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2Controlling the deflection of long

steel beams using pretensioned

cables
Nader Fanaie1 and Fatemeh Partovi2

1Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran,
2School of Engineering, University of British Columbia, Kelowna, BC, Canada

Notations

ΔF the increment of the pretensioning force in the cable

M xð Þ bending moment

U total strain energy

q uniform distributed load

lb beam length

lc inclined cable length

Ab cross-sectional area of beam

Ac cross-sectional area of cable on both sides of the web

Eb elasticity modulus of beam

Ec elasticity modulus of cable

Ib moment of inertia of beam

θ angle of inclined cable with the horizontal axis

y0 distance of neutral axis to the connection point of steel cable to the beam flange (half

of the height of beam web)

a the distance between the inclination change region of the cable and the support (hori-

zontal projection of inclined cable)

lc1 the lengths of the first inclined cables, c1

lc2 the lengths of the second inclined cables, c2

θ1 the angle between the first inclined cable and horizontal axis

θ2 the angle between the second inclined cable and horizontal axis

M fixed end moment

F total cable force

Fpt initial pretensioning force of the cable

Δ maximum deflection

m xð Þ bending moment under virtual loading

2.1 Introduction

Cables as essential structural elements can withstand tensile force and, in general,

improve the bearing capacity and the structure’s stiffness [1]. Structural applica-

tions of steel cables have been recently increased in the construction industry. Hou
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and Tagawa [2] established an innovative seismic rehabilitation method to promote

steel flexural frames using cable-cylinder bracing. It was reported that this method

improves the story’s lateral strength without reducing the flexural frame’s ductility.

Fanaie et al. [3] proposed theoretical equations for the system of cable-cylinder

bracing employing a rigid cylinder such as a steel cylinder. They validated the

results using Abaqus [4] finite element (FE) models. The authors further investi-

gated seismic performance of steel flexural frames reinforced by cable-cylinder

bracing and achieved acceptable conclusions [5]. Giaccu [6] studied the nonlinear

dynamic response of pretensioned-cable cross-braced structures while there was

slackening in the braces. He found a direct correlation between equivalent fre-

quency and slackening in the braces.

The most effective way to reduce the steel requirements and to improve the bear-

ing capacity of steel beams is to pretension them using high-strength cables. The

first and foremost structure that was pretensioned was the reinforced concrete struc-

ture. Brunesi et al. [7] investigated numerically and experimentally the shear capac-

ity of precast-prestressed hollow-core slabs. Based on the obtained results, they

showed that peak shear stress was localized at the bottom side of the cross section

rather than at the level of the centroid. Al-Negheimish et al. [8] experimentally

studied the long-term deflection of prestressed hollow core slabs. They compared

their results with the predictions of the effective modulus approach, which considers

the creep and shrinkage models recommended by ACI 209 Committee [9]. The pre-

tensioned steel cables in steel beams were used by Dischinger and Magnel for the

first time. The pretensioned steel structures are being built around the world, partic-

ularly in the United States, Germany, and Russia. This illustrates the economic and

structural advantages of pretensioned steel beams comparing with the non-

prestressed beams. The method of pretensioning is proper for constructing new

structures and reinforcing the existing ones [10].

Many studies have been conducted to evaluate the performance of pretensioned

concrete and composite beams applying steel cables. Le et al. [11] experimentally

investigated the use of both unbonded carbon fiber�reinforced polymer (CFRP)

tendons and steel tendons on precast T-section segmental concrete. They demon-

strated that CFRP tendons could replace steel tendons, and the beams attained both

good strength and ductility capacity. Pisani [12] analyzed the simply supported con-

crete beam externally prestressed under sustained loads. He developed two numeri-

cal methods capable of representing the time evolution of both the stress

distribution and the displacements of a simply supported concrete beam prestressed

externally. He also provided an instance to calibrate the accuracy of the methods.

Lou et al. [13] numerically investigated the flexural response of continuous exter-

nally fiber-reinforced polymer prestressed concrete beams including different line-

arly transformed cable profiles. According to the results, they concluded that the

cable shift by linear transformation does not affect the basic performance at all

stages of loading up to failure. They also confirmed that the secondary moments

differ linearly with the cable shift. Ayyub et al. [14,15] experimentally and analyti-

cally evaluated prestressed steel-concrete composite beams benefiting steel cable,

wherever there are positive or negative bending moments. It was revealed that

18 Seismic Evaluation, Damage, and Mitigation in Structures



pretensioning increased the ultimate strength. Nie et al. [16] derived theoretical

equations to obtain both yield and deflection and ultimate moments of prestressed

