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Abstract: 

This research investigates the efficiency of Chisala’s model in predicting the moment-rotation 

curve for double web angle and welded flange plate connections. As many types of connections 

of steel structures exhibit a semi-rigid (neither totally hinge, nor completely rigid) flexural 

performance, the determination of their moment-rotation curve is of vital importance since it 

provides a better vision for structural engineers. In this regard, analytical models of the types 

of connections mentioned in the title, with components of varying dimensions were created to 

derive the values of necessary parameters of Chisala’s model. Using the obtained values, the 

moment-rotation curve for each type of connection was presented. As a means of verification, 

finite element analysis using Abaqus software was also carried out on each corresponding 

analytical model. A statistically derived relation, in terms of the parameters of Chisala’s model, 

was then obtained, utilizing linear regression analysis, and was used afterward, to illustrate the 

moment-rotation curve for each type of connection. The comparison of moment rotation curves 

obtained both from analytical models and finite element analysis (FEA) suggest that Chisala’s 

model is quite efficient and precise when used to illustrate the moment-rotation curve for double 

web angle and welded flange plate connections, and it can predict moment or rotation values, 

should the necessary parameters be obtained using a well-defined equivalent analytical model.

D
 

1. Introduction 

In general, the performance of a structural element can be 

described in terms of its strength, stiffness, and ductility. The 

moment-rotation curve is an important indicator of the 

performance of connections, since the strength, stiffness, 

and ductility values can be derived from the curve, as shown 

in Figure 1. 

There are many models proposed by researchers to present 

the moment-rotation curve of a steel connection which are 

described in upcoming sections. 

 

1.1. Power models 

In 1998, Richard et al. provided a power formula derived 

from an analytical model which is shown in Figure 2, to  
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illustrate the moment-rotation curve for bolted double 

framing angle connections [1]. 

 
Fig. 1: The moment-rotation curve for a connection, and the 

relation between its parameters. 
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Fig. 2: Analytical model for double framing angles [1]. 

They compared the final results with the experimental work 

of Lewitt et al. [2] and the polynomial model proposed by 

Frye and Morris [3].  The results of this comparison suggest 

that the proposed power model is relatively precise for 

rotations larger than 0.003 radians [1]. Attiogbe and Morris 

used selected points and least-squares methods as curve-

fitting procedures to determine the parameters of the 

Richard-Abbott [4], and Ramberg-Osgood [5] power models 

in 1991 [6]. They compared the two power models, and the 

results suggest that the Richard-Abbott formula has more 

precision [6]. Kishi et al. used the Ricard-Abbott power 

model to determine the moment-rotation relation for end-

plate connections [7]. They carried out a total of 168 

experiments on end-plate connections and used the obtained 

results to develop a moment-rotation formula [7].  In another 

verifying study, Abolmaali et al. used Richard-Abbott and 

Ramberg-Osgood power models to present moment-rotation 

curves for end-plate connections [8]. In 2020, Tran used the 

moment-rotation relation proposed by Kishi et al. and 

extended it for the moment-rotation curve of semi-rigid 

cruciform flush end-plate connections exposed to elevated 

temperatures [9]. 

 

1.2.  Exponential models 

In 1999, Chisala proposed the following three parameters 

exponential model and provided analytical models for three 

types of connections (double web angle, top and seat-angle, 

and double web angle with top and seat-angle) to be utilized 

to derive the parameters [10]: 

𝑀 = [𝑀∘ + 𝐾𝑝𝜃][1 − 𝑒𝑥𝑝( − 𝐾𝑖𝜃/𝑀∘)] (1) 

where 

M0 = The intercept-constant [10] 

Ki = The initial (elastic) stiffness of the connection [10] 

Kp = The strain-hardening (plastic) stiffness of the 

connection [10] 

The elastic (initial) stiffness (Ki), is the initial slope of the 

moment-rotation curve at zero. The plastic stiffness (Kp) is 

the slope of the same curve at the end of the plastic zone 

(before the failure of the connection). The intercept constant 

(M0) on the other hand, controls the overall strength of the 

connection. All of the introduced parameters of Chisala’s 

model are independent, which contributes to its efficiency. 

Using this model, Chisala solved many problems and 

difficulties generated by other models. Other exponential 

models were later developed by researchers including the 

work of Gilio et. al on cold-formed steel purlins with sleeved 

bolted connection [11],  Zhou et al. introducing a two-

parameter exponential relation [12], and a four-parameter 

exponential model developed by Zhao et al. [13]. 

 

1.3.  Logarithmic models 

In 2002, Lee and Moon proposed a two-parameter 

logarithmic model for semi-rigid connections with angles 

[14]. The main advantage of this model over others is that it 

has few parameters which can be determined easily. On 

disadvantages, the two parameters do not have any physical 

interpretation but this does not affect the calculations and 

results. Later in 2017, Kong and Kim developed an inverse 

hyperbolic model for top and seat-angle connections with 

double web angles which was verified by experiments [15]. 

The results of the comparison between analytical, and 

experimental data suggest that the proposed model has well-

enough precision [15]. 

 

1.4.  Three-linear model 

In 2007, Danesh et al. developed a three-linear model for top 

and seat-angle connections with double web angles and 

obtained all of the parameters (𝑀𝑝, 𝑀𝑦 , 𝐾𝑛 , 𝐾𝑡 , 𝐾𝑖) shown in 

Figure 3 [16]: 

 
Fig. 3: Three-linear moment-rotation curve [16]. 

Where: 

Ki = initial (elastic) stiffness of the connection [16] 

Kn = normalized stiffness [16]              

Kt = tangential stiffness [16] 

Mp = plastic moment [16] 

My = yield moment [16] 

 

2. Materials 

One of the important requirements of finite element analysis 

is the determination of material properties. Mofid et al. 

showed that a normalized sample stress-strain curve can be 

used for ordinary constructional steel [17]. The 

specifications of this particular curve are presented in Table 

1. 
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Table 1: Specifications of stress-strain curve for different steel types [17]. 

Steel type 
σy 

MPa 
σu 

MPa ɛy ɛp ɛh ɛu 
E 

MPa 
Eh 

MPa 
Eu 

MPa 

S235 235 360 0.0011 0.0140 0.0370 0.1400 210000 5500 360 

S275 275 430 0.0013 0.0150 0.0470 0.1200 210000 4800 430 

S355 355 510 0.0017 0.0170 0.0530 0.1100 210000 4250 510 

Constructional steel σy 1.5 σy ɛy 11 ɛy 21 ɛy 121 ɛy E E/20 E/500 

 

Using the data available in Table 1, S235 was selected as 

main steel, and S355 was considered as weld steel. In this 

regard, the stress-strain curve for main steel and welds are 

presented in Figure 4. 

