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A B S T R A C T   

The recently proposed double reduced beam section (DRBS) connection is a steel moment connection intended to 
delay buckling failure modes and achieve a more ductile seismic behavior. This design adds an extra reduced 
section to the prequalified radius-cut reduced beam section (RBS) connection and aims to shift the plastic hinge 
further away from the beam-column interface. In this study, to investigate the effect of the DRBS connection on 
the stiffness of the steel moment frames, first, while presenting a theoretical approach based on geometric re
lationships and utilizing the method of virtual work, the exact formulae for calculating the elastic drift and the 
elastic drift amplification factor in a steel moment frame with DRBS connections were developed. Next, by 
conducting a sensitivity analysis, the DRBS connection parameters with the most significant effect on the elastic 
drift of the considered frame were determined. The accuracy of the proposed exact theoretical formulae and the 
conducted sensitivity analysis was confirmed through finite element modeling. The response surface method 
(RSM) was then utilized to derive highly accurate and specific relationships for the elastic drift amplification 
factor in frames made of the different HEA and IPE sections considered. Ultimately, two accurate and simple 
formulae based on the DRBS connection parameters were presented for estimating the elastic drift amplification 
factor in steel moment frames with DRBS connections constructed of HEA and IPE sections. The results indicated 
that utilizing DRBS connections could increase the elastic drift up to 14.7% and 5.5% in steel moment frames 
built with HEA and IPE sections, respectively.   

1. Introduction 

Prior to the 1994 Northridge and 1995 Kobe earthquakes, the most 
common type of beam-to-column connection used in steel moment 
frames was the connection of beam flanges to column flange using 
complete joint penetration (CJP) groove welds [1]. Nevertheless, the 
structures with such connections sustained severe damages during the 
earthquakes mentioned. These widespread failures mainly occurred due 
to the formation of a plastic joint in the connection region and near the 
column face [2]. Hence, the inherent inability of simple moment con
nections to provide sufficient ductility became evident [3]. The high 
concentration of stress in the flange and web welds and the vulnerability 
of the connection to large ductility demands have been identified as two 
critical factors in the observed failures [1]. 

The seismic resistance of a steel moment frame is highly dependent 
on the type and quality of the connection used for joining the beams and 
columns [2]. Hence, to achieve a better seismic performance, the 

demand for ductility in the weld zones must be reduced [1]. Two main 
approaches have been suggested to address this issue; The first one is 
adding some elements to the connection to increase beam strength and 
reduce the stress in the connection. The second one is weakening the 
beam at a specific distance from the connection so that less moment and 
shear is transferred to the connection. 

Among the new designs proposed, the reduced beam section (RBS) 
connection showed satisfactory results in multiple experiments and 
became widely accepted. In the RBS connection, parts of the beam 
flanges are strategically reduced at a short distance from the column 
face. The original geometry for this design, proposed by Plumier [4], 
was the straight-cut (trapezoidal) RBS connection with a necked-down 
transition region. Chen et al. [5], considering the seismic moment pro
file in beams, suggested that tapered-cut RBS connections be used 
instead of the original design to facilitate uniform yielding of flanges at 
the reduced section. However, both the straight-cut and the tapered-cut 
geometries could lead to stress concentration at the reentrant corners of 
the resulting RBS profile. To minimize such stress concentration, 
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Engelhardt et al. [6] proposed the radius-cut RBS connection (Fig. 1). 
This concept was also independently suggested by other researchers, 
including Plumier [7] and Popov et al. [8]. 

The reduction of the flange width near the connections in special 
moment frames is currently regarded as an acceptable alteration to 
improve seismic performance. In RBS connections, the beam flanges are 
connected to the column flange by CJP groove welds. The beam web is 
also connected to the column flange via either a CJP groove weld or 
bolts. The nonlinear behavior of the frames with RBS connections in
dicates that these connections lead to improved performance curves, 
more ductile behavior, and a reduction in strain concentration in beam 
flanges [9]. The study conducted by Jones et al. [10] also confirmed that 
RBS moment connections with relatively strong panel zones result in 
enhanced performance. In another study, Tahamouli Roudsari et al. [11] 
compared the seismic performances of shallow beam connections with 
accordion webs and reduced sections. Their results showed that samples 
with RBS connections exhibited higher ductility, better energy dissipa
tion, and hence a superior seismic performance compared to the samples 
with only corrugated beam webs. 

The influence that vertical loads can have on the working mechanism 
of RBS connections is either neglected or not adequately accounted for in 
many of the research projects and experiments involving such connec
tions. To address this issue, Montuori’s study [12] investigated the effect 
of gravity loads on the design of RBS connections by presenting a new 
procedure for accurately determining the relationship among RBS 

location, vertical load, and the amount of section reduction to ensure the 
proper development of plastic hinges in the beam. The abovementioned 
study provides a design abacus that can be efficiently utilized to deter
mine the best RBS location for optimum seismic performance. 

Cutting the beam flange, especially in narrow sections such as IPE 
profiles, results in an increased potential for the web local buckling, 
beam lateral-torsional buckling, and decreased beam strength. The 
study by Tahamouli Roudsari et al. [13] presented a simple method to 
improve the efficiency of IPE beams with radius-cut reduced sections by 
using horizontal and vertical stiffeners for the beam web. Their results 
revealed that the simultaneous application of horizontal and vertical 
stiffeners of the beam web largely prevented the decline of the corre
sponding hysteresis loops and improved the behavior of the connection. 
Hence, they recommended utilizing such modified RBS connections in 
areas with high relative seismic risk. In another paper, Moradi Garoosi 
et al. [14] investigated the idea of rigid connections with replaceable 
RBS fuses that could be easily repaired after major earthquakes. They 
concluded that such connections decrease the damage inflicted on the 
column and the panel zone and provide very good ductility, making 
them a suitable alternative to the conventional RBS connections. Mon
tuori and Sagarese’s study [15] also proposed utilizing steel RBS to 
improve the ductility of wooden frames. The presented design helps 
protect beam-to-column connections and the intermediate sections of 
the wooden beams as horizontal forces increase during seismic activity. 
The study considers the roles of vertical loads and the amount of section 

Nomenclature 

a The distance between the column face and the start of the 
reduced section in the RBS connection 

a1 The distance between the column face and the start of the 
first reduced section in the DRBS connection 

a2 The distance between the end of the first reduced section 
and the start of the second reduced section in the DRBS 
connection 

Ac Cross-sectional area of the column 
As Shear cross-sectional area of the beam or column 
b Length of the reduced section in the RBS connection 
b1 Length of the first reduced section in the DRBS connection 
b2 Length of the second reduced section in the DRBS 

connection 
bf Flange width 
bRBS Flange width in the middle of the reduced section in the 

RBS connection 
c Depth of the reduced section in the RBS connection 
c1 Depth of the first reduced section in the DRBS connection 

c2 Depth of the second reduced section in the DRBS 
connection 

db Beam section depth 
E Modulus of elasticity 
G Shear modulus 
hw Web height 
H Beam or column section height 
Ib Moment of inertia of the beam section 
IC Moment of inertia of the column section 
Lb Beam length 
Lc Column length 
M Internal bending moment 
P Lateral shear force applied to the moment frame 
R Radius of the cut in the RBS connection 
R1 Radius of the first cut in the DRBS connection 
R2 Radius of the second cut in the DRBS connection 
tf Flange thickness 
tw Web thickness 
Δ Translational displacement 
ν Poisson’s ratio  

Fig. 1. Typical geometry of the radius-cut RBS connection.  
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reduction in the mechanism of the RBS connection and provides a series 
of easy-to-use design charts. 

