An open-loop uses @ ller and an ac-
tuator to obtain the desired response, as shown in Figure 1.2. An open-loop system is
a system without feedback,

An open-loop control system utilizes an actuating device to control the process
directly without using feedback.
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PREVIEW

In this chapter, we discuss open- and closed-loop feedback control systems. A con-
trol system consists of interconnected components to achieve a desired purpose. We
examine examples of control systems through the course of history. These early sys-
tems incorporated many of the same ideas of feedback that are employed in modern
manufacturing processes, allernative energy, complex hybrid automobiles, and so-
phisticated robots. A design process is | d that encomy the blish
ment of goals and variables 1o be o lled, definition of specificati system
definition, modeling. and analysis. The iterative nature of design allows us to handle
the design gap effectively while accomplishing necessary trade-offs in complexity,
performance, and cost. Finally, we introduce the Sequential Design Example: Disk
Drive Read System. This ple will be idered ially in each chapter of
this book. It rep a very imp and p control system design problem
while simultancously serving as a useful learning tool,

DESIRED OUTCOMES

Upon completion of Chapter 1, studenis should:

O Possess a basic understanding of control -sysn.m engineering and be able to offer
some and their relati p o key pOrary issues.

p

O Be able to recount a brief history of control systems and their role in society.

O  Be capahle of discussing the future of controls in the context of their evolution-
ary pathways.

O Recognize the elements of control system design and possess an appreciation of
controls in the context of engineering design.



Desired cutput

Chapter 1 Introduction to Control Systems

] ool 12 i €1mm|hllHMlthH Process I Actu

output

hw

&m.ll

Miasurenient catpat | Feedhack
[ Semaor 12 ]"—

| Bl Fecdback
FIGURE 1.5 Multitoop fredback system with an inner loop and an outer |oop,

Measurcment outpus

“The feedback systems in Figures 1.3 and 1.4 are single-loop feedback systems. Many
feedback control systems contain more than one feedback loop. A common multi-
loop feedback control system is illustrated in Figure 1.5 with an inner loop and an
outer loop. In this scenario, the inner loop has a controller and a sensor and the
outer loop has a controller and sensor. Other varieties of multiloop feedback sys-
tems are considered throughout the hwk as they represent more praclml silua-
tions found in real-world , we use the single-] feedbach
system for learning about the benefits of feedback control systems. smae the out-
comes readily extend to multiloop systems.

Duc 1o lhc incrensmg complexity oftlle system under control and the interest in
of control system enginecring has
gmwu m lhc past decade. Furthermore, as the systems become more complex, the in

hip of many il vanul:vll:s must be considered in the wullol
scheme. A block d iepicling a ivariable control system is shown in
Figure 1.6.

A common example of an open-loop control system is a microwave oven set Lo
operate for a fixed time. An example of a closed-loop control system is a person
steering an automobile (assuming his or her eyes are open) by looking at the aulo’s
location on the road and making the appropriate adjustments.

The introduction of feedback enables us to control a desired output and can im-
prove accuracy, but it requires attention to the issue of stability of response.
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of the it il and even to

control system led to slower
unstable sysiems. It then became imperative to develop a theory of automatic con-
trol. In 1868, J. C. Maxwell formulsted a mathematical theory related 1o contral

theary using a differential equation model of a g [5]. M. 1% study was
concerned with the effect various system pﬂmmclen hud an l.hc systcm pcrl'nr-
mance. During the same period, 1. A, Vysh
theory of regulators [6].

Prior to World War 11, control theory and practice developed differently in the
United Stutes and western Europe than in Russis and eastern Europe. The main im-
petus for the use of feedback in the United States was the development of the tele-
phone system and electronic feedback amplifiers by Bode, Nyquist, and Black a1
Bell Telephone Laboratories [7-10, 12]

Harold 8 Black | 1 from Wi Pulytechnic Tnstitute in 1921 and
joined Bell Laboraturies of Amu.rlmn Telegraph and Telephone (AT&T). In 1921.
the mojor task confronting Bell Lab was the imp 1t of the teler
system and the design of memvni signal amplifiers. Black was assigned the task of
lincarizing, stabilizing, and improving the amplificrs that were used in tandem to
CUITy o s over di of several th d miles.

Black reports [8]:

Then came the morming of Toesday, August 2, 1927, when the concept of ibe aegative
leedback amplifier came to me in a Mash while [ was crossing the Hudson River on the
Lackawanna Ferry, on my way 1o work. For more than 50 years | have pondered how
and why the idea came, and 1 cun’t say any more today than | coald that moming, AL
know s that after several years of hard work on the problem, | suddenly realized that it
1 fest the amplifier output back to the impul, in reverse phase, and kept the device from
ocilluting (singing. s we called it then), | would have exactly whal 1 wanted: n meons
of canceling out the distortion in the oulpul. | opened my moming newspaper and on a
page of The New Yook Times | sketched o simple canonical diagram of a negative feed-
back amplificr plus the equations for the amplification with feedbick. | signed the
sketch, and 20 minuies larer, when | reached the Inharatory at 463 West Strect, i was
witnessed, understood, and signod by the late Earl C. Blessing,

| eivisiomed this cireuit as leading to extremely linesr amplificrs (40 10 50 dB
ol negative feedbock ), bt an important question is: How did 1 know | eould avoid

FIGURE 1.3
Closed-icop
feedback control
Teedback).
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In contrast to an open-loop control system, a closed-loop control system utilizes
an additional measure of the actual output to compare the actual output with the
desired output response. The measure of the output is called the feedback signal. A
simple closed-loop feedback control system is shown in Figure 1.3 A feedback con-
trol system is a control system that tends to malnuln a prescribed relationship of
one system variable to another by [ ions of these variables and using
the difference as a means of control, With an accurate sensor, the measured output
is a good approximation of the actual output of the system.

A feedback control system often uses a function of a prescribed relationship be-
tween the output and reference input to control the process. Often the difference
between the output of the process under control and the reference input is amplified
and used to control the process so that the difference is continually reduced, In gen-
eral, the difference between the desired output and the actusl output is equal to the
error, which is then adjusted by the controller. The output of the controller causes the
actuator to modulate the process in order to reduce the error. The sequence is such.
for instance, that if a ship is heading incorrectly to the right, the rudder is actuated 1o
direct the ship 1o the left. The system shown in Figure 1.3 is a negative feedback con-
trol system, because the output is subtracted from the input and the difference is
used as the input signal to the controller. The feedback concept has been the founda-
tion for control system analysis and design.

A closed-loop control system uses a measurement of the output and feedback of
this signal to compare it with the desired output (reference or command).

As we will discuss in Chapter 4, closed-loop control has many advantages over

open-loop control |nciud|ng the ability to reject i and imp
1 noise Wei the di and

nmn: ll\ the block diagram as external mputs. 8 illustrated in Figure I. 4, External
and noise are in real-world ions and

must be addressed in practical control system designs.
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1.2 BRIEF HISTORY OF AUTOMATIC CONTROL

FIGURE 1.7
Walt's iytxl
avenmor.

Thie use of feedback © trod o system hasa ¢ hisiory. The I'ml applications of
feedback control lin the ! of float regul isms in Gireece
in the period 300 w I R, [1,2.3] The water clock of Ktesibios used a float regulator
(refer o Problem P11 An oil lsmp devised by Philon in approsimately 250 we, used
o float reguiator in an oil lamp for maintaining a constant level of fuel oil. Heron of
Alexandria, who lived in the first century .. published a book cntitied Preomntica,
‘which outlined several forms of water-level mechanisms using Mot regulators [1].

The first feedback system (o be imvented in modern Burope was the lempera-
ture regulator of Cornelis Drebbel (1572-1633) of Holland [1]. Dennis Papin
(1647-1712) invenred the first pressure regulator for steam bailers in 1681, Papin's
pressure regulitor was a form of safety 1 similur 1o a pressure-cooker valve,

The first ic feedback ller used in an industrial process is 1y
agreed 1o be James Watt™s fyball governor, developed i 1769 for controlling the
speed of a steam engine [1, 2] The all-mechanical device, shown in Figure 1.7, mea-
sured the speed of the output shaft and wtilized the movement of the fyball to con-
trol the steam valve and therelore the amount of steam entering the engine, As
depicted in Figure L7, the governor shall axis is connected via mechanical linkages
and beveled gears to the output shaft of the steam engine. As the stcam engine out-
puit shaft speed increasces. the ball weights rise and move away from the shall axis
nnel through mechanical linkages the steam valve closes and the engine slows down,

The first histonical feedbock system. claimed by Russia. is the waterlevel float
regulator said to have been invented by 1. Polzanoy in 1765 [4], The level regulitor
system is shown in Figure 18, The float detects the water level and controls the valve
that covers the water inlel in the boiler,

The next century was charseterized by the development of nutomatie control
systems through inteition and invention. Efforts to increase the accuracy of the

el ki Measred Holler
wpeel § srcam

Mgl
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Parkinson had a drcam about an antiaircraft gun that was Iy felling
airplanes. Parkinson described the situation [13]:

After three or four shots one of the men in the crew smiled at me and beckoned me to
come choser to the gun, When [ drew near he pointed to the exposed end of the left
trunnion. Mounted there was the control puteatiometer of my level recorder!

The next morning Parkinson realized the significance of his dream:

If my potentiometer could control the pen on the recorder. something similar eould,
with suitable engincering. control an antisircraft gun,

After i effort, an engil ing model was deli for testing to the
US. Army on December 1, 1941, Production models were available by early 1943,
and Hy 3000 gun llers were deli d. Input to the Was pro-

vided by radar, and the gun was aimed by taking the data of the airplane’s present
pusvlmn and ea]culﬁlmg the tnrget H future pmllbun

w© i the field of control follow-
ing \Mor:ld War 11 with the :nmaseduse of the Laplace transform nnd the complex fre-
quency plane. During the 19505, the emphasis in control engi g theory was on the

development and use of the s-plane methods and, particularly, the root locus ap-
proach. Furthermore, during the 1980s, the use of digital computers for control com-
ponents became mulme Thz technology of these new control elements to perform

accurate and rapid was ble to control engi There
are now over 400,000 digital process cnnlmi computers installed in the United States
[14, 27]. These P are P pecially for process control systems in
which many vari: are d and led si ly by the

With the advent of Sputnik and the space age, another new impetus was |mp|.ned
to control engineering It became necessary to design complex, highly accurate control
systems for missiles and space probes. Furth the ity to minimize the
weight of satellites and to control them very Iy has sp d the imp
field of optimal control. Due to these requi the time-domai hods devel-
oped by Liapunov, Minorsky, and others have been met with great interest in the last
two decades. Recent theories of optimal control developed by L. 8. Pontryagin in the
former Soviet Union and R. Bellman in the United States. as well as recent studies of
robust systems, have contributed to the interest in lime-domain methods. It now is
clear that control engineering must consider both the time-domain and the frequency-
domain approaches simultancously in the analysis and design of control systems.

A notable recent advance with worldwide impact is the U.S. space-based ra-
dionavigation system known as the Global Positioning System or GPS [82-85]. In
the distant past, various strategics and unsm's were devc]uped 1o keep explorers on

the oceans from getting lost, including f lines, using comg Lo point
north. and sextants o measure the angles of stars, the moon, and the sun above the
horizon. The early exp were able o esti latitude ly, but not longi-
tude, It was not until the 1700s with the develop of the ch that, when

used with the sextant, the longitude could be estimated. Radio-based navigation sys-
tems began to appear in the early twenticth century and were used in World War 1L
With the advent of Sputnik and the space age. it became known that radio signals
from satellites could be used 1o navigate on the ground by observing the Doppler
shift of the received radio signals. Rescarch and development culminated in the

Chapter 1 Introduction to Control Systems

1.3 EXAMPLES OF CONTROL SYSTEMS

differonce betwoen
the actual and the
desired direction of
travvel 1o genenite &
corfrolled
adjustment of the
wooeing whesal

[} Typical direction.

ol-tavel response.

Control engineering is concerned with the analysis and design of goal-oriented sys-
tems Therefore the mechanization of goal-oriented policies has grown into a hierarchy
of goal-oriented control systems. Modern control theory is concerned with systems
that have self-organizing. adaptive, robust. learning, and optimum qualities.
Feedback control is a fundamental fact of modern industry and society. Driving
an automebile is a pleasant task when the auto responds rapidly o the driver's com-
mands. Many cars haye power steering and brakes, which wilize hydraulic ampli-
fiers for amplification of the force to the brakes or the steering wheel. A simple
block diagram of an automaobile steering control system is shown in Figure 1.9(a).

Deckred + Stevrbn Jucend
coune ——+{_ Driver kol d Auanibile g course
of travel - of wravel

Messurenseni,
wissal and Lactile

= Digningd eliswctom of travel
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- over very wide freq) bands when many people doubted such cir-
cuits would be stable? My confidence stemmed from work that [ had done two years
carlier on certain novel oscillator circuits and three years earlicr in designing the t:nm-
nal circuits, including the fillers, and ping the for a carrier
system for short toll circuits.

The fy:qumqf domain was used pnmanty to deseribe the Op:launll of the feed-
back amplifiers in terms of bandwidth and other f In contrast,
the eminent math icians and applied mech s in the former Sovict Union
inspired and dominated the field of control theory. Therefore. the Russian theory
tended to utilize a time-domain formulation using differential equations.

The control of an industrial process (manufacturing, production, and so on) by
automatic rather than manual means is often called automation. Automation is
prevalent in the chemical, electric power, paper, and steel ind
among others. The concept of automation is central to our industrial society. Auto-
matic machines are used to increase the production of a plant per worker in order to
offset rising wages and inflationary costs. Thus industries are concerned with the
productivity per worker of their plants. Productivity is defined as the ratio of physi-
cal output to physical input [26]. In this case, we are referring to labor productivity,
which is real output per hour of work,

The Iransfcrmallon ul‘ the LLS. labor force in the country’s brief history follows
the p ion of work that ded the evolution of the agrarian
npuhhc into an industrial world power. In 1820, more than 70 percent of the labor
force worked on the farm. By 1900, less than 40 percent were engaged in agriculture.
Today, less than § percent works in agriculture [15).

In 1925, some 588,000 people—about 1.3 percent of the nation’s labor force—
were needed to min: 520 million tons of bituminous coal and lignite, almost all of it
from underground. By 1980, p was up (o 774 million tons, but the work
force had been mduoed lo 208{!)0. Furthermore, only 136,000 of that number were

in d mining operations. The highly hanized and highly
pmdu:lw: surface mines, with just 72,000 workers, produced 482 million tons, or 62

percent of the total [27].
A large impetus to the theory and practice of automatic control occurred during

Waorld War I1 when it became v to design and ic airplane
piloting. gun-positioning systems, radar antenna control systems, and other military
systems based on the feedback control app h. The plexity and exp d per-
formance of these military systems itated an ion of the avai con-

trol techniques and fostered interest in control systems and the development of new
insights and methods. Prior to 1940, for most cases, the design of control systems was
an art i ing a trial-and-error approach. During the 1940s, mathematical and an-
alytical methods increased in number and utility, and control engineering became an
engineering discipline in its own right [10-12].
Another example of the discovery of an engineering solution to a control system
problem was the creation of a gun director by David B. Parkinson of Bell Telephone
I..ubomnn:s In the spnng of 1940, ]’arkmmn was a 29-year-old engineer intent on
g the level an i that used slnp -chart paper to
pJDL' the mou:d of a voltage. A critical P was a small p used to
control the pen of the recorder through an actuator.
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1990s with 24 navigation satellites (known as the GPS) that solved me l'undnmenml
problem that explorers faced for centuries by p g & d to
pinpaint the current location. Freely available on a in Idwide basis,

GPS provides very reliable location and time information anytime, day or night,
anywhere in the world. Using GPS as a sensor to provide position (and velocity) in-
formation is & mainstay of active control systems for transportation systems in the
air, on the ground, and on the oceans. The GPS assists relief and emergency workers
1o save lives, and helps us with our everyday activities including the control of power
grids, banking, farming. surveying, and many other tasks.

A selected history of control system development is summarized in Table 1.1,

Table 1.1 Selected Hi ical Devel of Control Sy

1769 James Wall's steam engine and gtw:mo( dcv:lopell TII: “'\'lll steam enging
is often used 1o mark the begi of the | in Gircat
Britain, During the Industrial Revolution. great strides were made in the
deve tof a technology 1

1800 Eli Whitney's concept of i hi ble parts [ d: d

in the production of mnshrs. Wlulnc_\fs development is often considered
t be the beginning of mass p

1868 7.C. Maxwell formulates a mathematical model for governor control of &
sleam engine.

1913 Henry Ford's mechanized assembly machine introduced for automobile
production.

1927 H. 5. Black conceves of the negative feedback amplifier and H. W, Bode
analyzes feedback amplifiers.

1932 H. Nyguist develops a method for analyzing the Illb-llim of systems.

1941 Creation of first antiai fun with active control,

1952 Numerical control (NC) ped at Massach Tnstitute of Tech
for control of machine-tool axes.

1954 Grorge Devol develops =) pmgrnmnl:d article transfer,” considered to be the
first industrial robot dess

1957 Sputnik launches the space :g: leading. in time, 1o miniaturization of
compaters and advances in control theory.

1960 First Unimate robot itroduced, based on Devol's du.gnx Unamate

installed in 1961 for tending die-casting
1570 State-variable models and optimal control developed.
1980 Robust control system design widely swdied.
1983 Introduction of the personal computer {and control design software soon
thereafler) brought the tools of design to the engineer’s desktop.

1990 Export-oricnted af: sutomation.

1994 Feedback control widely used i ||| Iulomohl]cs. R:Ilablt.. robust systems
demanded in manufacturing.

1995 “The Global Positioning Sysiem (GPS) I ™
navigation, and timing services

197 First ever autonomous rover vehicle, known as Sojourner, explores the
Martian surface.

1998-2003  Advances in micro- and First intelly g i
are developed and functioning nanomachines are created.

2007 The Orbital Express mission performed the first autonomous space

rendezvous and docking.
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Machines that sutomatically load and unload, cut, weld, or cast are used by industry
to obinin sccuracy, safety, economy, and productivity [14,27, 28, 38]. The use of com-
puters integrated with machines that perform tasks like o human worker has been
fureseen by several authors. In his famous 1923 play, entitled R LLR. [48], Karel
Capek called artificial workers robois, deriving the word from the Czech noun
robota, meaning “work.”

A robaot is & computer-controlled machine and involves technology closely asso-
ciated with astomation. Industrial robotics can be defined as a particular field of
automation in which the automated machine (that is, the robot) is designed to sub-
stitute for human labor [18, 27, 33]. Thus robmspmm ::rlnm humanlike r:hnm
lennlcs. Today, the most ic 15 a h

1 that is p d hat after the human arm and wrist. Some de-
vices even have " hani including what we might recognize
as mechanical arms, wrists, and Immls [14.27. 28], An example of an amllmpomor-

phic robot is shown in Figure 1.11. We that the is well
suited 1o some tasks. as noted in Table 1.2, and that other tasks are best carried out
by humans,

Another very i li of control ey is in the control of the

modern antamobile [IO 20]. Control systems for mspu:stm steering, and engine
control have been introduced. Many new autos have a four-wheel-steering system, as
well as an antiskid control system.

Chapter 1 introduction to Control Systems.

interested in energy conversion, control, and distribution. 1t is critical that computer
control be increasingly applied to the power industry in order o improve the effi-
cient use of energy resources. Also, the control of power plants for minimum waste
emission has become invn:u\ulgly important. The maxlern, large-capacity plants,
which exceed several hund require ic control systems that
aceount for the interrelationship of the process variables and optimum power pro-
duction, It is common to have 90 or more mamipulated variables under coordinated
control. A simplified model showing several of the important control variables of a
large boiler-generatar system is shown in Figure 1.13. This is an example of the im-
portance of measuring many variables. such as pressure and oxygen, o provide in-
i ion 1o the for control caleul.

The electric power industry has used the moderm aspects of control engineering
for significant and interesting applications. 1t appears that in the process industry,
the factor that maintains the appl ions gap |-a !hc lnck of instrumentation to mea-
sure all the imp Process u:c quality um:l compaosition of
the pro<tuct. As these i become available, the Pr ions of modern
control theory to industrial systems should increase measurably.

Another imporlnm lndustm the metallurgical indusiry. has had considerable suc-

cess in ly g ils In faet, in many cascs, the control theory
i being fully imph 4 Fur le. i hot=strip steel mill, which involves a $100-
million i is lled for slnp width. thich and quality.
Rapidly rising ene‘rgy costs coupled with threats of energy curtailment are result-
ing in new efforts for efficient it energy Comy controls

are used 1o control energy use in industry and to stabilize and connect loads evenly
to gain fucl economy,

A

S

Cumpiiler

r_?‘!f!

| LR
Desired feanperamre.

presare, O, generstion

fhuid through a port
n the side of the
tank,
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The desired course is compared with a measurement of the actual course in order 10
gemerate a measure of the ¢rror, as shown in Figure 1.9(h). This measurement is ob-
tained by visual and vietile (body ) feedback. as provided by the feel of
the steering wheel by the hand (sensor). This feedback system is a familiar version
of the steering control system in an ocean liner or the dight controls in o large air-
plane. A typical direction-of-travel response is shown in Figure 1,.9(2),

A basic, I closed- p System for the level of Muid
in a tank is shown in Figure 1.10, The inpul is a reference level of fluid that the op-
erator is Instructed 1o maintain. (This i ired by the uf ) The

power amplifier is the operator, and the sensor s visual, The operator compares the
actual level with the desired level and opens or closes the valve (actuator ), adjusting
the fuid flow out, to maintain the desired level,

Other familior control systems have the same basic elements as the system
shown in Figure 1.3 A refrigerator has a temperature setting or desired emperature,
a thermostal fo measure the actual temperature and the error, and o compressor
motor for power amplification. Other examples in tllr: Imme are the oven. furmace,
amdd water heater. In industry, there are many Tuding s‘pccd I
process temp and pressure bs:and pos.tlmn k position. and
quality controls [14, 17, 18).

In its modern usage. automation can be defined as a lechnology that uses pro-
prammed commands 1o vperate a given process, combined with feedback of -nl’ar
mation 1o ine that the o hnve been praperk 1. A
is olten usce for § thal were sly 1 by humans. When auto-
mated, the plm can uperate without human asskstamee or interference. In fact.
most automited systems are capable of performing their functions with greater ne-
curacy and precision, and in less time, than humans are able to do. A semiantomated
process is one that incorporaies hoth humans and robnls For instance, many aulo-

mobile bly line jons require coop a human
and i intelligent rabat,
Fecdback control systems are used extensively in industrial applications. Thou-

sunds of indusirinl and lab v robots are in use. M. pick
up objeets weighing hundreds of pounds and position them with an accuracy af one-
tenth of an inch ar better [28]. Automatic hnmllmg equipment for home, school,
and industry is particularly useful for b s, dull, or simple tasks.
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Table 1.2 Task Difficulty: Human Versus Automatic Machine
Tasks Difficult for a Machine Tasks Difficult for a Human

Inspect seedlings in a nursery. Inspect a system in o hot. toxic

Drive a vehicks through rugged temain. environment.

Identify the most expensive jewels on Repetitively assembie a clock.

a tray of jewels, Land an airliner al night, in bad weather,

A three-axis control system for insy walers is
shown in Figure 1.12, This system uses a specific motor to drive each oxis to the de-
sired position in the t-y-z-axis, respectively. The goal is to achieve smooth, accurate

in each axis. Thi | system is an important one for the semiconductor
manufacturing industry.
There has been iderable d ion recently ing the gap b

practice and theory in control engineering. However, it is natural that theary pre-
cedes the applications in many fields of control engineering, Nonetheless, it is inter-
esting to note that in the electric power industry, the largest industry in the United
States, the gap is relatively insignificant. The electric power industry is primarily

FIGURE 1.12 A three-axis control system for ing inchivichual
highty sonsiive camen.
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Private business
investment

National

government spending. OFf course, many other loops not shown also exist, since, theo-
retically, goverament spending cannot exeeed the tax collected without generating a
deficit, which is itself a contral loop containing the Internal Revenue Service and the
Congress. In a socialist country, the loop due to consumers is de-emphasized and gov-
ernment control is emphasized. In that case, the measurement block must be accu-
rate and must respond rapidly: both are very difficult characteristics to realize [rom
i bureaucratic system. This type of political or social feedback model, while usually
nonrigorous, docs impart |Illumll!llcll and uncicrmm!:ng

The ongoing area of h and devel of d acrial vehicles
(UAVS) is full of potentinl for the application of control systems An example of a
UAV is shown in Figure 1,16, UAVS are unmanned but are usually controlled by
ground operators. Typically they do not operate autonomously and their inability 10
provide the level of safety of a manned plane keeps them from fying freely in the
commercial airspace. One significant challenge is to develop control systems that
will avoid fn-air collisions. Ultimately, the goal is w employ the LAV autonomously
in such ications as aerial ph phy to nssist in disaster mitigation, survey
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designed devices and products. These bodied in the idea of un-
intended mnsoqnen:es or risk. The result is that dcslgml!g & system is a risk-taking
activity.

Complexity. trade-off. gaps, and risk are inherent in designing new systems and
devices. Although they can be minimized by considering all the effects of a given de-
sign, they are always present in the design process.

Within engineering design, there is a fund | difference the two
major types of thinking that must take place: engineering analysis and hesi:
Altention is focused on models of the physical systems that are analyzed to provide
insight and that indicate directions for improvement. On the other hand, synthesis is
the process by which these new physical configurations are created.

Design is a process that may proceed in many directions before the desired
one is found. It is a deliberate process by which a designer creates something new

in resp toa ized nee:l while recognizing realistic mnstruintsﬂl: de-
SIgN process is i Iy i must start here! S 1 engi-
neers learn to s:mpill’y comp]ex systems approprlately for design and analysis

A gap the plex phy system and the design model is in-

ev:lable Design gaps are intrinsic in the progression from the i | concept to
the final product. We know intuitively that it is easier to improve an initial con-
cept incrementally than to try to create a final design at the start. In other words,
engineering design is not a linear process. It is an iterative, nonlinear, creative

process,

The main approa:ll 1o the most i i ing design is analy-
sis and optimization. Parameter analysis is based on (1) ||:I=nt|ﬁmlmﬂ of the key pa-
rameters, (2) generation of the system configuration, and (3) ion of how well

the configuration meets the needs. These three steps | form an ||eraI|w: loop. Once
the key parameters are identified and the confi ized, the desig
can optimize the p Typically, the designer strives to identify a limited set
of paramelers to be adjusted.

1.5 CONTROL SYSTEM DESIGN

The design of control systems is a specific example of engineering design. The goal
of control engineering design is to obtain the configuration, specifications, and iden-
tification of the key parameters of a proposed system to meet an actual need.
The control system design process is illustrated in Figure 1.17. The design

process consists of seven main building blocks, which we arrange into three groups:

1. Establishment of goals and variables to be controlled, and definition of specifications

(metrics) against which to measure performance
2 System definition and modeling
3. Control system design and integrated system simulation and analysis

In each chapter of this book, we will highlight the ion b the de-
sign process illustrated in Figure 1,17 and the main topics of that chapter. The objec-
tive is to demonstrate different aspects of the design process through illustrative
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There has been mnsld:mhl: interest recently in applying the feedback control

pls 1o g and inventory control. Furthermore. automatic

control of agricultural systems {I‘arms] i receiving increased interest. Automatically

controlled silos and tractors have been developed and tested, Automatic control of

wind turbine generutors, solar heating and cooling, and automobile engine perfor-
mance are important modern examples [20,21].

Msu Ihcrr II‘I\-': been  many apphﬁllonsﬂimnlml system theory to biomedical

exper I and biological control systems [22, 23, 48],
The control systems undu.r mmdcrulmn range (rom the cellular level 1o the central
nervous system and include femperature lation and I 1

Ie
and cardi lar control, Most phy I control systems are :Inscd loop sys-
tems. However, we find not one controller bul rather control loop within control
loop, forming a hierarchy of systems. The modeling of the structure of biological
processes confronts the analyst with a high-order model and o complex structure.
Prosthetic devices that aid the 46 rmllmn Iland.lcappcd individuals in the United
States are designed to provide lled aids to the disabled [22,27,39].
The rubotic hand shown in Figure 1.14 hslong_c to Dbrero, a bumanoid robot devel-
oped a8t MIT that is capable of sensitive manipulation. The Obrero robot is respon-
sive 1o the properties of the object it holds and does not rely on vision as the main
sensor, The hand has position and force control of the fingers employing very sensi-
tive tactile sensors and serics elustic netuators in ils joints,

Finally, it has become interesting and valusble 1o sttempt o model the feedback

in the social, ic. and political spheres. This approach is

Lmdevciopcd at present but appears (o have o reasonable future. Society, of course,
posed of many feedt systems and reg v bodics, such as the Federal
Rcscme Board, which are controllers exerting the forces on society necessary (o main-
tain a desired output. A simple lumped model of the national mcome feedback con-
trol system is shown in Figure 1.15. This type of model helps the analyst 1o understand
the effects of govermment control—granted its existence—and the dynamic effects of

{a) Coupuiter-sided drawing (Courtesy of Eduank Totveslata). i) The Oeweru robatie: hand (Pheto by lulls Vasilesou).

FIGURE 1.14 The Cbrero robuot is respensive to the propertios of tha cbject it nolds and does et
iy o vision as the main sensor but 25 a complement. O i pant of the Humanold Robatics
Group st tha MIT Computer Science and Arlilicial Inteligence Laboratory.
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work [0 assist in construction projects. crop monitoring, and continuous weather
monitoring. In a military setting. UAVs can perform intelligence, surveillance, and
reconnaissance missions [74]. Smart unmanned aircralt will require significant
deployment of advanced control systems throughout the airframe.

1.4 ENGINEERING DESIGN

Engineering design is the central task of the engineer. It is a complex process in
which both ereativity and analysis play major roles.

Design is the process of conceiving or inventing the forms, parts, and details of a
system to achieve a specified purpose.

Design activity can be Ihnughl of 48 planmug for the emergence of a parlu.'u-
lar product or system. Design is an act wh v the engi
uses knowledge and materials to specify the shape, function, and material content
of a system, The design steps are (1) to determine a need arising from the values
of various groups, covering the spectrum from public policy makers to the con-
sumer: (2) to specify in detail what the solution to that need must be and to em-
body these values; (3) to develop and evaluate various alternative solutions to
meet these specifications; and (4) to decide which one is to be designed in detail
and fabricated.

An important faclor in realistic design is thc limitation of time. Design takes

place under imp {ules, and we scltlcl'wzdcsng! that may be less
than ideal but considered “good enough.” In many cases, time is the enly competitive
advantage.

A major challenge for the designer is writing the specifications for the technical

product. Specifications are statements that explicitly state what the device or prod-
uct is ta be and do. The design of technical systems aims to prwidt. appropriate de-
sign specifications and rests on four ct istics: P de-offs, design
gaps, and risk.

Complexity of design results from the wide range of tools, issues. and knowledge
1o be used in the process The large number of factors to be considered illustrates the
complexity of the design specification activity, not only in assigning these factors
their relative importance in i particular design, but also in giving them substance
either in numerical or written form, or bath.

The concept of trade-ofl involves the need o resolve conflicting design goals, all
of which are desirable. The design process requires an efficient compromise belween
desirable but conflicting criteria.

In making a 1eclm|nal de\-ll:& we gem:rnlly rnd that the final product does not
Appear as origi d. For our image of the problem we are solving
does not appear in writlen descﬂphm and |.r1t|mmc]3,I in Ihe speﬂrcatlons. Such
design gaps are intrinsic in the progression from an abstract idea to its realization.

This inability to he absolutely sure about predictions of the performance of
a technological object leads to major uncertaintics about the actual effects of the
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As designers, we proceed to the first attempt 10 configure a system that will re-
sult in the desired control performance, This system configuration will normally T thés o pematis
consist of a sensor, the process under oonlml an actuator. and a controller, as shown TR Vie. i g o
in Figure 1.3. The next step consists of identifying a candidate for the This :'c s ""w:':‘ ’::::,
will, of caurse, depend on the process, but the actuation chosen must be capable of D Topscs emphasiced i (bis exmngle |n‘|‘;::::::e < 5
of the process. For example, if we wish to con-

trol the speed of a rol.aljng flywheel, we will select a motor as the actuator, The sen-

g the perfs
sor. in this case, must be capable of accurately measuring the speed. We then obtain Shadsng indicstes the
a model for each of these elements. tapics that ane

(1) Establ af goal.
Students studying controls are often given the models, frequently represented i cach chupter: "mclllﬂm l Identity the sariabies to be compolled ‘ , r:ﬁ,u:."::;w:m;u,

in transfer function or state variable form, with the understanding that they repre- YA iy it bl iy d specificasions,
sent the underlying physical systems, but without further explanation. An obvious

v caber chiapters will emphusies

FIGURE 1.18

question is, where did the transfer function or state variable model come from?
W'I.hm the context of a mum in control syslem there is a need to address key

sur ling ng. To that end, in I‘ne early chaplers, we will provlde
:nsn@hl. into key modeli and answer [i How is the
transfer function obtai ‘? What basic are :mphad in the model devel-

opment? How gl:m:ru] are the transfer functions? However, mathematical modeling
of physical systems is a subject in and of ll.sc]f We cannot hope to cover the mathe-
matical modeling in its entirety, but i denis are ged to seek out-
side references (see for example [76-%0]).
The next step s the sclection of a controller, which often consists of a summing
plifier that will compare the desired resp and the actual response and then
forward this error-measurement signal to an amplifier.

The final step in the design process s the adjustment of the parameters of the
system 1o achieve the desired performance. If we can achieve the desired perfor-
mance by adjusting the parameters, we will finalize th: deslgn and proceed Lo docu-
ment the resulis If not, we will need 1o blish an i d system confi;
and perhaps select an enhanced actuator and sensor. Tllen we will repeat the design
steps until we are able to meet the specifications, or until we decide the specifica-
tions are too demanding and should be relaxed.

The design process has heen dramatically affected by the advent of powerful

and effe control design and analysis software,
For examp]c. the Boem,g T77, which incorporates the most advanced flight avionics
of any US. commercial aircraft, was almost entirely mmput:!—dcqgncd [56. 5?|
Verification of final designs in high-fidelity P is
In many applications, the certification of the control system in realistic simulations
represents a significant cost in terms of money and time. The Boeing 777 test pilots
flew about 2400 flights in high-fidelity simulations before the first aircraft was even
built.

Another notable example of computer-aided design and analysis is the McDon-
nell Douglas Delta Clipper e:perunenml vehu:le DC-X. which was designed. built,
and flown in 24 months. Comy d design tools and d cod
contributed to an estimated &0 percent cost szmn,g;; and 30 percent time savlngs [58].

In summary, the controller design problem is as follows: Given a model of the
system to be controlled (including its sensors and actuators) and a set of design goals.
find a suitable controller, or determine that none exists. As with most of engineering
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engincering, computer science, and the natural sciences. Ad
al Umpllnca are fueling the gmwlh of mechatronics systems by pmw:llng “enabling

technol = A critical enabling technology was the microprocessor which has had
a pmfnund effect on the dcﬂgrl ofwmllm:r products. We should expect continued

in cost-effective microg and mig novel sensors
and sctuators enabled by advrlmcrm.nlﬁ in arvplltalums of microelectromechanical
systems (MEMS). ad I cantrol hodologies and real-time pmg.mmmlng
methous, networking and wireless technologies, and mature comp ....!..d engi-

neering (CAE) technologies for 1 system . virtual p ping. and
testing. The continued rapid development in these areas will only accdemt: the
pace of smarl (that is, actively controlled) products.

An exciting area of luture mechatronic system development in which control

systens \\I" play a significant role is the area of alternative energy production and

F Hybrid fuel hiles and efficient wind power generation are two
:xnmp!cs of systems that can benelit from mechatronic dx:s\gn methods. In fact, the
design phil by can be effectively il 1 by the ple of the

evolution of the modern automobile [64]. Before the 1960, the mdio was the only
significant electronic device in an automaobile. Today, many automohbiles have 30-60
microcontrollers, up to 10 electric motors, about 200 pounds of wiring. a multitude
of sensors, and thousands of lines of software codn. A modern automobile can no
longer be classified as a sirictly h | | it has been transformed into a
comprehensive mechatronic system

EXAMPLE 7.1  Hybrid fuel vehicles

Reeent research and development has led to the next-generation hybrid fuel automo-
bile, deplnlc{l in Figure 119, The hybrid fuel vehicle s a conventional intermal

engine in ion with a hattery (or other energy storage device
such a8 u fuel cell or Mywheel) and an electric motor o prnwdl: 4 propulsion system
capable of doubling the fuel over biles. Although

it o ur kW Lopsts
Wil the specifications

S e Find
and modslmg,

Obrtain & madel of the process, the
wctnnioe, and the sensor

Describe o comtrodler and select key
purameiers in be adjusted
Uptimize the pusmeters ind
anslyze the performance

11 the performarnce does not mael the IF the pedfrmance meets the specifications

13y Control systesn design.
simnudstion. snd anubysis.

then slerute the M then finalire the devign,

FIGURE 1.17  The commi system design process.

les. We have blished the following connections between the chapters in
this book and the design process block Lllnglum.
1. Establishment of goals. contral varinbles, and specifications: Chapiens 1,34, and 13,
2. System definition and modefing: Chapters 2-4, and 11-13
A Controd system disign, simulation, and analysis Chaplers 4-13.

The first step in the design process consists of establishing the system goals. For
example, we may state that our goal is to cantrol the velocity of a motor accurately.
“The second step is 1o identify the variobles that we desire to control (for example, the
velocity of the motar), The third step is to write the specifications in terms of the ac-
curacy we must attain, This required accuracy of control will then lead 10 the identifi-

cation of a sensor (o measure the lled variable, The p peci
will deseribe how th closed-loop s}\l:rn \lmnlnl prrl'um: and will |n|.ll|L|= {1} good
pulation against disturt s, (2) di o s, (3) realistic ae-

Luator signals, (4) low sensitivities, and (5) robustness.
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design, the design of a feedback control system is an iterative and nonlinear process A
successul designer must consider the underlying physics of the plant under control,
the control design strategy, the conlmﬂe.r design architecture (that is, what type of
ller will be employed), and eff ller tuning ies. In additi

once the design is completed, the is often impl inh and
hence issues of interfacing with hardware can appear. When taken together, these dif-
ferent phases of control system design make the task of designing and implementing
a control system quite challenging [73].

1.6 MECHATRONIC SYSTEMS

A natural stage in the evolutionary process of modern engineering design is en-
wmpamd in the area known as mechatronics iM| The term mechatronics was
coined i in Japan in tlle 19705 [65-67]. Mechatronics is the synergistic integration of

I, and P systems and has evolved over the past 30
years, leading toa new breed of intelligent products. Feedback control is an integral
aspect of modern One can und d the extent that mecha-
tronics reaches into various disciplines by ing the | that make
up mechatronics [68-71]. The key clements of mechatronics are (1) physical sys-
tems modeling, (2) sensors and actuators, (3) sugn.nls and syslcms. (4) computers
and logic systems, and (5) sofl and data acq dback control encom-

passes aspects of all five key el of mech i bul is iated il
with the element of signals and syslems.ns illustrated i in Figure 1.18.

Ad in pL and couplnd wlth the de-
sire to increase the perf to-cost ratio has revolutioni 2 d:sw
Mew prod are being developed at the i ion of traditional P of
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have 1 on hnologies that work well in high

wind areas (defined to be areas with a wind s‘peeti of at least 6.7 my's at a height of 10m).

Most of the easily accessible high wind sites in the United States are now ufilized,

ami rmpmw.-d lcchnulugy must be dew:lupcd. [ mnk: lower wmd areas more cost

New d are d in Is and dy ics 5o that

longer turbine rotors can operate ell’r.umtlv in the lower winds, and in a related

problem, the towers that support the turbine must be made taller without increasing

the overall costs, In addition, advanced controls will be required to achicve the level
of efficiency required in the wind generation drive train. =

EXAMPLE 1.3 Embedded computers

Many contemporary control systems are embedded control systems [81]. Embedded
control systems employ on-board special-purpose digital computers as integral
components of the feedback loop. Figure 1.21 illustrates a student-built rover con-
structed around the Compact RIO by National Instruments, Inc, that serves as the
on-hoard embedded computer. In the rover design, the sensors include an optical
encoder for measuring engine speed, a rate gyro and accelerometer 1o measure
turns. and a Global Positioning System (GPS) unit to obtain position and velocity
estimates of the vehicle: The actuators include two linear actuators to turn the front
wheels and 1o brake and accelerate, The communications device permits the rover
1o stay in contact with the ground station.

Ad in sensors, and devices are leading to a new
class of embedded conlml systems that are networked using wireless technology,
thereby enabling spatinlly-distributed control, Embedded control svstem designers

Actusane

Haslery  Conmmunications.

Actuasor

Hemting for mccelerameser
e gyro snd i+ Senson

FIGURE 1.21 A rover using an embadded comgater in the feedback loop. (Pholo by A.H. Bishop )
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are key technology areas that enable the smart grids [87]. Green engineering appli-
cations can be classified into one of five categories [88]:

1. Environmental Monitoring
2 Energy Storage Systems

3. Power Quality Monitoring
4. Solar Energy

5. Wind Energy

As the field of green engineering matures, it is almost certain that more applications
will evolve, especially as we apply the eighth principle (listed above) of green engi-
necring to create engineering solutions beyond current or dominant technologies
and imp: and invent technologics. In the subseq we pre-
sent examples from each of these areas,

There is o global effort underway to reduce greenhouse gases from all sources.
“To wccomplish this, it s necessary to improve bath the quality and quantity of our
environmental monitoring systems. An example is using wireless measurements on
a cabled robotic comrolled mobile sensing platform moving along the forest under-
story 1o key 1 in a rain forest,

Energy storage systems are critical technol gies for green engineering. There
are many types of energy storage systems. The encrgy storage system we are most
familiar with is the battery. Batteries are used 1o power most of the electronic de-
vices in use today; some batteries are rechargeable and some are single-use throw-
aways. To adhere to green engineering principles, we would favor energy storage
systems that are renewable. A very important energy storage device for green engi-
neering systems is the fuel cell.

“The problems associated with puwer |:j_1:m||l)-I mumtonng are varied and can in-
clude leading and Ingsmg power, voltage and ics. Many
of the green enginecring systems and components require careful manitoring of
current and ges. An i 2 ple would be the modeling of current
transformers that are used in various capacities for measuring and monitoring with-
in the power grid network of interconnected systems used to deliver :Icclr'mily.

Efficiently converting solar energy into el ity is an engi ing chall
Two technologies for generation of electricity using sunshine are solar pho(ovoltal:
and solar thermal. With photovoltaic systems the sunlight is converted directly to
electricity, and with solar thermal the sun heats water (o create steam that is used to
power steam cngin:s Designi an:l pl ,' g solar ph 1B systems for solur
power gencration is one app ying green iples 1o utilize
the sun's energy to power our homes, ol’fues. and businesses.

Power derived from wind is an important source of renewable energy around
the world. Wind energy conversion to electric power is achieved by wind energy tur-

The i

hines d Lo electric g ¥ ﬂhar.ﬂ.ct:ﬂsllt of wind en-
ergy makes the smart grid devel (see Example 1.4) | to bring the
energy to the power grid when it s avmhb!: nnd 10 provude encrgy from other
sources when the wind dies down or is disrup of wind

direction and power also results in the need for mllnble steady electric energy by
using control systems on the wind wrbines themselves. The goal of these control
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these hybrid vehicles will never be #ero-emission vehicles (since they have internal
combustion engines), they can reduce the level of harmful emissions by one-third to
one-hall, and with future improvements. these emissions may reduce even further, As
stated earlier, the modern automobile requires many advanced control systems (o
opernte. I'Iu. control systems must rr[..rulnln the performance of the engine, including
Tuel-air wheel traction control, antilock brakes,
and elec among many other functions. On the hy-
brid fuel vehicle, rln.n. are ud-lllmml control functions that must be satisfied. Espe-
cinlly necessary is the control of power between the internal combustion engine and
the electric motor, determining power storage needs and implementing the battery
charging, and preparing the vehicle for | i tart-ups. The overall offe

ness of the hybrid fuel vehicle depends on the combination of power units that are
selected (eg. ballery versus fuel cell for power smr:t.gc} L‘Jnmuln.ly. however, the
control strategy that i the various clectrical and

imto a viable transportation system strongly infleences the acceptability of th: hybmd
fuel vehicle coneept in the marketplace. w

The second example of a mechatronic system is the advanced wind power gen-
eration system.

EXAMPLE 1.2 Wind power

Many nations in the world today are faced with unstable energy supplies often leading
1o rising fuel prices and energy shoriages, Additionally, the negative effects of fossil fuel
utilization on the quality of our mir are well documented. Many nntions have an im-
balance in the supply and demand of energy, consuming more than they produce. To
wddress this imbalance, many engineers arc considering developing advanced systems
to access other sources of energy, such as wind encrgy. In foct, wind energy is one of the
fastest-grawing forms of encrgy generation in the United States and in other localions
aroumd the workd, A wind farm now in use in western Texas is illustrated in Figure 1.20.

In 2006, the installed global wind encrpy capacity was over 59,000 MW, In the
United States, there was enough energy derived from wind o power over 25 million
homes, according to the American Wind Energy Association. For the past 33 vears,
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must be able to understand and work with various network protocols, diverse oper-
ating systems and programming languages. While the theory of systems and controls
serves as the foundation for the modern control system design, the design process is

rapidly g into a multi-di ¥ enterprise encomp engi-
neering areas, as well as information technulu»gy and computer science. m

Ad in al energy prod stich as the hybrid automobile and the
generation of efficient wind power gen:ralols, provide vivid examples of mecha-
tronics There ther ples of intelligent systems
poised 1o enter our e\':rydly life, including am‘onomous rovers, smart home appli-
ances (e.g., di vacuum cl and ovens), wireless network-

enabled devices, “human-friendly machines™ [72] that perform robot-assisted
surgery, and implantable sensors and actuators.

1.7 GREEN ENGINEERING

Global i issues such as climate change. clean water, inability, waste

and ing raw material and energy use have caused many
engineers to re-think existing approaches 1o engineering design in critical areas.
One outcome of the evolving desipl strategy is to consider an appmach that has
come (o be known as “green englnurlns “The goal of green engineering is to design
P Ihal will minimi reduce the risk to human health, and improve
the The basic principles of green engineering are [86]:

1. Engineer processes and products holistically, use systems analysis, and integrate
environmental impact assessment tools

2. Conserve and improve natural ecosystems while protecting human health and
well-being.

3. Use life-cycle thinking in all engineering activities.

4, Ensure that all material and energy inputs and outputs are as inherently safe and
benign as possible.

5 imize depletion of natural

6. Strive 1o prevent wasic,

7. Develop and apply engineeri lutions, while being i of local
aspirations, and cultures.

8. Create engineering solutions beyond current or dummlm technologies: improve,
innovate, and invent technol

9. Actively cngage jitis d stakeholders in d of
solutions.

1o achieve

Putting the principles of green engineering into practice leads us to a deeper un-
derstanding of the power of feedback control systems as an enabling technology. For
example, in Section 1.9, we present a discussion on smart grids. Smart grids aim to
deliver electrical power more reliably and efficiently in an environmentally friendly
fashion. This in turn will potentially enable the large-scale use of renewable energy
sources, such as wind and solar. that are Iy intermittent. Sensing and feedback
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in I gy is causing an equally momentous social change,
the exp of i i ing and information processing as computers
extend the reach of the human brain [16].

Control systems are used to achieve (1) i dp ivity and (2) imp d
performance of a device orsyslem ion is used to imp productivity and
obtain high-quality p ion is the ic op or control of a
process, device, or system. We use ic control of hines and p o
produce a product reliably and with high precision [28]. With the demand for flexible,
custom production, a need for flexible automation and robotics is growing [17, 25].

The theory, practice, and apphcntlon of automatic control is a large, exciting,
and Iy useful engi line. One can readily understand the moti-
wation for a study of modern control synems

1.9 DESIGN EXAMPLES

In this section we present illustrative design examples. This is a pattern that we will
follow in all subsequent chapters. Each chapter will contain a number of interesting
examples in a special section enlitled Design Examples meant to highlight the main
topics of the chapler. At least one example among those presented in the Design Ex-
ample section will be a more detailed problem and solution that demonstrates one or
maore of the steps in the design process shown in Figure 1.17. In the first example, we
discuss the development of the smart grid as a concept to deliver electrical power
more reliably and efficiently as part of a strategy to provide a more environmentally
friendly energy delivery system. The smart grid will enable the large-scale use of re-
newnble energy sources that depend on the natural phenomenon to generate power
and which are intermittent, such as wind and solar. Providing clean energy is an engi-
neering chall that must include active k control systems, sen-
sors, and actuators In the second example presented here, a rotating disk speed
control illustrates the concept of open-loop and closed-loop feedback control. The
third example is an insulin delivery control system in which we determine the design
goals, the variables to control, and a preliminary closed-loop system configuration.

EXAMPLE 1.4 Smart grid control systems

A smart grid is as much a concept as it is a physical system. In essence, the concept is
to deliver power more relinbly and efficiently while remaining environmentally
friendly, economical, and safe [89, 90]. A smart grid can be viewed as a system com-
prised of hardware and software that routes power more reliably and efficiently to
homes, businesses, schools, and other users of power. One view of the smart grid is il-
lustrated schematically in Figure 1.23. Smart grids can be national or local in scope.
One can even consider home smart grids (or microgrids). In fact, smart grids en-
compass a wide and rich field of investigation. As we will find. control systems play
a key role in smart grids at all levels.

One i ing aspect of th grid is real-time demand side management re-
quiring a two-way flow of information between the user and the power generation sys-
tem [91]. For example, smart meters are used to measure electricity use in the home
and office. These sensors transmit data to utilities and allow the utility to transmit
control signals back to a home or building These smart meters can control and tum on
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Transmission of power is called power flow and the improved nunlmi of power
will increase its security and efficiency. Tr issi |

lines have in i

and resistive effects that result in dynamic impacts or disturbances. The smarl grid
must anticipate and respond to system disturbances rapidly. This is referred to as
self-healing. In other words, a smart grid should be capable of managing significant
disturbances occurring on very short time scales. To accomplish this, the self-healing
process is constructed around the idea of a feedback control system where seli-as-
sessments are used to detect and analyze disturbances so that corrective action can
be applied to restore the grid. This requires sensing and measurements 1o provide
information to the control systems. One of the benefits of using smart grids is that
renewable energy sources that depend on intermittent natural phenomena (such as
wind and sunshine) can potentially be utilized more efficiently by allowing for load
shedding when the wind dies out or clouds block the sunshine.

Feedback control systems will play an increasingly important role in the
development of smart grids as we move to the target date. It may be interesting to
recall the various topics discussed in this section in the context of control systems as
each chapter in this textbook unfolds new methods of control system design and
analysis.

EXAMPLE 1.5 Rotating disk speed control

Many modern devices employ a rotating disk held at a constant speed. For example,
a CD player requires a constant speed of rotation in spite of motor wear and varia-
tion and other component changes. Our goal is to design a system for rotating disk
speed control that will ensure that the actual speed of rotation is within a specified
percentage of the desired speed [40, 43]. We will consider a system without feedback
and a system with feedback.

To obtain disk rotation, we will select a DC motor as the actuator because it
provides a speed proportional to the applied motor voltage. For the input voltage to
the motor, we will select an amplifier that can provide the required power.

The open-loop system (without feedback) is shown in Figure 1.24(a). This system
uses a battery source to provide a voltage that is proportional to the desired speed. This

Controller Actuator Process
Desired 1
% DC Rotating Actual
apeell =— Amplificr = T
Ivulige) e disk speed
(bk
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devices is 1o reduce the effects of wind intermittency and the effect of wind direc-
tion change.

The role of control systems in green mgmr,crmg will mullnuz Lo expand s the
global issues facing us require ever 2 levels of and p

1.8 THE FUTURE EVOLUTION OF CONTROL SYSTEMS

FIGURE 1.22
Future evolution of
conlrol gysterm
and rebotics.

=5
Tt
Wind

The continuing goal of control systems is (o provide extensive flexibility and a high
level of autonomy, Two system concepts are approaching this gonl by different evolu-
tionary pathways, as illustrated in Figure 1,22, Today's industrial robot is perceived as
quite onee il is p 4, further intervention is not normally re-
q'ulrl:d. Because of sensory llmll.‘lliulls& Ihm mbullcs} stems have limited fexibility in
pting to work envi prion is the ivation of
c.-ompuler vision research. The control wystem is w:r)' adaplnhle. bt it refies on human
supervision, Advanced robotic systems are striving for sk adaptal through en-
hanced sensory feedback. Research areas concentrating on artificial intelligence, sen-
sor integration, computer vision, and off-line CAIVCAM programming will make
systems more universal and economical. Control systems are moving toward au-
ton as an enh 1o human control. Rescnrr:h in supervisory
control, b hine interf; hods, and T d are
intended 1o reduce operator burden and improve operator efficiency. Many research
:u:tmllcs are common to robotics and control systems and are aimed at reducing im-
i n cost and fing the u-:l!m of :l|:p||¢.'nl|un These include improved
hod 4

The easing of human labor by Icuhnnlng} a pl:m“ that began in prehistory,
is entering a new stage. The sceeleration in the pace of technological innovation in-
nugurated by the Industrial Revolution has until recently resulted mainly in the
displacement of human muscle power from the tasks of production. The current
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FIGURE 1.23 Smart grids one distribution notworks that messune and control usags.

or off home and office appliances and devices, Smart home-energy devices enable the
homeowners to control thcll us.ngcnnd lcspund 1o pnw changes ot peak-use times.

The five key log ul modern smart grid
include (i) integrated communi ns,(u} scnsmg nnd measurements, (i) advanced

iv) ads i control methods, and (v) imy interfaces and deci-
sion \uppun [87). Two of the five key technologies fall under the general m[tgary of
control systems, namely (i) sensing and wnd (i) ad 1 control
methods. It is evident that control systems will play a key role in realizing the mod-
ern smart grid. The poteotial impact of the smart grid on delivery of power is very
high. Cl.l"enl].}' the total TLS, grid includes 16,000 power plants, about 3,300 utility
companies, and 300,000 miles of power lines. A smart arid will use sensors, con-
trollers. the Internet, and ion systems Lo the reliability and effi-
ciency of the grid. It is estimated that deployment of smart grids mukl reduce
emissions globally of CO, due to power systems by 14 percent by 2020 [91].

One of the elements of the smart grid are the distribution networks that mea-
sure and control usage. In a smart grid, the power generation depends on the market
situation (supply/demand and cost) and the power source available (wind, coal,
nuchear, geothermal, biomass, ete. ). In fact, smart grid customers with solar panels or
wind turbines could sell their excess energy to the prid and get paid as microgencri-
tors [92]. In the subsequent chupters, we discuss various control problems sssociated
with pointing solar panels to the sun and with prescribing the pitch of the wind tur-
bine blades to manage the rotor speed thereby controlling the pawer output.
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Referring to Figure 1.26, the next step in the design process is to define the variable
to be controlled. Associated with the control goal we can define the variable to be
controlled to be:
Variable to Be Controlled
Blood glucose concentration
In subsequent chapters, we will have the tools to quantitatively describe the control
design specifications using a variety of steady-state performance specifications and
transient response specifications, both in the time-domain and in the freq) domain.
At this point, the control design specifications will be qualitative and imprecise. In that
regard, for the problem at hand, we can state the design specification as:
Control Design Specifications
Provide a blood glucose level for the diabetic that closely approximates
(tracks) the glucose level of a healthy person.

Given the design goals, variables to be controlled, and control design specifications, we
can now propose a preliminary system ennﬁﬁumm An open-loop system would use
ap i signal g and motor pump to regulate the insulin
delw:ry ra:l: as shown in Figure 1.27(a). The feedback control system would use a sen-
sor to measure the actual glucose level and compare that level with the desired level,
thus turning the motor pump on when it is required, as shown in Figure 1.27(b). »

1.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

=

FIGURE 1.30
Closed-loop contral
systom for disk
drive.

“This design example, identificd by the arrow icon, will be considered sequentially in
each chapter. We will use the design process of Figure 1.17 in each chapter to identi-
fy the steps that we are accomplishing. For example, in Chapter 1 we (1) identify the
control goal, (2) identify the variables ta control, (3) write the initial specifications

for the variables, and (4) establish the preliminary system
Information can be readily and eﬂlmmtty stored on magnetic disks. Disk drives
arrusnd in L and | ol’allmxsand mcsu:nmlly all
d as defined by ANSI standards [50,63]. Th L ogda sy

ket for disk drives is greater than 650 million umlsISI] In the past, disk drive designers
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areas of “intellig “under i include off-line error recovery, disk drive
failure warnings. and storing data across multiple disk drives. Consider the hasic dia-
gram of a disk drive shown in Fig. 1.29. The goal of the disk drive reader device is to po-
silion the reader head to read the dato stored on o track on the disk. The variable o
accurately control is the position of the reader head (mounted on a slider device), The
disk rotates a1 a speed between 1800 and 7200 rpm, and the head “Mlies” nbove the disk
at a distance of less than 100 am. The initial specification for the position scouracy is
1 g, Furthermore, we plan to be able to move the head from track a to track b within
50 ms, if possible. Thus, we establish an initial system configuration as shown in Figure
1.30. This proposed elosed-loop system uses a miotor 10 setuate (move) the arm to the
desired location on the disk. We will consider the design of the disk drive further in
Chapter .

L

1.11 SUMMARY

In this chapter, we d fopen- and clos k control systems. Exam-
ples of control systems through the course of histary were presented to motivale and
connect the subject hn the pa\l In terms of uml\,mpwur\r issues, key areas of appli-
catiom were di d robots, d aerial vehicles, wind
energy. h}bml nulomnhlles. and embedded control. !‘hi.' nm!r;ll ru!L of mnlmlx in
was i M ics i the synergi 1 of meel i

electrcal, and compuler systems. Flmlty the :Imgn process Wi presented in o struc-

tured form and included the ing steps: the I of goals and variables
1o be controlled, definition of specifications. system definition, modeling, and analy-
sis. The iterative nature of design allows us to handle the design gap effectively while
accomplishing necessary trade-offs in complexity, performance, and cost,

1 Pend
1

FIGURE 1.27

FIGURE 1.28
Disk driva dala

danaity trands
[Source: [BM).
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voltage is amplified and applied to the motor. The block diagram of the open-loop sys-
tem identifying the controller, actuator, and process is shown in Figure 1.24(b).

To obtain a feedback system, we need to select a sensor. One useful sensor is &
tachometer that provides an output voltage proportional to the speed of its shaft.
‘Thus the closed-loop feedback system takes the form shown in Fig. 1.25(a). The block
diagram model of the feedback system is shown in Fig. 1.25(b). The error voltage is
generated by the difference between the input voltage and the tachometer voltage.

We expect the feedback system of Figure 1.25 to be superior to the open-loop
system of Figure 1.24 because the feedback system will respond to errors and act to
lcduce them. With pn:clsuon components, we could expect to reduce the error of the

k system of the error of the open-loop system. »

EXAMPLE 1.6 Insulin delivery control system

Control systems have been utilized in the bi dical field to create impl i auto-
matic drug-delivery systems to patients [29-31]. Automatic systems can be used to
regulate blood pressure, blood sugar level, and heart rate. A common application of con-
trol engineering is in the field of open-loop system drug delivery, in which mathematical
models of the dose-effect relationship of the drugs are used. A drug-delivery system

implanted mthebod)'usesan pen-) since d glucose sensors are
not yet available. The best i rel)i onil I pocket-sized in-
sulin pumps that can deliver insulin according to a prcse! time hlslonf Mare compli-
cated systems will use closed-] trol for the d blood glucose levels.

The blood glucose and insulin concentrations for a healthy person are shown in
Figure 1.26, The system must provide the insulin from a reservoir implanted within
the diabetic person. Therefore, the control goal is:

Control Goal

Design a system to regulate the blood sugar concentration of a diabetic by con-

trolled dispensing of insulin.
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have concentrated on increasing data density and data access times. Recent trends
show that hard disk drive densitics are increasing at about 40 percent per year [62],
Figure 1.28 shows the disk drive density trends. Designers are now cunsideling em-
ploying disk drives 1o perfurm tusks historically dl:l.cgatcd o n_nlml processing units
(CPUs). thereby leading to imp in the computing {63]. Three
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10. Comgplete the following sentence:
Control engineers are { with wrd; fi i
ronments, often called

8. systems
b. design synthesis
« trade-offs
d. risk
11. Early pioneers in the development of systems and control theary include:
a. H. Myquist
b. H. W Bode
e H.S Black
d. All of the above
1% Complete the following sentence:
An apen-loop control system wiilizes an actuating device io control a process
& without esing feedback
b. using feedback
€ inengineering design
d. in engineering synthesis
13, A system with more than one input variable of more than one output variable i known
by what name?
#. Closed-loop feedback system
I, Open-loop feedback system
& Multivariable control system
. Robust control system
14, Control engincering is applicable to which fields of engineering?
#. Mechanical and aerospace
b, Electrical and biomedical
e Chemical and environmental
d. All of the above
15, Closed-loop control systems should have which of the following properties:
#. Good regulation against disturbances
b. Desirable responses 1o commands
 Low sensitivity to changes in the plant parameters
d. All of the above

In the following Word Match problems, match the term with the definition by writing the
correct letter in the space provided.

. Optimization The output signal is fed back so that it sublracts from

segments of their envi-

the input signal.
b. Risk A system that uses a measurement of the output and

compares it with the desired output, —
€. Complexity of design A set of prescribed performance criteria. ==
d. System A measure of the output of the system used for

feedback to control the system. ===
e Design A system with more than one input variable or more

thin one oulput variable. P
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SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems.

Inn the following True or False and Multiple Choice problems, circle the correct answer.

1. The flyball governor is generally agreed to be the first automatic
feedback controller used in an industrial process. True or Faise

2. A closed-loop control system uses a measurement of the cutput and

feedback of the signal to compare it with the desired input. True or False
3. Engi ing synthesis and ing analysis are the same. True or False
4. The block diagram in Figure 1.31 is an example of a closed-loop

feedback system, True or False

FIGURE 1.31 System with contral devics,
‘actualorn, and process.

5. A multivariable system is a system with more than one input andior
more than one output. True or False
6. Early applications of feedback control include which of the following?
w. Water clock of Ktesibios
b. Watt's flyball governar
& Drebbel's temperature regulator
d. All of the above
7. Important modern applications of control systems include which of the following?
a. Fuel-efficient and safe automobiles
b. Autonomous robots
€ Automated manufacturing
d. All of the above
8. Complete the following sentence:
Control of an industrial process by murommic rather than maunual means i often colled

w. negative feedback
b, sutomation
€ adesign gap
d. a speaification
9. Complete the following sentence:
are fnfrinsic in the progression from an initial concept to the fimal product.
& Closed-loop feedback systems.
b, Flyball governors
& Design gaps
d. Open-loop control systems.

ity Exercises a7
+ Eve [T | Carem [ — — |
Topa 'S Device Laser | Output L. Closed-loap feedback The result of making a judgment about haw much
- control system compromise must be made between conflicting
— writerin. —
proeeeresy Bl £ Flyball governor An Interconnection of elements and devices for
wariabile demed purpoﬂ:.
) n PP, e ik i il =
FIGURE E1.2 Partial block diagram of an optical source, !’wanr!alydl’mk;
i. Synthesis A gap between the complex physical system and the
e Mechanical deformation 1o electrical energy Biofeedback is a technique whereby a human can, dﬁi‘n model intrinsic to the progression from the
d. Chemical energy to kinetic energy with some success, consciously regulate pulse. reaction initial concept vo the final product. TR
EL3} A precise optical signal source can control the out- to pain, and body temperature. J- Open-loop control  The intricate paiter of interwaven parts and
put power level to within 1 percent [32]. A laser iscon-  EL11 Future advanced commercial aircraft will be E- system required. —
trolled by an input current to yield the power output. A enabled. This will allow the aircralt 1o take advantage k. Feedback signal The ratio of physical output to physical input of an
microprocessor controls the input current 1o the laser. of continuing improvements in computer power and industrinl process.
The microprocessor compares the desired power level network growth, Aircraft can continuously communi- L Robot The process of designing a technical system.
with s meagured signal proportional Lo the Iser power cate: their location. speed, and critical heallh parame- m. Multivariable control A system that utilizes a device to control the process
output obtained from a sensor. Complete the block di- ters 1o ground controllers, and gather and transmit sai '“'l“':‘ u’ feedback, Ll
agram representing this closed-loop control system local meteorological data. Sketch a block diagram e ¥ ms v i = e
shown in Figure E1.3, identifying the output, input, and showing how the meteorological data from multiple n. Design gap in the
consequences of & design.

measured variables and the control device

EL4 An ile dri to main-
tain the speed of the car at a prescribed level, Sketch a
block diagram to lustrate this feedback system.

ELS Fly-fishing is a sport that challenges the person to
cast u small feathery fly using a light rod and line The
goal is to place the fly accurately and lightly on the
distant surface of the stream [59]. Describe the fy-
casting process and a model of this process.

ELS An sutofocus camera will adjust the distance of the
lens from the film by using a beam of infrared or ul-
trasound to determine the distance to the subject [42].
Sketch a block diagram of this open-loop control sys-
tem, and briefly explain its operation.

EL7 Because a sailboat cannol sail disectly into the -]m
and traveling straight downwind s usually slow, th
shortest sailing dﬂm is md_r 8 ;thghl line. Thns
sailboats tack up h sigzag
jibe drmmnd. A tactician's decision of when 1o lad:
and where to go can determine the outcome of 4 race.

Describe the process of tacking a sailboat as the
wind shifts direction. Sketch a block diagram depict-
ing this process.

ELE Modern automated highways are being implement-
«ed around the world, Consider two highway lanes merg-
ing into o single lanc. Describe a feedback control
system carried on the automobile tratling the lead au-
tomobile that ensures that the vehicles merge with a
prescribed gap between the two vehicles

E1L9 Describe the block dingram of the speed control sys-
tem of a motorcycle with a human driver.

ELI0 Describe the process of human biofeedback used
to regulate factors such as pain or body temperature.

aircraft can be i to the ground,

using ground-based powerful networked computers
to create an sccurale weather situational awareness,
and then transmitted back to the aireraflt for optimal
routing.

EL1Z Unmanned aerial vehicles (UAVS) are being de-
veloped to operate in the air autonomously for long
periods of time (see Section 1.3), By autonomous, we
mean that there is no interaction with human ground
controllers. Sketch a block diagram of an avtonomous
UAV that is tasked for crop monitoring using aerial

The UAV must and transmit
the entire land area by flying a pre-spesified trajectory
s accuralely as possible.

EL1} Consider the inverted pendulum shown in Figure

E1.13. Sketch the block diangram of a feedback control

Opeical encoder 1o
measure angle

= ==
FIGURE E1.13 Inverted pendulum control,

0. Positive feedback

P Negative feedback

The process of conceiving or inventing the forms,
parts, and details of a system to achieve a specified
purpose.

“The device, plant, or system under control,

q. Trade-off The output signal is fed back so that it adds to the
input signal.
r. Productivity An interconnection of components forming a
system configuration that will provide a desired
response. —_
% Engincering design  The control of a process by automatic means.
. Process The adjustment of the parameters 1o achieve the most
favorable or advantageous design. TR
. Control system The process by which new physical configurations are
created. S
* A mechanical device for lling the speed of a
steam engine. pE-SLEN
EXERCISES
Exercises are straightforward applications of the concepts MNongravitational acceleration
of the chapter. Rotational position (or angle)
The fallowing systems can be described by a block disgram Rotalianal velocity
showing the cause-effect relationship and the feedback (if ;h;;‘::'““

present). Identify the function of each block and the de-
sired input variable, output varisble, and measured vari-
able. Use Figure 1.3 as a model where appropriate.
EL1 Describe typical sensors that can measure each of
the following [93]:
&, Linear position
b Velocity (or speed)

Liquid (or gas) fow rate
ue

Force

E12  Describe typical actuntors thot can convert the fol-
Towing [93]:

TrEE R RD

# Fluidic energy 1o mechanical energy
b Electrical energy to mechanical energy



FIGURE P1.5 A photocell is mounted in each fube. The light reaching
each call is tha same in both anty when the light source i exactly in the
middie as shown.

Process
feitnal Actual
wapes + wages Prves
- Inilussiry 3
Automsic
cont oof Tiving
Wage | jicreae | Cottol
Increass living

FIGURE P1.6  Positve foechack.

Figure P16, adds the feedback signal to the input sig-
weal, oo the resulting signal is used as the input 1o the
process. A simple model af the price-wage inflation

ary spiral is shown in Figare P1LA. Add additional
feedback loopa, such o legisiative control or control
of the tax rate, to stabilize the system. It is avsumed
that an increuss in worken' salarics, after some time
delay, resulis in an increase in prices. Under what
conditions vould prices be stabilized by falsifying ar
helnying the availability of cost-of-living data? How
wollld a national wage and price economic guideline
progrum alfect the feedback system™

St Lung

PLT The story is told about the sergeant who stopped at
the fewelry store every morming at nine o'clock and
red snd reset his wateh with the chronometer in
the window. Finally, one day the sergeant wenl into
he slore and complimented the owner on the accuracy
of the chronometer.

“In it set ime signals from Arfington ™
mked the sergeant.

“No" said the owner, "1 set it by the five o'clock can-
non fired from the for each afternoon. Tell me, Serpeant.
why do you stap every diy and cheek your watch ™

The sergeant rephied, “I'm the gunner at the fort!™

Is the feedback prevalent in this case positive or
negative? The jeweler's chronometer loses Iwo minutes
each -hour period and the sergeant’s watch boses
three minutes during each eight hours What is the net
time error of the cannon at the fort after 12 days?

P18 The studeni-teacher learning process is inherently a
Teedback process infended 1o reduce the system erros
0 & minkmum. With the eid of Figure 1.3, coastruct n
feedback model of the leaming process and ldentify
ench block of ihe sysiem.

P18 Models of physiologieal control systems are valu-
uble aids lo the medical profession, A model of the
hoart-rate contrel sysiem is shown in Figure LY
23,24, 4K]. This model includes the processing of the
nerve signals by the brain, The heart-rate controd

Wl == sk
s

FIGURE P1.8 Heart-mte control.

Nerve Rex:
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emissions signilicantly. Skeich o block diagram for
such a sysiem for an automobile.

PLIG6 ANl humans have expenienced a Tever associated
with an illness A fever is relnied 1o the changing of the
control input in the body's thermostar This thermo-
stal, within the brain, normally regulates tlemperature
mear 98F in spite of external temperatures ranging
From 0 to MXPF ar moee. For a fever, the input, or de-
wired, temperatiune i increased. Even (0 many scicn-
tista it often comes 48 8 surprise to leam that fover
docs not indicate something mmwhhbodywr-
ature eontrol bul rather well-contrr o

PLIY  [chiro Masaki of General Motors hos patenied a
system that sutomatically sdiusts s car's speed 1o keep
a sale distance from vehicles i ront, Using a video
ﬂm.mtwmdﬂcmwﬂwﬂlm
Image of e car i front. 1 then compares this image
with a stream of incoming live images as the two cars.
move down the highway and caleulates the distance.
Masaki suggests that the systein could control steering
as woll us speed. allowing drivers to lock on (o the car
ahead and get & “computerized tow.” Sketch a bock
ehingram for the control system.

ehevated leved of desired input. Sketch a block dingram
of the temperature contral sysiem and explain how as
pirin will lower = fever.

PLIT Baschall players use feedback to judge a fly ball
and 1o hit 4 pitch [35]. Describe o method wsed by &
batter to judge the location of & pitch so that he cin
e Use hat in the proper position o hit the ball,

PLIE A cutaway view of a commonly ased pressure regs
ulator is thown in Figure PLIS, The desired pressisre
i et by tarming a calibrated screw. This compresaes.
the spring and seis up o force (hat opposes the op-
wird motion of the disphragm. The bottom side of
the diaphragm is exposed to the water prossure that
i to be controlled, Thus the motion of the diaphragm
i an indication of the difference between
the desired and the actual pmsnm Il acts like a

The valve i
and moves according 10 the pressure difference until
it reaches a position in which the difference is zevo.
Sketch a block diagram showing the control system
with the outpul pressure as the regulated vatinble.

2
Valve

FIGURE P1.18 Prassurs raguiator.

PL2 A high-perfc race car with an adjustable
wing [l:ﬂﬂll] is shown in Figure PLIL Develop a
Mock diagram descriting the ability of the sirfoll 1o
keep a constant road adbesion between the car's tires
and the mee tack surface. Why is it important 1o
matntuin good road sdhesion?

FIGURE P1.20 A hugh-porfonmonce race car with an
adjustabie wing.

PLII The potential of employing two or more heli
coplers far transporting payloads that are oo heavy
for a single helicopier is a well-addressed issue in
the civil and military ratorcrit design arenas [37].
Overall requirements con be satislied more effi-
ciently with w smller aircraft by using multilift
for infrequent pesk demands Hence the principal
motivation for using mullilifi can be afinbuted
10 the promise of obtaining Increased productivily
without having to manufscture larger and more ex-
pensive helicopters. A specilic case of a multlift
armangement where bwo helicopiers jointly transpart
puyloads has been named twin L Figure PLII

Problams

system osing Figure 1.3 ax the model Identily the
process, sensor, actuator, and controller, The objective
s keep the pendulum in the upright position. that is 1o
keep d = 0, in the presence of disturbances.

PROBLEMS

Problems require extending the concepts of this chapter to
new situations.
The following systems may be descnbed by o block
disgram showing the cause—effect relationship amd
the feedback (if present). Each block should describe s
Tanction, Use Fgure 1.3 as o model where .ppmp:iu!e.

ELI4 Describe the hlock diagrum of 2 persen playing a
video gume Suppose that the input device is s joystick
and the game is being played on a desktop compater.
Use Figure 1.3 0% 2 model of the bock diagram.

strenm miy be comirolled. Complete the control feed-
back loop, and sketch a block dingram deseribing the
operation of the contral

PLA The accurate control of & nuclear resclor is impor-
tamt for power system generalirs Assuming the nam-
ber of neutroms present i propartional 1o The power
level, an joni chinnber i used 10 measure the

PL1 Many lusury hiles have th
controlled air-conditioning sysiems for the comfort
of the passengers. Skeich a block diagram of an air-
conditioning system where the driver sets the desired
Interior lemperature on a dashboard panel. Identify
the function of each element of the thermostatically
controlled cooling system.

FLZ In n!plﬂ.mml wystems ssed a hisman operator as
part of Sketch the block di-

agram of the valve control system show in Figure PLL

FIGURE P1,2 Fiusd-fiow control.

PL3  In n chemical process control systen, it is valuable
1o control the chemicnl composition of the product.
To do so, 8 messurement of the compasition can be
obtained by using on infrared stream analyeer, us
shown in Figure P13 The valve on the additive

Al ——

power level, The curremt |, i proportional 1o the
power bevel, The position of the graphite control rods
moderates the power level, Complete the control sys-
tem of the nuclear resctor shown in Figare P14 and
sketch the block diagram describing the openution of
the fecdback contral loop.

Contral rod

lonization chembor

—

FIGURE P1.4  Nuciear reactor control,

P15 A light-secking control tystem, used to track the
wun, is shown in Figure F'LS. The ontput shaft, driven
by the molor rough o worm reduction gear, lis a
iracket attached on which are mouniod two phatocells.
Compleie the closed-loop sysiem so thal the systen
Tusllovws the Gight source.

