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Abstract
Typical concentrically braced frames (CBFs), such as cross-braced (X-braced) frames, 
are commonly used to provide resistance against lateral loads. These systems are prone 
to buckling under compression, resulting in instability before reaching the yield strength. 
In other words, this bracing system exhibits an asymmetric behavior in tension and com-
pression that undermines its energy dissipation capacity during excitation and leads to 
substantial damage to the structural and non-structural members. In an attempt to improve 
these shortcomings, this study introduces the novel quasi-X-braced frames. The stiffness 
and stability of the quasi-X-braced steel moment frames were evaluated by novel analyti-
cal and numerical methods. Drawing on strain energy concepts and Castigliano’s theorem, 
this study presents an accurate analytical formulation for the lateral elastic stiffness of two-
dimensional single-span and one-story quasi-X-braced steel moment frames (QXB-MFs). 
In this regard, all effective parameters, including the axial and shear loads and bending 
moments of all members, were taken into account. The proposed relation was validated 
with results from different cases using OpenSees. The error between the elastic stiffness 
results of the developed relation and the finite element numerical analysis was found to be 
negligible. Also, the seismic performance of QXB-MF systems was investigated according 
to the FEMA P695 methodology for near-field and far-field ground motion records com-
pared with the intermediate moment frame. The results showed that using quasi-X braces 
in the intermediate moment frame improves the seismic performance of this system.
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1 Introduction

Before the 1994 Northridge earthquake, steel moment frame structures were advertised 
for their flexibility and resistance to earthquakes compared to other common types of 
structures. This seismic event ravaged steel moment-resisting frames with welded beam-
to-column connections. Considerable restoration costs and the broad damage distribution 
in the system prompted changes in regulations on steel structures around the world. At 
that point, structural systems with lateral-resisting members attracted designers. Damage 
was confined to specific members in these systems, which drastically reduced repair costs. 
The concentrically braced frame (CBF) is an example of these systems where the brac-
ing component serves as a sacrificial fuse. These systems show impressive strength and 
stiffness against cyclic lateral loads but offer poor flexibility and energy capacity as the 
bracing buckles under compression. Moreover, due to the considerable difference of tensile 
and compressive strengths, the cross-braced beams, columns, and beam-to-column connec-
tions are faced with considerable demands, raising the construction cost. In this light, the 
seismic behavior of these bracing systems and solutions to improve it has been the subject 
of extensive research (Ebadi and Sabouri-Ghomi 2012; Grande and Rasulo 2013; Fanaie 
et  al. 2017; Mahmoudi et  al. 2018; Moradi Garoosi et  al. 2018; Kumar et  al. 2019; Sen 
et al. 2019; Roeder et al. 2020). Previous studies on improving the behavior of CBFs can 
be divided into two groups. The first group of studies proposes using buckling-restrained 
braces (BRBs). This option was developed to correct the bracing systems and make their 
compressive and tensile behavior more compatible (Fanaie and Dizaj 2014; Afsar Dizaj 
et al. 2018; Kachooee and Kafi 2018). The second group of studies, to which the present 
study belongs, advocate using sacrificial fuses in specific parts on the bracing or its connec-
tions to concentrate the damage and prevent damage in other main components (Dussault 
2012; Arzeytoon and Toufigh 2018; Cheraghi and Zahrai 2019; Mahmoudi et  al. 2019; 
Shirinkam and Razzaghi 2020; Varughese and El-Hacha 2020; Fanaie and Shirpour 2023).

In 1995, Moghaddam and Estekanchi introduced the Off-center Bracing System (OBS) 
to improve CBFs. The system includes an indirect bracing system with specific eccentric-
ity. The mid-point of this element is connected to the corner of the frame by another mem-
ber, with all three working under tension when the system is laterally loaded (Moghaddam 
and Estekanchi 1995, 1999). Recently, Bazzaz et  al. thoroughly studied this structural 
system. One of their studies investigated some numerical frame models with optimum 
eccentricity in OBS and a circular element at the end. It was shown that placing duc-
tile circular elements on the end of the OBS increases the system’s ductility and energy 
dissipation (Andalib et  al. 2014; Bazzaz et  al. 2014, 2015a, b). In 2016, capitalizing on 
bending steel plates for energy dissipation, Payandehjoo et al. introduced the drawer brac-
ing system (DBS) to improve the seismic performance of cross-braced frames. The DBS 
comprises three parallel plates connected by transfer plates. By converting axial loads to 
bending moment in transfer plates, the parallel plates prevent local buckling in the bracing 
and improve the energy dissipation and flexibility of cross-bracing systems by eliminat-
ing buckling (Payandehjoo et al. 2016; Payandehjoo and Ghasemzadeh 2017). In the same 
year, Jouneghani et al. introduced a new elliptic brace (Fig. 1).

Besides improving the structural behavior and higher energy dissipation in the structural 
system, this bracing system does not face architectural space limitations to place open-
ings. One of the biggest problems with this brace is that bracing members are connected to 
columns. The reason is that incorrect implementation, and large shear exerted by the brac-
ing on the column assist plastic hinge formation in the middle of the column (Jouneghani 
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et al. 2016, 2020; Jouneghani and Haghollahi 2020). In 2019, Taiyari et al. introduced a 
novel energy dissipation system that relied on U-shaped steel strips in the bracing. This 
damper worked by dissipating the earthquake’s energy input using U-shaped steel strips. 
The straight parts of the U-shaped elements made the biggest contribution to the deforma-
tion capacity of the damper, which could be controlled by changing the lengths of differ-
ent parts. The results of tests on the specimens showed a high energy dissipation capacity 
(Taiyari et al. 2019). In the same year, Ismail introduced a new elastoplastic bracing system 
(Fig. 2).

The system comprised a deforming steel ring at the center and four steel arcs on the 
sides that stayed tangent to the central ring and their adjacent arc and were connected to the 
corner of the frame directly or by a rigid arm. This study investigated the capacity of the 
brace to control structural vibrations and other vibration-dependent responses by numeri-
cal study under realistic and artificial dynamic excitation. It was shown that by effectively 
reducing and controlling structural vibrations at a low cost, this brace could be a cost-effec-
tive substitute for conventional bracing systems (Ismail 2019).

In 1969, Lee presented the 12 × 12 stiffness matrix of a curved beam using 3 × 3 matrix 
subsets and considering the Castigliano’s theorem. His calculations did not account for the 
effects of axial loads and transverse shear (Lee 1969). In 1971, Rao developed the differential 

Fig. 1  Frame with elliptic brac-
ing (Jouneghani et al. 2016)

Fig. 2  Elevation view of the AR-
Brace (Ismail 2019)
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equations for the vibrations of a curved beam in bending and torsion using Hamilton’s prin-
ciple (Rao 1971). In 1972, Davis et al. obtained the stiffness matrix of a finite element using 
load–displacement curves. The relations were based on the differential equations of a small 
component in static equilibrium. Both Rao and Davis considered the effects of transverse 
shear deformation and rotational inertia in their studies (Davis et al. 1972a, b). Yamada and 
Ezawa took a differential equations approach and presented the stiffness matrix of a finite 
curved element under three internal loads in 1977 (Yamada and Ezawa 1977). In 1981, Yoo 
and Fehrenbach presented a finite curved element for the free vibration of a horizontal, curved 
beam that ignored the effects of shear deformation (Yoo and Fehrenbach 1981). Palaninathan 
and Chandrasekharan used the Castigliano’s theorem and obtained the stiffness matrix of a 
curved Timoshenko beam in three dimensions. They also accounted for the effects of coupling 
of vertical and lateral shear loads (Palaninathan and Chandrasekharan 1985).

In their 2006 study, Yoon et al. drew on the approach taken by Yang and Kuo and inves-
tigated the out-of-plane dynamic behavior of thin-walled curved beams. They considered the 
effects of warping and obtained the equations governing thin-walled curved beams with seven 
degrees of freedom in each node (Yang and Kuo 1996; Yoon et al. 2006). In 2015, Horibe 
and Mori investigated the in-plane and out-of-plane deflection of a J-shaped beam, which was 
clamped at one end and was free at the other, subjected to a point load. They obtained an ana-
lytical solution by numerically combining the modified elliptical integral and differentiating 
the beam’s strain energy using Castigliano’s theorem. The study showed that the beam stresses 
and deflection could be calculated by applying in-plane and out-of-plane loads simultaneously 
(Horibe and Mori 2015). In 2018, Marotta and Salvini proposed a closed solution for the stiff-
ness matrix of a curved beam using Castigliano’s second theorem and considering bending 
and axial effects. This analytical solution was obtained using a curved beam by a third-degree 
function for the curvature radius. They concluded that this method is also suitable for nonlin-
ear analysis with considerable displacement (Marotta and Salvini 2018).