In 2017, Morshedi et al. [16] introduced a new beam-to-column 
connection for steel moment frames termed the double reduced beam 
section (DRBS) connection to delay buckling failure modes and achieve 
a more ductile seismic behavior. This design adds an extra reduced 
section to the prequalified radius-cut RBS connection and aims to shift 
the plastic hinge further away from the beam-column interface. The 
seismic performance of this connection was evaluated through finite 
element modeling. The results showed that the DRBS connection has 
excellent hysteresis behavior. Also, the DRBS connection resulted in up 
to 40% more deformation capacity than the RBS connection. Plastici
zation of both reduced beam sections delayed the failure buckling modes 
and resulted in a 50–75% increase in the seismic energy absorbed prior 
to buckling, compared to the RBS connection. Furthermore, the addition 
of a second reduced section distributed the strains over the two reduced 
sections, which led to a 35–60% decrease in the equivalent plastic strain 
at the reduced sections, at the 6% story drift [16]. 

In 2019, Sai Chandana et al. [17] conducted a numerical study on 
RBS and DRBS connections. Their results suggest that these connections 
can withstand large inelastic strains and limit the stress concentration in 
the connection. 

The abovementioned simultaneous plasticization of the two reduced 
sections in the DRBS connection leading to an extended plastic hinge can 
be achieved by keeping the bending moment demand-capacity ratio 
(DCR) equal in the middle of these reduced sections. To do so, the depth 
of the two cuts in the DRBS connection (c1 and c2 values) must be 
determined according to the bending moment diagram in the beam. 
Based on such a design criterion, considering that the bending moment 
decreases with distance from the column face, selecting a greater depth 
for the second cut (c2 > c1) enables the two reduced sections to act as a 
dual fuse through simultaneous plasticization. 

In general, in first-order analyses, obtaining the elastic displacement 
of the structure is an easy and routine practice. Factors such as nonlinear 
effects can be taken into account by multiplying a coefficient by the 
obtained displacement value [18]. Several studies have been carried out 
to provide a simple and accurate method for understanding the effect of 
utilizing reduced beam section connections on the stiffness of steel 
moment frames. In 2003, Chambers et al. [19] derived the closed-form 
stiffness matrix of a two-dimensional steel moment frame with 
radius-cut RBS connections based on the principle of virtual work. Their 
results indicated decreases in stiffness terms varying between 3.6% to 
15.1% and a 10.4% decrease in rotational stiffness. They also found that 
relationships between the stiffness terms and the reduced flange width 
are nonlinear. Chambers et al. [19] also conducted parametric studies on 
six-story, two- and three-span steel moment frames subjected to seismic 
base shears and compared the elastic drift coefficients calculated for 
frames with and without RBS connections. The greatest amount of flange 
cross-section reduction considered in their study was a maximum 40% 
flange width reduction in all the beam flanges. Compared to the frames 
without RBS connections, the considered flange reductions resulted in 
10.6% and 10.3% increases in the story drift of the two-span and 
three-span frames, respectively [19]. In 2006, Lee and Chung [20] 
introduced a simplified analytical method for estimating the lateral 
displacement of steel moment frames with radius-cut RBS connections. 
Because of the geometry of the radius-cut RBS connection, the mathe
matical formula based on the conjugate beam method becomes 
complicated when it is used to calculate the component of the story drift 
contributed by the beam. In the study mentioned above, this issue was 
circumvented by substituting the considered RBS connection with an 
equivalent beam with constant width. The equivalence between the two 
beams was established by considering an equal flange elongation cri
terion in the RBS region [20]. 

FEMA 350 [21] recommends that instead of specific calculations, a 
9% increase be considered for reductions in beam flange width up to 
50% and that interpolation be used for lesser beam flange reduction 

percentages. Nevertheless, the basis for this simplification is not pro
vided in this document or other sources, and the recommended 
approach does not give an accurate estimate [19]. 

ANSI/AISC 358-16 [22] also recommends that instead of more 
detailed calculations, the effective elastic drift be calculated by multi
plying the elastic frame drift based on gross beam sections by 1.1 for 
reductions in beam flange width up to 50% and that interpolation be 
used for lesser beam flange reduction percentages. 

In 2019, Fanaie et al. [18] presented an improved and innovative 
approach for calculating the amplified elastic story drift in steel moment 
frames induced by RBS connections. Studies conducted before this 
research involved complicated mathematical formulae and did not 
consider all shear, axial, and flexural deformations in the moment 
frames. Hence, they did not provide accurate estimations of the stiffness 
variation. To address these issues, Fanaie et al. [18], considering all 
lateral deformations in a single-story single-span steel moment frame 
with RBS connections, developed a practical and straightforward 
formulation for calculating the elastic drift amplification factor. Using 
the method of virtual work, they first provided an exact calculation of 
the elastic drift in a frame with radius-cut RBS connections. Then, by 
performing sensitivity analysis, they determined the connection pa
rameters with the most significant effect on the calculated elastic drift. 
Based on these parameters and employing the response surface method 
(RSM), separate and simplified elastic drift amplification factor 
formulae were presented for IPE and HEA beam profiles [18]. 

Since the DRBS connection has been shown to improve the seismic 
behavior of the RBS connection in the studies conducted, it is expected 
to be soon utilized in the construction industry. Nevertheless, consid
ering that the most important disadvantage of moment frames is their 
low lateral stiffness, using two reduced sections instead of one near the 
beam-to-column connections in such frames intensifies this problem. 
Drift control should thus be regarded as a serious concern in moment 
resisting frames incorporating DRBS connections. Therefore, there ap
pears to be a need for an accurate yet simple method to examine the 
stiffness variation in steel moment frames due to the utilization of DRBS 
connections. 

The objective of this research was to investigate the effect of the 
DRBS connections on the stiffness of steel moment frames through 
presenting a theoretical approach based on mathematical relationships 
and structural analysis principles. For this purpose, similar to the work 
done by Fanaie et al. [18], first, based on geometric relationships and 
utilizing the method of virtual work, the exact formulae for calculating 
the elastic drift and the elastic drift amplification factor in a steel 
moment frame with DRBS connections, without considering any specific 
sections for beams and columns, were developed. Next, by carrying out a 
sensitivity analysis, the most effective DRBS connection parameters on 
the elastic drift of the studied moment frame were identified. The ac
curacy of the developed exact theoretical formulae and the performed 
sensitivity analysis was then confirmed through finite element modeling 
of the considered frame. In the next step, the RSM was utilized to derive 
highly accurate and specific relationships for the elastic drift amplifi
cation factor in moment frames with DRBS connections made of the 
different HEA and IPE sections considered. Ultimately, using the enve
lope curves of the derived relationships, two accurate and simple 
formulae based on DRBS connection parameters were proposed for 
estimating the elastic drift amplification factor in steel moment frames 
with DRBS connections constructed of HEA and IPE sections. 

2. Calculation of the exact elastic drift amplification factor in a 
single-story single-span steel moment frame with DRBS 
connections 

In this section, the exact amount of the elastic drift in a single-story 
single-span steel moment frame with rigid DRBS beam-to-column con
nections subjected to the horizontal force P is investigated. It should be 
noted that in the procedure presented in the following, the type of I- 
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shaped steel section is not of importance, and the only assumption 
governing the relationships is that the sections used for beams and 
columns are the same. Fig. 2 shows the schematic view of the two- 
dimensional frame considered. 

First, according to the geometry of the frame and the loading applied, 
the structural analysis rules applicable to symmetrical structures sub
jected to antisymmetric loading is used to convert the considered 
moment frame into a half-frame (Fig. 2). In the next step, the resulting 
half-frame is examined using the analytical method of virtual work. 

