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of cable bracing system with central
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Abstract
Different kinds of bracing systems are used as the basic methods for providing lateral stiffness and strength in building frames. In
recent years, tension-only bracing systems have been suggested by researchers. Steel cable has been recognized as a flexible member
which can tolerate tensional forces only. Using the tension-only members as bracing for structures has triggered the concept of apply-
ing cables as the lateral braces of structures. Despite the high stiffness and tensional strength of steel cables, they cannot be consid-
ered as proper devices in cross bracing due to their low ductility. One of the modern bracing systems is using cables along with a
cylinder through which a pair of cables passes from their crossing point. Such bracing systems can be used in strengthening of
moment-resisting frames. This research presents the equations that are related to the behavior of cable steel cylinder bracing. Also,
the effects of cylinder dimensions and prestressing of cables on the behavior of the mentioned bracing were assessed. In such bracing
with steel cylinder, both cables are under tension; therefore, the loosening of cables and their ability to cause impulses will be
removed. Moreover, the cables reach their final strengths at higher frame lateral displacements. It is recommended to select the
dimensions of the cylinder in such a way that the cables also reach their yielding limit in the damage limit displacement of the frame.
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Introduction

Efficiency and performance of structures have direct
relations with the available material and construction
technology. Overtime, considerable progress has been
achieved in recognizing and presenting new materials,
methods, construction devices, and servicing.

Cables, one of the important structural components,
are defined as flexible tensile members with slight flex-
ural stiffness. Cables with high ratios of strength to
weight have different applications in structures (Jeong-
In and Sung Pil, 2000). They are often used in bridges
and large roofs (Ben Mekki and Auricchio, 2011;
Kang et al., 2014; Osamu et al., 1999; Straupe and
Paeglitis, 2013; Wu et al., 2006) but not ordinarily in
buildings. In recent years, researchers have been moti-
vated to study the application of cables in buildings in
different ways concerning their advantages. Some of
researchers have focused on using cables in tall build-
ings for controlling frame lateral displacement (Saleem
and Saleem, 2010). Some others have been concerned
with applying the cables instead of shear reinforcement
in reinforced concrete beams (Keun-Hyeok et al.,
2011). Several researchers have scrutinized the use of

cables for preventing progressive damages of structures
(Hadi and Saeed Alrudaini, 2012; Tan and Astaneh-
Asl, 2003) and bridges (Cai et al., 2012). In recent
years, different kinds of cable bracings have been pre-
sented by researchers (Chuang et al., 2004; Kurata
et al., 2012; Razavi and Sheidaii, 2012; Zahrai and
Hamidia, 2009). Some of the advantages of using wire-
ropes as bracings are as follows: flexibility, high capac-
ity in supporting the tensional forces, simple design,
fast and easy construction and installation, no heavy
devices for installation, and creating the least noises
during installation (Kurata et al., 2012).
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Cable bracing system with central cylinder is one of
the modern bracing systems in which a pair of cables
passes through the cylinder in their interaction point.
In such systems, the cables and cylinder are used in
such a way that the cables reach their final strengths at
higher frame lateral displacements and therefore cover
their ductility defects as shown in Figure 1 (Hou and
Tagawa, 2009). Hou and Tagawa (2009) used this bra-
cing system for seismic retrofit of steel moment frames
and concluded that this retrofitting method can
increase the lateral story strength without reducing the
moment frame ductility; moreover, it restrains the
story drift to within the specified range. Figure 2
shows the test setup of their research.

The behavior of this bracing system depends on the
dimensions of the cylinder as well as the axial rigidity
and prestressing of the cables. Theoretical behavior of
this bracing system has been studied in the case of
using soft cylinder (Fanaie et al., 2012). In this

research, the behavior of the mentioned system is
assessed in the case of using a stiff cylinder such as a
steel cylinder. This study focuses on the effect of cylin-
der dimensions and prestressing of cables.

Governing equations

A cylinder with high stiffness and very low elastic
deformation like a steel cylinder can be considered
rigid for simplicity of calculations. In such states under
lateral static displacement of the frame (d) toward the
right, the center of the horizontal cylinder moves as
d=2 and rotates as u in the counterclockwise direction.
The displacement of the cylinder center in the vertical
direction is 0.