The present study introduces quasi-X braces and calculates the elastic stiffness of steel 
moment frames equipped with these braces accurately. Adding these braces to the moment 
frame improves the system’s stiffness and prevents excessive structural deformation. Here, an 
accurate, practical formulation was first presented by a novel method for calculating the elastic 
stiffness of two-dimensional single-span and one-story steel moment frames equipped with 
quasi-X braces under lateral loading. Where all effective parameters, including the axial loads, 
shear loads, and bending moments of all members, were taken into account. The relation was 
then evaluated for different cases using the finite element software, OpenSees. Showing lit-
tle error, the results of the proposed relation are consistent with the numerical finite element 
analysis (FEA). Then, the seismic performance of QXB-MF systems was examined as per the 
FEMA P695 methodology for near-field and far-field ground motion records compared with 
the intermediate moment frame. The outcomes revealed that employing quasi-X braces in the 
intermediate moment frame improves the seismic performance of this system.

2  A new method for calculating the elastic stiffness 
of the quasi‑X‑braced steel moment frames

In this part of the study, the lateral stiffness of the two-dimensional single-span and one-story 
quasi-X-braced steel moment frame (QXB-MF) and quasi inverse-X-braced steel moment 
frame (QIXB-MF) comprising four connected quarter-elliptic bracing components under a 
lateral load of P (Fig. 3) is determined by a new method and based on the concept of strain 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



551Bulletin of Earthquake Engineering (2024) 22:547–582 

1 3

energy and Castigliano’s theorem (Hibbeler and Kiang 2015), considering axial, shear, and 
bending deformations.

Due to the geometric characteristics of these two bracing systems, the final analytical for-
mulation for the elastic stiffness of both bracing systems is the same; therefore, in this sec-
tion, only the calculation steps for the QXB-MF system are presented. The braced frame 
was treated as a half-frame (Fig.  4a) where the length of the half-beam 

(
Lb∕2

)
 is equal to 

the semi-major-axis of the ellipse (a) and the length of the half-column 
(
Lc∕2

)
 is equal to the 

semi-minor-axis of the ellipse (b) to allow for using structural analysis relations for symmetric 
structures under asymmetric loading and simplify calculations. Moreover, the specifications of 
the beam, column, and bracing components were considered with a parametric representation. 
Equation (1) expresses the geometric specifications of the frame (Fig. 4a).

where θ denotes the orientation angle of the quarter-elliptic component in the half-frame. 
According to Fig. 4a and using equations of compatibility for the braced half-frame, the 
vertical load in node E is:

Figure 4b shows the internal efforts of the braced half-frame under a lateral load of P∕2 
considering FAD and FDA on the two sides of the braced quarter-elliptic section AD and FBD 
and FDB on the two sides of the braced quarter-elliptic section BD.

The internal efforts of the half-frame members were calculated for nodes A, B, C, D, and E 
based on equations of compatibility and according to Fig. 5. For node A (Fig. 5a):

(1)tan θ =
b

a
=

Lc

Lb

= e, sin θ =
b√

a2 + b2
=

e√
1 + e2

, cos θ =
a√

a2 + b2
=

1√
1 + e2

(2)
∑

Fy = 0 → RC + RD + RE =
PLc

Lb

→ RE =
PLc

Lb

− RC − RD

(3)MAE = MAB

(4)
∑

Fx = 0 → NAE + FAD cos � − VAB =
P

2

(b)(a)

Fig. 3  Desired steel moment frames with directly welded rigid connections equipped with quasi-X brace; a 
QXB-MF, b QIXB-MF
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 For node B (Fig. 5b):

(5)
∑

Fy = 0 → NAB + FAD sin � + VAE =
PLc

Lb

(6)MBA = MBC

  

(b) (a) 

Fig. 4  Quasi-X-braced steel moment frame (QXB-MF); a braced half-frame after splitting the steel moment 
frame, b Internal efforts of the half-braced frame

Fig. 5  Analysis of joints in the half-braced frame; a joint A, b joint B, c joint C, d joint D, e joint E 
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 For node C (Fig. 5c):

 For node D (Fig. 5d):

 For node E (Fig. 5e):

Figure 6 shows the internal efforts of beams AE and BC and column AB. The shear and 
axial loads on the two sides of the members were calculated based on equations of static equi-
librium and the moment at two endpoints of the beams and column. For beam BC (Fig. 6a):

 For beam AE (Fig. 6b):

 For column AB (Fig. 4c):

(7)
∑

Fx = 0 →

P

2
+ FBD cos � + NBC + VBA = 0 → NBC = −VBA −

P

2
− FBD cos �

(8)
∑

Fy = 0 → NBA + FBD sin � − VBC = 0− → NBA = VBC − FBD sin �

(9)
∑

Fx = 0 → NCB = 0

(10)
∑

Fy = 0 → RC = VCB

(11)
∑

Fx = 0 → FDB cos � + FDA cos � = 0 → FDA = −FDB

(12)
∑

Fy = 0 → FDB sin � − FDA sin � + RD = 0 → RD = FDA sin � − FDB sin �

(13)
∑

Fx = 0 → NEA = 0

(14)
∑

Fy = 0 → RE = VEA

(15)NBC = NCB

(16)VBC = VCB

(17)
∑

MC = 0 → MBC − VBC ×
Lb

2
= 0 → VBC =

2MBC

Lb

(18)NAE = NEA

(19)VAE = VEA

(20)
∑

ME = 0 → MAE − VAE ×
Lb

2
= 0 → VAE =

2MAE

Lb
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The vertical load at E was calculated by substituting Eqs. (10), (16), and (17) in the second 
phrase and Eqs. (11) and (12) in the third phrase of Eq. (2):

The internal efforts of the quarter-elliptic bracing member AD were calculated by substitut-
ing Eqs. (14), (19), and (20) in Eq. (23) as follows:

The internal efforts of the quarter-elliptic bracing member BD were calculated by substitut-
ing Eq. (24) in Eq. (11) as follows:

Substituting Eqs. (13), (18), and (24) in Eq. (4) produced a new relation that was simplified 
using Eq. (1) to obtain shear in the AB column as follows:

(21)NAB = NBA

(22)VAB = VBA

(23)RE =
PLc

Lb
−

2MBC

Lb
− 2FDA sin �

(24)

2MAE

Lb
=

PLc

Lb
−

2MBC

Lb
− 2FDA sin � → FDA = FAD =

PLc

2Lb sin �
−

MBC

Lb sin �
−

MAE

Lb sin �
a

(25)FDB = FBD = −
PLc

2Lb sin �
+

MBC

Lb sin �
+

MAE

Lb sin �

Fig. 6  Internal efforts; a beam BC, b beam AE, c column AB 
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Steel’s shear modulus (G) was obtained based on Young’s modulus (E) and Poisson’s 
ratio (ν) in Eq. (27):

The total and effective shear area of the column cross-section (Fig. 4a) are expressed 
by Eq. (28), those of the beam cross-section by Eq. (29), and those of the bracing cross-
section by Eq. (30):

where in these equations, A signifies the cross-sectional area, A′ the effective shear area of 
the cross-section, � the shear shape coefficient of the cross-section, and I and r denote the 
moment of inertia and the radius of gyration of the cross-section around the bending axis 
(strong axis), respectively.

2.1  Calculating strain energy of the column

The strain energy was calculated based on the internal bending moment, internal axial load, 
and the internal shear load for the column. The strain energy of the column was calculated 
by obtaining the changes of the internal forces in the column AB according to Fig. 6b and 
then obtaining the strain energy stored in the column based on the general energy equation. 
Equation (31) shows the column’s internal moment:

The strain energy resulting from bending, axial, and shear deformation of the column is 
calculated from Eq. (32). where E represents Young’s modulus and G is the steel’s shear 
modulus as obtained in Eq. (27). Ac denotes the column’s cross-sectional area, and A′

c
 is its 

effective shear cross-section as obtained in Eq. (28).