 
Fig. 4: Standard stress-strain curve (a) main steel (b) weld steel. 

To verify the reliability of finite element modeling, test 

models were constructed, and the results were compared 

with experiments carried out by various researchers. In 

2009, Ghobadi et al. tested 5 moment-resisting connection 

specimens under cyclic loading [18]. Among these 5 

specimens, two were very close to welded flange plate 

connections proposed in this research. These two are RC2 

(retrofitted connection), and RC4. The details of these two 

specimens are presented in Figure 5. 

 
Fig. 5: Details of specimen RC2 [18]. 

The only difference between the two specimens (RC2, and 

RC4) is the type of bottom plate welds. The bottom plate is 

welded to the column using full penetration groove weld in 

RC2, and double-sided fillet weld in RC4. The test setup is 

shown in Figure 6. 

 
Fig. 6: Full-scale test setup [18]. 

The specimens are symmetric with respect to the beam web 

plane, therefore they were split in half, and a half was 

modeled. Elements C3D15 and C3D20  (of varying 

dimensions with hourglass control) were used to model the 

main steel, and the welds, respectively. The finite element 

model of the RC4 specimen is presented in Figure 7. 

 
Fig. 7: Finite element model of specimen RC4. 

Materials were selected according to the earlier discussion. 

The numerical and experimental moment-drift angle curves 

for each specimen are presented in Figure 8. and Figure 9. 

In these curves, the moment is normalized (M/Mp), where 

Mp= Z . Fy, and Z is the plastic section modulus of the beam, 

and the drift angle is calculated by dividing the relative 

horizontal beam deflection by its length. 
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Fig. 8: Experimental [18] and numerical moment-drift angle 

curves for RC2 specimen. 

 
Fig. 9: Experimental [18] and numerical moment-drift angle 

curves for RC4 specimen. 

3. Finite element models 

3.1. Double web angle connection 

The connection setup is presented in Figure 10. 

 
Fig. 10: Double web angle connection setup. 

To determine the potential effects of geometric parameters 

on the performance of double web angle connections, a total 

of 35 specimens of the very kind of connection, were 

modeled and analyzed. Varying geometric parameters for all 

of the specimens are dimensions of the web angles. The 

details of each specimen are presented in Table 2. 

Table 2: Details and dimensions of the finite element models of double web angle connection (DWA). 

Specimen 

ID 

Beam 

section 

Column 

section 

Web angles Angles to beam 

weld leg length 

(mm) 

Angles to 

column weld 

leg length (mm) 
Length (mm) Flange width (mm) Thickness (mm) 

DWA-01 

IPE100 
L=1000 

mm 

2IPE160 

75 

50 

5 

5 

5 
DWA-02 6 

DWA-03 
7 

DWA-04 65 

DWA-05 55 7 7 

DWA-06 
75 

60 
6 6 

DWA-07 70 

DWA-08 

IPE140 
L=1400 

mm 

2IPE220 

90 

60 

5 

5 5 

DWA-09 100 

DWA-10 

110 

DWA-11 8 

DWA-12 10 

DWA-13 80 
8 

DWA-14 100 

DWA-15 

IPE180 
L=1800 

mm 

2IPE270 

110 

80 

6 

6 6 

DWA-16 120 

DWA-17 

130 

DWA-18 10 

DWA-19 

12 DWA-20 100 

DWA-21 120 

DWA-22 

IPE220 
L=2200 

mm 

2IPE270 

140 

80 

6 

6 6 

DWA-23 150 

DWA-24 

160 

DWA-25 10 

DWA-26 

12 DWA-27 100 

DWA-28 120 
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DWA-29 

IPE270 
L=2700 

mm 

2IPE300

0 

160 

100 

8 

8 8 

DWA-30 170 

DWA-31 

180 

DWA-32 12 

DWA-33 14 

DWA-34 120 
12 

DWA-35 130 

The specimens are designed according to Eurocode 3 

requirements [19]. A sample specimen is shown in Figure 

11. 

 
Fig. 11: Sample finite element model of double web angle 

connection. 

The mesh was constructed using the C3D8 element for one-

third of the lengths of beams and the column near the 

connection zone, the C3D20 element for angles, and the 

C3D15 element for welds. 

3.2.  Welded flange plate connection 

The connection setup is shown in Figure 12. 

 
Fig. 12: Welded flange plate connection setup. 

Similar to section 3.1, to determine the potential effects of 

geometric dimensions on the performance of the connection, 

a total of 78 specimens with varying dimensions were 

modeled and analyzed. The varying dimensions are 

thickness, length, and width of the top, bottom, and beam 

web stiffener plates, along with the thickness of doubler and 

continuity plates. The details of the specimens are presented 

in Table.

Table 3: Details and dimensions of the finite element models of moment-resisting connection designated as MR (dimensions are in 
millimeters). 

Specimen 

ID 
Beam 

section 
Column 

section 

Top plate 
Seat plate 

Beam web 

stiffener 
Doubler 

plate 
Continuity 

plate b1 b2 Lt1 L t 

Top plate thickness 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 

15 

200×120×8 110×80×6 400×180×6 180×40×6 
MR-02 16 

MR-03 18 

MR-04 20 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 130 180 50 350 

12 

350×180×10 100×100×6 380×200×6 200×40×6 
MR-06 15 

MR-07 16 

MR-08 18 

MR-09 
2IPE200 
L=2500 

mm 
2IPE270 170 230 60 400 

15 

400×220×10 130×130×6 420×245×6 245×50×6 
MR-10 16 

MR-11 18 

MR-12 20 

Top plate length 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 

200 

15 200×120×8 110×80×6 400×180×6 180×40×6 
MR-13 230 

MR-14 260 

MR-15 290 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 130 180 

50 

350 12 350×180×10 100×100×6 380×200×6 200×40×6 
MR-16 60 

MR-17 70 

MR-18 80 

MR-19 
2IPE200 
L=2500 

mm 
2IPE270 170 230 

50 

400 15 400×220×10 130×130×6 420×245×6 245×50×6 
MR-20 55 

MR-09 60 

MR-21 65 

Top plate width 
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MR-01 
IPE180 
L=2000 

mm 
2IPE200 

60 

80 60 200 15 200×120×8 110×80×6 400×180×6 180×40×6 
MR-22 55 

MR-23 50 

MR-24 45 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 

130 

180 50 350 12 350×180×10 100×100×6 380×200×6 200×40×6 
MR-25 135 

MR-26 140 

MR-27 145 

MR-09 
2IPE200 
L=2500 

mm 
2IPE270 

170 

230 50 400 15 400×220×10 130×130×6 420×245×6 245×50×6 
MR-28 175 

MR-29 180 

MR-30 185 

Bottom plate thickness 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 

200×120×8 

110×80×6 400×180×6 180×40×6 
MR-31 200×120×10 

MR-32 200×120×12 

MR-33 200×120×15 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 130 180 50 350 12 