In this section, the relation between the lateral dis-
placement of the frame and rotation of the cylinder is
presented using the equilibrium equation of the cylin-
der. Then, the equations needed for plotting the curves
of P–d and e–d are obtained. Figure 3 is used for
achieving the equations governing the behavior of rigid
cylinder-cable bracing. In this figure which represents
a simple frame, the coordinate axes are identified as
well.

It is assumed that the cylinder is located at the cen-
ter of frame. Considering this assumption, the slopes
of AE and GC are equal and the slopes of BF and HD
are equal as well. According to Figure 3, if the length
of the beam = lb, height of column = hc, length of
cylinder = u, and the inner diameter of cylinder-
cable = v, then the lateral displacement of the frame
(d) is obtained as follows

Figure 2. Test setup (Hou and Tagawa, 2009).

Figure 1. Cable bracing system with central cylinder: (a)
dimensions and (b) deformation at dS.
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where u is the rotation of the cylinder. The equilibrium
equation of cylinder should be used for obtaining the
relation between cylinder rotation and lateral displace-
ment of the frame. The cylinder should rotate in such
a way that the applied moment from the cables to the
cylinder becomes equal to 0 (Figure 4).

The equilibrium equation of a cylinder is as follows

X
M = 0!FR 3

AE
�!

3 EG
�!��� ���

AE
�!��� ��� =FL 3

DH
��!

3 FH
�!��� ���

DH
��!��� ���

ð1Þ

where FR and FL are the forces of the right and left
cables, respectively; it is calculated as follows

FR =
AE

LAE + LEO

3 DAE ð2Þ

FL =
AE

LDH + LHO

3 DDH ð3Þ

where AE is the axial rigidity of each cables, and DAE

and DDH are the elongation of cables AE and DH,
respectively. Considering the equal lengths and axial
rigidity values for both right and left cables, the equi-
librium equation of the cylinder is expressed as
follows
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3 EG
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DH
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The above equation has been expressed based on
the initial lengths of cables, elongation of cables, and
cross product of directions of cables in and out of the
cylinder. They are the functions of lateral displacement
of the frame and dimensions and also rotation of cylin-
der, written as follows
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Figure 3. The frame with rigid cylinder-cable bracing.

Figure 4. Free body diagram of rigid cylinder.
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The main equation below is obtained by putting the
above equations in the equilibrium equation of cylinder
(equation (4)). This is an implicit relation and makes
the cylinder rotation and frame lateral displacement
dependent on each other.
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The angles of the external parts of the cables are
expressed as follows.

cos aR = cos a
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aR and aL are shown in Figure 3.
Equation (18) is used for plotting P–d curve.
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where FR and FL are the forces of the right and
the left cables, respectively. lt is the total length of
cables.

Equations (19) and (20) can be used for plotting the
strain curves of cables versus lateral displacement of
the frame.

eR =
DAE

LAE + LEO

ð19Þ

eL =
DDH

LDH + LHO

ð20Þ

The obtained equations are valid until one of the
cables is totally straightened. At that moment, the
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force of the other cable becomes 0, since
P

M = 0

should be satisfied. After that, the next cable starts to
loosen and the slopes of the internal and external
cables are equal for the active cable.

The frame lateral displacement when one of the
cables is straightened is called dsr.

For frame lateral displacement greater than dsr, one
wire does not work anymore. In this case if frame lat-
eral displacement is d and the angle between diagonal
direction of AC and horizontal direction is u, elonga-
tion of AC is d cos u. Regarding this subject, the strain
of another cable and lateral force of the story are
expressed in terms of the lateral displacement of the
frame in the cross-cable bracing system as follows:
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l2
b + h2

c

q ,

lAC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3
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Figure 5 shows the curve of force–displacement for
the hinged frame with cross-cable bracing and
cylinder-cable bracing. The beam length is 4 m, the
height of the column is 3 m, the length of the horizon-
tal cylinder is 22 cm, and the internal diameter of the
cylinder minus cable diameter is 5 cm.