(26)

(
PLc

2Lb sin �
−

MBC

Lb sin �
−

MAE

Lb sin �

)
cos � = VAB +

P

2
→ VAB

=
PLc

2Lb tan �
−

MBC

Lb tan �
−

MAE

Lb tan �
−

P

2

= −
MBC

eLb
−

MAE

eLb

(27)G =
E

2(1 + �)
, � = 0.3 → G =

E

2(1 + 0.3)
=

E

2.6

(28)A�
c
=

Ac

�c
, Ac =

Ic

r2
c

(29)A�
b
=

Ab

�b
, Ab =

Ib

r2
b

(30)A�
q
=

Aq

�q
, Aq =

Iq

r2
q

(31)MAB(y) = MAB + VABy, 0 ≤ y ≤ Lc
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NAB was obtained by substituting Eqs. (17), (21), and (25) in Eq. (8), and substituting 
of this equation, Eqs. (1), (22), and (26) in Eq. (32) produces the strain energy of the AB 
column:

2.2  Calculating strain energy of the beams

The strain energy was calculated based on the internal bending moment, internal axial load, 
and internal shear load for the beams. The strain energy of the beams was calculated by 
obtaining the changes of the internal forces in the beams AE and BC according to Fig. 6a 
and then obtaining the strain energy stored in the beams based on the general energy equa-
tion. The values of the internal moment of the beams are acquired in Eqs. (34) and (35):

The strain energy resulting from bending, axial, and shear deformation of the beams 
is calculated from Eqs. (36) and (37). where E represents Young’s modulus and G is the 

(32)

UAB =
1

2EIc

Lc

∫
0

M2

AB
(y)dy +

V2

AB
Lc

2GA�
c

+
N2

AB
Lc

2EAc

=
1

2EIc

Lc

∫
0

(
MAB + VABy

)2
dy + 2.6�c

V2

AB
Lc

2EAc

+
N2

AB
Lc

2EAc

=
1

2EIc

Lc

∫
0

(
M2

AB
+ 2MABVABy + V2

AB
y2
)
dy +

(
2.6�cV

2

AB
+ N2

AB

)
Lc

2EAc

=
M2

AB
Lc

2EIc
+

MABVABL
2

c

2EIc
+

V2

AB
L3
c

6EIc
+

(
2.6�cV

2

AB
+ N2

AB

)
Lcr

2

c

2EIc

(33)

Ucolumn, bav = UAB =
M2
AELc
2EIc

+
MAE

(

−MBC
eLb

− MAE
eLb

)

L2c
2EIc

+

(

−MBC
eLb

− MAE
eLb

)2
L3c

6EIc
+

(

2.6�cV2
AB + N2

AB

)

Lcr2c
2EIc

=
Lc
6EIc

[

3MAE
2 + 3MAE

(

−MBC −MAE
)

+
(

−MBC −MAE
)2 ]

+3r2c

(

2.6�c
(

−
MBC
eLb

−
MAE
eLb

)2
+
( 2MBC − 2MAE + PLc

2Lb

)2)]

=
Lc
6EIc

[

M2
BC −MBCMAE +M2

AE +
7.8�cr2c

L2c

(

M2
BC + 2MBCMAE +M2

AE

)

]

+
3r2c
4L2b

(

4M2
BC + 4M2

AE + P2L2c − 8MBCMAE + 4MBCPLc − 4MAEPLc
)

]

(34)MAE(x) = MAE − VAEx, 0 ≤ x ≤ Lb

2

(35)MBC(x) = MBC − VBCx, 0 ≤ x ≤ Lb

2
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steel’s shear modulus as obtained in Eq. (27). Ab denotes the beam’s cross-sectional area, 
and A′

b
 is its effective shear cross-section as obtained in Eq. (29).

According to Eqs. (13) and (18), NAE is 0, and substituting Eqs. (19) and (20) in 
Eq. (36) yields the strain energy of the beam AE:

According to Eqs. (9) and (15), NBC is 0, and substituting Eqs. (16) and (17) in 
Eq. (37) yields the strain energy of the beam BC:

(36)

UAE =
1

2EIb

Lb

2

∫
0

M2

AE
(x)dx +

V2

AE

(
Lb

2

)

2GA�
b

+
N2

AE

(
Lb

2

)

2EAb

=
1

2EIb

Lb

2

∫
0

(
MAE − VAEx

)2
dx + 2.6�b

V2

AE
Lb

4EAb

+
N2

AE
Lb

4EAb

=
1

2EIb

Lb

2

∫
0

(
M2

AE
− 2MAEVAEx + V2

AE
x2
)
dx +

(
2.6�bV

2

AE
+ N2

AE

)
Lb

4EAb

=
M2

AE
Lb

4EIb
−

MAEVAEL
2

b

8EIb
+

V2

AE
L3
b

48EIb
+

(
2.6�bV

2

AE
+ N2

AE

)
Lbr

2

b

4EIb

(37)

UBC =
1

2EIb

Lb

2

∫
0

M2

BC
(x)dx +

V2

BC

(
Lb

2

)

2GA�
b

+
N2

BC

(
Lb

2

)

2EAb

=
1

2EIb

Lb

2

∫
0

(
MBC − VBCx

)2
dx + 2.6�b

V2

BC
Lb

4EAb

+
N2

BC
Lb

4EAb

=
1

2EIb

Lb

2

∫
0

(
M2

BC
− 2MBCVBCx + V2

BC
x2
)
dx +

(
2.6�bV

2

BC
+ N2

BC

)
Lb

4EAb

=
M2

BC
Lb

4EIb
−

MBCVBCL
2

b

8EIb
+

V2

BC
L3
b

48EIb
+

(
2.6�bV

2

BC
+ N2

BC

)
Lbr

2

b

4EIb

(38)

UAE =
M2

AE
Lb

4EIb
−

MAE

(
2MAE

Lb

)
L2
b

8EIb
+

(
2MAE

Lb

)2

L3
b

48EIb
+

(
2.6�bV

2
AE

)
Lbr

2
b

4EIb

=
Lb

12EIb

[
M2

AE
+ 3r2

b

(
2.6�b

(
2MAE

Lb

)2
)]

=
Lb

12EIb

[
M2

AE
+

31.2�br
2
b

L2
b

(
M2

AE

)]
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The total strain energy resulting from bending, axial, and shear deformation of beams 
was obtained by summing up Eqs. (38) and (39):

2.3  Calculating strain energy of the quarter‑elliptic bracing member

The strain energy was calculated based on the internal bending moment, internal axial 
load, and internal shear load for the quarter-elliptic bracing member. The strain energy 
of the quarter-elliptic bracing member was calculated by obtaining the changes of the 
internal forces in the brace BD according to Fig. 7, and the elliptic equation (Eq. (41)). 
Then, the strain energy stored in the bracing member is obtained based on the general 
energy equation.

An infinitesimal arc length (ds) was considered for an arbitrary point in (x, y) coordi-
nates using Eq. (42).

The inclination angle of the tangent line from any point relative to the horizontal axis (�) 
was obtained for the quarter-elliptic bracing component using Eq. (41).

Based on Eq.  (43) and making use of trigonometric identities (Pythagorean identities), 
sin� and cos� were obtained in terms of x in Eqs. (44) and (45):

(39)

UBC =
M2

BC
Lb

4EIb
−

MBC

(
2MBC

Lb

)
L2
b

8EIb
+

(
2MBC

Lb

)2

L3
b

48EIb
+

(
2.6�bV

2
BC

)
Lbr

2
b

4EIb

=
Lb

12EIb

[
M2

BC
+ 3r2

b

(
2.6�b

(
2MBC

Lb

)2
)]

=
Lb

12EIb

[
M2

BC
+

31.2�br
2
b

L2
b

(
M2

BC

)]

(40)Ubeams,bav = UAE + UBC =
Lb

12EIb

[
M2

AE
+M2

BC
+

31.2r2
b

L2
b

(
M2

AE
+M2

BC

)]

(41)x2

a2
+

y2

b2
= 1 → y = b

√
1 −

x2

a2
, 0 ≤ x ≤ a

(42)ds =
√
dx2 + dy2 =

�
1 +

�
dy

dx

�2

dx =
√
1 + y�2dx

(43)y� = −b.