350×180×10 

100×100×6 380×200×6 200×40×6 
MR-34 350×180×12 

MR-35 350×180×15 

MR-36 350×180×16 

MR-09 
2IPE200 
L=2500 

mm 
2IPE270 170 230 50 400 15 

400×220×10 

130×130×6 420×245×6 245×50×6 
MR-37 400×220×12 

MR-38 400×220×15 

MR-39 400×220×16 

Bottom plate length 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 

200×120×8 

110×80×6 400×180×6 180×40×6 
MR-40 230×120×8 

MR-41 260×120×8 

MR-42 290×120×8 

Bottom plate width 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 

200×120×8 

110×80×6 400×180×6 180×40×6 
MR-43 200×130×8 

MR-44 200×140×8 

MR-45 200×150×8 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 130 180 50 350 12 

350×180×10 

100×100×6 380×200×6 200×40×6 
MR-46 350×185×10 

MR-47 350×190×10 

MR-48 350×195×10 

MR-09 
2IPE200 
L=2500 

mm 
2IPE270 170 230 50 400 15 

400×220×10 

130×130×6 420×245×6 245×50×6 
MR-49 400×225×10 

MR-50 400×230×10 

MR-51 400×235×10 

Beam web stiffener thickness 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 200×120×8 

110×80×6 

400×180×6 180×40×6 
MR-52 110×80×8 

MR-53 110×80×10 

MR-54 110×80×12 

Beam web stiffener length 

MR-55 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 200×120×8 

120×80×6 

400×180×6 180×40×6 
MR-01 110×80×6 

MR-56 100×80×6 

MR-57 90×80×6 

Beam web stiffener width 

MR-58 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 200×120×8 

110×90×6 

400×180×6 180×40×6 
MR-01 110×80×6 

MR-59 110×70×6 

MR-60 110×60×6 

Continuity plate thickness 
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MR-01 IPE180 

L=2000 
mm 

2IPE200 60 80 60 200 15 200×120×8 110×80×6 400×180×6 

180×40×6 

MR-61 180×40×8 

MR-62 180×40×10 

MR-63 180×40×12 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 130 180 50 350 12 350×180×10 100×100×6 380×200×6 

200×40×6 

MR-64 200×40×8 

MR-65 200×40×10 

MR-66 200×40×12 

MR-09 
2IPE200 
L=2500 

mm 
2IPE270 170 230 50 400 15 400×220×10 130×130×6 420×245×6 

245×50×6 

MR-67 245×50×8 

MR-68 245×50×10 

MR-69 245×50×12 

Doubler plates thickness 

MR-01 
IPE180 
L=2000 

mm 
2IPE200 60 80 60 200 15 200×120×8 110×80×6 

400×180×6 

180×40×6 
MR-70 400×180×8 

MR-71 400×180×10 

MR-72 400×180×12 

MR-05 
2IPE160 
L=2000 

mm 
2IPE220 130 180 50 350 12 350×180×10 100×100×6 

380×200×6 

200×40×6 
MR-73 380×200×8 

MR-74 380×200×10 

MR-75 380×200×12 

MR-09 
2IPE200 
L=2500 

mm 
2IPE270 170 230 50 400 15 400×220×10 130×130×6 

420×245×6 

245×50×6 
MR-76 420×245×8 

MR-77 420×245×10 

MR-78 420×245×12 

 
All specimens were designed according to Eurocode 3 [19]. 

A sample specimen is presented in Figure 13. 

 
Fig. 13: A sample finite element model of welded flange plate 

connection. 

Meshing was done using the same elements described in 

section 3.1. 

 

4. Analytical models 

4.1.  Double web angle connection 

Yang and Lee calculated the initial stiffness of double web 

angle connections using the theory of plates and shells [20]. 

They utilized an equivalent plate instead of web angles. The 

boundary conditions of the plate are assumed as a simple 

edge at the contact zone between the angle section and the 

column, a clamped edge at the angle-column weld, and two 

free edges [20]. Figure 14. depicts the proposed plate model. 

 
Fig. 14: Yang et al. model for calculating the initial stiffness [20]. 

The displacement for the proposed plate model is assumed 

as: 

𝑊(𝑥, 𝑦) = �̄�𝑥2𝑦                                                                                                                                                  (2) 

The following are the boundary conditions that are satisfied 

perfectly by Equation (2). 

 

𝑊(0, 𝑦) = 0,
𝜕𝑊(0,𝑦)

𝜕𝑥
= 0                                                                                                                                                 

(3) 
𝑊(𝑥, 0) = 0,

𝜕𝑊2(𝑥,0)

𝜕𝑦2 = 0                                                                                                                       

 

The strain energy of the plate under flexure is: 

 

𝑈 =
1

2
∫ ∫ 𝐷 {(

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2 )
2

−
𝑏

0

𝑎

0

2(1 − 𝑣) [
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2 − (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

]} 𝑑𝑦𝑑𝑥   

(4) 

 

By substitution of Equation (2) into Equation (4), we get: 
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𝑈 =
2

3
𝐷�̄�2𝑎𝑏(𝑏2 + 2(1 − 𝜈)𝑎2)                                                                                                                                                                                                                                                            (5) 

 

Also, the potential energy of external forces is: 

𝑉𝑝 = − ∫ ∫ 𝑃(𝑥, 𝑦). 𝑊(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑏

0

𝑎

0

 
(6) 

  Substitution of Equation (2) into Equation (6), yields: 

𝑉𝑝 = −
1

3
�̄�𝑃0𝑎2𝑏2                                                                                                                          

(7) 

The total potential energy function becomes: 

𝛱 = 𝑈 + 𝑉𝑝 =
2

3
𝐷�̄�2𝑎𝑏(𝑏2 +

2(1 − 𝜈)𝑎2) −
1

3
�̄�𝑃0𝑎2𝑏2                                                                                                                          

(8) 

Using the Ritz method [20, 21], �̄�  can be obtained: 

𝜕𝛱

𝜕�̄�
= 0 ⇒ �̄� =

𝑃0𝑎𝑏

4𝐷(𝑏2+2(1−𝜈)𝑎2)
                                                                                                          

(9) 