In Figure 5, X and C curves correspond to cross-
cable bracing and cylinder-cable bracing, respectively.

According to the figure, the stiffness of cylinder-cable
bracing system is not constant. The initial stiffness is 0
which increases with an increase in the frame lateral
displacement.

Figure 6 shows the strain curves of cables versus lat-
eral displacement for the hinged frame with the men-
tioned dimensions. Equations (19) and (20) have been
used in plotting the curves.

In this figure, X corresponds to the right cable of
the cross-cable bracing and CR and CL to the right and
left cables of the cylinder-cable bracing, respectively.

Using cables as the cross bracing in building frames
is confronted with basic difficulties. Figure 6 shows
two main advantages of cylinder-cable bracing over
cross-cable bracing. According to this figure, first, the
cable will reach its final strength at a higher displace-
ment in the cylinder-cable bracing. Consequently, the
frame ductility increases; hence, the ductility defect of
the cable is solved. Second, both cables are under ten-
sion in a considerable load range and none of them
will be loosened under frame lateral displacement.
Therefore, the impulses caused by cable loosening are
removed.

If the displacement is toward the right, the force will
be 0 in the left cable at the displacement dsr where the
right cable is straightened.

The cylinder dimensions should be selected in such
a way that, first, dsr is equal to or slightly higher than
the displacement of the frame’s damage limit in order
to ensure that both cables are under tension. Second,
the cable reaches its final strength at the frame’s dam-
age limit displacement for optimal use of cable strength
and frame ductility.

Figure 6. e� d curves of cables in the cross-cable and
cylinder-cable bracings.

Figure 5. P � d curves for hinged frame with cross-cable and
cylinder-cable bracings.
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Prestressing effects of cables

If the prestressing force is Fp in the cables, the cylinder
rotation and lateral displacement of the frame can be
depended on each other, giving rise to the

P
M = 0

equation. In such cases, concerning the equality of
axial rigidity and cables lengths, the moment equili-
brium of the cylinder is expressed as follows:

lt

2AE
FP +DAE

� �
3
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3 EG
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�!

�����
�����

=
lt

2AE
FP +DDH
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3
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��!
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�!

DH
��!

�����
�����

ð23Þ

Putting equations (5) to (14) in equation (23), an
implicit equation is obtained in equation (24), regard-
ing the prestressing effects. This equation makes the
cylinder rotation and lateral displacement of the frame
dependent on each other.
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where lt is the total length of each cable and le is the
length of the external parts of the cables. If li is the
cable length in the cylinder, then lt = 2le + li.

The resultant horizontal force of the cables is as
follows:

P=FR cos aR � FL cos aL ð25Þ

The forces of the cables are defined as follows:

FR =
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2AE
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ð27Þ

where DR and DL are the elongation of the right and
left cables, respectively.

Equation (28) is obtained by putting the last two
equations into equation (25).

Equation (28) is used for plotting P–d curve.

P=
2AE

lt

DAE +
Fplt
2AE

	 

3

(lb + d)� u cos u+ v sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(lb + d)� u cos u+ v sin uð Þ2 +(hc � u sin u� v cos u)2

q
+ DDH +

Fplt
2AE

	 

3

(� lb + d)+ u cos u+ v sin uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(� lb + d)+ u cos u+ v sin uð Þ2 +(hc + u sin u� v cos u)2

q

2
666664

3
777775 ð28Þ

The strain curves of the cables are plotted versus lat-
eral displacement of the frame using the formulas below

eR =
2DAE

lt

+
Fp

AE
ð29Þ

eL =
2DDH

lt
+

Fp

AE
ð30Þ

Figure 7 shows the curve of the lateral force versus
the lateral displacement of the hinged frame with
cylinder-cable bracing for the prestressing forces corre-

sponding to 0, 200, 400, 600, and 800 N/mm2. The
beam length is taken as 4 m, column height as 3 m,
cylinder length as 22 cm, and the internal diameter of
the cylinder minus the cable diameter as 5 cm. The
cylinder is placed horizontally.