x

a2√
1 −

x2

a2

→
||y�|| = tan�

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



559Bulletin of Earthquake Engineering (2024) 22:547–582 

1 3

Static equilibrium was used to find the internal bending, axial, and shear efforts of the 
quarter-elliptic bracing member according to Fig. 7:

sin� and cos� depend on the lengths of the beam 
(
Lb∕2

)
 and column 

(
Lc∕2

)
 . Solving the 

system of Eqs. (47) and (48) the axial and shear loads of the quarter-elliptic bracing mem-
ber was obtained in terms of x:

(44)

1 + tan2� =
1

cos2�
→ cos2� =

1

1 + tan2�
=

1

1 +
b2

x2

a4

1−
x2

a2

=
1

1−
x2

a2
+

b2x2

a4

1−
x2

a2

=
1 −

x2

a2

1 −
x2

a2
+

b2x2

a4

→ cos� =

√√√√√ 1 −
x2

a2

1 −
x2

a2
+

b2x2

a4

(45)

sin2� = 1 − cos2� =
1 −

x2

a2
+

b2x2

a4
− 1 +

x2

a2

1 −
x2

a2
+

b2x2

a4

=

b2x2

a4

1 −
x2

a2
+

b2x2

a4

→ sin� =
b

x

a2√
1 −

x2

a2
+

b2x2

a4

(46)FBD = FDB = F

(47)
∑

Fx = 0 → Fcos� = N(x)cos� + V(x)sin�

(48)
∑

Fy = 0 → Fsin� = N(x)sin� − V(x)cos�

(49)
∑

MG = 0 → M(x) = Fsin�.x − Fb

(
1 −

√
1 −

x2

a2

)
cos�

(50)N(x) = F(cos�cos� + sin�sin�)

Fig. 7  Internal efforts of the ele-
ment BD in the quasi-X brace
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Based on the general energy equation and Eq.  (42), the strain energy stored in the 
quarter-elliptic bracing member under internal bending moment, the internal axial load, 
and internal shear are as follows:

where

where E represents Young’s modulus, and G is the steel’s shear modulus obtained in 
Eq. (27). Aq denotes the quarter-elliptic bracing member’s cross-sectional area, and A′

q
 is its 

effective shear cross-section as obtained in Eq. (30). The strain energy of the quarter-ellip-
tic member under internal bending moment was obtained by substituting Eqs. (1), (49), and 
(53) in the first phrase of Eq. (52):

The integral in Eq. (54) was solved by a change of variables based on Eq. (55):

By substituting Eq. (55) in Eq. (54), we have:

If:

(51)V(x) = F(cos�sin� − sin�cos�)

(52)

U quarter−elliptic brace, bav = Ub + Ua + Uv = ∫
M(x)2

2EIq
ds + ∫

N(x)2

2EAq

ds + ∫
V(x)2

2GA�
q

ds

=

a

∫
0

M(x)2

2EIq
.
√
1 + y�2dx +

a

∫
0

N(x)2

2EAq

.
√
1 + y�2dx +

a

∫
0

V(x)2

2GA�
q

.
√
1 + y�2dx

(53)
√
1 + y�2 =

�����1 +
b2

x2

a4

1 −
x2

a2

=

�����1 −
x2

a2
+ b2

x2

a4

1 −
x2

a2

(54)

Ub =
F2

2EIq

a

∫
0

[
sin�.x − bcos�.

(
1 −

√
1 −

x2

a2

)]2

×

√
1 −

x2

a2
+ b2

x2

a4√
1 −

x2

a2

dx

=
F2b2

2EIq.
(
1 + e2

)
a

∫
0

[
x

a
−

(
1 −

√
1 −

x2

a2

)]2

×

√
1 −

x2

a2
+ e2

x2

a2√
1 −

x2

a2

dx

(55)t =
x

a
→ dt =

dx

a
→ dx = a.dt

(56)Ub =
F2ab2

2EIq

1

∫
0

�
t − 1 +

√
1 − t2

�2
.

�
1 +

�
e2 − 1

�
.t2

�
1 + e2

�
.
√
1 − t2

dt

(57)�b(e) =

1

∫
0

�
t − 1 +

√
1 − t2

�2
.

�
1 +

�
e2 − 1

�
.t2

�
1 + e2

�
.
√
1 − t2

dt
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Then, strain energy under internal bending moment in the quarter-elliptic bracing 
member is:

�b(e) is a function of e (ratio of the half of the column’s length to half of the beam’s length) 
that can be solved numerically. Figure 8 plots �b(e) in a diagram for different e values. The 
strain energy of the quarter-elliptic member under internal bending moment was obtained 
by substituting Eqs. (1), (50), and (53) in the second phrase of Eq. (52):

The integral in Eq. (59) was solved by a change of variables based on Eq. (55). By 
substituting Eq. (55) in Eq. (59), we have:

If:

Then, strain energy under internal axial force in the quarter-elliptic bracing member 
is:

�a(e) is a function of e (ratio of the half of the column’s length to half of the beam’s length) 
that can be solved numerically. Figure 8 plots �a(e) in a diagram for different e values. The 
strain energy of the quarter-elliptic member under internal shear force was obtained by 
substituting Eqs. (1), (51), and (53) in the third phrase of Eq. (52):

(58)Ub =
F2ab2

2EIq
.�b(e)

(59)

Ua =
F2

2EAq

a

∫
0

[cos�cos� + sin�sin�]2 ×

�
1 −

x2

a2
+ e2

x2

a2�
1 −

x2

a2

dx

=
F2

2EAq

a

∫
0

⎡⎢⎢⎢⎣
1√

1 + e2
.

�
1 −

x2

a2�
1 −

x2

a2
+ e2

x2

a2

+
e√

1 + e2
.

e
x

a�
1 −

x2

a2
+ e2

x2

a2

⎤⎥⎥⎥⎦

2

×

�
1 −

x2

a2
+ e2

x2

a2�
1 −

x2

a2

dx

(60)Ua =
F2a

2EAq

.

1

∫
0

1�
1 + e2

� .
�√

1 − t2 + e2t
�2

��
1 − t2

�
.
�
1 +

�
e2 − 1

�
t2
�dt

(61)λa(e) =

1

∫
0

1�
1 + e2

� .
�√

1 − t2 + e2t
�2

��
1 − t2

�
.
�
1 +

�
e2 − 1

�
t2
�dt

(62)Ua =
F2a

2EAh

.�a(e)
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The integral in Eq. (63) was solved by a change of variables based on Eq. (55). By 
substituting Eq. (55) in Eq. (63), we have:

If:

Then, strain energy under internal shear force in the quarter-elliptic bracing member is:

(63)

Uv =
�q.F

2

2GAq

a

∫
0

[cos�sin� − sin�cos�]2 ×

�
1 −

x2

a2
+ e2

x2

a2�
1 −

x2

a2

dx

= �q.
F2

2GAq

a

∫
0

⎡⎢⎢⎢⎣
1√

1 + e2
.

e.
x

a�
1 −

x2

a2
+ e2

x2

a2

−
e√

1 + e2
.

�
1 −

x2

a2�
1 −

x2

a2
+ e2

x2

a2

⎤⎥⎥⎥⎦

2

×

�
1 −

x2

a2
+ e2

x2

a2�
1 −

x2

a2

dx

(64)Uv = �q.
F2a

2GAq

.

1

∫
0

e2�
1 + e2

� .
�
t −

√
1 − t2

�2
��

1 − t2
�
.
�
1 +

�
e2 − 1

�
t2
�dt

(65)�v(e) =

1

∫
0

e2�
1 + e2

� .
�
t −

√
1 − t2

�2
��

1 − t2
�
.
�
1 +

�
e2 − 1

�
t2
�dt

Fig. 8  The �b(e), �a(e), and �v(e) parameters as a function of parameter e 
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�v(e) is a function of e (ratio of the half of the column’s length to half of the beam’s length) 
that can be solved numerically. Figure 8 plots �v(e) in a diagram for different e values.