If the DRBS connections are neglected, the amount of internal 
bending moment (M) could be calculated using the compatibility 

equation for the equality of the rotations on the two sides of node B as 
follows: 

θBL =θBR →

P
2

⋅L2
c

2EIc
−

MLc

EIc
=

M⋅
Lb

2
3EIb

→
M
6E

(
6Lc

Ic
+

Lb

Ib

)

=
PL2

c

4EIc
→M=

1.5PL2
c

Ic
6Lc

Ic
+

Lb

Ib

(1) 

In Eq. (1), Lc and Lb are the column length and beam length 

Fig. 2. Conversion of the considered two-dimensional frame into a half-frame.  

Fig. 3. Analysis of the forces in the steel moment frame subjected to the lateral force P.  
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(distances between the centerlines), respectively, and E is the modulus 
of elasticity of the steel used. Besides, Ic and Ib denote the moments of 
inertia of the beam and column sections, respectively, and M is the in
ternal bending moment in node B in the case where DRBS connections 
are neglected. 

According to the moment obtained from Eq. (1), the amount of 
elastic drift of the frame without considering the DRBS connections and 
only caused by the flexural deformations is calculated using Eq. (2): 

ΔBending =
PL3

c

6EIc
−

ML2
c

2EIc
(2) 

According to the analysis of the forces in the moment frame under 
study, presented in Fig. 3, since the beam and column sections selected 
are the same, the amounts of elastic drift caused by shear and axial 
deformations in the frame members are respectively calculated from 

Eqs. (3) and (4) as follows: 

ΔShear =
∫ V(x)v(x)

GAs
dx =

∑VvL
GAs

= 2

P
2

⋅
1
2
⋅Lc

GAs
+

2M
Lb

⋅
2M
PLb

⋅Lb

GAs
=

PLc

2
+

4M2

PLb

GAs

(3)  

ΔAxial =
∫ N(x)n(x)

AE
dx =

∑NnL
AE

= 2

2M
Lb

⋅
2M
PLb

⋅Lc

AcE
=

8M2Lc

PL2
bAcE

(4) 

In the above equations, G = E/2(1+ν) and ν = 0.3 are respectively 

Fig. 4. (a) The DRBS connection; (b) The resulting half-frame obtained by splitting the considered moment frame based on its symmetrical geometry; (c) Moment 
diagrams of the half-frame in analysis using the method of virtual work. 
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the shear modulus and Poisson’s ratio of the steel used. Also, Ac denotes 
the cross-sectional area of the columns in the frame and As denotes the 
effective shear cross-sectional area of the beams and columns in the 
frame, which for I-shaped sections, is equal to the area of the cross- 
sectional area of the web (hw.tw). By adding up Eqs. (1)–(3), the total 
amount of elastic drift of the steel moment frame subjected to the lateral 
force P, without considering the DRBS connections, is calculated as 
follows: 

ΔTotal = ΔBending + ΔShear + ΔAxial

=
PL3

c

6EIc
−

ML2
c

2EIc
+

P2LcLb + 8M2

2PLbGAs
+

8M2Lc

PL2
bAcE

(5) 

By considering the connections in the moment frame as DRBS con
nections with specifications shown in Fig. 4 (a), the amount of rotation 
on the right side of node B becomes greater than that calculated by Eq. 
(1). Therefore, as depicted in Fig. 4 (b) and 4 (c), by using the method of 
virtual work and applying a unit moment to node B, the amount of 
rotation on the right side of node B while utilizing DRBS connections 
could be calculated based on the equality of the internal and external 
work done in the half-beam using Eq. (6): 

1 × θ
′

BR =

∫

0

Lb

2 M′

(x)m
′

(x)
EI(x)

dx

=

∫

0

Lb

2

2M′ x
Lb

⋅
2x
Lb

EI(x)
dx =

4M
′

EL2
b

∫

0

Lb

2 x2

I(x)
dx

(6)  

where M′ is the internal bending moment in node B while utilizing DRBS 
connections in the frame. 

Considering the location and geometry of the DRBS connection in the 
half-beam, the integral in Eq. (6) is rewritten as follows: 

θ
′

BR = θ
′

1 + θ
′

2 + θ
′

3 + θ
′

4 + θ
′

5 (7) 

According to the integration limits for each part of the beam, we 
have: 

θ
′

1 =
4M′

EL2
bIb

∫ Lb
2 − (a1+b1+a2+b2)

0
x2dx (8)  

θ
′

2 =
4M′

EL2
b

∫ Lb
2 −
(

a1+b1+a2

)

Lb
2 −
(

a1+b1+a2+b
2
)

x2

I2(x)
dx (9)  

θ
′

3 =
4M′

EL2
bIb

∫ Lb
2 − (a1+b1)

Lb
2 − (a1+b1+a2)

x2dx (10)  

θ
′

4 =
4M′

EL2
b

∫ Lb
2 − (a1)

Lb
2 − (a1+b1)

x2

I1(x)
dx (11)  

θ
′

5 =
4M′

EL2
bIb

∫

Lb
2 − (a1)

Lb
2 x2dx (12) 

For cross-sections not located within the range of the radius-cut 
reduced sections in the flanges, the calculation of the second moment 
of area is a simple task and could be done using the following equation: 

Ib =
1

12
[
bf
(
hw + 2tf

)3
−
(
bf − tw

)
h3

w

]
(13) 

Nevertheless, the calculation of the second moment of the area for 

Fig. 5. The geometrical parameters in the DRBS connection.  
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the cross-sections located within the radius-cut reduced sections, due to 
the variable cross-section of the flanges, poses the main challenge in the 
calculations related to the steel moment frames with DRBS connections. 
According to Fig. 5, in the cross-sections located at the distance x from 
node E, where x belongs to the interval extended from the start to the 
end of the first reduced section, the flange width is as follows: 

b1(x) = bf + 2R1 − 2c1

− 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
1 −

(

x −
(

Lb

2
− a1 −

b1

2

))2
√ (14) 

Therefore, the second moment of area for such cross-sections could 
be calculated as follows: 

I1(x) =
1

12

[
b1(x)

(
hw+2tf

)3
− (b1(x)− tw)h3

w

]

=
1

12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝bf +2R1 − 2c1 − 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
1 −

(

x−
(

Lb

2
−

(

a1+
b1

2

)))2
√ ⎞

⎠

⋅
[(

hw+2tf
)3
− h3

w

]
+twh3

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15) 

Also, according to Fig. 5, in the cross-sections located at the distance 
x from Node E, where x belongs to the interval extended from the start to 
the end of the second reduced section, the flange width could be ob
tained using the following equation: 

b2(x) = bf + 2R2 − 2c2

− 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
2 −

(

x −
(

Lb

2
−

(

a1 + b1 + a2 +
b2

2

)))2
√ (16) 

Hence, the second moment of area for such cross-sections is given by 
the following equation: 

I2(x) =
1
12

[
b2(x)

(
hw + 2tf

)3
− (b2(x) − tw )h3

w

]

=
1
12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bf + 2R2 − 2c2

− 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
2 −

(

x −
(

Lb

2
−

(

a1 + b1 + a2 +
b2

2

)))2
√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅
[(

hw + 2tf
)3

− h3
w

]
+ twh3

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17) 

The DRBS connection parameters (a1, a2, b1, b2c1, c2 R1, R2,) and the 
I-shaped beam specifications (bf , hwtf , and tw) are shown in Fig. 4 (a). 
According to Eqs. (8)–(12) and (15) and (17), the terms on the right side 
of Eq. (7) could be rewritten as in the following: 

In the interval 0 ≤ x ≤ Lb
2 − (a1 + b1 + a2 + b2), the flange width has 

a constant value and is equal to bf . Hence, for θ′

1 we have:  

θ
′

1 =
4M′

1
12

[
bf
(
hw+2tf

)3
−
(
bf − tw

)
h3

w

]
EL2

b

⋅

(
Lb

2
− (a1+b1+a2+b2)

)3

3
(18) 

In the interval Lb
2 − (a1+ b1+ a2+ b2)≤x≤Lb

2 − (a1+ b1+ a2), the 
flange width has a variable value, and hence Eq. (17) must be used for 
calculating the second moment of the area. Therefore, for θ′

2 we have:    

The calculation process of θ′

3 is similar to that of θ′

1 except that the 
corresponding interval is Lb

2 − (a1 + b1 + a2) ≤ x ≤ Lb
2 − (a1 + b1). 