PL6 Feedback systems do not always involve negative
Teedback, Economic inflation, which is evidenced by
continually rising prices, is o positive feedbuck sys-
tem. A positive feedisack conirol system, is shown in

Valve
«“:1::- % Chapu
FIGURE P1.3 Chemical compasition contral.
Problems a“
system bs, in foct, 3 multivariable systent, and the PLI2 An ic turning gear for windmill

variables x, w w, w 2. and o are vector varisbles. In
other words, the variable & represents many heart
vardables &y, x;,..., ¥, Examine the model of the
henrt-raie control system ind add or delete blocks, i
necessary. Determine a control system mode] of one
af the lollowing physiological control systems:

1. Respiratory control system

2. Adrenaline control system

3. Human arm control system

4. Eye control system

5 Pu nd the blood-sugar 1

system
6, Circulstory system
PLIS The role of air tralfic control systems is increasing

s ivplane traffic increnses ot busy airports Engineers
nre developing air traffic control systems and collision
avoidance systems wing the Global Positioning Sys-
tem (GPS) navigation satellites |34, 55]. GI'S allows
each murcralt to know its position in the airspace land-
ugmﬂldm\m precisely. Sketch a block diagram de-

picting how an air traffic controller might wse GPS for
nircral) collision avoidance.

PLI Automatic control of water level using o flost level
was used in the Middle East for a water clock (1. 11).
The water clock (Figure PLLIL) was used from some-
thme before Cheist oot the 171 century. Discuss the
operation of the water clock, and establish how the

ides 2 feedback control thut muintains the ac.
curmcy of the clock, Skelch a block diagram of the feed-
bk sysiem

FIGURE P1.11 Water chock. (From Newton, Gould, and
Kaiser, of Linsar Faadback Controds. Wilay,
1]

was in-
vented by Meikle in about 1750 [1, 1], The fantail
gear shown in Figure P1LI2 autematically turns the
windmill into the wind. The fantail windmill st right
wagle (o the mainsail is used 1o wm the turret. The
gear ratio & of the order of 3000 10 1. Discurs the
operation of the windmill. snd establish the feed-
back operation that maintains the main sails into
the wind.

FIGURE P1.12 Mhmlnn w!vwhdmﬂb.

{From Newlon, Gould, and
Linear Feedback Conlrols.
parmisalan )

wmmmwa? niﬂ

PLI3 A commin example of & two-bnput control sysiem
4 horme shower with separate valves for hot and cold
water. The abjective is to obtain (1) a desired temper-
iture of the shower water and (2) a dudn:d. flow of
waler. Sketch o block diag
syston.

PLI4 Adom Smith (1723 1790) discussed the issue of
free competition between the participants of an ccon-
oy it bits book Wealtlh of NMations, It inay be sabd that
Smith employed socinl feedback s fo ex
plain his theories [41]. Smith suggests thai (1) the
available workers as a whole e the various
possibile employments and enter that one offering the
greatest rewards. and (2) in any employment the re-
wirds diminish as ile number of compeling workers
rises. Let ¢ = tomal of rewards averaged over all
trades, ¢ = fodal of rewards in a particular rade, and
o = influx of workers into the specific trade. Sketch o
feedback system 1o represent this system.

PLIS  Simall computers are used in antomobiles (o cons
trod emissions and obiain improved gos mileage. A
vomputer-controlled fuel injection system that anio-
matically ndjusts thee fual-air mixture ratio coul -
prove gas mileage and reduce unwanied polluting
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ADVANCED PROBLEMS

Advanced problems represent problems of increasing com.
plexity.

APLI  The develop of robatie mi Rery devices
will have major implications on delicate cye and
Iealn surgical procedures The microsurgery devices
employ feedback control to reduce the effects of the
surgeon’s musche iremors. Precision movemenis by un
articulated robolic arm can greally help a surgeon
by providing a carefully controlled hand. One such
device is shown in Figure APLL The microsurgical

FIGURE AP1.1  Microsurgery robotic manipulator, Photo
courtesy of NASA)

devices have been evaluated in clinicn] procedurcs
and are now being commersialized, Sketch a block di-
agram of the surgical process with o microsurgical de-
wice in the Toop being operated by o surgeon, Assume
that the position of the end-effector on the microsur-
gical device can be measured and is available for
feedbuck.

APL2  Advanced wind energy systems are being installed
in many locations throughout the world ms 0 way for
nations to deal with riging fuel prices and energy shost-
ages, and 10 reduce the negative effects of fossil fucl

slization on the quality of the air (refer 10 Example
1.2 in Seetion 1.8). The modern windmill can be viewed
as 0 mechatronic system. Consider Figure 118, which
illustrates the key elements of mechatronic systems.
Using Figure 118 ns a guide, think about how an
nchvanced wind encegy system would be designed aea
mechitronic system. List the vanious components of
the wited energy system and mssociale cach component
with one of the five elements of a mechatronic system:
physical system modeling. signals and systems, compul-
ers and logic systems, software and dats acquisition,
and sensors and actuators

APLI Many modern lusury automobiles have an au-
tapark option. This feature will parallel park an auto-
mobile withou! driver intervention. Figure API3
illustrates the parallel parking scenario. Using Figure
1.3 as a miodel, skeich o block diagram of the auto-
mated parallel parking feedback control system. ln
your own words, describe the control problom and
the challenges facing the designers of the control
system.

wmrm—-' Flg

FIGURE AP1.3 Automated paralisl parking of an automabile.
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over R0 mi with maore (han |60 stories There are 57 ele-
vilors servicing this tallsd free-standing stnscture in
the world. Traveling at up o 10 més the elevators ave
the warkd’s fongest travel distance from lowest 1o
Bighest stop, Bescribe a closwed-loop feedback contml
system that guides an elevator of a high-rise bullding
to-a desired floor while maintaining a reasonable ran-
siltime [95]. Remember that high accclcrations will
make the pasengers imncomforble.

APLS  Control systems are abding humans in maintaining
their homes. The robotic vacuum cleaner depicted in
Figure APLA is an example of a mechationic system
under active control that relies on infrared sensory
and micrachip lechnology to navipate around femi-
ture, Dreseribe a closed-loop fecdback control system
that gubdes the robotic vacuum cleancr o avold colli-
sions with obstneles [96]

DESIGN PROBLEMS

Design problems emphasize the design task. Continuous
design problems (CDP) build upon & design problem from
chapter to chapter.

COPLT Inuﬂanugjy mmgc-m requitemnents of modem,
oy high-p y are placing de-
+J mands on slide wstems [33] The Lypical goal is fo
accuralely control the desired path of the tnhle shown

in Figure COPLL. Sketch a block dingram modsl of a
feedback system 1o achieve the desired goal The table

wan miwve i the ¢ direction as shown.

FIGURE CDP1.1  Macnine toal witn tabbs.

FIGURE AP1.6 A robatic vacuum cleanes
commimicalos with the base station as it maneuvers
around tha room. (Photo courtesy of Alarmy Images.)

DPLY  The road and vehicle noise that invade an auto-
mohile’s cabin hasiens ocoupant fatigue [60]. Design
the block diagram of an “anfinoise” feedback system
that will reduce the effeet of wnwanted notses. Indicate
the device within each block.

DPL2  Muay cars are litfed with crusse control that, at the
press of a button, aptomatically muintaing o vl specd.
T this way, the driver can cruise at a speed limit or
economic speed without continunlly checking 1he
Design s fecdby | in block dia-

ram form lof m erube conlrol syslom.

DPLAY  As part of the astomation of a dairy farm, the a-
penntion of cow milking is ander study [36]. Design a
milklng machine that can milk cows four of five mes
a day a1 the cow's demand. Skeich a block dingram
and idicate the devices in cach block.

DFLA A large, braced robot arm for welding large stroc-
tures is shown in Figure DPL4, Sketch the block dia-
gram of & cosed-oop feedback contral system for
wocurately controlling the location of the weld tip.

DFFLS  Vehicle tractien conteol, which includes antiskid
braking and antispin ncccleration, can enbance vehi-
cle performance and handling. The objective of this
control i 0 masimice lire traction by prevealing
lisched hrakes as well as tire spinning during accelera-
by, Wheel <lip. the difference between the vehicle
speed and the wheel specd, is chosen ms the controlled
wariahle beennse of its strong infllacaee on the tractive
foree berween the tire umd the road [19], The adhesion
cocilicient between ihe wheel and the road reaches

FIGURE P1.21 Twa helicopters usad to fift and move o
targe load

shows a typical “two-point pendant™ twin lift config:
uration in the lateral/vertical plane.

Develop the block diagram deseribing the pilow’
actlon, the position of each helicopter. and the posi.
thon of the load.

PLIL Engincens want to design o control system that will
allow a building or other structure 1o reaci to the loree
of an earthquake much as o human would. The stric-
tare would yield to the force, bat only so much, before
developing strength to push back [47). Develop o
block diagram of n control system to reduce the elfect
of an carthguake force:

123 Engineers ot ihe Scieace University of Tokyo are
developing a robot with o humaniike fuce [52]. The
rwbol can display facial expressions, so that it can
work cooperatively with human workers Skeich a
hlock diagram for a facial expression control system
af your own design.

PLM An i for an i
windshicld wiper is the concept of nd]ll‘llll\g its wiping
eycle acconding 1o the inteasity of the rain [54]. Skeich
a block diagram of the wiper control system.

PLZS In the past 40 years, over 20000 metric 1oos of
hordware have been placed in Eanh's orbit. During
ithe same tme span, over 15,000 metric tons of hard-
ware returned to Enrth. The objects remaiming in
Earth's orbit range in size from large operational

crafl to tiny Mecks of palnt. There are about
130,00 objecis in Earth’s ot 1 em or lorger in size.
About 10,000 af the space objects are currently tracked
Trom groundstations on the Earth. Space traffic control

Advanced Problems

Light from 2
celestial object

Drefopmable
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[61] i becoming an important issue, especially for
commercial sptellite companbes that plan 1o “fly~ their
satellites through urbit altitades where other satellites
are operating. and throagh arcas where high concen-
trations of space debris may exist. Sketch a block dia-
ram of 4 space traffic contml system that commercial
companies might 1= 1o keep their satellites safe from
collisions while opernting in space.

PL26  NASA is developing o compact rover designed 1o
transmit data from the surface of an asterokd back w
Earih, ms illustrated in Figure PL26. The rover will use
a camera to tike panoramic shots of the seroid sur-
face. The rover cin posithon itself 5o that the camera
«can be pointed straight down at the surface of straight
up il the sky. Sketch o block diagram illustrating how
the microrover can be positioned 1o point the camera
in the desired direction. Assume thal the posnting
commands are relayed from the Earth o the micro-
rover and that the position of the cameri is measured
and relayed back to Earth,

FIGURE P1.26 vammmbownm--
asterokd, (Fnoto courtesy of

PL2T A direct methanol fisel cell is an clectrochemical
device that convents 4 methanol water solution 1o
electricity |75]. Like rechargeshle battenes fuel cells
dircetly converi chemicals 1o energy |hzy are yery
oflen d 1o batterics, sp 1
batteries. However, one significant difference between
rechargeable batteries and direct methanol fuel cells
b that, by adding more methanol water solution, the.
fuiel cells recharge instantly. Sketch a block diagram of
the direci methanol fucl cell recharging system that
uses feedback (refer to Figure 1.3) to continuously
moniler and recharge the uel cell.

FIGURE AP1.4 Extremely lama optical tlascopa with daformabls mirors
for Mimosphene compensation.

APLA  Adaptive optics has applicstions 1o 8 wide vaziety of
key control problems. mchuding imaging of the human
reting and farge-scabe. ground-hased astronomical
observations [95]. In both cases, the approach is 10 use 8
wavefront sensor fo measire distortions in the incoming
tight and 1o actively control and compensate 10 the er-
rors induced by the distortions. Consider the casc of an
extremely large grownd-based optical hal:mope [peoriss-
bly an optical telescope up to 100 meters in diameter.

deformable

light as it passes through the turbulent sd wicertain sl-
‘masphere of Enrth.

There i at least one major technological barrier
to eonstructing a 100-m optical telescope. The numeri-
cal computntions associated with the control and
compensation of the extremely large optical ielescope
can be on the arder of 10 calculations ench 1.5 me To
date, this 1 power is unachievable, If we
assume that the computational capability will ulii-
mately be available. then one can consider the design
of a feedback control system thot uses the available
computations] power. We cun consider many control
Ismues msociated with the large-scale optical tele
scope. Some of the controbs problems that might be
considered mclule cunmlhn; tbe poimmg ud' rhr.

Ak the §

main dish,
rors, and attenuanng the deformation of the dish ilur
to chanpes in outside tempernture.

Employing Figure 1.3 a5 2 model for the block din-
gram, describe a closed-loop feedback control sysiem 1o

the didortions m the incurmng tght. Fw-r:.uudm
a dingram of the lzlescope with a single deformable mir-
ror. Suppose (hat the mirror has an asocined MEMS
actuator that can be wed 1o vary (he orientation. Also,
mssume that the wivelront seisor amd rssociated algo-
rithms provide the desired configumtion of ihe de-
formable mirror 10 the feedhack contrul system.

APLS  The Bugj Dubat is the tallest building in the woeld
[94]. The building. shown in Figure APLS, stands at

FIGURE AP1.5 The woridr's talleat building in
Dutal. (Photo courtesy of Alamy Images.)
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- ANSWERS TO SKILLS CHECK

True or False: (1) True; (2) True; (3) False: (4) False;  Word Maich (in order, top to bottom); p. f. b, k, m,

(5) True
Multiple Chm (6) d: (7) d; (8) b; (9) <2 (10) o5

(11) d: (12) 2 (13) c: (14) & (15) d

TERMS AND CONCEPTS

Avtomation The control of a process by automatic means.
Uu!d-lwpl‘eemmnlm A system that uses

gdlnersjbetonvaig

Multiloop feedback control system A feedback control
syslem with more than one feedback control loop.

of the outpet and comp it with the
demd outpat 1o contral the process.

Complexity of design  The intricate pattern of interwoven
parts and knowledge required.

Control system  An inlerconnection of components form-
ing a system configuration that will provide a desired
Tesponse.

The process of conceiving or inventing the forms,
parts, and details of a system 1o achicve a specified

purpose.
Ddgn 2p A 82p between n.e mmplex physimll .\y:wn
rom

II||: hnml enneep: to the final pmducL

Disturbance  An unwanted nput signal that affects the
output signal.

Embedded control  Feedback control system that employs
on-board special-purpose digital computers as integral
components of the feedback loop,

Engincering design  The process of designing a technical
system.

signal A measure of the output of the system
used for feedback 10 control the system,
governor A mechanical device for controlling the
speed of 2 stenm engine.
Hybrid foel sutomobile  An automobile that uses @ con-

i control system A system with more than
ane input variable or more than one output variable.
Negative leedback  An output signal fed back so that it
subtricts from the input signal.
control system A system that uses a device lo
control the process without using feedback. Thus the
output has no effect upon the signal to the process.
The adi of th hi
the most favorable or advaniageous design.
Plant  See Process.
itive feedback An output signal fed back so that it
adds to the input signal,

Process  The device, plant. or system under control.

The ratio of physical output 1o physical input
of mindnlriil process.

Risk L i ied in the uni conse-
quences of & design.

Robot Programmable computers integraled with a ma-
nipulator, A reprogrammable, multifunctional manip-
ulater wsed for & variety of tasks.

Spediications Statements that explicitly state what the
device or product is 1o be and to do. A set of prescribed
performance criteria.

Synthesis  The plwcss by wlm:h new phml configura-

wentional internal engine in
with an energy storage device 1o provide a propulsion
system.

Measurement noise  An unwanted input signal that affects
the musumd oulpul suyul.

of

tions f separite elements
or devices 10 form a coherent whole.

System  An interconnection of elements and devices for a
desired purpose.

Trade-off The result efmlk:n; ujlld.menl about how 1o
between conflicting eriteria,

electrical, nnd ‘computer sysiems.
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2.1 INTRODUCTION

Design Problems

FIGURE DP1.4  flobot welder

maximum 8 u fow sfip. Develop a block disgram
madel of one wheel of a traction contral system

DPLE The Hubble space telescope was repaired and
muoddified in spoce on several occosions |44, 40, 49).
Uit ing, problem with \ing the Hub-

vibrates the spacecraft

or out of the Earth's shadow,

The worst vibration bas o period of about 20 seconds.

or & frequency of (05 herte. Design o feedback sys

tem that will reduce the vibrations of the Hubble
space felescope,

DPLT A challenging application of control design is the
use of bots in medicine. bots will re-
qurire onboard computing capability, and very tny
sensors and actuntors. Fortunately, advances in bio-
molecular computing. bio-sensors, and actuators are
promiving 1o cnahle medical nanorobots (o emerge
within the next decade [98). Many interesting medical
wpplications will benefit from nanorubotics For exam-
ple. one use might be to use the robotic deviees to pre-
eieely deliver anti-HIV drags or to combal cancer by
tarpeted delivering of chemaotherapy.

Al the present time, we canned construct practical
nanporobots, but we can consider ihe control design
process that would enable the evenual development
and dnstallation of these tiny devices in the medieal
field, Consider the problem of designing a nanorobor

47

FIGURE DP1.7 An artist Bustration of &
nanorobat interscting with human blood
celis.

to deliver a cancer drug 1o a specific location within
the human body, The target site might be the locsthon
of u wmor, for example. Using the contral design
process illustrated in Figure 1.15, suggest one or mare
control goals that might guide the design process. Reo-
ommend the variables that shuuld be controlled and
provide a list of reasonable specifications for those
variables

DPLE  Consider the humsn transporiation vahicle (H1V}
depicted in Figure DPLE, The self-balancing HTV is
netively controlled 1o allow safe and easy transporta.
tion of a single person |97]. Using Figure 13 as o
model for the block diagram, describe a closed-loop
feedback control system to mssint the rider ol the HTV
im balancing and maneuvering the vehicle

FIGURE DP1.8 Personal transporation vehicle.
{Photo counasy of Hwscom. com.}

To understand and control complex systems, one must obtain quantitative
mathematical models of these systems. It is necessary therefore to analyze the rela-

b the system variables and to obtain a mathematical model.
Because the systems under consideration are dynamic in nature, the descriptive
equations are usually differential equations, Furthermore, if these equations can be
linearized, then the Laplace transform can be used to simplify the method of solu-
tion. In practice, the comp]emt)' of systems and our @:mnne of all the relevant
factors i the i of g the system opera-
tion. Therefore we will cﬁen find it useful to comnder the pbysm] syslem, express
any and linearize the system. Then, by using the physical
laws descrlbmg the linear equivalent system, we can obtain a set of linear differen-
tial equations, Finally, using mathematical tools, such as the Laplace transform, we
obtain a solution describing the operation of the system. In summary, the approach
to dynamic system modeling can be listed as follows:

1. Define the syal:m and its components.

ZF ical modeel and ¥ ions based on
basic pnnnpﬂm
3. Obtain the Juations rep ing the ical model.

4. Solve the equations for the desired output variables.
5. Examine the solutions and the assumptions.
6. If necessary, reanalyze or redesign the system.

2.2 DIFFERENTIAL EQUATIONS OF PHYSICAL SYSTEMS

The differential equations d g the d of a physical system
are obtained by utilizing the phymca] laws of the proces [1-3]. This approach applies
equally well to mechanical [1], electrical [3], fluid, and thermodynamic systems [4].
Consider the torsional spring-mass system in ﬁgure 2.1 with applied torque T,(r).
Assume the torsional spring element is ! ppose we want to the
torque T,(¢) transmitted to the mass m. Since the spring is massless, the sum of the
torques acting on the spring itself must be zero, or

L) = T = 0,

which implies that T;{r) = T,(r). We see immediately that the external torque T;(r)
applied at the end of the spring is transmitted through the torsional spring. Because
of this, we refer to the torque as a through-variable. In a similar manner, the angular
rate difference associated with the torsional spring element is

wit) = wt) = ).
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PREVIEW

Mathematical models n{physlcnl syslem are key elements in the design and analysis
of control systems. The dy lly described by ordinary differen-
tial equations. We will uansnier a w‘:de range of systems, including mechanical,
hydraulic, and electrical. Since most physical systems are nonlinear, we will discuss lin-
earization approximations, which allow us to use Laplace transform methods We will

then proceed to obtain the input—output relationship for and sub
in the form of transfer functions The transfer function blocks can be organized into
block diagrams or signal-flow graphs to graphically depict the i ions. Block

diagrams (and signal-flow graphs) are very convenient and natural tools for designing
and analyzing complicated control systems. We conclude the chapter by developing
transfer function models for the various components of the Sequential Design
Example: Disk Drive Read System,

DESIRED OUTCOMES

Upaon completion of Chapter 2, students should:

3 Recognize that differential equations can describe the dynamic behavior of physical

systems.

4 Be able to utilize linearization approximations through the use of Taylor series
expansions.

O Und d the app of Laplace i and their role in obtaining transfer
functions.

d Be aware of block diagrams (and signal-flow grophs) and their role in analyzing
control systems.

fu IS | the imp role of modeling in the control system design process.
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linear, dynamic elements is given m Table 2.2 [5]. The equations in Table 2.2 are ideal-
ized d and only ap the actual conditions (for example, when a
linear, Imnped appro:umncn is used for a distributed element).

Table 22 S y of G ing Differential Equations for Ideal Elements
Type of Physical Governing Energy E or
Element Elamant Equation Power &
. di L L
Electrical inductance ”“-L:i":: E-iLr‘ ..i,mv'\_.'._e..l
. . 1dF 1R ko,
Translational spring W E E-ET v ol WY Y gl ¢
Tnductive storage
1dr 17 i
Rotational spring o=y E=zT o L
o . de e
Fluid inertia Py =1 E ZIQ“
¢ Elecirical capacitance i = c‘%’" E= ;-r:v,,’
Translational mass F= M‘:—‘:’ E= %MV)’
) du, 1, 5
Capacitive storage Rotational mass T= J‘;‘T E= E.i'u;
Fluid capacitance g= c,% E= %(.}Pu’ 9—';,—@}—*' ”
\ Thermal capacitance g= C,% E=C3 b Ty LA
cOnstEnl
. . 1 R
¢ Elecirical resistance i= ﬁlhq P -ﬁou’ v 0 AAA—+—0 v,
Translational damper F=buy & = buy? 1
i ]
Energy dissipators ¢ Rotational damper T = by P = buy’ i
T —w——{}b—e ]
id rest ALY -ty "
Fluid resistance Q R,'P" P R,'P" . T 0 ’
1 I
‘Thermal resisiance = —1. P =7 Ry
q b BB 5 ¢ 7
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il - +
coment () RS L4 cFRmn
FIGURE 2.3 Mibf, 5 =
RLC circuit.
Alternatively, one may describe the elecuk::l RLC mmut of Figum 2.3 by nhlm
ing Kirchholf's current law, Then we obtain the f ginteg :
t dulr,
-‘5&3 o=t "'{ ), ‘£ we)de = r(), (22)
‘The solution of the differentla] equation describing the process may be ob-
tained by classical methods such as the use of integrating factors and the method of
undetermined coefficients [1]. For example, when the mass is initially displaced a
distance y(0) = y, and released, the dynamic response of the system can be repre-
sented by an equation of the form
) = K™ sin(yr + 8,). 23)
A similar solution is obtained for the voltage of the RLC dreuit when the circuit
is subjected to a constant current r{t) = I, Then the voltage is
wit) = Kpe™ cos(Byt + 63). (24)
A voltage curve typical of an RLC circuit is shown in Figure 2.4,
To reveal further thg close similarity between the differential equations for the
t | and ical systems, we shall rewrite Equation (2.1) in terms of velocity:
{:
olt) = ﬂ{_}.
Then we have
ﬂ"m + bofr) + kfb(:}dr = ). (25)
Valtage
Wiy
B
/‘\ Aoz
() B VI CR i S Vg -
FIGURE 2.4 R —"’
Typical =
response for an
ALC circuit. o 2mifiy
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FIGURE 2.1
{a) Toeskonal L L

mi . [b) Spring tal )
clomant.

“Thus, the angular rate difference is measured across the torsional spring element and is

referred (o 48 an across-vardable. These same types of arguments can be made for most

common physical variahles (such as force, current, volume, flow rate, etc.). A more
complete discussion on through- and across-variables can be found in ["6 27 A sum-

mary of lllu lllmusll and wvumhh:s of dynamic systems is given in Thble 2.1 [5].

the I tional System (S1) of units associated with the var-

@ inus varisbles discussed in this seetion ean be found at the MCS website." For example,
inbles that are degrees Kelvin in S1 units, and variables that

mensure length are meters. Important conversions between S1 and English units are

also given ut the MCS website. A summary of the describing equations for lumped,

Table 2.1 of gh- and A for Physical Sy

Variable Integrated Varlable Intagrated
Through Through- Across Across-
System Element Variable Element Variable
Electrical Current, § Charge, g Voltage Flux Hinkage. Ay
difference, 1y
Mechamical  Force F Translationsl  Velocity Displacemen|
translational P I ty i
Mechumcnl  Torgue, T Angular Augular velocity  Angular
rotutions] h o diln ey lispl

differerce, @y
Fluld Fluid Volume, ¥ Pressure Prewsure
volumetric rute difference, Py mOmEnium, ¥y
of flaw,
Thermal Heat flow Heat energy, Temperature
rate, q H difference, 7

The companion webside is foound at www penmsonhiphered comidor.
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Nomenclature

3 Through-vartuble: F = force. T = torque, i = current, Q@ = fluid volumetric flow
Tate, g = heat fow rale

d Acroxs-variable: v = translational velocity, w = angulir velocity, & = voliage,
P = pressure, § = lemperature.

= Inductive storage: L = ind 1k =
stiffness, | = Nuid inenance.

O Capacitive storage: C = capacitanee, M = mass, J = moment of inertia, C; = Nuid
capacitunce, C, = thermal capacitance.

= Energy dissipators; R = resistance, b = viscous friction, R, = Nuld resistance,
R, = thermal resistance.

or

“The symbal ¥ is used for both v(rlllgc in electrical circuits and velogity in trans-
lational ical systems and is distingui: within the context of each differen-
tial equation. For mechanical systems, one uses Newton's laws; for electrical s)ﬁlcm".
Kirchhoff's voltage laws. For ple, the simple spring-miss-damp
system shown in Figure 2.2(a) is described by hlewmn‘s second law of motion. (This
system could rep for le. an a bile shock absorber.) The free-body
dingram of the mass M is shown i in Figure 2.2(b). In this 4pa+.ng mass-damper exam-
ple, we model the wall friction as a viscous damper, that is, the friction force 15
linearly proportional to the velacity of the mass. In reality the friction force may be-
have in a more plis | fashion. For le, the wall friction may behave as o
Coulomb damper. Coulomb friction, also known as dry friction, is a nonlinear func-
tion of the mass velocity and possesses u discontinuity sround zero velocity. For a
well-lubricated, sliding surface, the viscous friction i is apprupnall: and will be used
bere and in sub sl i g the forces acting

on M and utilizing N:wlon s scmnd law \I’Icll.l\
&) d:m:

NEE- + b

+ ky(t) = rlt), (1)

where k is the spring constant of the ideal spring and b is the friction constant, Equa-
lion (2.0} is a I-order linear fhcient differentinl equation,

Wl
It b

FIGURE 2.2
) Spring-mass- Vi

Free-bach
?w: I i
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second system may be considered linear about an operating point xq, ¥, for small
changes Ax and Ay. When x = x3 + Axand y = y, + Ay, we have

y=mx+b

W+ Ay =mx, + mAx + b

Therefore, Ay = m Ax, which satisfies the necessary conditions.

The linearity of many mechanical and electrical elements can be assumed over a
reasonably large range ofl.hevamhlﬁ[?] Th:ssnotumaﬂrlhcnaseforﬂmnlm
fluid elements, which are more freq Iy, how-
ever, one can often linearize nonli ll-signal conditions. This
is the normal approach used to obtain a linear equivalent circuit R:r electronic circuits
and transistors. Consider a general element with an excitation (tllmugh-] variable x()
and a response (across-) variable y(1). Several of dy system variabl
are given in Table 2.1. The relationship of the two variables is written as

) = glxin), (26)

where g(x(f}) indicates y(r) is funclwn ufx{r] Th: normal operating point is desig-
nated by x5 B the curve ( aver the range of interest, a
Taylor series expansion about the p ,ponnl may be utilized [7]. Then we have

o dg|  (x-x0) | (x-x)
¥ = 8lx) = glx) + 50 T el e @n
The slope at the operating point,
g
dx |yay
sngoodnpprmmauonlulhemmrumﬂlmscoﬂx = l'q] the deviation from
the operating point. Then, as a Pr (27)b
¥ = glx) + ;l (x = xg) =y + mlx — xo), 28)
sy
where m is the slope at the operating point. Finally, Equation (2.8) can be
as the linear equation
(¥ = s) = mlx = x)
or
Ay =mAx. (2.9)

Consider the case of a mass, M, sitting on a nonlinear spring, as shown in Figure 2. 5(a).
The normal operating point is the equilibrium position that occurs when the spring force
balances the gravitational force Mg, where g is the gravitational constant. Thus, we obtain
fo = Mg, as shown. For the nonlinear spring with f = ), the equilibrium paosition is
b = (Mg)">. The linear model for small deviation is

Af =mAy,

Chapter 2 Mathernatical Models of Systems

where T; = (1. Then, we have
T = MgL{cos)(# — 0°)
- MglLo. (213)
This approximation is reasonably sccurate for —w/4 = 0 = w/4. For example, the

response of the linear model for the swing through £307 is within 5% of the actual
nonlinear pendulum response.

2.4 THE LAPLACE TRANSFORM

‘The ability 1o obtain linedr spproximations of physical systems allows the analyst to

consider the use of the The Laplace form method sub-
stllules relatively easily solved algebraic l.-qn:!unmz for the more difficult dl.l!'ertnnn!
1 1,3). The time-resg solution is obtained by the following o

L. Obtain the lincarized differential equations.
. Obstain the Laploce wansformation of the differential equations.
3. Saolve the resulting slgebraic equation for the transform of the varishle of interest.
T]nc I.apdace transform exists for near differential equations for which the trans-
tegral rges Therefore, for f{1) to be transformable, it is sufficient that

f IU'HN-‘_"" dt < 00,
s

for some real. positive oy [1]. The 07 indicates that the integral should include any
dmunlmuiw- such as o delta function at ¢ = 0. If the magnitude of f{r) is
Ifin)| = Me™ for all positive r, the integral will converge for ey = o The region of
convergence is therefore given by 00 = oy > o, und o, is known as the abscissa of
ubsolute convergence, Signals that are physically realizable always have a Laplace
transform, The Laplace transformation for a function of time, f(1), is

Fly) = /_m!{r}:'"dl = #{f(N)}. (2.14)

The inverse Laplace transform is writton as

ot

! Hghet®
l]‘{r} - E 9 Fs)e™ ds. [2.15)
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One i liately notes the equival of E (2.5) and (2.2) where veloc-
ity v(f) and voltage v(r) are equivalent variables, usually called analogous variables,
and the systems are analogous systems. Therefore the solution for velocity is similar to

(2.4), and the resp for an underdamped system is shown in Figure 2.4,

The concept of analogous systems is a very useful and powerful technique for system
modeling. The voltage—velocity analogy, often called the force—current analogy, is a
natural one because it relates the analogous through- and across-variables of the elec-
trical and mechanical systems. Another analogy that relates the velocity and current
variables is often used and is called the force-voltage I.nnlngy [21, 23]

Analogous systems with similar solutions exist for el ical lher-
mal, and fuid systems, The exi of pous systems and
the analyst with the ahllll)‘ m extend the solution of one sys!m toall analusous 5y~
tems with the same g differential i fore what one learns
about the analysis and design “of electrical systems is unmed:ately extended to an
understanding of fluid, thermal, and mechanical systems.

2.3 LINEAR APPROXIMATIONS OF PHYSICAL SYSTEMS

A great majority of physical systems are :Iincnr within some range of the variables

In general, systems ulti become as the variables are i d with-
out limit. For le, the spri per system of Figure 2.2 is linear and
described by Equation (2.1) as ]ong as the mass is sub]ec:ed to small deflections y{f).
However, if y(f) were conti y the spring would be overex-

tended and break. Therefore th: question nfhncmly nnd the range of applicability
must be considered for each system.

A system is defined as linear in terms of the system excitation and response.
In the case of the electrical network, the excitation is the input current r{r) and the
response is the voltage v{r). In general, a necessary condition for a linear system
can be determined in terms of an =xﬂm:nn x(t) and a response ¥ir). When the
system at rest is subjected to an xyfe), i it pr ides a resp #lt). Fur-
thermaore, when the system is subjected to an xy(t), it provides a corre-
sponding response yir). For a linear system, it is necessary that the excitation
xy(t) + x{¢) result in a response y(r) + wir). This is usually called the principle
of superposition,

Furthermore, the magnitude scale factor must be preserved in a linear system.
Again, consider a system with an input x{7) that results in an output y(f). Then the
response of a linear system to a constant multiple 8 of an input x must be equal to
the response to the input multiplied by the same constant so that the output is equal
to fy. This is called the property of homogeneity.

A linear system satisfies the properties of sition and h

A system characterized by the relation y = x7 is not linear, because the super-
pasition property is not satisfied. A system rep d by the relation y = mx + b

is not linear, because it does not satisfy the geneity property, H . this
Section 2.3 Linear Approximations of Physical Systems 57
!

' L
l g it |
Ninlinear E g
ping, - i) R ey ;
=
[RT——
= = |
fa) (L1}
where
m= v
dy |,

as shown in Figure 2.5(h). Thus, m = 2y, A linear approximation is as accuratc as
the assumption of small signals is applicable 1o the specific problem.

If the dependent variable y depends upon several excitation variables,
X, X3...., X, then the functional relationship is written as

y = Xy Xgpoaci®ade {210y
The Iavlurums expansion abaut the upcrntmg PNt Xy, 83,000, &y, 08 uselul for a
linear apy to the nonli ion. When the hngher-mdw terms are
neglected, the linear approximation is written us
g dag
¥ = BlEyg Xgp ooy X )+ T '_.“lﬂ T PP ._..“: x) (211)
g
g (5= Fas
O | rmy ¥ e

where xp is the operating point. Example 2.1 will clearly illustrate the utility of this
methad,

EXAMPLE 2.1 Pendulum oscillator model
Consider the pendulum oscillator shown in Figure 2.6(a). The torque on the mass is
T = Mglsing, (212)

where g s the gravity consiant. The equilibrium condition for the maoss is 8, = 0",
‘The nonlinear relation between T and 8 is shown graphically in Figure ?_nlhl Tln:
first derivative evaluated m equilibrium provides the linear app

which is

. asin ¥
T—Ta=> MgL e .-‘Ifﬂ - &)
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Alternatively, the Laplace variable s can be considered to be the differential
operator 5o that

s= (2.16)

Then we also have the integral operator

] 4
= £ dr. 217

The inverse Laplace transformation is usually btained by using the Heavisid

partial fraction exp This hisp useful for systems analysis
and design because the effect of each istic root or eig can be clear-
ly observed.

To illustrate the usefulness of the Laplace and the steps i 4

in the system analysis,
Equation (2.1), which is

the spring-mass-damper system described by

dy dy
g bz-l-ky (1), (2.18)

We wish to obtain the response, y. as a function of time. The Laplace transform of
Equation (2.18) is

M(;W{s} — sp(07) - ‘%m—}) + b{s¥(s) = p(07)) + k¥(s) = R(s). (2.19)

When
i)
iy =0, and y(07) = w. and & =10,
At fiee
we have
MY (5) — Msy, + bs¥(s) = by + kY(s) = 0. (2.20)

Solving for ¥(s), we obtain
(Ms + bl _ pls)
YO = M bt k- qb) a2
The denominator polynomial g(s), when set equ&l tozero, lscell:d the characteristic
equation because the roots of l.h:s the of the time
The roots of this ct are also called the poles of the sys-
tem. The roots of the numerator polynomial p(s) are called the zeros of the system;
for example, s = —b/M is a zero of Equation (2.21). Poles and zeros are critical fre-
qn:nmes At the poles, the function ¥(s) becomes infinite, whereas at the zeros, the
zero. The lex frequency s-plane plot of the poles and zeros
hicall the ch rof the nalnra] transient response of the system.
For a q:taf‘c case, consider the system when k/M = 2 and bf/M = 3. Then
Equation (2.21) becomes

_ {5 + 3w

YO = G e+ D @
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The inverse Laplace transform of Equation (2.22) is then
) R . =1
N D R
Using Table 2.3, we find that

W) =267 = 167, 227)

Finally, it is usually desired to determine the steady-state or final value of the re-
sponse of y(t). For example, the final or steady-state rest position of the spring-mass-
damper system may be calculated. The final value theorem states that

‘ii_:a ¥We) = ll_rﬂ] s¥(s), (2.28)

where a simple pole of ¥(5) at the origin is permitted, but poles on the imaginary
axis and in the right half-plane and repeated poles at the origin are excluded. There-
fore, for the specific case of the spring-mass-damper, we find that

ri_ia;w ¥y = lm s¥(s) =0. (229)

Hence the final position for the mass is the normal equilibrium position y = 0.

Reconsider the spring-mass-damper system, The equation for ¥(s) may be writ-
1en as

(s +b/Myy (s + Awy
P4 (bM)s+ kM + 2w+l
where { is the dimensionless damping ratio, and w,, is the natural frequency of the
system. The roots of the characteristic equation are

spm = —lw, £ w,VE-1, (2.31)

where, in this case, @, = V&/M and { = b/(2VkM). When { > 1, the roots are
real and the system is overdamped; when { < 1, the roots are complex and the sys-
tem is underdamped. When { = 1, the roots are repeated and real, and the condi-
tion is called critical

When { < 1, the response is underdamped. and

Y(s)=

(2.30)

512 = —fwe + ju, V1 - (2.32)
The s-plane plot of the poles and zems of ¥(s) is shown in Figure 2.9, where
0 = cos™' . As { varies with a, P jugate roots follow a circular
Ju
.
t 1 \\"-
0= o™
\i\
P
~ 2w, = iy
i
H
H
b e | —ju1 =
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The ion integrals have been employed to derive tables of Laplace trans-

forms that are used for the great majority n::pmbiemsh table of important Laplace
transform pairs is given in Table 2.3, and a more complete list of Laplace transform

pairs can be found at the MCS website.

Table 2.3 Important Laplace Transform Pairs

iU Fis)
Step function, u{r) %
- =
£ s+a
sin wt ’2: 3
'
Ed
wm Fra
‘ =
i = d‘—w—iE” *F(s) = #7000 - S
= = fi=007y

Impulse function &(¢)

€ sin ot

€ cos

i[{u — it + o] e singut + &),

- -
é-mn'n_

e sin VT - gn g < 1

Fis) 1
T*Ij:,”"‘“
1

pre= L=

(s+a)f+ o
s+a

(s+af + o
it+a

(s+a) + o

L CE
2+ Yuwys + af
1

e ) S 2 ——
. wWVal + ﬂ" (e =)y (s + a)f + o]
&= tan 2
=a
! ol
oo sinfw, VT - [ \ b T T
g T =g FEES T
é=cosN <1
a 1fla-al +afi? s+a
P [ Tea e sinfun + ). AE+ar+a
&= tan' —2— — a2
@ = —a
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Jab
— > -

FIGURE 2.7
An s-plane pale and
280 plol.

FIGURE 2.8
evaluation of the
residues,

The poles and zeros of ¥(x) are shown on the s-plane in Figure 2.7,
Expanding Equation (2.22) in a partial fraction expansion, we obtain
ky ks
¥ s+1+s+2‘
where k; and k; are the cufﬁclcnls of the expansion, The coefficients k; are called
idues and are eval iplying through by the denominator factor of
Equation (2.22) corresponding to k; and selnns 5 equal to the root. Evaluating &,
when y, = 1, we have

(223)

_ ks = s)p(s)

T

(2.24)

™=y

s +3)
TErsr2)

N

and k; = —1. Alternatively, the residues of ¥(s) at the respective poles may be eval-

uated graphically on the s-plane plot, since Equation (2.24) may be written as
s+3

k
‘EJ-(-Z

(225)

n+3
514 2gma
The hical ion of E (2.25) is shown in Figure 2.8. The graphi-
cal method u[:valual.{.ns the residues is particularly valuable when the order of the
characteristic equation is high and several poles are complex conjugate pairs.

Ju

wti

I+




FIGURE 2.12
Resporse of the

BPANG-Mass-
damper system.
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i

ol Overbumped case

5 \/ > Time
\/ \ Underdsmped case
<2 envelope
where # = cos™' {. Therefore,
ky = ————lt"2-0, (2.36)

2\-'1 - i
Finally, letting 8 = V1 = {7, we find that
) = ke + ket

NI gl et (2= ) Lt =iy

—
V1-2
= %;i'“" sin(w V1 = 2 + 6), (237)

The solution, Equation (2.37), can also be obtained using item 11 of Table 2.3. The tran-
sient responses of the overdamped (£ > 1) and underdamped (£ < 1) cases are
shown in Figure 2.12. The transient response that occurs when { < 1 exhibits an oscil-
lalzonmwhnchu;:an\phmdcd:uuasumlhtm:,andnkmﬂcdudnqdmn
The relationship b the s-plane [ocation of the poles and zeros and the
form of the transient r::puns: can be interpreted from the s-plane pole-zero
plots. For le, as seen in E (2.37), adjusting the value of {w, varies
the ¢ envelope, hence the response (1) shown in Figure 2.12. The larger the
value of {w,, the faster the damping of the response, y(r). In Figure 2.9, we see
that the location of the complex pole 5 is given by 5 = —fa, + jo, V1 — %
So, making fo larger moves the pole further to the left in the s-plane. Thus, the
the location of the pole in the s-plane and the step response

is apparent—moving the pole s farther in the left half-plane leads to a faster
damping of the transient step response. Of course, most control systems will
have more than one complex pair of poles. so the transient response will be the
result of the contributions of all the poles. In fact, the magnitude of the response
of each pole, represented by the residue, can be visualized by examining the
graphical residues on the s-plane. We will discuss the connection between the

Chapter 2 Mathematical Models of Systems
Therefore. solving Equation (2.40) for /{s) and substituting in Equation (2.41), we have
_ (1/Csvits)
L ey
Then the transfer function is obtained as the ratio ¥i(s)/V{(s), which is

Vals) 1 1 Y
Gm:mﬂm:‘s-bl_rsi-l_s".lfr' (242)

where v = RC, the time constant of the network. The single pole of Gis) is
s = —1/r. Equation {2.42) could be immediately obtaincd if one observes that the
circuit is a voltage divider, where

Wz

W) T 20 + 26 R
and Zy(s) = R, Z; = 1/Cs.

A multiloop electrical circuit or an analog ipl hanical sys-
tem results in a set of ﬂmullanwns equations in lhe l.ap!acg vanablc. It is usually
more ient to solve the si 1 by us!ng and deter-
minants [1, 3, 15]. An i juction to ices and d can be found on
the MCS website.

Let us consider the long-term behavior of a system and determine the response
to certain inputs that remain after the transients fade away. Consider the dynamic
system represented by the differential equation

d"y d"ly dn! dn?
" +ﬂn—;w+ s+ oy = Pa- e 1 + Pu- Sy +

<+ ppre (244)
where y(f) is the response, and (¢} is the input or forcing function. If the initial con-
ditions are all zero, then the transfer function is the coefficient of R(s) in

Paci8” ™+ puas”™?
F Y e '

p(s]

Y(5) = Go)R(s) = ZER() = P pis). (245)
The output response consists of a natural response (determined by the initial
conditions) plus a forced response determined by the input. We now have

m) )

Yis) = 20 T ——Riz,
where g(s) = 0 is the characteristic equation. If the input has the rational form
_ 9
9= Gy

then
mis) : pls) nis)

0 oo iy = KO+ K(s) + Ko, @46)

Y(s) =
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=g i
Juny
i<l
Chv:ru\llu/
=1 Fia)
0
=1
locus, as shown in Figure 2.10. The i s is i ingly oscillatory as the
roots approach the imaginary axis when { af #ero.

“The inverse Laplace transform can be evaluated using the graphical residue
evaluation. The partial fraction expansion of Equation (2.30) is

+ —"’—, (233)

Y(’}_:—.ﬁ §= 85

Since s, is the complex conjugate of s, the residue k; is the complex conjugate of k;
50 that we obtain

ky
s—85 s-5

¥(s) =

where the asterisk indicates the conjugate relation. The residue &, is evaluated from

Figure 2.1 as

alsi + Uw,) _ yoMye
P l,rl'ﬂ‘

where M) is the magnitude of 5, + 2fa,, and M, is the magnitude of 5, — 51 (Acre-

view of complex numbers can be found on the MCS website.) In this case, we obtain

k= (234)

Solwne™) bl
ky = — = 3 (2.35)
' 2wV - fe? VT - pelte i
Ju
[ — Ju =
5+ 2w,
LSt
o
~24w, v
e
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pole and zero ions and the and dy-state 1 more in sub-

sequent chapters. We will find that the Laplace transformation and the s-plane
approach are very useful techniques for system analysis and design where em-
phasis is placed on the transient and steady-state performance, In fact, because
the study of control systems is concerned primarily with the transient and
steady-state performance of dynamic systems, we have real cause to appreciate
the value of the Laplace transform techniques.

2.5 THE TRANSFER FUNCTION OF LINEAR SYSTEMS

FIGURE 213
A AC network.

“The transfer function of a linear system is defined as the ratio of the Laplace transform
of the output variable to the Laplace transform of the input variable, with all initial
conditions as&umed 1o be xem.The transfer function of a system (or element) repre-
sents the relationship d g the d ics of the system under consideration.

A transfer function may be defined only for a linear, stationary {constant para-
meter) system. A nonstationary system, often called a time-varying system, has one
or more time-varying parameters, and the Laplace transformation may not be uti-
lized, Furth a transfer function is an input-output description of the behay-
ior of a system. Thus, the transfer function description does not include any
information concerning the internal structure of the system and its behavior.

The transfer function of the spring-mass-damper system is obtained from the
original Equation (2.19), rewritten with zero initial conditions as follows:

MY (s) + bsY(s) + k¥(s) = R(s). (2.38)
Then the transfer function is
Output Yis) 1
Input Sl R M+ btk e

The transfer function of the RC network shown in Figure 2.13 is obtained by
writing the Kirchhoff voltage equation, yielding

Vis) = (n + é)m}. (2.40)

expressed in terms of transform variables. We shall frequently refer to variables and
their transforms interchangeably. The transform variable will be distinguishable by
the use of an uppercase letter or the argument (s).

The output voltage is

¥s) = Itﬂ(g];)v 241)
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where ¥(s) is the partial fraction expansion of the natural response, ¥;(s) is the par-
tial fraction expansion of the terms involving factors of g(s), and ¥i(s) is the partial

. = L fraction expansion of terms involving factors of d(s).
FIGURE 2.4 1 Taking the inverse Laplace transform yields
T cp e = ¥} = nl) + pale) + o).
The operating conditions for the ideal op-amp are (1) {; = 0 and i; = 0, thus The transient response consists of yy(f) -+ yx(¢), and the steady-state response is ().
implying that the input impedance is infinite, and (2) 1, — v, = 0 (or v, = ). The
input-output relationship for an ideal op-amp is EXAMPLE 2.2 Solution of a differential equation
= K — ) = —K{w - m), Consider a system represented by the differential equation
where the gain K approaches infinity. In our analysis, we will assume that the linear dy dy
op-amps are operating with high gain and under idealized conditions. P gt 2e(r),
Consider the inverting amplifier shown in Figure 2.15. Under ideal conditions,
we have i, = 0, so that writing the node equation at v yields L . dy
e " where the initial conditions are y(0) = I,;(O} =0,and r{t) = 1,¢t = 0.
L -
; R + IR, =0 The Laplace transform yields
Since 1, = v; (under ideal conditions) and v, = 0 (see Figure 2.15 and compare it ['¥(s) — sy(0)] + 4[s¥(s) — p(0)] + 3¥(s) = 2R(s).
with Figure 2.14), it follows that v, = 0. Therefore, Since R(s) = 1/s and y(0) = 1, we obtain
e s+4 2
— ==, - — e ——
By, R Y 51+&s+3+:(:‘+4\s+3)'
and rearranging terms, we obtain where g(s) = 52 + 45 + 3 = (s + 1)(s + 3) = 0is the characteristic equation, and
w_ & d(s) = 5. Then the partial fraction expansion yields
ve R 32 =12 -1 173 273
‘We see that when Ry = R, the ideal op-amp circuit inverts the sign of the input, i) = [s +1 e 3] * [: s fran 3] e T Hi(s) + Hls) + %()-
thatis. oy = —=v, when R; = Ry m
Hence, the response is
EXAMPLE 2.4 Transfer function of a system
Consider the mechanical system shown in Figure 2.16 and its electrical circuit analog o) = [2 sl ,—y] ¥ [_l,-. 41 e—x} e
shown in Figure 2.17. The electrical circuit analog is a force—current analog as out- 2 2 3 3
lined in Table 2.1. The velocities v,(t) and wy(1) of the mechanical system are directly i e i
. 2
im0 =3«
EXAMPLE 2.3 Transfer function of an op-amp circuit
The operational amplifier (op-amp) belongs to an important class of analog inte-
fﬂﬁ“"ﬂﬁ i grated circuits commonly used as building blocks in the implementation of contral
operating with ideal systems and in many other important applications Op-amps are active elements
conditions. (that is, they have external power sources) with a high gain when operating in their
linear regions. A model of an ideal op-amp is shown in Figure 2.14.
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Assuming that the velocity of M) is the output variable, we solve for Vj(s) by matrix
inversion or Cramer’s rule to obtain [1,3]

(Mas + by + k/5)R(5)

= X 50
M) = (it + by + Bz + by + k5] = B @-50)
Then the transfer function of the mechanical (or electrical) system is | ":*I'I"I"
Gls) = Wils) _ (Mys + by + kfs)
R(s)  (Mys + by + bp)(Mys + by + kfs) — by Velkity
FIGURE 2.16 > Pt
(Mas® + bys + k) @sn) Tmass Fam iy v
= 3 = e system,
(Mys + by + B)(Mys® + bys + k) — by’s
If the transfer function in terms of the position xy(r) is desired, then we have
Xy(s: V(s Gis
P Tl e -
——— A A
As an example, let us obtain the transfer function of an important electrical FIGURE 2.17 et 3
control component, the DC motor [8]. A DC motor is used to move loads and is To-rode sheciic i @ G~ B o/ L
called an actuator, chreult analog G
Gy = My, G = My, W=
An actuator is 8 device that provides the motive power to ihe process. L= Wk oy = Vb, =
Ay~ by,
EXAMPLE 2.5 Transfer function of the DC motor
i 5 ‘ : wnithogous w the node voltages vy(0) and vy(r) of the elecineal circuit. The simultane-
-l!‘I‘:mIZ(; T;;:;' ': :kl;l:ch Maf"sgr“:l:f?;:'::i;h;f:i;":::s;;;{;;n;:;“mg‘m;? ous equations, assuming that the initial conditions are zero, are
converts direct current (DC) ical energy into ional mechanical energy. A MisWils) + (By + Ba)Vi(s) — BV(s) = Ris), (247)
major fraction of the torque generated in the rotor (armature) of the motor is
ilable to drive an 1 load. B of features such as high torque, speed and
controllability over a wide range, portability, well-behaved speed—torque charac- \a(x)
teristics, and adaptability to various types of control methods, DC motors are widely Masha(s) + By(Va(s) = Wis)) + & ‘-:-- = . (2.48)
used in control applications, including robotic ipul tape trans-
port mechanisms, disk drives, machine tools, and servovalve actuators. These equations are obtained using the force equations for the mechanical system

‘The transfer function of the DC motor will be developed for a linear approxi-

of Figure 2.16. Rearranging Equations (2.47) and (2.48), we obtain
mation to an actual motor, and second-order effects, such as hysteresis and the volt-

age drop across the brushes, will be neglected, The input voltage may be applied to
the field or armature terminals. The air-gap flux ¢ of the motor is proportional to
the field current, provided the field is 1,50 that

& = Kiip. (253)

The torque developed by the motor is assumed to be related linearly to ¢ and the
armature current as follows:

T = Kididlt) = KiKyig0is(e). (254)

(Myx = (B + b)Wi(s) + (=b)Wilx) = Ris).

(=M V(x) + (M,‘ + M+ %)lf-m =,

or, in matrix form,

Mg+ b+ by —by 7 Wis) Rix) (2.49)
~hy Mas + by + |60 = | glfe
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Drsturhince
T
xﬁ! 219 Feld 5 Load | Speed s
modal of fiekd- . [ i O LN I L e
mmnc ! R+ip I+ Ougput
Therefore, the transfer function of the motor-load combination, with Ty(s) = (0, is
8(s) Ko - Kn/lILy) (2.62)
Vils)  slds + B)(Lys + Ry} sls + B/J)s + Ry/LsY

“The block diagram model of the field-controlled DC motor is shown in Figure 219,
Alternatively, the transfer function may be written in terms of the time constants of the
motor as

i(s) _ Kl (bRy)

7] = G(s) = o + Dirgs + 1 (2.63)
where 7 = Lg/Ry and 7, = J/b. Typically, one finds that 7, > 7, and often the
field time constant may be neglected.

The armature-controlled DC motor uses the armature current i, as the control
variable. The stator field can be established by a field coil and current or a permanent
magnet. When a field current is lished in a field coil, the motor torque is

Tuls) = (K\Kplp(s) = Kpl(s). (2:64)
‘When a permanent magnet is used, we have
Tal5) = Ko l(s),
where K,, is a function of the bility of the i ial
‘The armature current is related to the input voltage applied to the armature by
Vils) = (R, + Las)ls) + Vils), (2.65)
where VW(s) is the back el ive-fi voltage proportional to the motor
speed. Therefore, we have
Vils) = Kpels), (2.66)
where w(s) = s8(s) is the transform of the angular speed and the armature current is
Vits) — Kuols)
145 Rt Lls ° (2.67)
Equations (2.58) and (2.59) represent the load torque, so that
Ti(s) = J5%6(s) + bsb(s) = T(s) — Tuls). (2.68)
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EXAMPLE 26 Transfer lunction of a hydraulic sctuator

A useful actuator for the linear positioning of @ muss is the hydraulic actuator
shown in Table 2.5, item 9 [9, 10]. The hydraulic actuator is capable of providing a
large power amplification. It will be d that the hydraulic fluid is availabl
from & constant pressure source and that the compressibility of the fluid is negligi-
ble. A downward input displacement x moves the control valve: thus, fluid passes
into the upper part of the cylinder, and the piston is forced downward, A small, low-
power displacement of x(r) causes a larger, high-power displacement, y(¢). The \'nln-
metrie fluid flow rate @ is related to the input displ x(t) and the di

pressure across the piston as & = gx. P). Using the Taylor series linearization as in
Equation (2,11}, we have

ag ag
=2 1 - = = kpP, A |
o= (ax)-.v.‘ 5 ("‘-”)-..np i =

where g = g(x, P) and (x5 Fy) is the operating point. The force developed by the
actuator piston is equal to the area of the piston, A, multiplied by the pressure, P,
This force is applied to the mass, so we have

dty dy

“Lapt 272
AP = M=+ b (272)

FIGURE 2.20
Armature-controied

DG motor.
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It is clear from Equation (2.54) that, to have a linear system, one current muost be
maintained constant while the other current becomes the input curmnt Fm we
shall consider the field current lled motor, which provides a ial power
amplification, Then we have, in Laplace transform notation,

Ty = (KKl ls) = Ko li(s), (2.55)

where i, = 1, is a constant armature current, and K, is defined as the motor con-
stunl. The field current is related vo the field voltage as

Vi(s) = (Ry + Lys)yls). (2.56)

The motor torque T,(5) is equal to the torque delivered 1o the load. This relation
may be expressed as

Lula) = Tifs) + Tiks), (257

whn.rr.' Tnf!l “ the load lurqu: and Tjs) is the disturbance torque, which is often

. the disturt torgue often must be considered in systems
subjected (o external forces such as antenna wind-gust forces. The load torque for
rolating inerti, as shown in Figure 218, is written as

Ti(x) = S570(s) + hati(s). (2.58)
Rearranging Equations (2.55)4{2.57). we have

Tils) = Tals) = Tels), (2.59)

Tuls) = Kulf(s), (260}
rf ]

Ifs) = AL (2.61)

WAn

K,
Back eleciromative force |

The relations for the lled DC motor are shown schematically in
Figure 2.20. Using Equations (2.64), (2.67), and (2.68) or the block diagram, and let-
ting Ty(s) = 0, we solve to obtain the transfer function
K
V,{s} s{(R, + Ls)(Js + b) + KuK,]
= Kn

(s + Ywes + )
However, for many DC motors, the time constant of the armature, v, = L /R, is
negligible; therefore,

Gis) =

(2.69)

o) _ Ky _ Kul(Rb + KiK,)
'r"',(t} x[R.,{.i's + b) + KK, $(ns + 1)

where the equivalent time constant 7y = RJ/(Rb + K.K,,).

MNote that K, is equal to Kj. This equality may be shown by considering the
steady-state motor operation and the power balance when the rotor resistance is
neglected. The power input to the rotor is (Kyw)i,, and the power delivered to the
shaft is Ter. In the steady-state condition, the power input is equal to the power de-
livered to the shaft so that (Kpw)i, = Tay; since T = K, (Equation 2.64), we find
that Ky = K.

Electric motors are used for mo\-'ln,g loads when a rapid response n not re-
qlnrbd and for relatively low powe Typical for a fractional

motor are provided in Tabl: 2.4. Actuators that operate as a result of
hy\d.raullc pressure are used for large loads. F:gurc 2.2] shows the usual ranges of
use for el ‘hanical drives as i to hydraulic drives. Typical
applications are also shown on the figure. m

G(s) = . @M

Table 24 Typical C for a Fractional Horsep DC Motor
50 % 107 N-m/A

Motor constant K,

Rotor inertia J,, 1% 107 N-m-s*/rad
Field time constant =, I ms
Rotor time constant 7 100 ms

Maximum output power Yahp 187TW
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Table 2.5 F af and Networks
Element or System Gis)
1. Integrating circuit, filter
C
R
: 3 W) 1
Vitsh Van Vils) RCs
=
2. Differentiating circuit
Vals)
W " RE

3, Differentiating circuit

4. Integrating filter

Vils) __ R(RCs +1)
¥ils) Ry

Wils) __(RiGis # 1)(RsCas + 1)

Vils) RiCyx
(contimied)
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Table 25 Continued
Element or System Gis)
1, Gear train, rotationnl transformer
Gear ratl M
Cur ratio = n = —
My
Nofly = Nyt oy, = ntl,,
Wy = Mok
*y
Vo) R R
Wily) B Rt+R
By L
LA
Vst
L“‘ |,|.|J
12 Patentiometer, error detector bridpe
£l L1 Vila) = k(y(s)-t(s))
= § = Vafs) = kllaals)
5
" 4 [ Vin Vo
Erros k= T
voleege -
13. Tachometer, velocity sensor
d Vils) = Kanls) = Kist(s)
Valiy K; = constant
Wl s}
14, DC amphifier V;i.!,'! o .k‘_
] E=a Wils) 1t
Viirh Viih R, = oulpul resistance
o -y €, = output capacitance
= RCurcls
and is often negligible for
controller amplifier
(eontinmed)
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Thus, substituting Equation (2.71) into E {2.72].“ obtain
A d,
Akr-0 = M2 2 @m)
Furthermore, the volumetric fluid flow is related to the piston movement as
- A%
g=4 ar (2.74)
Then, ! (2.74) into Eq (2.73) and ging, we have
Ak, dly A\ dy
e “x de‘ + (b * k,)d'.- (2.75)
Therefore, using the Laplace transformation, we have the transfer function
Yo K
X(s) = s(Ms + B 27
where
Ak, - A
K= K and B=5b+ r

Note that the transfer function of the hydraulic actuator is similar to that of the elec-
tric motor. For an actuator operating at high pressure levels and requiring a rapid
response of the load, we must account for the effect of the compressibility of the
fuid [4,5].

Symbeols, units, and conversion factors associated with many of the variables in
‘Table 2.5 are located at the MCS website. The symbols and units for each variable can be
found in tables with corresponding conversions between S1 and English units. w

The transfer function concept and approach is very important because it pro-
vides the analyst and designer with a useful mathematical model of the system ele-
ments. We shall find the transfer function to be a continually valuable aid in the
attempt to model dynamic systems. The approach is particularly usefui because the
s-plane poles and zeros of the transfer function rep the

of
are given in Table 2.5.

the system. The transfer functions of several d ic el
In many ions in engj i ﬂie ission of rotary motion from one
shaft to another is a fund | For the outpul power of an

automobile engine is transferred to the driving wheels by means of the gearbox and
differential. The gearbox allows the driver to select different gear ratios depending
on the traffic situation, whereas the differential has a fixed ratio. The speed of the
engine in this case is not constant, since it is under the control of the driver. Anoth-
er example is a set of gears that transfﬂ ﬂ:n power at thc shal’t of an electric motor
to the shaft of a rotating antenna. Examples of are gears,
chain drives, and belt drives. A commonly used electric converter is the eleciric
transformer. An example of a device that converts rotational motion to linear mo-
tion is the rack-and-pinion gear shown in Table 2.5, item 17.
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Table 25 Continued

Elament or

Gs)

5. DC malor, field-conrolled, roiational scluator

L S
Vils)  a(Js = B)(Lps + Ry)

0(s) - K
V(1) of(R, + Lal(Jy + b) + KWK,]

7. AC motor, two-phase control field, rotational sctuator

Via) slrs+1)
bl 3@_@ r=Jjlh = m)

N K

Palvionoe = slape of linsarized torque-speed

L el curve (normally megative)

B, Rotary Amplifier (Amplidyne)

Wls) KRR
Yis) ™ Gom + iom, 4 1)
re= L/l m= LJR,

for the unlonded cose. iy = 0, 7, = 7,
0052 <= 5, <058

Vo V=¥
9. Hydraulic actuator o) K
win, Comted valvy m = My 4+ H)

Wecinan o=

Presure .
iy

Mictian -

[ 1 il

k=

"r.s'l .o
i *ap

i
l &= glx F) = low
Load  vin A = area of piston feonrinued



FIGURE 2.24
Block diagram of
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the input and output variables. Therefore, one can
function is an important relation for control engineering.
‘The importance of this cause-and-effect relationship is evidenced by the facility
to represent the relationship of system variables by diagrammatic means The block
dhgnm repreaenlnnon of the system relaﬂonsh:ps is prevalent in control system en-
Block d consist of unidi ional blocks that
the transfer function of the variables of interest. A block diagram of a field-con-
trolled DC motor and load is shown in Figure 2.22. The relationship between the dis-
placement 6(z) and the input voltage V;(s) is clearly portrayed by the block diagram.
To represent a system with several variables under control, an interconnection
of blocks is utilized. For example, the system shown in Figure 2.23 has two input
variables and two output variables [6]. Using transfer function relations, we can
wrile the simultanecus equations for the output variables as

Yi(s) = Guls)Ruls) + Guals)Rols). 2.77)

ly assume that the transfer

and
Yi(s) = Gyls)Ry(s) + Grls)Ryls). (2.78)
where Gjj(s) is the transfer function relating the ith output variable to the jth input vari-
able. The block diagram rep ing this set of ions is shown in Figure 2.24. In
general, for J inputs and J cutputs, we write the simultanecus equation in matrix form as
¥i(s) Guls) - Guls) || Rils)
ﬁlgﬂ e G;n:(b‘) *H Gz.:(ﬂ -‘?::(4') (279

¥ils) Guls) -+ Gpls) || Rils)

Y = GR. (2.80)

FIGURE 2.25
control systam.

Ratsy Yadsl
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When two blocks are connected in cascade, as in Table 2.6, item 1, we assume that
Xils) = Gyls)Gi(5) X (5)

holds true. This assumes that when the first block is connected to the second block,
the effect of loading of the first block is Loading and i
interconnected components or systems may occur. If the loading of interconnected
devices does occur, the cngmur must account l'w this change in the transfer func-
tion and use the I.ransﬂer ion in q

Block diagr ions and reducti hniques are derived by consid-
ering the algebra of the duugmm variables, For example, consider the block diagram
shown in Figure 2.25. This negative feedback control system is described by the
equation for the actuating signal, which is

E,s) = Ris) — B(s) = R(s) - H{s)¥(s). (281)
Because the output is related to the actuating signal by G{s), we have
Y(s) = G(s)U(s) = G(s)Ga(s)Z(s) = Gs)Gal$)G(s)Eals): (2.82)

thus,
Y(s) = G(s)Gals)GA)R(s) = H{s)Y(s)]}- (283)
Combining the ¥(s) terms, we obtain
Y1 + GIs)G(5)GAs)H(5)] = Gls)G{s)GA5)R(s). (2.84)

Therefore, the transfer function relating the output ¥(s) to the input R(s) is

Y(s) __ G(s)Gals)Gils)
R(s) 1+ G(8)G,{)G(s)H(s)"

(285)

This closed-loop transfer function is particularly important because it represents
many of the existing practical control systems.

The reduction of the block diagram shown in Figure 2.25 to a single block rep-
resentation is one example of several useful techniques. These diagram transforma-
tlons are given | in Table 2.6 All the transformations in Table 2.6 can be derived by

of the ing the blocks System
anulysns I:l'_v the method of block diagram reduction affords a better understanding of
the jbution of each comp element than possible by the manipulation of
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Table 2.5 Continued

Element ar Systom Gls)
15. Accelerometer, acceleration sensor xalt) = (1) = xalt)e
Frame Xolr) _ =
“I"”' Nult) 4 (b/M)s + k)M
m [:n For low-frequency oscillations, where
il l R
g Xjw) _ o

L fl

5 i o8 Xlfe) M
Jis) 1

16, Thermal heating system FE) - ml-].where

T =9, - &, = temperature difference
due to thermal process

€, = thermil capacitance

Q= Nuid Now rate = conslant

§ = specific heat of water

R, = thermal resistance of insulation

gix) = rransform of rate of heat low of
heating element

x =l
converts radiol motion
to linear molion

2.6 BLOCK DIAGRAM MODELS

The dynamic systems that comprise nulomam_ L[:ntml sysiems are represented math-
ically by a set of simul jons. As we have noted in the
sections, the Laplace reduces the problem to the solution of &

sel of linear algebraic equations. Since control systems are concerned with the control of
specific varisbles, the controlled variables must relute 1o the controlling variables. This
relationship is typically represented by the transfer function of the subsystem relating

Section 2.6 Block Diagram Models a1

Here the ¥ and R matrices are column matrices containing the [ output and the J input
vmahlrs,r@mvely am! G is an I'by J transfer function matrix. The matrix representa-
tion of the i p of many variables is particularly valuable for complex multi-
vambleomlmlsy!lmnﬁnmﬂoduﬂmnmmamxalgebmn on the MCS
website for those unfamiliar with matrix algebra or who would find a review helpful [21].

The block diagram representation of a given system often can be reduced to a
simplified block diagram with fewer blocks than the original diagram. Since the
transfer functions represent linear systems, the multiplication is commutative. Thus,
in Table 2.6, item 1, we have

Xils) = Gala) Xols) = G(s)Galw) Xis).
Table 26 Block Diagram Transformations
Original Diagram o
1. Combining blocks in cascade X - - @
x' Xy
GGy

2 Movinga =wnh|3 point

behind a blocl

3. Moving a pickoff point
bilock

ahead of a

4. thnga pudmﬁpuml

‘behind a

5. Moving a summing point
ahead of a block

6. Eliminating a feedback loop
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Ry G,6,G:G, ¥
" _'I 1= Ga0,H, + G:GH: + G050,0H, |_'

FIGURE 2.27

diagram
reduction of the
sysiem of Figure
226
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2.7 SIGNAL-FLOW GRAPH MODELS

Block di are adequate for the rep ion of the interrelationships of con-
trolled and input variables. Huwcv!r fora system with reasmnbly complex interre-
hips, the block diag is and often quite

difficult to complete. An alternative method for determining the relationship be-
tween system variables has been developed by Mason and is based on a representa-
tion of the system by line segments [4, 25]. The advantage of the line path method,
called the signal-flow graph method, is the availability of a flow graph gain formula,
which provides the relation between system variables without requiring any reduc-
tion procedure or manipulation ol the flow graph.

The ition from a block d P ion to a directed line
ion is easy to lish by idering the systems of the previous
section. A signal-flow graph is a dlagﬂm wnstslms of nodes that are connected by
several directed branches and is a graphi ion of a set of linear rela-

tions. Signal-flow graphs are pnmcu[a!ly usefu] for feedback control systems be-
cause feedback theory is primarily concerned with the flow and processing of signals
in systems. The basic element of a signal-flow graph is a unidirectional path segment
called a branch, which relates the dependency of an input and an output variable in

FIGURE 2.30
Signal-fiow graph
«of two algebraic
equations,

and

(1 = ay)ry + ayny 1-ay a
(1 = ap)(l = an) — apay A&l g 4

The denominator of the solution is the determinant A of the set of equations
and is rewritten as

A= (1 =ap)(l = ag) — apay =1 - ay — ap + ayap — apgay.  (295)

In this case, the denominator is equal to 1 minus each self-loop ay;, ay, and a2a3,
plus the product of the two nontouching loops ay, and az;. The loops ag; and a8
are touching, as are ay; and ayay;.

The numerator for x, with the input ry is 1 times 1 — a5, which is the value of &
excluding terms that touch the path 1 from ry to xy. Therefore the numerator from ry
to x; is simply a;; because the path through ,; touches all the loops. The numerator
for x; is symmetrical to that of x,.

In general, the linear depend T b the ind P dent variable x;
{often called the input variable) and a dependenl variable x; is given by Mason's
signal-flow gain formula [11,12],

X3 =

2 i P B
= —5— (2.96)

Fjji = gain of kth path from variable x; to variable x;,
A = determinant of the graph,

4y = cofactor of the path Fj,
and the summation is taken over all possible k paths from x; to x;. The path gain or
transmittance £, is defined as the product of the gains of the branches of the path.
traversed in the direction of the arrows with no node encountered more than once.
The cofactor A is the determinant with the loops touching the kth path removed.
The determinant A is

A=1- E;L + E Lol S Lalaly+ =+, {297)
numlﬂ nn:bt: a

where L, equals the value of the gth loop transmittance. Therefore the rule for eval-
uating & in terms of loops Ly, Ls, Ly, ..., Lyis

FIGURE 2.26
Mudtiple-loop
feedback control

FIGURE 2.28

Signal-flow gragh
of the DC motoe
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equations, The utility of the hlock diagram [ ions will be ill d by an
ple using block dis

EXAMPLE 2.7 Block diagram reduction

The block diagram of a multiple-loop feedback control system is shown in Figure 2.26.
It is interesting to note that the feedback signal H,(s)¥(s) is a positive feedback sig-
nal, and the loop Gy(s)Ga(s)H,(s) is a positive feedback loop. The block diagram
reduction procedure is based on the use of Table 2.6, transformation 6, which elim-
inates feedback loops. Therefore the other transformations are used to transform
the diagram 1o a form ready for eliminating feedback loops. First, to eliminate the
loop GyG4H,, we move H; behind block G, by using transformation 4, and obtain
Figure 2.27(a). Eliminating the loop GyG,H, by using transformation 6, we obtain
Figure 2.27(b). Then, eliminating the inner loop containing Hy/G,, we obtain Figure
2.27(c). Finally, by reducing the loop containing H;, we obtain the closed-loop sys-
tem transfer function as shown in Figure 2.27(d). It is worthwhile to examine the
form of the numerator and denominator of this closed-loop transfer function. We
note that the numerator is composed of the cascade transfer function of the feed-
forward elements connecting the input R(s) and the output ¥{s). The denominator is
composed of 1 minus the sum of each loop transfer function. The loop GG, H) has a
plus sign in the sum to be subtracted because it is a positive feedback loop, whereas
the loops GGyGyGytly and GGy, are negative feedback loops. To illustrate this
point, the denominator can be rewritten as

qls) = 1 = (+GGH, - GGy — GIGHGHGHY). (2.86)

‘This form of the numerator and denominator is quite close to the general form for
multiple-loop feedback systems, as we shall find in the following section. m

The block di of feedback control systems is a valuable
and widely used PP h. The block di: provides the analyst with a graphi-
cal rep of the interrelationships of lled and input variables. Fur-

thermore, the designer can readily visualize the possibilities for adding blocks to
the existing system block diagram to alter and improve the system performance.
The transition from the block diagram method to a method utilizing a line path
representation instead of a block rep ion is readily lished and is
presented in the following section.
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i)
B e O L

Gyyls)
Ryis) ¥
Gyls)
Gyi)

Rytnh Yats)
Gals)

@ manner equivalent to a block of a block diagram. Therefore, the branch relating
the output #(s) of a DC moter to the field voltage ¥ (s) is similar to the block dia-
gram of Figure 2.22 and is shown in Figure 2.28. The input and output points or junc-
tions are called nodes. Similarly, the signal-flow graph representing Equations (2.77)
and (2.78), as well as Figure 2.24, is shown in Figure 2.29. The relation between each
variable is written next to the directional arrow. All branches leaving a node will
pass the nodal signal to the output node of each branch (unidirectionally). The sum-

mation cf all signals entering a node is equal to the node variable. A path is a branch
ora ofb hes that can be traversed from one signal (node)
to another signal (node} A loop is a closed path that originates and terminates on
the same node, with no node being met twice along the path. Two loops are said to
be nontouching if they do not have a common node. Two touching loops share one

or more nodes Therefore, considering Figure 2.29 again, we obtain

Yi(s) = Gyy(s)Ry(s) + Gials)Ryls). (2.87)
and

¥ls) = Guls)Ry(s) + Gnls)Rols). (2.88)

The flow graph is simply a pictorial method of writing a system of algebraic
ions that indi the interdependencies of the variables. As another pl
ider the following set of si loebrai :

apxy +apx +n=x (2.89)

anxy + ap¥; +rp =X (2.90)
The two input variables are ry and ry, and the output variables are x; and x;. A sig-
nal-flow graph representing Equations (2.89) and (2.90) is shown in Figure 2.30.
Equations (2.89) and (2.90) may be rewritten as

xll = ay) + ml-ap)=n, (2.91)
and
x(—an) + xl — anp) = n. (2.92)
The simul solution of Equati (2.91) and (2.92) using Cramer's rule re-
sults in the solutions
{1 = anin + ayun _1-an an

X = At (2.93)

(1= a)(l = an) = apay A



FIGURE 2.33
Multipe-loop
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There are four self-loops:
Ly = GyHy,  Ly=HiGy,  Ly=GgHe and L= GiHy
Loops L, and L; do not touch L; and L, Therefore, the determinant is
A=1-(Ly+ Ly+ Ly+ Ly) + (LaLly + LyLy + Lol + LyLy).  (299)
The cofactor of the determinant along path 1 is evaluated by removing the loops
that touch path 1 from A. Hence, we have
Ly=Ly=0 and A =1-(Ly+ Ly
Similarly, the cofactor for path 2 is
A =1Ly + Ly).
‘Therefore, the transfer function of the system is
Yi PA, + P
_(’l 5} = % (2.100)
_ GGG — Ly — Ly) + GGG — Ly = Ly)
1=Ly=Ly=Ly=Ly+ Lils+ LiLy+ LiLy + LoLy
A similar analysis can be accomplished using block diagram reduction techniques.
The block diagram shown in Figure 2.31(b) has four inner feedback loops within the
overall block diagram, The block diagram reduction is simplified by first reducing

the four inner feedback loops and then placing the resulting systems in series. Along
the top path, the transfer function is

Gits) Gis)
= G;ts)ﬁ:m][l EyFETTEY il

=[ G(s)GA(3)G(5)Gils) }m)
(= Gy H(s)(1 = Gala) (o) |

Yils) = G|(:)|:]

Similarly across the bottom path. the transfer function is

Gils) J[ Gils)
1 = Gyls)Hils) |1 = Grls)tiis)
- [ Go()G)G5)Gils) } o).
(1 = Gels)Hys))1 — G{s)Hy(s)) :
The total transfer function is then given by

Gi(8)G:(5)Ga(5)Gyls)
(1 = Gas)Ha(s)N1 = Gs(s)Hy(s))

¥is) = G:l[:}|: }GA:JR(SJ

¥(s) = ¥ia) + Yafs) = [

o GAOGHG{5)Gils) ]nm .
(1= G HgN(T = Grladr(sh) |
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EXAMPLE 211 Transfer function of a complex system

Finally, we shall consider a reasonably complex system that would be difficult to re-

duce by block diagram techniques. A system with several feedback loops and feed-

forward paths is shown in Figure 2.33. The forward paths are

P = GiGiGiGGGe. By = GGG, and Py = GyGG3GGy.