By substituting Eqs. (58), (62), and (66) in Eq. (52), the strain energy stored in the quar-
ter-elliptic bracing member BD was simplified as follows:

where:

�bav(e) is a function of e (ratio of the half of the column’s length to half of the beam’s 
length) that can be solved numerically. �bav(e) was plotted for different e values in Fig. 9, 
considering a shear shape coefficient of 2 for the quarter-elliptic bracing cross-section 
(BOX sections). By fitting �b , �a , and �v curves with linear regression in Fig. 8 and substi-
tuting the resulting linear equations in Eq. (68), �bav(e) was found:

Substituting Eqs. (1) and (25) in Eq. (67) helped calculate the stored strain energy of the 
bracing member BD:

Substituting Eqs. (1) and (24) in Eq. (67) helped calculate the stored strain energy of the 
bracing member AD:

The strain energy resulting from bending, axial, and shear deformation was obtained for the 
half-elliptic member by summing up Eqs. (70) and (71):

(66)Uv = �q.
F2.a

2GAq

.�v(e)

(67)

UBD = Ub + Ua + Uv =
F2ab2

2EIq
⋅ �b(e) +

F2a

2EAq

⋅ �a(e) + �q ⋅
F2

⋅ a

2GAq

⋅ �v(e)

=
F2.a

2EAq

[(
b

rq

)2

⋅ �b + �a + 2.6�q�v

]
=

F2.a

2EAq

.
�bav

1 + e2

(68)�bav =

[(
b

rq

)2

⋅ �b + �a + 2.6�q�v

]
⋅

(
1 + e2

)

(69)

�bav =

[(
b

rq

)2

.(−0.0336e + 0.1046) + (0.4005e + 0.8586) + 2.6�q.(0.2802e + 0.0191)

]
.
(
1 + e2

)

(70)UBD =
a.�bav

2EAqL
2
c

(
−
PLc

2
+MBC +MAE

)2

(71)UAD =
a.�bav

2EAqL
2
c

(
PLc

2
−MBC −MAE

)2

(72)Uhalf−elliptic brace,bav = UBD + UAD =
a.�bav

EAqL
2
c

×

(
−
PLc

2
+MAE +MBC

)2
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2.4  Strain energy of the quasi‑X‑braced steel moment frames (QXB‑MFs)

The strain energy of the braced half-frame was obtained by summing up the strain energy 
(resulting from bending, axial, and shear deformation) of the columns, beams, and the half-
elliptic bracing member according to Eqs. (33), (40), and (72):

where R, �c , and �c are modification coefficients that simplify the column’s strain energy, S 
and �b are modification coefficients simplifying the beams’ strain energies, and T is a modi-
fication coefficient for the strain energy of the half-elliptic bracing member:

According to Castigliano’s second theorem, in a structure with linear elastic behav-
ior, without temperature variation and support settlement, if the stored strain energy 
is obtained based on effective node forces or concentrated node moments, the partial 
derivative of the strain energy with respect to each of the effective forces exerted on the 
structure produces the displacement in that direction. Moreover, the partial derivative of 
the energy function with respect to each concentrated moment is the structure’s rotation 

(73)

U = Ucolumn,bav + Ubeams,bav + Uhalf−elliptic brace,bav

= R.

(
M2

BC
−MBCMAE +M2

AE
+ �c.

(
M2

BC
+ 2MBCMAE +M2

AE

)

+�c.
(
4M2

BC
+ 4M2

AE
+ P2L2

c
− 8MBCMAE + 4MBCPLc − 4MAEPLc

)
)

+ S.
(
M2

AE
+M2

BC
+ �b.

(
M2

AE
+M2

BC

))
+ T .

(
−
PLc

2
+MAE +MBC

)2

(74)R =
Lc

6EIc
, �c =

7.8�cr
2
c

L2
c

,�c =
3r2

c

4L2
b

(75)S =
Lb

12EIb
, �b =

31.2�br
2
b

L2
b

(76)T =
a.�bav

EAqL
2
c

Fig. 9  �bav(e) as a function of 
parameter e assuming constant 
�q = 2
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corresponding to that moment (Hibbeler and Kiang 2015). According to this theorem 
and Eq. (73), we can write for nodes A and B:

Solving the system of Eqs. (77) and (78) yields the unknown moments MAE and MBC 
to a good approximation:

In this equation:

The strain energy of the braced half-frame was obtained by substituting Eq. (79) in 
Eq. (73):

First, using Castigliano’s second theorem and based on Eq. (81), the frame’s horizon-
tal displacement 

(
Δx = 2ΔCx

)
 was obtained for calculating the stiffness of the quasi-X 

braced moment frame:

Substituting Eqs. (80) in (82), we have:

Then, the elastic stiffness of the quasi-X-braced steel moment frame under lateral 
load P was obtained as expressed in Eq. (83):

(77)

Δ�A =
�U

�MAE

= 0 → R.
(
2MAE −MBC + �c.(2MAE + 2MBC

)

+ �c.
(
8MAE − 4PLc − 8MBC

)
) + S.

(
2MAE + �b.

(
2MAE

))

+ T .
(
2MAE + 2MBC − PLc

)
= 0

(78)

Δ�B =
�U

�MBC

= 0 → R.
(
2MBC −MAE + �c.(2MBC + 2MAE

)

+ �c.
(
8MBC + 4PLc − 8MAE

)
) + S.

(
2MBC + �b.

(
2MBC

))

+ T .
(
2MBC + 2MAE − PLc

)
= 0

(79)MAE = MBC ≈ �P

(80)� =
Lc
(
4�cR + T

)

R
(
1 + 4�c

)
+ 2S

(
1 + �b

)
+ 4T

(81)

U = R.
(
�2P2 + �c.

(
4�2P2

)
+ �c.

(
P2L2

c

))
+ S.

(
2�2P2 + �b

(
2�2P2

))

+ T .

(
−
PLc

2
+ 2�P

)2

(82)
Δx = 2

�U

�P
= R ⋅

(
4�2P + �c ⋅

(
16�2P

)
+ �c ⋅

(
4PL2

c

))

+ S ⋅
(
8�2P + �b

(
8�2P

))
+ T ⋅

(
PL2

c
− 8�PLc + 16�2P

)

(83)Δx = PL2
c

((
4�cR + T

)(
R
(
1 + 4�c + 16�c

)
+ 2S

(
1 + �b

))

R
(
1 + 4�c

)
+ 2S

(
1 + �b

)
+ 4T

)

(84)K =
P

Δx

=
R
(
1 + 4�c

)
+ 2S

(
1 + �b

)
+ 4T

L2
c

(
4�cR + T

)(
R
(
1 + 4�c + 16�c

)
+ 2S

(
1 + �b

))

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



566 Bulletin of Earthquake Engineering (2024) 22:547–582

1 3

� and � were defined (Eqs. (75) and (76)) to simplify the stiffness relation:

Moreover, the ratio of R to S was obtained based on Eqs. (74) and (75) and substitut-
ing Eqs. (1) and (85) in these equations:

Factorization by S in the numerator and the denominator of Eq. (84) and substituting 
Eqs. (76), (86), and (87) in the equation yielded the final stiffness:

By simplifying Eq. (88) using Eqs. (1), (85), (86) and assuming the columns’ axial 
deformation to be negligible 

(
�c ≈ 0

)
 , we have:

where the first phrase of the steel moment frame’s stiffness takes into account bend-
ing, and shear deformations, and the second phrase is the stiffness of the quasi-X brace 
considering bending, shear, and axial deformations. Assuming the effects of shear and 
axial deformation in the beams and columns of the steel moment frame to be negligible (
�c = �b = �c ≈ 0

)
 , the elastic stiffness of the quasi-X-braced steel moment frame can be 

expressed by Eq. (88):

Simplifying Eq. (90) using Eqs. (1), (85), and (86), we have:

� was introduced (Eq. (90)) to normalize (nondimensionalize) stiffness:

(85)� =
Ib

Ic

(86)� =
T

S
=

a.�bav

EAqL
2
c

Lb

12EIb

=
6Ib�bav

AqL
2
c

(87)
R

S
=

Lc

6EIc

Lb

12EIb

=
2Lc

Lb
×
Ib

Ic
= 2e�

(88)

K =

(
R

S

)(
1 + 4�c

)
+ 2

(
1 + �b

)
+ 4

(
T

S

)

SL2
c

(
4�c

(
R

S

)
+
(

T

S

))((
R

S

)(
1 + 4�c + 16�c

)
+ 2

(
1 + �b

))

=
2EAq�

(
(2e�)

(
1 + 4�c

)
+ 2

(
1 + �b

)
+ 4�

)

Lb.�bav
((
4�c(2e�) + �

)(
(2e�)

(
1 + 4�c + 16�c

)
+ 2

(
1 + �b

)))

(89)K = Kframe,bv + Kbrace,bav =
24EIc

L3
c

(
e�

(e�)
(
1 + 4�c

)
+
(
1 + �b

)
)

+
2EAq

Lb.�bav

(90)K =
2EAq(e� + 1 + 2�)

Lb.�bav(e� + 1)

(91)K = Kframe,b + Kbrace,bav =
24EIc

L3
c

(
e�

1 + e�

)
+

2EAq

Lb.�bav
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Accordingly, with knowledge of the geometric specifications of the cross-sections of 
the columns, the beams, and the bracing members, as well as the material properties, 
Eq.  (89) can be used to calculate the QXB-MF and QIXB-MF systems stiffness under 
lateral loading by a novel method accurately; The calculation’s steps are as follows:

• Calculation of e (ratio of the half of the column’s length to half of the beam’s length) 
according to Eq. (1).