Hence, we have: 

θ
′

2 =
4M’

EL2
b

∫
Lb
2 − (a1+b1+a2)

Lb
2 − (a1+b1+a2+b2)

x2dx

1
12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bf + 2R2 − 2c2

− 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
2 −

(

x −
(

Lb

2
−

(

a1 + b1 + a2 +
b2

2

)))2
√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅
[(

hw + 2tf
)3

− h3
w

]
+ twh3

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)   
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In the interval Lb
2 − (a1 + b1) ≤ x ≤ Lb

2 − (a1), the flange width also 
has a variable value, and hence Eq. (15) must be used to calculate the 
second moment of area. Thus, for θ′

4 we have: 

θ
′

4 =
4M′

EL2
b

∫
Lb
2 − a1

Lb
2 − a1 − b1

x2

1
12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bf +2R1 − 2c1

− 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2
1 −

(

x −
(

Lb

2
−

(

a1 +
b1

2

)))2
√

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅
[(

hw +2tf
)3
− h3

w

]
+ twh3

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dx (21) 

In the interval Lb
2 − a1 ≤ x≤ Lb

2 , the flange width has a constant value 
and is equal to bf . Therefore, for θ′

5 we have:  

θ
′

5 =
4M′

1
12

[
bf
(
hw +2tf

)3
−
(
bf − tw

)
h3

w

]
EL2

b

⋅

(
Lb

2

)3

−

(
Lb

2
− a1

)3

3
(22) 

According to Fig. 5, the value of the parameter c(α) along the first 
radius-cut reduced section in the beam flange could be calculated as 
follows: 

c(α) = R1cos α − (R1 − c1) =

(
b2

1 + 4c2
1

8c1

)

cosα −

(
b2

1 + 4c2
1

8c1
− c1

)

=

(
b2

1 + 4c2
1

8c1

)

cosα −

(
b2

1 − 4c2
1

8c1

) (23) 

Based on Eq. (23) and Fig. 5, the variable flange width along the first 
reduced section (b1(x)) could be redefined as b1(x) = bf − 2c1(x). Hence, 
the following equation could be written: 

b1(α) = bf − 2c1(α) = bf −

(
b2

1 + 4c2
1

4c1

)

⋅cos α +

(
b2

1 − 4c2
1

4c1

)

(24) 

According to Fig. 5, cos α could be defined as a function of x as 
follows: 

h1(x) = x −
(

Lb

2
− a1 −

b1

2

)

= x + a1 +
b1

2
−

Lb

2
(25)  

where Lb
2 − a1 ≤ x ≤ Lb

2 − a1 − b1. 
According to Eq. (25) obtained for h1(x), tan α is rewritten as in the 

following: 

tan α =
h1(x)

R1 − c1
=

x + a1 +
b1

2
−

Lb

2
b2

1 + 4c2
1

8c1
− c1

=
x + a1 +

b1

2
−

Lb

2
b2

1 − 4c2
1

8c1

=

8c1

(

x + a1 +
b1

2
−

Lb

2

)

(
b2

1 − 4c2
1

) =

8c1

(

x + a1 +
b1

2
−

Lb

2

)

(b1 − 2c1)(b1 + 2c1)

(26) 

Considering that cos α = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + tan α2

√
and based on Eq. (26) ob

tained for tan α, cos α could be calculated as follows:  

θ
′

3 =
4M′

1
12

[
bf
(
hw + 2tf

)3
−
(
bf − tw

)
h3

w

]
EL2

b

⋅

(
Lb

2
− (a1 + b1)

)3

−

(
Lb

2
− (a1 + b1 + a2)

)3

3
(20)   

cos α =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ tan α2

√ =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
64c2

1

(

x+a1 +
b1

2
−

Lb

2

)2

(b1 +2c1)
2
(b1 − 2c1)

2

√
√
√
√
√

=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b1 +2c1)
2
(b1 − 2c1)

2
+64c2

1

(

x+a1 +
b1

2
−

Lb

2

)2

(b1 +2c1)
2
(b1 − 2c1)

2

√
√
√
√
√

=
(b1 +2c1)(b1 − 2c1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b1 +2c1)
2
(b1 − 2c1)

2
+64c2

1

(

x+a1 +
b1

2
−

Lb

2

)2
√

(27)   
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Since tan α is raised to the power of 2 in Eq. (27), the effects of its 
value being negative along half of the first reduced section are elimi
nated. By substituting cos α in Eq. (24), b1(α) is written as in the 
following: 

Ultimately, based on Eqs. (11), (15) and (28), the value of θ′

4 could be 
calculated using Eq. (29) as follows:  

According to Fig. 5, in a similar manner as the above calculations, the 
value of the parameter c(β) along the second radius-cut reduced section 
in the beam flange could be calculated as follows:  

The variable flange width along the second reduced section (b2(x)) is 
redefined using Eq. (30) as b2(x) = bf − 2c2(x). Hence, the following 
equation could be written: 

b2(β) = bf − 2c2(β) = bf −

(
b2

2 + 4c2
2

4c2

)

⋅cos β +

(
b2

2 − 4c2
2

4c2

)

(31) 

Table 1 
The specifications of the selected beam and column sections.  

Section H 
(mm)  

tw 

(mm)  
bf 

(mm)  
tf 

(mm)  
Ac 

(cm2)  
As 

(cm2)  
I (cm4)  

HEA500 490 12.0 300 23.0 198.0 53.28 86970 
HEA1000 990 16.5 300 31.0 347.0 153.12 553800 
IPE300 300 7.1 150 10.7 53.8 19.78 8360 
IPE600 600 12.0 220 19.0 156.0 67.44 92080  

Table 2 
Characteristics of the steel used in the 
moment frame.  