The feedback loops are

Ly = —GyGyGiGsty. Ly = -GGy, L= -GH\, Ly=-GiHyGy

Ls=—GaHy, Ly = —GiGGiG GGl Lq = —GGyG:GeH;,  and

Ly = —GiGhGhGGhh.

Loop Ls does not touch loop Ly or loop Ls, and loop L; does not touch loop Ly; but

all other loops touch. Therefore, the determinant is

Aml=(Ly+Ly+Ly+ Lo+ Ly+ Lg+ Ly+ Lg) + (Lsly + LsLy + L3L)
(2.103)

The cofactors are

Ay=A8;=1 and Ay=1-Le=1+ G:Hs
Finally, the transfer function is
Yis) R+PBA+ R
Ris) A *
Signal-flow graphs and Mason's signal-flow gain formula may be used prof-

itably for the analysis of feedback control systems, electronic amplifier circuits, sta-
tistical systems, and mechanical systems, among many other examples.

T(s) = (2.104) w

2.8 DESIGN EXAMPLES

In this section, we present six il ive design ples. The first ple describes

deling of a ph ltaic g in a manner ble to feedback control to
achieve maximum power delivery as the sunlight varies over time, Using feedback
control to improve the efficiency of producing electricity using solar energy in areas

FIGURE 2.32
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A = 1 - (sum of all different loop gains)
+ (sum of the gain p of all inations of two hing loops)
= (sum of the gain products of all ions of three hing loops)

+ o
The gain formula is often used to relate the output variable ¥(s) to the input
variable R(s) and is given in somewhat simplified form as

(2.98)

where T(5) = Y(s)/R(s).

Several examples will illustrate the utility and ease of this method. Although the
gain Equation (2.96) appears to be idable, one must that it repre-
sents a summation process, not a complicated solution process.

EXAMPLE 2.8 Transfer function of an system

A two-path signal-flow graph is shown in Figure 2.31(a) and the corresponding block di-
agram is shown in Figure 2.31(b). An example of a control system with multiple signal
paths is a multilegged robot. The paths connecting the input R(s) and output ¥(s) are

Py = G\GyGGy (path 1) and Py = GsGyGrGe (path 2).
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EXAMPLE 2.9 Armature-controlled motor

The block diagram of the lled DC motor is shown in Figure 2.20.
This diagram was obtained from Equations (2.64)—(2.68). The signal-flow diagram
can be obtained either from Equations (2.64)-(2.68) or from the block diagram and
is shown in Figure 2.32. Using Mason’s signal-flow gain formula, let us obtain the
transfer function for 8(s)/V,(s) with Ty(s) = 0. The forward path is Fy(s), which
touches the one loop, Ly(s), where

Py(s) = %GumG:(b‘J and  Ly(s) = =KyGy(5)Gafs).

Therefore, the transfer function is

Als)  _ (/sIG(s)Gals) Ko
= Lis) 1+ KGis)Gls)  s{(R, + Ls)Js + b) + KKy

which is exactly the same as that derived earlier (Equation 2.69). m

T(s) =

The signal-flow graph gain formula p a y straig ward ap-
proach for the evaluation of pli i systems. To pare the method with
block diagram reduction, which is really not much more difficult, let us reconsider
the complex system of Example 2.7.

EXAMPLE 210 Transfer function of a multiple-loop system

A multiple-loop feedback system is shown in Figure 2.26 in block diagram form.
‘There is no need to redraw the diagram in signal-flow graph form, and so we shall
proceed as usual by using Mason’s signal-flow gain formula, Equation (2.98). There
is one forward path P, = G,G;GyG,. The feedback loops are

Li=-GGHy L=GGH, wd Ly=-GGGGH, (2101)

All the loops have nodes and th are all hing. Furth the
path P, touches all the loops, so &, = 1. Thus, the closed-loop transfer function is
b e
T 1+ GGH, “%gif."‘ GGiGGaHy 1
Gyla) = R.l:.l.,a Tatn Galt) = ﬁ

LY



FIGURE 2.38
Tha et Niow:
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The insolation level is a measure of the amount of incident solar radiation on the
solar cells.

Suppose that we have a single silicon solar panel (M = 1) with 10 series cells
(N = 10) and the parameters given by 1/A = 005V, R, = 00250}, fpy = 3 A,
and Iy = 0.001 A. The voltage versus current relationship in Equation {2.105) and
the power versus voltage are shown in Figure 2.35 for one particular insolation level
where py = 3 A, In Figure 2.35, we see that when dP/dlz, = 0 we are at the max-
imum power level with an associated Vpy =V, and lpy = I, the values of volt-
age and current at the maximum power, respectively. As the sunlight varies, the
insolation level, Ipy, varies resulting in different power curves.

The goal of the power point tracking is to seek the voltage and current condition
that maximizes the power output as ions vary. This is ished by varying
the reference voltage as a function of the insolation level. The reference voltage is the
voltage at the maximum power point as shown in Figure 2.36, The feedback control
system should track the reference voltage in a rapid and accurate fashion.

Figure 2.37 illustrates a simplified block diagram of the controlled system. The
main components are a power circuit (e.g., a phase control IC and a thyristor

bridge), pholwollmc senmmr and current di ‘[‘he plant including the
power circuit, pt and current is modeled as a sec-
ond-order transfer fum:tmn given by
K
Gs) = e (2.106)
where K and p depend on the p 1 and d

[35]. The controller, G.(s), in Figure 2.37 is designed such that as the insolation lev-
els varies (that is, as Ipy varies), the voltage output will approach the reference
input voltage, V,.r, which has been set to the voltage associated with the maximum
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EXAMPLE 215 Fluid Now modeling

A fuid flow system s shown in Figure 238, The reservoir (or tnk) contaios water
that evacuates through an output port. Water is fed (o the reservoir through a pipe
controlled by an input valve. The variables of interest are the fluid veloeity V (m/s),
fluid height in the reservoir M (m), and pressure p (N/m®). The pressure is defined
as the force per unit area exerted by the fluid on a surlace immersed (and at rest
with respect to) the fluid. Fluid pressure acts normal to the surface. For further read-
ing on fluid flow modeling, see [28-30].

The elements of the control system design process emphasized in this example
are shown in Figure 2.39. The strategy is to establish the system configuration and
then obtain the appropriate mathematical models describing the Nuid flow reservoir
[rom an input-output perspective.

Thl- gtn:ml cquations of motion and energy describing fluid fow are quita

e g are coupled li partial diff
tqual.wns. We must mnke sorrlc wleu‘tws assumptions that reduce the complesity of
the mathematical model. Although the control engineer is not required Io bea l'.Iuid
dynamicist, and a deep und Jing of fuid d ics is not d
during the control system design pmoess.n makes good engineering sennc o grml at
least a rm.hmenlary understanding of the important simplifying assumptions. For &
more complete discussion of Muid motion, see [31-33].

To abtain a realistic, yet tractable, mathematical model for the fluid flow reser-
voir, we first make several key assumptions. We assume that the water in the lank is in-
compressible and that the flow is inviscid, inrotational and steady. An incompressible
fluid has a constant density p (kg/ne'), In faet, all Muids are compressible to some ex-
tent. The compressibility factor, &, is o measure of the compressibility of a fluid, A
smaller value of k indicates less compressibility, Air (which is a compressible fluid) has
a compressibility factor of k,;, = 098 m¥/N, while water has a compressibility factor
of kyg =49 % 1079 md/N = 50 % 107" atm ™", In other words, a given volume of

waler decreases by 50 one-millionths of the original volume for each atmosphere
{atm) increase in pressure, Thus the assumption that the water i incompressible i
valid for our application.

As

:--1_'}"0 Oy v AQy

FIGURE 2.34

Equivalent circuit
of the photovaitaic:
ganerator,
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«of abundant sunlight is a valuable ibution to green di: d in
Chapter 1}. In the second example, we present a detailed look at modeling of the fuid
level in a reservoir. The modeling is presented in a very detailed manner to emphasize the
effort required to obtain a linear model in the form of a transfer function. The design
process depicted in Figure 1.17 is highlighted in this example. The remaining four exam-
ples include an electric traction motor model development, a look at a mechanical ac-
celerometer aboard a rocket sled, an overview of a laboratory robot and the associated
hardware specifications, and the design of a low-pass filter.

EXAMPLE 212 Photovoltaic generators

Photovoltaic cells were developed at Bell Laboratories in 1954, Solar cells are one
example of photovoltaic cells and convert solar light to electricity. Other types of

photovoltaic cells can detect radiation and light ¥ The use of solar
cells to produce energy supports the iples of green engi by

pollution. Solar panels minimize the dep of natural and are effe

in areas where sunlight is abundant. Ph i are sys(ems that pro-
vide electricity using an of pt i d i of i

nected solar cells. Photovoltaic generators can be used to recharge batteries, they
can be directly connected to an electrical grid, or they can drive electric motors
without a battery [34-42].
‘The power output of a solar cell varies with available solar light, temperature,
and external loads. To i increase the overall efﬁuency of the photovoltaic generator,
control g be i to seek to the power output,
This is known as maximum power pmnl tracking (MPPT) [34-36] There are certain
values of current and voltage associated with the solar cells corresponding to the
maximum power output. The MPFT uses closed-loop feedback control to seek the
optimal point to allow the power converter circuit to extract the maximum power
from the photovoltaic generator system. We will discuss the control design in later
chapters, but here we fuws on the modeling of the system.
The solar cell can be modeled as an equivalent circuit shown in Figure 2.34

i of a current g Ty, a light itive diode, a series, R,
and a shunt resistance, Rp (34, 36-38].
The output voltage, Ve, is given by
N Ip"—!py+MIn) N
Vey i In( Ml MR;.',V. (2.108)

where the photovoltaic generator is comprised of M parallel strings with N series
cells per string, J is the reverse saturation current of the diode, fpy represents the
insolation level, and A is 2 known that depends on the cell ial [34-36].
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FIGURE 2,38 Maximum power point for varying vakues of [y, specifies V.
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FIGURE 2.37 Biock diagram of feedback control system for maximum power transfer with
paramaters K and p.

power point resulting in maximum power transfer. If, for example, the controiler is
the proportional plus integral controller

Gels) =

the closed-loop transfer function is
K(Kps + K;)
T =g—m—————.
) s+ pf + KKps + KK,
We can select the controller gains in Equation (2.107) to place the poles of T(s)

in the desired locations (see Chapters 4 and 5) to meet the desired performance
specifications.

(2.107)
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the reservoir and output pipe. We can neglect viscosity in our model development.
We say our fluid is inviscid.

If each fluid element at each point in the flow has no net angular velocity about
that point, the flow is termed irrotational. Imagine a small paddle wheel immersed
in the fluid (say in the output port), If the paddle wheel translates without rotating,
the flow is irrotational. We will assume the water in the tank is irrotational. For an
inviscid fluid, an initially irrotational flow remains irrotational.

The water flow in the tank and output port can be either steady or unsteady. The
flow is steady if the velocity at each point is constant in time. This does not neces-
sarily imply that the velocity is the same at every point but rather that at any given
point the velocity does not change with time. Steady-state conditions can be
achieved at low fluid speeds We will assume steady flow conditions. If the output
port area is too large, then the flow through the reservoir may not be slow enough to
establish the steady-state condition that we are assuming exists and our model will
not accurately predict the fluid flow motion.

To obtain a mathematical model of the flow within the reservoir, we employ

basic principles of science and engineering, such as the principle of conservation of
mass. The mass of water in the tank at any given time is
m = pAH, (2.108)

where A, is the area of the tank, p is the water density. and H is the he.i,ghl of the
water in the maen-o].r The oonslanu for the reservoir system are given in Table 2.7.
In the followi a subscript 1 denotes ities at the input, and a

subseript 2 refers w0 quantities at the output. Takmg the time derivative of m in
Equation (2.108) yields

Wit = pAH,
where we have used the fact that our fluid is incompressible (that is, p = 0) and that

the area of the tank, A, does not change with time. The change in mass in the reser-
voir is equal to the mass that enters the tank minus the mass that leaves the tank, or

fit = pAH = Q) — pAws, (2.109)

where (, is the steady-state input mass flow rate, v; is the exit velocity, and A; is the
output port area. The exit velocity, vy, is a function of the water height. From
Bernoulli's equation [39] we have

—.ovﬁ+ﬂ+pgh'=— 4+ B,

where vy is the water velocity at the mouth of the reservoir, and F; and P are the at-
mospheric pressures at the input and output, respectively, But P, and P, are equal to

Table 27 Water Tank Physical Constants
» g A He a

98 w4 w400 1 u7
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where AH and AQ, are small deviations from the equilibrium (steady-state) values.
The Taylor series expansion about the equilibrium conditions is given by

H = J01.0) = S0 + S5l -1y @ng
2 -
* 0@~ Q0
where
i a{k\/_ ng,) 1k
aH o e 23
and
o aVHke)
Q[ a0, b

Using Equation (2.114), we have

ﬂ\/_ﬁz
50 that
. Alse
aH |4 e A, O*
It follows from Equation (2.115) that
H = af,

since H* is constant. Also, the term f(H*, Q%) is identically zero, by definition of
the equilibrium condition. Neglecting the higher order terms in the Taylor series ex-
pansion yields

o A gp

AH =
A Q0
Equation (2.117) is a linear model describing the deviation in water level AH from
the steady-state due to a deviation from the nominal input mass flow rate AQ,.
Similarly, for the output variable Q; we have

Qo= Q3+ A0y = WH. Q) (2.118)

SLAH + ;——AQI (2.117)

ih
P AH + a
where AQ, is a small deviation in the output mass flow rate and
ah - gAY
aHuw Qv 7

AQ,,

b
Qe

= h(H*, Q')+aH
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Tdentify the varinbles m be controdled

See Figure 2,38 for
Establish the sysiem configuation — water tank with it and
ot ports
Se Equ.201 1) and (2.112) for
Obtain a model uf the process, the Tthe nontincar modei
wchastor, and ibe sensot Set B (1117 and (2.110) for
the linear imodels.
Describe s costrobler and select ey
paramitters o be stffaiied
Optienize the parnmeters and
amilyse the performance
If the performance does nof meet (he IF the performance meets the specifications,

then {serare th then finalize the design.
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Consider a fTuid in motion. Suppose that initially the flow velocities are differ-
ent for adjacent layers of Muid. Then an exchange of molecules between the two lay-
ers tends to equalize the velocities in the layers. This is internal friction, and the
exchange of momentum is known as viscosity. Solids are more viscous than fluids,
and fluids are more viscous than gases. A measure of viscosity is the coelficient of
viscosity p (N sa’m"}. A larger coefficient of viscosity implies higher viscosity. The co-
efficient of viscosity (under lard Hiti 20°C) for air is

oy = 0178 % 107 N s/m?,

and lor water we have
o = 1054 % 107 N g/m?®

So water is about 60 times more viscous than air. Viscosity depends primarily on tem-
perature, not pressure, For comparison, water at 0°C is about 2 limes more viscous
than water at 20°C. With fluids of low viscosity, such as air and water, the effects of
friction are important only in the boundary layer, a thin layer adjacent to the wall of
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heri and A; is sufficiently small {A; = Ay/100),50 the water flows
out slnwly and the velocity v, is negligible. Thus Bernoulli's equation reduces to
v = V2gH. (2.110)
Substituting Equation (2.110) into Equation (2.109) and solving for F yields
g [ i
H [,41 \/2_3:|\/_H + =0 (2.111)
Using Equation (2.110), we obtain the exit mass flow rate
Oy = pAgey = (pV2gA)VH. 2.112)
To keep the equations manageable, define
P _4:\/3_8
1 A; "
1
kg 1= —0oy
T oA,
kyi=pVoga,
Then, it follows that
H o=k VH + ke,
0; = kVH. (2.113)

Equation (2.113) represents our model of the water tank system, where the input is
(; and the output is . Equation (2.113) is a nonlinear, first-order, ordinary differ-
ential equation model. The nonlinearity comes from the H'? term. The model in
Equation (2.113) has the functional form

i = f(H,0).
Q2= hH, Q)
where
FUH.Q) = b VH + k0, and W(H, @) = k;VH.

A set of linearized equations describing the height of the water in the reservoir
is obtained using Taylor series expansions about an equilibrium flow condition.
When the tank system is in equilibrium, we have H = 0. We can define 0* and H*
as the equilibrium input mass flow rate and water level, respectively. The relation-
ship between Q% and H* is given by

o= ——\f_ Vg AVHY. (2.114)

‘This condition oecurs when just enough water enters the tank in A, to make up for
the amount leaving through A,. We can write the water level and input mass flow
rate as

H=H*+ AH, (2.115)

0 =0 + A0,
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The partial fraction expansion yields

AQ,ls) = s ﬂ
Taking the inverse Laplace transform yields
AQu1) = —qee™ + g,
Mote that {1 > 0 (see Equation (2.120)), so the term ¢™™ approaches zero as f ap-

proaches oo, Therefore, the steady-state output due to the step input of magnitude
4,18
AQ: = 4o
‘We see that in the steady state, the deviation of the output mass flow rate from the
equilibrium value is equal to the deviation of the input mass flow rate from the equi-
librium value. By examining the variable (1 in Equation (2.120), we find that the
larger the output port opening A, the faster the system reaches steady state. In
other words, as [} gets larger, the exponential term ¢ ™ vanishes more quickly, and
steady state is reached faster.
Similarly for the water level we have

Taking the inverse Laplace transform yields
‘ﬂr‘;k: (e

AH(t) = -1
‘The steady-state change in water level due to the step input of magnitude g, is

AH, ,=_q;'."_’-

Consider the sinusoidal input

AQy(r) = g, sin ax,

which has Laplace transform
o i

AQ(s) i
Suppose the system has zero initial conditions, that is, AQy(0) = 0. Then from Equa-
tion (2.122) we have

gawil

(5 + Q)5 + ®)
Expanding in a partial fraction expansion and taking the inverse Laplace trans-
form yields

AQy(s) =

_sinfar — ) )

-
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H(m)

Time (s}

With H{0) = 0.5m and Q)(r) = 34.77 kg/s, we can numerically integrate the non-
linear model given by Equation (2.125) to obtain the time history of H{r) and @4(r).
The response of the system is shown in Figure 2.40. As expected from Equation
(2.114), the system steady-state water level is H* = 1 m when Q% = 3477 ig,n’m".

It takes about 250 seconds to reach steady-state. Suppose that the system is at
steady state and we want to evaluate the response to a step change in the input mass
flow rate. Consider

AQy(1) = 1 kgfs.

Then we can use the transfer function model to obtain the unit step response. The
step response is shown in Figure 2,41 for both the linear and nonlinear models.
Using the linear model, we find that the steady-state change in water level is
AH = 575 em. Using the nonlinear model, we find that the steady-state change in
water level is AH = 5.84 em. So we see a small difference in the results obtained
from the linear model and the more accurate nonlinear model.

As the final step, we consider the system response to a sinusoidal change in the
input flow rate. Let

L
A0 = 35
where w = 0.05 rad/s and g, = 1. The total water input flow rate is

Qilr) = @* + AGY(DN).
where Q% = 34,77 kg/s. The output flow rate is shown in Figure 2.42.
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and

ih

= =0,

ah (5
Therefore, the linearized equation for the output variable 0, is

A2
A0 = “;—_’ny. (2.119)

For control system design and analysis, it is convenient to obtain the input-output
relationship in the form of a transfer function. The tool to accomplish this is the
Laplace transform, discussed in Section 2.4. Taking the time-derivative of Equation
(2.119) and substituting into Equation (2.117) yields the input-output relationship

Az .14 Asgp
Ay + AQ; = AQy.
0+ 3 ordey = Zo0a0,
If we define
A gp
=220 2.120
A0 0
then we have
AQ, + NAQ; = NAQ,. (2.121)

Taking the Laplace transform (with zero initial conditions) yields the transfer
function

n
AQUs)AQ(s) = T (2.122)

Equation (2,122) describes the relationship b the change in the output mass
fMow rate AQ,(s) due to a change in the input mass flow rate AQ,(s). We can also
obtain a transfer function relationship between the change in the input mass flow
rate and the change in the water level in the tank, AH(s). Taking the Laplace trans-

form (with zero i I conditions) of Eq. (2.117) yields

ky
e (2.123)
Given the linear time-invariant mode! of the water tank system in Equation (2.121),
we can obtain solutions for step and sinusoidal inputs. Remember that our input
AQ,(5) is actually a change in the input mass flow rate from the steady-state value 0*.
Consider the step input

AH(s)/aQu(s) =

Ah(s) = qafs.

where g, is the magnitude of the step input, and the initial condition is AQ,(0) = 0.
Then we can use the transfer function form given in Eq. (2.122) to obtain

-
AQ0) = oy
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where ¢ = tan™'(w/{1). So, as 1 — 00, we have
.42

A1) — —=—=sin(wf — &).
o Vs e ’
The maximum change in output flow rate is

Bl
1800l = 758

The above analytic analysis of the linear system model to step and sinusoidal
inputs is a valuable way to gain insight into the system response Lo test signals. An-
alytic analysis is limited, however, in the sense that a more complete representa-
tion can be obtained with carefully constructed numerical investigations using
computer simulations of both the linear and nonlinear mathematical models. A
computer simulation uses a model and the actual conditions of the system being
modeled, as well as actual input commands to which the system will be subjected.

Various levels of simulation fidelity (that is, accuracy) are available to the con-
trol engineer. In the early stages of the design process, highly interactive design soft-
ware packages are effective. At this stage, computer speed is not as important as the
time it takes to obtain an initial valid solution and to iterate and fine tune that solu-
tion. Good graphics output capability is crucial. The analysis simulations are gener-
ally low fidelity in the sense that many of the simplifications (such as linearization)
made in the design process are retained in the simulation.

As the design matures usually it is necessary to conduct numerical experiments
in a more realistic simulation environment. At this point in the design process, the

speed b more important, since long simulation times
necemnly reduce the number of computer expenments thal can be obtained and
correspondingly raise costs. Usually these high-fideli are p d
in FORTRAN, C, C++, Matlab, LabVIEW or SImllnr languages.

Assuming that 8 model and the simulation are reliably accurate, computer sim-
ulation has the following advantages [13]:

(2.124)

1. System performance can be observed under all conceivable conditions.

2. Results of field-system f can be lated with a simulation model for
prediction purposes.
3. Decisions concerning future systems p y in & stage can be

4, Trials of systems under test can be accomplished in a much-reduced period of time.
5, Simulation results can be obtained at lower cost than real experimentation.

6. Study of hypothetical situations can be achieved even when the hypothetical situation
would be unrealizable at present,

7. Computer modeling and simulation & often the only feasible or safe technique to
analyze and evaluate a system,

The nonlinear model describing the water level flow rate is as follows (using the
constants given in Table 2.7}

H = =00443VH + 1.2732 % 107 @y, (2.125)
0, = 47TVH.
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1.04

Him)

Tinse {s)

Thus in the steady-state (see Figure 2.42) we expect that the output fllow rate will os-
cillate at a frequency of w = 0.05 rad/s, with a maximum value of

@, = Q% + 180:(1)lmax = 3518 kgfs. m

EXAMPLE 2,74 Electric traction motor control

A majority of modem trains and local transit vehicles utilize electric traction mo-
tors. The electric motor drive for a railway vehicle is shown in block diagram form in
Figure 2.44(a), incorporating the necessary control of the velocity of the vehicle. The
goal of the design is to obtain a system model and the closed-loop transfer function
of the system, w(s)/w,(s), select appropriate resistors Ry, Ry, Ry, and Ry, and then
predict the system response.

The first step is to describe the transfer function of each block. We propose the
use of a tach 10 ge a voltage proportional to velocity and to connect
that voltage, v, to one input of a difference amplifier, as shown in Figure 2.44(b).
The power amplifier is nonlinear and can be approximately represented by
vy = 2¢™ = g(w), an exponential function with a normal operating point,
vy = 1.5 V. Using the technique in Section 2.3, we then obtain a linear model:

_ dzlw)

G| A =203 exp(Gu)] Av, = 2(270) Av, = 540 Au. (2.126)
1 |ng

Then, discarding the delta notation and using the Laplace transform, we find that

Va(s) = 540¥(s).
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Table 2.8 Parameters of a Large DC Motor

Ko=10 J=2
=1 b=05
L,=1 Ky =01

When the system is in balance, v = 0, and when K, = 0.1, we have
1+ Ry/R.
1+ RR _Rap
I+ RyfRe Ry
This relation can be achieved when
RyfRy =10 and Ry/Ry = 10.

‘The parameters of the motor and load are given in Table 2.8, The overall system is
shown in Figure 2.44(b). Reducing the block diagram in Figure 2.44(c) or the signal-
flow graph in Figure 2.44(d) yields the transfer function

ols) _ 540G (5)Gals) __ S40G/G;
wils) 1+ 01GG; + 540G,G; 1 + 540.1G,G;
_ 5400 _ 5400
(s + 1)(25 + 0.5) + 5401 247 + 2.55 + S401.5
2700

-_—— 2,129
5%+ 125 + 270075 (129

Since the characteristic equation is second order, we note that w, = 52 and
¢ = 0.012, and we expect the response of the system to be highly oscillatory (under-
damped). m

EXAMPLE 2.15 Mechanical accelerometer

A hanical 1 is used to the leration of a rocket test
sled, as shown in Figure 2.45. Thn lest sIed maneuvers above a guide rail a small dis-
tance & The 1 of the ion a(t) of the

sled, since the position y of tlle mass M with respect 1o the accelerometer case, is
proportional to the aoueleramn of the case (and the s]ed) The goal is to design an
with an approp ‘We wish to design an
with an ptabl I:me for the dcsu'ed measurement characteristic,
¥(t) = galr), to be attained (q is a constant).
The sum of the forces acting on the mass is

dy -~ é_’
bd’r ky—Mdfa(y+xj

or
dy dy dx
L PS4 o - 2130
M +bm+ky- Md‘:’ (2.130)

FIGURE 2.41
Tha respanse
howing the linaar
vivsus noninear
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FIGURE 2.44
Speed control of an
electric traction

motor.
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The response of the water level is shown in Figure 2,43, The water level is sinu-
soidal, with an average value of H,, = H* = 1 m. As shown in Equation (2.124),
the output flow rate is sinusoidal in the steady-state, with

il

|AQH ) max = - e i 0.4 ke/s.
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We wish to obtain an input control that sets a1} = 1, where the units of wy
are radis and the units of v, are volts. Then, when v, = 10V, the steady-state speed
is o = 10 rad/s. We note that v, = K., in steady state, and we expect, in balance,
the steady-state oulput to be

T =

1+ Ry’R. Ry

TR R, @)

L
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We select the coefficients where b/M = 3, k/M = 2, F(1)/M, = Q(1), and we
consider the initial conditions y(0) = —1 and #(0) = 2. We then obtain the Laplace
transform equation, when the force, and thus Q(r), is a step function, as follows:

(°Y'(s) = sy(0) = 3(0)) + 3(s¥(s) — y(0)) + 2¥(s) = —Q(s). (2132)
Since (Q(s) = P/s, where P is the magnitude of the step function, we obtain

(¥(5) + 5= 2) 4 3V () + 1) + 2¥(5) = -,

or
—(+s5+ P
(s* + 35 + 2)¥(5) = (—s—) (2.133)
Thus the output transform is
(2 +s5+P) —~(sS+s5+P)
¥ . 2134
O = T mrs GrNEED @134)
Expanding in partial fraction form yields
Ky ky ky
Hﬂ-r+:+l+s+2' (2.135)
‘We then have
(st + s+ P) P
b= e Dl ™ (#3%)
i —P=2
Similarly, k; = +P and ky = 3 . Thus,
30 .
28 !
26 =
24
£ )
TI kL)
18 !
L& -
14| -
12 ] 7
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Table 29 ORCA Robot Arm Hardware Specifications
Articulated, Joy Stick with
Arm Rail-Mounted  Teach Pandamt __ Emergency Stop .,
Degrees of [ Cycle time 45 {move | inch up, 12 mcll
Trcedom across, 1 inch down, and back)
Reach +5dem Muximum speed TS emls
ekt THem Drwell time 50 ms typical {for moves
within a mation)
Hail land2m Payload 0.5 kg continuous, 2.5 kg
transient (with restrictions)
Weight Xikg Vertical <15 mm at paylond
Precision =025 mmi Crous-sectional | m*
work covelops
Finger jravel 40 mm

{gripper)
Ciripper rotation =77 revolulions

The physical and perlormance specifications of the ORCA system ure shown in
Table 2.9, The design for the ORCA ¥ robol | 1o the selection of
the component parts required to obtain the tial system. The exploded view of the
robot is shown in Figare 2.48. This device uses six DC motors, gears, belt drives, and
o rail and ¢arringe. The specifications are challenging and require the designer to
model the system and their i tions accurately, &

FIGURE 2.45 This rocket: for  railed vehicle at
exﬂmm&»mmwmu Haomat A of an
mounted on the rockat sled
Since
d'x
M= Fun,

is the engine force, we have

2 M
o
M3+ b + ky = — (D),

or
b, k Fit)
¥+ 4 + W= -T.' (2.131)
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lid —PF=2
T+ FTEE {2.137)
‘Therefore, the output is

W) = ;—,I-P + 2P = (P+2)e™), t=0.

A plot of y(1) is shown in Figure 2.46 for P = 3. We can see that (1) is propor-
tional to the magnitude of the force after 5 seconds. Thus in steady state, after 5 sec-
onds, the response y{(r) is proportional to the acceleration, as desired. If this period is
excessively long, we must increase the spring constant, &, and the friction, b, while
reducing the mass, M. If we are able to select the oomponenu so0 that b/M = 12 and
kfM = 32, the accel will attain the prop P in 1second. (Itis
left to the reader to show this.)

EXAMPLE 2.16 Design of a laboratory robot

In this example, we endeavor to show the physical design of a laboratory device and
demonstrate its complex design. We will also exhibit the many components com-
monly used in a control system.

A robot for laboratory use is shown in Figure 2.47. A laboratory robot’s work
volume must allow the robot to reach the entire bench area and access existing ana-
Iytical instruments There must also be sufficient area for a stockroom of supplies for
unattended operation.

The lab y robot can be involved in three types of tasks during an ana-
Iytical experiment. The first is sample introduction, wherein the robot is trained
to accept a number of different sample trays, racks, and containers and to intro-
duce them mto xhe system. The s::ond sel of msks :.mlolves the robot I.ranspon-
ing the sampl d stations for i

paration and i lysis. Samples must be scheduled and moved
between these stations as necessary to complete the analysis. In the third set of
tasks for the robot, flexible automation provides new capability to the analytical
laboratory. The robot must be programmed to emulate the human operator or
work with various devices. All of these types of operations are required for an
effective laboratory robot,

The ORCA Iabozam Tobot i is an authmpomnrphncammountcd on a rail, de-

signed as the opti for the ical lab y [14]. The rail can
be located at the front or back of a workbench, nr placed in the middle of a table
when access to both sides of the rail is required Slmple ds permit

moving the arm from one side of the rail to the other while maintaining the wrist po-
sition (to transfer open containers) or locking the wrist angle (to transfer objects in
virtually any orientation). The rectilinear geometry, in contrast to the cylindrical
geomgu'y used by many mbuts.pemuls more accessories to be placed within the

robot and p {lent match to the laboratory bench. Move-
ment of all ]omls |s noordmaled ﬂmmgh software, which simplifies the use of the
robot by rep: ing the robot positions and in the more familiar
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where G = 1/R, Z(s) = 1/Cs, and I (s) = I; (we omit the (5)). The signal-flow
graph constructed for the four equatinns is shown in Figure 2.4%(b), and the corre-
sponding block diagram is shown in Figure 2.49(c). The three loops are
Lym-GR=~-1,Ly=-GR= -1, mdL, = ~GZ, All loops touch the forward

path. Loops L and L; are the transfer function is
- : . o
(S W 1-(L + L+ L)+ LiL; 3+32GZ
1 1/(3RC)

~IRCs 72" 5+ Z/GRO)
If one prefers to utilize block diagram reduction techniques, one can start at the out-
put with
Vils) = Z(s).
But the block diagram shows that
h(s) = G(Vils) = Vals)).
Therefore,
Wils) = ZGVy(s) — ZGVy(s)
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We begin this section by analyzing a typical sp d hematical
model of a mechanical system. Llsang an m-file smpc, we will dev:lop an interac-
tive analys.s capnhﬂ.l:y to analyze the cﬁecl.s of natural frequency and damping
on the T of the mass displ ‘This analysis will use the fact
that we have an analytic solution that describes the unforced time response of the
mass displacement.

Lnle: we will discuss lransf:r l'un:homs and hlnck diagrams. In particular, we

are i in ip ls, comp pal:s and zeros of transfer
i ing closed-Io p transfer functions, c block di re-
and g the P of a system to a nml step input. The section

concludes with th: elecmc traction motor control design of Example 2.14,
“The functions covered in this section are roots, poly, conv, polyval, tf, pzmap,
pole, zero, series, parallel, feedback, minreal, and step.

Spring-Mass-Damper System. A spring-mass-damper mechanical system is
shown in Figure 2.2, The motion of the mass, denoted by y(1), is described by the dif-
ferential equation

M) + by(r) + kyle) = r(o).

The unforced dynamic response y{r) of the spring-mass-damper mechanical
system is

W) = v;"l.(%iﬁw sin(w, VT = £t + ),

where w, = Vk,.f = b,-f(ZV M), lnd 6 = o5 {. The initial displacement is

(0). The syste d when { < 1, overdamped
when { = 1, and mllcaﬂy damped w‘nen { =1, W: can visualize the unforced time

ponse of the mass disp g an initial displ of y(0). Consider
the underdamped case:

rad 1 k b
O y0) = 015m, w,= \ﬁ; I's ’=m (F = 2.§ = 1).

The ds to g the plot of the unforced resp are shown in Figure 2.50.
In the setup, the \rnna'bies y(ﬂ}.m,.. t,and { are input at the command level. Then the
seripl m is d to the desired plots. This creates an interac-
tive analysis capability to analyze the effects of natural frequency and damping on
the unforced response of the mass displ One can i igate the effects of
the natural frequency and the damping on the time resp by simply ing new
values of w, and { at the command prompt and running the script unforced.m again.
The time-response plot is shown in Figure 2.51. Natice that the script automatically
Iabels the plot with the values of the damping coefficient and natural frequency. This
avoids confusion when mukmg many mlcm:u\r: simulations. Using scripts is an im-

portant aspect of developing an eff design and analysis capahility.
For the spring blem, the unforced solution to the differential
equation was readily a\rallab]e. In general, when sil ing closed-loop back
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Handigripper assembly

Fancam casfing

Elbow and wrist LI
motar prinied
i asserably

Tano printed

eircuil sssembly e

Huaeycomb platfarm

FIGURE 2.48 Explocied vimw of the ORCA robot showing ihe companents [15]. (Courtiey of
Beckman Coultar, Inc.)

EXAMPLE 217 Design of a low-pass filter

Our goal is to design a frst-order low-pass filter that passes signals at a frequency
below 106.1 Hz and signals with a frequency above 106.1 He. In addition,
the DC gain should be 5.

A ladder network with one energy storage element, as shown in Figure 2.49(a),
will act a5 a first-order low-pass network. Note that the DC gain will be equal to '}
{open-circuit the capacitor), The current and voltage equations are

L=V, - WG,
b= (V- WG,
Vo= (4 - DR,
W= L7,
Section2.9  The Simulation of Systems Using Control Design Software 113
S0
Vils) = ; ZGVJ{S}-

‘We will use this relationship between Vy(s) and ¥i(s) in the subsequent develop-
ment. Continuing with the block diagram reduction, we have

Vils) = —ZGW(s) + ZGR(I(s) — Ifs)),
but from the block diagram, we see that
=GWls) —Wls), k= "‘&'g—J

Therefore,

Wi(s) = —ZGW(s) + ZG*R(Vi(s) — Wls)) — GRV(s).
Substituting for ¥(s) yields

(GRNGZ)
1+ 2GR + GZ + (GR)(GZ)

But we know that GR = 1; hence, we obtain

Wi(s) = Vits).

Wls) = Wils).

GZ
3+2GZ
Note that the DC gain is '/, as expected. The pole is desired at p = 27(106.1) =
666.7 = 2000/3. Therefore, we require RC = 0001, Select R = 1k{} and
€ = 1 uF. Hence, we achieve the filter

333

T6) = Gy ey

2.9 THE SIMULATION OF SYSTEMS USING CONTROL DESIGN SOFTWARE

Application of the many classical and modern control system design and analysis
tools is based on mathematical models. Most popular control design software pack-
ages can be used with systems given in the form oI transfer function descriptions. In
this book, we will focus on m-file scripts i and ions to an-
alyze and design control systems. Various oummemal control system packages
are available for student use, The m-files described here are compatible with the
MATLAB' Control System Toolbox and the LabVIEW MathScript RT Module.*

'Sec Appendix A for an introduction to MATLAB,
'See Appendix B for an introduction to LabVIEW MathScipt RT Module,
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FIGURE 2.52
Entering the

polynomial
pla) = 8 + 35 + 4
and calculating its

FIGURE 2.53
Using conv and

and evaluate the

+ 22 4 1)
&+ 4
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FIGURE 2.55
(a} The pole and

zero functions.
{b) Using the pale
and zero functions
‘o compute the
locations of a linear
system.

FIGURE 2.56
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05
sr=roots{p)
g

ﬂ 1?77‘ 10773
OA777- 1.07731

e

1.0000 30000 0.0000 40000

Polynomials are represenled by row vectors containing l‘m po]ynumlal coeffi-
cients in order of di g degree. For ple, the p

pls) =5 +32 +4

is entered as shown in Figure 2.52. Notice that even though the coefficient of the s
term is zero, it is included in the input definition of p(s).

If p is a row vector containing the coefficients of p(s) in descending degree, then
roots(p) is & column vector containing the roots of the polynomial, Conversely, if r is
a column v:ﬂbrwnlaimns the roots of the polynomial, then poly(r) is a row vector
with the pol ffi in di ding degree. We can compute the roots of
the polyncmua] pls) = 5 + 35 + 4with the roots function as shown in Fi Figure 2.52.
In lhn fgu.re we show how to r:a:s:mb]c the polynomial with the poly function.

of poly plished with the conv function. Suppose
we want to expand the pulynomnal

nls) = (3% + 25 + 1){s + 4).

The associated commands using the conv function are shown in Figure 2.53, Thus,
the expanded polynomial is

n(g) = 357 + 1457 + 95 + 4,

2 il
B T

sl uu-pobﬂaﬁl.-s] _
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= sys=Hf1 10}{1 21])
Transler funcion:
| m 8+10
J 242841 E
P=pololsys) 25 pupole{sys)
] fspon p=
sezerofsys) L Ot
j The sysiem poles

m > Z=Tero(sys)
| y
| The system zeros
| -10

ia) 1]
P pole locations in column vector
Z: zer0 focations in column vector
[P-Z}=prmapisys)
EXAMPLE 2.18  Transfer functions
Consider the transfer functions
+14s + 2
gyt oy pe LRt

S+37 4341 {s + 2i)(s — 20)(s + 3)
Using an m-file script, we can compute the poles and zeros of G{s), the characteris-
tic equation of H(s), and divide G(s) by H(s). We can also obtain a plot of the
pole-zero map of G(s)/H(s) in the complex plane,

The pole—zero map of the transfer function Gi{s)/H({s) is shown in Figure 2.57,
and the associated commands are shown in Figure 2.58. The pole-zero map shows
clearly the five zero locations, but it appears that there are only two poles. This

FIGURE 2.50

he spring-mass-
damper.

FIGURE 2.51
Spring-mass-
dampar unfarced
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>=y0=0.15;

>szata= 12 sqr(2]};
o51ef00.110] \{Il
>>unforced

“Compule Unlorcad Fesponse 1o an Initsal Condilion
*

c={yQisgri(1-zeta"2)); yonT= g2
Y=C omp(-20 Wi ). *sindwn "sqa( 1-zela"2) "t s acosi zeta))

%

bu=caxp(-zeta“wn 1);bl=-bu; P envelope
%

plotty..bu,'~' Lo, grid
xlabal{Time (s)), ylabel{y(t) (m})
logend{[omaga_n=", ;

020 - T T 7 T T

i e
b b — = AN, = 03503

= l——I—-—r

01s

o

ik m)
=

~0uos

=010

05

=020

control systems subject to a variety of inputs and initial conditions, it is difficult to
obtain the solution analytically. In these cases, we can compute the solutions numer-
ically and to display the solution graphically.

Most systems considered in this book can be described by trarlsfcr functions.
Since |hr. lransler funcunn is a ratio of palynomials, we begin by g how to
bering that wurlung wilh mms{er m.umuns means
that both a n I jal and a d 7 ial must be specified.
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> numis[10jdani={1 2 5];
>» sys1=l{rm1,dan1)

Transler lunclion:

10
o ] | s
den

S 2+254+5

= num2=[1f:den2={t 1}
= sys2=Hinum2 dan2)

| Transfer function:
1
s
s+1
> Gysabys syl
Transler lunction:

1 24125415
| e Gyl + Gyls)
#3435247545

ah b

The function pofyval is used to evaluate the value of a polynomial at the given
value of the variable. The polynomial n{s) has the value n{—5) = —66, as shown in
Figure 2.53,

Linear, time-invariant system models can be treated as objecrs, allowing one to
manipulate the system models as single entities. In the case of transfer functions, one
creates the system models using the tf function; for state variable models one em-
ploys the ss function (see Chapter 3). The use of tf is illustrated in Figure 2.54(a).
For example, if one has the two system models

Gils) = and  Gyls) =

+Ir+35
one can add them using the “+” operator to obtain

4+ 125 + 15
Gl8) =68 = Gxld) = A+ + T+ 5
The corresponding commands are shown in Figure 2.54(b) where sys1 represents
Gy(5) and sys2 represents Gy(s). Computing the poles and zeros associated with a
transfer function is accomplished by operating on the system model object with the
pole and zero i pectively, as ill in Figure 2.55,

In the next example, we will obtain a plot of the pole~zero locations in the com-
plex plane. This will be accomplished using the pzmap function, shown in Figure 2.56.
On the pole-zero map, zeros are denoted by an “o” and poles are denoted by an *x",
If the pzmap function is invoked without left-hand arguments, the plot is generated
automatically,
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FIGURE 2.59
Open-loopcontrol Ry —] c“;:‘:',"' L) Preess s
systam (without 2
feedback).
Block Diagram Models. ppose we have developed matk | models in the
form of transfer functions for a process, rep d by G(s), and a controller, repre-
sented by G.(s), and possibly many other system components such as sensors and ac-
tuators. Our objective is to i these comp to form a control system.
A simple open-loop control system can be obtained by interconnecting a
process and a lier in series as ill 1 in Figure 2.59. We can compule the
transier function from R(s) 1o ¥(s), as follows.
EXAMPLE 2.19  Series connection
Let the process represented by the transfer function G(s) be
1
Gls) = ——
)= S0
and let the controller represented by the transfer function G(s) be
s+1
Gfs) = Py
‘We can use the series function to cascade two transfer functions Gy () and Gal(s), as
shown in Figure 2.60.
The transfer function G (s)G(5) is computed using the series function as shown
in Figure 2.61. The resulting transfer function is
5+ 1
G5)G(s) = 3002 + 10002 - TS
where sys is the transfer function name in the m-file script. m
. System | System 2
Gyln) Gedsd e
(a)
Ju = =
)= T = Gylah = sys) Gils) = sys2
FIGURE 2.50 ! [sys]=series(sys1, sys2)
{n) Block déagram. L
(b} The series
5 (L]
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‘ Tor= % =wi || GAnGu) =l l t: :Wq.;mmwm-nnl
FIGURE 2.64 l 1 I
g Block disgram, [ays]=teadback{sys1,[1].sign)
function with unity ®
Y
[0 28 | [cmmt | [[m0mma | [ it
T l {defaalt)
2o | IR
mﬂwmﬁ [sys}=teadbackisys1 sys2.sign)
(b} The feedback
function. 1L

We can utilize the feedback function to aid in the block diagram reduction
process to p losed-loop transfer functions for single- and multiple-loop
control systems.

It is often the case that the closed-loop control system has unity feedback, as il-
lustrated in Figure 2.63. We can use the feedback function to compute the closed-
loop transfer function by setting H{s) = 1. The use of the feedback function for
unity feedback is depicted in Figure 2.64.

The feedback function is shown in Figure 2.65 with the associated system con-

which i H(s) in the feedback path. If the input “sign” is omitted,
then negative feedback is assumed.

FIGURE 2.57
Pole-zero map for
GisiHts).

FIGURE 281
Application of the
series function.

FIGURE 2.62
{8) Block diagram.
(b} The paralbel
function,
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=3 -15 -1 -5 =} =05 L
Real Axis

>anusmge(B 0 1); deng={1 33 1]):sysg=tinumg.deng);
>>zmzero(sysg)

| v e and
0+ 0.40821 bk o

0 - 040820

>»p=pola(sysg)

p= ]
-1.0000
-1,0000 + 000001
-1,0000 - 000000

sant=(1 1} n2={1 2} d1={1 2°1); d2={1 -2"i} d3={1 3}
b 1 ot 0243,
>>aysh=tfinumh,dent)

Transter functon:
2438542 [ |
5"3+38°2+48+12
= Gl
o = His)
Transfer lunction:
8554+ 185 + 2553+ 7552+ 45412
F5+694+ 14500+ 1682+98+2

cannot be the case, since we know that for physical systems the number of poles
must be greater than or equal to the number of zeros. Using the roots function, we
can ascertain that there are in fact four poles at s = —1. Hence, multiple poles or
multiple zeros at the same location cannot be discerned on the pole-zero map. m
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o a,:u-%; L) 6“""&5\!1? W

fal

>>numg={1}: deng=[500 0 0]; sysg=t{numg deng);
s»numhs={1 1} denh={1 2] sysh=ilnumh,denh);
>>gys=series{sysg syshl;
e
Transfer function:
s+1
500 573 + 1000 572 Genon)
(kb

[T T |

Yisy

|rl |y

[Tm-%-m [mm-w —‘ [G;ul-m! I
|
[syshparatal{sys1,sys2)

im

Block diagrams quite often have transfer functions in parallel. In such cases, the
function parallel can be quite useful, The parallel function is described in Figure 2.62.

‘We can introduce a feedback signal into the control system by closing the loop
with unity feedback, as shown in Figure 2.63. The signal £,(s) is an error signal, the
signal R(s) is a reference input. In this control system, the controller is in the for-
ward path, and the closed-loop transfer function is

Gi(5)G(s)

6 = =660
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FIGURE 2.68

Application of the
feedback function:

{a] block diagram,
by m-flle script,

126

FIGURE 2.70
The minreal

FIGURE 2.72

mator block
raduction.
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i dengl

asnumb={1 1]; aam-u 2 mz-ummmm

>»sys=leadback(sys1,sys2);

aa5y8

Transfer lunction:

542 o _ Glry

5005"3+ 1000 5™2 + 5+ 1 Ris) 1+ GlaiHis)

ib)

the feedback function. The command sequence is shown in Figure 2.68(b). The
closed-loop transfer function is

T(,]:#: -

5005+ 100087 + s 41
Thel‘ummnsaedes.pare]lel andfasdbank:unb:uaednsmdsmb[mkd:a

gram pulations for multiple-loop block diag;

EXAMPLE 222 Multiloop reduction

A multiloop feedback system is shown in Figure 2.26. Our objective is to compute
the closed-loop transfer function

Yi
when
1
Gils) = 3 10 Gy =
_ £+ |
Gs) = 2+ ds + 4 Gl = 5%
and

s+1
Hyfs) =

5 His) =2 and M9 =1
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No common factors Possible common factors
Tis) =gy 1) = syil
syssminreal{sys1)

>>num=[14 66 5 2]; den=[12 205 1066 2517 3128 2196 T12};
1= danj

SRy ] A i |

Transder funclion:

0.08333 5™ + 0.25 53 + 0.25 5" + 0.25 5 + 0.1667
55+ 16.08 8 + 7275 8°3+ 137 572 + 1237 5 + 5033

EXAMPLE 2.23  Electric traction motor control

Finally, let us reconsider the electric traction motor system from Example 2.14. The
block diagram is shown in Figure 2.44(c). The objective is to compute the closed-loop
transfer function and i igate the resp of wis) toa ded wy(s). The
first step, as shown in Figure 2.72, is to compute the closed-loop transfer function
w(s)/wy(s) = T(s). The closed-loop characteristic equation is second order with
wy = 52and { = 0.012. Since the damping is low, we expect the response (o be high-
Iy oscillatory. We can i i the wit)toa input, wglr), by uti-
lizing the step function. The step function, shown in Figure 2.73, calculates the unit
step response of a linear system. The step function is very important, since control
system performance specifications are often given in terms of the unit step response.

senumi={10]; den1=[1 1]; sys1=tinum1,dent).
senum2=[1]; den2=(2 0.5]; sys2=finum2 dena};
1. denda(1]; dand);
wum-{ll.l]. dam-[l}: svul:lﬂmml dend);
Eliminse
MW]: inner boop
¥ sysB);
»sys=ipadhack(sys;
> 74 Compute closed-loop
transfer fanction
Transler function:
5400 i)
282+ 258+ 5402 wylsh

FIGURE 2.66
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+ o Ea) sy
R G w5l Gt = g ¥in

(a)

|: dang=[500 0 deng)

o
snmcs(1 1]; denc=(1 Zhwrulumc]
=>6ysd=saries(sys1 sys2).
>>sys=laedback(sys3[1]}

Transler hunction:

e L P M) GGt
5005°3 + 1000 5°2 + 5+ 1 R ™ T+ G a6

the feedback

FIGURE 2.69
Mulliple-loop block
reduction.

(b}

¥isy

EXAMPLE 2.20 The feedback function with unity feedback

Let the process, G(s), and the controller, G,(s), be as in Figure 2.66(a). To apply the
feedback function, we first use the series function to G (5)G(s), followed
by the feedback function to close the loop. The command sequence is shown in
Figure 2.66(b). The closed-loop transfer function, as shown in Figure 2.66(b), is

_ _GdsGls) s+ 1 s
T =13 6m6H ~ 00 + 10007+ s +1 0"

Another basic feedback control configuration is shown in Figure 2.67. In this case,
the controller is located in the feedback path. The closed-loop transfer function is

Gs)
17 G(s)H(s)

T(s) =

EXAMPLE 2.21 The feedback function

Let the process, G(s), and the controller, H{s), be as Lu ﬁgure 24 68(a} To compute
the elosed-loop transfer function with the dback loop, we use
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>>ngi=(1]; dgl=[t 10]; sysgi=ting1,dg1):
>ang2=(1]; dg2=(1 1]; sysg2=ting2.dg2);
>>ng3=[1 0 1). dgd={1 4 4], 'FBGMWM

>>g4n[1 1]; dgde(1 6]; sysgdatl(s
>>nhis(1 1]; dhi=(12): am|=|f¢m|.m1:

>>nh2=(2]; dh2={1]; sysh2=tnh2,dh);

=»nh3=[1]; dh3={1}; sysh3a=tfjnh3,dhd);
>6ys1asysh2isyagd,
>>gysd=lpadhackisys2, mhx j}
8 1,+1);
>>sysd=sorios(sysg2 sys3); ,

Transfer lunclion:

5+ A+ B3 +632+458+2
125°5 « 205 575 + 1066 5™ + 2517 5"3 + 120 5°2 + 21965+ T12

For this le, a five-step Aure is followed

[ Step 1. Input the system transfer functions.

O Step 2. Move H, behind G,

3 Step 3. Eliminate the Gy H, loop,

Q Step 4. Eliminate the loop containing H,.

O Step 5. Eliminate the remaining loop and calculate T{(s).

The five steps are utilized in Figure 2.69, and the corresponding block diagram
reduction is shown in Figure 2.27. The result of executing the commands is

S +as 657+ 67+ 5542
125% + 2055° + 1066s* + 25175° + 3128s° + 21965 + 712

sys =

‘We must be careful in calling this the closed-loop transfer function. The transfer
function is defined as the input-output relationship after pole-zero cancellations.
If we compute the poles and zeros of T(s), we find that the numerator and denom-
inator polynomials have (s + 1) as a common factor. This must be canceled before
we can claim we have the closed-loop transfer function. To assist us in the
pole=zero cancellation, we will use the minreal function. The minreal function,
shown in Figure 2.70, removes common pole-zero factors of a transfer function.
‘The final step in the block reduction process is t 1 out the factors, as
shown in Figure 2.71. After the of the minreal we find that the
order of the denominator polynomial has been reduced from six to five, implying
one pole-zero cancellation. m




128

Chapter 2 Mathematical Models of Systems

210 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

—

FIGURE 2.75
Head mount for
render, showing
M,

FIGURE .76

Bletk diagram
model of disk drive
read sysiem

In Section 1.10, we developed an initial goal for the disk drive system: to position the
reader head accurately at the desired track and to move from one track to another
within 10 ms, if possible, We need to identify the plant, the sensor, and the controller.
We will oltain o model of the plant G(s) and the sensor, The disk drive reader uses
a permanent magnet DC motor to rotate the reader arm (see Figure 1.29). The DC
motor is called a voice coill motor in the disk drive industry. The read head is mount-
ed on a slider device, which is connected to the arm as shown in Figure 2.75, A flex-
ure {spring metal) is used to enable the head to float above the disk at a gap of less
than 100 nm. The thin-film head reads the magnetic Mux and provides a signal to an
amplifier. The error signal of Figure 2.76(a) is provided by reading the error from a
prerecorded index track. Assuming an accurate read head, the sensor has a transfer
function f{{x) = 1, as shown in Figure 2,76(b). The model of the permanent magnet
DC motor and a linear amplifier is shown in Figure 2.76(b). As a good approxima-
tion, we use the model of the armature-controlied DC motor as shown earlier in

Flesure

[Conmatdeviee | "™ [Xcitor und resd am | Py
vollage !
Amplifier  f—————tel D mocor and st il

[esmed
freal

- Loror

Muics and arm Gixl
Ko

b= SRR HE)

= Time (5)
Using the approximate second-order model for Gs), we obtain
YO K
Ris) & + 205 + 5K,
When K, = 40, we have
200
YO E e
We obtain the step response for R(s) = D?.l_ rad, as shown in Figure 2.78,
211 SUMMARY

In this chapter, we have b d with i maodels of con-
trol components and systems The differential equalions describing the dynamic perfor-
mance of physical systems were utilized o construct a mathematical model. The
physulsysrems dh included mechanical, electrical, fluid, and thermo-

A linear approximation using a Taylor series expansion about the op-
=ra(ulg point was utilized no obtam a small-signal linear approximation for nonlinear
control components. Then, with the approximation of a linear system, one may utilize
the Laplace transformation and its related input-output relationship given by the trans-
fer function. The transfer function approach to linear systems allows the analyst to
determine the respanse of the system to various input signals in terms of the location
of the poles and zeros of the transfer function. Using transfer function notations, block dia-
gram models of systems of interconnected components were developed, The block

ps were obtained. Additionally, an alternative use of transfer function models
in signal-flow graph form mhmanmn‘ss@n&] llowgam formula was inves-
tigated and was found to be useful for variables

in a complex feedback system. The advantage oflhesngm}-ilmﬂ graph method was the
availability of Mason's signal-flow gain formula, which provides Ihz relationship
between system variables without iring any red or ip of the flow
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“n ().
Step System vt X =
impan Gis)
I3 T

(n)

1= T: user-supplied time vector
i) = cutpuil response o1 1 Gis) =5y
T = simulstica time 1= Ty sémulation final tme
Iy, Thstap(sys.t)
(b}
20— % This sceipl computes the step
184 1 % responsa of the Iraction motor
E :: s wheel valocity
E %
] :; rum={5400]; den={2 2.5 5402]; sys=t{num,den);
! 1={0:0,0053;
g 8 [y =stepisys.t):
04 Pplotlty).grid
e
00 05 10 15 20 23 30
Tieme is)
ia) by

FIGURE 2.74 (&) Traction motor whesl velocity step response. (b m-file script.

If the only objective is to plot the output, y{r), we can use the step function with-
out left-hand arguments and obtain the plot automatically with axis labels. If we
need y(r) for any pnrpose other than plotting, we must use the step function with
left-hand d by the plot function to plot y(r). We define 1 as a row
wvector containing the times at which we wish the value of the output variable y(r).
We can also select 1 = fg,y, which results in a step response from ¢ = 010! = ffuy
and the number of intermediate points are selected automatically.

The step response of the electric traction motor is shown in Figure 2.74. As
expected, the wheel velocity response, given by y(r), is highly oscillatory. Note
that the output is y(r) = w(t). =
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Table 2.10 Typical Parameters for Disk Drive Reader

Parameter Valug

Inertia of arm and

read head 7 1N msrad

Friction b 20N m sfrad

Amplifier K, 10-1000

Armature resistance R 111

Maotor constant K SNmA

Armature inductance L 1 mH

Figure 2.20 with Ky = 0. The model shown in Figure 2.76(b) assumes that the flex-
ure is entirely rigid and does not significantly flex. In Chapter 4, we will consider the
model whm the flexure cannot be assumed to be completely rigid.
for the disk dri tem are given in Table 210, Thus, we have
K
s(Js + b)(Ls + R)
sl
s(s + 20)(s + 1000)°

Gis) =

(2.138)

‘We can also write

K (BR)

GO = mt Ds v 1)

(2.139)
where 7, = J/b = 50ms and 7 = L/R = 1 ms. Since 7 << 7, we often neglect 7.
Then, we would have

KaJBR) 025

G0 = s+ 1)~ 50085 + 1)

5
Gis) = Gy
The block diagram of the closed-loop system is shown in Figure 2.77, Using the
block diagram transformation of Table 2.6, we have

Yis)  K.Gls)
+
Ris) —(f

Re) T+ KGO @10

Ky I Gix) t R
L1 = ]
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7. Consider the system in Figure 2.79 with
1+ 4
GAs) =20, H{s)=1, and Gs)= oo

‘When all initial conditions are zero, the input R{x) is an impulse, the disturbance
T4ls) = 0, and the noise ¥(s) = 0, the output y{r) is
& y(r) = 107 + 1067
+ 107

e Y1) = 107 - 107

d y(1) = 206 + 507
8. Consider & system represented by the block disgram in Figure 2.80.

Yt

FIGURE 2.B0 Block ceagram wilh an intemal loop.

“The closed-loop transfer function T{s) = ¥ {s)/R(s) is
s
10

b= s 0
ot
& + 505 + 55
& None of the above

Consider the block diagram in Figure 2.79 for Problems 9 through 11 where

e T(s) =

5
Gls) =4, H(s)=1, and G("'m'

9. The closed-loop transfer function T{s) = ¥(s)/R(s) is:

S0
* r[‘]-a’+5:+50
2

T

SO iew

e U e ey
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14. Consider the closed-loop system in Figure 2.79 with
1000
Gds) =15, H() =1, and Gl1) = 5 =l

Compute the closed-loop transfer function and the closed-loop zeros and poles.

15000 5
& T(s) m & = =370, 55 = =23.15 = 61.59
b T(s) = 1300 - =370, 5, = ~8629

507 + 45005 + 16000" "

1 .
& T S s v g 1 T T T B2

15000 =
£+ 50 + 45005 + 16000"

15, Consider the feedback system in Figure 2.79 with

G = X2 gy o2, ana Gl -

d Tis) = ==370,5 = -232,5 = —632

1
(3= 2)(5 + 103 + 45)
Assuming R{z) = 0and N{s) = 0, the closed-loop transfer function from the distur-
bance Ty{s) to the output ¥(s) is:

¥(s) 1

" T35 TP+ 82 + (2K + 25)s + (06K - 90)
Y 100
Tads) £ 487+ (2K + 25) + (06K - 90)
¥is) 1

© Tan " B 1 (2K + 2501 + (06K - 90)
¥is) K(s +03)

T T F 80+ 2K + B + (06K — 0

In the following Word Match problems, match the term with the definition by writing the
cormect letter in the space provi

. Actuator An ion in which the il with
time. - —
b. Block diagrams A system that satisfies the properties of superposition
and homogeneity. —_—
© Characteristic The case where damping is on the boundary between
equation underdamped and overdamped. —

. Critical damping A transformation of a function fir) from the time

domain into the complex frequency domain

ylelding Fis).
e Damped oscillation  The device that provides the motive power to the

process. ——_—
£ Damping ratio A measure of damping. A dimensionbess number

for the second-order characteristic equation, g
g DC motor ‘The relation formed by equating to zero the

denominator of a transfer function. Lot

Skills Check 13

graph. Thus, in Chapter 2, we have i a useful matk ical model for k
control systems by developing the concept of a transfer function of a linear system and
the relationship among system variables using block diagram and signal-flow graph
models We considered the utility of the computer simulation of linear and nonlinear
systems to determine the response of a system for several conditions of the system pa-
and the envi Finally, inued th 7 of the Disk Drive
Read System by obtaining a model in transfer function form of the motor and arm.

. SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or Fabse, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the ion of the end-of-chapter prob Use the block diagram in Figure 2.79
as specified in the various problem statements.

T

His

FIGURE 279 Block diagram for the Skills Chack.

In the following Tree or False and Multiple Cholce problems, circle the correct answer.

1. Very few physical systems are linear within some range of the variables. Trie or False
2. The s-plane plot of the poles and zeros graphically portrays the character

of the natural response of a system. Truee or False
3. The roots of the characteristic equation are the zeros of the closed-loop

system. True ar False
4. A lincar system satisfies the p ies of superposition and homogeneity,  True or False

&, The transfer function is the ratio of the Laplace transform of the output
variable to the Laplace transform of the input variable, with all initial
condithons equal to zera. Trie or False

6. Consider the system in Figure 2.7 where

Ge} = 10, H{s) =1, and ccs;=ﬁ%ﬁ,

1f the input R{s} is o unit step input, Ty{z) = 0, and N(s) = 0, the final value of the out-
put ¥(s) is:

By, = lim ) = 100

by = lim ) = 1

€ o = lim yir} = 50

d. None of the above
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10. The closed-loop unit step response is:
P I I
w ¥ = + Be re
b y(f) =1+ 0™
w2 _ By e
e ¥r) = E—j\e Are
doy(r) =1 = 2 — e
1L The final valoe of y(r) is:
* ¥y, = lim y(r) = 08
=
be y, = lim ws) = 1.0
=
& ¥p = lim () = 20
==
a. yy, = fim yir) = 125
=
12, Consider the differential equation
J+2pty=u
where y{0) = #{0) = 0 and u{r) is & unit step. The poles of this system are:
an==ly=-1
by =1fs=-1f
e p==lgp=-2
d. Nane of the above

13 A cart of mass m = 1000 kg is attached to a trock using a spring of stiffness
k = 20,000 Nfm and a damper of constant b = 200 Ns/m, a3 shown in Figure 281,
The truck moves at & constant acceleration of @ = 0.7 mis”,

b m

FIGURE 2.81 Truck pullng a cart of mass m,

‘The transfer function between the speed of the truck and the speed of the cart is:
.
S5+ 5+ 100
W+
&+ 10 + 25
100 + 5
R

d. None of the above

w Tis)=

b T(s) =
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FIGURE E25 A

- o

.

ELh A nonlinesr device is represented by the function

¥ = Jix) =2
whiere the operating point for the input x i x, = 1.

Determine a linear approximation valkl nesr the oper-
ating point.
Awgwers y = £x

ELT A lnmp’s micnsity stays constant when monitored by
nny opiotransistor-conirolled feedback loop. When the
voltage drops, the lamp's ouiput also drops, and opio-
transistor (Y draws less current. As a resall, o power
transistor conducts mare beavily and charges a capaci-
tor more rapidly [24]. The capacitor voltage controls

Chapter 2 Mathemalical Models of Systems

¥is)
s
KGi[a)G=(a)/n

Answer:

the lamp voltage directly. A block dingram of the sys |+ G{a)iis) + GylabGala[ (5] + Hyls)] + KGaGshis

tem is shown in Figure E2.7. Find the closed-toop trims-

fer functiva, Ha)'R(s) where fs) is the lanp intensity, 29 A four-wheel antikock astomobile braking system

und Ris) is the command or desired level of light

ELK A control engineer, N Minorsky, designed an innov-
ative ship sicering system in the 1930s for the US.
Novy. The system is represented by the block diagram
shaown in Figure E28, where ¥(s) is the ship's course,
Fola) bs thhe desired course, nnd A(s) is the rudder angle
[16]. Find the transfer function ¥{aJR{s)

uses electronic feedbock to control automatically the
brake force on each wheel [15). A bock dlagram
model of & brake control system is shown in Figure E19,
where F{r) and Fels) are ihe braking force of the
froat and rear wheels, respeetively, and Ris) i the
desired automobile response on an icy road, Find
Fs)/Ris),

FIGURE E2.8 Ship stearing systom
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E213 Consider the feedback system in Figure E2.13, Com-
jpuate the transfer functions ¥ (5)/T,(5) and ¥{s)/N(s).
E214 Find the transfer function
¥ils)
Rols)
for the multivarinble system in Figure E2 14,
E215 Obtain the differential equations for the circuit in
Figare E2.15 in terms of i) and iy,

E216 The position control system for a spacecraft plat-
form is governed by the following equations:

#p -rld + 4 8
T ra
nw=r—p
40
Controller

+ 1) x
Rish L K

i +

dé
5 = Qb
u=Tn.
The variables involved nre as follows:
rir) = desired platform position
plr} = actual platform position
(1) = amplifies input voltage
v3(t) = amplifier output voliage
(1) = motor shaft position
Sketch a signal-flow diagram or a block diagram of

the system, identifying the component parts and de-
termine the system transfer function P(s)/R{x).

s+ 10)

FIGURE E2.13 Feedback system with measurament noise, N(s), and plant

disturbances, T{s).

Ryin

Rakn)

FIGURE E2.14 Muitivariabla system,

¥yish

Yish

Exercises 135
. Laplsce transf Unidirectional, ional blocks that represent the
transfer functions of the elements of the system. ==
L Linear A rule that enables the user 1o obtain a transler
i function by tracing paths and loops within a system.
j- Lincar system An electric actuator that uses an input voltage as
a control variable. =
k. Mason loop rule nenuout:b:hplmumfomollluwrpul
the Laplace transform of the input variable. ____
L e bons of the behavior of a system using
models mathematics.
m. Signal-flow graph A model of a system that is used 1o investigate the
behavior of a system by utilizing actual input signals. I
n. Simulation A disgram that consisis of nodes connected by several
directed branches and that is a graphical
of a set of lincar relations T
‘o Transfer function An approximate model that results in a linear relatienship
between the output and the input of the device s

Exercises are straightforward applications of the concepts
of the chapter,
EX1 A unity, negative feedback system has a nonlinear

function ¥ = f{e) = ¢, as shown in Figure E2.1. Foran
input rin the range of 0 104, calculate and plot the open-
loop and closed-loop output versus input and show that

Cn:uem]dudloop
FIGURE E2.1 Open and closed loop.

E22 A thermistor has a response (o lemperature repre-

sented by
R o= Ry,
where B, = 10,000 {1, R = resistance, and T = tem-
pmmhﬂw&mumn‘mmm
the thermistor operating at T = 20°C and for a small
ange of variation of temperature.
Anrswer: AR = —135AT

EL3 The force versus displacement for a spring is shown
in Figure E23 for the spring-mass-damper system of
Figure 2.1. Graphically find the spring canstant for the
equilibrium point of ¥ = 0.5 cm and a range of opera-
tion of 1.5 cm.

Feint

FIGURE E2.8 Brake control sysism

EL10  One of the most potentially beneficial applications

of an nutomative control system is the active control of
the suspension sysiem. One leedback control system
uses & shock absorber consisting of a cylinder [filled
with a compressible Muid that provides both spring and
damping forces [17]. The cylinder has & plunger actival-
ed by & gear motor, a displscement-measunng sensar,
und a piston. Spring force is generated by piston s
placement. which compresses the fluld. During piston
displacement, the pressure imbalance across the pison
s used o control damping The plunger varies the in-
ternal volume of the cylinder. This leedback system b
shown in Figure E2.1iL Develop a linear model for (his
device uxing o block dingram model.

EZI1 A spring exhibits a [orce-verus-displicement

charsiteristic as shown in Figure E211, For small de-
viatbons from the operating point x,. lind the spring
consiant when i is {a) =14, (b} 0; {c) 3.5

ELIZ (ffroad vehicles experience many disturbance

inplm as they traverse over rough rosds An aclive

suspension system can be controlled by o sensor that
Iooks “uheasd” at the road conditions. An cxunple of 0
simple suspension sysicm thot can accommodate the
bumps & shown in Figure E2.12. Find the appropriste

EL5 A noninverting

FIGURE E2.3 Spring behavior:

E24 A laser printer uses a laser beam to print copy

rapidly for a computer. The laser is positioned by a
control input #(t), 50 that we have
4s + 50)
4 30 + 200
The input r(r) represents the desired position of the

laser beam,

¥is) = Ris).

(a) 10 e(r) is & unit step input, find the output y(r).

(b) What is the final value of y{)?

Answer: (a) f{i) = |+ 066 = Lée '™ (b)y, = 1
amplifier uses an op-amp as shown
in Figure E25. Assume an ideal op-amp model and
determine v/t

Answers = = 1 4 22 ]
T Ry
137
Comtrol vuiput
Cyhinder
E
/I.«um
1 Senwar ouspot
Damging !
onflce f
Piston m. Pistan traved

FIGURE E210 Shock absorber

2Es

Spring force (N}

o5

FIGURE E2.11 Spring chasactaristic.

galn Ky so thal the vehicle docs not bounce when the
desired deflection is R(x) = 0 and the disturbance is
Tis)

Annvers KKy = |

Wi disiichamer

Hestimce of
W e
eilectim
T
P amal

FIGURE E2.12 Active sispension system.
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EZ226  Determine the transfer function X3(s)/F(s) for the
system shown in Figure E2.26. Both masses slide ona
frictionless surface, and k = 1 N/m.

u ), 1
TFlE) S+
— 1y '—.lg
FIGURE E223 Control system with three fsedback Ioops. ;
o= T MW R
E224 The block diagram of a system is shown in

e K234, i o i o RS
Tis) = ¥is)/Ris).

FIGURE E226 Tw a
surface.

E2.27 Find the transfer function ¥{s)/T(s) for the sys-
tem shown in Figure E227.

Yo _ Gils)
T 1+ GG

Answer: ——

FIGURE E2.24 Multicop feedback system.

E225  An amplifier may have a region of deadband as
mWFnqulzs.Usemlpptwﬁmﬂmlhu
uses a cubic equation y = ax’ in the approximately
linear region. Select @ and determine a linear approxi-
‘mation for the amplifier when the operating paint is

x =06
FIGURE E2.27 System with cisturbanca.
¥
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for the Nuid-llow equation. (k) What happens to the
approximation oblaimed in part (a) if the operating
point s £ — /4 = i

PL6  Using the Laplace transformution, obtain the current
Uyis) of Problem P2.1. Assume that all the nitial cur-
tents are cero, the initial voltage ocross capacitor ©) is
zero, off) is rero. and the initial voliage across O b 10
valts

P27 Obinin the transler Ninction of the differentinting
circuit shown in Fignre P27,

1
FIGURE P2.2 Vibration absorber.
PLY A coupled spring-muss system s shown in Figure
P23 The masses and springs are axsumed to be equal. -
Obtwin the differential equations describing the system. 5 L]

Vyial

Il

FIGURE P27 A diftorentinting ircut,

PZE A bridged-T petwork is often used in AC control
sysiems as a filter network [8]. The circuit of one
bridged-T neework is shown in Figure P28, Show that
the transfer function of the network is

FIGURE P2.3 Two-mass system.

¥l |+ 2RyCs + Ry ﬂ-c’r‘
P24 A nonlinear amplifier can be described by the fol- Vo) T+ (28, + s + MRC
Bowing charmcteristic:
Sketch the pole—zero diagram when &, = 05, B = 1,
W) { =0 wnd C = 05,
" Y < o

“Ihe amplifier will be operated over a range of £0.5 o
volts around the operating point for v, Deseribe the 1
nmplifice by a linear approximation (a) when tle op- )* 1l 5
erating poini is w, = 0 amad (b) when the uperaling t 4 +
paint is B, = ) volt. Obiwin n skeich of the nonlinear [
fonction and the approximation for each case.

P25 Fluid flowing through sn orifice can be represented
by the nontinear equation

Q@ = Kip - )7 FIGURE P2.8 Hridged-T network

where the varinbles ure shown Inﬂgummml\’u

o comstant [2] {a) ine o linear P29 D e tranafer fuoction Xi{s)/Fis) for the
coupled spring-mass system of Problem P2.3. Skeich
the s-plane pole-rero disgram for kow damping when
M = Lbfk = 1,and

- —; =0
o f VM

PLI0  Determine the transfer function Y(x)/F(1) for the

FIGURE P25 Flow through an ceifice. vibration absorber system of Problem P22, Determine

Exercises
1 Ly G
_N_.'YYY'\__i
= O =

e " ))\‘ (%

FIGURE E2.15 Blectric circuit.

E217 A spring develops a force frepresented by the reln-
tiom
F=ikx?,
where £ is the di of the spring. Dx
a linenr moste! for the spring when x, = %
ELIS  The outpat y and input x of & device are relnied by

§= x4 Lax

{a) Find the values of the cutpul for sicady-state op-
erntion at the two operating points x, = | and x, - 2.
(b) Obtaia & linearized model for both operating
poinls and compare them
EL19  The transfer function of & system i
Ytll 150 + 1)
.ﬂ'{l) TN
Determine y(r) when rir) 5 a unit step input.
Anvwer: yr) = 107 4 156 ~ 257 M= 0
E220 Determinie the transfer function Vids)/V{s) of the op-
‘erational amplificr circuit shown in Figure E2.20. Assume
an wheal operntional amplifier. Detesmine fhe rungfer
function when By = Ry = 100kD, € = 10 4T, and
Cr = 5pF

&
f—
€
L
L B S

=

FIGURE E2.20 Op-amp circull.

Problems

EL2  Determine the transfer function ¥(s)/V(s) for the
op-amp circuit shown in Figure E228 [1]. Let R~
167 kf}, Ry = 240 k6), Ry = 1 k), & = 100 kf2, and
€ = | uF. Assume an ideal op-amp
E229 A system ks shown in Fig E2.2%(a).
(a) Determine Gis) and H(s} of the block diagram
shown in Figure E2.29(b) that are equivalent 1o
those of the block diagram of Figure E2.2%a).
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ELZ1 A high-precison positiontng slide s shown in Figare
E221. Determine the transfer Tunction X, (5)/ X5}
when the drive shalt Triction is b, = 0.7, the drive shaft
spring constant i &y = 2, = 1. and the sliding
friction is b, = 0.8

H

1 Pt |

; e

; By —]

'

} Carriage Sliding
- Frictsn, b,

(A8 W

FIGURE E2.21 Precision skde.

EL22  The rolational velocty w of the satellite shown
Figure E2.22 is adjustcd by changing the length of the
beam I The iransfee function between wis) and the
incremental change in beam length A Lis) is

s} As +4)
ALLs) (x4 S+ 1)
The beam length change is AL{(s) = |/x. Determine
1he response of the rolition afi).
Answer: wit) = 16 + 00257 ~ 1.625¢ ' = 1507

Motatn

FIGURE E2.22 Satallita with ndjustabla rotational veiocity.