 The rotational stiffness of single angle section is:  

𝜃 = 𝑡𝑎𝑛−1 (
𝑊(𝑎,𝑏)

𝑏
) ≅

𝑃0𝑎3𝑏

4𝐷(𝑏2+2(1−𝜈)𝑎2)
                                                                                                          

(10) 

𝐾𝑖
′ =

𝑀𝑜

𝜃
=

4𝐷𝑏(𝑏2+2(1−𝜈)𝑎2)

3𝑎3                                                                                                             
(11) 

Knowing that 𝐷 = 𝐸𝑡3 (12(1 − 𝜈2))⁄  the initial stiffness of 

double web angle connection becomes: 

𝐾𝑖 =
2𝑏𝐸𝑡3(𝑏2+2(1−𝜈)𝑎2)

9𝑎3(1−𝜈2)
                                                                                                                          

(12) 

Using the above equation to determine the actual value of 

the initial stiffness of a double web angle connection, and 

comparing the outcome with FEA results, reveals its major 

flaw. Yang et al. assumed that the rotation axis about the 

lower flange of the angle section [20], but changes in 

dimension of the angle section will change the location of 

the rotation axis. To solve this issue the length of the angle 

section (b) should be reduced to its actual value (beff). As 

discussed, the location of the rotation axis is a function of 

the dimensions of the angle section, which can be described 

by the following relation: 

𝑏𝑒𝑓𝑓 = 𝑎1(𝑏)𝑎2(𝑡)𝑎3(𝑎)𝑎4                                                                                                                                                                                                                                    (13) 

Where t is thickness, a1 is a constant, a2, a3, and a4 are 

dimensionless powers indicating the effect of each 

geometric parameter, and a is obtained using the relation 

below: 

𝑎 = 𝐿 − 2𝑎𝑤 − 𝑡 − 𝑟                                                                                                                                                                                                                                                                                                                          (14) 

In the above relation, L is angle flange length, aw is fillet 

weld leg, and r is fillet radius of the angle section. 

To determine the values of a1 to a4, a linear regression 

analysis was carried out. Natural logarithm was applied on 

both sides of the Equation (13), to obtain a linear relation, 

which yields: 

𝑙𝑛(𝑏𝑒𝑓𝑓) = 𝑙𝑛( 𝑎1) + 𝑎2 𝑙𝑛(𝑏) + 𝑎3 𝑙𝑛(𝑡) +

𝑎4 𝑙𝑛(𝐿)                                                                                                                                                                                                                                                                                                                                                                          

(15) 

According to the results of the regression analysis, the 

effective length of the angle section (beff) can be calculated 

as follows: 

𝑏𝑒𝑓𝑓 = 0.54𝑏(𝑎)0.34(𝑡)−0.44                                                                                                (16) 

All of the parameters above are measured in millimeters. 

At last, the elastic stiffness can be obtained by substitution 

of Equation (16) into Equation (12): 

𝐾𝑖 =
2𝑏𝑒𝑓𝑓𝐸𝑡3(𝑏𝑒𝑓𝑓 + 2(1 − 𝜈)𝑎2)

9𝑎3(1 − 𝜈2)
 

(17) 

Plastic stiffness is usually assumed in terms of elastic 

stiffness. In this regard, Equation (18) is proposed: 

𝐾𝑝 = 𝑏1(𝐾𝑖)
𝑏2                                                                                                                                                                                                                          (18) 

Using regression analysis b1, and b2 are obtained, the results 

of which are presented in Figure 15. 

𝐾𝑝 = 0.072𝐾𝑖                                                                                                                                                                                                                                                                                                                                                   
(19) 

 
Fig. 15: Results of regression analysis on constants of plastic 

stiffness. 

The intercept constant, being the last parameter of Chisala’s 

model, can be described as the following: 

𝑀0 = 𝑐1(𝑏𝑒𝑓𝑓)𝑐2(𝑎)𝑐3 (𝑡)𝑐4 (20) 

Similar to previous equations, linear regression analysis was 

used to determine the unknown constant, and power values, 

which yields: 

𝑀𝑜 = 334 × 10−6(𝑏𝑒𝑓𝑓)1.81(𝑎)−0.97(𝑡)2.2 (21) 

In Equation (21), beff, a, and t are in millimeters, while Mo is 

in kilo-Newtons meters (kN. m). 

 

4.2.  Welded flange plate connection 

To determine the parameters of Chisala’s model, an 

equivalent spring system was constructed, which is 

presented in Figure 16. 
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Fig. 16: The analytical spring system model of welded flange 

plate connection. 

In Figure 16, K1, K2, and K3 are axial stiffness of the top 

plate, axial stiffness of the bottom plate, and rotational 

stiffness of the panel zone, respectively. Finite element 

analysis suggests that increasing the length of the welded 

zone of the top plate (Lt1) does not significantly affect the 

performance of the connection. But as it is depicted in Figure 

17., an equally long free zone (unwelded to the flange of the 

beam) will deform, and exhibit strains. 

 
Fig. 17: Strain distribution on the top plate. 

According to Figure 17., the axial stiffness of the top plate can be 

written as: 

𝛥𝑡 = ∫
𝑃𝑡 𝑑𝑥

𝐸𝐴𝑡(𝑥)

2𝐿𝑡1

0

= ∫
𝑃𝑡𝑑𝑥

𝐸𝑏𝑡𝑡𝑡

𝐿𝑡1

0

+ ∫
𝑃𝑡𝑑𝑥

𝐸𝑡𝑡[𝑥(𝑏2 − 𝑏1) + 𝐿(2𝑏1 − 𝑏2)]

2𝐿𝑡1

𝐿

=
𝑃𝑡𝐿𝑡1

𝐸𝑡𝑡

+
𝑃𝑡𝐿𝑡1 𝑙𝑛( 𝑏2/𝑏1)

𝐸𝑡𝑡(𝑏2 − 𝑏1)
 

𝐾1 =
𝑃𝑡

𝛥𝑡
=

𝐸𝑡𝑡(𝑏1−𝑏2)

𝐿𝑡1[1−(𝑏2/𝑏1)−𝑙𝑛(𝑏2/𝑏1)]
                                                                                                                                                                                                                                                                                                                                                   

(22) 

For the bottom plate, the same assumptions can be made, as 

presented in Figure 18. 

 
Fig. 18: Strain distribution in the bottom plate. 