E (MPa)  ν  

200,000 0.3  

θ
′

4 =
4M′

EL2
b

∫

Lb

2
− a1

Lb

2
− a1 − b1

x2dx
1
12

[
b1(x)

{(
hw + 2tf

)3
− h3

w

}
+ twh3

w

]

=
4M′

EL2
b

∫

Lb

2
− a1

Lb

2
− a1 − b1

x2dx

1
12

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎝

bf −

(
b2

1 + 4c2
1

4c1

)

⋅
(b1 + 2c1)(b1 − 2c1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b1 + 2c1)
2
(b1 − 2c1)

2
+ 64c2

1

(

x + a1 +
b1

2
−

Lb

2

)2
√ +

(
b2

1 − 4c2
1

4c1

) ⎞

⎟
⎠

⋅
{(

hw + 2tf
)3

− h3
w

}
+ twh3

w

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(29)   

b1(α) = bf −

(
b2

1 + 4c2
1

4c1

)
(b1 + 2c1)(b1 − 2c1)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b1 + 2c1)
2
(b1 − 2c1)

2
+ 64c2

1

(

x + a1 +
b1

2
−

Lb

2

)2
√ +

(
b2

1 − 4c2
1

4c1

)

(28)   

c(β) = R2⋅cos β − (R2 − c2) =

(
b2

2 + 4c2
2

8c2

)

⋅cos β −

(
b2

2 + 4c2
2

8c2
− c2

)

=

(
b2

2 + 4c2
2

8c2

)

⋅cos β −

(
b2

2 − 4c2
2

8c2

) (30)   
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Based on Fig. 5, cos β could be defined as a function of x as in the 
following: 

h2(x) = x −
(

Lb

2
− a1 − b1 − a2 −

b2

2

)

= x + a1 + b1 + a2 +
b2

2
−

Lb

2

(32)  

where Lb
2 − a1 − b1 − a2 − b2 ≤ x ≤ Lb

2 − a1 − b1 − a2. 
According to Eq. (32) obtained for h2(x), tan β is rewritten as follows:  

tan β =
h2(x)

R2 − c2
=

x+a1 +b1 +a2 +
b2

2
−

Lb

2
b2

2 +4c2
2

8c2
− c2

=
x+a1 +b1 +a2 +

b2

2
−

Lb

2
b2

2 − 4c2
2

8c2

=

8c2

(

x+a1 +b1 +a2 +
b2

2
−

Lb

2

)

(
b2

2 − 4c2
2

) =

8c2

(

x+a1 +b1 +a2 +
b2

2
−

Lb

2

)

(b2 − 2c2)(b2 +2c2)

(33) 

Considering that cos β=1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ tan β2

√
and based on Eq. (33) ob

tained for tan β, cos β could be calculated as follows: 

Fig. 6. Results of the sensitivity analysis of the DRBS connection parameters while using the HEA500 section: (a) Parameter a1; (b) Parameter b1; (c) Parameter c1; 
(d) Parameter a2; (e) Parameter b2; (f) Parameter c2. 
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Fig. 7. Results of the sensitivity analysis of the DRBS connection parameters while using the HEA1000 section: (a) Parameter a1; (b) Parameter b1; (c) Parameter c1; 
(d) Parameter a2; (e) Parameter b2; (f) Parameter c2. 
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Fig. 8. Results of the sensitivity analysis of the DRBS connection parameters while using the IPE300 section: (a) Parameter a1; (b) Parameter b1; (c) Parameter c1; (d) 
Parameter a2; (e) Parameter b2; (f) Parameter c2. 
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Fig. 9. Results of the sensitivity analysis of the DRBS connection parameters while using the IPE600 section: (a) Parameter a1; (b) Parameter b1; (c) Parameter c1; (d) 
Parameter a2; (e) Parameter b2; (f) Parameter c2. 
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cos β =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + tan β2

√ =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

64c2
2

(

x + a1 + b1 + a2 +
b2

2
−

Lb

2

)2

(b2 − 2c2)
2
(b2 + 2c2)

2

√
√
√
√
√

=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b2 − 2c2)
2
(b2 + 2c2)

2
+ 64c2

2

(

x + a1 + b1 + a2 +
b2

2
−

Lb

2

)2

(b2 − 2c2)
2
(b2 + 2c2)

2

√
√
√
√
√

=
(b2 + 2c2)(b2 − 2c2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b2 − 2c2)
2
(b2 + 2c2)

2
+ 64c2

2

(

x + a1 + b1 + a2 +
b2

2
−

Lb

2

)2
√

(34) 

Since tan β is raised to the power of 2 in Eq. (34), the effects of its 
value being negative along half of the second reduced section are 
eliminated. By substituting cos β in Eq. (31), b2(β) is written as in the 
following:  

Ultimately, based on Eqs. (9), (17) and (35), the value of θ′

2 could be 
calculated using Eq. (36) as follows:   

By substituting Eqs. (8), (10), (12), (29) and (36) in Eq. (7), and 
assigning values to all the parameters involved, the value of θ′

BR could be 
calculated using the Maple software. 

θ
′

BL = θ
′

BR →
P
2⋅L2

c

2EIc
−

M′ Lc

EIc
= θ

′

BR (37) 

From Eq. (37), it can be seen that the bending moment in the pres
ence of DRBS connections is dependent on the lateral force applied, 
beam length, column length, beam flange width, beam flange thickness, 
beam web depth, beam web thickness, the six DRBS connection pa
rameters, and the modulus of elasticity of the cross-section or in other 
words, M′

= f(P,Lb,Lc,bf , tf ,hw, tw,a1,a2,b1,b2, c1, c2,E). 
Using the compatibility equation and with a similar approach as that 

taken in the calculation of ΔBending, the amount of elastic drift of the 
moment frame while considering the DRBS connections and only caused 
by the flexural deformations (Δ′

Bending) could be calculated as in the 
following: 

Δ
′

Bending =
PL3

c

6EIc
−

M′ L2
c

2EIc
(38) 

The effect of DRBS connections on the shear and axial deformations 
in the considered frame can be obtained by merely substituting the 

bending moment M with M′ in Eqs. (3) and (4), respectively. Therefore, 
by adding up these two equations with Eq. (38), the total amount of 
elastic drift of the steel moment frame subjected to the lateral force P 

with DRBS connections and the same beam and column sections is 
calculated as follows: 

Δ
′

Total = Δ
′

Bending + Δ
′

Shear + Δ
′

Axial

=
PL3

c

6EIc
−

M′ L2
c
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Finally, the exact value of the elastic drift amplification factor in steel 
moment frames with DRBS connections is calculated using Eq. (40): 

Am=
Δ

′

Total

ΔTotal
=

PL3
c

6EIc
−

M′ L2
c

2EIc
+ P2LcLb+8M′ 2

2PLbGAs
+ 8M′ 2
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bAcE

PL3
c

6EIc
−

ML2
c

2EIc
+ P2LcLb+8M2

2PLbGAs
+ 8M2Lc

PL2
bAcE

(40)  

3. Sensitivity analysis of the DRBS connection parameters 

All of the geometrical parameters of the DRBS connection (a1, b1, c1, 
a2, b2, and c2) affect the amount of the elastic drift and lateral stiffness of 
steel moment frames, but the extent of their effect is different for each of 

these parameters. Hence, in this study, a sensitivity analysis using the 
response surface method (RSM) was conducted to determine the effect of 
each parameter involved. In this analysis, using the Maple software and 
Eq. (39), the effect of the parameters mentioned above on the elastic 
drift of the steel moment frame presented in Fig. 2, subjected to the 
lateral force of P = 25 ton, was investigated. The sensitivity analysis was 
conducted by selecting two HEA (500 and 1000) and two IPE (300 and 
600) sections and considering the same limits for the DRBS connection 
parameters as those provided for the RBS connection parameters in 
ANSI/AISC 358-16 [22] (Eqs. (41)-(43)). During the analysis, the values 
of all parameters, except the one whose effect was being investigated, 
were kept constant and equal to the mean value of their corresponding 
acceptable ranges considered. The specifications of the selected beam 
and column sections and the steel used in the moment frame are pre
sented in Tables 1 and 2, respectively. 

0.5bbf ≤ a1, a2 ≤ 0.75bbf (41)  

0.65d ≤ b1, b2 ≤ 0.85d (42)  

0.1bbf ≤ c1, c2 ≤ 0.25bbf (43) 

Based on the results of the sensitivity analysis, presented in Figs. 6–9, 
the elastic drift of the moment frame increased with the increase in the 
DRBS connection parameters b1, b2, c1, and c2. In contrast, the increase 
in the parameters a1 and a2, led to a decrease in the amount of the elastic 
drift. In all cases, the observed changes in the amount of the elastic drift 
occurred in an approximately linear manner. 