E223  Determine the closed-loop tramder function Tis) =
Yl Rix} lor the systen of Figure 225,
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(b) Determine Y{s)/R(s) for Figure E2.29(b).
ELM A system is shown in Figure E2.30,

{a} Find the closed-loop transfer function ¥(s)/Ris)
when G(s) = e 10

(b) Determine Yb}whﬂl :hehp«ﬂtl is a unit step.

(e} Compute v{r).

FIGURE E2.20 Block diagram equivalence.

Problems require an extension of the concepts of the chap-
ter to new situations

PL1  An clectric circuit is shown in Figure P2.1. Obtain a
set of amultaneous integrodifferential equations rep-
resenting the network.

P22 A dynamic vibration absorber is shown in Figure
P2.2. This system is representative of many situations
involving the vibration of machines containing unbal-
anced components. The parameters My and k;; may
be chosen 3o that the main mass M, does not vibrate
in the steady state when F(I) = a sin(sy ). Obtain the
differential equations describing the system.

FIGURE E2.30 Unity feedback control system.

E231 Determine the partial fraction expanson for Vis)
and compute the inverse Laplace transform. The
transfer function V{x) is given by:

Vis) =

R, A
£+ 85+ 400

FIGURE P2.1 Electric circult
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&, spring constan

FIGURE P2.156  Suspended spring-mass system,

PLI6  Obtnin a signal-flow wh o represent the follow.
ing set uf.ul;hlk cequations where x; and t; are o
be considered the dependent vanables and b and 11
are the inputs:

n4LSg=6 L +dn=11

Determine the viloe of each dependent variable by
using the gain formule. Afler solving for r, by Mason's
signal-flow gain formula, verify the solution by using
Crames's rule.

PL17T A mechanical system is shown in Figure P17,
which is subjected to a known di ent ay(e) with
respect fo the reference. () Determine the 1wo inde-

it equations of motion. (b) Obaain the equations
of motion in terms of the Laplace transform, assuming
that ihe initial conditions are zero. (¢} Skelch a signal-
MNow graph ing the system of ans. (d)

FIGURE P217 Mechanical syslem.

Obtun the ulllumhrp Tisds) between Xifs) and
Xilr) by using Mason's pain formula.
t::mn: the work npecessary 1o obtain r,,m by i
irix methods o that using Mason's signal-fow gain
formula
PLI  An LC lndder netwaork is shown in Figure P18
One may write the equations describing the network
38 follows:

L= =Ny, Y= (h - 102
L=-¥n W=z
Construct o fow gruph from the equations and deter-
ming the transfer function W{a)/ Vir).
T, v, L iy=0
- ¥y ' ¥ +
Vylar P n==c Vaah

FIGURE P2.18 LT ladder natwork.

PLIY A voltage lollower (buffer amplifier) is shown in
Figure F2.19. Show that T = w/e, = 1. Assume an
ideal op-amp.

FIGURE P2.19 A butter amplifier.

P220 The source follower amplifier provides bower out-
put impedance and essentially unity gain, The circuit
disygram iy shown in Figure P220(a), ad the smafl-sig-
ol moded is shown in Figare P220(b), This crent uses
an FET and provides a guin of spproximately anity.
Awume that Ry == £ for blasing purposes and that
R, 5> R, (n) Solve for the amplifier gain, (b) Sobve
for the pain when g. = X0 ull and A, = 10k0
where K, = Ky + Ry, (¢] Sketch a block diagram that
represents the eireuit equations.

PL2T A hydraule servomechanism with mechanicnl
Teedback is shown in Figure P221 [15] The power pis-
1o bis mn srew edual to A When the valve i moved
small amount &z, the odl will fow through 1o the eylin-
derata rate p- Az whero p s the port coefficient, The
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neglects the bins resistors and the shunt itors. A chnigue known as feedi d ion [19]
block diagram re iling the rircuil is shown in Recenl experiments have shown that this lechnigue

Figure P224(b), This block dingram neghects the effect
of b, whach is usually an accurale and

u"ﬂi‘l the pnh:l\hl] for yielding excellent amplifier

assumes that K + &, == R, (a) Determine the voli-
age gain 1,1y, (b) Determine the current gain i fiyy:
() Determine the input impedance /iy

P25 H.5 Black is noted for developing a negative feed-
back amphifier in 1927, Often overlooked is the fact
that three years earlier he had invenled a cirouit de-

Black's amplifier i shown in Figure
P2.25{n) in the form recorded in 1924, The block dia-
gram is shown in Figure P225(b). Determine the
transfer function between the output ¥is) and the
i Rix) and between the output and the distur-
Dance Tx), Gle) s used to denote the amplifier rep-
rescated by u in Frgure P2.25{a).

iy

FIGURE P225 H. &
Biack's ampiifier.

PL36 A robat includes significant flexibility i the arm
members with a heavy lowd in the gripper [6, 20]. A
twonmiss model of the robot is shown in Fgure. P226.
Find the transfer lunction ¥{x)/F{x}.

P227 Magnetic levitation tmins provide a bigh-speed,
very low [ wliemative to steel wheels on steel
rails The train Moats on an e gup as shown in Figure
P27 [25). The leviwation force F; is controfled by the
coll current i in the levitation coils and may be op-
proximated by

a
A=k

fin—s M -

FIGURE P2.26 The spring-muss-camper moded of &
robot arm.

uhmrhlhemmmlwuuwwm
downward force F = mig, Determine the

Problams

the necessury parameters M: and &gy so that ihe miss
My does not vibrate i the steady state when
Flt) = a sintug )

PLI For electromechanscal systems thai require larpe
power amplification. rotary amplifiors are often osed
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[8.19], An amplictyne is a power amplifying retary am-
plifier. An amplidyne and & servomotor are shown i

P11 Otvain the transfer function A{s)/V(s),
and draw the block dingram of the system. Asume
Uy = kylg and v, = Kyl

FIGURE P2.11  Amplidyna and armature-controliod mator

P12 For the open-loop control system described by the
block diagrum shown in Figure PL12, defermine the
value of K such that w{r) == 1 m ¢ == oo when rfi) s a
unit step input. Assume xero imitinl conditions.

Comroller Process
1
ma— K oo e

FIGURE P2.12 Operr-loop control system.

PL13 An electromechanical open-loop cminol sysem is
shown in Figure PLI3. The generator, driven at o con-
srmnt speed, provides the el voltage for the motor. The
motor has an inertin [, and bearing friction b, Cistain

the trmnsler Tunction ¥ (1) Vil £) and draw 4 block dia-
gram of the system. The generton valtage v, can be as-
sumed o be proportional to the Beld current f.

PLU A rotating load s connected to o Reld-controlled
IDC electric motor through @ gear systean, The maotor i
mastmed 1o be linear, A test results in the output boad
reaching # speed of | rabis within (L5 s when a constant
B0V s applicd to the mator lerminals The output
stendy-state specd & 24 md/s Determine tho transfer
function s} ¥is) of the mator, in md/™V. The induc-
tance of the. ‘mary be assumed to be negligible [sce
Figure 2.18). Also, note that the application of 80 V 1o
the mytor terminals is o step inpul of 80'Y in magnitude

P15 Coasider the spring-mass system depicied in Figure
P2.15. Determine a differential equation 1o describe
the mution of the mass m. Obtain the system response
x(f) with the inivial conditions o(0) = xg and &(0) = 0.

Problems
¥on
¢ o
L “
. &
~_ g
"
> K.
$"
-
)

(L]

amplifier using an FET

1y
Hi=w iy

p— =1

=1
i—
-]
T, + T

Clatpiat,
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nnt, From the

input odl pressure is mssumed to )

geometry, we find that Az = l'—;—‘-{l -9) = F‘J‘:
i\

() Determine the closed-loop signalflow graph or

Block diagram for this mechanical system. (b) Obtain

the closed-loog transfer function F{sWX(x).

nn ngr: P222 shows two pendulums sespended
Trom frictionless pivots and connected al their mid-
points by a spring |1]. Assume that each peadidum can
be by a mass M at the end of a massless
bar of length L. Also assuine that the displacement is
small and linear approximations can be used for sin 8
and con B, The spring located in the middle of the bars
i unwtretched when & = @y, The input force is repre-
sented by f{r), which influences the lefi-hand bar only.
{4) Obasin the equations of motion, and sketeh a
hleck diagriom for thea. (b) Determing the transfer
function T{x) = fy{x)/ F1x). (c) Skeleh the location of
the poles and zoros of T(s) on the s-plane.

FIGURE P2.22 The bars are sach of longth L and the
spting s locntod ot L/2.

P23 The smallsignal eirenit equivalent 16 8 common-
cmitter transisior amplifier is shown in Figure P2.23,
The transistor amplifier includes o feedback resistor
R;. Determine the inpui—output mtie i/t

FIGURE P2.23 CE ampiifir.

P24 A vwo-transisior series vodinge feedback amplifier
15 shown in Figure F2.24(n). This AC equivilent circust
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Yiin
Sperd
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Tensim

FIGURE P2.32
A modal of the
coupled matar
drives.
o
o) K, K ([P
Lo] [~ [
A ) |- i A
Hala} H Gili) 1 Galah g Gyl o
Enging
Hi) g pesd
- 3 -
el

FIGURE P2.33  |dlo speed control systerm.

P233  Find the tramsfer function for Y{x)R{x) for the idle-
speed control system for a fucl-injected engine as
shown in Figure 1233,

PLM  The suspension system for one wheel of an obd-
fushioned pickup truck is fllustrated in Figure FL3,
mmumem&hm.ww-wmmml
insTh kyand
the tire has o spring sonstant l-; The damping con-
stunt ol the shock absorber is b, Obtnin the transfer
Fanction ¥{s}/ Xix), which represents the vehicle re-
Fpomse (o bumps in the road

P35 A feedback control system has the siracture shown
in Figure P2.35. Dietermine the closed loop transier

FIGURE P2.34 Pickup truck suspension.

5o that the closed-) 10 @ step inpul is crit-

hmunn YUsVR(5) (u) by block diagram
lnd (b} by using » signal-fow graph and Mm\!d,g
nad-flow gain formula. (c) Select the guins K and Ky

Lul,dlmdudlhmqnnlnmua- 10, (&)
Plot the critically damped response for & unit step
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Chater whee! shown in Figure PLAZ. As the mirror rotates. s friction
" e forwe is developed that is proportional to it angular
'
speed. The friction constant is equal to 006 N srad,
Shatt /Im:r-hd and the moment of fertis i equal 1o 0.1 kgm”. The
4y iy outpul varinble is the velocity s{r). {n) Obtain the dil-
ferential cquution for the motor, (b) Find the respotise
of the system when the input motor fongue is @ unit
o siep and the initial velocity m 1 = 0 i cqual to 0.7,
—— Flaid. b
Mimor
FIGURE P2.40 Cutaway wew of damping davice. Barcods
Fizure P2A0. Whea vibration becomes excessive, the O )
relative motion of the two wheels creaies damping.
When the device is rotating without vibration. there s Refiecied light

no relative motion and oo damping occurs. Find 8,(r)
and B-{5). Assume that the shalt his 3 spring constant
K and that b is the damping constant of the flusd. The
Jod 1orque i T2

PLAL  The lwrersl conirol of a rocket with a gimboled en-
gine s shown in Figure P41 The taeral deviation
From the desired trajectory is & and the forwand rock-
et speed s V. The control torgque of the engine i T
and the disturbance lorgue is T Derive the deserib-
ing equations of a lineas model of the system. and
draw the block diagram with the approprinie transfer
functions.

Desired Actusd
trajeshiy trmjectony

FIGURE P2.41 FRockot with gimbatod engine.

P42 In many wpplications. such as reading product
windes jo supermarkets and in printing and manufac-
turing. an opical scanner s utilieed fo read oodes. ks

Motos
&
FIGURE P2.42 Optical scanaec.

P243  An ideal set of gears bs shown in Table 2.5, ltem 10,
Neglect the ineriin and friction of the gears and ms
sume that the work done by one gear is eyual 1o that
of the other, Derive the relationships given in item 10
of Table 2.5, Also, determine the relationship between
the torques T, and 7.

P4 Anideal st of gears is connected o a solid cylin-
der load s shown in Figure P2.44. The inertin of the
motar shaft wnd gear € is L. Determing (o) the iner-

tin ol the loud J and (b) the torgue T ot the molor
shaft, Assime the friction at the load s b and the fric-
thon at the motor shafl is b, Abo assume the densily
of the load disk is g and the pear ratio is . Hint: The
torgque a1 the motorshall is given by T = T + T,,.

FIGURE P2.44 Motor, gears, and load.

P45 To exploit the sirength advantage of rubot manipu-

lstors anad the imellectual adunuﬁ of humans, = cliss

of i called has been ined

Problems

relationshizp between the air gap 2 and the controlling
current near the equilibrium condition.

leviation
il

Levitatiog
sl

FIGURE P2.27  Gutaway view of tran.

P228 A muhiple-loop model of an urban ecalogical gys-
tem might include the following variables: number of
people in the city (F), modernization (M), migration
o the ety {€), sanitation facilities (8], number of
diseases (D), bacteriamrea (B), and amount of
garbage/area (), where the symbul for the variable i
given in parentheses. The following consal loops are
hypothosized:

LP—tli—B—0—F

LP—M=C—p

A P=M=S—sD—P

4P M= B—al)ap

Skeich & sigoal-Now graph for these cuusal relation-

ships, using appropriate gain symbals. Indicate whether

you helicve cach gain transmission i positive or nega-

tive. For example, the causal lnk § to B is negative be

cause improved saniiation fecilities lead 10 reduced

Ibacteria/area. Which of the Tour loops are positive feed-

back boopns and which ane negative feedback loops?
P29 We desire 1o balaoce a rolling ball on a tilting beam

s shown in Figure P229. We will ssume the motor

FIGURE P2.29 Tilling beam and ball.

FIGURE P2.35 Multicop Teedtack system.

impit. What s the tine required for the step resporse
o reach #0% of its final vadue?
P36 nmwkmwwﬁm?'xmm
fora
Inpul t{l] =t =0(b) Obuhnplotot;(ﬂ for part
(n}, and find 1) foc { = 105, (¢) Determine the im:
respouse of the sysiem w{1) for 1 = 0. (d) Obtain
& plot al yir) for part (c) and lind yir) for ¢ = 105

M
Ll P o ey L]

FIGURE P236 A third-order syatem.

PLYT A two-mans system is shown in Figure P257 wiith an
input force w(f). When ir, = iy = Tand K = Ky = 1,
find the set of differential equations describing the
sysiem.

PL38 A winding oscillator consins of two steel spheres
on each end of a long slender rod, s shown in
Figure P23K, The rosl 15 hung an o thin wire that can
be twisted many revolutions without breaking, The
device will be wotind up 4000 degrees. How lang will
it take uniil the mation decays 1o a swing of enly 10
degrees? Assume that the thin wire has a rotationn]
spring constant of 2% 107N m/mad and that the

LLS ¥y

FIGURE P2.39
Model of an L
slactronic circul.
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impait current § controls the torque with negligible fric
tion. Assume the beam may be balanced near the hor-
rontal (& = O therelore, we have a small deviation
of ¢ Find the trunsfer function Xisific), and draw a
Block diagram illustrating the transfer function show-
i lad, X(e). and Js)

PLU  The messurement or semor element in g feedback
system is important to the sccurscy of the system [6].
The dynamic response of the sensor is important.
Maont sensor elements possess a transfer function

&

Hix) = D
Suppose that & position-sensing photo detector has
7= 4 us and 0.999 < k < 1,001, Obtain the step re-
sponse of the system. and find he & resulting in the
Fnstest response—thnd is the fustest fime fo reach 8%

of the final value.
F231  An interacting coatrol systemn with two inputs and
WO ORIputs s in Figure F2.31, Solve for

Fifs1/ Rotx) and ¥ls)/ R (s) whon Ry = 0.

PR32 A wystem comsists of iwo electne motors that are
conpled by o continuous Dexible belt. The belt also
passes over o swinging arm thet s instremented (o
allow measurement of the bell speed und tension. The
basic control problem i o regulate the belt speed and
vension by varying the motor forgues.

An exnmple of a practical system similar 1o that
shown occary in teatile fiber manulscturing processcs
when yam is wound [ram one spool 1o ansihes at high
speed. Between the two spools, the yarn is processed
b way that may require the yarn speed and jension
16 be controlled within defined limite A model of the
system is shown in Figure P2.32. Find ¥ir)/#,(v). De-
lermmisie i rolationdhip for the syslom that will make ¥
indeprendent of R,

FIGURE P2.38 Winding oscillior.

viscous friction coefficient for the sphere in air is
2 % 107 N msrad The sphere bios 3 mass of | kg,

P239  For the circuit of Figure PL3Y, determine the rrans-
form of the outpul voltuge Wx) Assume thid the cir-
cuit i in stendy stote when ¢ < [ Assume that the
swiich moves instantaneously from coatact 1 1o con-
et 2oty = 0

PIAD A dampng device is used 10 reduce the undesined
vibratbons of machines. A viscous fluid, such us
heavy oil, is placed between the wheels. as shawn in

LIF B!
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Amplifiet

FIGURE P2.47

{e) Predict the final value of y(1) for the unit step
Input.

FIGURE P2.50  Third-order feexsbnck system,

P151 Consider the two-moss system in Figure [2.51
Find the set of differentinl equations describing the
aystem

FIGURE P2.49 Unity feadbock control systom

(d) Pot pie) and discuss the effect of the real and
complex poles of T{x). Do the complex poles ar
the real poles dominate the rexponse?

P50 A closed-loap cuntrol system s shown in Figare
rso.

(u) Determine the transier function T{s) = ¥(s)/Ris).

(b} Determine the poles snd zeros of Tr)

() |J!£I|HHI step inpul, Ris) = |/, and obinin the

Iraction expansion for ¥ix) and the value
of the residues.

(d) Plol v(e) and discuss the offect of the real and
complex poles of T{y). Do the complex poles or - FIGURE P2.51  Two-mass system with two springs and
the real pales dominate the response? o damper.
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FIGURE AP2.8
{a) Hanging crane
supparting the
Shuttie
Atlantis Jmage
Plalier) andl
tation
of the hanging
crane atructure. () ]
Tan
te A e
£ y
FIGUREAP27 o~ T P ﬁ i
control system with T i
controle
Geig) = K.
Determine a relationship between the gain X and  APLS  Comsider the inverting operational amplifier in
he minimum lime it lkes the impulse disturbance Figure APLS: Find the tansfer function ¥, lxl,."Vth
response of the system to reach (1) < 01, Assume Show ihat the transfer function can be @
that & > 0. For whal value of X does the disturbance
response first reach at yir) = 0.1 at¢ = 0.057 Gix) = ?’{{.‘:T) = Kp + ! Kps,

APLE Consider the cable reel contral system given in

Problems

151

122). The extender i delined as an sctive manipulutor  P247  The water level h(r) in @ tank is contralled by an

worn by a haman to augment the human's strength. The
human provides an input Uls), as shown in Figire
P245. The endpaint af the extender is M), Determine
the outpat P{s) for both L{s) und Fix) in the form

P} = T{sWis) + Tula)F()

open-loop system, as shown in Figure P2.47. A DC
maotor controlled by an srmature curren? [, furms &
shaft, apening a valve. The inductance of the DC
motor is neghigible, that i L, = (L Ao, the rota-
tional friction of the motor shuft and valve is pegli-
mible, that is, & = 0, The height of the water in the
tank is

Figure AP2.E. Find the value of A and X such that the
percent overshoot i PO, = 10% and o desired ve-
logity of 50 ms in the steady state is achieved, Com-
pute the closed-loop response w(f) snalytically amd
confirm that the steady siate respanse and P.0. meet
he specifications.

where the gains Kp, Kp and R’u are functions of
€y, Ca, Ry, and R, This circuil is a proportional-inte-
gral-derivative (PID) controlier (more on PID con-
trollers in Chapter 7).

Reel
Pexired Amplifier | Mowr | dyneict |t caie
4 velosity & B Torgue 1 velocity
Bisps — L3 S —— ] Vi
' g i1 P E
Meairml Ao

FIGURE AP2.8 bty )
Caslo reed control L Fverrs

0= [nenn - wona.

the motor constant is K, = 10, and the ineriia of the
motor shaft and valve is J = 6 % 107 kg m®. Deter-
ming (a) the difforentinl equation for A(r) and vi) nad
() the transfer function HisyV(s)
P48 The circuit shown in Figure PZ45 is called o lead-
L Filter,
() Find the transfer function Vi{)/W[2). Assume an
ideal op-amp.
(b} Determine Wil Wi when R = 100 k41
= 200 kf),Cy = 1 pF, and Cy = 01 uF.
(el Dclmnlm the partial fraction expansion for
W) Win
P24 A closed-loop control system i shown in Figure
P49,
() Drerermine the tramifer function

Tix) = Yis)/Rix)

FIGURE P2.45 Model of axtendr.

PLa6 A load added to a truck results in o force Fon the

support spring. and the tire Nexes as shown in Figure (b} Detevming the poles and 2ervs of Tix).
P2.46(n). The model for the tire movement is shown in fe) Use o unit step input. B(x) = 1/x, and obtuin the
Figure PL46(b). Determine the transfer lunction jpartial fraction expansion far Y{s) and the value

Ml Fix). of the residues
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ADVANCED PROBLEMS

APLL A DC motar i driving 2 losd Fan
The input voltage b 5 V. The speed al ¢ = 2 secomls is
30 radis, nnd the stesdy spoed is T radis when 1 ~» 00,
Dietermine thie transfer function w(s)/Vis).

APLZ A sysiem has a block diagram us shown in Figure
AP22 Determine the iransfer lunction

mﬂ

Ryl

Tin = <

1t s desired o decobiple ¥(x) from Ry(1) by obtaining
T3} = 10, Select Gyfs) in terma of the other G5} 1o
achieve decoupling.

FIGURE AP2.3 Feodback system with a deturbance
nput.

bzt Mo of the heating clement. The system pameme-
ters are ©, {2, 5, and R, The thermal healing system i
illustrated in Table 2.5 {a) Determine the response of
the system Lo & unit step gis) = /5. (b) As 1 =00
what value dues the step response déterminesd B pan
(m} appronch? This s known as (he steady-state re-
spome. () Describe how you would select the system
parameters €, @, 5 und K, 1o increass the speed of
response of the system to o step input.

APLS For the threecan system illostrated in Figure
AFLS, obiain the equativns of motion. The sysiem has
three inputs uy. ity and w; and three outputs Xy, x;.
anel ry, Obinin three second-onler ordinary differen-
tial equations with constanl eoefficients 17 possible,
write the equations of mothon in matnx foem.

FIGURE AP2.2 interacting controd systeam.

AP2Z3 Consider ihe feedback control system in Fgune
APL3, Define the tmeking ermr s

E{a) = Rix) = ¥{s)

{a) Petermine a syitable /f(s) such that the mracking

crror is zerw for any input Kis) in the absence of a URE AP2.5 Throe-cart

disturbance inpul (that ks when Ti) = 0} (b) Using mm S e e anc
H{s} determined in parl (a), determine the response

Yir} for a disturbance Tis) when the input Ri(s) = (. APZ6  Consider the hanging crane structure in Figure
(€) Ts it possible 1o obiain ¥Vis} = 0 for an wrbitrary AP2LA Write the equations of metion describing the
distarbance T4} when Gyr) # 07 Explain your mation of the cart and the payload. The moss of the
nnswer. carl is M. the mass of the puylond is m, the massless

righd connector his leagth L. and the Friction is mod-

APLA Consider o ihermal heating system given by
cled as K, = —hi where x is the distance irveled by

4 e the cart.
s RN+ 1R APLT  Copsider the unity fecdback system described in the
where Ihie output 5(r) is the lemperature difference Block diagram in Figire APLT. Compute analytically

due 10 the thermal process, the wpul gfs) is the rate of the response of the system Lo an impulse dutarbance,
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FIGURE DP2.2 Talavision baam eircull.

TPLS Convider the clock shown in Figure DP25. The
pendulum md of lengih L supports a pendulum disk,
Assume thag the pendulum rod i o massless rigid thin
rod and the pendulum dise has mass . Dosign the
lengih of the pendulum, £, so that the period of mo-
thon is 2 seconds. Note that with a period of 2 seconds
each “1ick™ and cach “tock™ of the clock represcats |
second, a8 desired. Assume small anglee @, in the

FIGURE DP25
) Typicad clock

SuperStock]
and (bj schematic
representation
of the pendulurm. (L]

~
ATl
7

FIGURE DP2.4 Operational ampiifier Cirouil.

mnilysis so that sin ¢ = g Can you explain why mos
grandiather elocks are about 1.5 m or taller?

| seeond bader ... 3
—

(1]
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%
4
Ral=

ds =32

e Eal

8

¥in

FIGURE AP2.8  An invening operational ampiiter ciroult
represanting a PID contralier

DESIGN PROBLEMS

corz w:wm\namwzl;-pdnmuﬂ.n for & ma-
a1 shown in Fgure CDPL] A traction-drive

* mwhnupnm-dktmmmm
4 charcteristics

compared o the more popular ball
screw. The traction drive exhibits low friction and no
hackinsh. However, it is susceptible 1o disturbances. De-
vebop a madel of the traction drive shown in Figure
CDPLI{n) for the parametens given in Table CDPLI,
The drive uses 8 DC armature-controlled motor with a
eapstan rodler atisched to the shafl. The drive bar moves
the linenr slide-table. The slide uses an uir bearing. w0 its.
Eriction is negligsble. We are considering the open-loop
model, Figure COPL1(b), and its transfer function in
this problem. Feedback will be introdisced Liler.

nr,m-——-——. N

im

FIGURE CDPZ.1 (3] Traction drive, capatu rller, and
linear shdo. (b Tha back disgeam modal

DPL1 A control system s shown in Figure DPZ1. The
transfer functions Golr) and s} ure fixed, Deter
mine the transfer functions G,(s) and H.{1) so that

Computer Problems

m COMPUTER PROBLEMS
CPL1 Coesider the Iwo polynomints
Pl = 2+ 15 4 10
and
gl = 1+ 2

ez
deid

FIGURE CP2.6 A muutiple-loop feeciback control system tlock diagram.

Compute the following
{a) pisdg(e)

{b) Generute a pole-zero map of the closed-loop
transfer function in graphical fonn using the

pamap fuschion.
(5] Dvu:mlue om'lbu!l:r the polés and zeros of the
elosed-loop transfer function using rhe pole and
zoro functions and correlate the resulty with the
pole-zera mapin part (b),
CPLT For the simple pendulum shown in Figure CPL7,
the nonlinear equation of mation ks given by

(0 + Feind <0,
where L = 0.5 m,m « 1 kg, and g = 98 mjs". When
the nonlincar equation ks lncarized about the equi-
Iibcium point @ < 0, we obiain the linear time-invariant
madel,

'll'f:—:u-n_

Create an m-file to plot both the nonlinear and the lio-
ear respoase of the simple pendulum when the initial
angle of the pendulin i 0() - 30° and explain asy
differences.

FIGURE CPZ7 Simple pendiium.

CPLE A sysiem hot a transfor function

X Q06 + )
Rl F #3420

Fiat the response of the system when R(x) s a unit
atep for the pammeter z = 5, 10, and 15,
CPLY Coosider the feedback contral system in Figure
CP29. where
41 1

GUJ"'TZ' and Hu)"—l

) Ummn-ﬂu-. delermine the dosed-loop Lrams-
fer function.

(b} Ohtain the pole-sern map using the pamap fane-
ton. Where are the closed-loop sysiem poles and
aeros?

(e} Are there any pole-zero cancellabons? If so, use
the mineeal function 1o cancel common poles and
#orom in the closed-loop transer function.

(d) Why n it important to cancel common pokes and
aeros in the transfer function?

+

ftiny I |. ¥iny

FIGURE CP2.9 Gontrol syatern with nonunity feedback.

CPLID Consider the block dingrm in Figure CPL10,
Create an m-lile o complete the (ollowing tnsks:
{n) Compute the step response of the closed-
system (that s, Ris) = Us and Ts) = 0) and
plot the steady-state value of the output ¥ir) e a
Tunction of the controller gain ) < K = |0,
{b) Compute the disturbance step e of the
closed-loop  system (that ix Rir) = 0 and

(b) poles and reros of Gx) = P‘A;
e} pl-1)
€PL2 Consider the feedback system depicted in Figure
P2z
{a) Compute the closed-| transfer function using
the mummm:.knpmum
() Obtain the chosed-loop system unit step response

with ihe step function, and verify that final value
of the outpul i 2/5.

Controdler
1

Rish ¥isi

FIGURE CP2.2' A negative fecdback control system.

CPLY Consider the dufferential equation
Joedpedy =

where g0} = 5{0) = 0 and nii) is w unit step. Defer-
mine the sofution wr) analytically lnd verify by co-
plotting the analylic solution the step response
wibinined with the step finction,

CP24 Consider the mechanicnl wystem  depicted in
Figure CP2ZA. The input is given by i), and the output
is i) Petermine the transfer function from i) o
() and, using an m-file, plot the system response to o
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Table CDP2.1 Typical Parameters
for the Armature-Controlled DC Motor
and the Capstan and Slide
M, Mass of slide 5693 kg
M, Mass of drive bar 6.96 kg
Jo Inettisol 1091107 kg o’

roller, shall, motor

and tachometee
¥ Ruoller radius 3750 m
b Mutor damping 01,268 N ma/rad
K. Torgue constani (LEITU N miamp
Ky Bagk emf constant 0838V sfrad
R. Maotar resistunce L0

b Motor inductance 36 mH

the chosed-boop transfer function YielR{x) is exnctly
equal to |

DP22  The television beam circuit of & telavision i repre-
sented by the model in Figure DP22. Select the un-
known conductance @ s Ui the voltage » is 24 V.
IEach conductance is given in siemens (S).

DP23  Aninput rt) = i1 = (0, is applied 1o a black box
with » transfer function Gs). The resulting ouipul
respaiise. when (he iitial conditions nre zerm, s

1

¥y =&t — 31'5 - E b=,

Determine G(s) for this system.

DPL4  An operational smplifier circult that cm serve as
u Milter circuit is shown in Figure D24, Delcrmine
the tramsfer function of The circnil, ssuming an nlnl
op-amp. Find w(r) when the input is wir) =
t=0
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Maws

yin

FIGURE CP24 A machanical spring-mass-demper

unit step inpul. Letm = 10,k = 1, and b = 0.5, Show
that the peak amplitude of the output is about 1.5,
CPLS A suellite single-axis attitude control system can

e represented by the block disgrim in Figure CILS,

The varinbles &, o, and b are controller parametens,

and J 15 the spicecrull moment of inertin. &ww: the

nominal moment of fnertis b J = TLEER (shug 1),

and the controller pafameters are k = WEES g = |,

and b= 8

{#) Develop an m-file scripl to compute the closed-
loop transfer function T(s) = #{5)/8,4x)

(] f.‘nﬂmll and plot the siep response 10 8 10° step
npail

put.
() The exnct moment of inertia is generally unknown
and may change slowly with lime. Compare the
Slop response rmance of the spaceerall when
J s reduced by 20% and 50'%. Use the controller
parameiers k = 10EER @ = 1, and b = & and 0
1 step inpud. Dhscuss your resulis.
P26 Conmder the bock dimgram in Figure CPL6,
(a) Use an m-file 10 redoce the block diagram in
Figure CPL6, aind compute the cosed-loop trans-
fer lunction.

fAn -
Inesirenl
i -

1
™ | Achial
L iy

FIGURE CP2.5 A spacecraft single-mas atfitude control block diagram.
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The property of a linear system in which
the system response, y(1), to an input u(t) leads to the
response By(t) when the input is Bu(r).

Inverse Laplace transform A transformation of a function
Fis) from the complex frequency domain into the
time domain yielding f{1).

transform A transformation of a function fir)
from the time domain into the complex frequency
domain yielding Fis).

Lincar wl\uﬁnm An spproximate model that re-
sults in a linear relationship between the output and
the input of the device.

Lincar system A system that satisfies the properties of
superposition and homogeneity.

Lineartred Made linear or placed in a linear form. Taylor

i imisti [

serics app are
obtain linear models of physical systems

Loop A closed path that originates and terminates on the
same node of a signal-flow graph with no node being
mel twice along the path.

Mason loop rule A rule that enables the user to obtain
a transfer function by tracing paths and loops with-
in & system.

Mathematicsl models Descriptions of the behavior of a
system using mathematics

Natural The of natural i
that would occur for two complex poles if the damp-
ing were equal to zero.

Necessary condition A condition or statement that must
e satisfied to achieve a desired effect or result. For ex-
amgple, for a linear system it is necessary that the input
wy(t) + war) results in the response w(r) + wir),
where the input w,(¢) resulis in the response j (1) and
the input uy(r) resubts in the response wr).

MNode The input and output points or junctions in a
signal-flow graph.

Nontouching Two loops in a signal-flow graph that do not
have a comman node.

Overdamped  The case where the damping ratiois { = 1.

Path A branch or a continuous sequence of branches
that can be traversed from one signal (node) to
another signal {node) in a signal-Now graph.

Poles The roots of the denominator polynomial (ie.
the roots of the characteristic equation) of the trans-
fer function.

Foshtive feedback loop Feedback loop wherein the output
signal is fed bick so that it adds to the input signal.
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3.1 INTRODUCTION

Principle of superposition  The law that states that if two
inputs are scaled and summed and routed through a
linear, time-invariant system, then the cutput will be
identical to the sum of outputs due 1o the individual
scaled inputs when routed through the same system.

Reference mput The input to a control system often
representing the desired output, denoted by Ris).

Residues The constants k; associated with the partinl
fraction expansion of the output ¥(s), when the out-
put is written in a residue-pole format.

Signal-flow graph A diagram that consists of nodes con-
nected by several directed branches and that is a
[graphical representation of a set of linear relations

Swuhq Amnd:lu(nmunllwlummmwe

system by Ul sigs

Steady state The value that the wl.pul achieves after all
the transient constituents of the response have faded.
Also referred to as the final value.

s-plane The complex plane where, given the complex
number 5 = 1 + jw, the x-axis (or horizontal axis) is
the s-axis, and the y-axis (or vertical axis) is the jw-axis.

‘I'a‘ylnr serles A power series defined by glx) =

dm),

g Ier
.z:u
lppmumlllurl which is used to linearize functions
and system models

ble A variable that has the same value at
both ends of an element.

Time constant  The time interval necessary for a system to
change from one state to another by a specified per-
centage. For a first order system, the time constant is
the time it takes the output to manifest o 632%
change due to a step input.

Transfer function  The ratio of the Laplace transform of
the output variable 1o the Laplace transform of the
input variable.

Underdemped  The case where the damping ratiois { < 1.

Unity feedback A feedback control system wherein the
gain of the feedback loop is one.

(x = xg)™. Form < o0, the series is an

i A type of ical damper where the
model gl the friction force is linearly proportional to
the welocity of the mass.

Zeros The roots of the numerator polynominl of the
transfer function.

In the p ding chapter, we d

the ana]ys:s and design of feedback systems. The Laplace transform was used to

loped and studied several useful approaches to

transform the dif! ial

P
equation expressed in terms of the complex variable 5, Using this algebraic equa-

2 the system to an algebraic

tion, we were able to obtain a transfer f P of the inpi ip:
relationship.

The ready availability of digital makes:t ical to consider the time-
domain f lation of the equati conlro! systems. The time-domain

be used for

um:—varym& and multivariable systems.

Aﬁ-naaqhgmmlmlssmwml-mﬁue or more of the
of th of time.

For example, the mass of a missile varies as a function of time as the fuel is ex-

pended during flight. A

may vary as a fi

with several input and output signals,

Terms and Concepls

Tuls) = 1i5) and co-plot the steady-state value of
the output ¥ (1) as a function of the controller gain
0= K = 1000 the same plot as in (a) sbove.

FIGURE CP2.10 Coniruller
diagram af 4o Ed)
a unity feedback Ain X
e with a -
reference input Ris)
and a disturbance
Input Tds).
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() Determine the value of K such that the steady-

state wvalue of the outpul is equal for both the
input response and the disturbance response.
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TERMS AND CONCEPTS

A Variable A varisble ined by ing the
difference of the values at the two ends of an element.
Actustor The device that causes the process to provide
the output. The device that provides the motive pawer

to the process.
varinbles Variables associated with electrical,
mechanical, thermal, and fuid systems possessing
similar solutions providing the analyst with the ability
to extend the solution of one system 1o all analogous

closed ar otherwise accounted for. Generally abtained
by block diagram or signal-flow graph reduction.

Coulomb damper A type of mechanical damper where the
model of the friction force is 4 nonlinear function of
the mass velocity and possesses a discontinuity around
zero velocity. Also know as dry friction.

Critical damping The case where damping is on the
boundary between underdamped and overdamped.

An oscillation in which the ampli-

systems with the ial equaticns

Assumpilons Statements that reflect situations and con-
ditions that are taken for granted and without prool
In control systems, assumplions are often employed to
simplify the physical dynamical models of systems
under consideration to make the control design
problem more tractable.

Block disgrams Unidirectional. operational blocks thar
represent the transfer functions of the elements of the
system.

Branch A unidirectional path segment in a signal-flow
graph that relates the dependency of an input and an
output variable.

Characteristic equation  The relation formed by equating
to zero the denominator of a transfer function.

Closed-loop transfer function A ratio of the output signal
to the nput signal for an interconnection of systems
when all the feedback or feedloward loops have been

CHAPTER

tude decreases with time.
Damping ratio A measurce of damping. A dimensionless
number for the second-order chareteristic equation.

DCmotor  An electric actuator that wses an input voltage
as a control variable.

Differential equation  An equation including differentials
of a function.

Error signal  The dilference between the desired out-
put Ris) and the actual output Y{s): therefore
Eis) = R{5) = Y(s).

Final valwe The value that the output achieves after all
the transient constituents of the response have faded.
Abso referred 1o as the steady-state value.

Final value theorem The theorem that slates that
.‘E‘;’n Ay = _Iﬂ s¥{s), where ¥(5) is the Laplace

transform of ¥{r).
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system, as di in Section 2.6, is a system
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“The solution of a time-domain formulation of a control system problem is facili-
tated by the availability and ease of use of digital computers Therefore we are in-
terested in reconsidering the Ilml:dnrnam description of dynamic systems as they
are rep 1 by the system dif! | ‘The time domain is the mathe-
‘matical domain that i T the resp and d of a system in terms
of time, 1.

The time-domain representation of control systems is an essential basis for modern
control theory and system optimization. In Chapter 11, we will have an opportunity
to design an optimum control system by utilizing time-domain methods. In this
chapter, we develop the time-domain representation of control systems and illus-
trate several methods for the solution of the system time response.

3.2 THE STATE VARIABLES OF A DYNAMIC SYSTEM

The time-domain analysis and design of control systems uses the concept of the
state of a system [1-3, 5].

The state of a system is a set of variables whose values, together with the input
signals and the the will provide the future state
and output of the system.

For a dynamic system. the state of a system is described in terms of a set of state
variables [x;(¢), x3(¢),..., x,(r)]. The state variables are those variables that deter-
mine the future behavior of a system when the present state of the system and the
excitation signals are known. Consider the system shown in Figure 3.1, where w(r)

PREVIEW

In this chapter, we consider system modeling using time-domain methods. As be-
fore, we will consider physical systems described by an nth-order ordinary differen-
tial equation. Utilizing a ( set of variables, known as state variables, we
can obtain a set of first-order differential equations. We group these first-order

using a compact matrix ion in a model known as the state variable
model. The time-domain state variable model lends itself readily to computer solu-
tion and analysis The relationship between signal-fllow graph models and state vari-
able models will be i i d. Several i ing physical systems, including a
space station and a printer belt drive, are presented and analyzed. The chapter con-
cludes with the development of a state variable model for the Sequential Design
Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 3, students should:

0O  Understand state variables, state differential equations, and output equations.

0O Recognize that state variable models can describe the dynamic behavior of physical
systems and can be represented by block diagrams and signal flow graphs

O Know how to obtain the transfer function model from a state varioble model. and vice
versa.

O Be aware of solution methods for state variable models and the role of the state transi-
tion matrix in obtaining the time responses.

O Understand the important role of state variable modeling in control sysiem design,

161
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Wy

FIGURE 3.3
A springmass-
damnpar EySism.

FIGURE 3.4
An RLC circuit.
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To write Equation (3.1) in terms of the state vari we the state variabl
as already defined and obtain
dxy
M Tr" + bxy + kxy = ulr). (32)

Therefore, we can wrile the equations that describe the behavior of the spring-mass-
damper system as the set of two first-order differential cquations

dxy
R 3
% (33)
and
dxy —=b k !
oo, 8 e S e BT ;
o SR RV {34)
This set of differential equations describes the bel of the state of the system in

terms of the rate of change of each state variable.

As another example of the state variable charscterization of a system, consider
the RLC circuit shown in Figure 3.4. The state of this system can be described by a set
of state variables (x;, x3), where x is the czpaulur vnll.agc ¢} and x; is the induc-
lor current iy(¢). This choice of state vari i v because the
stored energy of the network can be -l:smbcd in terms of these variables as

€= :E"‘-" + Ecu,‘_ (35)
Therefore xy(fy) and x;(f) provide the total initial energy of the network and the
state of the system at ¢ = f, For a passive RLC network, the number of state vari-
ables required is equal 1o the number of independ ! Uti-

lizing Kirchholf's current law at the junction, we ul:l.nm a hnHercr differential
equation by describing the rate of change of capacitor vollage as

i= c‘% = $uft) — iy (3.6)
Kirchhoffs voltage law for the right-hand loop provides the equation describing the
rate of change of inductor current us
:‘%f = —Rig + O a7
The outpui of this system is rep § by the linear algebraic ey
v, = Riglt).

wiiy
Carrent
souree
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3.3 THE STATE DIFFERENTIAL EQUATION

The response of a system is described by the set of first-order differential equations
written in terms of the state variables (xy, xa, ..., x,) and the inputs (1, 1z, .., ).
These first-order differential equations can be written in general form as

k= apx ¢ oapk o dd F bty 4 o 4 Bl

= ayx +apty + oo+ Gk + by + o0t Byt

o magxy Faghy b o F Gy F bty ¥ o0 # B, (3.13)

where & = dx/dr. Thus, this set of si differential can be written
in matrix form as follows [2, 5):
*1 Ay @ttt G (| X
. by by ||
al|ofom e agnl s L G
2] Lo s oulle,) LonOudlim

‘The column matrix consisting of the state variables is called the state vector and is
wrilten as

x=| % (3.15)

where the boldface indicates a vector. The vector of input signals is defined as u.
‘Then the system can be rep i by th ion of the state differential

equation as

The differential (3.16) is also Iy called the state equation.

The matrix A is an n % n square matrix, and B is an n % m matrix.” The state
differential equation relates the rate of change of the state of the system to the state
of the system and the input signals. In general, the outputs of a linear system can be
related fo the state variables and the input signals by the output equation

am

'Boldfaced lowercase letters denote vector quantities and boldfaced uppercase letters denote matri-
ces, For an infroduction 10 mairices and clementary matrix operations, refer 1o the MCS webiile and
references [1] and [2].

FIGURE 3.1

System block

FIGURE 3.2
Dynarnic system.
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Input signals Outpur shgnals
i
i

nith
aif)

and y(r) are the output signals and #,(r) and w,(r) are the input signals, A set of
state variables (x;, x3,..., x,) for the system shown in the figure is a set such that
knowledge of the initial values of the state variables [x,(fg), %3(5), . . -, x,(t5)] at the
initial time f5, and of the input signals u,(t) and u;(r) for ¢ = 1, suffices to determine
the future values of the outputs and state variables [2]

The state variables describe the present configuration of a system and can be
used to determine the future response, given the excitation inputs and the
equations describing the dynamics.

‘The general form of a dynamic system is shown in Figure 3.2, A simple example
of a state variable is the state of an on-off light switch, The switch can be in either
the on or the off position, and thus the state of the switch can assume one of two
possible values. Thus, if we know the present state (position) of the switch at g
and if an input is applied, we are able to determine the future value of the state of
the element.

Thgmnoep(o!aset nfsme iables that rep a dynamic system can be
ill din terms of the sp damper system shown in Figure 3.3. The num-
ber of state variables chasen lo represent this system should be as small as possible
in order to avoid redundant state variables. A set of state variables sufficient to de-
seribe this system includes the position and the velocity of the mass. Therefore, we
will define a set of state variables as (x;, x;), where

x(f) = y{1) and x,m=i’

The differential equation describes the behavior of the system and is usvally written as

dy | dy
M? + b; + ky = uir). (3.1)

wifky Initial
conditions

wifh
Tupent

Dynamic system
stale a{r)
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We can rewrite Equations (3.6) and (3.7) as a set of two first-order differential
equations in terms of the state variables x, and x, as follows:

dx, 1 1

L=l + ). 38
and

% = +lxk = E:} (3.9)

The output signal is then
o) = ulf) = Ry (3.10)

Unilizing Equations {3.8) and (3.9) and the initial conditions of the network represented
by [x,(fg). *2{f)]. we can determine the system’s future behavior and its output.

The state variables that describe a system are not a unique set, and several alter-
native sets of state variables can be chosen. For example, for a second-order system,
suc.h as the spring-mass-damper or RLC circuit, the state variables may be any two

linear binations of xy(r) and xy(r). For the RLC circuit, we might
:.huose the set of state variables as the two voltages, v.(t) and v(_[l) w‘hele v is the
voltage drop across the inductor. Then the new state variables, x] and x3, arc related
to the old state variables, x; and x3, as

.r; =1 =1, (3.11)
and
xn=u =1 - Rip=x— R (312)

Equation (3.12) represents the relation between the inductor voltage and the former
state variables v, and iy In a typical system, there are several choices of a set of state
variables that specify the energy stored in a system and therefore adequately de-
scribe the dynamics of the system. It is usual to choose a set of state variables that can
be readily measured.

An alternative approach to developing a model of a device is the use of the bond
graph. Bond graphs can be used for electrical, mechanical, hydraulic, and thermal de-
vices or systems as well as for combinations of various types of elements. Bond
graphs produce a set of equations in the state vanal:le lorm 7.

The state variables of a system ch h of a sys-
tem. The engineer’s interest is primarily in physical systems, where the variables
are voltages, velmnes. it and similar
physical variables. However, the couoept of system state is not limited to the
analysis of physical systems and is particularly useful in analyzing biological, so-
cial. and economic systems. For these systems, the concept of state is extended be-
yond the concept of the current configuration of a physical system to the broader
viewpoint of variables that will be capable of describing the future behavior of
the system.
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which converges for all finite r and any A [2]. Then the solution of the state differential
equation is found to be

x(1) = exp(An)x(0) + l explAlr — 7)]Bu(r) dr. (3.24)

Equation (3.24) may be verified by taking the Laplace transform of Equation (3.16)
and rearranging to oblain

X(s) = [s1 = A]'x(0) + [sT — A]'BU(s). (3.25)

where we note that [sI — A]™ = ®(s) is the Laplace transform of ®(r) = exp(As).
Taking the inverse Laplace transform of Equation (3.25) and noting that the second
term on the right-hand side involves the product 0(:}BU(3) we obtain Equation
(3.24). The matrix exg ial function describes the unfs of the sys-
tem and is called the fundamental or state transition matrix Q(:} Thus, Equation
(3.24) can be written as

x(t) = ®(e)x(0) + l re(r — 7)Bu(7) dr. (3.26)

The solution to the unforced system (that is, when u = 0} is simply

x(e) dult) o diale) || 2 (0)
x;:(r) " dh,a:(rJ ¢~_.:.(-') xzsﬂl i (327)
xr) dult) o dalt) | 2 (0)

We note that to d ine the state matrix, all initial conditions
are set to 0 except for one state variable, and the output of each state variable is eval-
uated. That is, the term ¢ (¢} is the response of the ith state variable due to an initial
condition on the jth state variable when lhere are zero initial conditions on all the
other variables We shall use this i b the initial conditions and the
state variables to evaluate the coefficients of the transition matrix in & later section.
However, first we shall develop several suitable signal-flow state models of systems
and investigate the stability of the systems by utilizing these flow graphs.

EXAMPLE 3.1 Two rolling carts

Consider the system shown in Figure 3.5 The variables of interest are noted on the
figure and defined as: M), M; = mass of carts, p, g = position of carts, u = external
force acting on system, k,, ky = spring constants, and by, by = damping coefficients.
The free-body diagram of mass M, is shown in Figure 3.6(b), where p, ¢ = velocity
of M, and M;, respectively. We assume that the carts have negligible rolling friction,
We consider any existing rolling friction 1o be lumped into the damping coefficients,
by and by,

Chapter 3 State Variable Models

where we use the relationship for p given in Equation (3.28) and the relationship
for g given in Equation (3.29). But p = x; and § = x,, s0 Equation (3.32) can be
wrillen as

—b'—x, + Lu (3.34)
1 I

and Equation (3.33) as

Lk ky + ks by + by
X=X = IM I:*::zn_lT,Il

I (335)

In matrix form, Equations (3.30), (3.31), (3.34), and (3.35) can be written as

x = Ax + Bu
where
£ P
x=|"1=]9f
x3 P
X4, g
0 0 1 0 0
58 8 ) 0
A= _ﬁ *F. _,F m‘ , and B = %.l
‘&
L T W T 0

and u is the external force acting on the system (see Figure 3.6). If we choose p as the
output, then

ﬂ[l 0 0 O=Cx

Suppose that the lli ve the followi values: ky = 150 Njm;
k,n‘lﬂﬂme;bl IShsfm b; 30stm.M; Skg and M; = 20kg The

big=p)  kip-q) .
g blg=f)  bE-g)

n ®
FIGURE 3.6 Free-body diagrams of the two rolling carts. {a) Cart 2; (b) Cant 1,

FIGURE 3.5
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whem ¥ is the set of output signals expressed in column vector form, The state-space
jon (or state-variable representation) comprises the state differential
:quslicm and the output equation.
‘We use Equations (3.8) and (3.9) to obtain the state variable differential equation
for the RLC of Figure 3.4 as

-1
B = 1
k= c x+|C
1 -R 0 (1) (3.18)
L L
and the output as
y=[0 Rx (3.19)

When R = 3,L = 1,and C = 1/2, we have
2 0 -2 . 2
k=, ol

y=[0 3

The solution of the state differential equation (Equation 3.16) can be obtained
in a manner similar to the method for solving a first-order differential equation.
Consider the first-order differential equation

k= ax + bu, {3.20)

where x(r} and (i) are scalar functions of time. We expect an exponential solution of
the form e*'. Taking the Laplace transform of Equation (3.20), we have

sX(5) = x(0) = aX(s) + bU(s)

and

therefore,
x(0) &

X&=v=

f ~U(s). (3.21)
‘The inverse Laplace transform of Equation (3.21) can be shown to be
4
x(t) = e™x(0) + f e =Ty (r) dr. (3.22)
(1]
We expeet the solution of the general state differential equation to be similar to

Equation (3.22) and to be of exponential form. The matrix exponential function is
defined as

&k
t“=np(N}—l+M+A—:+- AL

R (323)
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MNow, given the free-body dingram with forces and directions appropriately
applied, we use Newton's second law (sum of the forces equals mass of the object
multiplied by its acceleration) to oblain the equations of motion —one equation for
each mass. For mass M, we have

Mp=u+tfi+fa=u—kip—q) - hip-q.

M+ b+ kyp =+ kg + b, (3.28)
where
B, i = acceleration of M; and M., respectively.
Similarly, lor mass M, we have
My = kilp — g} + bylp = §) = kg = b,
or
Mo + (ky + kadg + (By + badg = kyp + byp. (3.29)

We now huve a model given by the ¢ d-order ardinary di
Equations (3.28) and (3.29). We can start developing a state-space model hy dcfmug

n=p
Xy =q.
We could have alternatively defined x, = g and x; = p. The stale-space model is

not unigue. Denoting the derivatives of x; und x; as x; and x,, respectively, it
follows that

= ki = f. (330)
X=d =i (331)
Taking the derivative of ¥, and x, vields, respectively,
b . K& 1 Ky by
Iy=p= M'F .\FP+MHYM'V' q. (3.32)

T Siug ky +
W=i=-"

bi+by, K y
T “"M"”F""

(3.33)
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where a, 8. and y are functions of the circuit R, L, and C, respectivel
The values of a, 8, and ¥ can be determined from the differential equations lhat
describe the circuit. For the RLC circuit (see Equations 3.8 and 3.9), we have

: 1 1

hi=-gat Eli(l]. (337)

. 1 R

f= 78 = T (3.38)
and

v, = Rxy. (3.39)
The flow graph rep i (hese i is shown in Figure 3.8{a},
where 1/s indi an i The # block diagram model is shown
in Figure 3.8(b). The transfer function is foua'Jd to be

W) HRNLCS)  +RLC)
Uls) 1+ R/(Ls) + 1/{LCS) & + (R/L)s + 1/(LCY

Unfortunately many electric circuits, electromechanical systems, and other control
systems are not as simple as the RLC circuit of Figure 3.4, and it is often a difficult task
to determine a set of first-order differential equations describing the system. There-
fore, it is often simpler to derive the transfer function of the system by the techniques
of Chapter 2 and then derive the state mode] from the transfer function.

The signal-flow graph state model and the block diagram model can be readily
derived from the transfer function of a system. However, as we noted in Section 3.3,

(3.40)

R
! 1 g
1 r_(-—-*-»\
i ), {F {F O van
1 X 1 X5
c 13
L
3

LNy SR

()
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L 2 L !
Uisy ] 5 ¥ 1 T
O——0 Oo——0 O——0 O——0
X, X ey Xy ey X g, X

represent the transfer function by the flow graph of Figure 3.10. Examining this figure,
we note that all the loops are touching and that the transfer function of this flow
graph is indeed Equation (3.45). The reader can readily verify this by noting that the
forward-path factor of the flow graph is by/s* and the denominator is equal to |
minus the sum of the loop gains.
We can al: ider the block diagram model of Eg (3.45). R i

the terms in Equation (3.45) and taking the inverse Laplace transform yields the
differential equation model

d‘t::m Ja"{;mm s}#‘(;fbo] n.""”“‘ o
Define the four state variables as follows;
X = yikg
X =gy o= iy
3 =1 = ¥y

Xy =83 = §fby

FIGURE 3.7
Initial condition

response of tha two
cart system.
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P lem}

Time {s)

i fem)

Time ()

response of the two rolling cart system is shown in Figure 3.7 when the initial condi-
tions are p{0) = 10cm, g(0) = 0, and p(0) = §(0) = D and there is no input driving
force, thatis, uft) = 0. m

3.4 SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS

The state of a system describes that system's d ic beh where the dy
of the system are d by a set of first-order differential equati Altema-
tively, the dynamics of the system can be rep d by a state diff ial

as in Equation (3.16). In either case, it is useful to develop a graphical model of the
system and use this model to relate the state variable concept to the familiar transfer
function representation. The graphical model can be represented via signal-flow
graphs or block diagrams.

As we have learned in previous chapters, a system can be meaningfully de-
scribed by an input-output relationship, the transfer function G(s). For example, if

we are i d in the relation b the output voltage and the input voltage of
the network of Figure 3.4, we can obtain the transfer function
_ Vils)
Gis) Uty
The transfer function for the RLC network of Figure 3.4 is of the form
W
T e/ e I (3.36)

Us) $F+p5+7
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there is more than one alternative set of state variables, and therefore there is more
than one possible form for the signal-flow graph and block disgram models. There
are several key canonical forms of the state-variable representation, such as the
phase variable canonical form, that we will investigate in this chapter. In general, we
can represent a transfer function as

¥ bos™ + b ™V 4 e s+

6s) = (s) _ bus™ + by, i 18 + by (3.41)

Uls) s"+au "'+ +as+ay
where 1t = m, and all the o and b coefficients are real numbers. If we multiply the
numerator and denominator by ™, we obtain

bm‘-‘._m + hl_l_,-ln—m‘-l] IR bls-{a—ll + bys ™"
sl g ’

Gis) = (3.42)

1+ g +

Our farruhanry with Mason's ﬂ;nal fluwsum formula allows us to r:casmz: the famil-

iar feedback factorsin the d and the f h factors in the
Mason’s signal-flow gain formula was discussed in Section 27 and is written 8
RO
Gls) = Ue - & (343)

When all the feedback loops are touching and all the forward paths touch the
feedback loops, Equation (3.43) reduces to
E;PA Sum of the forward-path factors

Glsy = 1- E:_]L' = 1 — sum of the feedback loop factors' G449

There are several flow graphs that could represent the transfer function, Two flow
graph configurations based on Mason's signal-flow gain formula are of particular in-
terest, and we will consider these in greater detail. In the next section, we will consider
two additional configurations: the physical state variable model and the diagonal (or
Jordan canonical) form model.

To illustrate the derivation of the signal-flow graph state model, let us initially
consider the fourth-order transfer function

0.« . . P—
Gls) Uls)  s' + a’ + s + ays + ag
=

T+ay +aw?+as +agw? (343)
First we note that the system is fourth order, and hence we identify four state vari-
ables (xy, %3, %5 x4). Recalling Mason's signal-flow gain formula, we note that the
denominator can be considered to be 1 minus the sum of the loop gains. Further-
more, the numerator of the transfer function is equal to the forward-path factor of
the flow graph. The flow graph must include a minimum number of integrators
equal to the order of the system. Therefore, we use four integ Lo reg this
system. The necessary flow graph nodes and the four integrators are shown in
Figure 3.9. Considering the simplest series interconnection of integrators, we can
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In matrix form, we can represent the system in Equation (3.46) as

x = Ax + Bu, (3.49)
or
% o 1 0 0 ]x 0
dlg|_| 0 0 I 0 | x 0
#ls|lo o o 1 |[m|T| o e
Xy =y =4y —ay = | 1
The output is then
b
MO =Cx=lby b b bl 7L @51
Xy

The graphical structures of Figure 3.11 are not unique representations of Equa-
tion (3.46); another equally useful structure can be obtained. A flow graph that rep-
resents Equation (3.46) equally well is shown in Figure 3.13(a). In this case, the
forward-path factors are obtained by feeding forward the signal U{s). We will call this
model the input feedforward canonical Form.

Then the output signal y{r) is equal to the first state variable x,(r), This flow graph
structure has the forward-path ia:mls bo/s*, b/, byfs?, bafs, and all the forward
paths touch the feedback loops. Th the lting transfer function is indeed
equal to Equation (3.46).

Associated with the input feedforward format, we have the set of first-order
differential equations

Xy = —ayxy + 5 + by, Iy = —mx + xy + b,
3= —axy + xg+ b, and kg = —apy + by, (3.52)

Thus, in matrix form, we have

—ay 1 0 0 by
d = 010 By
=25 o Tk b, 0 (3.53)
1
—ag 0 0 0
and
Wy =1 0 0 0O+ [0fu(r).

Although the input feedforward canonical form of Figure 3,13 represents the same
transfer function as the phase variable canonical form of Figure 3.11, the state vari-
ables of each graph are not equal. Furthermore we recognize that the initial condi-
tions of the system can be represented by the initial conditions of the integrators,
x1(0), x2(0), ..., x,(0). Let us consider a control system and determine the state dif-
ferential equation by utilizing the two forms of flow graph state models.
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Then it follows that the fourth-order differential equation can be written equivalently
as four first-order differential equations, namely,

=,

=,

iy = xy,
and

Xy = —gpk) = 4yXy = apky = ayg b

and the corresponding output equation is

¥ = by,
The block diagram model can be readily obtained from the four first-order differential
equations as illustrated in Figure 3.10(b).

MNow consider the fourth-order transfer function when the numerator is a poly-
nomial in 5, so that we have

bys' + bas? + bys + by
s+ oay? gt + s +oay
Bys™h + By 4 By 4 b

1 +ap +a? +as™ +app

Gs) =

(3.46)

The numerator terms represent forward-path factors in Mason's signal-flow gain for-
mula. The forward paths will touch aII the loops, and a suitable signal-flow graph real-
ization of Equation (3.46) is show Figure 3.11(a). The forward-path factors are
bafs, by/ 82, by/5, and by/s* as required to provide the numerator of the transfer func-
tion, Recall that Mason's signal-flow gain formula indicates that the numerator of the
transfer function is simply the sum of the forward-path factors This general form of a
signal-flow graph can represent the general transfer function of Equation (3.46) by
utilizing n feedback loops involving the a,, coefficients and m forward-path factors in-
valving the b, coefficients The general form of the flow graph state model and the
block diagram model shown in Figure 3.11 is called the phase variable canonical form.

“The state variables are identified in Figure 3.11 as the output of each energy stor-
age element, that is, the output of each integrator. To obtain the set of first-order differ-
ential equations representing the mbe model of Equstmn (3.46), we will introduce a
new set of flow graph nodes i each i of Figure 3.11{a)
[5,6]. The nodes are placed before each i and therefore they the
derivative of the output of each integrator. The signal-flow graph, Lru:lmmg the added
nodes, is shown in Figure 3.12. Using the flow graph of this figure, we are able to obtain
the following set of first-order differential equations describing the state of the model:

= x iy =y k3= x4
Xym —apky = Xy = A3y = g3k F W0, (3.47)

In this equation, xy, xs,. .. x, are the i phase variables,
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The block diagram model can also be 1 directly from Equation (3.46).
Define the intermediate variable Z(s) and rewrite Equation (3.46) as

_YE) bt szJ + .r.us + by Z[:?

Notice that, by multiplying I:I)' 2{:}!2{:} we do not change the transfer function,
G(s). Equating the polynomials yields

¥(s) = [bas’ + bas® + bys + i) Z(s)

and
Ufs) = [5* + aus’® + aps® + ays + ag|Z(s).

Taking the inverse Laplace transform of both equations yields the differential
equations

&’z i’z
y=h;§‘-bam;+blm+w.

and
4
u= %;5 + n_,':‘: a:% + ’:%:' + apz.
Define the four state variables as follows:
n=z
nE=y=1
n=x=1

=iy =i
Then the differential equation can be written equivalently as
i =X
X =xy
X =z
and
&y = —aghy — @y — apxy — @y + o,
and the corresponding output equation is
v o= boxy o+ by + vy + byxy,

The block diagram model can be readily obtained from the four first-order differential
ions and the output equation as illustrated in Figure 3.11(b).
Furthermore, the output is simply

¥ir) = bpxy + byxy + byxy + byxy (3.48)




180

182

Chapter 3 State Variable Models

the and d by 57, we have

Yis) 2 + 87+ 6
T =) " T e v 1 s e (354

The first model is the phase variable state model using the feedforward of the
state variables 1o provide the output signal, The sqgnul -flow graph and block dlagmm

are shown in Figures 3.15(a) and (b), respectively. The state j is
o L 0 0
x=| 0 0 1|+ |0 ). (3.55)
-6 =16 -8 1
and the output is
*
yiny=[6 8 2] x [ (3.56)
x
+
um—b- Yirk
ib)
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d'y d"ly d™u A"l
oL o e agylt) = T bw-JW + s 4 bgulr). (3.58)

Accordingly, we can obtain the » first-order equations for the nth-order differential
equation by utilizing the phase variable model or the input feedforward mode! of this
section.

3.5 ALTERNATIVE SIGNAL-FLOW GRAPH AND BLOCK DIAGRAM MODELS

FIGURE 3.17
A block diagram

Often the control system designer studies an actual control system block diagram that
represents physical devices and variables. An example of a model of a DC motor with
shaft velocity as the output is shown in Figure 3.17 [9]. We wish to select the physical
wvariables as the state variables Thus, we select: x; = y{r), the velocity output: x; = i(r),
the field current; and the third state variable, x;, is selected to be xy = br(1) — &ulr).
where (1) is the field voltage. We may draw the models for these physical variables, as
shown in Figure 3.18. Note that the state variables xy, x,. and xy are identified on the
models We will denote this format as the physical state variable model. This model is
particularly useful when we can measire the physu:al. state variables Note that the
model of each block is note that the transfer

Cantroller Mosor and load
Field Ficld 3
Sis+ 1) | voluge 1 curren [ iond
Ria) =l G L) = —_— _ ]
a+3 hs) 1+1 i 43

FIGURE 3.18 mn-powcummwmm fow graph for the black diagram of Figure 3.17.
{B) Physical state block diagram.
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FIGURE 3.14
Single-loop control

ikl

FIGURE 3.13  (a) Alternative fiow graph state modal for Equation {3.46). This model is called the
Input feecforward canonical form. {b) Bleck diagram of the input feedfonward canonical form.

EXAMPLE 3.2 Two state variable models

A single-loop control system is shown in Figure 3.14. The closed-loop transfer
function of the system is

Yis) 28 4+ By + 6
U(s) '+ BT 4 168 + 6

(I
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*

i
g

Lty =t L}

ole

(k)

The second model uses the feedforward of the input variable, as shown in
Figure 3.16. The vector differential equation for the input feedforward model is

-8 10 2
x=|=16 0 1|x+|8& [ufr) (3.57)
-6 0 0 6

and the output is y{1) = x,(t).

‘We note that it was not necessary to factor the numerator or denominator polyno-
mial to obtain the state differential tquatm for lhc phnsc \rannb]e model or the input
feedforward model. Avoiding the f permits us to avoid the
tedious effort involved. Bu:ll models requ:n: three i integrators because the system is
third order. However, it is important to emphasize that the state variables of the state
model of Figure 3.15 are not identical to the state variables of the state model of Figure
3.16. Of course, one set of state vannbles is related to the other set of state variables by
an iate finear of vari A linear matrix transformation is
r:pr!scnlcd by z = Mx, which transforms the x-vector into the z-vector by means of
the M matrix (see Appendix E on the MCS wlmte} Fnully we note that the transfer
function of Equation (3.41) rep a single-output linear constant coefficient
systern; thus, Ihc transfer function can represent an nth-order differential equation
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¥ea

(=} By

FIGURE 3.19 (a} The decoupled state variable fow graph model for the system shown in block
form in Figure 3,17. (b} The decoupled state vasiable block diagram madel.

EXAMPLE 3.3 Spread of an epidemic disease

The spread of an epidemic disease can be described by a set of differential equa-
tions. The population under study is made up of three groups, xy, ¥, and x;, such
that the group x, is susceptible to the epidemic disease, group , is infected with the
disease, and group x; has been removed from the initial population. The removal of

x3 will be due to i i death, or isolation from x,. The feedback system can
be rep by the following equati

dx,

d_rl = —ax; — Bxg + uyln),

dx

= By - yn +wl),

s

& axy + yxa.

The rate at which new susceptibles are added 10 the population is equal to wy(r),
and the rate al which new infectives are added to the population is equal to uy(t). Fora
closed population, we have uy{r) = uy(t) = 0. It is interesting to note that these equa-
tions could equally well represent the spread of information or a new idea through a
population.

The physical state variables for this system are x,, x;, and x,. The model that
represents this set of differential equations is shown in Figure 3.20. The vector
differential equation is equal to

x) -« —-B O0J x 1o
% wl=| 8 =y oflm|+|0o 1 [:':2] (3.63)
Xy @ ¥y 0]l x; 0o o
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EXAMPLE 3.4  Inverted pendulum control

The problem of balancing a broomstick on a person’s hand is illustrated in Figure 321,
The only equilibrium condition is #(r) = 0 and d8/dr = 0. The problem of balancing a
broomstick on one's hand is not unlike the problem of controlling the attitude of a mis-
sile during the initial stages of launch. This problem is the classic and intriguing problem
of the inverted pendulum mounted on a cart, as shown in Figure 3.22. The can must be
moved so that mass m is always in an upright position, The state variables must be ex-
pressed in terms of the angular rotation 8(r) and the position of the cart y(r). The differ-

ntial equations describing the motion of the system can be obtained by writing the sum
of the forces in the horizontal direction and the sum of the moments about the pivot
point [2,3, 10, 23], We will assume that M == m and the angle of rotation 8 is small so
that the equations are linear. The sum of the forces in the horizontal direction is

My + mld — ulr) =0, (3.66)

‘where uit) equals the force on the cart, and { is the distance from the mass i to the
pivot point. The sum of the torques about the pivot point is

mly + mi% — mlgd = 0. (3.67)

The state variables for the two second-order equations are chosen as (., £y, ¥y, %) =
(¥ ¥, 6,8). Then Equations (3.66) and (3.67) are written in terms of the state
variables as

My + miiy — u(t) =0 (3.68)

Frictinaless.
surface
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function for the controller is
U(s) S(s+1) _5+557!

mnﬁ(ﬂ: s+5 145

and the flow graph between R(s) and U{s) represents G (s).
ial equation is directly ot

“The state variable diffe d from Figure 3.18 as

= 6 1] o
x=| 0 -2 -20|x+|5 |0 (3.59)
0 o -5 1
and
y=0 0 O (3.60)

A second form of the model we need to consider is the decoupled response
modes. The overall input-output transfer function of the block diagram system
shown in Figure 3.17 is

YO e MEED a(s)
S (s+ 55+ 2)s+3) (s — )z = 5)s - n)

and the transient response has three modes dictated by 5;, 53, and 5. These modes
are indicated by the partial fraction expansion as

YO ok kK
iRl et e e (@1

Using the procedure described in Chapter 2, we find that k) = -20,&; = =10,
and &y = 30. The decoupled state variable model representing Equation (3.61) is
shown in Figure 3.19. The state variable matrix differential equation is

-5 0 0 1
k= 0 =2 0lx+|1|n
0 0 -3 1
Woy=[-20 —10 30 (3.62)

Mote that we chose x; as the state variable associated with 5; = =35, x; associated
with 5; = =2, and x; associated with 5; = =3, as indicated in Figure 3,19, This choice
of state variables is arbitrary; for example, x; could be chosen as associated with the
factor s + 2.

The decoupled form of the state differential matrix equation displays the dis-
tinct model poles —s,, —s3,.... =5, and this format is often called the diagonal
canonical form. A system can always be written in diagonal form if it possesses
distinet poles; otherwise, it can only be written in a block diagonal form, known as
the Jordan canonical form [24].
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By examining Equation (3.63) and the models depicted in Figure 3.20, we find that the
state variable x4 is dependent on x; and xy and does not affect the variables x; and x,.

Let us consider a closed population, so that wy(f} = uy(t) = 0. The equilibri-
um point in the state space for this system is obtained by setting dx/dr = 0. The
equilibrium point in the state space is the point at which the system settles in the
equilibrium, or rest, condition. Examining Equation (3.63), we find that the equi-
librium point for this system is x; = x; = 0, Thus, to determine whether the epidemic
disease is eliminated from the population, we must obtain the characteristic equation
of the system. From the signal-flow graph shown in Figure 3.20, we obtain the flow
graph determinant

A(s) =1 = (—as™! — 9" = B5Y 4 (ays ), (3.64)
where there are three loops, two of which are ing. Thus, the
equation is
gls) = SA(s) = 5 + (@ + y)s + (ay + ) =0, (3.65)

“The roots of this characteristic equation will lie in the left-hand s-plane when
a+y>0anday + §° > 0. When roots are in the left-hand plane, we expect the
unforced response to decay to zeroast —+ 00, m
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Since [s1 = A]™ = @(s), we have
X(s) = ®(s)BU(s).
Substituting X(s) into Equation (3.77), we obtain
Y(s) = [CH(s)B + DJU/(s). (3.78)
Therefore, the transfer function G(s) = Y (s)/U{s) is

G(s) = CO(s)B + D (3.79)

EXAMPLE 3.5 Transfer function of an RLC circuit

Let us determine the transfer function G(s) = ¥(s)/U(s) for the RLC circuit of
Figure 3.4 as described by the differential equations (see Equations 3.18 and 3.19):

=1
0 — 1
x= _CRl-l- C |u
— 0

1
L L
y=10 Rlx
Then we have
TR
c
[s1-A)=| rl
— se=
L L
Therefore, we obtain
() 2
1 L C
= At = —
®(s) = [s1 = A] | 1 i
T 5
where
My =5+ ‘f—'s + L]_C
Then the transfer function is
R
il R %
Gis)=[0 R)| Als) Cafs) | C
1 5 0

LA(s) A
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simply the inverse transform of ®(s); that is,

Bie) = £ D(s)). (3.83)

The relationship between a state variable Xj(s) and the initial conditions x(0) is
obtained by using Mason's signal-flow gain formula, Thus, for a second-order system,
we would have

Xi(s) = dulsdn(0) + dia(s)aa(0).

Xils) = dnls)x (0} + dnls)x;(0), (3.84)
and the relation between X;ls} as an output and x,(0) as an input can be evaluated
by Mason's signal-flow gain I‘on'nula All |h: clemc'ms ul' the state transition matrix,
@;;(5), can be obtained by g the i 1 hips b Xi(s) and
x,(0) from the state model flow y—aph. An ple will il this app to de-
termining the transition matrix,

EXAMPLE 3.6 Evaluation of the state ition matrix

‘We will consider the RLC network of Figure 3.4, We seek to evaluate ®(s) by (1)
determining the matrix inversion @(s) = [s1 — A]™" and (2) using the signal-flow
diagram and Mason’s signal-flow gain formula.

First, we determine @(s) by evaluating ®(s) = [s1 — A]"". We note from Equa-

tion (3.18) that
0 =2
+-[0 2}

lsl-al-[_’l :f:]' (3.85)

The inverse matrix is

_ 1 1 |[s+3 -2
®(s) = [s1 - A" Ms:[ ; _‘} (3.86)

where Afs) =s{s + N + 2=+ s+ 2=+ 1}(s + 2).

The signal-flow graph state model of the RLC network of Figure 3.4 is shown in
Figure 3.8. This RLC network, which was discussed in Sections 3.3 and 3.4, can be
represented by the state variables x; = v, and x; = {;. The initial conditions, x,(0)
and x3(0), represent the initial capacitor voltage and inductor current, respectively,
The flow graph, including the initial conditions of each state variable, is shown in
Figure 3.23. The initial conditions appear as the initial value of the state variable at
the output of each integrator.

To obtain ®(x), we set U(s) = 0. When R =3, L = 1, and C = 1/2, we obtain
the signal-flow graph shown in Figure 3.24, where the output and input nodes are
deleted because they are not involved in the evaluation of ®(s). Then, using Mason's
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and
R+l — g:\ =0 (3.69)
To obtain the -y first-order diff ions, we solve for [k, in Equa-
tion (3.69) and substitute into Equation (3.68) to obtain
My + mgxy = ulr), {3700
since M == m. Substituting ; from Equation (3.68) into Equation (3.69), we have
Mixg = Mgxy + nit) = 0. (a7
Therefore, the four first-order differential equations can be written as
z . ", i
f=xn, &= —]f‘h + E“(l].
5o P | 1
By=xy, and k= T ‘—ﬁu{l], (3.72)
‘Thus, the system matrices are
o1 n 0 1]
|00 —mgm 0 | oym
A=lo o 0 1l B 0 (373 m
00 gl 0 —1/(MI)

3.6 THE TRANSFER FUNCTION FROM THE STATE EQUATION

Given a transfer function G(s), we can obtain the state variable equations using the
signal-flow graph model. Mow we turn to the matter of determining the transfer
function G(s) of a single-input, single-output (S180) system. Recalling Equations
(3.16) and (3.17), we have

%= Ax + Bu (3.74)
and

y = Cx+ D (3.75)

where y is the single output and « is the single input. The Laplace transforms of
Equations (3.74) and (3.75) are

$X(s) = AX(s) + BU(s) (3.76)
and
¥(s) = CX(s) + DU(s) am

where B is an n X | matrix, since u is a single input, Note that we do not include ini-
tial conditions, since we seek the transfer function. Rearranging Equation (3.76), we
obtain

(51 — A)X(s) = BU(s).
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RI(LC) R/{LC)

A® S+ ERJ + LIC_

which agrees with the result Equation (3.40) obtained from the flow graph model
using Mason's signal-flow gain formula. =

3.7 THE TIME RESPONSE AND THE STATE TRANSITION MATRIX

It is often desirable to obtain the time response of the state variables of a control sys-
tem and thus examine the performance of the system, The transient response of a
system can be readily obtained by evaluating the solution to the state vector differ-
ential equation. In Section 3.3, we found that the solution for the state dilferential
equation (3.26) was

x(1) = D(Ox(0) + f Dt - )Bulr) dr. (3.80)
o

Clearly, if the initial conditions x(0), the input u(r). and the state transition ma-
trix @(r) are known, the time response of x(t) can be numerically evaluated. Thus
the problem focuses on the evaluation of ®(1), the state transition matrix that
represents the response of the system. Fortunately, the state transition matrix can

be readily eval d by using the signal-flow graph techni with which we are
already familiar.
Before p ding to the evaluation of the state ition matrix using signal-

flow graphs, we should note that several other methods exist for evaluating the
transition matrix, such as the evaluation of the exponential series

el L)
B(1) = exp(Ai) = ;;':—f‘ (381)

in a truncated form [2, 8]. Several efficient methods exist for the evaluation of ®i{r)
by means of a computer algorithm [21].