• Calculation of � (ratio of the second moment of area of the beam’s strong axis to 
that of the column) according to Eq. (85).

• Calculation of � (ratio of the modification coefficients of the quasi-X-bracing mem-
ber to those of the beams) according to Eq. (86).

• Calculation of �bav according to Eq. (69) or Fig. 9.
• Calculation of modification coefficients �c and µc by inserting the columns specifica-

tions in Eq. (74).
• Calculation of modification coefficient �b by inserting beams specifications in 

Eq. (75).
• Calculation of elastic stiffness of the QXB-MF and QIXB-MF systems according to 

Eq. (89).

2.5  Calculating the elastic lateral stiffness of quasi‑X‑braced steel simple frames

This method can be used to find the elastic lateral stiffness of quasi-X-braced steel sim-
ple frames (QXB-SFs) and quasi inverse-X-braced steel simple frames (QIXB-SFs), too. 
Accordingly, the axial elastic stiffness of an element equivalent to the quarter-elliptic brac-
ing member was calculated under an axial load of F (Fig.  10). This relation and spring 
modeling concepts were then used to calculate the quasi-X-braced frame’s stiffness under 
lateral loading. The strain energy stored in the quarter-elliptic bracing member is calcu-
lated by Eq. (67) as follows:

The stiffness of the equivalent element of the quarter-elliptic bracing member was first 
obtained using Castigliano’s second theorem by calculating the axial displacement 

(
Δe

)
 

from Eq. (93):

Then, based on Eqs. (1) and (94), the elastic axial stiffness of the equivalent element of 
the quarter-elliptic bracing member under the axial load F can be obtained as follows:

(92)�

(
e, �, � ,

b

rq
, �q

)
=

K
EAq

Lb

=
2(e� + 1 + 2�)

�bav(e� + 1)

(93)U quarter−elliptic brace, bav =
F2.a

2EAq

.
�bav

1 + e2

(94)Δe =
�U

�F
=

F.a

EAq

.
�bav

1 + e2
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Drawing on the concepts of spring modeling, for a two-dimensional single-span and 
one-story simple frame equipped with quasi-X brace under lateral force, the elastic lateral 
stiffness can be obtained as follows:

Accordingly, with knowledge of the geometric specifications of the cross-sections of the 
columns, the beams, and the bracing members, as well as the material properties, Eq. (96) 
can be used to calculate the QXB-SF and QIXB-SF systems stiffness under lateral loading 
by a novel method accurately.

2.6  Developing the proposed formulation for special cases of the QXB‑MF systems

Equation (91) shows the elastic stiffness of the two-dimensional single-span and one-story 
quasi-X-braced steel moment frame under a lateral load of P, assuming negligible shear 
and axial deformation in the beams and columns. The relation was developed in the struc-
tural frames considering two different beam conditions. In the first case, all beams in the 
moment frame are assumed to be rigid 

(
� = Ib∕Ic = ∞

)
 , whereas they are elastic in the 

second case.

• In the first case, for a QXB-MF system with a total of n1 spans, n2 of which are 
equipped with quasi-X brace, and m1 stories, and considering rigid beams with infinite 
bending stiffness, the lateral stiffness under a load of P applied on the top-most story 
can be calculated from the equation in Table 1(a). In this case, supports of all columns 
are rigid and undergo no rotation at the beam-to-column connection. Therefore, in this 
special case, the column behaves similar to a beam with one fixed support and one 
sliding support with stiffness of 12EIc∕L3c . The lateral load is then divided between the 
columns and quasi-X brace that sustain equal deformations, allowing them to behave 
similarly to parallel springs, the lateral stiffness of which can be summed up according 
to spring modeling principles. Moreover, spring modeling principles allow the lateral 
stiffness of the story to be combined similarly to springs arranged in series.

(95)Ke =
F

Δe

=
2EAq

(
1 + e2

)
Lb.�bav

(96)K = 2

(
Ke cos

2 �

2

)
= Ke cos

2 � =
2EAq

Lb ⋅ �bav

Fig. 10  Equivalent element 
for the quarter-elliptic bracing 
member
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• In the second case, for a QXB-MF system with a total of n1 spans 
(
n1=2

N
)
 , n2 of which 

are equipped with quasi-X brace, and considering elastic beams, the lateral stiffness 
under a load of P applied on the top-most story can be calculated from the equation 
in Table 1(b). The lateral load is then divided between the moment frame and quasi-
X brace that sustain equal deformations, allowing them to behave similarly to parallel 
springs, the lateral stiffness of which can be summed up according to spring modeling 
principles.

3  Validating the accuracy of the elastic stiffness formulation 
for QXB‑MFs by finite‑element modeling

In total, 1600 two-dimensional single-span and one-story quasi-X-braced steel moment 
frames were modeled under a 10,000 N lateral load in OpenSees to control and validate the 
accuracy of the elastic stiffness formulation derived from strain energy and Castigliano’s 
theorem (Mazzoni et al. 2006; Hibbeler and Kiang 2015). In these frames, the columns and 
beams were 3,000 and 5,000 mm long, and the cross-sectional area and the second moment 
of area of the bending (strong) axis of the quasi-X-braced member were 2256 mm2 and 
33.35 ×  105 mm4, respectively. The elastic beam-column element was used for all members 
of the frames. Moreover, uniaxial elastic materials were used to simulate steel’s behavior 
in the frames. Forty different values were assigned to � (ratio of the second moment of area 
of the beam’s strong axis to that of the column) using MATLAB programming code and 
based on Eq. (85), whereas γ (ratio of the correction factors of the quasi-X-bracing mem-
ber and the beams) was assigned 40 different values in the model developed using Open-
Sees according to Eq. (86), obtaining the displacement of 1600 QXB-MF systems. Then, 
using the stiffness relation and considering a 10,000 N lateral load, the frames’ elastic stiff-
ness was calculated. In this section, because the results of the two systems, QXB-MF and 

Table 1  Special cases of elastic lateral stiffness in QXB-MF systems

*For single-story and even-span 
(
n
1
=2N

)
 frames

Case Beam condition Deflected shape Lateral stiffness

a Rigid beam K =
1

m
1

[(
n
1
+ 1

)(
12EIc

L3
c

)
+ n

2

(
2EAq

Lb .�bav

)]

b Elastic beam* K = n
1

(
24EIc

L3
c

(
e�

1+e�

))
+ n

2

(
2EAq

Lb .�bav

)
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QIXB-MF, are almost identical, only the results and diagrams of the QXB-MF system are 
presented.

Figure 11a plots the normalized stiffness (�) of the QXB-MF system against different 
ratios of modification coefficients of the quasi-X-bracing member and beams (�) and dif-
ferent ratios of second moment of area of the strong axis of the beam to that of the col-
umn (�) . With the software tool unable to consider the shear shape coefficient of the quasi-
X bracing member’s cross-section 

(
�q
)
 due to using elastic beam-column elements, this 

parameter was assumed to be 0. The diagrams were plotted for 40 different values of � 
between 0.5 and 20, and 40 different values of � between 0.05 and 2. For simplification, 
Fig.  11a shows only nine out of 40 plots of the different � values between 0.05 and 2. 
According to Fig. 11a, the normalized stiffness variations (�) in the QXB-MF system rose 
linearly against the ratio of the modification coefficients of the quasi-X bracing member 
and the beams (�) , as well as the ratio of the second moment of area of the strong axis of 
the beam to that of the column (�) , as � increased. Figure 11b shows the normalized stiff-
ness (�) of the QXB-MF system against different moments of inertia of the beam’s strong 
axis to those of the columns (�) and for different ratios of the modification coefficients of 
the quasi-X bracing members to that of the beams (�) . These graphs were plotted for 40 
different � values between 0.5 and 20 and 40 different � values between 0.05 and 2, consid-
ering the shear shape coefficient of the quasi-X bracing cross-section 

(
�q
)
 to be 0. For sim-

plification, Fig. 11b shows only nine out of 40 plots of the different � values between 0.5 
and 20. According to Fig. 11b, the normalized stiffness of the QXB-MF system declined as 
the second moment of area of the strong axis of the column decreased relative to that of the 
beam (increase in �).