According to the slopes of the obtained graphs, it can be concluded 
that the parameters c1 and c2 have the most significant effect on the 
elastic drift of the steel moment frames with DRBS connections, followed 
by b1, b2, a1, and ultimately a2 in descending order, except in the case of 
the frame with the HEA1000 section, where a1 has a more significant 
effect than b1. 

4. Finite element modeling and verification 

4.1. Meshing 

Since the loading applied in this study was of the static type, the 
default implicit solver of the utilized finite element software was used in 
the analyses conducted. The discretization was done using the contin
uum (solid) C3D8R element, an 8-noded reduced-integration linear 
brick element, which has one integration point in its center. The 

Fig. 10. The finite element mesh generated for the half-frame model.  

Fig. 11. The boundary conditions and loading applied: (a) Full-frame model; (b) Half-frame model.  
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minimum and maximum mesh sizes used for finite element modeling 
were equal to 1 and 2 cm, respectively. It should be noted that the 
connection details were not considered in generating the models, as the 
presence of the two cuts (the reduced sections) leads to reduced sensi
tivity at the connection region. Fig. 10 shows an example of the finite 
element meshes generated. 

4.2. Boundary conditions and loading application 

The modeling conducted in this study involved the two cases of the 
full-frame model and the half-frame model, which was considered ac
cording to analysis rules applicable to symmetrical structures. In the 
case of the half-frame model, the boundary conditions were applied as 

roller support at the free end of the half-beam and fixed support at the 
column base. In the case of the full-frame model, the boundary condi
tions were applied as fixed supports at the column bases. To simulate the 
abovementioned boundary conditions, the degrees of freedom of the 
nodes at the end of the half-beam and column bases were coupled to 
those of a reference node using a rigid body constraint. Such a constraint 
limits the displacements of the coupled nodes to those of a single rigid 
surface. The desired boundary conditions could thus be easily modeled 
by applying translational or rotational motion restrains in specific di
rections to the considered rigid surfaces. 

The loading was applied to the considered models as a horizontal 
displacement equivalent to a 25-ton load, determined through interpo
lation. The boundary conditions and the loading applied to the models       

Fig. 12. Comparison of the results obtained for the frame with the HEA500 section: (a) Parameter a1; (b) Parameter b1; (c) Parameter c1; (d) Parameter a2; (e) 
Parameter b2; (f) Parameter c2. 
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Table 3 
The geometric specifications of the frame with the HEA500 section.  

tf (cm)  bf (cm)  tw(cm)  hw(cm)  I(cm4)  As (cm2)  Ac (cm2)  Lb(m)  Lc(m)  a1(cm)  b1(cm)  c1(cm)  a2(cm)  b2(cm)  c2(cm)  

2.3 30.0 1.2 44.4 86970 53 198 5.5 3.5 18.75 36.75 5.25 18.75 36.75 4.50  

Table 4 
Comparison of the elastic drift amplification factor values obtained using the method of virtual work and finite element analysis (HEA500 section).  

Analysis type Elastic drift (mm) Am  Error (%) 

Method of virtual work – With DRBS connections 5.719 1.029 0.29 
Method of virtual work – Without DRBS connections 5.558 

Finite element analysis – With DRBS connections 5.844 1.012 
Finite element analysis – Without DRBS connections 5.773  

Table 5 
The geometric specifications of the frame with the IPE600 section.  

tf (cm)  bf (cm)  tw(cm)  hw(cm)  I(cm4)  As(cm2)  Ac(cm2)  Lb (m)  Lc(m)  a1(cm)  b1(cm)  c1(cm)  a2(cm)  b2(cm)  c2(cm)  

1.9 22.0 1.2 56.2 92080 67 156 5.7 3.8 13.75 45.00 3.85 13.75 45.00 2.20  

Fig. 13. Comparison of the results obtained for the frame with the IPE600 section: (a) Parameter a1; (b) Parameter b1; (c) Parameter c1; (d) Parameter a2; (e) 
Parameter b2; (f) Parameter c2. 
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generated are shown in Fig. 11. 

4.3. Verification of the developed exact theoretical formulae and the 
sensitivity analysis 

In order to verify the accuracy of the developed exact theoretical 
formulae and the sensitivity analysis conducted, it was necessary to 
compare the results with those obtained from the finite element 
modeling. For this purpose, the elastic drift and elastic drift amplifica
tion factor values obtained from the full-frame and half-frame finite 

element analyses and the adopted exact theoretical approach were 
evaluated against each other for the four sections HEA500, HEA1000, 
IPE300, and IPE600 with the specifications given in Tables 1 and 2 

Fig. 12 shows the comparison of the results for the frame with the 
HEA500 section. The geometric specifications of the abovementioned 
frame are given in Table 3. Besides, Table 4 presents the comparison of 
the elastic drift amplification factor values obtained using the developed 
exact theoretical formulae (method of virtual work) and the finite 
element analysis. 

The geometric specifications of the frame mentioned above are given 

Table 6 
Comparison of the elastic drift amplification factor values obtained using the method of virtual work and finite element analysis (IPE600 section).  

Analysis type Elastic drift (mm) Am  Error (%) 

Method of virtual work – With DRBS connections 5.219 1.031 1.38 
Method of virtual work – Without DRBS connections 5.063 

Finite element analysis – With DRBS connections 5.402 1.017 
Finite element analysis – Without DRBS connections 5.311  

Table 7 
The specific first-order linear relationships derived for the elastic drift amplification factor in frames with DRBS connections made of HEA sections.  

Section Relationship Section Relationship Average R2  

HEA100 Am = 1+ 0.00425c1 + 0.00388c2  HEA340 Am = 1+ 0.00328c1 + 0.00266c2  0.98 
HEA120 Am = 1+0.00392c1 + 0.00365c2  HEA360 Am = 1+ 0.00340c1 + 0.00271c2  

HEA140 Am = 1+ 0.00352c1 + 0.00347c2  HEA400 Am = 1+ 0.00328c1 + 0.00266c2  

HEA160 Am = 1+ 0.00360c1 + 0.00347c2  HEA450 Am = 1+ 0.00340c1 + 0.00271c2  

HEA180 Am = 1+ 0.00357c1 + 0.00312c2  HEA500 Am = 1+ 0.00366c1 + 0.00277c2  

HEA200 Am = 1+ 0.00349c1 + 0.00317c2  HEA550 Am = 1+ 0.00383c1 + 0.00283c2  

HEA220 Am = 1+ 0.00332c1 + 0.00292c2  HEA600 Am = 1+ 0.00562c1 + 0.00127c2  

HEA240 Am = 1+ 0.00314c1 + 0.00301c2  HEA650 Am = 1+ 0.00559c1 + 0.00128c2  

HEA260 Am = 1+ 0.00328c1 + 0.00279c2  HEA700 Am = 1+ 0.00553c1 + 0.00130c2  

HEA280 Am = 1+ 0.00331c1 + 0.00283c2  HEA800 Am = 1+ 0.00536c1 + 0.00138c2  

HEA300 Am = 1+ 0.00301c1 + 0.00254c2  HEA900 Am = 1+ 0.00501c1 + 0.00135c2  

HEA320 Am = 1+ 0.00314c1 + 0.00260c2  HEA1000 Am = 1+ 0.00457c1 + 0.00137c2   

Table 8 
The specific first-order linear relationships derived for the elastic drift amplification factor in frames with DRBS connections made of IPE sections.  