In Equation (325), we found lhat 0[3] = [sl = A]"". Therefore, if (s) is ob-
tained by | the malm . we can obtain 0(:} by noting that
@(r) = £ {®(s)}. The matrix i ion process is It for higher-
order systems.

The usefulness of the signal-flow graph state model for obtaining the state tran-
sition matrix becomes clear upon consideration of the Laplace transformation
wversion of Equation (3.80) when the input is zero. Taking the Laplace transforma-
tion of Equation (3.80) when u(r) = 0, we have

X(s) = ®(s)x(0). (3.82)

Thelcfor: we can eva]ua!c lh: Laplace transform of the transition matrix from the
Igr pl the relation b a state variable X(s) and the
state initial conditions [x,(0), x;(ﬂ} X, (0)]. Then the stale transition matrix is
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FIGURE 3.25
Time response
of the state
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= 1{1/5) = 5
duds) = 1+3" +267 F43s+2 @asm

Therefore, the state transition matrix in Laplace transformation form is

P [(x LA+ U+ =P+ 35+ 2}}

(S + 35+ 2) S+ 35+ 2) (392)

The factors of the characteristic equation are (s + 1) and (s + 2), so that
s+ s +2) =5 +3s+2

Then the state transition matrix is

e T 3
(267 = &) (=267 + 20 }]_ -

-t -
o) = L) [ (e'=e?) (=2

The evaluation of the time response of the RLC network to various initial condi-
tions and input signals can now be eval d by using Equation (3.80). For pl
when x,(0) = x;(0) = 1 and u(r) = 0, we have

xin 31 B
(0] - eel3]-[2] o

The response of the system for these initial conditions is shown in Figure 3.25. The tra-
jectory of the state vector [x;(t). x3(¢}] on the (x,, x;)-plane is shown in Figure 3.26,
The evaluation of the time response is facilitated by the determination of the state
transition matrix. Although this approach is limited to linear systems, it is a powerful
method and utilizes the familiar signal-flow graph to evaluate the transition matrix, =

i ]

for
fl) = ol = 1.

L L L I L L . I}
Ill 035 050 075 100 a 025 05 075 L

it
Xl = | fmmmmmmeee {00 003)

¥yl

o a0 =1
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scl:rml':t instruments pointing up will see deep space, as desired. To achieve earth-

ing attitude, the sp ft needs an attitude hold control system capablz of
applylns the necessary torques. The torques are the inputs to the system, in this case,
the space station. The attitude is the output of the system. The International Space
Station employs control moment gyros and reaction control jets as actuators to con-
trol the attitude. The control moment gyros are momentum exchangers and are
preferable to reaction control jets because they do not expend fuel. They are actua-
tors that consist of a constant-rate flywheel mounted on a set of gimbals. The fly-
wheel orientation is varied by rotating the gimbals, resulting in a change in direction
of the flywheel angular momentum. In accord with the basic principle of conserva-
tion of angular momentum, changes in control moment gyro momentum must be
transferred to the space station, thereby producing a reaction torque., The reaction
torque can be employed to control the space station attitude. However, there is a
maximum limit of control that can be provided by the control moment gyro, When
that maximum is attained, the device is said 1o have reached saturation. So, while
control moment gyros do not expend fuel, they can provide only & limited amount
of control. In practice, it is possible to control the attitude of the space station while
simultaneously desaturating the control moment gyros.

Several methods for desaturating the control moment gyros are available, but
using existing natural environmental torques is the preferred method because it mini-
mizes the use of the reaction control jets. A clever idea is to use gravity gradient
torques (which oceur naturally and come free of charge) to continuously desaturate
the momentum exchange devices. Due to the variation of the earth’s gravitational
field over the International Space Station, the total moment generated by the gravita-
tional forces about the spacecraft’s center of mass is nonzero. This nonzero moment is
called the gravity gradient torque. A change in attitude changes the gravity gradient
torque actmg on the vehicle. Tlllls.mmb\mng attitude control and momentum man-
agement b a matter of comp

The elements of the design process d in this are ill in
Figure 3.28. We can begin the modeling process by defining the attitude of the space
station using the three angles, & (the pitch angle), #; (the yaw angle), and 8, (the roll
angle). These three angles represent the attitude of the space station relative to the
desired earth-pointing attitude. When 8, = 8, = #; = 0, the space station is oriented
in the desired direction, The goal is to keep the space station oriented in the desired
attitude while minimizing the amount of momentum exchange required by the con-
trol momentum gyros (keeping in mind that we want to avoid saturation). The con-
trol goal can be stated as

Control Goal
Minimize the roll, yaw, and paldi ansll:s in I.h: presence of persistent external dis-
t while si trol moment gyro momentum,
The time rate of change of the angular momentum of a body about its center of
mass is equal to the sum of the external torques acting on that body. Thus the atti-
tude dynamics of a spacecraft are driven by externally acting torques. The main
external torque acting on the space station is due to gravity. Since we treal the
earth as a point mass, the gravity gradient torque [30] acting on the spacecraft is
given by
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signal-flow gain formula, we obtain X,(5) in terms of x,(0) as

1+ 8y(s) - [x,(0)/s]

Xis) Als) . (3.87)
where A(s) is the graph determinant, and A,(s) is the path cofactor. The graph
determinant is

Als) =1+ 357" + 2672

The path cofactor is &; = 1 + 357" because the path between x;(0) and X;(s) does
not touch the loop with the factor —3s5™". Therefore, the first element of the transition

matrix is
(1+ 357")(1/9) s+3
LS R v gy el B T (53)
The element dy;(s) is obtained by evaluating the relationship t Xy(s) and
x:(0) as
(=257} xal0)/5)
Xd"]_1+3\s“‘+1ﬂ
Therefore, we obtain
-2
$uld) = e (3.89)
Similarly, for ¢y(5) we have
_ sy 1
e i P e e e (330)
Finally, for dyy(s), we obtain
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3.8 DESIGN EXAMPLES
In this section we present two ilb ive design ples. In the first ple, we pre-

sent a detailed ook at modeling a large space vehicle (such as a space station) using o
state variable model. The state variable model is then used 1o take a look at the stability
of the orientation he spacecraft in a low earth orbit. The design process depicted in
F!gure LiSis in I.hls e, The second ple s a printer belt drive
Jati p between the state variable model and the block dia-
gram dmm:d in {.‘hapll.r 2is |I1ll$lrltci] and, using block diagram reduction methods,
the transfer function equivalent of the state variable model is obtained,

EXAMPLE 3.7 Modeling the orientation of a space station

‘The International Space Station, shown in Figure 3.27, is a good example of a multi-
purpese spaceeraft that can operate in many different configurations. An important
step in the control system design process is o develop a mathematical model of the
spacecraft motion. In general, this model describes the transtation and attitude motion
of the spacecrafl under the influence of external forces and torques. and controller and
actuator forces and torques The resulting spacecraft dynamic model is a set of highly
coupled, nonlinear ordinary differentinl equations. Our objective is to simplify the
maode] while retaining important system characteristics. This is not a trivial task, but an
|mp(1nsnL and often neglected mmpnm.n! of control engineering. In this example, the

| motion is idered. The ional motion, while critically important to
orhit mai can be d pled from the i motion.
Many spacecraft (such as the International Space Station) mll mnlnlmn an
earth-pointing attitude. This means that and other sci

pointing down will be able 1o sense the earth, as depicted in Figure 3.27. Conversely,

FIGURE 3.27
The International
Space Station
moments after the
e
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attitude mation. The acrodynamic torque acting on the space station is generated by
the atmospheric drag force that acts through the center of pressure. In general, the cen-
ter of pressure and the center of mass do not coincide, so aerodynamic torques develop.
In low earth orbit, the d ic torque is a sinusoidal function that tends to oscil-
Inte around a small bias. The oscillation in the torque is primarily a result of the earth’s
diurnal armospheric bulge. Due to heating, the atmosphere closest 1o the sun extends
further into space than the almosphere on the side of the earth away from the sun. As
the space station travels around the earth (once every %0 minutes or so), it moves
through varying air densities, thus causing a cyclic aerodynamic torque, Also, the space
station solar panels rotate as they track the sun. This results in another eyclic compo-
nent of } ic torque. The | ic torque is g lly much smaller than
the gravity gradient torque. Therefore, for design purposes we can ignore the atmos-
pheric drag torque and view it as a disturbance torque. We would like the controller to
minimize the effects of the d ic disturb on the sp it attitude.

Torques caused by the gravitation of other planetary bodies, magnetic fields,
solar radiation and wind, and other less significant phenomena are much smaller
than the earth’s gravity-induced torque and aerodynamic torque. We ignore these
torques in the dynamic model and view them as disturbances.

Finally, we need to discuss the control moment gyros themselves First, we will
lump all the control moment gyros together and view them as a single source of torque.
We represent the total control moment gyro momentum with the variable h. We need
to know and understand the dynamics in the design phase to manage the angular mo-
mentum. But since the time inted with these dy ics are much shorter
than for attitude dynamics, we can ignore the dynamics and assume that the control
moment gyros can produce precisely and without a time delay the torque demanded by
the control system.

Based on the above discussion, a simplified nonlinear model that we can use as
the basis for the control design is

B =R +n (3.96)
N =-0xI0+3nfexle—u (397
h=-0%xh+un, (3.98)

cosfy —cosd sinf;  sind,sind;
R(@)=——o| 0 cos —sin fy

50| 0 ingcosds coscosdy

0 oy L By
n=|nf D=lap| @=[68| u=|wm|

0 by [ 5%

where u is the control moment gyro input torque, £1 in the angular velocity, Iis the
moment of inertia matrix, and n is the orbital angular velocity. Two good references
that describe the fund Is of ft d i deling are [26] and [27].
There have been many papers dealing with space station control and momentum
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The subscript 2 refers to the pitch axis terms, the subseript 1 is for the roll axis terms,
and 3 is for the yaw axis terms. The linearized equations for the rolllyaw axes are

I 0 no 1 0 o ol e
iy -n 0 0 1 0 ol e
@ | | -3a, 0 0 —ndy 0 0| ey
P i} 0 —na, 0 0 0w
iy 00 0 00 allh
iy o0 0 0 -n 0]l

0 0

00

1

+ A _; [:ﬂ (3.100)
1o
[

where

Iy =1
Al:=-1TI-’— and A=

Consider the analysis of the pitch axis. Define the state-vector as
A1)
xfe) 2= { anle) |,
o)
and the cutput as
My =al =11 0 Ox(e).
Here we are considering the spacecraft attitude, (1), as the output of interest. We

can just as easily consider both the angular velocity, w;, and the control moment gyro
momentum, fiz, as outputs The state variable model is

%= Ax + Bu, (3.101)
y=0Cx + Du,
where
010 0
A=|3da; 0 of B=|-L|
0 00 1

C=[1 0 0, D=][0}

and where i is the control moment gyro torque in the pitch axis. The solution to the
state differential equation, given in Equation (3.101),is

x(1) = D()x(0) + [‘N.‘ = 7}Bu(r) dr,
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D Topics emphasized in this exsmple
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dasign procass
inthe yfpe does not meet the 1 the performance meets the specifications,
comtrol i . thew fterate che confi shen fimalize the design
T, =3ne x Ie, (3.95)

where n s the orbital angular velocity (n = 0.0011 rad/s lor the space station), and ¢ is

—sin f; cos Uy
¢ = | sin ) cos #h + cos #) sin f; sin f |,
cos fl, cos fy — sin @) sin 65 sin b

The notation *%* denotes vector cross-product, Matrix 1is the spacecraft inertia ma-
trix and is a function of the space station configuration. It also follows from Equn-
tian (3.95) that the gravity gradient torques are  function of the attitude fy, . and 8.
‘We want 10 maintain a prescribed attitude (that is carth-pointing 1, = 6, = t = 0),
but sometimes we must deviate from thit nititude so that we ean generate gravily gra-
dient torques to assist in the control mement gyro momentum management. Therein

lies the conflict; as engi we often are required to develop control systems 1o
manage conflicting poals.
Now we ine the effect of the ic forque actmg on the space station.

Even at the high altitude of the space stution, the acrodynamic torgue does affect the
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management. One of the first to present the nonlinear model in Equations
(3.96-3.98) is Wie et al. [28]. Other related information about the model and the
control problem in general appears in [29-33]. Articles related to advanced control
topics on the space station can be found in [34-40]. Researchers are developing non-
linear control laws based on the nonlinear model in Equations (3.96)-(3.98). Sever-
al good articles on this topic appear in [41-50].

Equation (3.96) rep the ki jcs—the relationship b the Euler
angles, denoted by ©, and the angular velocity vector, £2. Equation (3.97) represents
the space station attitude dynamics. The terms on the right side represent the sum of
the external torques acting on the spacecraft, The first torque is due to inertia cross-
coupling. The second term represents the gravity gradient torque, and the last term is
the torque applied to the spacecraft from the actuators. The disturbance torgues (due
1o such factors as the atmosphere) are not included in the model used in the design.
Equation (3.98) represents the control moment gyro total momenium.

The pproach o sp design is to de-
velop a linear model, representing the spacecraft attitude and control moment gyro
by linearizing the nonli maodel. This lincarization is accomplished by a

dard Taylor series approxi Linear control design methods can then be readily

applied, For linearization purposes we assume that the spacecraft has zero products of

inertia (that is, the inertia matrix is di 1) and the o i b are
negligible. The equilibrium state that we linearize about is
B =0
(1]
Q=|=-n
]
h =0,
and where we assume that
Lo 0
1=|l0 1, 0]
0 0 I
In reality, the inertia matrix, 1 is not a di | matrix. Neglecting the off-diagonal
terms is consistent with the linearizati and is & i

Applying the Taylor series upproximatiu:'\'s yields the linear model, which as it‘lums
out decouples the pitch axis from the rolllyaw axis.
“The linearized equations for the pitch axis are

s 01 o e 0
iy =) 38 0 0w |+ = fus (399
iy o o ollm 1
where
h =1
Byl

ym=y
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EXAMPLE 3.8 Printer belt drive modeling

A commonly used low-cost printer for a computer uses a belt drive 10 move the print
ing device laterally across the printed page [11]. The printing device may be a laser
printer, u print ball, or thermal printhead. An example of a belt drive printer with a DC
motor actuator is shown in Figure 3.29, In this model, a light sensor is used 10 measure
the position of the printing device, and the belt tension adjusts the spring Nexibility of
the belt. The goal of the design is to determine the effect of the belt spring constant k
and select appropriate parameters for the motor, the belt pulley, and the controller. To
achieve the analysis. we will determine » model of the belt-drive system ond select
many of its parmmeters. Using this model, we will obtam the (lgnnl flow graph mode)
and select the state We then will d ine an transfer function
for the system and select its other parameters. except for the apring constant. Finally, we
will examine the effect of varying the spring constant within a realistic range.

We propose the model of the belt-drive system shown in Figure 3.30. This model
assumes that the spring constuny of the belt 15 &, the rdius of the pulley is . the angular
rotation of the motor shaft s 6, and the angular rotation of the right-hand pulley is 6,
The mass of the printing device 1 i, and its position is y(r). A light sensor is used o
measure v, and the output of the sensor s o voltage v, where &, = kyy. The controller

@ @r

P Printing
{ devie

)
Printing
device
punitics)

\__t -7 Coutinler Hensn i
map i Py
- = ks

" b w |

Chapter 3 State Variable Models

when we select the third state variable as x3 = d#/dr. We now require a differential
equation describing the motor rotation. When L = 0, we have the field current
i = v5/ R and the motor torque T,, = K_i. Therefore,

K
Ta= g

and the motor torque provides the torque to drive the belts plus the disturbance or
undesired load torque, so that

L=T+T0
The torque T drives the shaft to the pulley, so that
T= Jﬂ + b— + T - B).
Therefore,
dey _ @
dr dr?
Hence,
iy =T b 2kr
T IR T
where

Ky
= R and = "kll’z'?—r = —kykpry.
Thus, we obtain

drs _ —Kakiky b 2hr ]
&t JR ST R ATy (3.106)

Equations (3.104)~(3.106) arc the three first-order differential equations required to
describe this system. The matrix differential equation is

a = r 0
2% (3.107)
i=| m 0 L -E,l Ta
~Zkr  —Kukiks —b T

&
~
o
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where

®(t) = exp(Ar) = £(s1 - AV}

%(ev'_'_m. B g ViR Virhy 0

1
L —
2Vl 4y
= | 3

-—-—-—-3; B2 (VT _ iRy %{e“"l‘“ +eVEEy o)

] 0 1

We can see that if A; > 0, then 1 of the state ition matrix will have

terms of the form e, where a > 0. As we shall see (in Chapter 6) this indicates that

our system is unstable. Also, if we are interested in the output, ¥(1) = 81}, we have
¥l = Cx{r).

With x(r) given by
4
() = B(x(0) + -L @(t — v)Bulr)dr,
it follows that
1]
¥lt) = CO1)x(0) + j;CO(r — 7)Bui7)dr.

The transfer function relating the output ¥{s) to the input U{s) is

¥
Gls) = —ﬁ%i:% = Q- AY'B =~

The characteristic equation is
5 =3, = (s + VAR )(s — Van's;) = 0.
If &; > O (thatisif /5 > [y ), then we have two real poles—one in the left half-plane
and the other in the right half-plane. For spacecraft with fy > [}, we can say that an
earth-pointing attitude is an unstable orientation. This means that active control is
necessary.
Conversely, when 4; < 0 (that is, when I, > Iy ), the characteristic equation has

Iwo imaginary roots at
5= ﬂ:j\fﬁ[&;.

“This type of spacecraft is marginally stable. In the absence of any control moment
£yro torques, the spacecraft will escillate around the earth-pointing orientation for
any small initial deviation from the desired attitude, w

1
I(s® = 3n%8y)
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provides an output voltage v, where v, is a function of v, The voltage v, s connected
to the field of the motor. Let us assume that we can use the linear relationship

i
n= ‘[*:"}?‘ + k!8|:|.

and elect to use k3 = 0.1 and &; = 0 (velocity feedback),
The inertia of the motor and pulley s J = Jroae + Jouiey. We plan to use a moderate-
DC motor. Selecting a typical 1/8-hp DC motor, we find that J = 0.01 kg m?, the field
is i the field resi is R=21 the motor constant is
Ky =2Nm/A, andlhemolotandpulleymnmn s b = 0.25 Nms/rad. The radius of
the pulley is r = (.15 m. The system parameters are summarized in Table 3.1
We now proceed to write the equations of the motion for the system; note that
¥ = rfl, Then the tension from equilibrium T is
T = k(0 ~ rf,) = kst — y).

The tension from equilibrium T is

= k(y — rf).
The net tension at the mass m is
d'y
T-T=meg (3.102)
and
T =T = kird — y) = k(y ~ r8) = 2k(r8 — y) = 2kx,, (3.103)

where the first state variable is x) = i@ — y. Let the second state variable be
&y = dy/dr, and use Equations (3.102) and (3. 103} o abtain

de; 2k
5 - (3.104)

The first derivative of x; is

=r— =N (3.105)

Table 3.1 Parameters of Printing Device
Mass m=02kg

Light sensor Kk =1V/m
Radius r=015m
Motor
Inductance L=0
Friction b = 025 Nms/rad
Resistance R=20
Constant Ko =2Nm/A

Inertin 3 = Jsoe + iy = 001 kg m?




FIGURE 3,32
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‘We therefore have

) B\, (2% 2% Wb | kK okyr |
o (J’), A VTR A W7
We can also determine the closed-loop transfer function using block diagram reduction
methods, as illustrated in Figure 3.32. Remember, there is no unique path to follow in re-
ducing the block diagram: however, there is only one correct solution in the end. The
original block diagram is shown in Figure 3.31(b). The result of the first step is shown in
Figure 3.32(a), where the upper feedback loop has been reduced to a single transfer

— Xt}

X110

Tough + st + 2d & mitls + 26k i)

=il
) TAN = TR+ (2w + T + S mr.ag..ﬂ-ml L
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The actual response of «, is shown in Figure 3.33. This system will reduce the ef-
fect of the unwanted disturbance to a relatively small magnitude. Thus we have
achieved our design objective. m

3.9 ANALYSIS OF STATE VARIABLE MODELS USING CONTROL DESIGN SOFTWARE

The time-domain method utilizes a state-space representation of the system model,
given by
x=Ax+ Bu and y=Cx+ Dun {3.114)

The vector x is the state of the system, A is the constant it % » system matrix, B is the
constant # X m input matrix, C s the constant p % » output matrix, and I is a constant
% m matrix. The number of inputs, m, and the number of outputs, p, are taken to be
one, since we are considering only single-input. single-output ($1S0) problems.
Therefore y and « are not bold (matrix) variables.

The main el of the state-sp T ion in Equation (3.114) are
the state vector x and the constant matrices (A, B, C, D). Two new functions cov-
ered in this section are 55 and Isim. We also consider the use of the expm function
to calculate the state transition matrix.

Given a transfer function, we can obtain an equivalent state-sp p
and vice versa. The function tf can be used to convert a state-space representation to a
transfer function representation: the function $5 can be used to convert a transfer
function representation to a state-space representation. These functions are shown in
Figure 3.34, where sys_tf represents a transfer function model and sys_ss is a state-
space representation.

For instance, consider the third-order system

¥is) 22 + Bs + 6

Lt e o s e

(3.115)

03

002

Ao

xyin
" b
=haz
—0.0%
-004
oS 1 (F 3 2 23 i is 4 43 3
Time i3
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The signal-flow graph and block diagram models ing the matrix

equation are shown in Figure 3.31, where we include the identification of the node for
the disturbance torque 7).

We can use the flow graph to determine the transfer function X;(s)/Tds). The
goal is to reduce the effect of the disturbance T}, and the transfer function will show

us how to accomplish this goal. Using Mason's signal-flow gain formula. we obtain

S
Xils) _ S
Tds) D= (L + L+ L+ L) + LiLy
where
~2% =2kl —2k K, Jeikars™
K L= L= % and Lg= #.

—kaky

Hylal
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function, The second step illustrated in Figure 3.32(b) then reduces the two lower feed-
back loops to a single transfer function. In the third step shown in Figure 332(c), the lower
feedback loop is closed and then the remaining transfer functions in series in the lower
Ioop are combined. The final step closed-loop transfer function is shown in Figure 3.32(d).
Substituting the | values ized in Table 3.1, we obtain

Hls) _ ~13s
Tds) & + 257 + 145ks + 1000k(0.25 + 0.15k;)

(3.108)

We wish to select the spring constant k and the gain &; so that the state variable x; will
quickly decline to a low value when a disturbance occurs For test purposes, consider a
step disturbance Ty{s) = a/s. Recalling that xy = rff — y, we thus seek a small magni-
tude for xy 5o that y is nearly equal to the desired ri. 1f we have a perfectly stiff belt
with k —= 00, then y = rff exactly. With a step disturbance, T(s) = a/s, we have

—15a
) = 3T I5T + 1a5ks + 1000K(025 + 0.15k3) (3.10)
‘The final value theorem gives
Jimx(0) = limsXy(s) = 0, (3.110)

and thus the steady-state value of x(r) is zero, We need to use a realistic value for &
in the range 1 = & = 40. For an average value of k = 20 and ky = 0.1, we have

~15a
5 4 25¢% + 2905 + 5300
z —15a
T {5 + 22.56)(s7 + 2445 + 23493)

Xi(s) =

(3.111)

“The characteristic equation has one real root and two complex roots. The partial frac-
tion expansion yields
M) A N Bs + C
a 5+2256 (5 + 1220 + (15287°

(3.112)

where we find A = -0.0218, 8 = 00218, and C = —04381. Clearly with these
small residues, the res to the unit disturt is relatively small. Because A and
B are small compared to C, we may approxi Xi(s) as

Xi(s) o =0.4381

a (5 + 1.22)° + (15.28)°

Using Table 2.3, we obtain

“Tm = ~0.0287¢ 2 sin 15281, (3.113)
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‘The state-space representation of the transfer function in Equation (3.115) is depicted
in Figure 3.36.

The state variable represcntation is not unique. For example, another equally
valid state variable representation is given by
-8 -2 =035 0.125
A=|l8 0 o0 |B=| 0 |C=[16 & 6.,D=[0]
] 1 o o

It is possible that when using the ss function, the state variable representation pro-
vided by your control design software will be different from the above two examples
depending on the specific software and version,

The time response of the system in Equation (3.114) is given by the solution 1o
the vector integral equation

x(t) = exp(Anx(0) + fu explA(r — +)]Bu(r) dr. (3.116)

The matrix exponential function in Equation (3,116} is the state transition matrix,
®(r). where (Equation 3.23)

®ir) = explAr)
We can use the function expm to compute the transition matrix for a given I.um: s
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We can obitain a state-space representation using the ss function, as shown in
of Equath

Figure 3,35, A st P (3.115) is given by Equation
(3.114), where
-8 -4 =15 2
A= 4 o o, B=|0]|
o 1 0 [
C=[1 1 075 and D =[0].
= Ax+ By &= Ax+Bu
’Smm;l "':““'-I Ii.m.m ’ ‘m-ombhr

illustrated in Figure 3.37. The expm{A) function ¢ the matrix L. In FIGURE 3.34
contrast, the exp{A) function calculates e for each of the elements ay € A. e Mk
For example, let us consider the RLC network of Figure 3.4 described by the 0] (L]
tate-sp ion of E (3.18) with
n -2 2 sconve
“[: —J' h[ﬂ]‘ €=[1 0, and D=0 Soean
x1 2 a3
x 8 -4 15
2 a (] 0
= o 1 0
b=
ul
x 2
x2 0
a3 0
comvertm on
1 w2 w3
%% Comart Gis) = (25°2+B5+6)(5" 3852+ 165+6) ¥l 1 1 075
% to a stale-space representation
% d=
num={2 & 6]; dan={1 & 16 6] sys_t=tijnum,den}; ut
sys_ss=ss(sys_tl]; ¥1 o
] b
FIGURE 3.36 Block diagram with x; dafined as ihe latmast state variable, E,%uu:ﬁ!m: PR B 11D aale Wi
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Section 3.10 Sequential Design Example: Disk Drive Read System

>>As{D -2; 1 -3]; @i=0.2; Phi=axpmiA*dt)

Phi=
09671 02968
01484 05219

The initial conditions are x,(0) = x{0) = 1 and the input u{f) = 0. ALt = 0.2, the
state transition matrix is as given in Figure 3.37. The state at r = 0.2 is predicted by

the state transition methods to be
x — | 9671 -0.2968 || x _ | ne703
X2 =iz 01484 05219 || o fop (06703 |
The time response of the system of Equation (3.115) can also be obtained by
using the Isim function. The Isim function can accept as inpul nonzero initial condi-
tions as well as an input function, as shown in Figure 3.38. Using the Isim function, we
can calculate the response for the RLC network as shown in Figure 339,
“The state at ¢ = 0.2 is predicted with the Isim function to be x,(0.2) = x,(0.2) =
0.6703. If we can compare the results obtained by the Isim function and by multiplying
the initial condition state vector by the state transition matrix, we find identical results.

3.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

will develop a state variable model of the disk drive system that will include the
effect of the flexure mount.

Consider again the head mount shown in Figure 2.71. Since we want a light-
weight arm and flexure for rapid movement, we must consider the effect of the flex-
ure, which is a very thin mount made of spring steel. Again, we wish to accurately
control the position of the head y(t} as shown in Figure 3.40(a). We will attempt to
derive a model for the system shown in Figure 3.40(a). Here we identify the motor
mass as M) and the head mount mass as M;. The flexure spring is represented by the
spring constant k. The force u(r) to drive the mass M) is generated by the DC motor.
If the spring is absolutely rigid (nonspringy), then we obtain the simplified model
shown in Figure 3.40(b). Typical parameters for the two-mass system are given in
Table 3.2.

Let us obtain the transfer function model of the simplified system of Figure 3.40(b).
Note that M = M; + M, = 205 g = 0.0205 kg. Then we have

=

d"y dy
Mn‘r‘ + bld = u{f), {3.117)
Therefore. the transfer function model is
¥(s) L 1 FIGURE 3.33
Uls)  s(Ms + b)) ;:;;m
cutput and siate

Advanced disks have as many as 5000 tracks per cm. These tracks are typically
1 wm wide. Thus, there are stringent requirements on the accuracy of the reader
head position and of the movement from one track to another. In this chapter, we

el

wid

L : Arbit L)
’i.lln':"}‘ —* i=Axe By [ Oupil E
y=Cx+Dn
§ 1]
2}
wit) = output response ut £ | | p = gimes ot which Initial
T thme vector mpnueu conditions
alr) = stase resposse 517 {optional)
[y.T.aj=tsimiays.u.L,; ﬂ}

i
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MassMaMgﬁ2+bi +.k(y—q]=0.

To develop the state variable model, we choose the state variables as x, = g and
&3 = y.Then we have

SKILLS CHECK

_dg . dy
Ay = p and  x; = a
‘Then, in matrix form,
x = Ax + Bu,
and we have
i
=2
q
¥ FIGURE 3.40
{a) Model of the:
[1] Wormass Sysiem
wilh 8 spring
B= 0 Hlexure.
1/ M, ) Simplified model
4 wilh & figid spring.
and
0 0 1 0
(1] 0 [i] 1
A= 1 3119,
KM, KM, —b/M, O e
KIM:  —kiMy 0 —hyM;
Note that the output is ¥{t) = x,. Also, for L = 0 or negligible inductance, then
wft) = K w{r). For the typical parameters and for & = 10, we have
o
0
B= 50
0
and
a o 1 [}
A=l O i i 1
T -so0 4500 -205 0
420000 —20000 ] -82
. . o FIGURE 3.41
The response of ¥ for w{r) = 1, > 0 is shown in Figure 3.42. This response is quite Transtor function
il it Hg i moded of head
oscillatory, and it is clear that we want a very rigid flexure with k > 100.
a rigid spring.
Chapter 3 State Variable Models
In this section, we provide three sets of problems 1o test your knowledge: True or False, Multiple
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems.
In the following True or False and Multiple Choice problems, circle the correct answer.
1. The state variables of a system comprise a set of varfables that
describe the future response of the system, when yuu the present
state, all future excitation inputs, and the model
describing the dynamics. True or False
L. The matrix exponential function describes the unforced response of
the system and is called the state transition matrix. True or Falie
3, The outputs of & linear system can be related 1o the state variables
and the input signals by the state differential equation. True or False
4 A time-invariant control system is a system for which one or more
of the parameters of the system may vary s a function of time. True or Falre
&, A state variable representation of a system can always be writlen
in diagonal form. True ar False
6. Consider a system with the mathematical model given by the differential equation:
ay dly dy
G0 sy =
A state variable representation of the system is:
-t -1 -04 1 FIGURE 3.42
wE=] 1 0 0 [x+]|0 Response of y for a
0 1 0 (1] mml for the
mass modal
y=[0 0 02 with & = 10.
-5 =1 =07 -1
bhi= 1 0 0 [x+| O
o 1 o 0
3.1 SUMMARY

y=[0 0 02k

[ [}

€
y=[1 0
-2 =1 -04 1
dox= I 0 0 jx+|0
] 1 0 o
y=0 0 02x
For Problems 7 and 8. consider the system represented by
&= Ax + Bu,
where
0 5 1
a=foq] we mef]]
7. The associsted state-transition matrix is:
u. D(r,0) = [5r]

b B(0) = [; f’]

Section 310 Sequential Design Example: Disk Drive Read System 21
Table 3.2 Typical Parameters of the Two-Mass Model
P Symbol Value
Motor mass My 20g = 002 kg
Flexure spring k 0=k=oo
Head mounting mass My 05 g = 0.0005 kg
Head position (1) variable in mm
Friction at mass | b, 410 107 N/(m/s)
Field resistance R 1
Field inductance L 1mH
Motor constant Ko 01025 N mfA
Friction at mass 2 by 4.1 3% 107 Nf{m/s)
Head
pasition
Motar e yith Head :—-vﬂ'r — il
0% ! Flenure spring 200 1
',‘:;—0| My f My .m:—-l“'"l*ﬂ':
Iy by by
fay b

Far the parameters of Table 3.2, we obtain

¥is) 1 48.78

Uls)  s(002055 + 0.410)  s(s + 20)°

‘The transfer function model of the head reader, including the effect of the motor coil,
is shown in Figure 341. When £ = 1 0, L = 1 mH, and K, = 0.1025, we obtain

Yi) S000

G = 36) = 36+ 205 + 1000

(3.118)

which is exactly the same model we obtained in Chapter 2.
Now let us obtain the state variable model of the two-mass system shown in
Figure 3.40(a). Write the differential equations as

d* d
Mass M My + by gk + kg = ) = u(t)

Motor
ol Mass
K., titx) |
—s Wy [
Section 3.11  Summary 213
% Modael F
Ll Units
M1=0.02; M2=0.0005; k: kg/m
b1=4100-03; b2=4.1e-03; +—— b kg/mis
1a(0:0.001:1.5 m: kg
%o State

A<D 010000 T-kM1 KMI -b1/MI 0; kM2 kM2 0 -b2M2);
Be{0;0;1M1,0]; C=(0 0 0 1); D=[0]; sys=ss(A.B.C.D);
'J-wmsuoﬂm

y=stepleys.t); plotiLy)

xlabel{'Time (s}), m-n dot (mis))

L] (X} 1 15
Time (5]

In this chapter, we have considered the description and analysis of systems in the
time domain. The concept of the state of a system and the definition of the state
variables of a system were discussed, The selection of a set of state variables of a sys-
tem was ined, and the i of the state was noted. The
state differential equation and the solution for x(f) were discussed. Alternative sig-
nal-flow graph and block dmg,ram mod:l were i for reg
ing the transfer fi {or ) of a system. Using Mason’s
signal-flow gain formula, we noted the ease of obtaining the flow graph model, The
state dtll’erenha[ equation representing the flow graph and block diagram models
was also d. The time of a linear system and its associated transition
matrix was discussed, and the utility of Mason's signal-flow gain formula for obtain-
ing the transition matrix was illustrated. A detailed analysis of a space station model
dmlopmem WaS presenred fora rea.hsnc scenario where the attitude control is ac-
lish i with minimi; the actuator control. The relationship
between mode:hng with state variable forms and control system design was estab-

lished. The use of control design t rt a transfer fi to state vari-
able form and the state matrix was di d and ill d. The
chapter luded with the develop of a state variable model for the Sequen-

tial Design Example: Disk Drive Read System.
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Consider the block diagram in Figure 3.43 for Problems 12 through 14:

Ris) L3

Controller

Tdsh
{_Proces |
et 10
+ T )

FIGURE 343  Block diagram for the Skiis Check,

12 The effect of the input R{s) and the disturbance T,{s) on the output ¥ {1} can be
considered independently of each other because:

8. This is a linear system, therefore we can apply the principle of superposition.
b. The input R(x) does not influence the disturbance T,(s).
€ The disturbance T s) occurs at high frequency, while the input R{s) occurs at low

frequency,
d. The system is cansal.
13, The state-space

jon of the closed-}

p system from R(x) 1o ¥iz) is:

i= =10 + 10Kr
s
y=x
Em =(10 + 10K)x + r
y o= 10x
&= —(10 + 10K)x + 10Kr
y=z
d. None of the above

b

14. The sicady-state error E(s) = ¥{5) — K(x) due 10 a unit step disturbance T,(s) = 1/ris

= ’l_'u‘&(ll, =m
booey = lime(r) = 1
o= ‘I;I:'rtli - ﬁ

d.e.-rljﬂe(lﬁnxi-l

15. A system is represented by the transfer function

¥is) N 5[z + 10}
Ro " T T v %

‘A state variable representation is:

T

y=l0 5 SR

-0 - -50
box=| 1 o 0+
o 1 (]

y=[1 0 S0k
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EX6 A system is represented by Equation (3.16), where

oy
r= [n u]

(o) Find the matrix ®({r). (b} For the initial conditions
2(0) = 530} = 1, find x(r).
Answers (b =1+ L= 1r=0

ELT Consider the spring and mas shown in Figure 3.3
where M = 1kg.k = 100N/m, and b = 20 Ng/m.
(a) Find the state vector differentinl equation, (b)
Find the roots of the characteristic equation for this
system

e B N

(B) s = =10, =10
E38 The manual, low-altitude hovering task above o
moving landing deck of a small ship is very demand-
ing. particularly in adverse weather and sen condi-
tions, The hovering condition is represented by the

matrix
o I [}
A=|0 0 1L
0 =6 -3

Find the roots of the characteristic equation.

E39 A multiloop block diagram is shown in Figure
E3.4%. The state variables are denoted by x; and x;. (a)
Determine a state variable representation of the
closed-laop system where the output is denoted by

0 6
[ 4]
() Find the roots of the characteristic equation.

(b} Find the state transition matrix @(¢),
Answer: (a) 5 = -3, -2

e — 20N eV 4 eV
(b) @1} = [ e R e

E311  Determine a state variable representation for the
system described by the ransfer function

7 (! i+ D

DR TG DE )

E312 Usc a staie variable model to describe the circuit
of Figure E. Oibtain the response to an input unit
step when the initinl current is zero and the initial
capacitor voltage is zero.

k=30 L=02H

Vi © = B0 uF =, Ve

FIGURE E3.12  FLC series cirouit.

E313 A system is described by the two differential

yie) and the input is r{£) (b) Dy the ch
stic equation,

FIGURE E3.9 Multi-loop feedback control system.

E3L10 A hovering vehicle control system is represented
by two state variables and [13]

:lr+y—}n+an'-ﬂ.

and

aw
G-ty rdu=n,

where w and y are functions of time, and u is an input
wlr). (a) Select a set of state variables. (b) Wrrite the
matrix differentinl equation and specify the elements
of the matrices. (¢) Find the characteristic roots of the
system in terms of the parameters @ and b,
Amswer () v = =172 £ VT = daby2

E314 Develop the state-space representation of a
radioactive material of mass M to which additional
radionctive material is added at the rate r{e) = Kuir),
where K is a constant, Identily the state variables.

Skills Chack. 215
1 %
e B{n) = [I 1 ]
1 5& 7
d o ofno)=[0 1 ¢
001
8. For the inits #(0) = x{0) = 1,the response x(r} for the input
o) =01 +1).ni)=1fort =0
b o) =(5+thalt)=iforr =0
e xf) = (5t + 1).x{t) = 1forz =0
d xyft) = x5ty = 1fore =0
9. A single-input, single-output system has the state variable representation
. 0 1 1
=[5 Joefab
y=[0 10k
The transfer function of the system T'(s) = ¥{s)/U(s) is:
Tl =
R 7
-50
LR T
-5
e Tl =
T I
10. The differential equation model for two first-order systems in series is
X{r) + dxle) + 3xlr) = ule),
where 1] is the input of the first system and x(r) s the cutput of the second system.
The response xir) of the system to & unit impubse u(t) is:
o o) = =267
b« et e
P BT
e xfr) Ee“‘ ¥
o) =et=¢"
11 A first-order dynamic system is by the di ial equati
Sk(r) + x(t) = uit).
The corresponding transfer function and state-space representation are
I & =-02x + 05u
nG= s W y = 04s
10 i==02r+u
b G(9) 1+5s and y=x
L k= =5r+¥
e Glz) = varar 3 and i
d. None of the above
217

In the following Word Match problems. match the term with the definition by writing the

correct letter in the space provided,

a. State vector  The differential equation for the state vector x = Ax + Bu.

b Swteofa The matrix exponential function that describes the unforced

system response of the system. e
« Timevarying  The math ical domain that incorp the ti

system response and the description of a system in terms of time, ¢.
d. Transition Vector contalning all m state variables x), x;, ..., %,

matrix
e State A szt of numbers such that the knowledge of these numbers

variables and the input function will, with the equations describing the

dynamics, provide the future state of the system. I

L State A system for which one or more parameters may vary with

differential time.
equation

g Time domain ~ The set of variables that describe the system.

EXERCISES

E}1  For the circuit shown in Figure E3.1 identify a set of
state variables.

[
% ,J\’::'(\%I__.\M_f‘f‘:’;ﬂ_g .

¥ e

FIGURE E3.1  ALC circuit.

E3.2 A robot-arm drive system for obe joint can be repre-
sented by the differential equation [§]
B k) ~ ) + i,
where v(r) = velocity, Wi} = position, and i{f) is the
control-motar current, Put the equations in state vari-
able form and set up the matrix form for ky = ky = 1.
E33 A system can be represented by the state vector dif-
ferential equation of Equation (3.16), where

(] 1
a-[2 5]
Find the characteristic roots of the system.
Answer: =1, -1
E}4 Obtain a state variable matrix for a system with &
differential equation

dy &y &
L WL ERE. 3%
TT AT 65 4By = 2,

E3S A system is represented by a block diagram as
shown in Figure E3.5. Write the stale equations in the
form of Equations (3.16) and (3.17).

FIGURE E3.5  Block diagram,
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Obtain the transfer function Gs) = ¥{(s)U/(s) and
determine the response of the system 1o a unit step

input.

E3.22 Consider the sysiem in state variable form
= Ax + Bu
y=Cx+Du

with

A [j ﬂ.n- [_'1].(:-|| 0).and D = [0].

{a) Compute the transfer function Gis) = Y{spU{s).
(b) Determine the poles and zeros of the system. (c) If
possible, represent the system as a first-order system

PROBLEMS

P31 An RLC circuit is shown in Figere P3.1. {a) Identify.
a suitable set of state variables (b) Obtain the set of
first-order differential equations in terms of the state
variables. {c) Write the state differential equation.

FIGURE P3.1  ALC circast.
P32 A balanced bridge network is shown in Figure P2
(a) Show that the A and B matrices for this circuit are
e —2f{(Ry + B)C) 0
0 —2RR((Ry + RL) [
e e
B=1/(R, + R,j[R:fL -;,,u_]'

{b) Sketch the block disgram. The state variables are
(o g) = (u. iy

YL
L H
A VA

L s (S
Rg <R

< + <

+* L +

L Gi') ) c? 3
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K = 035. (a) Determine the closed-loop transfer
function

wis)
Tia) = Ry

(b) Determine a state variable representation. (¢) De-
termine the characteristic equation obtained from the
A matrix,

PLI0 Many control systems must operate in two dimen-
sions, for example. the z- and the y-axes. A iwo-axis
control sysiem is shown in Figure P3.10, where a setof
state variables is identified The gain of each axisis &
and K, respectively. (a) Obtain the state differential
equation. (b} Find the characteristic equation from
the A matrix. (¢} Determine the state transition ma-

trix for Ky = 1and Ky = 2.
P11 A system is described by
%= Az + Bu
where

a=[t 2]s-[1]

and x{0) = 530} = 10, Determine x(t) and xs(e).
P12 A system is described by its transfer funetion
¥(s) A + 5)
T R AP T TRy

E=ax 4 b
¥ =cx+ du
where a, b, ¢, and d are scalars such that the transfer
function is the same as obtained in (a),
EX23  Consider o system modeled via the third-order dif-
ferential egquation
) + 33r) + 3x(e) + xlo)
= b{r) + Zile) + dile) + ().
Develop o state variable representation and obtain a

block dingram of the system assuming the outpul is
xft) and the input is nir),

P33 An RLC network is shown in Figure P33, Define
The state variables as r, = i, and x; = v, Obtain the

state differential equation.
Partial answer:
L] WL
A "[-uc 1re) |

FIGURE P3.3  ALC cirouit

P34 The transfer function of a system is.

Yio) __ S+t
T""Eﬁ s 4 b+ 107

Sketch the block diagram and obiain a state variable
maodel.

P15 A clowd-loop contral system i shown in Figure
P33, (a) Determine the closed-loop transfer function
Tis) = ¥{s}R(s). (b) Sketch a block diagram model
for the system and determine a state variable model.

P36 Determine the state varinble matrix equation for the
circuit shown in Figure P3.6. Let xy = vy, 1y = . and
=i

P37  An sutomatic depth-control system for a robot sub-
marine is shown in Figure F3.7. The depth is measured

{a) Determine a state varioble model.
(b) Determine (1), the state transition matris.

P13 Consider agan the RLC circuit of Problem
P31 when R = 25, L = 14, and C = 1%, (1) De-
termine whether the system is stable by finding the
characteristic equation with the aid of the A ma-
trix. (b) Determive the transition matrix of the
network, () When the initial inductor current is 0.1
amp. 5(0) = 0. and ofr) = 0, determine the re-
sponse of the system. (d) Repeat part (c) when the
initial conditions are zero and ofr) = E, for ¢ > 0,
where E isa constant.

Pil nstate variable lon fof @ sys-
tem with the transfer function
¥is) 5+ 50
TP B B T e TP

P15 Obiain a block diagram and a state variable repre-
sentation of this system.

¥is) 14(s + 4)

i = e TPy

P16 The dynamics of a controlled submarine are signifi-
cantly different from those of an aircraft, missile, or
surface ship. This difference results primarily from
the moment in the vertical plane due 1o the buoyaney
effect Therefore, it is mteresting to consider the control

Exercises.

ELIS  Consider the case of the two masses connecled a5
shown in Figure EXIS The shidng friction of each
s has the constant b. Determine A state varinble
mutrix differential equation

FIGURE E3.15  Two-mass systom,

EAS Two carts with negligible rolling friction are con-
wected as shown in Figure EX16, An input force is u(1).
The output is the postion of cart 2, that is. wr} = gir).
Determine n stale space representation of the system.

wirl
Input
Force.

FIGURE E3.18  Two carts with neglipibée rfing inction,

EANT Determine a stale variabic matrix

219

where R, L, Ly and © are given comtants, and o, and
wy are inpuis Let the stale variables be defined ax

Xy = fy, xy = iy, and 1y = ¢ Obisin 0 stste variable
representation of the system where the output fs 1y
E319 A single-input, single-outpul system has the mairix
equations
e L, e
gl [ SR i
and
y=[10 O
Determine the transfer function G(s) = ¥{s)/L(s)
- (1]
r Gls) = ——
Answer: Gis) . preryerery

EAN  For the simple pendulum shown in Figue E320,
the noalinenr equations of metion are given by

TSPRE k
2. +2g=0,
84-1_!|l|!ll MH L

where g is gravity, L is the length of the pendulum, m

is the mass attached ot the end of the pendulumn (we

assume the rod is massless), mod k is the coefficient of

Eriction at the pived point.

(a} Linearize the equations of motion about the equi-
librigm condition @ = 0,

(b) Obtain a stole variable representation of the
system. The system outpul is the anghe 8.

equation for the cireull shown in Figure EXLIT

FIGURE E3.17  AC circull,

ELIE Conmsider o system reprosented by the following
dilferentinl equations:

i
H\'_+L|d—:-u'u.

il
L’FJ- L LR

I\ +iy= c%

FIGURE E3.20  Simple pendulem.

E321 A single-ingut, single-oulpat syster is described by

Y= [1’1 _Jz]‘m + [‘;}.m

M =10 1)ste)
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sl K Velosiny
- Vil WViay
" it ¥ s 1 nr

0 i R =2 1 Pomithan
FIGURE P3.5
Glosad-ioop
system.

4ud) 2 m

o ] el
e R

FIGURE P36  FALC ircult,

by a pressure transducer. The gain of the sterm plane
actuntor is K = | when the vertical vebocity is 25 mé
The submarine has the tramsfes lunclion
Gs) = "Tlf.
o+l
and (he feedback transducer is H{s] = 2r + 1. Deler-
mine & state varible representation for the system,

PA8 b soft landimg of A lunnr module descending on the
moan can be modeledd s shown in Figtere FAS. Define
the state variables a8 £y = y, xy = dwidr, ¥; = m and
the control as i = dridi. Assume that g & the gravity
constant on the moon, Find a state variable model for
Uhis systemn, Is this o linear madel?

PAY A speed control system psing Muid Now compo-
nenis i o be designed. The system i a pure fluid con-
trol system beenuse il does pol hove any maoving
mechanical parts The fluid may he & gas or 3 liguid. A
system is desired that maininim the speed within
0.5% af the desired speed by using a lumng fork
relerence mnd 4 valve actuator. Flukd control syslems
are insensilive and relisble over o wide range of
temperatire, electromagnetic and guclear rdiation,

Hisp

FIGURE P3.7  Submarine depth control,

Mexhle

Ihm-u Rt fult

FIGURE P3.B  Lunar moduls ianding control.

acceleration, mnd vitration. The amplilication within
the system is achicved by using a Muid jet deflection
amplifier. The system can be designed for & SM0-LW
steam turbine with & speed of 12.000 rpm. The block
dingram of the system is shown in Figure PA9. 1n di-
mensionless wnits, we have B=01.J =1, and

Tan
Vare | Divirhece
- acwator Turhine
i 4 10 1 / 1 wis)
Spend O A1 !
P e D i= i ' ? vk Speed
Tuning fork
FIGURE P3.9 aned oo detecior { oy |
Steam turbing Ky
control Ml
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FIGURE P3.21  Model of second-crder system.

ultimately varying the outpat flow rate. The system
has the rransfer function

Q) _ = L
Wy Frif+ar+ ™

for the block diagram shown in Figure P3.23{k). Obtain
m block diagram model and a siate variable model

PL24 i s desirable 10 nse well designed controllers 1o
maintain building temperature with solar collector
space-heating systema. One solar heating system can
be deseribed by [10]

axy
i Agy 4 + iy
s Xy * g ¥ A

dix Tey =iy + il

dt

FIGURE P3.30  Two-input ALC cirust.

P33 Extenders are robot manipalames it extend
(that s, increase) the strength of the buanan arm in
load-maneuvermg tasks (Figure PR.31) (19, 2] The
system i represented by the tansfer function

¥in

i
E",—”"(“t:} a3

where Uiz} is the force of 1he human hand applicd 1o
the robot manipulstor, and ¥ix) s the force of (he
robat manipulator applied to (he load Detérmine a
stafe vuriable model and the state tramition matnx
for the system,

Givigper
FIGURE P3.31 Extender for increasing the strength of
e hsrman arm in load manauvering tisks.
PR32 A drug tken orally i mgested at a mie r. The mass

of the drug in the gastrointestinal tract i denoted by
sty and in the bloodsiream by my. The raie of change

Armpifier
2. K= 50

FIGURE P3.35
Cinatank gystam.

:"R Output
S W voliage

@)
Ohtiet
Tl
—

i Qan
Tt Eafgrat
S 7] o Y o P g

FIGURE P3.23 A two-tarik system with the motor
cumant controing the output flow ratie, {a) Plysical disgram.
) Block diagram.

of the mass of the drug in the gasirointestinal tract is
equal to the rate at which rhe drug is ingested minus
the mte &t which the drug enters the bloodstream, a
rate that is taken to be propartional 1o the mass pre-
sent. The rate of change of the mass in the blood-
stresm is proponional 1o the amount coming from the
pustrointestinal tract minus the rate ot which mass fs
tost by metabolism, which is proportional (o the mass
present in the hlood. Develop o state space represen-
tatian of this system.

For the special cnse where the coefTicients of A are
eyqual to 1 (with the appropriate sign ), determine the
respanse when {0} = | and myfl) = 0 Plot the
state variables versus time and on tle 1 — x; stilg
planc.

P333  The attiiude dynamics of a rocket arc represented by

¥is)
T Gils) P

nad state varinble feedback is used where x; = wir),
£ = Wt). and i = —r; = 05x,. Détermine the roots
of the chamcterintic equation of tis system mnd the re-
sponse of the system when the initial conditions are
xy{ll) = Dand x(0) = | The input U{s) b the applied
torques, and ¥(s} is the rocket attinude.

PAM A system has the iransder function

Yin _ ! f
T i e = ey
fu) Constrwct & stnie variable representation of the
wystem.
(b} Determine the element dy(r) of the stle transi
thon matrix for thi !Flltlﬂ

P35 | ine a siate-space o for the sys-

tem shown in Figure PR35S The motor inductance is
neghgible, the motor comstant i K, = 10, the back
eleciromugnetic orce comsant & K, = 00706, the

Problems

of the depth of a submarine. The equations describing
the dynamics of a submarine can be obtamed by using
Newton's laws and the angles defined in Figure P3.16.
To simplfy the equations, we will assume that § is a
mlllanﬂolmdnulnnlyvummnl and u]!lll (L]
25 [t/s. The state variables of the

only vertical control, are &y = & 13 = dffdr, and
xy = o, where o is the angle of attack. Thus the state
vector dilferential equation for this system, when the
submarine has an Afbacore type hull. is

[ 1 o o
= | =00071 0111 002 x4+ | <0095 Jufr).
o 07 -03 +0.072
where u(t) = &,(¢), the deflection af the stern plane. (a)
Determine whether the system is stable. (b) Determine
the response of the system 0 a stemn plane step com-
mand of (.285" with the initial conditions equal to zero.

FIGURE P3.16  Submarine depth control,

PAIT A system is described by the state variable equations

Determine Gis) = ¥{a)U{s).
P18 Consider the control of the robot shown in Figure
P3.18. The mator turming at the elbow moves the wrist
the forearm, which has some [lexibility as
shown [16] The spring has & spring constant k and fric-
tion-damping constant b. Let the state variables be
& = dy — dyand xp = anyhuy, where

k4 4 &)
a5 T
‘Write the state variable equation in matrix form when
n=
Probloms:

where 1, = lempernture deviation from desired equi-
librigm, and x; = temperature of the sorage muterial
{such us & wales tank ). Alw, i, and u; are the respee
tive flow rates of conventional and solar heat, where
the transport medivm s Torced air. A solar distur-
bunce on the storage temperature (such ns overcast
skies) is represented by o, Write the matrix equations
lud solve for  the sydem response  when

= Duty = 1.and d = |, with zero initial conditions.

I‘SJS A mystem has the following differential equation:

xsr. 1]: [?]rm

Determine ®(r) and its transform (1) for the system.

P326 A system hus a block diagram ss shown m Figure
P3.26. Determine a state variable model and the stute
transition matrix (1)

s

FIGURE P26 Faecback systerm,

P27 A gyroscope with a single degree of freedom i
shown in Figure P3.27. Gyroscopes sense (he angular
mafion of » system and pre used in sutomatic Might
control systems. The gimbal maves about the cutput
axis (3, The fngmt is messured arousd the input axis
A, The equation of motion about the oulput axis is
vbtairied by equating the rate of change of angular
momentum to the sum of forques Obtain w state-
space represeniation of the gyro syslem,

a
Bupst axes

FIGURE P3.27 Gyrosceps.
PAH A two-mass sysiem i shown in Figure P328. The

rulling friclion constam b b, Determine & state vati-
able reprosentation when the output variable i wii),

Current

FIGURE P3.18 An industrial robot. (Courtesy of GCA
Corporation.)

PA19 Consider the system described by

0 = [_"z _'J]wm

where x(i) = [x.[lJ J.'!(r,'p};r {a) Compute the state
I.llnllmn mll.nx Die. 0] Umguw state lunulm

o ) =1
and x3{0) = ~1, find the solution x(s) lor £ = g

P320 A noclear reactor that has been operating in equi-
librium at a high thermal-neutron flux level is suddenly
shut down. Al shutdown, the densily X of xenon 135
and the density / of iodine 135 are 7 x 10" and
3 % 10" atoms per unit volume, respectively, The half-
Jives of 1y and Xe s nucleides are 6.7 and 9.2 hours,
respectively. The decay equations are |15, 19]

L ]

Determine the concentrations of Ly and Xeyy a5
functions of time following shutdown by determining
(&) the transiticn matrix and the system Tesponse.
(b) Verify that the response of the system is that
shown in Figure P3.20,

P32l Consider the block disgram in Figure P31,
(&) Verify that the transfer function is

Yisy LR by + ayhy
U~ F ms tay
(b) Show that a state variable madel is given by

ol bR

y=11

Gis) =

P322 Determine a state variable model for the circuit
shown in Figure P322. The state variables are
% = l,x; = u, and z; = v, The oulpul varinble is
wilf).

P32} The two-tank system shown in Figure P323(a)
is controfled by a motor adjusting the input valve and

Rolling frictim constant = b

FIGURE 3.28 Two-mass system,

P329 There has been consaderable engineering eifort di-
rected at linding ways to perform manipolative opera-
Hons in space—{or example, assembling 3 space
station and neguiring anget satellives To perform such
tusks. space shutiles carry o remote manipulator sys-
tem (RMS) in the cargo bay [4, 12, 21]. The RMS has
jproven its effectiveness on recent shutile missbons, but
now a new design approach ean be considercd—a ma.
nipulntor with lnﬂnnliln amm segments Such o du;lgn
might reduce manipalator weight by a factor of four
while producing a manpulitor that, préor o inflation,
oecupies only one-gighth & much space in the cargo
ay ai the present RMS.

The wse of an RMS [or constructing o sjace structure
i the shuttle bay s shown in Figure P3.20(a). snd s
model of the Mexible RMS arm is shown in Figere
P3.249(h), where f s the inertin of the drive motor and
L i the distance 1o the center of gravity of the load
component. Derive the state eguutions for this system.

FIGURE P3.29 Remote manipulator systsm

PR3 Obiain the stale cquations for the wo-input and
one-output circul shown in Figure P30, where the
output is iy
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FIGURE AP3.1  Elaciromagnetic suspansion system,

is f = kliying)®. where k = 28 % 10°'N m' A% De-
termine the matrix differential equation and the
equivalent transfer function X{s¥Vir)

AP32  Consider the mass i mounted on a massless cart.
as shown in Figure AP3LL Delermine ihe translor
function ¥is}Uls), and use the tmnsfer function 1o
obtain s state-space representation of the system.

FIGURE AP3.2 Mass on cart

APA3  The comtrol of an autonomous vehicle motion
fraem one point 1o another point dépeads an seeumte
wontrod of the position of the vehicle [16]. The control
ol the autonomons vehicle position ¥{r) is obtained
by the xystem shown in Figure APS3 Obiain o stane
vartuble representation of the systeen.

Vehicle
Comireller dyvamics
Rish i
lapat 27 e 8 ] Pornithom
T FEY R e T RS :

FIGURE AP3.3 Position control.
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DESIGN PROBLEMS

CDPLI  The traition drive uses the capstan drive sytem
oy shown i Figure CDPLE Neglect the elfect of the
'*' motar inductance and determine o state variable
model for the system. The parameters are given in
Tabte COPLL. The [netion of the slide is negligible.
DPLL A spring-mass-damper system, a5 shown in Figure
33,15 used as n shock sbsorber for o large bigh-perfor-
mance motorcycle. The original parameters selected
are = 1k b= 9N o/m. and k = 20 Nim. (a) De-
termine the system mulrix, the chamclertic roots, and
the transition matrix @(r). The harsh initial condjizons
are pxsimed to be w0} = Land dyidi,. = L (b) Plat
the response of y(1) and dy'edt for the first two seconds
(c) Redesign the shock absorber by changing the
spring constant and the damping constant in ordar to
reduce the effect of a high rate of acceleration force
d’yidr* on the rider. The miss must remain constant
wl 1 kg
DPAZ A system has the state vuriable matrix equation in
phase variable fonn

T

It i desired that the canonical dingonal form of the
differential equathon be

APA4 Froat suspemsions have become standard equip-

ment on mednain bikes. Replacing the rigid fork that
atinches the bicyele's front tire (o ts frime, such -
pensions absorh bump impact energy. shielding both
frome and rider from jolts Commaonly med forks,
however, use only one spring constant and treat bump
impacts ot high and low speeds—impacts that vary
greally m severity—essentially the same.
A suspemson system with multiple settings that are
sdjustable while the bike is in motion would be attrac-
tive. One air and coil spring with sn oil damper is
uyailuble that perniits an adjustment of the damping
comstant 10 the terrain as well as 1o the rider’s weight
[17]. The suspension system moded is shown in Figure
AP, where b is ndjustable. Select the appropriate
value for b so that the bike pecommodates (a) o large
bump at high speeds and (b} o small bump at low
speeds Assume that & = land k) = 2

FIGURE AP3.4 Shock nbsorber

APYLS Figure AP3S shows o mass M suspended from
another mass i by means of a light rod of lengih L
Obtnin o stute variable model wing # lincar model ws-
suming & small angle for i, Assume the oulpul is the
anghe, #.

FIGURE AP3.5 Mass suspandaed tom cart.

APMG  Coauder o crane moving m the x direction while
the mass m moves o the = direction. as shown in

3 [;3_ i]‘z; H

Determine the parameters a, b, and d to yield the re-
yuired diagonal matrix differential equation,

DP33  Ap airceaft arresting gear is used oo sw aircrafl
earrier as shown in Figure DP3.3, The lincar model of
each energy nbsorber has a drag force fiy = Kpiy. Itis
desired to halt the pirplane within 30 m after engaging
the arresting cable [13). The speed of the aircraft an
landing is 50 m/s Select the required constant Ky, nond
plot the respanse of the state varishles.

DP34 The Mile-High Bongi Jumping Company wanis

wou b0 design & bungi jumping system (ie, & cord) so
thll the jumper cannot hit the ground when his or ber
mass s less than 100 kg. but greater than 50 kg Also,
the company wants 8 lang time (the time a jumper is
moving up and down ) greater than 25 seconds, bul less
than 40 seconds. Determine the characieristics of the
eard. The jumper stands oo s platform 90 m above the
ground. and the cord will he attached 1o o fived beam
secured 10 m above the platform. Assume that the

jumper ix 2 m tall snd the cord is attached a1 the wakl
1 m highy

a0 = gl = () = 0

dlyy flr = ) ms
ala=04=0
b= 30m

Advanced Problems

mator friction is negligible, The motor and valve iner-
tig is S = 0.006, and the area of the tank is S0m’.
Note that the motor is controlled by the armature cur-
rent i, Let &y = h,x; = & and xy = diidr, Assume
that gy = 808, where & is the shaft angle. The ouput
fow is g = S0A{r).

P336 Consider the two-mass system in Figure P3.36, Find
a state variable representation of the system. Assume
the outpat is 1.

P337  Consider the block dingram in Figure P3.37, Using
the block diagram as a guide, obtain the state variable
‘maodel of the system in the form

%= Ax + Bu
¥=Cx+ Du

Using the state variable model as a guide, obtai
a third-order differential equation model for the
system.

2
=
=
=
=
b
T h
¢ :;
[ 3;
>
My T
H
iy
FIGURE P3.36 T with two spring
one damper,

5]
L]

FIGURE P3.37 A block diagram madel of a thind-order systam.

ADVANCED PROBLEMS

APLL Consider the electromagnetic suspension system
shown in Figure AP3.1. An electromagnet is located at
the upper part of the experimental system. Using the

etic force f, we want to suspend the iron
ball Note that this simple electromagnetic suspension
system is cssentially unworkable. Hence feedback
control is indispensable. As a gap sensor. a standard
induction probe of the type of eddy current is ploced
below the ball [20].

Figure AP3.6. The trolley mator and the hoist mator
are yery powerful with respect to the mass of the trol-
ley. the hoist wire, and the load m. Consider the input
control variables a5 the distances [ ond £. Also w-
sume that @ < 307, Determine a lincar madel, and de-
seribe the siate varinble differential equarion.
APFLT Consider the single-anput, single-ouput sysiem de-

seribed by

xir) = Axir) = Bur(r)

wt) = Calr)

where

o[y o-[lee

Assumie that the inpui is a lnear combination of the
states, thal s

afr) = - Kxft) + r(t),

where rli) s the reference input. The matnix K =
[Ky Ky bs kuown s the gak matrix, Substituting u{r)
into the state variable equation gives the elosed-loop
aystem

Mi) = [A = BEJxit) + Brir)
i) = Cxlr)

‘The design process involves finding K so that the
cigenvalues of A-BK arc at desired locations in the
Reft-hall plane. fump-l: the chmﬂsﬂ: pﬂlyllmhl
wnted with the cloved-k

values of K so (it the closed- lunp:lunulu:n are in
the left-half plane

APAE A system for dispensing radicactive Maid into cap-
sules is shown in Fgure AP3E{a). The horiontal axis
moving the tray of cupsules is scuated by a linear
mator. The c-axis contral s shown in Figure AFAS(b),

Assume that the state variables are ;= x,
x3 = dxldt, and x; = {. The dett.mmmsl has an in-
ductance L = mﬂuﬂammn 23240
Use a Taylor seri for th

netic force. The current is =l o+ i where
Iy = 1.06 A is the operating point and | is the variable.
The mass m is equal to 1.75 kg The gap is
X = Xy + x, where X = 436 mm s the operating
paint and 1 is the variable. The electromagnetic force

(8) Oltnin a state variable model of the doged-loop

system with input r(r} and outpist yr). (b) Determine

the characteristic Toots n( the system and compute X

such that the ch valnes are all co-locnled

at sy = =2, 0= ~Landy = -2, tt] Del:mlns
the unit step-resp

systen.

Filling Pl
Beady  caprley

|

1l

]

- Ll

FIGURE AP3.8  Automatic fluid dispensar.
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and

05000 05000 07071 [
i = | -05000 —05000 03071 |x;+ |0 |u.
—-63640 —07071 -8.000 4

y= (07071 -07071 Ofxs @

{n) Using the t function, determine the transfer func-
tion ¥{s)/U(x) for system (1),

(b} Repeat part (a) for system (2).

{¢) Compare the results in pares (a) and (b} and
comment.

CP36  Consider the closed-loop control system in Figure
CPi6.

{a) D n state variahle ion of the

controller.

(b} Repeat part (a) for the process.

¢} With the controller and process in state variable
form, use the series and feedback functions to
compute a closed-loop system representation in
state variable form and plot the closed-loop system

CPLT  Consider the following system:

[ Sk[}

y=[i O

- (3)

Using the Isim function obtain and plot the system
response (for x,(r) and £3(r)) when () = 0,

CP38 Consider the state variable mode! with parameter

with

K given by
o 1 L] o
i=|:ﬂ o Ii|:+|:0i|u.
-2 -K -2 1
y=01 0 0k

Plot the characteristic values of the system as a func-
tion of K in the range 0 = K = 100. Determine that
range of K for which all the characteristic values lie in

il v the left half-plane.
Controlier Procem
R 3 31 1 i
LiEamm FES] Femes &

FIGURE CP3.8 A closed-loap feedback control system,

ANSWERS TO SKILLS CHECK
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Multiple Choice: (6) a; (7) b: (8) e (9) b (10) ¢
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TERMS AND CONCEPTS

Canonical form A fundamental or basic form of the state
wvariable model representation, including phase variable
canonical form, input feedforward canonical form, di-
agonal canonical form, and Jordan canonical form.

canonical form A decoupled canonical form
displaying the n distinet system poles on the diagonal
of the siate variable representation A marrix.

CHAPTER

Fundamenial matrix  Sec Transition motrix.

Input Teedf d ical Torm A ical form
described by n feedback loops involving the a, coel-
ficiemts of the ath order denominator polynomial of
the transfer function and feedforward loops obtained
by feeding forward the input signal.
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PREVIEW

In this chapter, we explore the role of error signals to characterize feedback control
system performance. The areas of ml:rest include the reduction of sensitivity to
model unc inties, disturk noise ion, steady-
state errors and i f char The error signal is used to control
the process by negative feedback. G Iy king, the goal is lo minimize the
error signal. We discuss the sensitivity of a system to parameter changes, since it is
desirable to minimize the effects of parameter variations and uncertainties. We also
wish to diminish the effect of unwanted disturbances and measurement noise on the
ablhly of the syslem to track a desired input. We then describe the transient and

tate perf of a feedback system and show how this performance can
be renduly mproved with feedback. Of course. the benefits of a control system come
with an attendant cost. The chapter concludes with a system performance analysis of
the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES
Upon completion of Chapter 4, students should:
2 Be aware of the central role of error signals in analysis of control systems.

(=] Rmsllrz: the improvements aﬂ'nrdcd by feedback control in reducing system
y 1o p changes. disturb rejection, and measurement noise
nllrnutum.
a2 u the di between lling the transient response and the steady-
state response of a system,
2 Have a sense of the benefits and costs of feedback in the control design process.

Computer Problems:
DP3S  Consider the single-inpul, single-output system de-
scribed by
ft) = Axit) + Bufr)

¥a) = Cxle)
where

a=[5 e-[f}e-v a

Assume that the input is a linear combination of the
states, that is,

COMPUTER PROBLEMS

CPA1 Determine a state variable representation for the
following transfer functions (without feedback) using
the 88 function:

1
() 6o =
f45+3

® 66 = 555

s41
b L TR |
CP32 Determine a iransfer function representation for the
following state variable models using the tf function:

@a=[2 io=[ec-u o
e P Geomrn
@[t Jo-[Je-re

CP33 Consider the circuit shown in Figure CP3.3, Deter-
mine the tramsier function Vil sWV o 5). Assume an ideal
op-amp.

(a) Determine the state variable representation
when R = | kil R; = 10k, C, = 0.5 mF, and
C; = 0.1 mF.

(b) Using the state variable representation from
part (a), plot the unit step response with the step
function.

(e} Gis) =

Terms and Concepts

Jordan canonical form A block dingonal canonical form
for systems that do not possess distinct system poles.

Matrix exponential function  An imporiant matrix func-
tion, defined a5 N =1+ Af + (Asf2t + -+
(As)'4&! + -, that plays a role in the solution of fin-
ear constant coefficient differential equations.

Dutput equation  The algebraic equation that relates the
state vector x and the inputs w 1o the outpuis y
through the relationshipy = Cx + Du.

Phase variable canonical form A canonieal lorm deseribed
by n feedback loops involving the a,, coefficients of the
nth order denominator polynomial of the transfer func-
tion and mr feedforward loops involving the b,, coelfi-
cients of the mith order numerator polynomial of the

2
ule) = —Kxir) + rit).

where rir) is the reference input. Determine K=
[Ki  K3] sothat the closed-loap system

(1) = [A ~ BKx{e) + Br{r)

¥ir) = Cxle)
possesses closed-loop eigenvalues at vy and ry. Note that
ifry = o + jw is 3 complex number, then ry = o — jiw
is its complex conjugate.

=
If
I\
By
€y
L1 1
g—fwv—{&- L ..
Vafrl Vi

i1

FIGURE CP3.3 An op-amp circult.

CP34  Consider the system

T b

y=1 0 0

{a) Using the tf function. determine the transler fune-
tion ¥isWiNs).

(b} Plot the response of the system 1o the initial con-
dition x(0} = [0 —=1 1] for0 =1 = 10.

(¢) Compute the state transition matrix using the
apm function, and determine x(s) ats = 10 for the
initial condition given in part (b). Compare the re-
sult with the system response obtained in part (b).

CPAS Comsider the two systems

T

y=1l 0 o o

233

State differential equation  The differential equation for
the state vector: & = Ax + Ba.

State of a system A set of numbers such that the knowl-
edge of these numbers and the input function will,
with the equations describing the dynamics. provide
the future state of the system.

State-space representation A time-domain model com-
prising the state differential equation x = Ax + Bu
and the cutput equation, y = Cx + Du.

State variables  The set of variables that describe the system.

State vector  The vector containing all n state variables,
EITE B Y

Time domain The mathematical domain that incorpo-
rates the time response and the description of a sys-
tem in terms of time 1.

Tim 4 7

transfer function.
Phase variables The state variables inted with the
phase variable canonical form._
variables The state variables representing the
physical variables of the system.

for which one or more pa-
rameters may vary with time.

Teansition matrix ®(¢) The matrix exponential function
that describes the unforced response of the system,



FIGURE 4.3
closed-loop
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An open-loop system without f and directly g the
‘output in response (o an input signal.

By conirast, a closed-loop, negative feedback control system is shown in Figure 4.3,

A closed-loop system uses a measurement of the output signal and a
comparison with the desired ootput to generate an error signal that is used
by the ller to adjust the

The two forms of control systems are shown in both block diagram and signal-flow
graph form. Despite the cost and increased system complexity, closed-loop feedback
control has the following advantages:

O Decreased sensitivity of the system to variations in the parameters of the process.

Q@ Improved rejection of the disturbances.

O Improved noise i

a tmp ion of the dy error of the system,
O Easy control and adjustment of the transicnt response of the system.

i
Tan
Controller Process
+ Es) >
Aix) G ish . Gis) L
s * M)
His)

by
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Then. in terms of F{s), we define the sensitivity function as

S W, |
S(s) = Fo D1+ LE) (4.5)
Similarly, in terms of the loop gain, we define the compl Y itivity function as
_ L
=T ier LGy (4.6)

In terms of the functions 5(s) and C(s), we can write the tracking error as
E(s) = S(s)R(s) = S(s)G(s)Tu(s) + Cls)N(s). 47

Examining Equation (4.7), we see that (for a given G(s)), if we want to minimize the
tracking error, we want both 5(s) and C{s) to be small. Remember that S{s] and C(s)
are both functions of the controller, G (s), wh:ch the control design engineer must
select. However, the following special relationship | S(s) and C(s) holds

S(s) + C(s) = 1. (4.8)

We cannot simultanecusly make 5(s) and C(s) small. Obviously, design compromises
must be made.

To analyze the tracking error equation, we need to understand what it means for
a transfer function to be “large™ or to be “small."” The discussion of magnitude of a
transfer function is the subject of Chapters & and 9 on frequency response methods.
However, for our purposes here, we describe the magnitude of the loop gain L(s) by
considering the magnitude |L(jw)| over the range of frequencies, w, of interest.

Considering the tracking error in Equation (4.4), it is evident that, for a given
G(s), to reduce the influence of the disturbance, Ty(s), on the tracking error, E(s),
we desire L(s) to be large over the range of irequencies that characterize the distur-
bances. That way, the transfer function G(s)/(1 + L{x)) will be small, thereby re-
ducing the influence of Ty{s). Since L{s) = G, [s]G(s}. this implies that we need to

design the controller G (5) to have a large C Iy, to the
measurement noise, N(s), and reduce the influence rm the tm:k:ng error, we desire
L(.r) to be small over the range of fr ies that ch ize the

noise, The transfer function L(s)/(1 + L[:)) will be small, thereby reducing the in-
fluence of N(s). Again, since L(s) = G(s) O'(s), Ihal !mpllzs that we need to design
the controller G.(5) to have a small the app conflict
between wanting to make G.(s) large to reject dnslurbanu:s and the wanting to
make (,(5) small to artenuate measurement noise can be addressud m the desugn

phase by making the loop gain, L(s), large at low i

with the freq range . and mal:.ing L{s) small at high frequen-
cies Iy iated with noise).
More dlscussmn on disturbance rejection and noise

follows in the subsequent sections. Next, we discuss how we can use feedback ta re-
duce the sensumry of the system to vaniations and uncertainty in paramet:rs in the
process, G(s). This is plished by analyzing the tracking error in Equation (4.2)
when Ty(s) = N(s) = 0.

Section 4.1 Introduction 235

4.1 INTRODUCTION

FlG\.IRE 4.1
systam

A control system is defined as an interconnection of components forming a system
that will provide a desired system response. Because the desired system response
is known, a signal proportional Lo the error between the desired and the actual
response is generated. The use of this signal to control the process results in a
closed-loop sequence of operations that is called a feedback system, This closed-
loop sequence of operations is shown in Figure 4.1, The introduction of feedback to
improve the control system is often necessary. It is interesting that this is also the
case for systems in nature, such as biological and physiological systems; feedback is
inherent in these systems. For example, the human heartrate control system is
feedback control system,

Toill the ch istics and of i we will
consider a single-loop feedback system. Ahlmng!! runnr mntml systems are multi-
Ioop, a single-loop system is i AL of the henefits
of feedback can best be obtained from the single- Jmp mlcm and then extended to
multiloop systems.