The axial stiffness of the bottom plate is: 

𝐾2 =
𝐸𝐴𝑏

𝐿𝑏

𝐸𝑏𝑏𝑡𝑏

(𝑏𝑏/2)
= 2𝐸𝑡𝑏                                                                                                                                                                                                                                                                                                                                                                                                                                                            

(23) 

A common method of calculating the rotational stiffness of 

the panel zone is transforming all of the forces acting on it, 

to an equivalent shear force, and calculating pure shear 

deformations [22, 23]. This transformation is presented in 

Figure 19. 

 
Fig. 19:  Forces acting on the panel zone [23]. 

Horizontal equilibrium equations will yield: 

𝑉𝑝𝑧 =
𝑀𝑏1

ℎ𝑏1
+

𝑀𝑏2

ℎ𝑏2
− 𝑉𝑐1                                                                                                                                                                                                                                                                                                                                                                                                                                                            

(24) 

The total equilibrium of the panel zone results in: 

𝑉𝑐1 = 𝑉𝑐2                                                                                                                                                                                                                                                                                                                                                                                                                                                            (25) 

If it is assumed that the height of the column (H) is equal to 

the average of the heights on both sides of the panel zone, 

the equality of the shear forces leads to: 

𝑉𝑐1 =
2𝑀𝑐1

𝐻−ℎ𝑏

𝑉𝑐2 =
2𝑀𝑐2

𝐻−ℎ𝑏

} →
𝑉𝑐1=𝑉𝑐2

𝑀𝑐1 = 𝑀𝑐2                                                                                                     (26) 

Writing the moment equilibrium equation for the whole 

panel zone outputs: 

𝑀𝑏1 + 𝑀𝑏2 = 𝑀𝑐1 + 𝑀𝑐2 = 2𝑀𝑐1                                                                                                (27) 

Finally, the shearing force of the panel zone becomes: 

𝑉𝑝𝑧 =
𝑀𝑏1

ℎ𝑏1

+
𝑀𝑏2

ℎ𝑏2

−
2𝑀𝑐1

𝐻 − ℎ𝑏

 

≅
𝑀𝑏1 + 𝑀𝑏2

ℎ𝑏

(1 − 𝜌)       

  𝜌 =
ℎ𝑏

𝐻 − ℎ𝑏

 

(28) 

To calculate the rotational stiffness of the panel zone, the 

following equations are employed: 
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𝜏 = 𝐺𝛾                                                                                                                                                                                                                                           (29) 

𝑉𝑝𝑧 = 𝐺𝐴𝛾                                                                                                                                      (30) 

Substituting Equation (28) into Equation (30) and 

considering that 𝑀𝑏1 + 𝑀𝑏2 = 𝑀, yields: 

𝑀 =
𝐺𝐴ℎ𝑏

1−𝑝
𝛾                                                                                                                                     

(31) 

Therefore, the rotational stiffness of the panel zone is equal 

to: 

𝐾3 =
𝐺(ℎ𝑐−2𝑡𝑓𝑐)(𝑡𝑤𝑐+𝑡𝑝𝑧)ℎ𝑏

1−𝑝
                                                                                                              

(32) 

At last, the initial stiffness of the welded flange plate 

connection can be calculated using the following equation: 

𝐾𝑖 =
𝐾1𝐾2𝐾3ℎ𝑏

2

(𝐾1+𝐾2)𝐾3+𝐾1𝐾2ℎ𝑏
2                                                                                                                     

(33) 

Similar to the previous section, the plastic stiffness of the 

connection can be written in terms of the initial stiffness. 

Using regression analysis, the following equation is 

produced: 

𝐾𝑝 = 0.1548(𝐾𝑖)
0.83                                                                                                                                                                                                                                           (34) 

Results of the regression analysis are presented in Figure 20. 

Using all the obtained equations along with another 

regression analysis, the intercept constant for welded flange 

plate connections becomes: 

𝑀0 = 522.4 × 10−6 (
𝑏1 + 𝑏2

2
)

0.49

𝑡𝑡
0.22𝐿𝑡1

−0.06 

𝑏𝑏
0.27𝑡𝑏

0.14𝑡𝑝
0.028(𝑡𝑐𝑤 + 𝑡𝑝𝑧)0.18ℎ𝑏

1.34                                                                                                                     

(35) 

                                                                                                                                       

5. Results and discussion 

5.1.  Double web angle connection 

The calculation results using analytical, and finite element 

models, are presented in Table 4. 

As it appears, Chisala’s model can precisely determine the 

values needed to construct the moment-rotation curve for 

double web angle connections. Based on the obtained data, 

analytical and numerical moment-rotation curves for each 

specimen were illustrated. These curves are presented in the 

figures 21 to 52: 

 
Fig. 20: Results of the regression analysis to determine the plastic stiffness. 

 

Table 4: Analytical and numerical results for double web angle connection. 

Specimen ID. 
Ki (kN.m/rad) Kp (kN.m/rad) M0 (kN.m) 

(Analytical) (Abaqus) (Analytical) (Abaqus) (Analytical) (Abaqus) 

DWA-01 84.900 80.600 6.100 6.000 0.800 0.760 

DWA-02 127.600 128.100 9.200 7.900 1.040 1.050 

DWA-03 181.800 186.100 13.100 10.700 1.310 1.370 

DWA-04 128.100 133.300 9.200 7.700 1.010 1.080 

DWA-05 112.500 117.000 8.100 7.600 0.790 0.90 

DWA-06 87.800 92.100 6.300 6.900 0.960 1.010 

DWA-07 61.000 62.600 4.400 5.300 0.880 0.850 

DWA-08 124.900 132.500 9.000 9.300 1.310 1.330 

DWA-09 163.300 165.600 11.800 11.900 1.580 1.570 

DWA-10 209.500 197.600 15.100 15.100 1.880 1.850 



 
 N. Fanaie et al.                                                                               Numerical Methods in Civil Engineering, 8-1 (2023) 80-102 

 

90 

 