Section Relationship Section Relationship Average R2  

IPE80 Am = 1 + 0.00737c1 + 0.00715c2  IPE270 Am = 1 + 0.00664c1 + 0.00555c2  0.98 
IPE100 Am = 1 + 0.00790c1 + 0.00776c2  IPE300 Am = 1 + 0.00591c1 + 0.00537c2  

IPE120 Am = 1 + 0.00788c1 + 0.00734c2  IPE330 Am = 1 + 0.00584c1 + 0.00577c2  

IPE140 Am = 1 + 0.00765c1 + 0.00704c2  IPE360 Am = 1 + 0.00621c1 + 0.00489c2  

IPE160 Am = 1 + 0.00766c1 + 0.00766c2  IPE400 Am = 1 + 0.00634c1 + 0.00495c2  

IPE180 Am = 1 + 0.00780c1 + 0.00703c2  IPE450 Am = 1 + 0.00654c1 + 0.00570c2  

IPE200 Am = 1 +0.00688c1 + 0.00659c2  IPE500 Am = 1 + 0.00668c1 + 0.00493c2  

IPE220 Am = 1 +0.00641c1 + 0.00640c2  1PE550 Am = 1 + 0.00682c1 + 0.00462c2  

IPE240 Am = 1 +0.00700c1 + 0.00619c2  IPE600 Am = 1 + 0.00661c1 + 0.00409c2   

Table 9 
The formulae obtained for the estimation of the elastic drift amplification factor in frames with DRBS connections made of HEA sections.  

Equation number Formula R2  

44 Am = 1+ 0.00465c1 + 0.00236c2  0.97 
45 Am = 1+ 0.00475c1 + 0.00245c2 − 0.00004c1c2  0.97 
46 Am = 1+ 0.00074c2

1 + 0.00049c2
2  0.50 

47 Am = 1+ 0.00111c2
1 + 0.00086c2

2 − 0.00081c1c2  0.53 

48 Am = 1.001+ 0.00454c1 + 0.00225c2  0.97 
49 Am = 1.004+ 0.00135c1 + 0.00405c2 + 0.00036c2

1 − 0.00005c1c2 − 0.00016c2
2  0.98  
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in Table 5. Fig. 13 shows the comparison of the results for the frame with 
the IPE600 section. Also, Table 6 presents the comparison of the elastic 
drift amplification factor values obtained using the developed exact 
theoretical formulae (method of virtual work) and the finite element 
analysis. 

The comparison of the elastic drift and the elastic drift amplification 
factor values from the finite element analysis of the modeled frames with 
the values obtained using the developed exact theoretical formulae 
indicated error values of less than 3%. These minimal error percentages 
prove the accuracy and precision of the theoretical formulae in calcu
lating the exact amount of the elastic drift in moment frames with and 
without DRBS connections. 

5. Deriving the specific elastic drift amplification factor 
relationships in frames with different HEA and IPE sections 

Since c1 and c2 were found to have the most significant effect on the 
elastic drift of the moment frames analyzed among the six DRBS 
connection parameters, they were entered as the variables in the Design- 
Expert software. The acceptable ranges for c1 and c2 were considered the 
same as the limits defined by ANSI/AISC 358-16 [22] for the parameter 
c1 in the RBS connection (Eq. (43)). The elastic drift was investigated in 
moment frames with DRBS connections made of two groups of beam and 
column sections. The first group included the sections ranging from 
HEA100 to HEA1000 and the second group included the sections 
ranging from IPE80 to IPE600. The elastic drift behavior of each of the 
considered frames was statistically analyzed with 13 points suggested by 

Table 10 
The formulae obtained for the estimation of the elastic drift amplification factor in frames with DRBS connections made of IPE sections.  

Equation number Formula R2  

50 Am = 1+ 0.00665c1 + 0.00526c2  0.93 
51 Am = 1+ 0.00792c1 + 0.00653c2 − 0.00069c1c2  0.96 
52 Am = 1+ 0.00153c2

1 + 0.00131c2
2  0.04 

53 Am = 1+ 0.00238c2
1 + 0.00217c2

2 − 0.00182c1c2  0.07 

54 Am = 1.007+ 0.00564c1 + 0.00425c2  0.97 
55 Am = 1.002+ 0.00634c1 + 0.00764c2 − 0.00052c2

1 + 0.00780c1c2 − 0.00091c2
2  0.98  

Table 11 
The error values of the formulae presented in Table 9 for HEA sections with 
respect to the exact theoretical formula presented in Section 2.  

Equation 
number 

Minimum relative 
percentage error 

(%) 

Maximum relative 
percentage error 

(%) 

Mean absolute 
relative percentage 

error (%) 

44 − 0.78 0.39 0.13 
45 − 0.80 0.37 0.12 
46 − 1.63 1.24 0.60 
47 − 1.40 1.28 0.59 
48 − 0.78 0.40 0.12 
49 − 0.91 0.25 0.10  

Table 12 
The error values of the formulae presented in Table 10 for IPE sections with 
respect to the exact theoretical formula presented in Section 2.  

Equation 
number 

Minimum relative 
percentage error 

(%) 

Maximum relative 
percentage error 

(%) 

Mean absolute 
relative percentage 

error (%) 

50 0.36 1.67 2.58 
51 0.05 1.29 2.35 
52 − 0.08 1.99 3.27 
53 − 2.54 1.38 2.97 
54 − 0.29 1.31 2.30 
55 0.19 2.15 3.68  

Fig. 14. Comparison graphs of the Am values obtained from Eq. (46) and (Fanaie et al. [18]) and the formulae proposed in this study (Table 9) when c2 = 0.  
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the Design-Expert software. The results were obtained as four relation
ships for each section considered. 

The obtained coefficients of determination (the R2 values) describe 
the percentage of the variance of the response, i.e., the elastic drift 
amplification of the moment frames studied, with the variance of the 
parameters c1 and c2 within their considered acceptable ranges. Based 
on the results, the first-order linear relationships derived exhibited 
higher coefficients of determination for both HEA and IPE groups and 
hence gave more precise response values. For a better presentation of the 
results, these first-order linear relationships are given in Tables 7 and 8. 

6. Determination of the best formulae for the estimation of the 
elastic drift amplification factor in frames with HEA and IPE 
sections 

In order to determine a single elastic drift amplification factor for
mula for each of the considered groups, the envelope curves of the re
lationships presented in Tables 7 and 8 were utilized to obtain two new 
sets of formulae for HEA and IPE sections. These new relationships, 
which are made up of terms with the coefficients c1 c2, c1c2, c2

1, and c2
2, 

are presented along with their corresponding R2 values in Tables 9 and 
10. 

To find the best formula in each of the obtained sets, the accuracy of 
elastic drift amplification factor values from the relationships was 
assessed with respect to the exact values from the exact theoretical 
formula presented in Section 2. The results of the assessment are given in 
Tables 11 and 12. 

According to the results, it can be concluded Eq. (44) is the best 
formula for estimating the elastic drift amplification factor in moment 
frames with DRBS connections constructed of HEA sections: 

Am = 1 + 0.00465c1 + 0.00236c2 (44) 

It can also be concluded that equation number 51 is the best formula 
for estimating the elastic drift amplification factor in moment frames 
with DRBS connections constructed of IPE sections: 

Am = 1 + 0.00792c1 + 0.00653c2 − 0.00069c1c2 (45)  

7. Comparison of the formulae obtained for frames with DRBS 
connections and the existing relationships for frames with RBS 
connections 

Fanaie et al. [18] proposed Eqs. (46) and (47) for estimating the 
elastic drift amplification factor in moment frames with RBS connections 
constructed using HEA and IPE sections, respectively. 