A system without feedback, often called an open-loop system, is shown in
Figure 4.2. The disturbance, Ty(s), directly influences the output, ¥{s). In the ab-
sence of feedback, the control system is highly sensitive to disturbances and 1o
changes in parameters of Gi).

Contrblles Prisess
Oty
Commgamravin Mlcastement
Tk 740
4 Process.
*
i)
i Ao s iy —t G
1
& (1]
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In this chapter, we how the lication of feedback can result in the bene-

fits listed above, Using the notion of a I.rackmg error signal, it will be readily appar-
ent that it is possible to utilize feedback with 2 controller in the loop to improve
system performance.

4.2 ERROR SIGNAL ANALYSIS

The closed-loop feedback control system shown in Figure 4.3 has three inputs—
R(s), Tyis), and N(s}—and one output, ¥{s). The signals T,(s) and N(s) are the
disturbance and measurement noise signals, respectively. Define the i
error as

E(s) = R(s) — Y(s). (4.1)

For ease of discussion, we will consider a unity feedback system, thatis, H(s) = 1.in
Figure 4.3. In Section 5.5 of the foll g chapter, the i ofa feed-
back element in the loop is considered.

After some block diagram manipulation, we find that the outpul is given by

_ _ GA5)Gls) Gis) __ Gds)Gs)
¥Yis) = T+ GAIGE) R(s) + T G,{s)G{;)T"(,} g G'“)G(‘}N(‘v}. (4.2)

Therefore, with E(s) = R{s) = ¥(s), we have

G(s) G(5)G(s)

A= 1760060 0 * TT GmGe

Ris) - Nis).  (43)

1
1 + GAs)G(s)
Define the function

L(s) = G(5)G(s).

The function, L(s),is known as the loop gain and plays a fundamental role in control
system analysis [12]. In terms of £ (s} the tracking error is given by

G(s) L(s)
R} -3 L(s}m’} T L(;]Nm' (4.4)

E® =13 L{s}

‘We can define the function

Fls) =1+ L(s).
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smaller sensitivity, 5{s). The question arises, how do we define sensitivity? Since our
goal is to reduce system sensitivity, it makes sense to formally define the term.

The system sensitivity is defined as the ratio of the percentage change in the sys-
tem transfer function to the percentage change of the process transfer function. The
system transfer function is

T(s) = -~ (4.10)

and therefore the sensitivity is defined as

AT()T(5)

"~ AG(s)/G(s) (@1

In the limit, for small i | changes, Equation (4.11) b

arT _anT
GG G

§=

(4.12)

System sensitivity is the ratio of the change in the system transfer function
to the change of a process transfer function (or parameter) for a small
incremental change,

The sensitivity of the open-loop system to changes in the plant G(s) is equal to 1.
The sensitivity of the closed-loop is readily obtained by using Equation (4.12). The
system transfer function of the closed-loop system is

GAs)G(s)

6 =13 G060
Therefore, the itivity of the feedt system is
ar G G, G

¥ e R —— e ————
6= 36T (1 + GGY GGl + GG)

1
T (4.13)

We find that the sensitivity of the system may be reduced below that of the open-
Ioop system by increasing L(s) = G(s)G(s) over the frequency range of interest.
Note that ST in Equation (4.12) is exactly the same as the sensitive function 5(s)
given in Equation (4.5). In fact, these functions are one and the same.

Often, we seek to determine S1, where a is a parameter within the transfer
function of a block G. Using the chain rule, we find that

or

5T = SLSS. (4.14)
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FIGURE 4.5 Block diagram model of feedback amplifier assuming M, === Ry of the amgpiifier.

and
Ry + Ry (4.21)
The closed-loop transfer function of the feedback amplifier is
-K,
Tms KB (4.22)
The ivity of the closed-loop feedback ampliﬁcris
sk.= S8 = (#23)
If K, is large, the sensitivity is low. For example. if
K, = 10*
and
B =01, (4.24)
we have
1
= 4,
Y g (425)
or the itude is h dth of the itud cfthe pe: I
We shall return to the concept of sensitivi Y in f These chap-
ters will the imp of itivity in the des:gu and analysis of con-

trol systems. =

4.4 DISTURBANCE SIGNALS IN A FEEDBACK CONTROL SYSTEM

An important effect of feedback in a control system is the control and partial elimi-
nation of the effect of disturk signals. A disturb signal is an d input
signal that affects the output signal. Many control systems are subject 1o extraneous
disturbance signals that cause the syslem to provide an inaccurate output. Electronic
amplifiers have inh noise d within the i d circuits or i
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4.3 SENSITIVITY OF CONTROL SYSTEMS TO PARAMETER VARIATIONS

FIGURE 4.4
(=) Open-loop

ampiifier,
1B} Ampiifior with
feedback.

A prooess.repr!semed by the transfer function G{s), whatever its nature, is subject
to a changing aging, ig of the exact values of the process para-
meters, and orh:r natural I'aclcvrs that affect a control process. In the open-loop sys-
tem, all these errors and changes result in a changing and inaccurate output.
However, a closed-loop system senses the change in the output due to the process
changes and attempts to correct the output. The sensitivity of a control system to pa-
rameter variations is of prime img A primary advantage of a closed-loop
feedback control system is its ability to reduce the system’s sensitivity [1-4, 18],

For the closed-loop case, if G(s)G(s) == | for all complex frequencies of inter-
est, we can use Equation (4.2) to obtain (letting T;(s) = 0 and N(s) = 0)

¥Y(s) = R(s).

“The output is approximately equal to the input. However, the condition G (s)G(s) == 1
may cause the system response to be highly oscillatory and even unstable. But the fact
that increasing the magnitude of the loop gain reduces the effect of G{s) on the output
is an dingly useful result. Therefore, the first ads ige of a system is
that the effect of the variation of the parameters of the process, G(s). is reduced.

Suppose the process (or plant) G(s) undergoes a change such that the true plant
model is G(s) + AG(s). The change in the plant may be due to a changing external
environment or natural aging, or it may just represent the uncertainty in certain
plant parameters We consider the effect on the tracking error E(s) due to AG(s).
Relying on the principle of superposition, we can let Ty(s) = N(s) = 0 and consid-
er only the reference input R(s). From Equation (4.3), it follows that

1

E(s) + AE(s) = mﬂ‘fﬂ.

Then the change in the tracking error is

—G(s) AG(s)
T+ GA5IG() + Gds) AGEI1 + GGG "
Since we usually find that G(5)G(5) == G(5) AG(s), we have

~G(3) AG(5)
(1 + L{s))
We see that the change in the tracking error is reduced by the factor 1 + Lis).
which is generally greater than | over the range of frequencies of interest.
For large L(s), we have 1 + L(s) = L(s), and we can approximate the change
in the tracking error by

AE(s) =

AE(s) = Ris).

1 AG(s)

AE(s) = 6 507

Larger magnitude L(s) translates into smaller changes in the tracking error (that is,
reduced sensitivity to changes in AG(s) in the process). Also, larger L(s) implies

R(s). (4.9)
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Very often, the transfer function of the system T{(s) is a fraction of the form [1]
Nis, a)

T(s,a) Dis.a)’ (4.15)
where & is 4 parameter that may be subject to. varlalm due to the environment.
Then we may obtain the sensitivity to a by g Equation (4.11) as

dlnT T _4lnN dln D
sT = Gyl _eN_ gD
* = dna dlne w ohel, S = Sa (4.16)
where ag is the nominal value of the parameter.
Animp dvantage of feedback control systems is the ability to reduce the effect

of the variation of parameters of a control system by adding a feedback loop. To obtain

highly accurate open-loop systems, the components of lhc opea- loop, Gis), musl be

selected carefully in order to meet the exact sp & cl

systemn allows G(s} to be less accurately specified, because the sensitivity to chnn,gesw

errors in G(s] is reduced by thc loap gain L{s). This benefit of closed-loop systems is a
fur ic amplifiers of the communication industry. A

smlplc pl will il Ih: value of feedback for

EXAMPLE 4.1 Feedback amplifier

An amplifier used in many applications has a gain =K, as shown in Figure 4.4(a).
“The output voltage is

iy = =K, (4.17)
We often add feedback using a p i R, as shown in Figure 4.4(b). The
transfer function of the amplifier without feedback is
T=-K. (4.18)
and the sensitivity to changes in the amplifier gain is
sk=1 (4.19)

The block diagram model of the amplifier with feedback is shown in Figure 4.5,
where

A= _‘ (4.20)
+o— + Y
Gain Gain
Vi i ™ X,
ps = L
(a) (L1
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The change in speed due to the load disturbance is then

1
E(s) = —w(s) = mmrg{l}, (4.26)
The steady-state error in speed due to the load torque, T(s) = D/s, is found by
using the final-value theorem. Therefore, for the open-loop system, we have
A T s 1 D
limE() = lim sE(s) = lim 57— K..KH’R.( s)
2
b+ KoKi/Ra
‘The closed-loop speed control system is shown in block diagram form in Figure 4.9,
“The closed-loop system is shown in signal-flow graph and block diagram form in
Figure 4,10, where Gy(s) = K K./ R, Ga(s) = 1/(Js + b), and H(s) = K, + Ky/K,.
“The error, E(s) = —w(s), of the closed-loop system of Figure 4.10 is:
Gals)
1 + Gy(s)Gyls)H(s)

Then, if GGy H(5) is much greater than 1 over the range of 5, we obtain the approx-
imate result

—ufo0). (427)

E(s) = —uw(s) = Tals). (4.28)

E(s) = Tls). (4.29)

el
Gils)H(s)

Amplifier
Ris) gl X,

Vylsh
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Figure 4.11. The imp of the feedback system is evidi d by the almost
horizontal curves, which indicate that the speed is almost independent of the load
torgue.

M Noise Att :

‘When R(s) = T{s) = 0, it follows from Equ.alion (4.4) that

E(s) = CsIN(s) = - Nls).

L(s)
As the loop gain L(s) decreases, the eﬂecl oIN(:} on the tracking error decreases. In
other words, the 1l y function C(s) is small when the loop gain
L(s) is small. If we design G, [s) such that L{s) == 1, then the noise is attenuated
because

Cls) = L{s).

‘We say that small loop gain leads to good noise attenuation. More precisely, for ef-
fective measurement noise attenuation, we need a small loop gain over the frequen-
cies associated with the expected noise signals,

In practice, measurement noise signals are often high frequency. Thus we want
the loop gain to be low at high l'lequencn:s. This is cquwalcnl toa small comple-
mentary sensitivity function at high fi The of di {at
low frequencies) and measurement noise (at high I'roquenmcs} is very fortunate be-
cause it gives the control system designer a way to approach the design process: the
controller should be high gain at low frequencies and low gain at high frequencies.
Remember that by low and high we mean that the loop gain magnitude is low/high
at the various highflow frequencies. It is not always the case that the disturbances
are low frequency or that the noise is high frequency. For example, an
astronaut running on a treadmill on a space station may impart disturbances to the

p ft at high f ies, If the freq separation does not exist, the design
process usually b more i (for ple, we may have to use notch fil-
ters to reject disturbances at known high frequencies). A noise signal that is preva-
lent in many systems is the noise generated by the measurement sensor. This noise,
N(s), can be represented as shown in Figure 4.3. The effect of the noise on the out-
put is

Gs)G(s)

YO = 16,060

N(s), (4.34)

Section 4.4 Disturbance Signals in a Feedback Control System 243

radar antennas are subjected to wind gusts; and many systems generate unwanted
distortion sngnais due to nonlinear d:m:nli TII: bcncl'! of fccdbnck systems is that

the effect of di ton, noise, and can be effectively reduced.
Disturbance Rejection
When R{s) = N(s) = 0, it follows from Equation (4.4) that
_ Gl)
Efs) = —5(s)G(s)Tds) = T+ L s Tils).

For a fixed G{s) and a given T,(s), as the loop gain L(s) increases, the effect of T(s)
on the tracking error decreases. In other words, the scnsitivit)' function S(s) is small
when the loop gain is Iarg,e We say that tarsc loop gain leads to good disturbance re-
jection. More preci for good d ‘we require a large loop gain
over the fi fes of interest iated with the exp d disturbance signals.

In practice, the disturbance signals are often low frequency. When that is the
case, we say that we want the loop gain to be large at low frequencies. This is equiv-
alent to stating that we want to design the controller G.(s) so that the sensitivity
function §(s) is small at low frequencies.

As a specific example of a system with an unwanted disturbance, let us consider
again the speed control system for a steel rolling mill. The rolls, which process steel,
are subjected to large load changes or disturbances. As a steel bar approaches the
rolls (see Figure 4.6), the rolls are empty. However, when the bar engages in the rolls,
the load on the rolls increases immediately to a large value. This loading effect can be
approximated by a step change of disturb forque. Al ively, the resy can
be seen from the speed-torque curves of a typical motor, as shown in Figure 4.8,

The Iransfer function model of an armature-controlled DC motor with a load
torque di: was i in 2.5 and is shown in Figure 4.7,
where it is assumed that L, is negligible, Let R(s) = 0 and examine E(s) = —w(s),
for a disturbance T(s).

Roits.

" Canveyor
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Ty
' Tin

=HMis)

(1] in

FIGURE 4.10 Ciosed-loop system. {a) Signal-flow graph moded. (b Block diagram model.

“Therefore, if Gy(x)H () is made sufficiently large, the effect of the disturbance can
be decreased by closed-loop feedback. Note that
KKy Ky
Gis)H(s) = —=—=| K, + —
-5+ 5) -
since K, == K. Thus, we strive to obtain a large amplifier gain, K, and keep
R, < 2 1. The error for the system shown in Figure 4.10 is
E(s) = R(s) = w(s),
and R{s) = wy(s), the desired speed. For calculation ease, we let R(s) = 0 and ex-
amine wis).
To determine the output for the speed control system of Figure 4.9, we must
consider the load disturbance when the input R(s) = 0. This is written as

KKK

.

=1/{Js + b)
) = KKK RIS + B + (KKl R + B )
= T(s). (4.30)

T Tt b+ (KJRNKK, + Ky

‘The steady-state output is obtained by utilizing the final-value theorem, and we have
% . _ -1

,lﬂmu) !m(sw(.‘)] = b K JRNKK, + K o (4.31)
when the amplifier gain K, is sufficiently high, we have

R
) ~

The ratio of closed-loop to open-loop steady-state speed output due to an undesired
disturbance is

D = wloo). (4.32)

wlo) _ Rb + KKy
() T KKK,

(4.33)

and is usually less than 0,02,
This advantage of a feedback speed control system can also be illustrated by
considering the speed—torque curves for the closed-loop system, which are shown in
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FIGURE 4.12 Controlier Process
G, i) Gin e
o :
sys MM. Rish Pt o se N ma—H Gl % G = Hs
ta} Signal-flow graph.
(b) Block diagram. ) by
To make this concept more comprehensible, consider a specific control system,
which may be operated in an open- or closed-loop manner. A speed control system,
as shown in Figure 4.13. is often used in industrial processes to move materials and
products. Several imporlant speed control systems are used in steel mills for rolling
the steel sheets and moving the steel through the mill [I'J] The transfer function of
the open-loop system (without feedback) was i in Equation (2.70). For
a{5)/Vals), we have
wls) K,
s e (@39)
where
Kin RJ
x'-R,b+K.\.K.,, and T = Rb+ Kok
In the case of a steel mill, the inertia of the rolls is quite large, and a large armature-
controlled motor is required. If the steel rolls are subjected to a step command for a
speed change of
ks E
Vils) = 1T (4.40)
the output response is
afs) = G(s)Vy(s). (4.41)
The transient speed change is then
wlf) = Ky(ksE) L — e7'm). (4.42)
If this transient response is too slow, we must choose another motor with a dif-
ferent time constant 7y, if possible. However, because 7y is dominated by the load
inertia, J, it may not be possible to achieve much alteration of the i T
FIGURE 4.13
Open-ioop speed
control system
{without
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motor and its associated torque signal must be larger for the closed-loop than for
the open-loop operation. Therefore, a higher-power motor will be required to
avoid saturation of the motor. The responses of the closed-loop system and the
open-loop system are shown in Figure 4.15. Note the rapid response of the
closed-loop system.

While we are considering this speed control system, it will be worthwhile to de-
termine the sensitivity of the open- and closed-loop systems. As before, the s:nsumly

of the open-loop system to a in the motor or the p
constant ks is un[ly.The y of the closed-loop system to a jati in K, is
[s + (/7]

k. = sEsf. =

Using the typical values given in the previous paragraph, we have

s+ (KKK, + 1)n

4.6 STEADY-STATE ERROR

st 0.10)
- s+ 10 7
We find that the sensitivity is a function of s and must be evaluated for various values of
| This type of freq analysis is straightfi d but will be deferred until a
later chapter. However, it is clearly seen Ilm ata specllic low fnquemr-—-fo: example,
5= jw = jl—the itude of the isapp IS%.| = 0.
A feedback control system is ble because it provides the engi with the

ability to adjust the transient response. In addition, as we have seen, the sensitivity
of the system and the effect of disturbances can be reduced significantly. However,
as a further requirement, we must examine and compare the final steady-state error
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which is approximately
¥(s) = =Nis), (4.35)

for large loop gain L(s) = G (s)G(s). This is consistent with the earlier discussion
that smaller loop gain leads to noise ion. Clearly, the design-
er must shape the loop gain appropriately.

The equivalency of sensitivity, S5, and the response of the closed-loop system
tracking error to a ref: input can be d by idering Figure 4.3. The
sensitivity of the system to G{s) is

1 1
1+ GG 1+ L)

The effect of the reference on the tracking error (with Ty(s) = 0 and N{(s) = 0) is

E(s) 1 rsrrs
Rs) 1+ GAnG) 1+ L) 1N

sk = (4.36)

In both cases, we find that the effects can be i by i ing the
loop gain, Feedback in control systems primarily reduces the sensitivity of the system
to parameter variations and the effect of disturbance inputs. Note that the measures
taken to reduce the effects of parameter variations or disturbances are equivalent,
and for they reduce simull ly. As a final illustration, consider the
effect of the noise on the tracking error:

El) __Gda)Gls)  _ Lis)

T - 1F GG T+ L) (4.38)
We find that the undesired effects of noise can be alleviated by de-

creasing the loop gain. Keeping in mind the relationship
8(s) + C(s) = 1,

the trade-off in the design process is evident.

4.5 CONTROL OF THE TRANSIENT RESPONSE

FIGURE 4.14
(a} Closec-loop
speed control
system.

]

One of the most important characteristics of control systems is their transient re-
sponse. The p is the resp of a system as a function of time. Be-
cause the purpose of control systems is to provide a desired response, the transient
response of control systems often must be adjusted until it is satisfactory. If an open-
loop control system does not provide a satisfactory response, then the process, G(s),
must be replaced with a more suitable process. By contrast, a closed-loop system can
often be adjusted to yield the desired resp by adjusting the feedback loop para-
meters. It is often possible to alter the response of an open: Jnnp system by inserting a
suitable cascade controller, G.(5), preceding the process, G(s), as shown in Figure 4.12,
‘Then it is necessary to design the cascade transfer function, G,(5)G(x). so that the re-
sulting transfer function provides the desired transient response.
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closed-loop speed
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A closed-loop speed control system is easily obtained by using a tachometer
to generate a voltage proportional to the speed, as shown in Figure 4.14(a). This
voltage is subtracted from the potentiometer voltage and amplified as shown in
Figure 4.14{a). A practical transistor amplifier circuit for accomplishing this feed-
back in low-power applications is shown in Figure 4.14(b) [1,5,7]. The closed-loop
transfer function is

wis) _ KGls)
R(s) 1+ KKG(s)
K.K, . K.K\/7y

: 4
T+ 1+ KKK, s+ (1+ KKK (#43)

The amplifier gain, K,. may be adjusted to meet the reg
specifications. Also, the tachometer gain constant, K,, may be varied, if nmssary
The transient response 1o a step :hange in the input command is then

wif) = (k2EN1 = &™), (4.44)

1+ KJ( K
where p = (1 + K,K.K)/7|. Because the load inertia is assumed to be very large,
we alter the response by increasing X,. Thus, we have the approximate response

wit) = %(MEJ[I - up(———-_m'x'x"')]. (4.45)

T

For a typical application, the open-loop pole might be 1/7, = 0,10, whereas the
closed-loop pole could be at least (K,K,K,)/r, = 10, a factor of one hundred in
the improvement of the speed of response. To attain the gain KKK, the ampli-
fier gain K, must be reasonably large, and the armature voltage signal 1o the
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an example. Consider a unity fecdback system with a process transfer function
K
; - 4.5
Gls) = — (4.51)

which could represent n thermal control process, a voltage regulator, or @ water-
level control process. For a specific setting of the desired input variable, which may
be represented by the normalized unit step input function, we have R(s) = 1/x.
Then the steady-state error of the open-loop system is, as in Equation (4.49),

eloe) =1 -G =1-K (4.52)
when a consistent el of dimensional units 1s utilized for R{s) and K. The error for
the elosed-loop system is

EAs) = R(s) = T(s)R(x)

where T'{s) = GANG)/(1 + G(s)G(5)). The steady-state error is

1 ;
glo0) = lims{l = T(s)}== 1 = T()
] ¥
When G.(s) = 1/(ryx + 1), we obtain €,(0) = 1 and G(0) = K, Then we have
K !
(00) = | = ——— = 5

efoa) =1 TR IF R (4.53)

For the open-loop system, we would calibrate the system so that K = | and the

steady-state error is zero. For the closed-loop system, we would set a large gain K17
K = 100, the closed-loop system steady-state error is e.(00) = 1/101.

I the ealibration of the gain setting drifts or changes by AK/K = 0.1 (a 10%
change). the open-loop steady-state error is Ae, (o0} = 0.1, Then the percent
change from the calibrated setting is

Ae(00) 010

= o 4.54
ol 1 (.54
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G{(s) equal to 1, we imply that the output is directly connected to the input. We must
recall that a specific output (such as temperature, shaft rotation, or engine speed), is
desired, whereas the input can be a potentiometer setting or a voltage. The process
G{s) is necessary to provide the physical process between R{s) and Y(s). Therefore,
@ transfer function G(s) = lis lizable, and we must settle for a practical trans-
fer function.

4.8 DESIGN EXAMPLES

FIGURE 4.17

In this section we present three illustrative examples: the English Channel boring

machine, the Mars rover, and a blood control problem during i

The English Channel boring machine example locuses nn the closed- Iaop system

response to disturbances. The Mars rover [ ights the of
losed-loop feedback control in d ing system itivity to plant changes The

final example on blood pressure mnlrul. is 2 more in- deplh lock at the control
design problem. Since patient models in the form of transfer functions are diffi-
cult to obtain from basic biological and physical principles, a different approach
using measured data is discussed. The positive impact of closed-loop feedback control
is illustrated in the context of design.

EXAMPLE 4.2 English Channel boring machines

‘The construction of the tunnel under the English Channel from France to Great
Britain began in December 1987, The first connection of the boring tunnels from
each country was achieved in November 1990, The tunnel is 23.5 miles long and is
bored 200 feet below sea level, The tunnel, completed in 1992 at a total cost of $14
billion, accommodates 50 train trips daily, This construction is a critical link between
Europe and Great Britain, making it possible for a train to travel from London to
Paris in three hours.

“The machines, operating from both ends of the channel, bored toward the mid-
dle. To link up accurately in the middle of the channel, a laser guidance system kept
the machines precisely aligned. A model of the boring machine control is shown in
Figure 4.17, where ¥{s) is the actual angle of direction of travel of the boring machine
and R(s) is the desired angle. The effect of load on the machine is represented by the
disturbance, Ty{s).

‘The design objective is to select the gain K so that the response to input angle
changes is desirable while we maintain minimal error due to the disturbance. The

Tdn

Gis) Gls)
Baring machine

R g B : i o

Diesired K+ T
sl g + e+ 1) | Angle
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for an open-loop and a closed-loop system. The steady-state error is the error after
the transient response has decayed, leaving only the continuous response.
The error of the open-loop system shown in Figure 4.2 is
Eyls) = R(s) = Y(5) = (1 — G(s))R(s), (4.46)

when T,(s) = 0. Figure 4.3 shows the closed-loop system. When T,{s) = 0 and
N(s) = 0, and we let H(s) = 1, the tracking error is given by (Equation 4.3}

Efs) = R(s). (4.47)

1
1+ GU5)G(s)
To calculate the steady-state error, we use the final-value theorem

rI_i.r!:,ﬂjr] = ]i_\]!n sE(s). (4.48)

Therefore, using a unit step input as a comparable input, we obtain for the open-

loop system

e,(0a) =

im s(1 — cm}( ) =lim (1= G(s) =1 - GO (449)

For the closed-loop system we have

) 1 A 1
=i "(i B GJIJG(RJ)(;) “Treoem %

The value of G(s) when s = 0 is often called the DC gain and is normally greater
than one. Therefore, the open-loop system will usually have a steady-state error of
significant magnitude. By contrast, the closed-loop system with a reasonably large
DC loop gain L(0) = G{0)G(0) will have a small steady-state error. In Chapter 5,
we discuss steady-state error in much greater detail.

Upon examination of Equation (4.49), we note that the open-loop control sys-
lem can possess a zero steady-state error by simply adjusting and calibrating the
system’s DC gain, G(0), 5o that G(0) = 1. Therefore, we may logically ask, What is
the advantage of the closed-loop system in this case? To answer this question, we
return to the concept of the sensitivity of the system to parameter changes. In the
open-loop system, we may calibrate the system so that G(0) = 1, but during the
operation of the system, it is inevitable that the parameters of G{s) will change
due to environmental changes and that the DC gain of the system will no longer
be equal to 1. Because it is an open-loop system, the steady-state error will not
equal zero until the system is maintained and recalibrated. By contrast, the closed-
loop feedback system inuall: i the steady-state error and provides an
actuating signal to reduce the steady-state error, Because systems are susceptible
to parameter drift, environmental effects, and cuhbrat:un errors, negative feed-
back provides benefits. An le of an feedback control system is
shown in Fgure 4.16.

The age of the closed-loop system is that it reduces the steady-state error
resulting from parameter changes and calibration errors. This may be illustrated by
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or 10%. By contrast, the steady-state error of the closed-loop system, with
AK/K = 01,is e,(00) = 1/91if the gain decreases Thus, the change is

1 1
e (o0) = 01 e (4.55)
and the relative change is
Ae o)
= 0.0011, 4.56
o) 9
or 0.11%. This is a significant imp , since the closed-loop relative change is

two orders of magnitude lower than that of the open-loop system.

4.7 THE COST OF FEEDBACK

Adding feedback 1o a control system results in the advantages outlined in the previ-

os sections. N lly, b ., these ad ges have an dant cost. The first
cost of feedback is an i d number of P and lexity in the sys-
tem. To add the feedback, it is ¥ 1o ider several feedback

the measurement component (sensor) is the key one. The sensor 5 often th,e most
expensn'e component in & control system. Furt} the sensor i | noise

and inaccuracies into the system,

The second cost of feedback is the loss of gain. For example, in a single-loop sys-
tem, the open-loop gain is G.(s)G(s) and is reduced to GAs)G(s)/(1 + GAs)G(s))
in a unity negative feedback system. The closed-loop gain is smaller by a factor of
11 + GAs)G(s)), wln:h is exactly the factor that reduce-s the sensitivity of the sys-
tem to p and Usually, we have extra open-loop
gain avallnhlc, and we are more than willing to trade it for increased control of the
syslem response.

‘We should note that it is the gain of the input-output transmittance that is
reduced. The control system does retain the substantial power gain of a power
amplifier and actuator, which is fully utilized in the closed-loop system.

The final cost of feedback is the introduction of the possibility of instability.
Whereas the open-loop system is stable, the closed-loop system may not be always
stable. The question of the stability of a closed-loop system is deferred until Chapter 6,
where it can be treated more completely,

The addition of feedback to dy ic syslems causes more d1alleng:s for the
designer. However, for most cases, the ad ges far igh the
and a feedback system is desirable. Tt it is necessary to consider the addi-

tional complexity and the problem of stability when designing a control system.
Clearly, we want the output of the system, ¥(s), to equal the input, R(s). How-
ever, upon reflection, we might ask, Why not simply set the transfer function
G(s) = Y(s)/R(s) equal 10 17 (See Figure 4.2, assuming T,4(s) = 0.) The answer to
this question becomes apparent once we recall that the process (or plant) G{s)
‘was necessary to provide the desired output; that is, the transfer function G{s) rep-
resents a real process and possesses dynamics that cannot be neglected. If we set
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together in Figure 4.19, Since the overshoot of the response is small (less than 4%)
and the steady state is attained in 2 seconds, we would prefer that K = 20. The
results are summarized in Table 4.1

The steady-state error of the system to a unit step input R(s) = 1/sis

lime(t) = lim s—————— =0, (4.58)

1+ K+ 1l1s l
sis+ 1)
The steady-state value of y{/} when the disturbance is a unit step, T(s) = 1/s,
and the desired value is /(1) = 0 is

lim (1) = hm]:m] %. (4.59)

Thus, the steady-state value is 0,01 and 0.05 for K = 100 and 20, respectively.
Finally, we examine the sensitivity of the system to a change in the process G(s)
using Equation (4.12). Then
S5+ 1)

- A S P = L
Sg s+ 12) + K “a)

Table 4.1 Response of the Boring System for Two Gains

Time for
response to Steady-state
rif) = step response Steady-state emor
Overshoot of to reach i) for unit of respanse to
respense to steady state step disturbance r(f) = step with
K rif) = step 2% ion)  withr(t) = 0 2000 nce
100 2% 0.7s 0.0 0
20 4% 1.0s 0.05 (1]
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and the transfer function for the closed-loop system is
Y(s) K

T. g P L 4
€ = R(s) sF+ds+3+K (463
Then for K =2,
2
T(s) = Tls) = Tels) = Trats
Hence, we can the itivity of the open-loop and closed-loop sy for
the same transfer function.
The sensitivity for the open-loop system is
AT, K
fom L=
SE=1 T 1, (4.64)
and the sensitivity for the closed-loop system is
spodLK __f+4s+3 (4.65)

AK T, S 4+45+3+ K
To examine the effect of the sensitivity at low frequencies, we let 5 = jw to obtain
(3 = o) + jdw

3+ K - o) + jda (446)

sk =

For K = 2, the sensitivity at low frequencies, w < 01 is |5F] =
A freq plalm‘lhe gnitud oflhl: ivi :ssbuwnm?isum{ﬂ.
Note that the y for low freq is
ISEl <08, for w=1
The effect of the disturbance can be determined by setting R{s) = 0 and letting
Tds) = 1/5. Then, for the open-loop system, we have the steady-state value

et 11
yioo) = lim ’{(; TG+ 3)}; N 60

input with
Tds) = 1/s for
K = 100.
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output due to the two inputs is
X +11s 1
¥is) S+ + K By d4s+ KT‘&}' U

Thus, to reduce the effect of the disturbance, we wish to set the gain greater than 10,
When we select K = 100 and let the disturbance be zero, we have the step response far
@ unit step input #(¢), as shown in Figure 4.18(a). When the input #(r) = 0and we deter-
‘mine the 1o the unit step di we abtain y(r) in Figure 4.18{b).
The effect of the disturbance is quite small. If we set the gain K equal to 20, we ob-
tain the responses of y(r) due 1o a unit step input r(f) and disturbance T,(r) displayed

Time is}

Tims is)
b}
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For low frequencies (5] < 1), the sensitivity can be approxi by

(4.61)

where K = 20, Thus. the sensitivity of the system is reduced by increasing the gain,
K. In this case. we choose K = 20 for & reasonable design compromise. m

EXAMPLE 4.3 Mars rover vehicle

The solar-powered Mars rover named Sajowmer landed on Mars an July 4. 1997, and
was deployed on its journey on July 5, 1997, The rover was controlled by operators on
Earth using controls on the rover [21, 22]. The Mars rovers, aptly dubbed Spirir and
pportity, are known as the twin Mars Exploration Rovers and landed on the
planet in 2004, These new rovers dilfer in size and capability from the Sofourner
rover, Sojorrmer was aboul 65 cm (2 () long and weighed 10 kg (22 1b), while Spirir
and Opportunity ore cach 1.6 m (5.2 ft) long and weigh 174 kg (384 Ibs), Sojonrmer
Iraveled a total distance of about 100 m during its 12 weeks of activity on Mars. Spir-
ir has traveled over 7 km and Oppertinicy has traveled over 19 km. Oppumirlily has
traveled over 32 times further than expected for a successful mission. The Mars
l-_\'plumllan Rovers are more autonomaus; each carries its own telecommunications
camern, and ¥ wherens the Sojourner housed most of its equip-

m:ut on the lander left at the base gite. The solar-powered Mars rover Spirif is shown
in Figure 4.20. The vehicle is controlled fram Earth by sending it path commands, (1),

A very simplificd model of a rover is depicted in Figure 4.21. The system may be
operated without feedback, as shown in Figure 4.21(a), or with feedback, as shown
in Figure 4,21(b). The goul is to operate the rover with modest effeets from distur-
bances such as rocks and with low sensitivity to changes in the gain K.

The trunsfer function for the open-loop system is

Yis) _ K
Re) ™ &% a5+ 5

Tds) =

(4.62)
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assistance that the anesthetist can oblain automatically will increase the safety
margins by freeing the anesthetist to attend to other functions not easily auto-
mated. This is an ple of human [ ion for the overall contral
of a process, Clearly, patient safery is the ultimate objective. Our control goal
lhm I.; 1o dc\'clup an automated system to n.nula!e the deplh of anesthesia. This

ble to ic control and in fact is in routine use in clinical
npphcnlmns [24.25].

We consider how to measure the depth of ancsthesin. Many ancsthetists regard
mean arterial pressure (MAP) as the most reliable measure of the depth of anesthe-
sia [20]. The Jevel of the MAP serves as nguull: for the delivery of inhaled ancsthesia.
Based on clinical experience and the followed by the b we
determine that the variable 1o be controlled is the mean arterial pressure.

The elements of the control system design process emphasized in this example
are illustrated in Figure 4.23. From the control system design perspective, the con-
trol goal can be stated in more concrete ferms:

D Topies emphssized in this example

Regulae the mean anerial
[ESSURE B4 BNy £iven st paint

Iidemify the vaniables o be contrlled | e Sean aricrinl pressn

Five specifiemions
D81 senfing tine
D52 percest overshoo
053: fracking enor
DEA: disurbance rejection
DS3; sysem sensitivity
—— S Figure 424
Contruller. pump, patient,
wnd sembor,

Enablivh the conuol goaly

Obtain » moded of the process. ihe

5 ;)
i ok s — Sev Exuatims: (409)-4{4.71}

Describe a contraller and sefect key
parameters b be adjusted

Thee FID controfien given.

t Sce Equation (472) s Table 4.3

Optinsiee he paremeiers and e Thischapicr deals
whalype the performance with sraliysds oaly

I thie performance does not moet (he If the performance meets Hic specificatioa
then iisrsle thsen finalize the decgn.

FIGURE 4,23 Elements of (hs control sysiem design process smphasized in the blood prassirng
conrol axarmgle.
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FIGURE 4.24 contral system

vapor is equal to the input valve setting, or
alr) = wir).
The transfer function of the pump is thus given by
Gl = = 1. (469)
This is equivalent to saying that, from an input/output perspective, the pump has the
impulse response
hry=1 r=0

Developing an accurate model of a patient is much more involved. Because the
physiclogical systems m the patient {especially in a sick patlent) are not easily mod-
eled, a modeling p based on knowledge of the underlying physical p
is not practical. Even if such a model could be developed, it would, in gemml bea
nonlinear, time-varying, multi-input, mutl:-culput model Thls type of model is not
directly applicable here in our linear, time-i , single-input, single-output sys-
tem setting.

On the other hand, if we view the patient as a system and take an input/output
perspective, we can use the familiar concept of an impulse response. Then if we
restrict ourselves to small changes in blood pressure from a given set-point (such
as 100 mmHg), we might make the case that in a small region around the set-point
the patient behaves in a linear time-invariant fashion. This approach fits well into
our requirement to maintain the blood pressure around a given set-point (or baseline),
The impulse response approach to modeling the patient response to anesthesia has
been used successfully in the past [27].

Suppose that we take a black-box approach and obtain the impulse response in
Figure 4.25 for a hypothetical patient. Notice that the impulse response initially has
a time delay. This reflects the fact that it takes a finite amount of time for the patient
MAP to respond to the infusion of anesthesia vapor. We ignore the time-delay in

FIGURE 4.22
The i of
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As shown in Section 4.4, the output of the closed-loop system with a unit step
disturbance, Ty(s) = 1/5,is
1 1 1
}; =— (4.68)

’(""”‘!i!'«’{(f”nﬂxj 3+ K

‘When K = 2, y(00) = 1/5. Because we seek to minimize the effect of the distur-
bance, it is clear that a larger value of K would be desirable. An increased value of
K., suchas K = 50, will furﬂ'u:r wduoe the effect olth: disturbance as well as reduce

| 4.66) , 85 we increase K beyond

the i of the
K = 50, the transient perfurmanc: of the system for the ramp input, r{r), begins to
deteriorate. m

EXAMPLE 4.4 Blood pu::sn! control during anesthesia

The objectives of ia are to eli pain, and natural reflexes so
that surgery can be :cnduc!ed safely. Before about 150 years ago, alcohol, opium
and cannabis were used to achieve these goals, but they proved inadequate [23],
Pain relief was insufficient both in magnitude and duration; too little pain medica-
tion and the patient felt great pain, too much medication and the patient died or be-
came comatose. In the 18505 ether was used successfully in the United States in
tooth ions, and shortly th fter other means of achieving unconsciousness
safely were developed, including the use of chl m and nitrous oxide.

In a modern operating room, the depth of anesthesia is the responsibility of
the anesthetist. Many vital parameters, such as blood pressure, heart rate, tem-
perature, blood oxygenation, and exhaled carbon dioxide, are controlled within
acceptable bounds by the anesthetist, Of course, to ensure patient safety, ade-
quate anesthesia must be maintained during the entire surgical procedure. Any
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Control Goal
Regulate the mean anerial pressure to any desured s:bpmnl and maintain the
prescribed set-point in the p of

Associated with the stated control goal, we identify the variable to be controlled:

Variable to Be Controlied
Mean arterial pressure (MAP).

Because it is our desire to develop a system that will be used in clinical appli-
cations, it is essential to establish realistic design specifications. In general terms
the control system should hav: minimal cornplcxily wllll: satisfying the control
specifications, Mini p into i 1 system reliability and
decreased cost.

The closed-loop system should respond rapidly and smoolhly 10 :hnnys in the
MAP set-point (made by the hetist) without

loop system should the effects of i ‘T‘hem are lwo
imp gories of di surgical di such as skin inci
and errors, such as calibration errors and random stochastic noise, For

example, a skin incision can increase the MAP rapidly by 10 mmHg [26]. Finally,
since we want to apply the same control system to many different patients and we
cannot (for practical reasons) have a separate model for each patient, we must have
a closed-loop system that is insensitive to changes in the process parameters (that is,
it meets the specifications for many different people).

Based on clinical experience [24], we can explicitly state the control specifica-
tions as follows:

Cnnlml Design Specifications
Settling time less than 20 minutes for a 10% step change from the MAP set-point,
DSZ Percent overshoot less than 15% for a 10% step change from the MAFP set-point.
D53 Zero steady-state tracking ervor 1o a step change from the MAP set-point,
D54 Zero steady-state error to a step surgical disturbance input {of magnitude
|} = S0) with a maximum response less than £5% of the MAP set-point,
D55 Mini itivity to process changes.

We cover the notion of percent overshoat (DS1) and settling time (DS2) more thor-
oughly in Chapter 5. They fall more naturally in the category of system perfor-
mance. The remaining three design specifications, DS3-DS5, covering steady-state
tracking errors (DS3), disturbance rejection (DS4), and system sensitivity to para-
meter changes (DS5) are the main topics of this chapter. The last specification, D55,
is vague; , this is a ch istic of many real-world specifica-
tions. In the syst:m conﬂgura on, Figure 424\ we identify the major system ele-
ments as the pump/vap sensor, and patient.

The system input R(s) is the desired mean arterial pressure change, and the out-
put ¥{s) is the actual pressure change. The difference between the desired and the
measured blood pressure change forms a signal used by the controller to determine
value settings to the pump/vaporizer that delivers anesthesia vapor to the patient.

The model of the pump/vaporizer depends directly on the mechanical design.
‘We will assume a simple pump/vaporizer, where the rate of change of the output




FIGURE 4.26
Systemn sensitivity
o vaiations in the
paramater p.

Chapter 4 Feedback Control System Characteristics

E(s) = R(s) - Y(5) = Ris),

1
[+ GAG, (G ()

or
4 2ps + pst
E{s) = Ris).
() s+ 2ps + (p0 + Kp)s® + Kps + K, )
Using the final-value th we ine that the steady-stat ki
error is

Ryls* + 2ps* + p*s?) 0
S 2p (PP Kp)s o+ Kes + Ky
where R(s) = Ry/s is a step input of magnitude Ry, Therefore,

i = lim
!‘-'.'E sEts) 5=l

rlingo eft) = 0.

With a PID controller, we expect a zero steady-state tracking error (to a step input)
for any nonzero values of Ky, Kp. and K. As we will see in Chapter 5, the integral
term, K,/5, in the PID controller is the reason that the steady-state error to a unit
step s zero, Thus design specification DS3 is satisfied.

‘When considering the effect of a step disturbance input, we let R(s) = 0 and
N(s) = 0. We want the steady-state output ¥(s) to be zero for a step disturbance.
The transfer function from the disturbance T,(s) to the output ¥{s) is

=Gi(s)

Y6 = T GG, 60
_,1
S IR TP T Kt e ¥ Ky O
When
oy
Ts) = 3
we find that
; - =Dyt -
lime¥ () ‘h_n"'\,s. +2ps® + (p? + Kp)s® + Kps + K, 9
Therefore,

lim () = 0.
Thus a step disturbance of magnitude Iy will produce no output in the steady-state,

as desired.
‘The sensitivity of the closed-loop transfer function to changes in p is given by

= 5555
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3

Seasitivity magnitude

Freguency (radimis)

11.5%, as illustrated in Figure 4.27. The settling time is the time required for the sys-
tem output to settle within a certain percentage (for example, 2%) of the desired
steady-state output amplitude. We cover the notions of overshoot and settling time
more thoroughly in Chapter 5. The overshoot and settling times are summarized in
Table 4.2.

14 7
& 12 ,.’i\\_ = 15% owershoot
! = B

E A S
NS
i
L

& 5 0 [ 0

Tiene (min)

our design and analysis. but we do so with caution. In subsequent chapters we will
learn to handle time delays We keep in mind that the delay does exist and should be
considered in the analysis at some point.

A reasonable fit of the data shown in Figure 425 is given by

H)y=w™ =0

where p = 2 and time () is measured in minutes. Different patients are associated
with different values of the parameter p, The corresponding transfer function is

i
—_— 4.
Gls) = G+ (4.70)
For the sensor we assume a perfect noise-free measurement and
His) = 1. [CARb]
Therefore, we have a unity feedback system.
A good ller for this application is a proportional-integral-deri
(PID) controller:
K Kps® + Kps + K
Glo) = Ky + sKp + St = LTS 2T, “m)
where Ky, Ky, and K are the ller gains 1o be d ined to satisfy all design
specifications. The selected key parameters are as follows:
Select Key Tuning Parameters

Controller gains Kp, K. and K.

‘We begin the analysis by considering the steady-state errors. The tracking error
{shown in Figure 4.24 with Ty{s) = Dand N(s) = 0} is
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We compute 55 as follows:
;%6 p _ —2p
S: Coap Gls) s+ p
and
s = 1 _ (s + p)
T+ GANGHNG(s)  5* + 2ps° + (p7 + Kp)sT + Kps + K,
Therefore,
2,
ST = sTs6 = pls + p)s° (473)

s'+ 2ps® + (p* + Kp)st + Kps + K

We must evaluate the sensitivity function S,’:. at various values of frequency. For low
fi we can the system sensitivity 5}, by

1 i e
20
K

T
5=

So at low frequencies and for a given p we can reduce the system sensitivity to varia-
tions in p by increasing the PID gain, K;. Suppose that three PID gain sets have been
proposed, & shown in Table 4.2. With p = 2 and the PID gains given as the cases 1-3 in
Table 4.2, we can plot the magnitude of the sensitivity Sz &5 a function of frequency for
each PID controller. The result is shown in Figure 4.26. We see that by using the PID 3
controller with the gains Kp = 6, K = 4, and K; = 4, we have the smallest system
sensitivity (at low frequencies) to changes in the process parameter, p. PID 3 is the
controller with the largest gain K. As the frequency increases we see in Figure 4.26
that the sensitivity increases, and that PID 3 has the highest peak sensitivity,
Now we consider the transient response. Suppose we want to reduce the MAP
by a 10% step change, The associated input is
Ry 10
s} = s 5
‘The step resp for each PID ller is shown in Figure 4.27. PID 1 and PID 2
meet the settling time and overshoot specifications; however PID 3 has excessive
overshoot. The overshoot is the amount the system output exceeds the desired
steady-state response. In this case the desired steady-state response is a 10% decrease
in the baseline MAP. When a 15% overshool is realized, the MAP is decreased by

Table 4.2 PID Controller Gains and System Performance Results

Input response  Settling Disturbance response
PID Ke Ko K overshoot (%) time (min)  overshoot (%)

1 [] 4 1 140 10.9 515
2 5 7 2 14.2 87 4.39
| [ 4 4 W7 1.1 A6
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4.9 CONTROL SYSTEM CHARACTERISTICS USING CONTROL DESIGN SOFTWARE

270

In this section, the advantages of feedback w-illbe ill with two ples. In
the first le, we will introduce feedback control to a speed tachometer system
in an effort to reject disturbances. The tachometer Spc:d conlro] system example
can be found in Section 4.5, The reduction in system y to process

of the and red in steady-state error will be

demonstrated using the English Channel boring machine example of Section 4.8,

EXAMPLE 4.5 Speed conirol system

The open-loop block diagram description of the armature-controlled DC motor
with a load torque disturbance T,(s) is shown in Figure 4.7. The values for the vari-
ous parameters (taken from Figure 4.7) are given in Table 4.3, We have two inputs to
our system, V,(5) and T,(s). Relying on the principle of superposition, which applies
to our linear system, we consider each input separately. To investigate the effects of
disturbances on the system, we let V,(s) = 0 and consider only the disturbance
TA5). Ci Iy, to igate the of the system to a reference input, we
let T{s) = 0 and consider only the input V,{s).

The closed-loop speed tachometer control system block diagram is shown in
Figure 4.9. The values for K, and K, are given in Table 4.3.

If our system displays good disturbance rejection, then we expect the distur-
bance Ty(s) to have a small effect on the output e(s). Consider the open-loop sys-
tem in Figure 4.1 first. We can compute the transfer function from Ty(x) to w(s) and
evaluate the oulput response to a unit step disturbance (that is, Ty{s) = 1/5). The
time response to a unit step disturbance is shown in Figure 4.29(a). The script shown
in Figure 4.29(b) is used to analyze the open-loop speed tachometer system.

The open-loop transfer function (from Equation (4.26)) is

e L VI
Ts) 2¢+ 15

= sy5_0,

where sys_o represents the open-loop transfer function in the script. Since our desired
value of w(r) is zero (remember that V,(s) = 0), the steady-state error is just the final
value of w(t), which we denote by w,(¢) to indicate open-loop. The steady-state error,
shown on the plot in Figure 4.29(a), is approximately the value of the speed when
+ = T seconds. We can obtain an approximate value of the steady-state error by look-
ing at the last value in the output vector ¥,. which we computed in the process of gen-
erating the plot in Figure 4.2%(a). The approximate steady-state value of w, is

awh(00) = w,(T) = —0.66 rad/s.

The plot verifies that we have reached steady state.

Table 4.3 Tachometer Control System Parameters
A, K ] b Ky Ky K,
111 10 NmiA 2kgm’ 0.5 Nms 0l Vy 54 1Vs
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We have achieved a ble imp in disturbance rejection. It is clear
that the addition of the negati iback loopleductdl.hl:effccl of the disturbance
on the output. This d the di rejection property of closed-loop

feedback systems, m

EXAMPLE 4.6 English Channel boring machines

The block diagram description of the English Channel boring machines is shown
in Figure 4.17. The transfer function of the output due to the two inputs is
(Equation (4.57))

K+ 1s

YO = F ek

Rix) + Tals).

1
S+ + K
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‘We conclude the analysis by idering the t From p
analysis we know that the transfer function from the disturbance input T,(s) to the
output ¥(s) is

Y& =173, (s)s,(s:o(.-l )
fFrge (At k,,;;’ T K R
To investigate design specification DS4, we pute the disturb step resp
with
B _%
Tyls) T
This is the maxi de disturb (ITdr)| = Dy = 50). Since any step

disturbance of smaller magnitude (that is, |Ty()] = Q] < 50) will result in a
smaller maximum output response, we need only to consider the maximum mag-
nitude step disturbance input when determining whether design specification DS4
is satisfied.

The unit step di for each PID ller is shown in Figure 4.28, Con-
troller PID 2 meets design specification DS4 with a i less than
£5% of the MAP set-point, while controllers PID 1 and 3 nearly meet the specifica-
tion. The peak output values for each controller are summarized in Table 4.2.

In summary, given the three PID controllers, we would select PID 2 as the con-
troller of choice. It meets all the design specifications while providing a reasonable
insensitivity to changes in the plant parameter, =

Percent decrease wn mean arterial pressure (%)
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Open-Loop Disturbance Step Response
o

]
=02

§ =03
=04 Sieady-uuie error
=05
-o6|
oty I 2 3 ] s 5

“wSpeed Tachomeler Example
%

Ra=1; Kmei; Ju2; [=0.5; Kb=0 1;
mumi={1]: dent={J,b): sysi=tiinuml dent);
num2={Km*Kb/Ral; ﬁn&-ll sys2atfinum2 den2)

;"' AV Change sign of mansfer function since the

sys_o=-sy8_0 disturbance has negative sign in the diagram.,
Ti=step{sys_o): &

E&U.M siep disturbance.

title{'Open-Loop Disturbance Step Response’)
m Time (s}),ylabei{omega_o), grid

mcmmm}.___]?m&m—-mmnmrwm]

by

In a similar fashion, we begin the closed-loop system analysis by computing the
closed-loop transfer function from T({x) to w(s) and then generating the time-
response of a{f) to a unit step disturbance input, The output response and the
scnpl cltach.m are shown in Figure 4.30, The closed-loop transfer function from the

t input (from Equation (4.30)) is
ﬂ Ty
Tds) 25 + 5415
As before, the steady-state error is just the final value of w(t), which we denote by
w,(¢) to indicate that it is a closed-loop. The steady-state error is shown on the plot in
Figure 4. 3{a), We can obtain an approximate value of the steady-state error by look-
ing at the last value in the output vector y,, which we computed in the process of gen-
erating the plot in Figure 4.3(0(a). The approximate steady-state value of w is

w(00) = a,(0.02) = —0.002 rad/s.

We generally expect that w(00)/w00) < 0.02. In this example, the ratio of closed-
loop to open-loop steady-state speed output due 1o a unit step disturbance inpul is

w(o0)

= sye
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can be altered by feedback control gain, K. Based on our analysis thus far, we would
prefer to use K = 20, Other considerations must be taken into account before we
can establish the final design.

Before making the final choice of K. it is imp ider the system
1o & unit step disturbance, as shown in Figure 4.32. We see that increasing K reduces the

Disturbance Respanse for = 100

o 3 (£ 15 0 13
Time {s)

Disturbance Response for k=20

nos
0k
= o
0o
oo

% Response 1o a Digturbance T{s)=1/s lor K=20 and K=100
%

numgs=(1}; deng={1 1 0}
sysg=tiinumg.deng);

K1=100; K2=20;

num1={11 K1J: num2={11 K2}, uan-{o 1
mlaﬂ(ﬂmml,ﬂln) sys2=Hinum2,

sys1); w Closed-loop
i Sys2), gy transier functions,
%
t={0:0.01:2.5];
[y t=stepisysal). [y2.lpsteplsysh.l);
1).plot(ty1), teley'D Response for K=1007)
e ) e Mﬁw for K=20)
( o
FIGURE 4.32 *
The respanse 1o a xabaxTTime {sF).yiabe(yith). orid Create subglots with
step disturbance xand y labels.
when (a) K = 100
and {b) K = 20
fc} -t seript. e}
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& Sysem Seesitvity 1o Plant Varatkons
& 04
B
Z 02
=02 o 02 04 fh o Lo
Real (5)
&
E
<
-t 0 "' T w
ar{radfsh
]
System Sensitivity Pl
: i Set wp vectorof 1 = o
K=20; num={1 1 0], den={1 12 K], o evalaste the sensitivity.
w=logspace(-1,3.200); s=w"i;
=52 + 5 d= 5.2 + 12°54K, Banid; Syssem sensitivity.
n2= 5, d2eK; S2enl /2,
% e oo sty |
subplot(211), p imsg(S)) L =
ity ta Plant ]
labei{ FiealS)), yiabel(imag(5)), grid
FIGURE 4.33 subplot{212), loglog(w, abs(S),w,.abs({52))
{8) System i xiabel{ \omega(rad's)’), ylabel['Abs(S)], grid
y to
variations (s = ju).
{b) m-file seript. L
physical shocks, wear or wobble in the spindle bearings, and p changes due to

component changes. In this section, we will examine the perl‘ormanuc of the disk drive
system in response to disturbances and changes in system parameters. In addition, we
examine the steady-state error of the system for a step command and the transient
response as the amplifier gain K, is adjusted. Thus, in this section, we are carrying out
the last two steps of the design process shown in Figure 1.15.

Let us consider the system shown in Figure 4.34. This closed-loop system uses an
amplifier with a variable gain as the ller. Using the | ified in
Table 2.10, we obtain the transfer functions as shown in F‘sur: 435, Farst, we will
determine the steady states for a unit step input, R(s) = 1/s, when T{s) = 0.
When H(s) = 1, we obtain

1
E(s) = R(s) = Y(s) = T+ KGB)1G5) R(s).

FIGURE 4.31
The response to &
step input when
(a} K = 100 and
) K = 20.

() m-fibe script,
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Suep Respanse for K= 100
15
10
® Overshoot
0s ‘Seathing time
Yooz a4 @ o8 18 12 14 6 14 20
Time {51
)
Step Resposne fue K =20
i
fﬁ—m =

[ B2 04 D6 0K 10 12 14 W6 0¥ 2D
Thime {31

b}

% Fesponse o a Unil Step Input Afsk=1/s for K=20 and K=100
%
numg=(1]; deng={1 1 0, sysg=ti{numg,deng);

Ki=100; K2=20,

numi=[11 K1J; num2={11 K2]; den=[0 1];

sys1=Himm1.den);

sysdwifnum? den),

%

. sysg); sysb sysg); Closed-loop
ysa,[1]); sysd: ysb[1]) rransfer functions.

%

Cpooizg

[y t}=stepisysc.t); [y2.t}=step(sysd.t):

subpici211),plotty 1), titie('Step Response for K=1007 | Cresie subplots
wabod{ Time (sf].vlabal('y(1)), grid with x and y

subpiol|212),ploty2), lite('Step Response for K=201) axis labels.

wdabel{Time {s))ylabei(y(t)), grid

(]

The effect of the control gain, K, on the transient response is shown in Figure 4.31
along with the script used to the plots C g the two plots in parts (a)
and (b). it is apy that dec 2 K d the h Although it is not
as obvious from the plots in anr: 431, it s also true that decreasing K increases
the settling time. This can be v:nh:d by taking a closer look at the data used
o generate the plots. This I how the i P
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Table 4.4 Response of the Boring Machine Control System
forK = 20and K = 100

K=20 K =100
Step Response
Overshoot 4% %
T 1.0s 07s
Disturbance Response
= 5% 1%

steady-state response of y(f) to the step disturbance, The steady-state value of y(r)
is 0.05 and 001 for K = 20 and 100, respectively. The steady-state errors, percent
overshoot, and settling times (2% criteria) are summarized in Table 4.4, The
steady-state values are predicted from the final-value theorem for a unit distur-
bance input as follows:

. . 1 11
Amp( = f‘-'-‘?n‘{s(s Fi2)+ x}}' =%

1f our only design consideration is disturbance rejection, we would prefer to use
K = 100,

‘We have just d a very de-off si in control system
design. In this particular example, increasing K leads to better disturbance rejection,
whereas decreasing K leads to better perf (that is, less hoot), The final
decision on how to choose K rests with the designer. Although control design soft-
ware can certainly assist in the control system design, it cannot replace the engi-
neer’s decision-making capability and intuition.

The final step in the analysis is 1o look at the system sensitivity to changes in the
process. The system sensitivity is given by (Equation 4.60),

s(s + 1)
55,:(:+12]+K'

We can compule the values ofSG(:} for different valn:s of s and generate a plot of the
system sensitivity. For low frequencies, we can app the system sensitivity by

55=—K"

Increasing the gain K reduces the system y. The system itivity plots
when 5 = jew are shown in Figure 433 for K = 20. m

4.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM

The design of a disk drive system is an exercise in compromise and optimization. The
disk drive must accurately position the head reader while being able to reduce the
effects of parameter changes and external shocks and vibrations. The mechanical arm
and flexure will resonate at rrequenmes that may be caused by excitations such as a
shock toa book computer. Di to the op of the disk drive include




FIGURE 4.38

Closad-locp

response, ja) m-file
Step

response for
K, = 108nd
K, = B0,
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Ka=10;
ni=[S000}; di=[1 1000k syst=thntdf);
ngs{1]; dg={1 20 OF: sysg=tilng.cgl:
sysasseries(Ka'sysl sysq);
(aysa.l1]):
1=[0n0.01:2]
y=step{ays.l); plotiLy)
ylabal{yit)'), xlabal{Tima (s}], grid
fay
0
09
0R
o7
a6
Z o5
o
o3
02
al
nﬂ 027 04 06 O 10 12 14 16 1R 20
Time (s}
L2
1.0
0K
Z 06
04
02

02 04 06 OF 10 12 14 16 IR 20
Time (s}
(1)
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The loop gain L(s) = G.(s)G(s) plays a fundamental role in control system
analysis. Associated with the loop gain we can define the sensitivity and comple-
mentary sensitivity functions as

1 Lis)
S = Tv o MY = T Loy

respectively. The tracking error is given by
E(s) = S(s)R(s) — S(s)G(s)Ts) + Cls)N(s).

In order to minimize the tracking error, E(s), we desire to make 5(s) and C(s) small,
Because the itivity and P y itivity i satisfy the con-
straint

S(s) + Cls) = 1,

we are faced with the fundamental trade-off in control system design between
rejecting disturbances and reducing sensitivity to plant changes on the one hand,
and attenuating measurement noise on the other hand.

The benefits of k can be ill d by ing the system shown in
Figure 4.38(a). This system can be considered for several values of gain K. Table 4.5
summarizes the results of the system operated as an open-loop system (with the
feedback path disconnected) and for several values of gain, K, with the feedback
connected. It is clear that the rise time and sensitivity of the system are reduced as

Wi

k=10

K= 0

=1L
o
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Disturban:
Tnh
o ifier Coil N "
Desired + Vi) K, i
o I et I 272 Trn Acal
positen L
FIGURE 4.34 Sensor
Control system for
sk diive haad Hish= |
Foader,
Dissurbarce
Ty
ml.lﬂiksﬁ Cail 2z [ load ]

A O 3 - s
::wwl.mm Rist . Gitay T F 1000 o Gt} e —|—bw.|
paramaters of
Tabie 2.10.

Therefore,
" " 1 1
Then the steady-state error is ¢(00) = 0 for a step input. This performance is
btained in spite of ch in the system p 5
Now let us determine the transient performance of the system as K, is adjusted.
The closed-loop transfer function (with Ty(s) = D) is
T = YO . _KGi5)GK)
Ris) 1+ K,G(5)Gs(s)
5000 K,
- et A 4.75
5+ 102057 + 200005 + S000K, (@73
Using the script shown in Figure 4.36{a), we obtain the response of the system
for K, = 10 and K, = 80, shown in Figure 4.36(b). Clearly, the system is faster in
responding to the command input when K, = 80, but the response is unacceptably
oscillatory.
Now let us determine the effect of the disturbance Ty(s) = 1/s when R(s) = 0.
We wish to decrease the effect of the disturbance to an insignificant level. Using
the system of Figure 4.35, we obtain the response ¥(s) for the input Ty(s) when
K, = 80 as
Gils)
§) - el g, 4.76,
¥is) 1+ GG ls) {4.76)
Using the script shown in Figure 4.37(a), we obtain the response of the system when
K, = 80 and T,{s) = 1/s. as shown in Figure 4.37(b). In order to further reduce the
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0
n={5000]; di={1 1000]; sysi=tind df).
ng=[1]; dge(1 20 0; sysg=tiing.dgl
. Kasysf), i
SYS=—6YyS; sumimer
=000 2] negative slgn.
yeslep(sys.i);
plotiLy), grid
yiabel(y{i}), xlabesTima {s)}, grid
ta)
L
' ]
-05
.
-5
=2
FIGURE 4.37 -15
Disturbance step
m' L ko i g 02 04 06 08 10 12 14 16 1S 20
(b} Disturbance Time (5}
for
Ky = BO. by
effect of the disturbance, we would need to raise K, above 50, However, the response
to a step command r(r) = 1,1 > 0 is unacceptably oscillatory, In the next chapter,
we attempt to determine the best value for K. given our requirement for a quick,
yet nonoscillatory response.
411 SUMMARY

The fundamental reasons for using feedback, despite its cost and additional com-
plexity, are as follows:

1. Dy in the sensitivity of the sy 1o variations in the g of the process,
2. Improvement in the rejection of the disturbances.
31 in the ion of noise.

4. Improvement in the reduction of the steady-state error of the system.
5. Ease of control and adjustment of the transient response of the system.
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5. An advantage of using feedback is a decreased sensitivity of the system

to variations in the parameters of the process. True or False
6. The loop transfer function of the system in Fwe 4394
Gla)Gis) = m

“The sensitivity of the closed-loop system to small changes in 7 is2

L]
R
St ST
o 55} = m

2]
& 878 = -5

7. Comsider the two systems in Figure 4.40.

Ry —s 9, “ H i

FIGURE 4.40  Two feedback systems with gains K, and K;.

These systens have the ume transfer function when K| = K; = 100. Which system is
most sensitive 1o variations in the p K,? Compute th itivity using the nom-
inal values Ky = Ky =

. System (1) is more sensitive and 5%, = 0,01

b, System (i} is more sensitive and 5§, = 0.1

& System (i) is more sensitive and S§, = 0.01

d. Both systems are equally sensitive 1o changes in K.
8. Consider the closed-loop transfer function
Ay + kA
Ay + KAy
where Ay, Ay, Ay, and A, are constanis. Compute the sensitivity of the system to
variations in the parameter k.

kA Ay — Ay}
[ Ay + kA Ay + kAy)

k{AzAy + AyAy)
(Ax + kA A + kAy)

Tis) =

a S5 =

b 5[ =
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Consider the block diagram in Figure 4.39 for Problems 13-14 with G.{s) = K and

b
e T

13. The sensitivity 5T is:

“yTEE<2

14. Compuate the minimal value of X so that the steady-state error due 1o a unit step distar-
ance is less than 10%.

LK-I-E
b K=b

1
K=wid=-—
o K= =

d. The steady-state error is 2o for any K
15. A process is designed to follow a desired path described by
ety = (5 = 1+ 050 u{r)

where r{t) is the desired response and w{r) is a unit step function. Conséder the unity
feedback system in Figure 4.39. Compute the steady-state error (E(s) = R{s) — ¥ (s}
with Ty{x) = 0) when the loop transfer function is

s + 1)

L{s) = Gl5)G(s) = s

8. g = lime(r)—s 00
boe,= 'll_n;m; =1
ooy - 'I_iﬂdr} =05
4 ey = lime(t) =0

In the following Word Match problenis, match the term with the definition by writing the
correct letier in the space provided.

u. Instability An unwanied input signal that affects the system output
signal, E—
b. Steady-state The difference between the desired output, R{s), and the
errer actual output, ¥is).
¢ System A system without feedback that directly generates the
sensitivity output in response 1o an input signal. —

d. Components The error when the time period is large and the transient
response has decayed leaving the conlinuous response.
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Table 4.5 System Response of the System Shown in Figure 4.38(a)
Open Loop* Closed Loop
K=1 K=1 K=8 K =10
Rise time (s} (10% to %0% of final value) 335 1.52 0,45 .38
Percent overshoot (%) o 431 33 40
Final value of w1} due 10 a disturbance, Ty(s) = I/s Lo 0.50 o1 009
Pereent steady-state error for unit step input ] 50% 11% 9%
Percent change in steady-state error due 1o 10% 0% 53% 1.2% 0.9%
decrease in K
*Response only when K = | exactly,
the gain is i 1. Also, the feedback system d 1l d of

the steady-state error as the gain is increased. Finally, Figure 4.38(b) shows the re-
sponse for a unit step disturbance {when R(s) = 0) and shows how a larger gain will
reduce the effect of the disturbance.

Feedback control systems possess many beneficial characteristics. Thus, it is not
surprising that there is a multitude of feedback control systems in industry, govern-
ment, and nature.

SKILLS CHECK

In this section. we provide three sets of problems to test your knowledge: True or False, Multiple
Choice. and Word Match, To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapier problema. Use the block disgram in Figure
4.39 as specified in the various problem statements.

Tan
Controller Process
51 +
st 102 am G ——
- +

FIGURE 4.38  Bicck diagram for the Skills Checi.

In the following True or False and Multiple Choice problems, circle the correct answer.
1. One of the most important characteristics of control systems is their
lransient response. True or False
2. The system sensitivity is the ratio of the change in the system transfer
function to the change of a process transfer function for a small
incremental change. True or False

A. A primary advantage of an open-loop control system s the ability to
reduce the system's sensitivity. True or False

4. A disturbance is a desired input signal that affects the system output
signal. True or False
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k(A + kay)
Ay + kAq)
k(i Ay + kA
A+ kA
Consider the block diagram in Figure 4.39 for Problems 9-12 where G,(s) = K, and
Gla) =

e S =

4 5 =

i

5+ KKy

9. The closed-loop transler function i
KK}

5+ Ky(K + Kj)
KK,

s+ KK+ Ks)

w T(s) =
b T(s) =
KK,

& T = TR v K
KK,

&) £+ KiKs + KKy

10. The sensitivity 5§, of the closed-loop sy 1o variations in K, is:
Ks

(54 Ki(& + K))°

& Shin =

1 C—
iy 7 )

X
3+ Ki(K + K3)
Kils + K Kq)
(s + KK + Kg))*
1L The sensitivity 5§ of the closed-loop system to variations in & i:
5+ KKy
S = TRk
Ks
(s + Ky(K + K)P
1+ KK,
5+ KK
Kils + KiK3)
& SHO = TR + KT
12. The steady-state tracking efror to & unit step input R{s) = 1/s with T,(s) =

e Skfa) =

4 Shla) =

b Skin) =

o Skin =

-k
L YA

Kz
h""n_k"ﬁ,
Ky

o= _-—_.K;IK + K3)

Ky
d e, "‘i‘fﬁ;
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b, 2
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FIGURE E4.3 Fiobaot fruit picker.
step change in the desired inpui? (b) Calculate the

reguired K in order (o vield a steady-state ermor of
i1 mm for u ramp inpuat of 1 ems.

Anrwers e, = [EK = 100

Daasined
penltiost

SRR
Mageesic itk i
head

FIGURE E4.4 [ésk drve control

EAS A fecdluck sysem hat the closed-loop iransier
Tuictliny yiven by

g 0]
Tis) = kol indl

Compute the steady-siate ermor (o a wnil siep inpal @
o lunction of the parameler p.

EAG A ity feedbach b loop Turiction
y 0K
Lis) = G {nG(s) Py
D the reld hip between the iy

error in a ramp input and the pain X aod system para-
meter h. For what values of K and b can we guarantee
that the magnitude of the steady-state error to s mmp
imgrut s bess than (.17

E47 Mot people have expenenced an out-ol-locus slide
projecior. A projector with an automatic focus adjusts
for varintions in slide posstion and temperature distur-
ances [11]. Braw the block disgram of an autofocs sys-
tem, and describe how the system works An unflocused
abitde projection is a visual example of seady-siale errorn,

E48  Four-wheel drive sufomolsles are popular in regions
where winter rowd conditions are oflen sppery due o
smow and ice. A four-wheel drive vehicle with antilock
birakes wses a sensor to keep each wheel rotating lo
maintain taction. Ope system is shown in Figure
EAA Find the closed-loop response of this system as
it artempts to maintain o constant speed of the wheel.
Dietermine the resporse when B{1) = A4/x

L]

s+ 151 Whael speed

FIGURE E4.B Four-whesl driva aito.

Edn i with clear plastie b hawve the poten-
tinl 1o revolutionize underwater Jeisure. ()m m.-u
vehicle has 8 depth i
irated in Figure E4.%.
(8} Determine the clised-loop ransfer function
Tixn) = Yix)/Rix).
() Determine the sensitivity 8§ amed 51
(e} Determine the steady-state error due 1o 4 distur-
bance Tylr) = 1/x.
(d) Colculste the respomse W1} fr 8 step dnpat
Ris) = lsohenK = K; = lond] < K, < 1),
Select K, for the [asiest ropome
E410 Comsider the feedback control system shown in
Figure EA10, {2) Determine the steady-state error fora
step inpat in terms of the gain, K. (b) Determine the
overshoot for the giep response for d0 = K = 400 ()
Phot the evershoot and the Meady-sinte error versms K
E411 Consider the closed-loop system in Figure E4.11,

1pst & ax & (3=p) where
Compute the sensitivity of the closed-oup transfer )= ard (B
Tuncticn bo changes in the parameler p, where p oo () 4+ 5006
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FIGURE E4.13 Deyired - Acusl
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E4.14 Consider the unity feedback system shown in
Figure E4.14. The system has two parameters, the
controller gain K and the constant K, in the
process.

(a) Calculate the sensitivity of the closed-loop trans:
fer function to changes in K.

(b) How would you select a value for K 1o minimize
the effects of external disturbances, T(x)7

E4.15 Reconsder the unity feedback system discussed in
E4.14. This time select K = 120 and Ky = 10. The
closed-loop system is depicted in Figure E4.15.

o) Colculate the steady-state error of the closed-
loop system due o a unit step input, R{s) = 1/5,
with Ty(s) = 0. Recall that the tracking error is
defined as E(s) = R(1) - Y(sl

(h) Calculate ﬂleleady-slla:mpu I_m;(rl
when T{s) = I/s and Riz) =

T s
‘Controller
FIGURE E4.14 ba " ¥ i i
Closed-loap L 2 + AR L
with two
paramelers, K and
"
Tan
Controller Process
FIGURE E4.15 + 2 * i
Cleed-loop Rid "X k=1 ye e Yixp
with K = 120 and
Ky = 10,

The ratio of the change in the system transfer function 1o the
change of a process transfer function (or parameter) for a

The response of a system as a function of time.

A system with a measurement af the output signal and a
comparisan with the desired output to generate an error

A measure of the smmuu,nmncmuﬂ. or behavior of a
and i

The parts, subsystems, or subassemblies that comprise a

An atiribute of & system that describes a tendency of the
system 1o depart from the equilibrium condition when

A reduction in the amplitude of the ratio of the output

Exercises.
e Disturbance
signal
small incremental change.
L. Transient
response
& Complexity
signal that is applied to the actuator.
. Error signal
system that
bhetween various c:mpuu:nu
L Closed-loap
system total system,
- Loss of gain
initially displaced.
k. Open-loop
system

signal to the input signal through a system. usually
measured in decibels

EXERCISES
Edl Admd—lmp:yumnmdlomﬂwwuwdﬂm
The 1

ing nj-uam may be rtpu'mnbcd by Figure 4.3 with
Hiz) = 1 and

Gis) = T

where 7 = 3 seconds nominally. {a) Calculate the sensi-
tivity of this system for a small change in 7. (b) Calculate
the time constant of the closcd-loop system response.
Answers: 8§ = =35f(32 + 101); 7, = 3/101 scconds

Ed2 A digital sudio system is designed to minimize the
effect of disturbances as shown in Figure E42. As
an approximalion, we may represent (s} = K;.
(a) Calculate the sensitivity of the system due 1o K,
(b} Calculate the effect of the disturbance naise T(x)
an ¥, () What value would you select for K, 10 min-
imize the elfect of the disturhance’

E43 A robotic arm and camera could be used 10 pick
fruit, as shown in Figure E43(a). The camera is
used 10 close the feedback loop to a microcomputer.

Amplifier

which controls the arm |4, 9]. The transfer function for
the process is

K
Gx) = ———.
() YT
(@) Calculate the expected sieady-state ervor of the grip-
per for a step command A as a function of K_{b) Name
a possible disturbance !.Ipn! Tor this system.

Answers: (a) e, = m

Ed44 A magnetic disk drive requires a motor to position &
read/write head over tracks of data on a spinning dusk,
as shown in Figure E4.4. The motor and head may he
represented by the transfer function

|
Gis) = FETED

where v = 0,001 second. The controller takes the dif-

ference of the actunl and desired positions and gener-

ates an crror. This error is moftiplied by an amplifier

K. (o) What is the steady-state position error for a

Tn

Vinl

FIGURE E4.2 l’_.ul—‘?—o K
Digital audio
systam.

FIGURE E4.9
Depth control
system.
Controller Process
$ Kix + 50 46.24
Ao FES T g = RO T
Sensar
FIGURE E4.10 425
Feedback control + 425
system.

FIGURE E4.11 Closed-ioop system with nonmunity
foodback.

(a} Compute the transter function T(s) = ¥{s)/R(s).

(b) Define the tracking error to be E(s) =
Ris) = ¥is). Compute £(s) and determine the
steady-state tracking error due to 8 unit step
input, that is. let R{s) = 1/s.

{c} Compute the transfer function ¥ {z)/T{s) and
determine the steady-state error of the output
due 10 a unit siep disturbance input. that is, let
Tats) = 1/s.

(d) Compute the sensitivity 5§,

E4.12 In Figure E4.12, consider the closed-loop system
with measurement noise N1}, where

Gis) = M‘ Gis)=K;. and H{s)= —5

In the l‘nl.lolrmg analysis, the tracking error is defined

tobe E(s) = R{s} — ¥is):

{a) Compute the transfer function T'(s) = ¥ (s)/R(s)
and determine the steady-state ircking error due

FIGURE E4.12 Closed-loop system with nonunity
feedback and measurement nolse.

108 unit step response, that is, let R{s) = 1 /s and
assume that ¥(s) = 0.

{b) Compute the transfer function ¥{s}Ms)and deter-
mine the steady-state tracking error due 10 & unit
step disturbance response, that s et M{g) = 1/s
and assume that R{s) = 0. Remember, in this case,
the desired output is zero.

{c) 11 the goal is to track the input while rejecting the
measurement noise (in other words, while mini-
mizing the effect of M(s) on the output). how
would you select the parameters K, and K7

E413 A closed-loop system is used in a high-speed sieel
rolling mill to control the accuracy of the steel strip
thickness The transfer function for the process shown
in Figure E4.13 can be represented as

1
Gig) = prowrTy
Caleulate the sensitivity of the closed-loop transfer
function 1o changes in the controller gain K.
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&
2

i, Envirsmment

FIGURE P4.3 o
Temperature control

system.

Thermmiple

actuator. Then the linearized open-loop response of P44 A control system has two forward paths. as shown in

the system is

kykaEn Fin
I IEm * el

o=

Figure P4.4. (a) Determine the overall transfer funclion
T(s) = Y{£)/Ris). {b) Cakculate the sensitivity. ST,
using Equation (4.16), () Does the sensitivity depend
on U(s) or M{s)?

where P45 Large microwave antennas hove become increas-

= MC[(pA).