According to Figure 7, the initial stiffness of the
cylinder-cable bracing system is proportional to the
prestressing force. If there is no prestressing force in
the cables, then the initial stiffness of the frame with
cylinder-cable bracing will be equal to that of the
frame without bracing. The considered stiffness will be
achieved by applying a certain prestressing force.
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Figure 8 shows the curves of the cable strain versus
the lateral displacement of the frame for cylinder-cable
bracing in two statuses: without prestressing force and
with prestressing stress of 400 N/mm2. Lateral displa-
cement of the frame is assumed to be toward the right
in plotting the curves. The label of each curve indicates
the value of the prestressing stress. Letters R and L cor-
respond to the prestressing stress of the right and left
cables, respectively.

According to Figure 8, in case of increasing pre-
stressing stress, the values of dsr increase and the cables
reach strain yielding at smaller displacements.

The effect of rigid cylinder dimensions on
the behavior of cylinder-cable bracing

Cylinder dimensions are the effective parameters in the
behavior of cylinder-cable bracing. These dimensions
should be selected in such a way to make the cable
crooked. In order to show the effect of the cylinder

when it is in a horizontal position, an equation is
defined below:

u

v
.

lb

hc

ð31Þ

In other words, if the cylinder is placed horizontally,
the slope inside the cylinder should be lower than the
one outside. The more the difference between these
slopes, the more the difference between the behaviors
of the cylinder-cable and the cross-cable bracings. If
the dimensions of the cylinder are such that the slopes
of the cables are equal inside and outside the cylinder,
then the behaviors of the cylinder-cable and cross-cable
bracing are exactly the same.

The effect of cylinder length

In order to study the effect of cylinder length, P–d

curve of bracing and e–d curves of the cables have been
plotted in Figures 9 and 10, respectively. These figures

Figure 8. Prestressing effect of cables on their e� d curves in
cylinder-cable bracing.

Figure 9. The effect of cylinder length on P � d curves.

Figure 10. The effect of cylinder length on e� d curve.

Figure 7. The effect of prestressing on the P � d curve of
cylinder-cable bracing.
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are plotted for the hinged frame with beam length of
4 m, column height of 3 m, and cylinder-cable bracing;
the internal diameter of the cylinder minus the cable
diameter is 5 cm and the cylinder lengths are 20, 22,
24, 26, and 28 cm.

Concerning the P–d curves of the cylinders with dif-
ferent lengths, it is observed that the increase in cylin-
der length results in an increase in dsr. Moreover, the
curves of the cylinders with longer lengths are below
the curves of those with smaller lengths.

As observed in Figure 10, the increase in cylinder
length causes the cables to reach yielding limit at larger
displacement.

The effect of internal diameter of cylinder

The P–d and e–d curves have been plotted for the
frame with the mentioned dimensions and presented in
Figures 11 and 12, respectively. The length of the

cylinder is constant and equal to 22 cm, and the inter-
nal diameter of the cylinder minus the cable diameter
is 4, 5, 6, 7, and 8 cm.

Concerning the curves plotted for the cylinders with
different internal diameters, the decrease in the internal
diameter of the cylinder will end in an increase in dsr.
Besides, the curves which correspond to the cylinders
with smaller diameters are located below those of the
cylinders with larger diameters.

According to Figure 12, the decrease in the internal
diameter of the cylinder will cause the cables to reach
the yielding limit at a larger displacement.

The series of curves related to the internal diameter
of the cylinder shows how ignoring the cable diameter
might cause errors in the calculations. For plotting the
steel cylinder wire-ropes more accurately and closer to
the reality, the dimensions of cylinder or the para-
meters u and v should be considered as variables (the
cylinder has been assumed rigid initially; U = U0 and
V = V0). This consideration is because of the loads
applied to the cylinder at the cylinder to wire-rope con-
tact area, due to the wire-ropes not being straight,
causing the reduction in the diameter and the length of
the cylinder. For example, if the internal diameter of
the cylinder is 5 cm and wire-rope diameter is 1 cm,
then U = 4 cm (the ‘‘22 3 4’’ curves in Figures 11
and 12). The curves of these figures have been plotted
with rigidity assumption of cylinder. Now, if the
22 3 4 are plotted considering the deformations of
cylinder, then the contact forces between wire-ropes
and cylinder are 0 for lateral displacements of d = 0
and d = ds, therefore U = U0 and V = V0.
Consequently, these curves are coincident with the
22 3 4 of Figures 11 and 12 for the mentioned lateral
displacements. For intermediate statuses (0 \ d \
ds), as the diameter of cylinder increases very slightly,
the 22 3 4 curves of previous state (considering the
deformations of cylinder) also approach to the
‘‘22 3 5’’ curves very slightly (u = 5).