DWA-11 393.700 371.500 28.300 23.000 2.880 2.650 

DWA-12 663.200 577.200 47.800 36.100 4.020 3.600 

DWA-13 196.300 203.600 14.100 16.200 2.480 2.530 

DWA-14 125.400 125.500 9.000 11.900 2.230 2.200 

DWA-15 208.900 235.900 15.000 17.900 2.510 2.730 

DWA-16 257.500 282.500 18.500 22.000 2.930 3.100 

DWA-17 314.700 333.400 22.700 26.800 3.390 3.530 

DWA-18 515.300 557.400 37.100 36.500 4.710 4.900 

DWA-19 783.400 837.800 56.400 51.200 6.180 6.400 

DWA-20 469.600 506.100 33.800 34.300 5.490 5.700 

DWA-21 324.800 323.400 23.400 26.100 5.010 5.000 

DWA-22 380.500 403.000 27.400 31.500 3.880 4.050 

DWA-23 455.500 467.600 32.800 38.000 4.400 4.450 

DWA-24 540.400 536.500 38.900 45.500 4.950 5.000 

DWA-25 874.000 896.900 62.900 60.000 6.860 6.870 

DWA-26 1317.700 1344.200 94.900 81.100 8.990 8.900 

DWA-27 763.800 804.900 55.000 58.200 8.000 8.000 

DWA-28 510.200 477.800 36.700 39.800 7.300 6.250 

DWA-29 566.500 634.900 40.800 48.000 6.260 6.600 

DWA-30 660.500 723.700 47.600 55.800 6.990 7.300 

DWA-31 765.200 817.300 55.100 65.300 7.750 7.900 

DWA-32 1136.300 1234.200 81.800 81.500 10.130 10.400 

DWA-33 1608.300 1719.300 115.800 112.000 12.720 13.000 

DWA-34 725.300 722.300 52.200 65.900 9.190 9.350 

DWA-35 612.600 594.000 44.100 55.400 8.850 9.000 

 

 
Fig. 21: Numerical and analytical moment-rotation curves for 

DWA-01 specimen. 

 
Fig. 22: Numerical and analytical moment-rotation curves for 

DWA-02 specimen. 
 

 
Fig. 23: Numerical and analytical moment-rotation curves for 

DWA-03 specimen. 

 
Fig. 24: Numerical and analytical moment-rotation curves for 

DWA-04 specimen. 
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Fig. 25: Numerical and analytical moment-rotation curves for 

DWA-05 specimen. 

 
Fig. 26: Numerical and analytical moment-rotation curves for 

DWA-06 specimen. 

 
Fig. 27: Numerical and analytical moment-rotation curves for 

DWA-07 specimen. 

 
Fig. 28: Numerical and analytical moment-rotation curves for 

DWA-08 specimen. 

 
Fig. 29: Numerical and analytical moment-rotation curves for 

DWA-09 specimen. 

 
Fig. 30: Numerical and analytical moment-rotation curves for 

DWA-11 specimen. 

 
Fig. 31: Numerical and analytical moment-rotation curves for 

DWA-12 specimen. 

 
Fig. 32: Numerical and analytical moment-rotation curves for 

DWA-14 specimen. 
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Fig. 33: Numerical and analytical moment-rotation curves for 

DWA-15 specimen. 

 
Fig. 34: Numerical and analytical moment-rotation curves for 

DWA-16 specimen. 

 
Fig. 35: Numerical and analytical moment-rotation curves for 

DWA-17 specimen. 

 
Fig. 36: Numerical and analytical moment-rotation curves for 

DWA-19 specimen. 

 
Fig. 37: Numerical and analytical moment-rotation curves for 

DWA-20 specimen. 

 
Fig. 38: Numerical and analytical moment-rotation curves for 

DWA-21 specimen. 

 
Fig. 39: Numerical and analytical moment-rotation curves for 

DWA-22 specimen. 

 
Fig. 40: Numerical and analytical moment-rotation curves for 

DWA-23 specimen. 
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Fig. 41: Numerical and analytical moment-rotation curves for 

DWA-24 specimen. 

 
Fig. 42: Numerical and analytical moment-rotation curves for 

DWA-25 specimen. 

 
Fig. 43: Numerical and analytical moment-rotation curves for 

DWA-26 specimen. 

 
Fig. 44: Numerical and analytical moment-rotation curves for 

DWA-27 specimen. 

 
Fig. 45: Numerical and analytical moment-rotation curves for 

DWA-28 specimen. 

 
Fig. 46: Numerical and analytical moment-rotation curves for 

DWA-29 specimen. 

 
Fig. 47: Numerical and analytical moment-rotation curves for 

DWA-30 specimen. 

 
Fig. 48: Numerical and analytical moment-rotation curves for 

DWA-31 specimen. 
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Fig. 49: Numerical and analytical moment-rotation curves for 

DWA-32 specimen. 

 
Fig. 50: Numerical and analytical moment-rotation curves for 

DWA-33 specimen. 

 
Fig. 51: Numerical and analytical moment-rotation curves for 

DWA-34 specimen. 

 
Fig. 52: Numerical and analytical moment-rotation curves for 

DWA-35 specimen. 

Of course, some other results and conclusions can be derived 

from this comparison (analytical versus numerical), which 

are described in the following sections. 

 

5.1.1. Effects of web angle thickness 

Based on the results, it was observed that a slight increase of 

web angle thickness, significantly increases the elastic 

stiffness, plastic stiffness, and total strength of the 

connection. For instance, comparing specimens DWA-10, 

and DWA-11 reveals that changing web angle thickness 

from 6mm to 8mm increases the initial stiffness by 88%, and 

the plastic stiffness by 52%, as presented in Figure 53. 

 
Fig. 53: Effects of web angle thickness on the performance of the 

connection. 

 

5.1.2. Effects of web angle length 

The web angle length also has a direct impact on the initial 

stiffness, the plastic stiffness, and the overall strength of the 

connection. As an example, comparing specimens DWA-16, 

and DWA-17 unveils that increasing web angle length from 

120mm to 130 mm, increases the initial stiffness, and the 

plastic stiffness by 18%, and 22%, respectively, as is 

illustrated in Figure 54. 

 
Fig. 54: Effects of web angle length on the performance of the 

connection. 

 

5.1.3. Effects of web angle flange length 

Opposite to previous sections, the web angle flange length 

has an inverse effect on the initial stiffness, the plastic 

stiffness, and the overall strength of the connection. As an 

example, increasing the web angle flange length in 

specimens DWA-26, DWA-27 from 80mm to 100mm, 

decreases the initial stiffness, and the plastic stiffness, by 
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40%, and 22%, respectively. This matter is shown in Figure 

55. 

 
Fig. 55: Effects of web angle flange length on the performance of 

the connection. 

5.2.  Welded flange plate connection 

The analytical and numerical results are presented in Table 

5.  

Similar to double web angle connections, Chisala’s model 

precisely determines the values necessary to form the 

moment-rotation curve for welded flange plate connections 

as well. Using the collected data, analytical and numerical 

moment-rotation curves for some of the specimens were 

illustrated. These curves are shown in the figures 56 to 81: 

Table 5: Analytical and numerical results for welded flange plate connection. 