M = mass in tank.

A = surface area of nk,

p = heat transfer constant,

€ = specific heat constant,

ky = a dimensionality constant. and
£ = output voltage of thermocouple.

Determine and compar open-loop and closed-
loop systemns for (a) sensitivity to changes in the con-
stant K = kyk,Ey; (b) the ability 1o reduce the
effects of o step disturbance in the environmental
temperature AF (s); and (¢) the steady-state error of
the temperature controller for a step change in the

ingly important for radio astronomy and satellite
tracking. A large antenna with a diameter of &0 fi, for
example, is subject to large wind gust torques. A pro-
posed antenna is required 1o have an error of less
than 0.10° in # 35 mph wind. Experiments show that
this wind force exerts a muximum disturbance at the
antenna of 200,000 ft Ib at 35 mph, or the equivalent
1o 10} volts ar the input T{x) 1o the amplidyne. One
problem of driving larpe antennas is the form of the
system transfer function that possesses a structural
resonance. The antenna servosystem is shown in
Figure P45, The wransler function of the antenna,
drive motor, and amplidyne is approximated by
1

wl
[T G- A5 + Longs + )
Rist
Tnpet
FIGURE P4.4
Two-path system
T’,I-I
Power - )
o + araplifer Anmenna, drive molor, Position
A Py + and amplidyne G} irndiass)
FIGURE P4.5 Sewae
Antenna control | =1
systam. ]
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Tan
Healer cuntrol Electronic circuit
oo - | +
.
s [ o "
FIGURE P4.8
Temparature control
system.

P49 A useful unidirectional sensing device is the pho-
toemitter sensor [15]. A light source is sensitive to the
emitter current Mowing and alters the resistance of the
photosensor. Both the light source and the photocon-
ductor are package n single four-terminal device,
This device provides a large gain and total isolation.
A feedback circuil utilizing this device is shown in
Figure P4.9(a). and the nonlinear resistance—current
characteristic is shown in Figure PA%b) for the
Raytheon CK11 P The resi can be repre-
sented by the equation

logy R =

(i = Doasy

where { is the lamp current. The normal operating
point is obtained when v, = 35V, and u, = 2.0V,

{a) Determine the closed-loop transfer function of the
system. (b) Determine the sensitivity of the system to
changes i the gain, K.

P40 For a paper processing plant, it is important 1o

maintain a constant tension on the continuous sheet
of paper between the wind-off and wind-up rolis The
tension varies as the widths of the rofls change. and an
adjustment in the take-up motor speed is necessary, as
shown in Figure P10, If the wind-up motor speed i
uncontrolled, as the paper transfers from the wind-off
roll to the wind-up roll. the velocity v, decreases and
the tension of the paper drops [10, 14]. The three-
roller and spring combination provides a measure of
the tension of the paper. The spring force is equal to
kyy. and the linear differential transformer, rectificr.
and amplifier may be represented by & = —kyy.

oM

=

1m0k

Resastance of photsconductor (obms)
=

#y= %000 1)
Phatnetnisier
sensor
1%
msEanI Cugrent 100
sree = 1 012345067890
FIGURE P4.9 —_ Lanip current (mA]
Photosensor
system a1 [
w"'::l"” it i) W:i-np
.
"t
Mutar
FIGURE P4.10 dilferential
Pmrl.“w i

FIGURE P4.1

Bysterm.

P41 The open-loop transfer function of a Nuid-flow sys-

tem can be written as

AQun) 1
A0 mel

where = RC, R is a constant equivalent 10 the ress-
tance offered by the orifice so that 1/R = 'AkH ;"
and € = the cross-sectional area of the tank. Since
AH = R AQ;, we have the following for the transfer
function relating the head to the input change:
AF(s) R

AQiis) RCs+ 17

For a closed-loop feedback system, a float-level sen-
sor and valve may be used as shown in Figure P41
Assuming the float is a negligible mass, the valve s
controlled so that & reduction in the flow rate, AQ,. is
proportional 1o increase in head, AH, or
AQy = ~KAH. Draw a closed-loop fow graph or
block diagram. Determine and compare the open-
toop and closed-loop systems for (a) sensitivity to
changes in the equivalent coefficient R and the feed-
back coefficient K., (b} the ability to reduce the effects
of a distrbance in the level AH(s), and (¢} the
steady-state error of the level (head) for a step change
of the input A2 (s}.

Gis) =

Gifs) =

(£

Problems:

where { = 0.707 und w, = 15. The transfer function
of the power amplifier is approximately

ks
Gifa) e s

where = = (1.15 second. (1) Determine the sensitivity
of the system to a change of the parameter k. (b) The
system is subjected 1o o disturbance T(s) = 10/s.
Determine the required magnitude of k, in order to
‘mainiain the steady-state error of the system less than
D07 when the input Ris) is zero. (¢) Determine the
error of the system when subjected to a disturbance
T4i5) = 10/s when it is operating a5 an open-loop sys-
tem (k, = 0} with R(s) = 0.

P46 An aulomatic speed control system will be peces-

sary for passenger cars traveling on the automatic
highways of the future, A model of a feedback speed
contral system for a standard vehicle is shown in
Figure P4.6. The load disturbance due to a percent
grade AT,(s) is also shown. The engine gain K,
varies within the range of 10 to 1000 for various maod-
els of automobiles. The engine time constant 7, is 20
seconds (n) Determine the sens ty of the system
to changes in the engine gain K. (b) Determine the
effect of the load 1orque an the speed. () Determine
the constant percent grade AT,(s) = Ad/y for which
the vehicle sialls {velocily V() = 0) in terms of the
gain factors. Note that since the grade is constant, the
steady-state  solution is safficient. Assume  that
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P42 Itis important to ensure passenger comiort on ships

by stabilizing the ship's oscillations due 1o waves [13].
Most ship stabilization systems use fins or hydrofoils
projecting into the water to generate a stabilization
torque on the ship. A simple diagram of a ship stabi.
lization system is shown in Figure P42 The rolling
mation of A ship can be regarded as an oscillating pen-
dulum with & devintion from the vertical of # degrees
and a typical period of 3 seconds. The transfer function
of o typical ship s

) £+ s + ol
where o, = 3rad/s and { = 0.20. With this low
damping factor £, the oscillations continue for sever-
al eycles, and the rolling amplitude can reach 18° for
the expected amplitade of waves in a normal sea.
Determine and compare the open-loop and closed-
P for (a) itivi hanges in the acto-
ator constant K, and the roll sensor K, and (b) the
ability to reduce the effects of siep disturbances of
the waves. Note that the desired roll fis) is zero
degrees.

P43 One of the most important variables that must be

npel

ature. A simple rep jom of a th I ¥

tem is shown in Figure P43 |14]. The temperature 5 of
the process is controlled by the heater with a resistance
R An approximate representation of the dynamie lin-
early relates the heat loss from the process to the
temperature difference 7 — . This relation holds if
the temperature difference latively small and
the energy storage of the lea fd the vessel walls
is negligible. Also, it is assumed that the voltage ¢,
applicd 1o the heater is proportional (0 £y OF
ey = kEy = k Epe(r), where k, is the constant of the

Wave effect
Tatsh

L]
Rl

R(s) = 30fs km/hr ond that KK, == |. When
K /Ky = 2. what percent grade 4 would cause the
autorobile 1o stall?

P47 A robot uses feedback to control the arientation

of each joint axiz The load elfect varies due to vary-
ing load objects and the extended paosition of the
arm. The system will be defllected by the load carried
in the gripper. Thus, the system may be represented
by Figure P47, where the load lorque is
Tuls) = Dfs. Assume R(s) = 0 ot the index posi-
tion. (&) What is the effect of T,s) on ¥(5)? (b) De-
termine the sensitivity of the closed Inop to &y (c)
‘What is the steady-state ervor when R(z) = 13 and
Tals) = w7

P48 Extreme temperature changes result in many fail-

ures of electronic circuits [1]. Temperature control
feedback systems reduce the change of temperature
by using a heater 1o overcome outdoor low fempera-
tures. A block diagram of one system is shown in
Figure P48 The effect of a drop in environmental
temperature is a step decrense in Tds). The actual
temperature of the electronic circuit is ¥(x). The dy-
namics of the electronic clrcuit temperature change
are represented by the transfer function.
180

e £+ M+ 8

{a) Determine the sensitivity of the sysiem to K- (b}
Ohbtain the effect of the disturbance T (s} on the out-
put Fls).

Load wargue
AT
Theonbe controller | Thpule Engine and vehicle
Rix) T Tt
" Vis)
Speed
setting Spes
FIGURE P4.6
Automobis spesd
control,
Lol dfisterhance
Td=
Rtsh
Desined  +
i
anghe -
FIGURE P4.7
Ruobat cont
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FIGURE P4.13
Closed-loop
system.
L]
T 1iHs +4)
= " St alls 1) i
Hyporsonic sirplane
speed control,

P4AIY  Omne form of a closed-loop ransfer function s

Gils) + kGals)

Gols) + kGls)

(@) Use Equation {4.16) 1o show that [1]
kMGG, - GGy

(G = kGG, + kGy)'

Tisy =

Ll

(b) Deermine the sensitivity of the system shown
Figure P4.13. using the equation verified in
part {u).

PAl4 A proposcd hypersonic plane would cimb o
1K feet, My 3800 males per hour. and cross the Pa-
cific in 2 hours. Controd of the aireralt speed could be
tepresented by the model in Figure P44, Find the
sensitivity of the elosed-loop transfer function 175} to
& small change in the parameter a.

P415  The seering eontrol of a modern ship may be rep-
resented by the system shown in Figure P45 [16, 20].
() Find the steady-staie effect of a constant wind force
Tepresented by Tuls) = I/s for K = WDand K = 25,
Assume that the rudder input Ris) is zero, without any
disturbance. and has not been adjusted. (b) Show that
the rudder can then be wsed to bring the ship devislion
back to zero.

P4.16  Figure P4.16 shows the model of a two-tank sys-
tem containing a heated liquid, where T is the tem-
perature of the flujd ﬂwm‘mln tJn: first tank and Ty
isthe of the g out of the sec-
ond tank. The system of two tanks has a heater in the
first tank with a controllable heai nput {2. The time
constants are 7y = 10% and 7y = 50s. {a) Determine
Tyls) in terms of To(s) and Foy(s). (b) Uf Tog(s). the
desired output temperature. is changed instania-
neously from Tadr) = Afs to Frds) = 24/ where

Wind disturtance
TA

FIGURE P4.15
Snip steering
FIGURE P4.16
Two-tank
contral,
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Capacitance € —
Constant = &
i}
(D]
Hix) =0 Controller .
5 e Hix)
NFA variation
FIGURE AP4.1
A tank level
regulator. i)
s}
Acual
wengle
FIGURE AP4.2
Robot joint cantrol,

elfeet B Ty{s) = M/s, determinc the sicady-state
error when {a) Gis) = K and (b) G(s) = Kis.
AP43 A machine tool is designed to follow a desired
path so that
et} = (1 = nuli).
where n(r) is the unit step function. The machine 100l
conirol system is shown in Figure AP4.3,

Contraller
Ris) ¥ 5
Tol 4 ‘; =
enenimarsl -

FIGURE AP4.3
Machine ool

(2} Determine the steady-state error when ris) is the
desired path as given and T(s) = 0.

(b} Plot the error e(f) for the desired path for part (0}
for(l < ¢ = 10 seconds.

{c) If the desired input is r(t) = 0, find the steady-
state error when Ts) = 1fs.

(d) Plot the error efr) for part (<) for 0 < ¢ = 10 sec-

onds.
L effect
Tish
Modor and
ool
= Fis)
NS Tl
. pusition

Problems 201
Water
l Desired cunsisiency = Ri)
;]
=&
Uta) ) Comsistency
Valve Cuntrolier |-—|
Amcasement
Pulp To paper
mixing ‘making

FIGURE P4.11
Paper-making
control

Therelore, the measure of the tension is described by
the relation 2T(5) = kyy, where y is the deviati
from the equilibrium condition, and T(s) is the vertical
component of the deviation in tension from the equi-
librium condition. The time constant of the motor is
7 = LR, and the linear velocity of the wind-up roll
Is twice the angular velocity of the motor, that is,
wglr) = Zuglr). The equation of the motor is then

Euls) = g-lromts) + (s)] + KiaT(s).

where AT = a lension disturhance. (a) Draw the
closed-loop block diagram for the systen, including
the disturbance AT(s). (b) Add the effect of a distur-
‘bance in the wind-off roll velocity AV(s) to the black
diagram. () Determine the sensitivity of the system to
the motor constant K, (d) Determine the steady-
state error in the tension when o step disturbance in
the input velocity, AV(s) = A/fr, occurs

P4.11 One important objective of the paper-making
process is o maintain uniform consistency of the
stock oulpul as it progresses to drying and rolling. A
dingram of the thick stock consistency dilution con-
trol system is shown in Figure P4.11{a). The amount
of water ndded determines the consistency. The block
diagram of the system is shown in Figure P4.11(b).
Let H{s) = 1 and

Gy = Gls) = 5y

o
Br+ 1" 1

Advanced Problems

Tuls) = Afy, determine the tran response of
Tole) when G (1) = K = 200, (€] Find the steady-
stnte error e, for (he system of pan (h). where
Efs) = Tols) — Tils)

et shown i part a) of Figure P47,
s that (8 eloses o an mngle o by
it @ DN mistor eontrol system, as shown in poart (b),

Differonee
amplifier

Pulemlometer

)

Determine (a) the closedloop transfer lunction
T{s) = Pis)/Ris), (b) the sensitivity %, and () the
steady-stale error for a step change in the desired
consistency R{s) = A/s. (d) Calculate the value of K
required for an allowable steady-state error of 2%.

PLI2 Two feedback are shown in Figures P4.12{a}
and (b). {a) Evaluate the closed-loop transfer functions
T, and T} for cach systein, (b) Comipare the sensitivities
aof the two systems with respect to the parameter K for
the nominal values of Ky= L

FIGURE P4.12 Two feedback syslems,
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The model of the control system s shown ||| pm L:J.
where Ko, = 3Ry = 1. K; = K =

and b = 1. [a) Determine the respome Wr! hfl]lc \}\
tem to o step change in Bulr) when K = 201 (b) As-
suming A A1) = 0. findd the cffect of a kad disturhance
Tels) = Afx, (c) Determine the stcady-state error e,
when the inpul ® rfe) = o > 0. [Assume that
Ty =0)

Putntlimeier

Concrwl
ey Va
{a) b
Tk
('R T
i
FIGURE P4.17 Fobot gripper control
ADVANCED PROBLEMS

APLL A ok level regulatar control (s shown in Flgure
AP (), It i desired to regulate the level & in res
Aponee hsturbance change g, The bock disgram
:Jm\u small variable changes aboul the equilibriam
condithons so thil the deared i) = 0. Delermine
the equation for the ermor Eis), and determine the
steady-tate error for o il step disturbange when
(a}Gl) = & and (b} Gl1) = K/,

APAY  The shoulder joint of o robatic arm uses 5 [
mastor with armatisre controd @nd a set of genrs on (he
oulpat shaft. The model of the svsten is shown in
Figure AP42 with o disturbance irgue T (8) which
represenis the effect of the load, Determine the
stenly-state crror when the desired angle input s 2
step s the B(s) © Afs, GAx) = K, and the disur-
banee input s zero. When A05) = 0 and ihe load
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FIGURE AP4.7
with noisa.

FIGURE AP4.8
Machine-tool

DESIGN PROBLEMS

Divsticbuange:
Tas

Controller
x
[

Nisi
Sensan il

Tdsy

Controller

CDP41 A capstan drive for a table slide is described in-~ DP&1 A closed-loop speed control system is subjected to

Advanced Problems 295
Power
Amplifier
Cvm‘ 4 Emor R P ks
A =
[T *: Speed
FIGURE AP4.4
DC mator with =
Surgical
distarbanie
T
Ris) Hn
Desirad Actual
Howsd blond
FIGUREAP4S pressure

AP4A  An armare-controlled DC motor with tschome-

ter feedback i shown in Figure AP4.4. Assume that
=10/ = Land R =1,

o CDP21 The position of the sfide + is measured with a
“’J capacitance gauge, as shown in Figure COP4L, which
i very linear and accurate. Sketch the model of the
feedback system and determine the response of the
system when the controller is an amplifier ond
His) = 1, Determine the step response for several
selected values of the amplifier gain G,(s) = K,

a disturbance duc to a foad, as shown in Figure DP4LL
The desired speed s anlr) = 100 rad/s, and the load
disturhance i a unit step input T,(s) = 1/5. Assume
that the speed has attained the no-load speed of 100
radis and is in steady state- (a) Determine the steady-
state effect of the laad disturhance, and (b) plat adf)
for the step disturbance for selected values of gain so

{a) Determine the required gain. K, to restrict the
steady-state error to o ramp input (v{1) = ¢ for
£ > 0) 1o k] {asswme that Ts) = 0

(b) For the gain selected in part (a), determine and
plot the error, e(t). due to a ramp disturbance for
0=t = 5seconds.

AP4S A system that conirols the mean arterial pressure

Rixp

Tdn

Mator and slide

during anesthesia has been designed and tested [12).

The level of arterinl pressure is postulated (o be &

proxy for depth of anesthesia during surgery. A block

diagram of the system is shown in Figure AP4.S, where

the impact of susgery is represented by the distur-

bance T4 5)

(a) Determine the steady-state error due to a distur-
bance Tu(s) = 1/x {let R(s) = 0).

() Determine the steady-state error for @ ramp input
r) = 10 = O ket Tyfs) = 0).

{c) Select a sitable value of K less than or equal to
10, and plot the response i) for a unit step dis-
turbance inpul {assume r{t) = 0).

APA6 A uselul circeit, called a lead network, which we

discuss in Chapter 10, is shuwn in Figure AP46.
{a) Delzrmine the transfer function G{s) =Vylx)/

298 Chapter 4 Feedback Control System Characteristics

Rin *
rsition

Yo

CPEa TR

FIGURE DPa.&

Lasar eye surgery
system,

P45 An op-amp circull can be wsed to gensrite o short
paidse. The cireuit \.!mwﬂ m hgulr DPAS can genemte
the pulse gfr) = S = 0, when the inpul ofr)is
n unir step [6). Sebect mapmpmlw valoes for the resis.
tors and cipeaciions. Assume an ideal op-amp

°—{‘F-— =

"
£
LT

FIGURE DP4.5 (Op-amp circull.

DIFLGE A hydrods i under comsideration lor remole ex-
ploration umder the jee of Enropa. o moon of the giant
planet hupiter. Figure DIMG(a) shows ooe artistic
version of the mission. The hydrobol i o self-pro-
pelled waderwater vehicle that woukd analyze the
chemical composition of the waler in a search for
signa of life, An important aspect of the vehicke s o
controlled vertical descent (o depth in the presence of
underwnier corrente. A simplified eantrol Feedback

system is shown in Figure DP46{b). The parameter
J = 0 ks the pirching moment of inertia. (n) Supposs
ithat G, (s) = K. For what mnge of K is the sysiem Ma-
ble? () What is the steady-state arror (0 & unil step
disturhance when G (s) = K7 (e} Suppose that
G 1) = K, + Kpi. For what range of K, and Ky s
the system stable? (d) What is the sieady-state error 1o
wunit step disturbance when & (s) = K, v Kpa?

DPT.  Intercst in unmonned ynderwader vehices {LILVs)

b been increasing recently, with a large mimber of
possible applications being comadered, These include
1 h detect il

and.

applications. Regardiess of the inended mission. o
sirong need exists for relinbde and robust control of the
wehicle, The proposed vehicke is shown in Figure DP4GT
{n) [24]

We want 1o control the vehicle through a range of
operating conditions. The vehicle is 30 fect loog with &
wertical sail near the front. The control inpuls are siem
plane, rudder, and shafl speed communds. Tn this case.
we wish (o control the vehicle roll by using the sem
planes The control system is shown in Figare DIM.7(b),
where Rix) = U, the desseed roll migle, and Tds) = 1/s
Kuppaose that the controlier i

Gl = Kix+ 2).

(b} Deu:mng the sensitivity of Gix) with respect 10

FIGURE AP4.6 A lead notwork.

(¢} Determine and plot the transient response wy(t)
for a step input V(5) = 1/x.

APAT A feedback control system with sensor nodse and o

disturbance input is shown in Figure AP4.7. The goal is

to reduce the effects of the noise and the disturbance.

Let Riz) = 0.

(a) ine the effect of the disturbance on ¥{s).

{b) Determine the effect of the noise on ¥is).

() Select the best value for Kwhen | = K = 10050
that the effect of steady-state error due to the dis-
turbance and the noise is minimized, Assume
Tyls) = Afs, and N(s) = Bfs.

AP4E  The block dingram of a machine-tool control sys-
B

tem is shown in Figare AP4.

(a) Determine the transfer function T(s) =¥ (s)/R{s).
(b} Determine the sensitivity 5]

() Select K when | = K = 50 so that the effects of

the copacitance T the disturbance and ST are minimized
Design Problems 207
Lol
dastarbance
TAn
Coatroller Gish

g ¥ 1 vl
FIGUREDP4.1 Do -3 * T Al
Speed control speed speed

that 10 = K = 15 Determine a suitable value for
the pain K.

DP42 The control of the roll angle of an airplane is

achieved by using the torque developed by the ailerons.

A linear model of the roll control system for a small

experimental aireralt i shown in Figure DP4.2, where

1
APy

The goal is 1o maintain & small roll angle & due to dis-

turhances. Select an appropriate gain KK that will

reduce the cffect of the disturbance wmle a:lmnmg -

{17). The laser allows the ophthalmologist 1o apply
heat to a location in the eye in a controlicd manner.
Many procedures use the retina as a laser 1arger. The
retina s the thin sensory tissue thut rests on the inner
surface of the hack of the eye and is the actual trans-
ducer of the eye. converting light energy into clectrical
pulses. On occasion, this layer will detach from the
wall. resulting in death of the detached arca from lack
of blood and leading 1o partial or total blindness in
that eye. A laser can be used 1o “weld™ the retina into
its proper place on the inner wall.

Anlomnmi control of position enables the oph-

desirnble transient response Lo

B4t} = 1. To obtain ndanbk tmnslmt TESpOnse, Iﬂ

KK, < 35,

DPA3  The speed control system of Figure DP4.1 s altered
o0 that G(s) = 1/{s + 5) and the fecdback is K, as
shown in Figure DP43,

{a) Determine the range of K, allowable so that the
steady state is e, = 1%,

b} Determine a suilable value for K, and K so thal
the magnitude of the steady-state error to a wind
disturbance  Ty(r) = 2 mrad/s. 0 =+ < 55, is
less than (.1 mrad.

DP44  Lasers have been wsed in eye surgery for more
thun 25 years They can cul tissue or aid in coagulation

FIGURE DP4.2
Cantrol of the md

angle af an
awplane.

to indicate 1o the controller where lesions
nhnuld be inserted. The contraller then monitors the
retina and controls the Iaser’s position so that each
lesion is placed at the proper location, A wide-angle
video-camera system is required Lo moniter the
maovement of the retina, as shown in Figure DP4.4(a),
1f the eye moves during the irradiation, the laser
must be either redirected or turned off, The position-
control system is shown in Figure DP4.4(b), Select an
appropriate gain for the controller 5o that the tran-
slent response to a step change in A1) is satisfactory
and the effect of the disturbance due o noise in the
system is minimized, Also, ensure that the steady-state
error for a step input command i3 2ero. To ensure
acceplable transient response. require that K < M.

ey
Rall anghe

FIGURE DP4.3
Speod control

wifh
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Pulley

represented by the sysicm in Figure DP4.8(b), where
the nominal values are v, = 20 s ond v = 2 ms
() Compute the semitivity 87 and the sensitivity 57,

COMPUTER PROBLEMS

CPAT Consider a unity feadback system with

1]
Oibtain the step response and determine (e percent
overshoot. Whiat is the steady-state eoror?
CP42 Consider the transber fimetion (without feedback )
oy S
PR TR
Wihen 1be input is 2 unit scp, the desined sizady-sale
value ol the output is one. Using the step function, show
thint the stendy-state error 1o a unib step input 0.8

Gis) =

(1) Design the controller gain K such that the stendy-
state tracking error to a unit step disturbance is less
than 11,415,

CPA3 Consider the closed-loop iranafer lunction

Tish =
N

(Otmain the family of siep responses for K = 10, 20,
and 500, Co-plot the responses and develop o table of
results thut fecludes the percent overvhool, seliling
time. and steady-state enror.

CP44. Consider the feedbock system in Figure CIY4
Suppose that the controller i

Gfx) = K = 10,

Tan
Cimitimiller 1 Plant
& B " i
i) : ? i o Ll

FIGURE CP4.4 i
Uity feedinnck
syshoem wilh
contraller giin K.
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A closed-loop control system for the system is shown

in Figure CP4.7(b). Suppose the desired anghe

B =0°k=5b=0%and/ =1,

(a} Determine the open-loop response #r) of the
system [or a unit step disturbance (set r{t) = 0),

(b) With the controller gain Ky = 50, determine the
closed-loop response, 81} to & unit step digtur-
bance.

(<) Plot the open-loop versus the closcd-Joop
o the disturbance input. Discuss your results and
make an argument lor using closed-loop feedback
contral to improve the distusbance rejection prop-
erties of the system.

CP48 A negative feedback control system is depicted in
Figure CP4.8. Suppose that our design objective is 1o
find a controller G {s) of minimal complexity such
that our elosed-loop system can track a unit ep input
with a steady-state error of zero.

(a) As a first try, consider a simple proportional
controller
Gl = K.
where K is a fixed gain, Let K = 2, Plot the unit
step response and determine the steady-state
erfor [rom the plat.
{b) Now consider n more complex controller

K
Gs) = Ko + _,_'

where Ky = 2 and Ky = 20, This controller is
known as a proportional. integral (P1) controller.
Plot the unil step response, and determine the
steady-state error from the plot,

() Compare the results from parts (a) and (b). and
discuss the trade-off belween controller complex-
ity and steady-state tracking emor performance.

CP49  Consider the dosed-loop system in Figure CP4.9,
whose transfer function is

105
5+ 100
(n) Obtain the closcd-doop transfer function T(s) =

¥is}f Ris)and the unit step response; that s let
Rz} = 1/x and assume that N{z) = (.

Gis) =

and  His) = ;-+—5-i

FIGURE CP4.9 Ciosed-loop system with nonunity
feedback and measurement noise.

(b) Obtain the disturbance response when
100
o 54100
is o sinusoidal inpul of frequency w = 10 rad/s,
Assume that Ris) = 0,

{c) In the steady-state. what is the Irequency and
peak magnitude of the disturbance response from
part (b)?

CP4.10  Consider the closed-loop system is depicted in
Figure CP4.10, The controlicr gain K can be modificd
1o meel the design specifications.

{a) Determine the closed-doop transfer funclion
Tis) = ¥{s}/Ris).

{h} Plot the response of the closed-loop system lor
K = 5.10,and 50,

{c} When the controller gain is K = 10, determine
the steady-state value of y{r) when the distur-
bance is a unit step. thot is. when T 4s) = | /5 and
Ris) =10

CP4.11 Consider the non-unily feedback system is depicied
in Figure CP4.11,

(a) Determine the closed-loop tramsfer function
Tis) = ¥is}/Ris)

(b) Fork = 10,12 and 15, plot the unit step responses.
Determine the steady-state errors and the setthing
times from the plots.

For parts {a) and {b). develop an m-file that computes

the closed loop transfer lunction and generates the

phots for varying K.

Controlker Process
T n
FIGURE CP4.8 ol Gl
A simple singlo- -
feadback
‘controd system.

S

W
Tl
gl

FIGURE DP4.7
Conirol of an
underwater vehicle.

{a) Design the controfler gain K such that the maxi-
mum roll engle creor due the onit siep distur.
hance ingut & less Uhan (LS, (b) Compute the
steady-state roll angle crror o the disturhance
imput and explain the result

Computer Problems

(#) Develop an m-file to compute the closed-loop
transfer function T(s) = ¥{1)/Ris) and plot the unit
slep response. (b) Tn the same m-file, compute the
transfer function from the disturhance T(x) o the
outpul ¥{s} and plot the unit step disiurhanee re-
sponse. (¢} From the plots in (a) and (b} above, esti-
mate the steady-state tracking error 10 the unil step
inpait and the sleady-state tracking error to the anit
step distarbance inpat. (d) From the plois in () and
(b above, estimate the maximum tracking erros to the
it step input and the maximum tracking error (o the
unit step disturbance tpul. Al approxmately what
limes do he moXimam emors eccur?

CP4S  Consider the cioscd-loop contral sysiem showa in
Figure CP4.5. Develop an m-file script o assist in the
search for a value of & o that the percent overshoot
1o 0 nif siep fnpul i greater than 1%, but less than
10%. The seript should compute the closed-loop
transfer function T'(v) = ¥ {1}/ R(v) and generate the

b

DPAK A new sinspended. mobile, remate-controlled video
cmera system (o bring three-dimensional mobdlity 1o
professional foothall is shown in Figure DP4.S(a) [29].
The camera can be moved over the feld. as well as
up and down, The motor control on each pulley i
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value s used for design purposes only, since in reality

the value is not precisely known, The chjective of our

analysis i to investigate the sensitivity of the closed-

loop system 1o the parameter a.

{a) When a = 1, show asalytically that the steady-
state value of w{r) is equal to 2 when rir) is 2 uni
#tep. Verify that the unit step response is within
2% of the fnal value after 4 seconds.

(b)) The seasitivity of the syster to changes in the para-
meter @ can be investigated by studying the effccts
of parumeter changes on the transient
Pl the unil step response for @ = (05,2, and 5.
Discuss the results.

CPAT Consider the torshanal mechanical system in
Figure CP4.7(a), The torque due to the twisting of
the shaft is =k the damping torgue due to the brak-
ing device i —b; the disturbance torque B rdr);
ibe input forque ks r{i); and the moment of inertia

step response. Verily hically that the
EITOF (2 8 unit sfep inpul is ero,

CP46  Consider the closed-loop control system show in
Figure CP4.6. The controller gain is K = 2. The nomi-
il vabise of the plani parameter b o = 1 The nominnl

of the 3y s J. The transfer function of
the torsional mechanical system is
L'
Gs) = {

(b + kI

mﬁ;ﬁ Kix) = Y = —|—.n.|

Cimtroller

FIGURECP46 |, 4

A closed-ioop.
control

b

with uncertain
pararator 2.

FIGURE CP4.7

Atorsicral hR Z H
‘I:JBU’MHSI systam. }\ Raaking
b} Tha torsiona! # laput ¥ deviey
mechancal systam e

) [F1)

Controler

A= K o
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PREVIEW

The ability to adjust the and steady-state resp of a control system is a
beneficial outcome of the design of control systems. In this chapter, we introduce
the time-domain performance specifications am:l we use key input signals In test the
response of the control system. The L b the system perf,

and the location of the transfer function poles and zeros is discussed. We will develop
relationships between the performance specifications and the natural frequency and
damping ratio for second-order systems. Relying on the notion of dominant poles,
we can extrapolate the ideas associated with second-order systems to those of higher
order. The concept of a performance index will be considered. We will present a sel
of popular quantitative performance indices that adequately represent the perfor-
mance of the control system. The chapter concludes with a performance analysis of
the Sequential Design Example: Disk Drive Read System.

DESIRED OUTCOMES

Upon completion of Chapter 5, students should:

Be aware of key lest signals used in controls and of the resulting transicn response
characteristics of second-order systems 1o test signal inpuots.

Recognize the direct relationship between the pole locations of second-erder systems
and the transient response.

Be familiar with the design formulas that relate the second-order pole locations to per-
cent overshoot, settling time, rise time, and time to peak.

Be aware of the impact of a zero and a third pole on the second-order system response.
Ginin a sense of optimal control as measured with performance indices.

oo 0o o D
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determine initially whether the system is stable; we can achieve this goal by using
the technigues of ensuing chapters. If the system is stable, the response to a specific
input signal will provide several measures of the performance. However, because
the actual input signal of the system is usually unknown, a standard test input signal
is normally chosen. This approach is quite useful because there is a reasonable cor-
relation between the response of a system to a standard test input and the system’s
ability to perform under normal operating conditions. Furthermore, using a stan-
dard input allows the designer to compare several competing designs. Many control
systems experience input signals that are very similar to the standard test signals.

fard test input signals y used are the step inpul, the ramp input,
and the parabolic input. These inputs are shown in Figure 5.2. The equations repre-
senting these test signals are given in Table 5.1, where the Laplace transform can be
obtained by using Table 2.3 and a more complete list of Laplace transform pairs can
be found at the MCS website. The ramp signal is the integral of the step input, and the
parabola is simply the integral of the ramp input. A unit impulse function is also use-
ful for test signal purposes. The unit impulse is based on a rectangular function

€ €
o = 1/e, —Esrsi:

o, otherwise,

where ¢ > 0. As € app zero, the fi fe{t}) approaches the unit impulse
function &(¢), which has the following properties:
) o
f S(t)edr =1 and / &t — a)g(e) dr = gla). (5.1)
oo =
ity il LU
A
Yo | — y §— o r—

Table 5.1 Test Signal Inputs

Test Signal i) Ais)

Step )= A =0 Ris) = Afs
=0r<n

Ramp it} = Att =40 R(s) = Afs*
=0i<0

Parabolic iy = At =0 Ris) = 245"
=0 0=
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ANSWERS TO SKILLS CHECK

ﬁmmﬁlﬂg (1) True; (2) True; (3) False; (4) False;  Ward Match (in order, top to bottom): e, b k. b.c. 1,

ipdaj

Mulnple Chaice: (6) a: (7) b; (8) w: (9) b, (10)

(1) a:(12) b {13) be {14) ex{15) e

TERMS AND CONCEPTS

Closed-loop system A system with a measurement of the
output signal and a comparkon with the desired oul-
put to generate an error signal that is applied to the
actuator,

Complexity A measure of the structure, intricateness, or
behavior of & system that izes the relation-

Loss of gain A reduction in the amplitude of the ratio of
the output signal to the input signal through a system.
usually measured in decibels.

Open-loop system A system without feedback that directly
guneram the output in response o an input signal.

§

ships and interactions between various components
Components  The pans, sub

or

error  The crror when the time period is
hl‘: and the transient response has decayed, leaving

that comprise a 101al system.

signal  An unwanted input signal that affects

the system's output signal

Error sipnal  The difference between (he desired output
Rix) and the actual oulput  ¥ix). Therefore,
E(s) = R{s) = ¥is).

Instability An attribule of a system that describes a ten-
dency of the system 1o depart from the equilibrium
condition when initially displaced.

the respanse.

System sensifivity  The ratio of the change in the sysiem
transfer function 1o the change of & process transfer
Function {or parameter) for a small incremcntal
change.

Tracking error  See error signal.

Transient responve  The response of a system as a func-
tion of time.

Loop gain  The ratio of the feedback signal 1o the con-
troller octuating signal. For o unity feedback system
we have Lis) = G{s}is).
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5.1 INTRODUCTION

The ability to adjust the transient and steady-state performance is a distinct advan-
tage of feedback control systems To analyze and design a control system, we must
define and measure its performance. Based on the desired performance of the con-
trol system, the system pammetcrs may bc ad]usrcd to provide the desired response.
Because control systems are ink y their p is usually speci-
fied in terms of both the transient response and the steady-state response. The

is the resy that disapy with time. The steady-state response
is the u:spuns: that exists for a long time following an input signal initiation.

The design specifications for control systems normally include several time-
response indices for a specified input command, as well as a desired steady-state
DCCUraCY. I|| the course of any deslgu the specifications are often revised 1o effcet a

T ions are seldom a rigid set of requirements, but
rathera first attempt at li lmsa desired p e. The eflective comy and
adjustment of specifications are graphlna:lly illustrated in Figure 5.1. The parameter
p may minimize the performance measure M if we select p as a very small value.
However. this results in large My, an undesirable situation. If the perfor-
mance measures are equally lmpormnt the crossover point at p,,,,,, provides the best
compromise. This type of comp is d in control system
design. It is clear that il the original specifications cailed for both My and M; 1o be
zero, the specifications could not be simultaneously met: they would then have to be
altered to allow for the compromise resulting with pu [1, 10, 15,20},

The specifications, which are stated in terms of the measures of performance,
indicate the quality of the system to the designer. In other words, the performance
measures help to answer the question, How well does the system perform the task
for which it was designed?

5.2 TEST INPUT SIGNALS

‘The time-domain performance specifications are important indices because control
systems are inherently time-domain systems That is, the system transient or lime
performance is the response of prime interest for control systems It is necessary to

Performance Perfuemance
measure, My meeasare. M
My My
FIGURE 5.1 1
Tw performance L ]
MEBSUIGS VrSUS L ] 2 Fam 3 4 5
paramaler o, Farameler. p



Chapter 5 The Performance of Feedback Control Systems
and the steady-state response is
y{oo) =09,
If the error is E(s) = R{x) = ¥(s), then the steady-state error is

= !E"'. 3E(s) = 0.1

5.3 PERFORMANCE OF SECOND-ORDER SYSTEMS

FIGURE 5.4
‘Second-order
closed-loop control
system.

310

FIGURE 5.6

system for an
impulse function

Let us consider a single-loop second-order system and determine its response to a
unit step input. A closed-loop feedback control system is shown in Figure 5.4, The
closed-loop system is

Gis)
¥(s) = |+—G{.‘}M’J' (5.6
‘We may rewrite Equation (5.6) as
awny
Y(s) = m-‘?m- (5.7)
With a unit step input, we obtain
v
Y(s) = o (5.8)

s+ Hws + wl)
for which the transient output, as obtained from the Laplace transform table in
Table 2.3.is
1 .
w=1- Ee""’ sinfw, B + @), (59)

where B = V1 = (4,0 = cos™ £, and 0 < { < 1. The transient response of this
second-order system for various values of the damping ratio { is shown in Figure 5.5,

Tocrder symem

-l
+ Lm)

Gy =
sy

-l
G

= L
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(153

As{d the closed-loop roots approach the imaginary axis and the res
becomes increasingly oscillatory. The response as a function of { and time is also
shown in Figure 5.5(b) for a step input.

The Laplace transform of the unit impulse is R{s) = 1, and therefore the output
for an impulse is

wl

¥is) = PRy (5.10)

which is T(s) = ¥(s)/R(s), the transfer function of the closed-loop system, The
transient response for an impulse function input is then

W = %e'w sin{w,Br), (5.11)

which is the derivative of the response 10 a step input. The impulse response of the
second-order system is shown in Figure 5.6 for several values of the damping ratio £.
The designer is able to select several ive per from the
transient response of the system for either a step or impulse input.

Standard performance measures are usually defined in terms of the step response
of a system as shown in Figure 5.7. The swi of the resp is 1 by the
rise time 7, and the peak time 7, For underdamped systems with an overshoot, the
(-100% rise time is & useful index, If the system is overdamped, then the peak time
is not defined. and the 10-90% rise time 7, is normally used. The similarity with
which the actual response matches the step input is measured by the percent over-
shoot and settling time T,. The percent overshoot is defined as

PO, - r; LR (5.12)

FIGURE 5.3
Open-loop control
system.

FIGURE 5.5

system (Equation
5.8) for a step inpul.

(b} The transient
responss of a
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G
O O———0Omn  sir—s] 60 |—> 1
fa) b

The impulse input is useful when we consider the convolution integral for the out-
put y{f) in terms of an input r(t), which is written as

¥y = L glt — thr(r) dr = LHG(s)R(s)}. (52)

This relationship is shown in block diagram form in Figure 5.3. If the input is a unit
impulse function, we have

iy = f_ms(l = 7)b(r) dr. (53)

The integral has a value only at r = 0; therefore,
¥ty = gle),

the impulse response of the system G(s). The impulse response test signal can often
be used for a dynamic system by subjecting the system to a large-amplitude, narrow-
width pulse of area A.

The standard test signals are of the general form

ey =1, (5.4)
and the Laplace transform is
nl
R = i 55)

Hence, the response to one test signal may be related to the response of another test
signal of the form of Equation (5.4). The step input signal is the easiest to generate
and evaluate and is usually chosen for performance tests.

Consider the response of the system shown in Figure 5.3 for a unit step input when

9
= e
Then the output is
9
Ye) = oy
the response during the transient period is

i) =091 = &™),

Section 53 Perormance of Second-Order Systems 309
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FIGURE 5.8
Percent overshool
and normalized

314

FIGURE 5.10
The step responsa

FIGURE 5.11
The step response
for a, = 5 with
{=07and{ =1
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As nature would have it, these are contradictory requirements: thus, a compro-
mise must be obtained. To obtain an explicit relation for My, and T, as a function of
£, one can dllf:n:numc Equalmu (5.9) and set it equal (o 2ero. Auemauv:ly one
can utilize the diff property of the Laplace transf which may be writ-

len as
.‘.E{ %} = s¥(s)

when the initial value of y(r) is zero, Therefore, we may acquire the derivative of y(r)
by multiplying Equation (5.8) by s and thus obtaining the right side of Equation
(5.10). Taking the inverse transform of the right side of Equation (5.10), we obtain
Equation (5.11), which is equal to zero when w, 8¢ = . Thus, we find that the peak
time relati ip for this d-order system is

= (5.14)

and the peak response is
My =1+ g énVisg, (5.15)

Therefore, the percent overshoot is

(5.16)

The percent overshoot versus the damping ratio, {, is shown in Figure 5.8, Also, the
normalized peak time, w,T}, is shown versus the damping ratio, £, in Figure 5.8 The
percent overshoot versus the damping ratio is listed in Table 5.2 for selected values of

([hi) 5,00
w0 440
HO Pesvent 4,60
‘g m bonhent 440
5 W 420
g 50 4 bl 4,00 "“:
i w 180
Ew 4 60
g F t 140
1 g : 120

(] 3.00
00 0.1 02 03 04 05 04 07 08 05 10
Drampang ratis, £
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16 = 10 roults

Amplinasde

Time (5}

K2

=07 =1
0% *
a, = 5 radls
06|

Amplitude

04

ns Lo 15 an 13 0

5.4 EFFECTS OF A THIRD POLE AND A ZERO ON THE SECOND-ORDER
SYSTEM RESPONSE

The curves presented in Figure 5.8 are exact only for the second-order sysiem of
Equation (5.8). However, they provide a remarkably good source of data because
many systems possess a dominant pair of roots, and the step response can be esti-
mated by utilizing Figure 5.8, This approach. although an app ion, avoids the
evaluation of the inverse Laplace 1 ion in order to the percent
overshoot and other performance measures. For example. for a third-order system
with a closed-loop transfer function

1

(2 + 22¢ + Dys + 1)° (1%

Tis) =

FIGURE 5.9
Mosrmalized rise

tima, T, versus
for a second-order

systom,
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Time

Setling
it

for a unit step input. where M,., is the peak value of the time response, and f is the
final value of the resg P fvis the magnitude of the input, but many sys-
tems have a final value significantly differcnt from the desired input magnitude. For
the system with a unit step represented by Equation (5.8), we have fv =
The seullng time, T,, is defined as the time required for the syslem to smlc with-
in a certain percentage & of the input amplitude, This band of +4 is shown in Figure
5.7. For the second-order system with closed-loop damping constant {w, and a re-
sponse described by Equation (5.9), we seck to determine the time 7, for which the
respanse remains within 2% of the final value. This occurs approximately when

T < o,
ar
fa, T, = 4,
Therefore, we have
4
T, =dr=-—. 5.3
T e, o)

Hence, we will define the settling time as four time constants (that is, 7 = 1/{w,} of

the dominant roots of the istic equation. The steady-state error of the sys-

tem may be measured on the step response of the system as shown in Figure 5.7,
The transient response of the system may be described in terms of two factors:

1. The swiliness of response, as represented by the rise time and the peak time.

2. The closeness of the response 10 the desired response, as represented by the overshoot
and setiling time.

Section 5.3 Performance of Second-Order Systems 313
Table 52 Percent Peak Overshoot Versus Damping Ratio for a
Second-Order System

Damping ratio 09 08 o7 06 05 0.4 03
Percent overshoal 0.2 1.5 4.6 9.5 16.3 254 2

the dampmg ratio. Again, we are confronu:d w:th A necessary compromise between
the o|‘ p and the

The of step resp can be i as the time it takes to rise from
10% to %% of the musnuudc of the step input. This is the definition of the rise time,
T,y shown in Figure 5.7. The normalized rise time, w7, versus {(0.05 = { = (0.95)
is shown in Figure 5.9. Although it is difficult to obtain exact analytic expressions for
T,1. we can utilize the linear approximation

= 216f + 0,60. 17)

tihy

which is accurate for 0.3 = ¢ = 0.8 This linear approximation is shown in
Figure 5.9,

The swiltness of a response to a step input as described by Equation (5.17) is
dependent on { and w,, For a given {, the response is faster for larger w,, as shown
in Figure 5.10. Note that the overshoot is independent of w,,.

For a given w,, the r:spunac is faster for lower {, as shown in Figure 5.11. The

ift of the resp . will be limited by the overshoot that can be

accepted,
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we require that the real part of the complex poles of T{s) be
Gy = L

This region is also shown in Figure 5.15, The region that will satisfy both time-
domain requirements is shown cross-hatched on the s-plane of Figure 5.15.

When the closed-loop roots are ry = —1 + j1 and 7, = —1 — jl, we have
T, = 45 and an overshoot of 4.3%. Therefore, { = If\/i and w, = 1/f = V2. The
closed-loop transfer function is

Gi(s) K wl
1+ G) S+ K .\J+2.§m(+m,=;
Henr.e wcrcqutre that K = w = 2and p = 2w, = 2, A full comprehension of the
t the closed-1 p rool location and the system transient response

is important to the system analyst and designer. Therefore, we shall consider the mat-
ter more completely in the following sections. =

EXAMPLE 5.2 Dominant poles of T(s)
Consider a system with a closed-loop transfer function

¥is) s %{s + @)
Ris) ) = (£ + 2w, + )1 + 73)

Both the zero and the real pole may affect the transient response. If o > fw, and
7 <= 1/{w,. then the pole and zero will have little effect on the step response.
Assume that we have
62.5(s + 2.5)
(2 + 65 + 25)(s + 6.25)

Note that the DC gain is equal to | (T(0) = 1). and we expect a zero steady-state
error for a step input. We have w, = 3,7 = (.16, and # = 2.5. The poles and the

T(5) =
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the s-plane diagram is shown in F‘gun: 5. ]‘.E.Tins tlmd{uder system is norma]l?r:d
with w, = 1. [t was ascertained exp that the perfi

by the percent overshoot, PO, and the settling time, T}, was adequately n-pmsem:d
by the second-order system curves when [4]

|1/y] = 10lgw,|.

Ill other words, the response of a third-order system can be approximated by the

i roots of the vd-order system as long as the real part of the dominant
roots is less than one tenth nf the real part of the third roat [15,20].

Using a ion, we can d ine the of a system to a
unit step input wllen { = 045 When y = 2.25, we find l.'hal the response is over-
damped because the real part of the complex poles is <0.45, whereas the real pole is
equal to —0.444. The settling time (to within 2% of the final value) is found via the
simulation to be 9.6 seconds. If y = 090 or 1/y = 1.11 is compared with {w, = 0.45
of the complex poles, the overshoot is 12% and the settling time is 8.8 seconds, If the
complex roots were dominant, we would expect the overshoot to be 20% and the
settling time to be 4/{w, = B.9 seconds The results are summarized in Table 5.3,

The performance measures of Figure 5.8 are correct only for a transfer function
without finite zeros. If the transfer function of a system possesses finite zeros and
they are located relatively near the domi poles, then the zeros will
materially affect the Lransu:nl response of the syst:m 5}

Table 5.3 Effect of a Third Pole (Equation 5.18) for { = 0.45

= Percent Settling

¥ T Overshoot Tima’
215 0444 (1} 963
1.5 0,666 v 63
0y LI 123 581
0.4 250 186 R&7
005 200 205 837
Noa 0.5 824

* Nirte: Scttling lime is normalized time, o, T, and ees 0 2% criterion.
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FIGURE 5.14
Single-lcop

Eyslam.

Table 5.4 The Response of a Second-Order
System with a Zero and { = 0.45

Percent Settling Peak
a/fw, Overshoot Time Time
5 3.1 80 30
2 397 T6 22
1 899 101 1.8
05 2100 103 LS
Note: Time is normalized as w,f, and seitling time is based on a 2%

eriletion,

The transient response of a system with one zero and two poles may be affected
by the location of the zero [3], The percent overshoot for a step input as a function
of a/{w,, when { = 1, is given in Figure 5.13(a) for the system transfer function

T = (wifa)s + a)
£+ s + w)

The actual transient response for a step input is shown in Figure 5.13(b) for selected
values of af{w,. The actual response for these selected values is summarized in
Table 5.4 when { = 045,

The correlation of the time-domain response of a system with the s-plane loca-
tion of the poles of the closed-loop transfer function is very useful for selecting the
specifications of a system. To illustrate clearly the utility of the s-plane, let us consid-
er a simple example,

EXAMPLE 5.1 Parameter selection

A, single-loop feedback control system is shown in Figure 5.14. We select the gain K
and llle parameler p so that the time-domain specifications will be satisfied. The

on hould be as fast as is attainable while retaining an over-
shoot of less Ih.nn 5% Furlﬁermor& the settling time to within 2% of the final value
should be less than 4 seconds. The damping ratio, {, for an overshoot of 4.3% is
0.707. This ratio is shown ly @5 a line in Figure 5.15. Because the

settling time is

4
T, =—=4ds,
Lo, E

¥ini
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The time constant for the exponential decay is + = 1/({w,) in seconds. The
number of cycles of the damped sinusoid during one time constant is
w w,f B

Imlw, 2miw, 2wl

(cycles/time) % v =

Assuming that the response decays in i visible time constants, we have

cycles visible = % (5.19)
For the second-order system, the response remains within 2% of the steady-state
value after four time constants (47). Hence,n = 4, and

1-n
cycles visible = iﬂ—- = 1{7'%]— ; (5.20)

for02 = { =06

As an example, examine the response shown in Figure 5.5(a) for { = 0.4. Use
¥(r) = 0 as the first minimum point and count 1.4 cycles visible (until the response
settles with 2% of the final value). Then we estimate

055 _ 0.55
= i 0.39.
We can use this approximation for systems with dominant complex poles so that
T(s) = u!i

4 2w + wl

Then we are able to estimate the damping ratio { from the actual system response of
a physical system.

An alternative method of estimating £ is to determine the percent overshoot for
the step response and use Figure 5.8 to estimate {. For example, we determine an
overshoot of 25% for { = 0.4 from the response of Figure 5.5(a). Using Figure 5.8,
we estimate that { = 0.4, as expected.

5.5 THE s-PLANE ROOT LOCATION AMD THE TRANSIENT RESPONSE

The i of a closed-loop feedback control system can be described in
terms of the Iocatlon of the poles of the transfer function. The closed-loop transfer
function is written in general as

Y 3 Pis) Afs)

R Al

where A(s) = 0is the characteristic equation of the system. For the single-loop sys-
tem of Figure 5.4, the characteristic equation reduces to 1 + G(s) = 0. It is the

T(s) =

Chapter 5 The Performance of Feedback Control Systems

represented in terms of the pcl:s and zeros of its tmﬂsfer function Tts} Cln the other
hand, system performance is often yzed by 1il
particularly when dealing with control systems.

The capable system designer will envision the effects on the step and impulse
responses of adding, dcletlng. or maoving poles and zeros of T(s) in the s-plane. Like-
wise, the designer should vi the y changes for the poles and zeros of
Tis), in order to effect desired changes in the model’s step and impulse responses.

An experienced designer is aware of the effects of zero locations on system
response. The poles of T(s) determine the particular response modes that will be
present, and the zeros of T{x) establish the relative wei gs of the individual
mode functions. For example, moving a zero closer to a specific pole will reduce
the relative contribution of the mode function corresponding to the pole.

A comg program can be developed to allow a user to specify arbitrary sets
of poles and zeros for the transfer function of a linear system. Then the computer
will evaluate and plot the system’s impulse and step responses individually. It will
also display them in reduced form along with the pole-zero plot.

‘Once the program has been run for a set of poles and zeros, the user can modify the
locations of one or more of them, Plots may then be presented showing the old and new
poles and zeros in the complex plane and the old and new impulse and step responses.

5.6 THE STEADY-STATE ERROR OF FEEDBACK CONTROL SYSTEMS

One of the fundamental reasons for using feedback, despite its cost and increased
complexity, is the attendant improvement in the reduction of the steady-state error
of the system. As illustrated in Section 4.6, the steady-state error of a stable closed-
Ioop system is usually several orders of magnitude smaller than the error of an
open-loop system. The system actuating signal, which is a measure of the system
error, is denoted as E(s). Consider the closed-loop feedback system shown in
Figure 5.18. According to the discussions in Chapter 4, we know from Equation (4.3)
that with N(s) = 0, Ti{s) = 0, the tracking error is

N 1
EG) = o Gamam

Using the final value theorem and computing the steady-state tracking error yields
i =gy =l 711 . 5.23]
Jlime(r) = e = limsT—— - 51G) (5). (523)

It is useful to determine the steady-state error of the system for the three standard
test inputs for the unity feedback system. Later in this section we will consider
steady-state tracking errors for ity feedback systems.

Step Input.  The steady-state error for a step input of magnitude A is therefore
s(A/s) A

€, = lim =

1+ GANGE) 1+ m GAGEs)
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zero are shown on the s-plane in Figure 5.16. As a first approximation, we neglect
the real pole and obtain

10(s + 2.5)
£ +6s+25
We now have { = 0.6 and w, = 5 for dominant poles with one accompanying zero
for which a/({w,) = 0.833. Using Figure 5.13{a}, we find that the percent overshoot
is 55%. We expect the settling time to within 2% of the final value to be

T(s) =

4 4
T, = —— =———m 1335
*T e, T 06G) T
Using a computer simulation for the actual third-order system, we find that the per-
cent overshool is equal to 38% and the settling time is 1.6 seconds. Thus, the effect
of the third pole of T(s) is to dampen the overshoot and increase the settling time
(hence the real pole cannot be neglected). m

The damping ratio plays a role in closed-loop system performance.
As seen in the design formulas for settling time, percent overshoot, peak time, and
rise time, the damping ratio is a key factor in dete; ng the overall performance.
In fact, for second-order systems, the damping ratio is the only factor determining
the value of the percent overshoot to a step input. As it turns out, the damping ratio
can be estimated from the response of a system to a step input [12]. The step re-
sponse of a second-order system for a unit step input is given in Equation (5.9),
which is

yy=1- ée""’ sinf{w, At + 6),

where B = V1 - %, and 8 = cos™ {. Hence, the frequency of the damped sinu-
soidal termfor { < 1k

w =l = )7 = w.p.
and the number of cycles in | second s w/(2r).
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poles and zeros of T{s) that the i Hi for a
closed-loop system, the poles of T{s) are the roots of the characteristic equnlloﬂ
Afs) = 0 and the poles of ZP{s) A{s). The output of a system (with gain = 1)
without repeated roots and a unit step input can be formulated as a partial fraction
expansion as

| G T L Bys + Gy
Y{s) ==+ e el
O3t Aira BT e v D
where the A4, B;, and C; are constants. The roots of the system must be either
5 = —o;or complex conjugate pairssuch as s = —ay £ juwy. Then the inverse trans-
form results in the transient response as the sum of terms

(5.21)

M N
W) =1+ DA+ D sinfugt + 8, (5.22)
=] k=]

where Dy is a constant and depends on By, C, @y, and w;. The transient response is

d of the steady-state output, exp ial terms, and damped sinusoidal
terms. For the response to be stable—that is, bounded for a step input—the real part
of the roots, =g, and —ay, must be in the lefi-hand portion of the s-plane. The im-
pulse response for various root locations is shown in Figure 5,17 The information
imparted by the [ocation of the roots is graphic indeed, and usually well worth the
effort of determining the location of the roots in the s-plane,

It is important for the control system analysl 1o understand the complete rela-
tionship of the plex-ii of a linear system, the poles and
zeros of its transfer fum.'lmn and its tlmdomam response to step and other inputs.
In such areas as signal processing and control, many of the analysis and design
calculations are done in the complex-frequency plane, where a system model is

Jur
& &
a A a & X
e . | \ F—'E
FIGURE 5.17 .
for various root T t T ke %
locations in thi (] I
s-plane. (The |h |\ | l/
conjugate oot is b o
not shown.)
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The steady-state tracking error for a step input of magnitude A is thus given by

A
1+K,

ty = (5.26)

Hence, the steady-state error for a unit step input with one integration or more,
N = I, is zero because

i A
= i
Rl KTTz/ts"TTeud
AsY

ey 7 &n

Ramp Input. The steady-state error for a ramp (velocity) input with a slope A is

s(A/sh) ) A . A
w = lim e G.(5)G(s) = I G.GE MG e O

Again, the steady-state error depends upon the number of integrations, N. For a
type-zero system, N = 0, the steady-state error is infinite. For a type-one system,
N =1, the error is

& = lim

A
sk T (s + 2)/IsTLts + pa)l’

or

A
K (5.29)

e
" KHZJHIH

where K, is designated the velocity error constant. The velocity error constant is
computed as

Ko = lim sG{s)G(s).

‘When the transfer function p two oF more | N = 2, we obtaina
steady-state error of zero. When N = 1, a steady-state error exists. However, the
steady-state velocity of the output is equal 1o the velocity of input, as we shall see
shortly.

Acceleration Input,  When the system input is r(t) = Ar’/2, the steady-state error is

. s{Afx) . A
o = 66 G060 (30
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Therefore, the steady-state error of the system for a step input when K> = 0 and
Gs) = K, is

o= (5.33)

A
1+ K,
where K, = KK;. When K is greater than zero, we have a type-1 system,
Kis + K
Gils) = %-
and the steady-state error is zero for a step input.
If the steering command is a ramp input, the steady-state error is
A
=g (5.34)

where

= lim 5G,(x)G(s) = KaK.

The transient response of the wehicle to a triangular wave input when
Gls) = (Kys + K;)/s is shown in Figure 5.20, The transient response clearly shows
the effect of the steady-state error, which may not be objectionable if K, is suffi-
ciently large. Note that the output attains the desired velocity as required by the
input, but it exhibits a steady-state error. =

The control system’s error constants, K, K., and K,, describe the ability of a
system to reduce or eliminate the steady-state error. Therefore, they are utilized as

numerical of the steady-state perf The designer di ines the
error constants for a given system nnd pls to i hods of i i
the error while maintai an bl i f In the case

of the steering control system, we want (o increase the gain factor KK in order
to increase K, and reduce the sieady-state error. However, an increase in KK,
resulls in an attendant decrease in the system's damping ratio { and therefore a

wir

Ctpet

FIGURE 5.18
Closed-loop cont
system with unity
foadback.

FIGURE 5.18
Biock diagram of

control
system for a moble
rebot.
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It is the form of the loop transfer function G(s)G(s) that determines the steady-
state error. The loop transfer function is written in general form as

Kq_(: +1)

G (s)G(s) = (5.24)
& n(‘ + P’&I

where n denotes the product of the factorsand ; # 0, g, # Oforanyl =i = M
and i = k = Q. Therefore, the loop transfer function as s hes zero d
on the number of integrations, V. If N is greater than aero. then Ilm G, (s)G(s}
applaadl:s infinity, and the steady-state error approaches zero. The number of inte-
grations is often indicated by labeling a system with a type number that simply is
equal to N.

Consequently, for a type-zero system, N = 0, the steady-state error is

(5.25)

=

A & A
1+ GA0)G(0) I ﬁ :
1+K
+ Hzﬂf -iFl

‘The constant G (0}G(0) is denoted by K, the position error constant, and is given by

= lim G(s)G(s).
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Table 55 Summary of Steady-State Errors

Number of
Integrations In|
in G{s)Gs), Type Step, rft) = A, Ramp, Af, Parabola,
Number Rfs) = Ajs Afs® AP2, Ajs?
o = T-—if; Infinite Infinite
1 =0 % Infinite
2 =0 o xi,
The steady-state error is infinite for one integration. For two integrations, N = 2,
and we obtain
A A
= e = (531
* KT/ I K. I ¥
where K, is designated the leration error The leration error con-
stant is

K= }i_l?nsjﬂ.(s)ﬂfﬂ-

When the number of integrations equals or exceeds three, then the steady-state
error of the system is zero.

Control systems are often described in terms of their type number and the error
constants, K. K, and K. Definitions for the error constants and the steady-state
error for the t three inputs are summansed in Table 5.5. The usefulness of the error

can be il 1 by ing a simple !

EXAMPLE 5.3 Mobile robot steering control

A mobile robot may be designed as an assisting device or servant for a severely dis-
abled person [7]. The steering control system for such a robot can be represented by
the block diagram shown in Figure 5.19, The steering controller is

G (s) = Ky + Kyfs. (5.32)
Contralbes Vehicle dynsmécs
sy " = e | ¥ish
Desired Gltl —— Gis = At
beading angle B Ieading sagh:
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since ¥(s) = T(s)R(s). Note that

K\GAs)Gls)  _ (rs + DK Gls)G(s)
1+ HS)GA5)G(s) w5+ 1 + KiG(s)G(s)

T(s) =
and therefore,

1+ 75(1 — K,G(5)G(5))

G 75 + 1 + K,G(5)G(s)

R(s).

Then the steady-state error for a unit step input is

e 1
o~ i O " TR e GG =
We assume here that

Iim sG(s)G(s) = 0.

EXAMPLE 5.4  Steady-state error

Let us determine the appropriate value of K, and calculate the steady-state error
for a unit step input for the system shown in Figure 5.21 when

GAs) =40 and Gis) =
and
20
He =
‘We can rewrite H(s) as
7
HS) =+t
Selecting K, = K; = 2, we can use Equation (5.36) to determine

1 1 1
1+ K imGaG) ~ 1+ 260(1/5) ~ 17

[

or 5.9% of the magnitude of the step input, m

EXAMPLE 5.5 Feedback system

Let us consider the system of Figure 5.24, where we assume we cannot insert a gain
K, following R(s) as we did for the system of Figure 5.21. Then the actual error is
given by Equation (5.35), which is
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The loop transfer function of the equivalent unity feedback system is Zfs). It follows
that the error constants for nonunity feedback systems are given as:

Ky = limZ(s). K, = lim sZ(s), and K, = lim 'Z(s).

Note that when H{s) = 1, then Z(s) = G.(5)G(s) and we maintain the unity feedback
error constants. For example, when H{s) = 1, then = lim Z(x) = lim G (s)G(s),
as expected. =i )

5.7 PERFORMANCE INDICES
I i iphasis on the and t of control
system per[urrnanoe can be found in the recent liternture on automatic conl.rol
Mod:rnnumml theory assumes that the systems engi can specify
the required system | Then a per index can be ml:cu]nltd uf
measured and used to evaluate the system’s performance. A quantitative measure of
the performance of a system is necessary ful |.'hc operation of modern adaptive con-
trol systems, for ion of a control system, and for the
design of optimum sysrcms

‘Whether the aim is to improve the design of a system or to design a control sys-
tem, a performance index must be chosen and measured.

A perfy index is a g of the perfo
of a system and is chosen so that emphasis is given
to the important system specifications.

A system i il “n control system when the systcm parameters
are adjusted so that the index reaches an 8 value.
To be useful, a performance index miust be a number ‘that is nlwuys positive or zero,
Then the best system is defined as the system that minimizes this index.

A suitable performance index is the integral of the square of the error, ISE,
which is defined as

.
ISE = f E(rhdr. (5.37)

The upper limit T is a finite time chosen somewhat arbitrarily so that the integral
approaches a steady-state value. It is usually convenient to choose T as the setiling
time T,. The step response for a specific feedback control system is shown in Figure
5.25(b), and the error in Figure 5.25(c). The error squared is shown in Figure 5.25(d),
and the mlegral oI the error squared in Fgum i.‘ES{e) '[‘hls cnle.non will discriminate
between damped and 1P sy'uern& The mini-
mum value of the integral occurs for a promise value of the g The perfor-
mance index of Equation (3.37) is easily adapted for practical mcasurtmem.s because a
squaring circuit is readily obtained. Furthermore, the squared error is mathematically
convenient for analytical and computational purposes.

FIGURE 5.21
A nenunity

FIGURE 5.22
A spoed control
system.

FIGURE 5.23
The speed control
of

system
Figuro 5.2 with
Ky = Ky

FIGURE 5.24
A gystem with &
feedback His).
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more oscillatory response to a step input. Thus, we want a compromise that provides
the largest K, based on the sma}lesl ¢ allowable.

In the p di we d that we had a unity feedback system
where H(s} = 1. Now we consider nonunity feedback systems. A gcnelal feedback
system with nonunity feedback is shown in Figure 5.21. For a system in which the
feedback is not unity, the units of the output ¥{s) are usually different from the
output of the sensor. For example, a speed control system is shown in Figure 5.22,
where H(x) = K, The constants K, and K, account for the conversion of one sel
of units to another set of units (here we convert rad/s to volts). We can select K,
and thus we set K; = K; and move the block for Ky and K, past the summing
node. Then we obtain the equivalent block diagram shown in Figure 5.23. Thus. we
obtain a unity feedback system as desired.

Let us return to the system of Figure 5,21 with H(s). In this case, suppose

K;
5+ 1

His) =
which has a DC gain of

lim Fi{s) =

e

The factor K is a conversion-of-units factor. If we set K; = K|, then the system is
transformed to that of Figure 5.23 for the steady-state calculation, To see this, con-
sider error of the system E(s), where

E(s) = R(s) — Y(5} = [1 — T(s)]R(s). (5.35)
o Controller Process s
Desirend Volts $ ~ Wit Glsh Sgwed
I:'::: = frudhy)
Sensor
Volts, £

Ris) ! My
GGty p——n
fradist fraitis)
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Els) = [1 - T(s)]R(s).

Let us determine an appropriate gain K so that the steady-state error to a step input
is minimized. The steady-state error is

e = lim st — T

where
T(s) = G (s)G(s) - K(s +4)
T GIGEHHT) (5 + 2)s + 4) ¥ 2K
Then we have
4K
=33
The steady-state error for a unit step input is
= 1= T(0).
Thus, to achieve a zero steady-state error, we require that
4K
=gk ="

or & + 2K = 4K.Thus, K = 4 will yield a zero steady-state error. w

The determination of the steady-state error is simpler for unity feedback systems.
However, it is possible to extend the notion of error constants to nonunity feedback sys-
tems by first appmpria!ely rearranging the block diagram to obtain an equivalent unity
fi k system. it thal the und ', g system mlﬁlb:s!able,oﬂ'nmse our
use of the final value th ill be 1. Consider the i it
system in Figure 5.21 and ussumc that K; = ~ 1. The closed- -loop transfer function is

¥is) GLIGL)

7 T T T RGG66E!
By the block di pprog we can oblain the equivalent
unity leedlm:k system with
Yis) — () = Z[x} where Z(s) = GA5)G(s)

R(s) 1+ Z(s) 1+ Gs)G(sHH(s) = 1)
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The performance index ITAE p the best selectivity of the perf:
indices; that is. the minimum value of the integral is readily discernible as the system
parameters are varied. The general form of the performance integral is

T
= j; Fleley, rin), w(e), ) dr, (5.41)

where fis a function of the error, input, output, and time. We can obtain numerous
indices based on various combinations of the system iables and time. Note that
the minimization of 1AE or ISE is often of | i For le, the
minimization of a performance index can hc directly reLal.c:I 10 the mmlmlz.alﬂm of
fuel consumption for aircraft and space vehicles.

Performance indices are useful for the analysis and design of control systems.
Two examples will illustrate the utility of this approach.

EXAMPLE 5.6 Performance criteria

A single-loop feedback control system is shown in Figure 5.26, where the natural
frequency is the normalized value, w, = 1. The closed-loop transfer function is then

Tis) = (5.42)

1
2+ 1

Three performance indices—ISE, ITAE, and ITSE—caleulated for various values
of the damping ratio ¢ and for a step input are shown in Figure 5.27. These curves
show the selectivity of the ITAE index in comparison with the ISE index. The value
of the damping ratio { selected on the basis of ITAE is (1.7. For a second-order sys-
tem, this results in a swift response to a step with a 4.6% overshoot. w

o S
| IR

p—=r Fis)

by
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for the disturbance is obtained by using Mason’s signal-flow gain formula as
follows:

Yis) _ Pils) Ayls)

Tuls) Als)
101 + KK ™)
s —_ 7 L 43
1+ KiKss™ o+ Ky KoKys™ G43)

. s(s + KjK4)
£+ KKy 4 KK,

Typical values for the constants are Ky = 0.5 and K;K;K, = 2.5. Then the natural

frequency of the vehicle is f, = V2.5/(2%) = 0.25 cycles/s. For a unit step distur-
bance, the mini ISE can be analytically cal d. The attitude is

¥y = V’Tﬁ]}'w“ sin(%f + a«)]. (5.44)

where B = V10 = Ki/4. Squaring y{¢) and integrating the result, we have
1= f Ilsue'“"“mn?(-e; + w)dl
U3

;‘: -usx;(— - %co&(ﬂt + 2«\-)) dr {5.45)

1
— + 01Ky
= 3 + s

Differentiating / and equating the result to zero, we obtain

dl
B o g -
T K3’ 401 =0, (5.46)

the i ISE is obtained when K; = 410 = 3.2. This value of K;
corresponds to a damping ratio { of 0,50, The values of ISE and IAE for this syste'm
are plotted in Figure 5.29. The mini for the IAE per index is obtai
when K3 = 42 and { = 0.665. While the ISE c:rllerlon is not as selective as the IAE
criterion, it is clear that it is possible to solve analytically for the mini value of
ISE. The minimum of IAE is obtained by measuring the actual value of IAE for sev-
eral values of the parameter of interest. m

A control system is optimum when the selected performance index is mini-
mized. However, the optimum value of the parameters depends directly on the
definition of optimum, that is, the index. Therefore, in Examples 5.6
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Another readily instr d perfi i is the integral of the

absolute magnitude of the error, IAE wh]cll is writlen as

1AE = f le(e)l dr. (5.38)
0

This index is particularly useful for computer simulation studies.

To reduce the contribution of the large initial error to the value of the perfor-
mance integral, as well as to emphasize errors occurring later in the response, the
following index has been proposed [6]:

T
ITAE = j tler)] dr. (5.39)
a

This performance index is designated the integral of time multiplied by absolute error,
ITAE. Another similar index is the integral of time multiplied by the squared error, or

v
ITSE = f te(e) d. (5.40)
i
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EXAMPLE 57 Space telescope control sysiem

The signal-flow graph and block diagram of a space telescope pointing control
system are shown in Figure 5.28 [9]. We desire to select the magnitude of the
gain, K3, to minimize the effect of the disturbance, Ty(s). In this case, the distur-
bance is equivalent to an initial attitude error. The closed-loop transfer function

) Anituke
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foreground camera to control the movement of the background camera. The block
diagram of the background comera system is shown in Figure 5. ‘3](bJ for one axis of

of the background camera. The closed-loop transfer {
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and 5.7, we found that the optimum setting varied for different performance
indices.

The coefficients that will minimize the ITAE performance criterion for a step
input have been determined for the general closed-loop transfer function [6]

¥ _ by
Ris) 5"+ byys™ '+ <o b b+ by

T(s) = (5.47)

“This transfer function has a steady-state error equal to zero for a step input, Note
that the transfer function has # poles and no zeros. The cpumum :ucfﬁu:nl:s for the
ITAE criterion are glw:n in Table 5.6, The using i for
astep input are given in Figure 5.30 for ISE, 1AE, and IT.RE “The responses are pro-
vided for normalized time w s Other standard forms based on different perfor-
mance indices are available and can be useful in aiding the designer to determine
the range of coefficients for a specific problem. A final example will illustrate the
utility of the standard forms for ITAE.

EXAMPLE 5.8 Two-camera control

A very accurate and rapidly responding control system is required for a system that
allows live actors to appear as if they are performing inside of complex miniature
sets. The two-camera system is shown in Figure 5.31(a), where one camera is trained
on the actor and the other on the mini set, The is to obtain rapid and
accurate coordination of the two cameras by using sensor information from the

Table 5.6 The Optimum Coefficients of T(s) Based on the
ITAE Criterion for a Step Input
5w,
4 Ldws + of
5 4 175w, + 2150k + o
o Zlas + 3dolsd + 27als + o}
£+ 28a,st + SOl + 55wle + 3daits + o)
4 3250," + 660uls + S60uly + TASwis + 3950is + of

The standard form for a third-order system given in Table 5.6 requires that
Ly = 1.75w,,  wj =257, and K Kw] = ).
Examining Figure 5.30{:) I'or n=3 we estimate that the seitling time is approxi-
mately 8 seconds me). Th we estimate that
w, T, = 8.

Because a rapid response is required. a large o, will be selected so that the settling
time will be less than 1 second. Thus, w, will be set equal to 10 rad/s. Then, for an
ITAE system, it is necessary that the parameters of the camera dynamics be

wy = 14.67 rad/s

and
£ =0597.

The amplifier and motor gain are required 1o be

oy ey
e e T L T

Then the closed-loop transfer function is

1000
5+ 17.56 + 2155 + 1000
. 1000
(s + T08)(s + 521 + j10.68)(s + 521 — [10.68)

T(s) =

(5.49)
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A more to match the frequency response of
the reduced-order transfer lunmun with the original transfer function frequency
response as closely as possible. Although frequency response methods are covered
in Chapter 8. the associated approximation method strictly relies on algebraic ma-
nipulation and is presented here. We will let the high-order system be described by
the transfer function

B + g7+ s s+
L Y e o T

Guls) = K (5.51)

in which the poles are in the lefi-hand s-plane and m = n. The lower-order approx-
imate transfer function is

+ - o+l

"
Gl = K e T

(5.52)

where p = g < n, Notice that the gain constant, K, is the same for the original
and approximate system; this ensures the same steady-state response. The method
outlined in Example 5.9 is based on selecting ¢; and d, in such a way that Gy(s) has
a frequency response (see Chapter 8) very close to that of Gy(s). This is equiva-
lent to stating that Gyl juw)/G,(jw) is required to deviate the least amount from
unity for various frequencies. The ¢ and d coefficients are obtained by using the
equations

M) (5) = A—‘va) (5.53)
5) = M .
and
AMg) = 5&{5}. (5.54)
where Mis) and A(s) arc the and d i p ials of

Gyl 8)/Gyis), respectively. We also define

(LA O S ()]

= 5
K2 — k)1 . q=012 (5.55)
and an analog quation for &g, The ions for the ¢ and o coefficients are
obtained by equating
My, = By, (5.56)

for g = 1,2.... up to the number required to solve for the unknown coefficients.
Let us consider an example to clarily the use of these equations.
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Equation (5.56) with ¢ = 1 requires that M, = Ay therefore,

49
=2dy + d} =—, !
2 % (5.64)
Completing the process for M, = A,, we obtain
7
& = :
i =18 (5.65)

Solving Equations (5.64) and (5.65) yields d, = 1.615 and d; = 0.624. (The other
sets of solutions are rejected because they lead to unstable poles.) The lower-order
system transfer function is

1.60

Gyis) = ! =
T T 1618s + 06248 5+ 25905 + 1.60°

(5.66)

It is interesting to see that the poles of Gy ls) are s = —1, =2, =3, whereas the poles
of Gy(s) are s = —1,024 and —1.565. Because the lower-order model has two poles,
we estimate that we would obtain a slightly overdamped step response with a set-
tling time to within 2% of the final value in approximately 3 seconds. m

Itis to retain the domi poJes of lhe original sysl.em.
Gyy(s), in the low-order model. This can be P
nator of Gy(s) to be the dominant poles of G”[sj and allowing Ihe numerator of
Gy(5) to be subject to approximation,

Another novel and useful method for reducing the order is the Routh approxi-
mation method based on the idea of truncating the Routh table used to dclcrmm:

The Routh approxi can be computed by a finite gorith
that is suited for prog: on a dugl:al comp [19].
A robat nam:ﬂ Domo igate robot ipulation in unstruc-

tured environments [22-23]. The robot shuwn in Figure 5.33 has 29 degrees of freedom,
miaking it a very complex system. Domo employs two six-degree-of-freedom arms and

hands wllll pliant and forc 1 coupled with a behavior-based sys-
tem archil 1o achieve robotic manipulation tasks in human environments. Design-
inga contmlier to control the motion of the arm and hands would mqmre significant
maodel red and imation before the of design di: d in the sub-

sequent chapters (e.x,.mol locus design methods) could be successfully applied.