Numerical validation

To validate the constitutive formulas, presented in this
research, the tri-dimensional model of the considered
frame was modeled in the well-known commercial
finite element (FE) software package ABAQUS. For
this purpose, the portal frame with cable-cylinder bra-
cing has been modeled tri-dimensionally. The beam
length was 4 m, column height 3 m, cylinder length
22 cm, internal diameter of cylinder minus cable dia-
meter 5 cm, the sections of beam and column from box
section 100 3 100 3 8 mm, and the cross-sectional
area of cable 1 cm2. The cylinder is considered as rigid.
The FE model is shown in Figure 13.

Figure 11. The effect of internal diameter of the cylinder on
P � d curve.

Figure 12. The effect of internal diameter of the cylinder on
e� d curve.
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P–d and e–d curves, obtained from the resulted con-
stitutive formulas and numerical modeling have been
compared with each other in Figures 14 and 15, respec-
tively. The letters R and L in Figure 13 correspond to
the right and left cables, respectively, which are con-
nected to the right and left columns, respectively.
Based on the mentioned figures, the results obtained
from constitutive formulas are in relatively good

agreement with those of numerical modeling. Slight
differences between the curves can be referred to the
axial deformation of columns and beam. This defor-
mation has been ignored in the curves obtained from
theoretical relations. Moreover, the contact between
the cylinder and cables has been modeled more realisti-
cally in the tri-dimensional model and the cable can
slide on the cylinder under lateral displacement of the
frame, while in the two-dimensional model, the cables,
inside and outside of the cylinder, have been consid-
ered as separate elements adjoined to each other by a
hinge.

Conclusion

This research presents the equations governing the
behavior of stiff cylinder-cable bracing (like steel cylin-
der). Based on the studies conducted here, the beha-
vior of cylinder-cable bracing is a function of cable
stiffness (AE), cylinder dimensions, and also prestres-
sing forces of the cables. The stiffness of the cylinder-
cable bracing is not constant and increases in accor-
dance with frame lateral displacement. The considered
stiffness can be achieved at smaller displacements with
increasing prestressing forces of cables.

In order to show their effects, the dimensions of the
cylinder in the cylinder-cable bracing should be
selected in such a way to create a crook along the
cable.

The more the difference between the cable angles
inside and outside the cylinder, the more the difference
between the behaviors of cylinder-cable and cross-cable
bracings.

The cables reach the yielding limit at larger frame
lateral displacements with increasing cylinder length.
The P2d curves (e.g. Figures 5 and 7) of the bracings
with longer cylinder are observed below those of the
bracings with shorter cylinder.

The effect of decreasing the internal diameter of the
cylinder is similar to that of increasing the cylinder
length. Cylinder-cable bracing has two advantages
over cross-cable bracing:

1. The cables reach their final strengths at larger
displacements, and consequently the frame duc-
tility increases; therefore, the ductility defect of
cables is solved.

2. Both cables are under tension in a considerable
range of loading and none of them will loosen
under frame lateral displacement. Therefore,
the impulse caused by cable loosening is
removed.

The dimensions of the cylinder and the prestressing
of cables should be determined in such a way that the

Figure 13. FE-adopted 3D model: (a) cable-cylinder braced
frame and (b) cylinder mesh.

Figure 15. Comparison of e� d curves of constitutive
formulas with numerical modeling.

Figure 14. Comparison of P � d curves of constitutive
formulas with numerical modeling.
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cables reach their final strengths in the damage displa-
cement limit of the frame in order to use optimally the
cable strength and frame ductility.
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