steel-concrete composite beam, which was simply supported regarding the effect

of slip. They compared the experimental results to the suggested formulas. Zhou

et al. [17] performed the empirical investigation and numerical modeling of pre-

stressed composite beams exposed to positive moment and fire. They showed that

the cable strands’ stress highly affected the fire resistance of composite beams,

which were prestressed with external tendons. Some scholars have explored the

behavior of prestressed steel beams with steel cables, including Troitsky [10] who

examined that utilizing cables. He concluded that steel cables increase the stiff-

ness of the beam and reduces its deformation. Belletti and Gasperi [18] analyzed

the performance of I-shaped steel beams, which were simply supported and pre-

stressed by tendons, emphasizing two parameters, including the value of prestres-

sing force and the number of deviators. The flexural behavior of steel I-beam

prestressed with externally unbonded tendons was analytically and experimentally

investigated by Park et al. [19]. It was deduced that the yielding and ultimate

bearing capacity of steel I-beam were significantly increased. Fanaie et al.

[20�22] utilized the methods of least work and virtual work to generate theoreti-

cal relations for calculating the increment in the pretensioning force of cables due

to the external loading and the steel beams’ deflection having various support

conditions and cable patterns, respectively. To validate the theoretical relations,

they developed numerical models of steel beams with different support conditions

and cable patterns in the Abaqus FE software. Kambal and Jia [23] proposed an

FE model to examine the effectiveness of the prestressing method regarding the

flexural behavior of a steel box girder, which was simply supported. They con-

firmed the preciseness of the suggested formulation with the experimental results.

Zhang [24] investigated the analytical solutions for the symmetric and antisym-

metric elastic lateral-torsional buckling of prestressed I-shaped steel beams with

equal end moments and rectilinear tendons. Thai et al. [25] analyzed various types

of cable net and optimized their volume as an objective function. They considered

the allowable stress and maximum displacement as the optimization restrictions.

They applied the appropriate pretensioning forces to the cable nets to decrease the

displacement of the structure and achieved an optimum volume. According to the

results, they indicated that when the displacement constraint was relatively small

or the allowable stress was relatively large, the pretensioning forces performed a

critical role in achieving the optimum volume.

Controlling the deflection of beams (specifically long beams) causes challenges

for the structural designers. Therefore this research focused on controlling the

deflection of steel beams with different support conditions and cable patterns. The

increment in the pretensioning force of the cable under external loading can be

obtained based on the least work method. The relations of maximum deflection of

steel beams with various cable patterns are derived then benefiting the virtual

work method. Eventually, the theoretical relations are verified with numerical

models.
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2.2 The pretensioned symmetric I-shaped steel beams
with steel cables

As shown in Fig. 2.1, symmetric I-shaped steel beams, which have different support

conditions, that is, simply supported, fixed supported, and cantilever beams, are pre-

tensioned with varying cable patterns employed in both sides of the web and under

external loading. It is observed that the cables are restrained to the top flange of the

beam at both ends. After that, they pass through the deviators on the bottom flange

of the beam and produce a V-shaped pattern, a modified V-shaped pattern and

accompanied by two V-shaped patterns [20�22].

The following hypotheses are considered to analyze the pretensioned symmetric

steel I-beams with steel cables:

1. The cable and steel beam are made of a linearly elastic material.

2. The deformations are small.

3. The shear deformation is not included.

4. The friction loss and the relaxation of a steel cable are not taken into account.

5. The steel section is compact and hot rolled.

Figure 2.1 Pretensioned symmetric steel I-beams with steel cables subjected to external

loading: (A) a beam with simple supports and the V-shaped cable pattern; (B) a beam with

fixed supports and the V-shaped cable pattern; (C) a beam with simple supports and the

modified V-shaped cable pattern; (D) a beam with fixed supports and the modified V-shaped

cable pattern; (E) a beam with simple supports and two V-shaped cable patterns; (F) a beam

with fixed supports and two V-shaped cable patterns; (G) a cantilever beam with steel cables.
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2.3 The increment of the pretensioning force in the
cable under external loading

The distributed loading is uniform, therefore the length of the cable increases by

ΔL, causing the pretensioning force in the cable, Fpt, to increase by ΔF. The struc-

ture is statically indeterminate and the static equilibrium relations are not enough to

determine ΔF. As a result, the least work method can be used to determine the pre-

tensioning force’s increment in the cable.

Based on the least work method, the relation of the steel beam’s total strain

energy caused by the axial force and the bending moment is differentiated to ΔF.

Also, the total strain energy of the cable due to its axial force is differentiated to

ΔF: The increment of the pretensioning force in the cable, ΔF, was calculated by

equating the result to zero.