5.9 DESIGN EXAMPLES

In this section we present two il i ples. The first ple is a simplified
view of the Hubble space telescope pointing control problem, The Hubble space tele-
scope problem highlights the process of computing controller gains to achieve de-
sired percent overshoot specifications, as well as meeting steady-state error
specifications The second example considers the control of the bank angle of an air-
plane. The airplane attitude motion control example represents a more in-depth look
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Table 5.7 The Optimum Coefficients of T(s) Based
on the ITAE Criterion for a Ramp Input
432, 4wl
& 1750 + 3250 + wl
£ 4 28a s’ + 49305 + Sidads + ol
4 209, + 6.50uls’ + 630l + S24uds + w)

The locations of the closed-loop roots dictated by the ITAE system are shown
in Figure 532, The damping ratio of the complex roots is £ = 0.44, However, the

plex roots do not domi ‘The actual resy 1o a step input using a comput-
er simulation showed the overshoot to be only 2% and the settling time (to within
2% of the final value) to be equal to 0,75 second.

For a ramp input, the coefficients have been determined that minimize the
ITAE criterion for the general closed-loop transfer function [6]

s+ by
S by e b by

T(s) =

(5.50)

This transfer function has a steady-state error equal to zero for a ramp input. The
optimum coefficients for this transfer function are given in Table 5.7, The transfer
function, Equation (5.50), implies that the process G{s) has two or more pure inte-
grations. as required to provide zero steady-state error. m

5.8 THE SIMPLIFICATION OF LINEAR SYSTEMS

It is qu.l: useful to Sll.ldj' complex systems with high-order transfer functions by

using d models. For le, a fourth-order system could be
appra:lma!u‘l bya seoond-arder system leading to a use of the performance indices
in Figure 5.8, Several methods are available for reducing the order of a sysiems

transfer function.

One relatively simple way to delete a certain insignificant pole of a transfer
function is to note a pole that has a negative rea] part that is much more negative
than the other poles. Thus, that pole is exp i 1o affect the
insignificantly.

For example, if we have a system with transfer function

< K
G = e s 0

we can safely neglect the impact of the pole at s = =30, However, we must retain
the steady-state response of the system, so we reduce the system to

(K
)= slx + 2)
Section 5.8 The Simplification of Linear Systems 3
EXAMPLE 5.9 A simplified model
Consider the third-order system
[ 1
Guls) = = = = . (5.57)
FEAC 18+ 6 1+llx+,2+l‘_‘
6 6
Using the second-order model
1
T} ——, 5.
G(s) 1+ dys + dys? (5:58)
we determine that
M(s) =1+ dis + dys®, and Afs) =1+ %‘x + 2+ %x’.
‘Then we know that
MU s) = 1 4+ dys + dos®, (5.59)
and M™(U) = 1. Similarly, we have
MO = :—,(1 + g+ dy?) = oy + 24l (5.60)
Therefore, M''{0) = d,. Continuing this process, we find that
M) =1 Ay =1,
M) =d, Ay =4
M0y =24,  AQD) =2, (5.61)

and
MP0y =0 AP0y =1
We now equate My, = A, for g = 1 and 2. We find that, for g = 1,

MO My MM M0y
TR :Jz o, U: r>+(_|) (}2 ")

==y ) = dy = 2y + (5.62)

Since the equation for A; is similar, we have

Aoy A0y AUY0) A) A%0) A0
8 =(-1) o . - + (=1 = )

12 49
=—1+-%~|=§_ (5.63)
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Thercfore, w, = \/E. and the second term of the denominator of Equation (5.69)
requires Ky = 2{(L)ar,. Then K; = I.Z'\/I_(‘some ratio K/ K, becomes

Kk __K__VK
K vk 12

Selecting K = 25, we have K; = 6and K/K| = 4.17, If we select K = 100, we have
Ky = 12and K/K, = 33, Realistically, we must limit K so that the system's opera-
tion remains linear. Using K = 100, we obtain the system shown in Figure 5.34(c),
The responses of the system to a unit step input command and a unit step distur-
bance input are shown in Figure 5.34(d). Note how the effect of the disturbance is
relatively insignificant.

Finally. we note that the steady-state error for a ramp input (see Equation 5.70) is

]
= m =N.12B.

This design, using K = 100, is an excellent system. m

EXAMPLE 511  Attitude control of an airplane

Each time we fly on a commercial airliner, we experience first-hand the benefits of
automatic control systems. These systems assist pilots by improving the handling
qualities of the aircraft over a wide range of flight conditions and by providing pilot
relief (for such emergencies as going to the restroom) during extended flights. The
special relationship between flight and controls began in the early work of the
Wright brothers. Using wind tunnels, the Wright brothers applied systematic
design technigues to make their dream of powered flight a reality. This systematic
upproach to design contributed to their success.

Another significant aspect of their approach was their emphasis on flight
controls: the brothers insisted that their aircraft be pilot-controlled. Observing
birds control their rolling motion by twisting their wings, the Wright brothers
built aircraft with mechanical mechanisms that twisted their airplane wings.
Today we no longer use wing warping as a mechanism for performing a roll ma-
neuver; instead we control rolling motion by using ailerons, as shown in Figure
5.35. The Wright brothers also used elevators (located forward) for longitudinal

Beak angle, &,

Aileron
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at the control design problem. Here we consider a complex fourth-order model of
the lateral dynamics of the aircraft motion that s approxi d by a o
moddel using the approximation methods of Section 5.8, The simplified model can be
used to gain insight into the controller design and the impact of key controller para-
meters on the transicnt performance,

EXAMPLE 5.10  Hubble space telescope control

The orbiting Hubble space tel pe 15 the most and expensive scientific in-
strument that has ever been built. Launched to 380 miles above the earth on April 24,
1990, the telescope has pushed tech 1o new limils, The telescope’s 2.4 meter
(94.5-inch) mirror has the smoothest surface of any mirror made, und its pointing sys-
tem can center it on a dime 400 miles away [18], The telescope had a spherical aber-
ration that was largely corrected during space missions in 1993 and 1997 [21].
Consider the model of the telescope-pointing system shown in Figure 5.34,
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The goal of the design is to choose Ky and K so that (1) the percent overshoot
of the cutput to a step command, r(r), is less than or equal to 10%, (2) the steady-
state efror to a ramp command is minimized, and (3) the effect of a step disturbance
is reduced. Since the system has an inner loop, block diagram reduction can be used
to obtain the simplified system of Figure 5.34(b).

“The output due to the two inputs of the system of Figure 5.34(b) is given by

Y(s) = T(s)R(s) + [T(s)/ K|Tyls). (5.67)
where
_ K& _ Lis)
T = Tokem ~ T+ Loy
The error is
. __Gly)
E@) = 7575 RO ™ T3 £y 4 (5:68)

First, let us select X and K, to meet the percent overshoot requirement for a step
input, R{s) = A/s. Setting Ty(s) = 0, we have

__ KG(s)
Y =15 mm"‘"
K A K A
= Z)= = 5.
SIS*'KJ*K(’) s’+K|s+K(’)- G
To set the overshoot less than 10%. we select { = L6 by examining Figure 5.8 or
using Equation (5.16) to inc that the hoot will be 9.5% for ¢ = 0.6.

We next examine the steady-state error for a ramp, r(r) = Br.r = 0, using {Equa-
tion 5.28):

. & 1.8
= m{xl) * Kk oo

The steady-state error due 10 a unit step disturbance is equal to —1/K. (The
student should show this.) The transient response of the error due to the step dis-
turbance input can be reduced by increasing K (see Equation 5.68). In summary,
we seek a large K and a large value of K/K; 1o obtain a low steady-state error for
the ramp input (see Equation 5.70). However, we also require { = (1.6 1o limit the
avershool.

For our design. we need to seleet K. With { = 0.6, the churacteristic equation of
the system is

&+ 2wy + ) = 8+ 206)w,s + K. (5.71)
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We begin by considering the model of the lateral dynamics of an airplane moving
along a steady, wings-level flight path. By lateral dynamics, we mean the attitude motion
of the aircraft about the forward velocity. An accurate mathematical model describing
the motion (translational and rotational) of an aircraft is a complicated set of highly
nonlinear, time-varying, coupled differential equations. A good description of the
process of developing such a mathematical model appears in Etkin and Reid [25].

For our purposes a simplified d ic model is ired for the ilor de-
5|g'n process. A 51mpill'ed model might consist of a transfer function d:smbmg the
the aileron deflection and the aircraft bank
ang!: Obtulmng such a transfer function would require many prudent simplifica-
tions to the original high-fidelity, nonlinear mathematical model,

Suppose we have a rigid aircraft with a plane of symmetry. The airplane is as-
sumed to be cruising at subsonic or low supersonic (Mach < 3) spt:ds. This allows
us to make a flat-earth approximation. We j ignore any mlur gy‘rmoopw effects due to
spinning masses on the aircraft (such as prop These

allow us to d ple the longitudinal { (pur:hlns) maotion from the latcral
rotational (rolling and yawing) motion.
Of course, we also need to consider a linearization of the nonli ions of

maotion. To accomplish this, we consider only steady-state flight conditions such as

O Steady. wings-level flight
U Sieady, level turning flight
U Steady. symmetric pull-up
O Steady roll.
For this example we assume that the airplane is flying at low speed in a steady.
wings-level attitude, and we want 1o design an autopilot to control the rolling mo-
tion. We can state the control goal as follows:

Control Goul
Regulate the airplane bank angle to zero degrees {slcady. wings level) and
maintain the wings-level ori ion in the p dictable external
disturbances.

‘We identify the variable to be controlled as

Variable to Be Controlled
Airplane bank angle (denoted by ¢).

Defining system specifications for aircraft control is complicated, so we do not
attempt it here. It is a subject in and of itself, and many engineers have spent signifi-
cant efforts developing good. practical design specifications. The goal is to design a
control system such that the dominant closed-loop system poles have satisfactory
natural frequency and damping [24]. We must define satisfactory and choose test
input signals on which to base our analysis.

The Cooper-Harper pilot opinion ratings provide a way to correlate the feel of
the airplane with control design specifications [26]. These ratings address the han-
dling qualities issues. Many flying qualities requirements are specified by govern-
ment agencies, such as the United States Air Force [27). The USAF MIL-F-8785C is
a source of time-domain control system design specifications.
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we have ey = 3.57 and dy = 0.0128 [24). The complex conjugate poles given by the
term &5 + fix + fy represent the Dutch roll motion.

For low angles of attack (such as with steady, wings-level flight). the Dutch roll
maode genera]:ly cancels out of the transfer function with the 5 + bys + by term. This
is an app ion. but it is i with our other simplifying assumptions. Also,
we can ignore the spiral mode since it is essentially a yaw motion only weakly cou-
pled 1o the roll motion. The zero at § = ¢, represents a gravity effect that causes the
aircraft to sideslip as it rolls We assume that this effect is negligible, since it is most
pronounced in a slow roll maneuver in which the sideslip is allowed to build up, and
we assume that the aircraft sideslip is small or zero. Therefore we can snmphfy the
transfer function in Eq. (5.72) to obtain a single-degr f-f

bis) ” k

Bls)  s(s + &)
For our aircraft we select ey = 1.4 and k = 11.4, The associated time-constant of the
roll subsidence is v = 1/e, = 0,75, These values represent a fairly fast rolling mo-
tion response.

For the aileron actuator model, we typically use a simple first-order system
model,

(5.73)

B4s) _ _p
e(s) s+p

where e(s) = d,(s) — (). In this case we select p = 10. This corresponds to a time
constant of ¥ = 1/p = 0.15. This is a typical value consistent with a fast response. We
need to have an actuator with a fast response so that the dynamics of the actively con-
trolled airplane will be the dominant mmpcncnlulu:e ﬁs:em r:spunse A slow actuator
is akin to a time delay that s perfi

For a high-fidelity simulation, we would need to develop an accurate model of the
gyro dynamics. The gyro, typically an integrating gyro. is usually characterized by a very
fast response. To remain consistent with our other simplifying assumplions, we ignore
the gyro dynamics in the design process. This means we assume that the sensor mea-
sures the bank angle precisely. The gyro model is given by a unity transfer function,

K= (575)

Thus our physical system model is given by Equations (5.73), (5.74), and (5.75).
The controller we select for this design is a proportional controller,

Gis) = K
The system configuration is shown in Figure 5.37. The select key parameter is as follows:

Select Key Tuning Parameter
Controller gain K.

(5.74)

The closed-loop transfer function is

1) = 28 14K

= —— 76
dls) &+ 11487 + 145 + 114K 6
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control {pitch motion) and rudders for lateral control (yaw motion), Today’s air-
gh the el are generally lo-

craft still use both and rudders,
cated on the tall (rearward).

The first contralled, powered, unassisted take-off flight occurred m 1903 with
the Wright Fiyer | (ak.n. Kitty Hawk). The first practical airplanc, the Flyer 11,
eould fly figure eights and stay nloft for half an hour, Three-axis flight control was a
major (and often overlooked) contribution of the Wright brothers. A concise his-
torical perspective is presented in Stevens and Lewis [24). The continuing desire to
fly faster, lighter, and longer fostered further developments in automatic flight con-
trol, Toduy's challenge is 10 develop a singlesstage-to-orbit aircrafifspacecraflt that

can take off and land on a standard runway,

The main topic of this chapter is control of the automatic rolling motion of an
airplane, The elements of the design process emphasized in this chapter are illus-

trated in Figure 5.36.
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For example we might design an autopilot control system for an aircraft in
steady, wings-level flight to achieve a 20% overshool to a step input with minimal
oscillatory motion and rapid response time (that is, a short time-to-peak). Subse-
quently we implement the controller in the aircraft control system and conduct flight
tests or high-fidelity computer simulations, after which the pilots tell us wimh:r they

liked the performance of the aircrait. If the overall p Was not

we change the time-domain specification (in this case a percent overshoot speuﬁe&-
tion) and redesign until we achieve a feel and performance that pilots (and ultimately
passengers) will accept. Despite the simplicity of this approach and many years of
research, precise-control system design specifications that provide acceptable air-

plane flying characteristics in all cases are still not available [24].

The control design specifications given in this example may seem somewhat
contrived. In reality the specifications would be much more involved and, in many
ways, less precisely known. But recall in Chapter 1 we discussed the fact that we
must begin the design process h With that apy h in mind, we select
simple design specifications and begin the iterative design process The design spec-

ifications are

Control Design Specifications
D51 Percent overshoot less than 20% for a unit step mput.

D82 Fast response time as measured by time-to-peak.

By making the simplifying i i above and I

the steady, wings-level flight condition, we can obtain a transfer function model
describing the bank angle output, é(s), to the aileron deflection input, 5,(s). The

transfer function has the form

6(:} kis — col(s® + bys + by)
5050 (s + doMs + e)ls + f13 + fo)

The lateral (rolllyaw) motion has three main modes: Dutch roll mode, spiral
maode, and roll subsidence mode. The Dutch roll mode, which gets its name from its
similarities to the motion of an ice speed skater, is characterized by a rolling and
yawing motion. The airplane center of mass follows nearly a straightline path, and a
rudder impulse can excite this mode. The spiral mode is characterized by a mainly
yawing motion with some roll motion. This is a weak mode, but it can cause an air-
plane to enter a steep spiral dive. The roll subsidence motion is almost a pure roll
motion. This is the motion we are concerned with for our autopilot design. The
denominator of the transfer function in Equation (5.72) shows two first-order
modes (spiral and roll subsidk modes) and a d-order mode (Dutch roll mode),

In general the melﬁclems g~ Dy by, dy. eg. fi fr and the gain k are complicated
lity derivatives are functions of the flight
conditions and the aircraft configuration; they differ for different aircraft types The

of stability deri The stal
coupling between the roll and yaw s included in Equation (5.72).

In the transfer function in Equation (5.72), the pole at s = —d, is associated
with the spiral mode. The pole at s = —e; is associated with the roll subsidence
maode. Generally, e, == dy. For an F-16 flying at 500 ft/s in steady, wings-level flight,
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we can solve for the of the approxi function. The index g
is incremented until sufl“cwm equations are obtained to solve for the unknown
coefficients of the approximate function, In this case, ¢ = I, 2 since we have two
parameters dy and d; to compute.
‘We have
Mix) =1+ dys + dos”
)
MWs) = —E = dy + 2dss

M) = i:‘:g =24,

MY(s5) = Mis) = - =0,
Thus evaluating at 5 = 0 yields

M) = d,
MO = 2dy
M) = MU0y = - =0,

Similarly.

14 114 5
80 =1+ ax® Y tax® T Tax
dA 14 128 5,
Mgy afh 1M 2B . 35
AT = = Tk * ikt Tiak®
28 6
s mx 114K
6
(L1 ..o e
a%n d =Tk
AN(5) = AN(s) = =0

A =

Evaluating at ¥ = 0, it follows that

Aty = I4K

28
{2}, o
AR = o
[
(L7 PRI,
AP0 = ke

AMNO) = aM(0) = - =0,
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Comparing coefficients in Equations (5,82) and (5.83) yields

@l = 1120K and = U'_;ﬂ —~ 0.065. (5.84)

The design specification that the percent overshoot £, is to be less than 20%
implies that we want £ = (.45, This follows from selving Equation (5.16)

PO. = 1000V
for {. Setting { = 0.45 in Equation (5.84) and solving for & yields

K = 0.16.
‘With K = (.16 we compute

11.29K = 1.34.
Then we can estimate the time-to-peak T, from Equation (5.14) 10 be

T, = — = = 2625,
* w, V1 =2

We might be tempted at this point to select { > 0,45 so that we reduce the percent
overshoot even further than 20%. What happens if we decide to try this approach?
From Equation (5.84) we see that K decreases as { increases, Then, since

w, = VILI9K,

as K decreases, then w, also decreases. But the time-to-peak, given by

w
V1T -7

increases as w, decreases. Since our goal is to meet the specification of percent over-
shoot less than 20% while minimizing the time-to-peak. we use the initial selection
of { = 0.45 so that we do not increase T, unnecessarily.
The d-order system approximation has allowed us to gain insight into the
Jati ipk the p K and the sysiem response, as measured by per-
cent overshoot and time-to- peak. Of caurse, the gain K = (.16 is only a starting
point in the design because we in fact have a third-order system and must consider
the effect of the third pole (which we have ignored so far).
A mmpnnsoﬂ 0[ lhe third-order aireraft model in Equation (5.76) with the
in ion (5.82) for a unit step input is shown in
Figure 5.38. The step response of the second-order system is a good approximation
of the original system step response, so we would expect that the analytic analysis
using the simpler second-order system to provide accurate indications of the rela-
tionship between K and the percent overshoot and time-to-peak.
With the second-order approximation, we estimate that with K = (.16 the per-
cent overshoot P.O. = 20% and the time-to-peak T, = 2.62 seconds. As shown in

=

FIGURE 537
Bark angle control
autopdol.

351
| Adrcraft
dynamics.
14 i)
* B im Banh anghe

We want to determine analytically the value: of K that will give us the desired

response, namely, a percent overshoot less tian 20% and a fast time-to-peak.

The analytic analysis would be simpler if our closed-loop system were a second-

oﬂier system (since we have valuable rclatmwhlps between settling time, percent
d d

. natural AL an ping rat o); b we have a third-order
system, given by T(s) in Equation (5, 1'6) We could consider appm:umsl:ng the
third-order transfer function by a second-order ransfer i is

a very good engineering approach to analysis, T iere are many methods available to
obtain approximate transfer functions. Here we use the algebraic method described
in Section 5.8 that attempts to match the frequency response of the approximate
system as closely as possible to the actual systery,

Our transfer function can be rewritten as

1

= A g L 13t
U4 et + ik © s

T(s) =

by factoring the constant term out of the numer itor and denominator. Suppose our
approximate transfer function is given by the second-order system

Guls) = 1+ dys + dys®

The objective is to find appropriate values of d, and d;. As in Section 5.8, we define
Mis) and A(s) as the numerator and denominator of T{5)/G,(s). We also define

(- nl -an[l D{u)M[ﬁq =k ;(0)

My, = 2 ki - K1 v §=12,... (3.77)
and
(-0t A aRHe)
lﬁ e L (5.78)
Then, forming the set of algebraic equations
Moy = Ao ¢ =1,2...., (5.79)
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Using Equation (5.77) for g = 1 and g = 2 yields

12) i) i) 2
My = M{U}J;f © M (O}IM w0 M (;}M(m g
and
» MMy M“‘(I'J]M“'{OJ M0y MEN)
My orat B 13 212
_ MI@Mhe)  MOUOMO) .
3nt a0 £

Similarly using Equation (5.78). we find that

-228 19 _ 10196
14K~ (114K) AENTITT o

Ay =

Thus forming the set of algebraic equations in Equation (5.79),

M:=A; and M,= A,

we obtain
228 . 1% 101.96
=24y + )} ™+ ——— and oy’ .
1A= ek T (aky "™ " T (aky?
Solving for o, and d, yields
V196 — 296.96K
d = ik (5.80)
10097
TR (5.81)

where we always choose the positive values of dy and iy so that G, () has poles in the
left half-plane. Thus (after some manipulation) the approximate transfer function is

11.29K
&+ V192 - 291Ks + 1129

Gitsy = (582)

We require that K < (.65 so that the coefficient of the 5 term remains a real num-

ber (we do not want to have a transfer function with plex valued p 1
Our desired second-order transfer function can be written as
Guls) = v (5.83)

£+ Wy + ol



Chapter 5 The Performance of Feedback Control Systems

Table 5.8 Performance Comparison for K = 0.10,

0.16, and 0.20.

K PO. (%) Tyls)
(1] L X i74
(1N mns 273
i 265 23R

predicted, as the percent ! the time-to-peak i The results

are summarized in Table 58. w

5.10 SYSTEM PERFORMANCE USING CONTROL DESIGN SOFTWARE

FIGURE 5.40

funciion.

input. (&) m-fie
seript,

In this section. we will i igate time-domain perfi ifications given in
terms of transient response 1o a given mpnt u;nar and t ruulllns steady-state track-
ing errors. We conclude with a discussion of the simplification of linear systems. The
function introduced in this section is impulse. We will revisit the ksim function (intro-
duced in Chapter 3) and see how these lunctions are used to simulate a linear system.

Time-Domain Specificati Time-d specifications are gen-
erally given in terms of the transient response of a system Lo a given input signal.
Because the actual input signals are generally unknown, a standard test input signal is
used. Consider the second-order system shown in Figure 5.4. The closed-loop output is

)
¥i¥) = 5—————5R(x). 585
W=7 TIET (%) (5.85)
We have already discussed the use of the step function to compute the step
response of a system. Now we address another important test signal: the impulse.
The impulse response is the time nlmvnll.w.- of the step response. We compute the
impulse resp with the impul ion shown in Figure 5.40.

it i)
Tl Syvicm ‘C
o o
r I3

¥ = oulpul response 3t 1 t= T mcr-supplicd
T = sinvulation time time vecinr

o
1= T Simulation
final time {optional)

! +
[y Tisimpuisetsys. )
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¢ =0.1.0.25 05 1.0

& 02
=01
-04
~Uh
“0R

*%Compute impulse respanse for & second-ordar system
“%Duplicale Figure 5.8

%
1={0:0.1:0]; num=(1};

zetal=0.1; deni={1 2'zetal 1]; sysi=1inum dent)
ela2=0.25 den2=[1 2°zata2 1], sys2=H{num den2);
2e1a3=0.5; dend=[1 2"zeta3 1); sys3=tfinum, dend);
zetad=1.0; dend=[1 2" zatad 1]; sysd=tinum dend):

%
[y, TH]eimpuisesys1
[‘Q Tz}"ww ; Compate impulse sespoase,

R T
m:m LY2Ly3Lyd)

wdabel[ \omega _nt'), ylabel('y(1}/\emega_n')

title{\zeta = 0.1, 0.25, 0.5, 1.07), grid

by

shown in Figure 5.43. We studied the Isim function in Chapter 3 for use with state-
variable models: however, now we consider the use of Isim with transfer function

models. An example of the use of Isim is given in Example 5.12.
EXAMPLE 512  Mobile robot steering control

The block diagram for a steering control system for a mobile robot is shown in

Figure 5.19. Suppose the transfer function of the steering controller is

K
Gls) = K, + T’

Sepreponasct
response

tho 3™-order aircraft
madal with

K = 0.10, 0,16, and
. 20 showing that,
as predicted, as K
decradses percent
ovarshoot
decreases whila the
time-to-peak

FIGURE 5.41
{a) Responsa of &
second-crdar

system 1o & step
input, {bj m-tile
seriph.
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4 N T
2nd-crder approximsation in Egustion (5.82) with X = 016
12
| T
£ . |
% + Ard-onder aircraft model in Equation (5.76)
g 08 i
=
04 | ———
02 i |
8 } I I i
[} 1 2 3 4 5 L] 7 ] 9 0

Teme (53

Figure 5.39 the percent overshoot of the original third-order system is PO, = 205%
and the time-to-peak T, = 2.73 5. Thus, we see that that analytic analysis using the ap-
proximale system is an excellent predictor of the actual response, For comparison pur-
poses, we select two variations in the gain and observe the response. For £ = 0.1, the
percent avershoot is 9.5% and the time-to-peak T, = 3.74 5.For K = 0.2, the percent
avmhmt i5 26, 5% and the time-to-peak T, = 2.38 5.50 as predicted, as K decreases
the ing ratio i leading to a reduction in the percent overshoot. Also as

b
’
1
o6 ¥
i
i
wa| iy
)
1
02 !
4
o
L] i 2 3 4 5 & 7 B L] n
Tieme (5]
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14 = ML0Z.04,07 10,20
16
14
12
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=
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ta}

“SCompute step response lor a second-order systam
%Duplicate Figure 5.5 (a)

%

1w[0:0.1:42]; numf1];

zemai=0.1; deni={1 2°zetal 1); sysi=iinum,den1};
zela2=0 2; den2s{1 2"zela2 1]; sys2=tijnum,denz);
zelad=0.4; den3={1 2"zetal 1], sys3=tf{num,den3);
zetad=0.7; dend={1 2"zelad 1); sysd=tf{num dend);
zetaS=1.0; denS={1 2"zetal 1); sysS=tinum denS),
mn: denfe]1 2°zeta8 1]; sysfatiinum,dent):

ek i Coe
Y. T3j-stap(sys): 8 T4}-steplaysd 1) shiponte
[y5.TS]eatop(sys5.1); [y6. Tj=step(syss.1);

%

PIOTH,y1, T2y 2. T3,y 84,94 T5,y5.T6,5) ~—‘E
xdabell \omaga_n 1), ylabel[wt)') '

Hie(\zeta =0.1,02, 04,07, 1.0, 2.0°), prif

thi

We can obtain a plot similar to that of Figure 5.5(a) with the step function, as
shown in Figure 5.41, Using the impulse function, we can obtain a plot similar 1o
that of Figure 5.6. The response of a second-order system for an impulse function
input is shown in Figure 5.42. In the script, we set w, = 1, which is equivalent to
computing the step response versus w,f. This gives us a more general plot valid for
any e, > .

In many cases, it may be necessary to simulate the system response to an arbi-
trary but known input. In these cases, we use the Isim function, The Isim function is
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#{rad)

@ FIGURE 5.43
The Isim function.
2eCompute the responsa of tha Mobile Fobol Controt
%&'Mhawhr\uu input
=110 201, deng-=11 10 J;sysg=Hiuemg Song) 60536, 1)
Mwm i3 —
Compute trisngular
FIGURE 5.44 wave mp
o st Sy
mabile robot .
B iabel{Tima (5}), vlabellheta (rad}), grid
system to a ramp
migut, ) m-fle
senpl. b
A second-order approximation (see Example 5.9) is
1.60
Gl = T 25905 + L0
A comparison of their respective step responses is given in Figure 5.45. »
5.11 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM
In Section 4.10, we considered the response of the closed-loop reader head control
E system. Let us further consider the system shown in Figure 4.35. In this section, we
further consider the design process. We will specify the desired performance for the
system. Then we will attempt to adjust the amplifier gain K, in order to obtain the
best performance possible.
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Load
]
T I £
5K,
¥ T
O = w0 73,7
5K,
e
T+ 20 13k,
oy
= 5————R(s). 5.87
&+ 2o, +owl ) (587
Therefore, w}, = 5K, und 2fw, = 20, We then determine the response of the system
as shown m Figure 5.47. Table 5,10 shows the performance measures for selected
values of K,
Ka=to,
1=[0:0.01:1);
ne=[KaShde=(1]; syscatfine.de).
1)zdig=[1 20 0]: Sysgatl{ X
n?:-]a?h[o[ayn:]wun;. i Compute the FIGURE 5.45
¥ n: | closed-loop {8) Step response
y=slep(sys.t), tramsfer function. comparisan for an
Bha(Ly), grid £
xlabai{ Time {s)) mwwwm
ylabel{yvill') transfer function
{b) m-file script.
fa)
12
K =60
1
o
K, = M
=)
[
FIGURE 5.47 .
Response of the B
system 1o & unit a
m.'ﬁ_-,g_ nonl 62 083 04 05 Be 0T 0% 0% |
() m-file script. Time 1)
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K, = 30 and 60, thy
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wir) nn

Arbdinaty HOrm
input
Y

i} = output response at § Gish =5y w = ingut = times at which
T'= simulation time Tesponse 10 M is
veclor computed

n-lalmrm u.ll

When the input is a ramp, the steady-state error is

A

ta™= X (5.86)
where
K, = K:K.
The effect of the K. on the steady-state error is evident from
Equation (5.86). Whenever K; is large. the steady-state error is small.
We can simulate the closed-loop system resp 10 a ramp input using the

Isim function. The controller gains, K; and X;, and the system gain X can be rep-
resented symbolically in the script so that various values can be selected and sim-
ulated. The results are shown in Figure 544 for K = K = 1, K; = 2, and
=1/ =

Simplification of Linear Systems. [t may be possible 1o develop a lower-order
approximate model that closely matches the input-output respanse of a high-order

madel. A f lure for app ing transfer ions is given in Section 5.8, We
can use P 1o pare the approxi model to the actual
maodel, as ill d in the following pl

EXAMPLE 513 A simplified model
Consider the third-order system

f
R e T parers
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%
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Table 5.9 Specifi for the
Performance Measure Desired Value
Percent overshoot Less than 5%
Settling time Less than 250 ms
Maximum value of response Less than 5 % 107

o a unit step disturbance

Our goal is to achieve the fastest response to a step input rr) while (1) limiting
the overshoot and oscillatory nature of the response and (2) reducing the effect of a
disturbance on the output position of the read head. The specifications are summa-
rized in Table 5.9.

Let us consider the second-order model of the motor and arm, which neglects
the effect of the coil inductance. We then have the closed-loop system shown in
Figure 5.46. Then the output when Ty(s) = Ois



364 Chapter 5 The Performance of Feedback Contral Systems

FIGURE 5.48
The response of a
1o

a ramg input with

K= 1. 2, lnd 8

Kr’[m + ‘Nk + 3.

The steady-state

emor is reduced as

M is increased, but

the response

becomes oscillatory

atK =28,

5.12 SUMMARY
In this chapter, we have i the ition and of the perfor-
mance of a feedback control system. The concept of a performance measure or index
was discussed, and the usefulness of standard test signals was outlined, Then, several

fora lard step input test signal were delineated. For exam-
p[e. the overshoot, peak time, and settling time of the response of the system under test
for a step input signal were considered, The fact that the specifications on the desired
response are often contradictory was noted, and the concept of a design compromise
‘was proposed. The relationship between the location of the s-plane root of the system
transfer function and the system response was discussed. A most important measure
of system performance is the steady-state error for specific test input signals Thus, the
relationship of the steady-state error of a system in terms of the system parameters was
developed by utilizing the final-value theorem. The capability of a feedback control
system is demonstrated in Figure 5.49. Finally, the utility of an integral performance
index was outlined, and several design examples that minimized a system's perfor-
mance index were tumplcl:d.'lhus we have been concerned with the definition and
7 of the perfi of feedback control systems.
SKILLS CHECK

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple
Choice, and Word Match, To obtain direct feedback, check your answers with the answer key
provided at the conclusion of the end-of-chapter problems, Lise the block diagram in Figure
5.50 as specified in the various problem statements.

Contioller Process
+
Risy Gdn)  ——w G0 Yl

FIGURE 5.50 Biock diagram for the Skills Check.
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Using the notion of dominant poles. estimate the expected percent overshoot.
& PO =5%
b P.O. = 20%
e P.O.=50%
il. No overshoot expected
L. Consider the unity feedback contral system in Figure 5.50 where
L(s) = GG} = A
s(s + 5)
The design specifications are:
L Peak time T, = 1.0
il. Percent overshoot P.O. = 10%.
‘With K as the design parameter, it follows that
a. Both specifications can be satisfied.
b. Only the first specification T, = 1.0 can be satisfied.
. Only the second specification P.0. = 10% can be satisfied.
d. Meither specification can be satisfied.
12. Consider the feedback control system in Figure 5.51 where G{s) = ”L

o
Tan
Controtler Process
. Edn A %
Ris) = + Gis) M)
£
FIGURE 5.51 Feedback system with infegral and drly

The nominal value of K = 10. Using a 2% criterion, compute the settling time, T, for a

unit step disturbance, T(s) = 1/5.

& T,=002s

b. T, =0.195

e T,=103s

d T, =483
13. A plant has the transfer function given by

[, A e
{1+ 5)(1 + 0.5s5)

and is lied by ller G.(5) = K, as shown in the block diagram
in Figure 5.50. The ulue of K that yiclds a steady-state error E{s) = ¥(s) — R{s) witha
magnitude equal to 0.01 for a unit step input is:
a K =40
h K=9
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Table 5.10 Response for the Second-Order Model for a Step Input
K, 20 30 40 60 80
Percent overshoot a 12% 43% 10.8% 16.3%
Settling time (s) 0.55 040 .40 0.40 040
Damping ratio 1 082 0707 058 0.50
Maximum value of the =10 x 107 —6.6 % 107 ~5.2 x 107 -37 % 107 -29 % 107

response y{i) to a unit
disturbance

‘When K, is increased to 60, the effect of a disturbance is reduced by a factor of
2. We can show this by plotting the output, y{f), as a result of a unit step disturbance
input, as shown in Figure 548, Clearly, if we wish to meet our goals with this system,
we need to select a compromise gain. In this case, we select K, = 40 as the best com-
promise. However, this compromise does not meet all the specifications. In the next
chapter, we consider again the design process and change the configuration of the
control system.

T i
1=[0:0.01:1];
ne={Ka"Shde={1}. sysc=tf{nc,dc);
ng={1}:dg={1 20 O}; sysg=ting.dg):
Diisturbance enters summer
W” Al Pblfhlﬂ with a negative sign.
el Tine (s7), ylabel(y(t)), grid
fa)
=107t
0 T T T T
-1
Y - ; L] | I. = —
5 -1 =% |
= HRES | (I S
3 * I | T
-5 = "
FIGURE 5.48
= i
Response |
system Io a unit -3 . - j ;
TAsh = 18 00 062 03 04 05 06 07 0% 09 |
{a) m-file script. Time (s)
)} Response for
K, = 30 and 80, (L]
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In the following Trae or False and Multiple Cholee problems, circle the correct answer.

1 In general, a third-order system can be approximated by a second-order
system’s dominant roots if the real part of the dominant roots is less than

1710 of the real part of the third root. True or False
2. The number of zeros of the forward path transfer function at the origin ts

called the type number. True or Falre
3. The rise time is defined as the time required for the system to settle within

a certain percentage of the input amplitude. True or False
4. For a second-order system with ro zeros, the percent overshoot to a unit

step is a function of the damping ratio only. True or False
5, A type-1 system has a zero steady-state tracking error to a ramp input. True or False

Consider the closed-loop control system in Figure 5.50 for Problems 6 and 7 with
L]
Lis) = G.{3)G(s) = G

6. The steady-state error 1o a unit step input R{s) = 1/s is:
B ey = lime(r) = 1
b ey = lmefr) = 1/2
g™ Lln;e(ﬂ = 1/6
doe,= J'_h;l;{ﬂ - o
7. The percent overshoot of the output to a unit step input is:
w PO =9%
b PO.=1%
e P.O.=20%
d. No overshoot

Consider the block diagram of the control system shown in Figure 5.50 in Problems 8 and 9
with the loop transfer function

K
Lis) = G{s)G(s) = PPESTTS
8. Find the value of X so that the system provides an optimum ITAE response.
= K =110
b. K = 1156
e K =510
K =147
Compute the expected percent overshoot 1o & unit step input.
& PO. = 14%
b PO = 46%
e P.O. = 108%
il Noovershoot expected
10. A system has the closed-loop transfer function T(x) given by
el
(5] {5+ 20)(5 + 10 + 125)

=
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e Design The onstituent of the system response that exists a long

specifications

time following any signal initiation. —_—

o, Performance index  The comstituent of the system response that disappears

with time,

P Optimum control A test input consisting of an impulse of infinite amplinade
system and zero width, and having an area of unity. =——

EXERCISES

ES1 A motor control system for a compuier disk drive
miist reduce the effect of disturbances and parameter
varigtions. as well as reduce the steady-state error. We
waitt 1o have na steady state error for the head posi-
Noning control system, which i of the form shown in
Figure 5.18. (1) Whal type number is reguired? (How

(b} 1§ the mput is o ramp signal,

hieve a era scndy-siale ervor, what
type number is reqaired?

ES2  The enpine., body, and tires of a racing vehicle affect
the acceleration and speed attainable [9]. The speed
control of the car is represented by (he model shown
i Figure ES2. (a) Caleulote the steady-state error of
the ear 1o o sep command in ;pm:d (b} Cabeizlate
overshoot of the speed i a step command
Answer: (a) e, = A/11: (b) PO = 36%

that the system provides an optioum ITAE response.
b} Using Fgure 58, determine the expected over
shoot 1o a step input of /1),

Amswerz K = |00, 4.6%

Engine s tires H
&in
Speed 240 o]
commmand = (PRI ] Soced

FIGURE E5.2 Fncing car spend control

ES3 New pasengen rail systems that could profitably
compete with air travel are under development. Two
of these sysiems, the French TGV and the Inpanese
Shinkansen, reach speeds of 160 mph [17). The Trans-
rapid, 8 magnetic levitation Irain, is shown in Figure
ES3(a)

The use of magnetic levitation and electromug-
netie propulsion to provide contactiess vehicle mave-
ment makes the Tranmsrapid technology radically
different. The underside of the cwrrings [where the
whee! trucks would be wn a convenlional car) wraps
around a guidcway. Magnets on the bottom of the
guldeway attract electromngnets on the “wraparound.”
pulling it up towurd the guideway. This suspends the
vehieles about one centimeler above the puideway.

The levitation control ks represented by Figure
ES3(b}. (4} Using Table 5.6 for & step inpui. select K so

i
Ciapy
spainy

FIGURE E5.3 Levitatod train control

F54 A feedback system with negative unity feedback has
a loop tramdfer function
L{s) = GANGL) = 2
{5} = GG ) EAy
{a) Determine the closed-loop transfer funciion
T{x) = ¥is)/Rix). (b) Find the time response, v{i).
for & step ol r{1) = A for = 0. (¢) Using Figure
5.0}, determine the overshoot of the response
{d) Using the final-value theorem, determine the
seady-state value of 1) -
Amwers (B (1) = 1 = 107 > sin{ VT + 1.2)

Skills Check

. K =169
d. None of the above

In Problems 14 and 15, consider the control system in Figure 5.50, where

Gls) =

6
Graesy ™ Gl =T

14. A second-order approximate model of the loop transfer function is:

(3/25)K
£+ 10
(1/25)K
F+T5+10
_3sK
475 4 500

— 6K
& 84980 = 55,7

& Gunbs) =
b, Gis)is) =

o Gila)G(s) =

15, Using the second-order system approximation (see Problem 14), estimate the gain K so
that the percent overshoot is approximately P03 = 15%,

nK=10
b K =300
© K= 1000
d. None of the above

In the following Word Match problems, match the term with the definition by writing the
rovided.

correct letter in the space p
. Unit impulse

b. Rise time
€ Settling time

at the origin.
d. Type number

I Position error
constant, K,
g Velocity error
constant, K,
. Steady-state

response
i Peak time

The constant evaluated as IJI!; 5G(s),

& Percent overshoot  An input signal used as a standard test of a system’s
ability to respond adequately.

“The time required for the system output to settle within
a certain percentage of the input amplitude.

A set of prescribed performance criteria.

A system whose parameters are adjusted 3o that the
performance index reaches an extremum value.

A quantitative measure of the performance of a system,

The time for a system to respond to a step input and
rise to a peak response.

“The roots of the characteristic equation that cause the
dominant transient response of the system.

“The number N of poles of the transfer function, G(s),

INERNINn

J+ Dominant roots ~ The time for a system to respond (0 a step input and
attaim a response equal 10 a percentage of the magnitude

of the mput,

k. Testinput signal ~ The amount by which the system output resporie
proceeds beyond the desired response,
L Acceleration error  The constant evaluated as !!Hu FGLs).

constant, K, —_—
m. Transient response  The constant evaluated as .I!'& Gis). SERES
Exercises 369
Controller Process
FIGURE E5.5 ha I [l
Foodoack systrm o & e b9 "
with
Gels) = K,
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FIGURE E5.11
Unity feedback
Disturbamce
Tylnh
Wheel and
Caneroller molor dynamics
LTI “‘;‘_' = o Fs1

Devirel = e Spevd of
FIGUREES.12 sl - 229 ), # LR e
Spoed control of 0
Ferris wheel,

E5.12 We are all familiar with the Ferris wheel leatured
at state fairs and carnivals George Ferris was born in
Galesburg, Winoks, in IBS? he later lnmled o Neu—
da and then graduated from R

{b) Select an appropriate value for G,ix) so that the
steady-state error is equal to zero for the unit step
input.

In;tl:ule in 1881, By 1891, Ferris had considerable

with iron, steel. and bridge construction.
He coneeived and constructed his famous wheel for
the 1893 Columbian Exposition in Chicago [8]. To
avoid upsetting passengers, s2t a requirement that
the steady-state speed must be controlled to within
5% of the desired speed for the system shown in

ES15 A closed-loop control system has a transfer func-
tion Tis) as follows:
¥is) 2500
—_—— s ——— T
Ris) B (s + 50)(z* + 10y + 50)

Plot w1} for a step input R{s) when (a) the actual T{s)
s used, and (b) using the relatively dominant complex

Figure ES.12. pales. Compare the results.
{a) Determine the required gain K to achieve the ES16 A second-order system is

stendy—atm‘n requirement. ) Yis) (10/2)(s + z)
{b) For the gain of part (a), determine and plot the ok Tis) = TS

error efr) for a disturbance Ti(s) = 1/s. Does the
change more than $%7 (Set R(s) = 0 and
recall that E(s) = R{s) = T(x).}
E513 For the system with unity feedback shown in
Figure ES.11, determine the steady-state error for a

Consider the case where | < 1 < & Obtain the par-
tial fraction expansion, and plot ¥(r) for a step input
rifor s = 2,4, and 6.

ES17 A closed-loop control system transfer function T1x)

step and a ramp input when has two dominant enmpkxmnmle pdﬁ.Slcl:ll the
o region in the left-h s
G = s e should be located mmiﬂnglwngpsiﬂcltm

Answer: ¢, = 0.7 forastepand ¢,, = o0 for o ramp.
E514 A feedback system is shown in Figure E5.14.

{0} Determine the steady-state error for o unit step
when K = 0.4 and Gyfs) = 1.

() 06=[=08  w =10
(b) 0.5 = { = 0707, ow =10
(€) £=205 S5=ws=l0
{d) { = 0.707, SZan,=l0
{e) { =06, w, = 6

ESI8 A system is shown in Figure E5.18(a). The response
to & unit step, when K = |, is shown in Figure
ES5.18{b). Determine the value of K so that the steady-
state e1ror is equal (o zero.
Answer: K = 125,

ES19 A second-order system has the closed-loop trans-
fer function

ES.7 Effective control of insulin injections can resull

ESS5  Consider the feedback system in Figure ES.S, Find
K such that the closed-loop system minimizes the
ITAE performance criterion for & step input.

ES6  Consider the block diagram shown in Figure ES.6 [16]
(a) Calculate the steady-state error for a ramp input.
(b) Select a value of K that will result in zero over-

Plot the pales and zeros of this system and dis-
cuss the deminance of the complex poles What over-
shoot for a step input do you expect?

Pursitiomn fevdback
FIGURE E5.6 Block ciagram with posdtion and velocity
feadback.

n
better lves for diabetic persons. Automatically con-
trolled insulin injection by means of a pump and a
sensor thal measures blood sugar can be very effec-
tive. A pump and injection system has a feedback con-
trol as shown in Figure ES.7. Caleulate the suitable
gain K so that the overshoot of the step response due
to the drug infection is approximaicly 7%, Riz) is the
desired blood-sugar level and ¥(z) is the actual blood-
sugar level. { Hine: Use Figure 5.13a.)

Answer: K = 167

+ Imsudin

ES8 A control system for positioning the head of a floppy

digk drive has the closed-loop transfer function
11.1s + 18)
(s + 200 + 45 + 10)

Flot the poles and zeros of this system and discuss the
dominance of the complex poles What overshoot for a
step input do you expect?

Tis) =

ES9 A unity negative feedback control system has the

leesp transfer function

L{s) = G)GEs) = ,{3—:‘@

(a)} Determine the percent overshoot and settling
time {usms a 2% setiling criterion) due 1o a unit
Alep inpu

(b) l-'nl' whal nm of K is the settling time less than

1 second?

ESl0 A mﬂ-ﬂ-«ﬂnrmlmlm‘m has the closed-loop

transfer function T(s) = ¥{£)/R{z). The system spee-
ifications for a step input follow:

(1) Percent overshoot PO, = 5%,

(2) Settling time T, < 4,

(3) Peak time T, < Is.

Show the permissible area for the poles of Tis) in
order to achieve the desired response. Use a 2% set-
ling eriterion (o determine settling time.

E5.11 A system with unity feedback is shown in Figure

[ES.11. Determine the steady-state error for a step and
& ramp input when
S(s + 8)

L #s + 1)z + 4)s + 10}

wl 7

¥is)
FIGURE E5.14 Feedback system. : R(s) &

 Hwa vk £ F30T5 T

FIGURE E5.7

Blood-sugar lavel
control.
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P53 A laser beam can be wsext to weld, dill, etch, eut, and

mrk metals. as shown in Figure P5.3a) [14]. Assume we
have a work requirement for an scourate laser to mark a
parbofic path with a closed-koop control system, as
shown in Figure PS.4b). Calculate the oecessary gain 1o
resull in o Mendy-state error of 5 mm for r{t) = 1 cm.
PS4 The loop tramsfer [unction of a unily negative feed-
back system (see Figure ES.11) s
" - K
Lis) = G is)Gls) = TR
A syslem response o 8 step input is specified as follows:

Chapter 5 The Performance of Feedback Control Systems

Focusing lems

Norle asembly

peak time T, = 115, flean
percent overshool PO, = §%, wm—‘
(a) D whether both spec can be S
met 5 ly. {b) I the specificath annot be I
mel simul ly, d ine a ise value

for K so thot the peak time and percent overshoot
specifications are reloxed by the sume percentage.
P55 A spice telescope is 1o be lunehed to carty ool
astronomical experiments |8]. The pointing control
system is desired 1o achieve 0.01 minute of arc and
track solar objects with apparent motion up 1o 0.21
arc minute per second. The system bs illustrated in
Figure P55(a). The control sysiem s shown In

fah
Coniraller Provess.

Rivy * Kelrpa v 1y K i i
FIGURE P5.5 Tt b =] o Prinding
) The = angle
teiescope. {b) Tha
space
pointing control
system thy
a4 Chapter 5 The Parformance of Feedback Control Systems

necessary gain K 10 maintain a seadystule ermor
equal o | cm when the inputis a ramp r{1) = ¢ (me-
ters), (b) With this pain K., determine the necessary
gain K; K5 in order to restrict the percent overshoot to
10%, (¢} Delormine analytically the gain KK, in
order o minimize the 15E performance index for o
step inpul

P58 Photovolisic armays (solar cells) generate o DC vaolr-
age that can be wed to drive DC motars or that can be
converted 1o AC power and added to the distribution
network. 10 i desirnble to maintain the power ot of

Shape o
PIwE U
at ke

[

pin
alt
FIGURE P5.B

Solar el control.

P59 The antenna that receives and transmits signals to
the Tefsur communication satellite is the largest horn
antenna ever buile. The microwave antenns & 177 ft
long. weigls 340 toas, and rolls on a circular track. A
photo of the anicnna i shown in Fgue P59, The
Tefstar satellite is 34 inches in diameter and moves
ubasit 16000 mph a1 an altitude of 2500 miles. The

FIGURE 5.8 A model of the antenna for the Tetstar
System at Andover, Maine. (Pholo courtesy of Bell
Tulsphono Lobomatones., inc.)

the array al ils masimum available as thie solar inc-
dence changes during the day. One such closed-loop
aystem s shown m Figure PSR The transfer function
for the process is

K
Gis) pore Tl
where K = 20. Find () (he time constant of the
closed-loop system and (b} the setiling time fo within
2% of the finnl value of the system 10 4 unit slep
disturbance.

Disturburce

e
—
it

antenna must be positioned accurstely 1o 1110 of &
degree, beeause the microwave beam ks (102° wide and
highly attenuated by the large distance. If the antenna
is following the moving satellite, determine the K,
necessary for the system,

PEI0 A speed coutrol system of an srmature-controlled

DC maodor uses the back emf voltage of the matar asa
feedback signal. (a) Draw (he block dingram of this
system (see Equation (2.69)), (b) Calculate the steady-
state ervor of this system (@ step inpul command set-
ting the speed 1o m ooew level Assume that
R, = L = I ml = | the motor constant s K,, = 1,
wrd Ky, = 1. {c) Select a feedback gain for the back
en signal 1o yield & sep response with an overshom
of 15%.

PEIL A simple unity leedback control system has @

process transfer function
¥is)
Ein
The system mput i a step function with an amplitude
A, The initinl condition of the system at time & is

#lts) = Q. where y(r) is the ousput of the system. The
perfommonce index is defined m

1= [ ey

= (s} =

il

FIGURE E5.18 Feodback system with profiter,

{a) Determine the percent overshoot B0, the time
o peak T. and the settling time T of the unit step
response. Ris) = /s, To compute the settling
time. use a 2% criterion

() Obtain the sysiem response 1o @rit step and vers
ify the results in part ()

PROBLEMS

P51 An important problem for television sysiems i the
Jumping or wobbling of the picture due 1o the move-
ment of the camern. This effect ocours when the cimera
i mounted in s moving truck or airplane. The Dynalens
system has boen designed to reduce the effect of rapid
scanming motion; see Figure P51 A maximum scanning
muotion of 25°% b expected. Let K = K, = 1 and as
sume that 7, is negligible. (a) Determine e crror of the
system Els). (b) Determine the neccssary loop gain
KKK, when a 1%s vieady-stale error is ulkowable. (c)
The mator lime constant & (140 & Detennine the noces-
sary boop gain so that the setiling time (1o within 2% of
the final value of vy} is less than or equal i 03 s

P52 A specific doseddoop control system is n le
designed for an underdamped response o o step
inpul. The specifications for the system are as follows:

10% < percent avershool < 20%,
Setihng time < 064

fa) ldenialy the desired area for the dominant roots af
the system, (b) Delermbne the smallest vilue of n (hird
ront iy if the complex conjugite roots are 1o represent
the dominant response. (c) The closed-loop sysiem
transfer lunction. T(x) is third-oeder, and the feeack hus
a upity gain, Determine the forward transfer lupetion
G(x) = ¥{4)/E(s) when the scttling time to within 2%
ol the final value is 065 and the p shioot 200N

Problems

Figure PSS(h). Assume that v, = | second and
Ty = [} (an approximation). (n) Determine the gai
K = K\K: required o that the response 1o a step
command s as rapid as reasonable with an overshoot
of less than 5%, (b) Determine the steady-state crror
of the system for o step and & ramp inpat. {c) Deter.
mine the value of KX for an ITAE optimal system
Hor (1) a step inpat asidd (2) 4 ramp input,

P56 A rabol is programmed 10 have a tool or welding
torch follow a prescribed path |7, 11]. Consider a
robat tool that b 1o follow a sawinoth path, as
shown in Figure PSi{a), The transfer function of
the plant is

L TSl 4 1)
B T T

for the dosed-loop system shown in Figare 56(b)
Calculate the stendy-state ervar.

P57 Astronaut Bruce MeCandless 11 took the first un-
tethered walk in space on Febmary 7, 1984, sung the
gas-jet propulsion device illustrated in Figure PS.7(x)

FIGURE P5.7
() Astronaut Bruce

an

ES20  Comsider the clossd-loop system in Figure ES 19,

where

1
GG(s) = 5 and H3) = K,
¥ CETS

(a) Determine the closed-loop transfer Function
T(s) = ¥ia)/Ris).

() Deetermine the steady-state error of the closed-loop
SysiEIm TCspONse 10 B unit mmp input, f(s) = 1/5"

(e} Select nvalue for K, so that the steady-state error
of the sysiem response 10 o wnil step inpat,
Ria) = Ijx, s zevo.

FIGURE E5.20 Nomunity elosed-laop leadback control
systom wilh paramater K,

g Tatge mor
@2
I

e P

FIGURE P5.1 Camera wobbio control,

a7a

a i 0 ) w "

Time {8}

(b}
FIGURE P5.6 Rabot path control
The controller con be represeoted by a gain K, as

shown i Figure PS.7(h). The moment of inertia of the
equipmeni and mon is 25 kg m”. (a) Determine the

()

Cas jot
comtrodler

Pymdhn

[meters)
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TAsh
Dhesared Actual
heart rate henrt e
FIGURE P5.17
Haart pacemaker.
P518  Consider the original third-order system given in (b) The closed-loop system has a percent overshoot
Example 5.9 Determine a first-order model with one of less than %,
pole unspecified and no zeros that will represent the
third-order system.

P519 A closed-loop control system with negative unity
feedback has a loop transfer function

Pi—— g E Ty
8
Lis) = G(s)G(s) = T E

E:; Dclermm lh: closed-| Ioop trunsfer [unctlm\ Hf::] FIGURE P5.21 G oo Systeen With
kand a.

T{s). (e} Plot Lh:_ response of ml and Ibc second-

pp 10 8 unit step inp P
the results. P522 Consider the closed-loop system in Figure P5.22.
P520 A system is shown in Figure PS.20. i
{a) Determine the steady-state ermor for o unit step 2 2
input in terms of K and K,, where E{s) = Glsyata) = oy o Hin =

Ris) — Yz}
(b} Select K, 50 that the steady-state error is zero.

{a)} If v = 2.43. determine the value of K such that
the steady-state error of the closed-loop system
response to @ unit step input, R(s) = 1/, is zero.

() Determine the percent overshoot PE. and the
time to peak T, of the unil step response when K
is as in part {a).

FIGURE P5.20 System with pragain, K. !

P521 Consider the closed-loop system in Figure P5.21.
Deetermine values of the parameters k and o so that
the following specifications are satisfied:

(a) The steady-state error 1o a unil step input is zero.

FIGURE P5.22 MNonunity closad-loop feedback control
systam,

ars Chapter 5 The Performance of Feedback Control Systems
APS6  The block diagram model of an armature-current- (b} Let K, = 10 and K, = 0.05, and schect K so that
controlled D motor i shown in Figure APS.6. steady-state tracking error is equal 10 1.
(a) Determine the steady-state tracking error 1o a (e} Plot the response Lo a unit step input and o unit
ramp input rf) = £,¢ = 0, in terms of K, Ky. and ramp input for 20 seconds Are the responses
X acceptable?

Rish

FIGURE AP5.6
DC maotor control.

APST Consider the closed-loop system in Figure AP3T {b) D ine the 1 i, tiene and overs
with transfer functions shoot 1o a unit step for the values of K in part {a).
{c) Co-plot the results of (a) and (b) and comment.

K : :
Gis) = d Gs) = ———, APSE A unity negative feedback system (as shown in
el 100 A @ s(s + 50) Figure ES.11) has the loop transfer function
where
- - Kz +2)
1000 = K = 5000, L) = Gdaat = vy e

(a) Assume that the complex poles dominate and
estimate the settling time and percent overshoot
to & unit step input for K = 1000, 2000, 3000,

Determine the gain K that minimizes the damping
ratio { of the closed-loop system poles. What is the

4000, and S000, minimum dn.mpms n.ho‘? )
APSS. The unity negative fecdback system in Figure
AP3Y has the process given by
!
[ ——
Conroller P B T
v The controller is a proportional plus integral con-
Riy Gin s
L G e it troller with gains K, and K;. The objective is to design
the ler gains such that the domi ronts have
a dampéng ratio { equal to 707, Determine the result-
ing peak time and setifing lime (with o 2% criterion)
FIGURE AP5.7 Ciosed-loop system with unity feedback. of the system to 8 unil step input.
Controller Plani
FIGURE AP5.9 sy K !
Foectackconbol Kt S " e "
systom with a
proporional plus
intagral controller.

FIGURE P5.16
Feedback amplifier, =

Problems

(a) Show that [ = (A = @)/(2K). (b) Determine
the gain K that will minimize the performance index /.
Is this gnin & practical value? () Select a practical
wvalue of gnin and determine the resulting value of the
performance index,

P5A2  Train iravel between citles will increase as trains are

developed that travel at high speeds. making the travel
time from city center 1o city center equivalent to air-
line travel time. The Japanese National Railway has a
train called the Buller Express that travels between
Tokyo and Osaka on the Tokaido Hne This train travels
the 330 miles in 3 hours and 10 minutes, an average
speed of 101 mph [17]. This speed will be increased as
new systems are used, such as magnetically levitated
systems to (loat vehicles above an aluminum guideway.
To maintain o desired speed, a speed controd system is
proposed that yields a zero steady-state error to o
ramp input. A third-order system is sufficient. Dicter-
mine the optimum system transfer function T{s) for an
ITAE performance criterion. Estimate the settling
time (with a 2% criterion) and overshoot for a step
input when e, = 10,

PS.13 We want to approximate a lourth-order system by

al reler model. Th [ the orig-
inal system is

P L TR )
5+ 1007 + 355° + 505 + 24
o T My 24
TGN+ I+ A

Guls) =

Show that if we obtain a second-order model by the
method of Section 5.8, and we do not specily the poles

3715

and the zero of Gy(s), we have
029175 + 1
03997 + 13755 + 1
0.731(s + 3.428)
Tl L0 + 2a)

Gyla) =

P5.14  For the original system of Problem P5.13, we want

o find the lower-order model when the poles of the
second-order mode] are specified as —1 and -2 and
the model has one unspecified 2ero. Show that this
low-order madel is

09865 + 2 D986z + 2.028)

R e R TR TR

P5.15  Consider a unity feedback system with loop trams-

fer function
Kis+1)
(s +4) + 1+ 10)

Determine the value of the gain K such that the per-
cent overshoot to a unit step is minimi;

Lis) = GAAG(s) =

P56 A {* plifier with a b tput i d

is shown in Figure P5.16 in cascade with a low-pass fil-
ter and a preamplifier. The amplifier has a high-input
impedance and a gain of | and is used for adding the
signals as shown. Select a value for the capacitance €
50 that the transfer function ¥oi2)/Viy(5) has a damp-
ing ratio of 1 /2. The time constant of the magnetic
amplifier is equal to | second, and the gain is K = 10,
Calculate the settling time (with & 2% criterion) of the
resulting system.

K
Vsl e 4l

Amplificr

P517  Electronic pacemakers for human hearts regulate

the speed of the heart pump. A proposed closed-loop
system that includes a pacemaker and the measure-
ment of the heart rate is shown in Figure P5.17 [2.3]
The transler function of the heart pomp and the pace-
maker is found (o be

K
OO oy

W L]

Design the amplifier gain to yield a system with a set-
llmg time to & uep dlslulbme: of less than 1 second.

desired heart hould be
less than 10%, {l! Find a suitable range of K. (b} If the
nominal value of K is K = 10, find the sensitivity of
the system to small changes in K. (c) Evaluate the sen-
sitivity of part {b) at DC (set x = 0), {d) Evaluate the
magnitude of the sensitivity a1 the normal heart rale
of 60 beatsiminute.

Advanced Problems ant

ADVANCED PROBLEMS

APS.L A closed-loop teansfer function is AP53 A closed-loop system is shown in Figure APS3.

Plot the response 0 a unit step input for the system

) I . i} with 7, = 0, 015, 2, and 5. Record the percent over-
Rz} (s + 9)(s" + 8y + 36) shaoot, rise time. ling time {with & 2% eriterian)
{a) Detenmine the sieady-siate error for a unit sep 45 7, varies. Describe the effect of varying =, Com-
input Rs) = 1/5. pare the location of the open-loop pale -1 /7, with
(b} Assume that the complex poles dominate, and the location of the closed-loop poles.
determine the overshoot and settling time to
within 2% of the final value.
{c) Plot the actual system response. and compare it
with the estimates of part (b},

APS2 A closed-loop system is shown in Figure APS.2.
Plot the response 10 2 unit step input for the system

for v, = 0, 0.05,0.1, and 0.5, Record the percent over- FIGURE AP5.3 Sy iabda pole pr
shoot, rise time, and settling time {with a 2% criterion)
as v, varies Describe the effect of varying v Com-
pare the location of the zero = 1/7. with the location
of the closed-loop poles.

APSA4  The speed contral of a high-speed train is repre-

sented by the system shown in Figure APS4 [17).

Determine the equation for steady-state error for K

for 4 unit step input r(r). Consider the three values for

K equal to 1,10, and 100,

{a) Determine the sieady-state error,

ine and plot the response y(i) for (i) & unit

ut Rish = 15 and (i) a unit step distur-
bance input Tiis) = 1/x,

(e} Create a table showing overshoot. settling time (with
a 2% criterion), ey, for (), and |1, for the
three values of K. Sclect the best compromise value.

Train
dynamics
15 Yish
s+ 50 +7) Spoand

FIGURE AP5.4
Spead control.
APSS A sysiem with a controller is shown in Figure (b} Plot the response of the system Lo a step input dis-

AP5.5. The zero of the controller may be varied. Let turbance for the three values of a. Compare the

a = 0, 10, 100, results and select the best value of the three val-

(a) Determine the steady-state error for a step input vesof a.

mfore = O0oanda # 0.
(e
T
Comtrodler Plant
5 L
x: ita + 505 + 2
Ris —_ TEE IR Fia

FIGURE AP5.5 =
Systern with control
paramter a.
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DP54  The space satellite shown in Figure DPSA() uses
a control systemn to readjust its oreatation, as shown
in Figare DPS.4(b)

(2} Determine a second-order model for the closed-
Toop system.

(b} Using the second-order model, select a gain & so
that the percent overshoot is less than 15% and
the steady-state error o n step is less than 12%,

e} Verily your design by determining the actual per-
formance of the third-order system

Gl au)
Mg
+ K 10 !
L "?_‘ e l—c*tl—' e
FIGURE DP5.4

Control of a space
satuilit ik}
DPSS A deburring robot can be used to smooth off ma-
chined purts by following 4 preplanned path {input
commund signal). In pmln ermons occur due o
rubol Ny erroms., large
and 100l wear, These ermors can be eliminated nsing
force feedback o modify the path online |8, 11]
While force control hux been uble 1o ndiress
the problem of accuracy, it hips been more difficalt 10
salve the contact stability peoblem, In fict, by closing
the force loop and introducing a complinnt wrist force

sensor (the most common type of force control), ane
can add 1o the stability probiemn.
A model of a robot deburring system is shown in
Figure PS5, Determine the reglon of stability for the
systen for K; and K. Assume both adjustabile gains
are greater than zero.
DPS6  The model for & position control system using a
DC motor i shown in Figure DPS6S, The goal is o
select Ky and K; 5o that the peak time is 7, = 05

XA
Pasitinn
L4
LR
Desired —{
Fince
FIGURE DP5.5
Dabuirring retot
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Figure DP5.8(a) [7]. We wish 1o investigate the sysiem
when K = 1, 10. and 20. The feedback contral block
disgram is shown in Figure DPS.8(b). (a) For the three
wvalues of K. determine the percent overshoot, the set-
tling time (with o 2% criterion), and the steady-state

ﬂ COMPUTER PROBLEMS
CP51  Consider the closed-loop transfer function

15
Ti —_—
T
Oibtain the impulse response analytically and com-
pare the result to one oblained using the impuise
function.
CP52 A unity negative leedback system has the loop
transfer function

Lis) = Gils)Gils) = o ‘: 5
Using lsim, obtain the response of the closed-loop
system 1o & unit ramp input,

Ris) = 1/s%
Consider the time interval 0 = ¢ = 50, What i the
steady-state error?

CP53 A working knowledge of the relationship between
the pole locations of the second-order sysiem shown
in Figure CP%3 and the transient response is impor-
tant in control design. With that in mind. consider the
following four cases:

error for a unit step input. Record your results in a
table. () Choose ane of the three values of K that
provides accepiable performance. () For the value se.
lected in part (b}, determine y(r) for & disturbance
Tis) = 15 when R(s) = 0,

ik

FIGURE CP5.3 A simple second-order sysiem.

Using the impulse and subplot functions, create a plot

containing four subplots, with cach subplot depicting

the impulse response of one of the four cases listed,

Compare the plot with Figure 5.17 in Section 5.5, and

discuss the results.

CP54  Consider the control system shown in Figure CP5.4,

{n) Show analytically that the expected percent over-
shoot of the closed-
step input is about 50%.

(b} Develop an m-file to plot the unit step response
of the closed-loop system and estimate the per-
cent overshoot from the plot. Compare the result
with part (a),

CP5S Comsider the feedback system in Figure CPS.S,

Develop an m-file to design a controller and prefilter

Gds) = K=

+r

such that the ITAE performance criterion is mini-
mized, For ay, = 0,45 and { = (.39, plot the unit stiep
and determine the percent overshool and

3oy = 3
4o =1 (=02 setiling time.
| ustroler | Process |
+ 1 ]
Kixk . o o o
FIGURE CP5.4
A negative feedback
control system.
Prefilier Cantroller Process
1 s 3
FIGURECPSS  py—s| % |3 Ll N "\- -
Foedback control T+T 2 14p ¥+ Y + wl
‘system with
controlar and
prefiller.

Design Problems
DESIGN PROBLEMS
CDPS1 The capstan drive system of the previous problems

f+\ {see CDPL1-CDP4.1) has a disturbance due to changes
.

inthey

4 “The comtroller is an umphﬁer Gls) = K, Evaluate the
effect of a unil step disturbance, and determine the best
value of the amplifier gain so that the overshoot to a step
command Fir) = A, f > (s less than 5%, while reduc-
ing the effect of the disturbance s much as possible.

DPS1  The roll control autopilot of a jet fighter 1s shawn in
Figure DPS.1. The goal is to select a suitable K so that
the response 108 unit step command du(r) = A0 = 0,

will provide a response ¢{r) that is a [ast response and
hus an overshoot of less than 20%. {a) Determine the
closed-loop transfer function $(s)/d.(s). (b) Deter-
mine the roots of the characteristic equation for
K = 0.7, 3, and 6. {c) Using the concept of dominant
roots, find the expected overshoot and peak time for
the approximate second-order system. (d) Plot the
actual response and compare with the approximate
results of part (c). (¢) Select the gain K 3o that the per-
centage overshoot is equal 10 16%. What is the result-
ing peak time?

‘Aileron actusator Aircraft d
2 =K 122 Lo
il i i+ se+ 1 Ruill angle
._Gype ]
FIGURE DP5.1 k=1

Rloll angie control,

DP52  The design of the control for a welding arm with &
long reach requires the careful selection of the para-
meters [13], The system is shown in Figure DP3.2.
where { = 0.6, and the gain X and the natural fre-
quency w, can be selected, (a) Determine K and e, 0
that the response Lo a wnit step input achicves a peak

time for the first hoot (above the desired level of
1) that is less than or cqual to | second and the over-
shoot is less than 5%. (Mine: Try 0.2 < Kfw, < 0.4.)
(b) Plot the response of the system designed in part
() to a step input.

Actuatar and Arm
amplifier dynamics
Hic0)
Rixn b g T ;‘:d‘ rope Welling g
FIGURE DPS5.2 - S s
Wielding ip position
control.

DP53  Active suspension systems for modern automo-
biles provide a comfortable firm ride. The design of an
active sispension system adjusts the valves of the
shock absorber go that the ride fits the conditions. A
small electric motor, as shown in Figure DPS3,
changes the valve settings [13]. Select a design value

for K and the parameter g in order to satisly the ITAE
performance for a step command R(s) and a settling
time {with 8 2% riterion) for the step response of less
than ar equal to (L5 second. Upon completion of your
design, predict the resulting overshoot for a step
input.

Electric

Amplifier mosor
v i IS _] Wnn valve
i+ gh umation

FIGURE DP5.3 Commmand -
Active suspension

L]

FIGURE DP5.6 Fosition control robot.

second and the overshoot P for & step inpul is
P

DPST A three-dimemnsional cam for enemting 5 function
of two varisbles is sn-m in Figuse DPHm Both x
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[131]. The conirol of x may be achieved with a DC motor
and position feedback of the form shown in Figure
DPS.7(h), with the DC motor and boad represented by

PR
where X = 2 and p = 1. Design n proportional plus
derivative controlles

Gls) =K, + Ko

to achieve a percent overshoot PO, < 5% to o wnit
step input and & satiling time T, = 2 seconds
DPSA, -.".umpnlrr mmrd ol‘ » robot 1o spray-paint an

and y may be Aled wsing o posith

d by the system shown in

{1}

FIGURE I?:Pﬁ-ﬂ | Competer
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054 % FTEED
Rivp hw
L}
=1
(2]
Controlles Process
o 2 i
Ruxl 05+ PreT ¥l
FIGURE CP5.11 - Gt
A single loop unity
tesdback systom,
(a) Signal flow
graph. (o) Block
diagram, (]

CPS12 A closed-loop transfer function is given by
Yis s+ 2)
Ris) (5 +T)s* + 45+ 22)

(n) Obtain the response of the closed-loop transfer
Tunction T{s) = Y{1)/R{s) toa unit step input.

ANSWERS TO SKILLS CHECK

What is the settling time T, {use a 2% criterion)
and percent overshoot AO?

(b) Neglecting the real pole nt 5 = -7, determine the
settling time T, and percent overshoot PEL, Com-
pare the results with the actual system response in
part {a). What conclusions can be made regarding
neghecting the pole?

ﬂueorhlu {1) True; (2) False: {3) False: (4) True:  Word Match (in arder, top to bottom):i. j. d. g k.e,
5) False

npobelfhma

Multiple Choice: (6) l.m&(B}a(FJ by (10) bs{11)

2 (12) b (13) bs (14) 2z (15) b
TERMS AND CONCEPTS
Acceleration error consianl, &, The constant evaluated
3 [5G ($)G(5)]. The steady-state error tor a para-

bolic input. r(f) = AF/L is equal to A/ K.
A set of i

Peak time The time for a system o respond 1o a step
inpal and risc to 2 peak respanis.

Percent overshoot  The amount by which the system out-
put response proceeds bevond the desited response.

criteria

Dominant roots  The roots of the characteristic equation
that cause the desminant transient response of the
system.

Optimum coniral system A system whose parameters
are sdjusted so that the performance index reaches
an extremum value.

index A g itative mensure of the perfor-
mance of 4 system,

Position error constant, K, The constant evalusted us
148} 65,31 (5). The steady-state error for a step inpat
(ol magnitude A) i equal to A/{1 + K\

Rise time  The time for a system 1o respond 10 a step input
and attain @ response equal to a percentage of the
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CPS.6  The koop transfer function of a unity negative feed-
hack system is

Lis) = Gs)G(s) = ——=——=

(b} I we increase the complexity of the controller, we
can reduce the steady-state tracking error. With
this objective in mind. suppose we replace the

‘{, = 5. constant gain controller with the more sophisti-

cated controlier
Develop an m-file to plot the unit step response and
determine the values of peak overshoot M, time to
[peak T, and sentling time T, (with a 2% criterion).

CPS7 An autopilot designed to hold an aircraft in
straight and level Night is shown in Figure CP3.7,

{a) Suppose the controller is a constant gaim con-
troller given by G.{5) = 2. Using the lsim func-

K
c,::}-x,.—'-z.;

This type of controller is known as a proportional plus
integral (P1) controller. Repeat the simulation of part
{a) with the Pl controlfler. and compare the steady-
state tracking errors of the constant gain controller

tion, compute and plot the ramp response for versus the P controller,
@,it) = ar, where o = 0.5%s. Determine the atti-
tude error after 1 seconds.
Comtroller Elevator serv Alreralt model
.+ -10 (s + 5) un
Diesired Gl S+ '] : - + 61 Acimal
FIGURECPS.7 e — i b R, st

An aircralt autopiot
bilock diagram.

CPS8  The block disgram of a rate loop for a missile aulopi-
bot is shown in Frgure CP5.8. Using the analytic formu-
las for second-order systems, predict M. T, and T,
for the closed-loop system due 10 a unit $t2p input,

Compare the predicted results with the actual unit
step response oblained with the step function. Explain
any differences.

5 Conwaller Missile dynamics 3
than) + 1005 + 1 i
Desirad al +‘i — u*?‘: ‘ l:lh Astual
FIGURE CP5.8 o = .
Amissila rate loop
Autopilot.

CP59 Develop an m-file that can be used to analyze the
chosed-loop system in Figure CPS.%, Drive the system
with a step input and display the outpul on  graph.
What is the setiling time and the percent overshool?

FIGURE CP5.10 Ciosed-loop system for m-file.

CP511 Consider the closed-loop system in Figure
CP5.11. Develop an m-file 1o accomplish the following
tasks
(a) Determine the closed-loop transfer function
Tis) = ¥Y(a)/Ris).

b} Plot the closed-loop system response 1o an impulse
input R{z) = 1, a unit step input R(s) = | /5, and
a unit ramp input R(s) = 1/, Use the subplot
function to display the three system responses.

FIGURE CP5.9 Nonunity leedhack system,

CP5.10  Develop an m-file 1o simulate the response of the
systemt in Figure CPS.10 to & ramp input R(s) = 1/s%,
‘What is the steady-state error? Display the output on
an x-y graph.

Terms and Concepts

magnitude of the input. The 0-100% rise time. 7,.
measures the time to 100% of the magnitude of the
input. Aliernatively. T, mieasures the time from 1%
10 90% of the response to the step input,
Sefling time  The time required for the systcm owtput
10 settle within a certnin percentage of the input
amplitede.

Steady-stute response The constituent of the system
that exisis a long time following any signal
imitiation.
Test input signal  An input signal used as a standard lest
of a system’s ahility 1o respond adequately.

that disappears with time,

385

Transient response  The constiuent of the system response

Type number The number N of poles of the transfer func-

tion. G,(s}G (1), at the origin. G,{=)G(s) & the loop

transfer function.
Unit impulse A test input consisting of an impulse of infi-

nite amplitude and zero width, and having an area of
unity. The unit impulse is used 1o deternine the impulse

FESpOTSE.

Velocity error constant, K,

The constant evalusted as

i 15G,()GIn] The steady-state error for & rmp
nput {of slope A) for a system is equal to A/K,.