Specimen 

ID 

Ki (kN.m/rad) Kp (kN.m/rad) M0 (kN.m) 

(Analytical) (Abaqus) (Analytical) (Abaqus) (Analytical) (Abaqus) 

MR-01 22352.600 21936.400 668.000 650.350 56.400 56.200 

MR-02 22967.600 22637.920 683.200 671.180 57.200 57.000 

MR-03 24071.500 23748.580 710.400 636.600 58.700 59.000 

MR-04 25034.000 24681.030 733.900 726.540 60.100 62.000 

MR-05 31303.100 29725.620 883.400 852.790 85.200 84.000 

MR-06 33744.600 32168.540 940.300 917.600 89.500 89.100 

MR-07 34415.700 33013.600 955.800 943.970 90.800 90.500 

MR-08 35595.400 34468.370 982.900 979.320 93.200 93.000 

MR-09 54913.100 50045.620 1408.600 1376.140 143.800 144.000 

MR-10 55961.800 51430.660 1430.800 1407.860 145.900 145.000 

MR-11 57801.600 53337.380 1469.800 1458.390 149.700 148.500 

MR-12 59362.800 55244.360 1502.700 1507.270 153.200 151.000 

MR-13 22352.600 21957.200 668.000 654.940 56.400 56.000 

MR-14 22352.600 21964.700 668.000 654.270 56.400 55.500 

MR-15 22352.600 21971.970 668.000 653.990 56.400 56.200 

MR-16 29191.100 29412.790 833.700 844.990 84.300 83.500 

MR-17 27346.100 29071.500 789.700 835.420 83.500 83.300 

MR-18 25720.400 28593.960 750.500 821.170 82.900 83.100 

MR-19 57801.600 50475.920 1469.800 1385.750 145.400 144.500 

MR-20 56320.300 50287.300 1438.500 1380.680 144.600 144.300 

MR-21 53574.400 49822.200 1380.000 1369.870 143.100 143.700 

MR-22 21717.700 21745.130 652.200 647.780 55.400 55.500 

MR-23 21014.200 21385.120 634.600 638.040 54.400 54.800 

MR-24 20228.500 21033.540 614.900 628.850 53.400 54.000 

MR-25 31625.700 29969.290 891.000 859.720 85.900 85.700 

MR-26 31933.600 30167.340 898.200 866.040 86.600 86.500 

MR-27 32227.900 30331.800 905.100 871.290 87.200 87.000 

MR-28 55272.900 52849.840 1416.200 1378.420 144.700 145.500 

MR-29 55619.200 56535.540 1423.600 1381.240 145.600 146.000 

MR-30 55952.600 57672.600 1430.700 1384.569 146.400 144.800 

MR-31 23359.900 23357.660 692.900 691.130 58.200 58.700 

MR-32 24083.400 24382.580 710.700 716.110 59.700 60.400 

MR-33 24853.100 25774.880 729.500 753.090 61.600 62.000 

MR-34 32983.600 31649.000 922.600 906.190 87.400 87.000 

MR-35 34854.800 33347.950 965.900 951.890 90.200 89.600 

MR-36 35356.200 34062.470 977.400 973.400 91.000 90.500 

MR-37 58244.700 52849.840 1479.100 1447.280 147.600 147.000 

MR-38 62006.800 56535.540 1558.000 1540.570 152.200 151.000 

MR-39 63024.500 57672.600 1579.200 1569.520 153.600 152.000 

MR-40 22352.600 21958.960 668.000 651.010 56.400 56.200 



 
 N. Fanaie et al.                                                                               Numerical Methods in Civil Engineering, 8-1 (2023) 80-102 

 

96 

 

MR-41 22352.600 21957.610 668.000 650.960 56.400 56.200 

MR-42 22352.600 21953.120 668.000 650.860 56.400 56.200 

MR-43 22352.600 22355.910 668.000 661.430 57.700 56.800 

MR-44 22352.600 22638.620 668.000 668.890 58.800 57.800 

MR-45 22352.600 22831.880 668.000 674.310 59.900 58.300 

MR-46 31303.100 30162.650 883.400 865.870 85.900 85.100 

MR-47 31303.100 30582.440 883.400 875.730 86.500 85.500 

MR-48 31303.100 30941.570 883.400 887.060 87.100 86.000 

MR-49 54913.100 50580.290 1408.600 1385.80 144.700 144.200 

MR-50 54913.100 50749.300 1408.600 1387.470 145.600 144.500 

MR-51 54913.100 50902.060 1408.600 1397.030 147.300 145.300 

MR-52 22352.600 21991.420 668.000 651.900 56.400 56.200 

MR-53 22352.600 22033.220 668.000 653.340 56.400 56.200 

MR-54 22352.600 22107.500 668.000 655.390 56.400 56.200 

MR-55 22352.600 21916.280 668.000 649.910 56.400 56.200 

MR-56 22352.600 21974.890 668.000 651.630 56.400 56.200 

MR-57 22352.600 22073.280 668.000 654.190 56.400 56.200 

MR-58 22352.600 21951.160 668.000 650.830 56.400 56.200 

MR-59 22352.600 21915.000 668.000 649.850 56.400 57.500 

MR-60 22352.600 21902.510 668.000 649.510 56.400 58.000 

MR-61 22352.600 22349.030 668.000 661.210 56.900 56.700 

MR-62 22352.600 22691.730 668.000 672.420 57.300 57.300 

MR-63 22352.600 22914.900 668.000 680.800 57.500 57.500 

MR-64 31303.100 30151.410 883.400 866.040 85.900 85.500 

MR-65 31303.100 30621.460 883.400 877.890 86.500 86.000 

MR-66 31303.100 31052.860 883.400 890.860 86.900 86.500 

MR-67 54913.100 50721.680 1408.600 1393.500 145.000 145.000 

MR-68 54913.100 51202.700 1408.600 1407.980 145.900 146.000 

MR-69 54913.100 53195.710 1408.600 1463.270 146.700 148.500 

MR-70 23587.400 22975.170 698.500 688.560 58.100 57.000 

MR-71 24597.800 24336.970 723.200 734.300 59.500 57.500 

MR-72 25439.900 25547.900 743.700 775.390 60.800 58.000 

MR-73 33327.400 31639.690 930.600 1003.730 88.400 91.500 

MR-74 34886.600 33505.580 966.600 1058.720 91.100 91.700 

MR-75 36124.400 34614.470 995.000 1107.050 93.500 92.000 

MR-76 58616.400 53564.010 1487.000 1484.730 149.000 157.000 

MR-77 61517.300 56669.330 1547.800 1577.540 153.400 158.500 

MR-78 63851.200 60988.610 1596.400 1714.760 157.300 160.500 

 

 
Fig. 56: Numerical and analytical moment-rotation curves for 

MR-01 specimen. 