2.3.1 The beam with simple supports and the V-shaped cable
pattern

The increment of the pretensioning force in the cable equals ΔF in the beam with

simple supports and the V-shaped cable pattern (Fig. 2.2). Accordingly, the axial

force of the beam equals ΔFcosθ. Furthermore, the bending moment and eventually

the resulting strain energy can be calculated for half of the beam in a symmetric

structure with a symmetric loading (Fig. 2.2). The strain energy is duplicated then

to obtain the bending strain energy of the beam in whole. Therefore the bending

moment for half of the beam with simple supports and the V-shaped cable pattern

subjected to uniform distributed loading is determined using the following relation

[20]:

For 0# x# lb
2
range:

M xð Þ5ΔFcosθy0 2 ΔFsinθ2
qlb
2

� �
x2

qx2

2
(2.1)

Figure 2.2 The beam with simple supports and the V-shaped cable pattern.
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Because both the structure and the loading are symmetric, the equation of total

strain energy is obtained as below:

U5 23
1

2ðEIÞb

ðlb
2

0

ΔFcosθy02 ΔFsinθ2 qlb
2

� �
x2 qx2

2

� �2

dx1 23
ΔF2lc

2ðAEÞc

1
ðΔFcosθÞ2lb

2ðAEÞb

5
1

ðEIÞb

q2l5b
240

1
ΔF2l3bsin

2θ
24

1
ΔF2lby

2
0cos

2θ
2

2
ΔF2l2by0sinθcosθ

4
2

5qΔFl4bsinθ
192

1
qΔFl3by0cosθ

12

8>>>><
>>>>:

9>>>>=
>>>>;

1
ΔF2lc

ðAEÞc
1

ΔF2lbcos
2θ

2ðAEÞb
(2.2)

Using the least work method, differentiating the total strain energy equation to

ΔF, and equating the result to zero, the increase in the pretensioning force of the

cable (ΔF) is determined as below [20]:

@U

@ðΔFÞ 5 0 (2.3)

ΔF5
5ql4bsinθ2 16ql3by0cosθ

16 l3bsin
2θ1 12lby

2
0cos

2θ2 6l2by0sinθcosθ1
24ðEIÞblc

AEð Þc 1 12Iblbcos2θ
Ab

� � (2.4)

where q presents uniform distributed load; lb and lc are used for the lengths of the

beam and inclined cable, respectively; Ab presents the cross section of the beam and Ac

presents the cross section of the cable at both sides of the web; Eb and Ec are used for

modulus of the beam and cable, respectively; Ib presents the steel section’s moment of

inertia; y0 is used for the distance between the steel cable’s connection point to the

beam flanges (half of the height of the beam web) and the neutral surface; and finally,

θ is the angle between the inclined cable and the horizontal axis.

2.3.2 The beam with simple supports and the modified
V-shaped cable pattern

As it is presented in Fig. 2.3, in the beam with simple supports and the modified V-

shaped cable pattern, the increment of the cable’s pretensioning force equals ΔF in the

inclined parts. It also equals ΔFcosθ in the horizontal part to maintain a constant bend-

ing moment within the region that cable inclination changes. Accordingly, the beam’s
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axial force equals ΔFcosθ. Therefore, as mentioned before, due to the existed symme-

try in the structure and loading (Fig. 2.3), the bending moment for half of the beam

with simple supports and the modified V-shaped cable pattern subjected to the uniform

distributed loading is calculated by using the following relations [20]:

For 0# x# a range,

M1 xð Þ5ΔFcosθy0 2 ΔFsinθ2
qlb

2

� �
x2

qx2

2
(2.5)

For a# x# lb
2
range,

M2 xð Þ52ΔFcosθy0 1
qlbx

2
2

qx2

2
(2.6)

Considering the existed symmetry in the structure and loading, the total strain

energy equation can be obtained as below:

U5 23
1

2ðEIÞb

Ð a
0

ΔFcosθy02 ΔFsinθ2 qlb
2

� �
x2 qx2

2

� �2

dx

1

Ð lb
2

a
2ΔFcosθy01 qlbx

2
2 qx2

2

� �2

dx

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

1 23
ΔF2lc

2ðAEÞc
1

ðΔFcosθÞ2ðlb 2 2aÞ
2ðAEÞc

1
ðΔFcosθÞ2lb

2ðAEÞb

5
1

ðEIÞb

q2l5b
240

1
ΔF2a3sin2θ

3
1

ΔF2lby
2
0cos

2θ
2

2ΔF2y0a
2sinθcosθ1

qΔFa4sinθ
4

2
qΔFlba

3sinθ
3

2
2qΔFy0a

3cosθ
3

1 qΔFlby0a
2cosθ2

qΔFl3by0cosθ
12

8>>>><
>>>>:

9>>>>=
>>>>;

1
ΔF2lc

ðAEÞc
1

ΔF2ðlb 2 2aÞcos2θ
2ðAEÞc

1
ΔF2lbcos

2θ
2ðAEÞb

(2.7)