AmHEA = 1 + 0.011c (46)  

AmIPE = 1 + 0.015c (47) 

In order to investigate the accuracy of the formulae presented in 
Tables 9 and 10 in estimating the elastic drift amplification factor in 
moment frames with RBS connections, the Am values obtained from 
these formulae were compared to those given by Eqs. (46) and (47). For 
this purpose, the second reduced section was omitted, i.e., the value of c2 

Fig. 15. Comparison graphs of the Am values obtained from Eq. (47) and (Fanaie et al. [18]) and the formulae proposed in this study (Table 10) when c2 = 0.  

Table 13 
The error values of the formulae presented in Table 9 for HEA sections with 
respect to Eq. (46) when c2 = 0.  

Equation 
number 

Minimum relative 
percentage error 

(%) 

Maximum relative 
percentage error 

(%) 

Mean absolute 
relative percentage 

error (%) 

44 0.63 4.40 2.68 
45 0.62 4.33 2.64 
46 1.02 7.11 4.33 
47 0.98 6.85 4.17 
48 0.54 4.38 2.63 
49 0.52 4.43 2.91  

Table 14 
The error values of the formulae presented in Table 10 for IPE sections with 
respect to Eq. (47) when c2 = 0.  

Equation 
number 

Minimum relative 
percentage error 

(%) 

Maximum relative 
percentage error 

(%) 

Mean absolute 
relative percentage 

error (%) 

50 0.38 4.24 2.50 
51 0.32 3.60 2.12 
52 0.65 3.44 2.82 
53 0.64 2.26 1.88 
54 − 0.27 4.11 2.14 
55 0.21 5.66 2.97  
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was assumed to be equal to zero, and the value of c1 was altered within 
the acceptable limits for each of the studied section groups. 

Figs. 14 and 15 present the comparison graphs of the Am values 
obtained from Eqs. (46) and (47) (Fanaie et al. [18]) and the formulae 
proposed in this study (Tables 9 and 10). Tables 13 and 14 present the 
percentage error values of the formulae given in Tables 9 and 10 with 
respect to Eqs. (46) and (47). According to Tables 13 and 14, the 
maximum and minimum relative percentage error values and also the 
mean absolute relative percentage error values obtained for each of the 
formulae derived in this study are very small or, in other words, insig
nificant. However, according to Figs. 14 and 15, the existing relation
ships proposed by Fanaie et al. [18] resulted in greater Am values, 
indicating that the formulae of Tables 9 and 10 are rather not suitable for 
calculating the elastic drift in the moment frames with the conventional 
RBS connections. 

8. Conclusions 

In this research, the effect of the double reduced beam section 
(DRBS) connections on the stiffness of steel moment frames was inves
tigated by presenting a theoretical approach based on mathematical 
relationships and structural analysis principles. To this end, first, based 
on geometric relationships and utilizing the method of virtual work, all 
of the shear, axial, and flexural deformations were taken into account to 
develop the exact formulae for calculating the elastic drift and the elastic 
drift amplification factor in a single-story single-span moment frame 
with DRBS connections. Next, by performing a sensitivity analysis, the 
most effective DRBS connection parameters on the elastic drift of the 
considered moment frame were determined. The accuracy of the 
developed exact theoretical formulae and the conducted sensitivity 
analysis was then evaluated using finite element modeling. In the next 
step, the response surface method (RSM) was utilized to derive highly 
accurate and specific relationships for the elastic drift amplification 
factor in moment frames made of different HEA and IPE sections. Ulti
mately, using the envelope curves of the developed relationships, two 
accurate and simple formulae based on DRBS connection parameters 
were proposed for estimating the elastic drift amplification factor in 
steel moment frames constructed of HEA and IPE sections. The following 
conclusions summarize the advantages of the presented methods and 
results obtained:  

(1) This research presented an exact theoretical method, without 
simplifying assumptions and considering all the deformations 
involved, which could be used to determine the actual amount of 
elastic drift and the corresponding elastic drift amplification 
factor in moment frames with DRBS connections. Determining 
the exact value of the elastic drift amplification factor in moment 
frames with DRBS connections helps engineers optimally design 
the structures constructed using such frames and more accurately 
understand the elastic behavior of the newly developed DRBS 
connection.  

(2) The results of the sensitivity analysis conducted to investigate the 
effect of the DRBS connection parameters on the elastic drift of 
moment frames showed that by increasing the values of param
eters b1, b2, c1, and c2 in the DRBS connections, the elastic drift 
also increases in an approximately linear manner. Thus, it can be 
concluded that increasing the values of these DRBS parameters 
leads to a decrease in the stiffness of the corresponding moment 
frame. In contrast, the results showed that by increasing the 
values of parameters a1 and a2, the elastic drift decreases linearly. 
Hence, it can be concluded that increasing the values of these 
parameters increases the stiffness of the corresponding moment 
frame.  

(3) The results of the conducted sensitivity analysis also showed that 
among the six DRBS connection parameters, the parameters c1 
and c2 have the most significant effects on the elastic drift of 

considered moment frames with DRBS connections, followed by 
b1, b2, a1, and ultimately a2 in descending order, except in the 
case of the frame with the HEA1000 section, where a1 has a more 
significant effect than b1. In other words, the parameters c1 and c2 
affect the stiffness of moment frames more significantly than the 
other DRBS connection parameters.  

(4) The formulae derived using the RSM method for estimating the 
elastic drift amplification factor in moment frames with DRBS 
connections constructed of HEA and IPE sections exhibited nearly 
zero error relative to the exact theoretical results. Their co
efficients of determination were also obtained to be approxi
mately equal to 97%. Such results confirm the accuracy of these 
presented formulae in describing the elastic behavior of moment 
frames with DRBS connections.  

(5) Among the derived relationships, Eqs. (44) and (45) were found 
to be the best simple formulae for estimating the elastic drift 
amplification factor in moment frames with DRBS connections 
constructed of HEA and IPE sections, respectively: 

Am = 1 + 0.00465c1 + 0.00236c2  

Am = 1 + 0.00792c1 + 0.00653c2 − 0.00069c1c2   

Noting that precisely modeling DRBS connections in advanced sci
entific finite element software such as Abaqus is a time-consuming, 
inefficient procedure and that specialized commercial structural 
design software such as ETABS do not provide an option for directly 
modeling DRBS connections, these formulae can be utilized by prac
ticing engineers to accurately estimate the elastic drift amplification 
factor when designing moment frames with DRBS connections in an 
efficient and fast manner based on the cut parameters c1 and c2.  

(6) Based on the results obtained, the amount of the elastic drift 
amplification factor varied between 0 and 14.7% and between 
0 and 5.5% in frames with HEA and IPE sections, respectively. 

This study presented a theoretical investigation of the elastic 
behavior of steel moment frames incorporating the newly proposed 
DRBS connection. Results obtained herein and those from previously 
conducted numerical studies suggest that this design has an acceptable 
behavior and could be utilized as an improved alternative to the con
ventional RBS connection. Nevertheless, it should be emphasized that an 
experimental study is still necessary to evaluate the exact seismic per
formance of moment frames with DRBS connections more comprehen
sively. Hence, further research in this field can be focused on laboratory 
testing of DRBS connection specimens to observe the sequence of the 
intended plastic hinge formation in frames with such connections. The 
DRBS connection could indeed be added to the category of prequalified 
connections for steel moment frames and readily used in the construc
tion industry in case future experimental studies confirm its promising 
seismic performance suggested by numerical and theoretical results. 
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