Assuming the ratio of the second moment of area of the beam’s strong axis to that of the 
column (�) to be 1, the QXB-MF system’s normalized stiffness (�) was calculated for 40 dif-
ferent � values between 0.5 and 20 from Eq. (92) and plotted in Fig. 12a. This figure was also 
plotted considering the shear shape coefficient of the quasi-X-bracing cross-section 

(
�q
)
 to 

be 0 in Eq. (69). Assuming the ratio of the modification coefficients of the quasi-X-bracing 
member to those of the beams to be 10, the QXB-MF system’s normalized stiffness (�) was 
calculated for 40 different � values between 0.05 and 2 from Eq. (92) and plotted in Fig. 12b. 
This figure was also plotted considering the shear shape coefficient of the quasi-X-bracing 
cross-section 

(
�q
)
 to be 0 in Eq. (69). Figure 12 is suggestive of negligible error between the 

results of the proposed formulation and finite element analysis.

(b)(a)

Fig. 11  Changes in normalized stiffness of the QXB-MF system (�); a versus parameter � for different val-
ues of � , b versus parameter � for different values of �
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4  Numerical example for the QXB‑MF and QIXB‑MF system’s elastic 
stiffness

This section evaluates and validates the accuracy of the proposed formulation for the lateral 
stiffness of QXB-MF and QIXB-MF systems through numerical examples. For this purpose, 
two-dimensional one-story and single-span frames were modeled in SAP 2000 and Abaqus 
software (Simulia 2014). The columns and beams were 3,000 and 5,000 mm long in these 
frames, and a 10,000 N lateral load was applied (Fig. 13).

The HEB 300 section was used for the columns, the IPE 300 section for the beams, and the 
BOX 100 × 100 × 6 for the bracing members. Table 2 lists the details of these sections. In the 
table, A denotes the cross-section area, Ix and rx are the second moment of area and the radius 
of gyration of the section around the bending (strong) axis, and � represents the cross-section’s 
shear shape coefficient.

For better modeling of the quasi-X brace in SAP 2000 software, each quarter-elliptic 
member of the bracing was divided into ten equal parts. The element of choice to model the 
frame members in Abaqus software was the B21 (beam element), which is a two-dimensional 
element with two nodes that come with two translational degrees of freedom and one rota-
tional degree of freedom. Moreover, Multi-point constraints (MPCs) connections were used 
as pinned connections in the quasi-X bracing members. Table 3 (EN1993-1–1) presents the 
properties of the S235JR steel that was used in all components (EN 1993-1-1 2005).

First, the lateral displacement of the studied frames was obtained in both software tools 
(Fig. 14 and Fig. 15). Then, using the stiffness formulation and considering a 10,000 N lateral 
load, the frames’ elastic stiffness was calculated using Eqs. (97) and (98).

The QXB-MF and QIXB-MF systems’ lateral stiffness was obtained using Abaqus soft-
ware (Fig. 14):

The QXB-MF and QIXB-MF systems’ lateral stiffness was obtained using SAP 2000 
software (Fig. 15):

(97)K =
P

Δ
=

10000

1.283
= 7794.23

N

mm

(98)K =
P

Δ
=

10000

1.271
= 7867.82

N

mm

(b)(a)

Fig. 12  Comparison of the results obtained by the numerical models and Eq. (92) for �; a versus parameter 
� assuming constant � = 1 , b versus parameter � assuming constant � = 10
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Moreover, the QXB-MF and QIXB-MF systems’ lateral stiffness was calculated using 
the proposed formulation (Table 4).

Comparing the analysis results of the two finite element tools for the QXB-MF and 
QIXB-MF systems with the proposed formulation indicated an error level of below 1%, 
which can be attributed to the shear shape coefficient of the cross-sections (�) . Assuming 
the shear shape coefficient to be zero results in a negligible difference between the results.

5  Seismic performance evaluation of the QXB‑MF and QIXB‑MF 
systems

This section assesses the seismic performance of the QXB-MF and QIXB systems. Two 
single-span and single-story frames from the three-dimensional archetypes designed in the 
seismic design category (SDC)  Dmax with a response modification factor of 5 have been 
chosen. S235JR steel is utilized for all cross-sections, and the gravitational dead and live 
loads for these archetypes are taken into account to be 500 kgf/m2 and 200 kgf/m2, respec-
tively. OpenSees software has been used to perform nonlinear modeling, which conforms 
to FEMA P695 modeling and analysis requirements (FEMA P695 2009). In order to dem-
onstrate the softening and deterioration of the studied frames, concentrated plastic hinge 
modeling is employed. In this method, plastic hinges are positioned at both ends of the col-
umns and beams, and the middle element is modeled elastically. Quarter-elliptic members 
with twelve elements and five plastic hinges are modeled, so a plastic hinge is placed at 
one end of each element. The panel zone in moment frame systems was modeled using the 

(b)(a)

Fig. 13  Modeling of the two-dimensional single-story single-span frames; a QXB-MF, b QIXB-MF

Table 2  Section properties Section properties HEB 300 IPE 300 BOX 100 × 100 × 6

A
(
mm2

)
14,900 5380 2256

Ix
(
mm4

)
2517 × 105 836 × 105 33.36 × 105

rx(mm) 130 125 38.45
� = A∕A

� 4.25 2.48 2

Table 3  Material properties Standard and Steel grade t ≤ 40mm

Fy[N∕mm
2] Fu[N∕mm

2] E[N∕mm2] �

S235JR 235 360 210,000 0.3

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



573Bulletin of Earthquake Engineering (2024) 22:547–582 

1 3

eight-element Krawinkler model (NIST 2017). As shown in Fig. 16, HEB 140, IPE 200, 
and BOX 100 × 100 × 10 cross-sections were utilized for columns, beam, and quarter-ellip-
tic bracing members, respectively. The moment-rotation behavior of the concentric hinges 
is simulated by the modified Ibarra-Medina-Krawinkler (IMK) deterioration model with 
a bilinear hysteretic response in all members (Lignos and Krawinkler 2010, 2011; Lignos 
et al. 2019).

To assess the seismic performance of the QXB-MF and QIXB-MF systems, non-linear 
static analysis (pushover) and incremental dynamic analysis (IDA) are conducted on the 
moment frame with quasi-X braces and the moment frame without brace (IMF), and the 
outcomes are compared.

5.1  Non‑linear static analysis (pushover)

Pushover analysis is carried out under lateral static loads and gravity loads. The structure 
is initially subjected to gravity loads, and subsequently, it is subjected to the lateral loading 
pattern. As per FEMA P695, in the pushover analysis, gravity load is applied to the struc-
ture through the load combination in Eq. (99):

where D is the nominal dead load, and L is the nominal live load. The above equation coef-
ficients signify the expected values of loads with normal probability distribution. Then, 
the distribution of the lateral force equivalent to the earthquake at the structure’s height 
based on the structure’s first mode and the effective mass of the floors is conducted through 
Eq. (100):

(99)1.05D + 0.25L

Fig. 14  Elastic displacement of frames subjected to lateral force (Abaqus)

Fig. 15  Elastic displacement of frames subjected to lateral force (SAP 2000)
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where Fx is the lateral force distribution in height at each floor level (x), mx is the struc-
ture’s mass at level x, and �1,x is the first mode of the structure at level x. The pushover 
curve of QXB-MF, QIXB-MF, and IMF archetypes is illustrated in Fig. 17. In this figure, 
Vmax∕w is equal to the maximum amount of base shear normalized by weight, �u is equal to 
the roof displacement at the point where 20% of the maximum base shear is reduced, and 
�y,eff  is the effective yield displacement of the roof calculated as per FEMA P695 guide-
lines (FEMA P695 2009).