 
Fig. 57: Numerical and analytical moment-rotation curves for 

MR-04 specimen. 
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Fig. 58: Numerical and analytical moment-rotation curves for 

MR-07 specimen. 

 
Fig. 59: Numerical and analytical moment-rotation curves for 

MR-10 specimen. 

 
Fig. 60: Numerical and analytical moment-rotation curves for 

MR-13 specimen. 

 
Fig. 61: Numerical and analytical moment-rotation curves for 

MR-16 specimen. 

 
Fig. 62: Numerical and analytical moment-rotation curves for 

MR-19 specimen. 

 
Fig. 63: Numerical and analytical moment-rotation curves for 

MR-22 specimen. 

 
Fig. 64: Numerical and analytical moment-rotation curves for 

MR-25 specimen. 

 
Fig. 65: Numerical and analytical moment-rotation curves for 

MR-28 specimen. 
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Fig. 66: Numerical and analytical moment-rotation curves for 

MR-31 specimen. 

 
Fig. 67: Numerical and analytical moment-rotation curves for 

MR-34 specimen. 

 
Fig. 68: Numerical and analytical moment-rotation curves for 

MR-37 specimen. 

 
Fig. 69: Numerical and analytical moment-rotation curves for 

MR-40 specimen. 

 
Fig. 70: Numerical and analytical moment-rotation curves for 

MR-43 specimen. 

 
Fig. 71: Numerical and analytical moment-rotation curves for 

MR-46 specimen. 

 
Fig. 72: Numerical and analytical moment-rotation curves for 

MR-49 specimen. 

 
Fig. 73: Numerical and analytical moment-rotation curves for 

MR-52 specimen. 
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Fig. 74: Numerical and analytical moment-rotation curves for 

MR-55 specimen. 

 
Fig. 75: Numerical and analytical moment-rotation curves for 

MR-58 specimen. 

 
Fig. 76: Numerical and analytical moment-rotation curves for 

MR-61 specimen. 

 
Fig. 77: Numerical and analytical moment-rotation curves for 

MR-64 specimen. 

 
Fig. 78: Numerical and analytical moment-rotation curves for 

MR-67 specimen. 

 
Fig. 79: Numerical and analytical moment-rotation curves for 

MR-70 specimen. 

 
Fig. 80: Numerical and analytical moment-rotation curves for 

MR-73 specimen. 

 
Fig. 81: Numerical and analytical moment-rotation curves for 

MR-76 specimen. 
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There are some other results obtained from the data, which 

are described in the following sections. 
 

5.2.1. Effects of top plate thickness, width, and length 

Comparing the obtained results, it appears that the thickness 

and the width of the top plate have a direct and significant 

effect on the stiffness (both elastic and plastic), and the 

overall strength of the connection. Increasing the length of 

the welded zone does not affect the performance of the 

connection very much, although increasing the dimensions 

of the trapezoid part has an inverse effect on the stiffness and 

the overall strength of the connection. These differences are 

not quite visible in Figure 82., Figure 83., and Figure 84., 

mainly because of insignificant changes of dimensions, due 

to design code limitations. 

 
Fig. 82: Effects of top plate thickness on the performance of the 

connection. 

 
Fig. 83: Effects of top plate length on the performance of the 

connection. 

 
Fig. 84: Effects of top plate width on the performance of the 

connection. 

 

5.2.2. Effects of bottom plate thickness, width, and 

length 

As illustrated in Figure 85., Figure 86., and Figure 87., this 

section is similar to the previous, which was predictable. 

 
Fig. 85: Effects of bottom plate thickness on the performance of 

the connection. 

 
Fig. 86: Effects of bottom plate length on the performance of the 

connection. 

 
Fig. 87: Effects of bottom plate width on the performance of the 

connection. 
 

5.2.3. Effects of beam web stiffener thickness, width, 

and length 

The length and the thickness of the beam web stiffener, since 

it is welded to the beam web on all edges, do not affect the 

moment-rotation curve significantly. As for the width, most 

of the flexural moment is transferred to the column, through 

tensile, and compressive couple forces generated in the top 

and bottom plates, therefore, the width of the beam web 

stiffener does not significantly alter the performance of the 

connection.  
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5.2.4. Effects of continuity plate thickness 

Continuity plate will prevent local buckling of the column 

flanges. Increasing its thickness leads to increased stiffness 

and the overall strength of the connection, as shown in 

Figure 88. 

 
Fig. 88. Effects of continuity plate thickness on the performance 

of the connection. 

 

5.2.5. Effects of doubler plates thickness (column 

web stiffener plate) 

Changing the thickness of doubler plates has a direct effect 

on the stiffness and the overall strength of the connection, as 

it stiffens the panel zone against flexural-moment. This is 

shown in Figure 89. 

 
Fig. 89. Effects of doubler plate thickness on the performance of 

the connection. 

 

6. Conclusions 

To determine the efficiency of Chisala’s model in predicting 

the moment-rotation curve for double web angle, and 

welded flange plate connections, analytical and numerical 

models were made, and using both, the parameters needed 

to construct the moment-rotation curve were calculated. 

Based on the results, the following conclusions are made: 

1- Utilized finite element models and the choice of 

materials are reliable. 

2- Compared to other models, Chisala’s model is 

more efficient in predicting the moment-rotation 

curve for different types of steel connections, since 

it has fewer parameters, and these parameters are 

independent. 

3- Chisala’s model can precisely predict the moment-

rotation curve for double web angle, and welded 

flange plate connections. 

4- Since the precision of Chisala’s model is 

acceptable, further research on the performance of 

different types of steel connections using this 

model is recommended. 

5- As Chisala’s model is expressed in a general form, 

constructing a proper equivalent analytical model 

to determine the parameters, is the key step while 

employing the model. 

6- The equivalent analytical model can be constructed 

using the basics of structural analysis, and a system 

formed by a combination of different springs, each 

resembling the stiffness of a different part of the 

whole connection. 

7- Since the plastic stiffness is expressed in terms of 

the initial stiffness, linear springs can form the 

equivalent analytical model, which simplifies the 

analysis significantly. 

8- Geometric dimensions do affect the flexural 

performance of double web angle and welded 

flange plate connections. In this regard, the 

thickness, and flange length of the web angle, in 

double web angle connections, and the dimensions 

of the bottom plate, in welded flange plate 

connections, seem to have the most noticeable 

impacts on the performance of these connections. 

9- The nonlinear performance of double web angle 

connections begins in connecting elements 

(welding and angle sections) whereas in the welded 

flange plate connections, it begins in beams and 

then extends to the whole connection. 

10- The very two types of connections exhibit a semi-

rigid flexural performance.  
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