According to Eq. (101), the over-strength factor,Ω , is equal to the ratio of the maximum 
base shear ( Vmax ) to the design base shear(V):

Furthermore, according to Eq. (102), period-based ductility, �T , is equal to the ratio of 
the ultimate displacement of the roof ( �u) to the effective yield displacement of the roof 
( �y,eff ):

(100)Fx ∝ mxφ1,x

(101)Ω =
Vmax

V

Table 4  Lateral stiffness of QXB-MF and QIXB-MF using the proposed formulation

No. Equation or Figure number Parameters Calculation of the parameter(s)

1 Equation (1) e 0.6
2 Equation (85) � 0.332
3 Equation (86) � 4.425

4 Equation (74) �cand�c �c = 0.0622

�c = 0.0005

5 Equation (75) �b �b = 0.0483

6 Equations (58), (62) and (66) or Fig. 8 �b(e),�a(e) and �v(e) λb(e) = 0.0852

�a(e) = 1.079064

�v(e) = 0.197287

7 Equation (69) or Fig. 9 �bav(e) 179.2

8 Equation (88) K 7859.75N∕mm2

Fig. 16  QXB-MF and QIXB-MF systems modeling approach in OpenSees
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Comparing the pushover curves depicted in Fig. 17 reveals that incorporating quasi-X 
braces into the moment frame system has resulted in performance enhancements, increased 
elastic stiffness, increased maximum base shear, and increased ultimate displacement 
capacity of this structural system.

5.2  Incremental dynamic analysis (far‑field and near‑field ground motion records)

The median collapse capacity and safety margin are determined using incremental dynamic 
analysis and based on the FEMA P695 approach for evaluating the seismic performance 
of structures (FEMA P695 2009). In this study, the selected parameters for damage meas-
ure (DM) and intensity measure (IM), respectively, are maximum inter-story drift ratio 
(MIDR) and first mode-5% damped spectral acceleration, Sa(T1, 5%) . The median collapse 
capacity of each structure, ŜCT , is computed through IDA analysis under specific records, 
and the collapse margin ratio (CMR) is determined as follows:

where SMT is the maximum considered earthquake (MCE) ground motion intensity. Con-
forming to FEMA P695 and based on the structural period 

(
T1
)
 and SDC  Dmax, this value 

is calculated as 1.5 for the studied archetypes. To consider the effects of frequency content 
(spectral shape) and adjust the records utilized, the CMR index is multiplied by a param-
eter called the spectral shape factor (SSF) to acquire the adjusted collapse margin ratio 
(ACMR). SSF values are computed through FEMA P695 tables based on T1 and �T.

The requirements for acceptance of the structural systems’ collapse performance rely 
on all uncertainties applied in the evaluation process. These uncertainties comprise record-
to-record uncertainty 

(
�RTR

)
 , modeling uncertainty 

(
�MDL

)
 , test data uncertainty 

(
�TD

)
 , and 

design requirements uncertainty 
(
�DR

)
 . As per FEMA P695, quality level A (equal to 0.2) 

was selected in this study for the �MDL , �TD , and �DR uncertainties. �RTR is considered equal 
to 0.4 for structures with �T greater than 3, and for structures with �T smaller than 3, the 
following equation is utilized to determine this uncertainty:

Because the four mentioned uncertainty sources are independent of each other, their 
total standard deviation is geometrically added to acquire the total collapse uncertainty (
�TOT

)
:

In order to compare the seismic performance of QXB-MF, QIXB-MF, and IMF 
archetypes under the effects of far-field and near-field ground motion records, the set of 
records proposed by FEMA P695, including 22 pairs of far-field records and 28 pairs 

(102)�T =
�u
�y,eff

(103)CMR =
ŜCT

SMT

(104)ACMR = CMR × SSF

(105)0.2 ≤ �RTR = 0.1 + 0.1�T ≤ 0.4

(106)�TOT =

√
�RTR

2 + �MDL
2 + �TD

2 + �DR
2
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of near-field records (with and without pulses), is utilized. Additionally, the advanced 
"hunt and fill" algorithm was employed to carry out an optimal and intelligent scale 
for the intensity measure (Vamvatsikos and Cornell 2002). In this algorithm, values of 
0.05, 0.05, and 30 were assigned to the initial step, step increment, and allowed num-
ber of runs per record, respectively. Figure 18 illustrations IDA curves with 16%, 50%, 
and 84% fractile curves under 44 far-field records, and Fig.  19 demonstrations IDA 
curves with 16%, 50%, and 84% fractile curves under 56 near-field records. Accord-
ing to the FEMA P695 tables, the acceptable collapse margin ratios  (ACMR10%) for 
QXB-MF, QIXB-MF, and IMF archetypes are 1.92, 1.91, and 1.93, respectively. Con-
sequently, the criterion ACMR >  ACMR10% has been satisfied per archetype.

Comparing the IDA curves reveals that using these braces in moment frame sys-
tems increases ŜCT , which in turn increases ACMR and improves the seismic perfor-
mance of these systems. Using quasi-X braces increases the ACMR by 64.17% for 
far-field ground motion records and 126.42% for near-field ground motion records in 
the moment frame system. Also, using quasi inverse-X braces increases the ACMR by 
50.79% for far-field ground motion records and 95.28% for near-field ground motion 
records in the moment frame system. The better seismic performance during near-field 
ground motion records is caused by longer periods of these records than the studied 
systems’ periods.

5.3  Collapse fragility evaluation

The fragility curves exhibit the collapse probability of structures for different intensity 
measures. They indicate the collapse probability per spectral acceleration level. The fragil-
ity curves are drawn using a cumulative distribution function (CDF) from IDA results. The 
lognormal collapse fragility is specified by two main factors: the median collapse intensity 

Fig. 17  Pushover curves of archetypes
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(
ŜCT

)
 and the standard deviation of the natural logarithm. Figure 20 depicts the fragility 

curve for archetypes under far-field records, and Fig.  21 depicts the fragility curve for 
archetypes under near-field records.

Fig. 18  IDA curves of archetypes under far-field ground motion records

Fig. 19  IDA curves of archetypes under near-field ground motion records
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Fig. 20  Fragility curves of archetypes under far-field ground motion records

Fig. 21  Fragility curves of archetypes under near-field ground motion records
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In these figures, two dashed fragility curves are drawn by considering �RTR and �TOT (all 
uncertaintiesas) the standard deviation parameter in the lognormal cumulative distributive 
function. Additionally, the solid curve (shifted fragility curve) is drawn by multiplying the 
fragility curve with the standard deviation parameter �TOT in SSF. The fragility curve slope 
has increased with the median collapse intensity 

(
ŜCT

)
 increase and the standard deviation 

increase.

6  Conclusions

This study introduces the novel quasi-X braces that are intended to correct conventional 
CBFs. Novel analytical and numerical methods evaluated the stiffness and stability of the 
quasi-X-braced steel moment frames. For this purpose, first, a new and accurate analytical 
formulation was presented for the lateral elastic stiffness of the two-dimensional single-
span and one-story QXB-MF and QIXB-MF systems under lateral loading, considering all 
effective parameters, including the axial and shear loads and the bending moment for all 
frame members. Next, the accuracy of the relation was evaluated by modeling the QXB-
MF and QIXB-MF systems using OpenSees and assigning 40 different values to the ratio 
of the second moments of area of the beam’s and column’s strong axes and 40 values to the 
ratio of the correction factors of the quasi-X bracing member and the beams using MAT-
LAB programming code. Moreover, two finite element software tools were used to solve 
the numerical problems to compare the results with the proposed relation. The error was 
found to be less than 1%, showing the high accuracy and reliability of the proposed rela-
tion. Accordingly, knowledge of the geometric specifications of the columns, beams, and 
the quasi-X bracing members, as well as material properties, helps calculate the elastic 
stiffness of the QXB-MF and QIXB-MF systems under lateral loading easily by relying on 
sufficient conservative considerations and by taking into account the uncertainties. these 
systems’ seismic performance was assessed as per the FEMA P695 guidelines under far-
field and near-field ground motion records in comparison with the IMF system. Initially, 
pushover analysis was performed on the archetype structures, resulting in the determina-
tion of period-based ductility and over-strength factors derived from the pushover curves. 
Subsequently, IDA analysis was performed using 44 far-field and 56 near-field ground 
motion records, and fragility curves were drawn using the collapse data. Comparing the 
obtained results reveals that including quasi-X braces in the IMF system increases the 
ACMR (adjusted collapse margin ratio) by 1.5 times for far-field ground motion records 
and 2 times for near-field ground motion records, consequently improving this system’s 
seismic performance.
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