Figure 2.3 The beam with simple supports and the modified V-shaped cable pattern.
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Using the least work method, the increment of the cable’s pretensioning force

ΔFð Þ is estimated by the following equation [20]:

ΔF5
2 3qa4sinθ1 4qlba

3sinθ1 8qy0a
3cosθ2 12qlby0a

2cosθ1 ql3by0cosθ

4 2a3sin2θ1 3lby
2
0cos

2θ2 6y0a2sinθcosθ1
3ðEIÞb
ðAEÞc 2lc 1 lb 2 2að Þcos2θ½ �1 3Iblbcos2θ

Ab

� �
(2.8)

where a is the distance between the inclination change region of the cable and

the support (horizontal projection of inclined cable).

In Eq. (2.8), when the length of the horizontal cable (lb 2 2a, as observed in

Fig. 2.3) approaches zero, Eq. (2.4) is acquired related to the V-shaped cable pattern.

2.3.3 The beam with simple supports and two V-shaped cable
patterns

In the beam with simple supports and two V-shaped cable patterns (Fig. 2.4), the

increment of the pretensioning force in the cable equals ΔF in the first inclined

part (C1). It equals
ΔFcosθ1
cosθ2

in the second inclined part (C2) to maintain a constant

bending moment within the cable inclination change region. Accordingly, The axial

force of the beam equals 2ΔFcosθ1. Therefore, as mentioned before, because the

structure and the loading both are symmetric (Fig. 2.4), for half of the beam with

simple supports and two V-shaped cable patterns subjected to the uniform distrib-

uted loading, the bending moment is calculated as below [21]:

For 0# x# a range,

M1 xð Þ5 2ΔFcosθ1y0 2 ΔFsinθ1 1ΔFcosθ1tanθ2 2
qlb

2

� �
x2

qx2

2
(2.9)

For a# x# lb
2
range,

M2 xð Þ52ΔFcosθ1tanθ2a1
qlbx

2
2

qx2

2
(2.10)

Figure 2.4 The beam with simple supports and two V-shaped cable patterns.
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Because the structure and the loading both are symmetric, the equation of total

strain energy is obtained as below:

U5 23
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Using the least work method, the pretensioning force’s increment of the cable

(ΔF) is determined as below [21]:

ΔF5

2 2qlba
3cosθ1tanθ2 2 12qlby0a

2cosθ1 1 ql3bacosθ1tanθ2
2 3qa4sinθ1 1 qa4cosθ1tanθ2 1 8qy0a

3cosθ1 1 4qlba
3sinθ1

4

24y20acos
2θ1 2 4a3cos2θ1tan2θ2 1 4a3sinθ1cosθ1tanθ2 2 12y0a

2sinθ1cosθ1
2 12y0a

2cos2θ1tanθ2 1 3lba
2cos2θ1tan2θ2 1 2a3sin2θ1

1
6ðEIÞb
ðAEÞc

lc1 1
lc2cos

2θ1
cos2θ2

2
4

3
51

12Iblbcos
2θ1

Ab

0
BBBB@

1
CCCCA

(2.12)

where lc1 and lc2 present the lengths of the first and the second inclined cables,

c1 and c2, respectively. Meanwhile, θ1 presents the angle between the first inclined

cable and horizontal axis, and θ2 is used for the angle between the second inclined

cable and horizontal axis.
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2.3.4 The beam with fixed supports and the V-shaped cable
pattern

The increment of the cable’s pretensioning force equals ΔF in the fixed supported

beam along with the V-shaped cable pattern (Fig. 2.5). Consequently, the axial

force of the beam equals ΔFcosθ. Moreover, using the least work method, since

there are two degrees of indeterminacy (the increment of the cable’s pretensioning

force, ΔF, and the fixed end moment, M) in the beam with fixed supports and V-

shaped cable pattern, the total strain energy equation should be differentiated to

both ΔF and M and then equals zero to obtain ΔF and M. Therefore the bending

moment for half of the beam with fixed supports and the V-shaped cable pattern

subjected to uniform distributed loading can be obtained by the following relation

[20] in order to determine the total strain energy:

For 0# x# lb
2
range,

M xð Þ52M1ΔFcosθy0 2 ΔFsinθ2
qlb

2

� �
x2

qx2

2
(2.13)

Because the structure and the loading both are symmetric, the relation of total

strain energy is obtained as below:

U5 23
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Using the least work method, the fixed end moment (M) and the pretensioning

force’s increment of the cable (ΔF) are calculated using the following equations [20]:

M5
ql2b
12

2
ΔFlbsinθ

4
1ΔFy0cosθ (2.15)

ΔF5
ql4bsinθ

4 l3bsin
2θ1 96ðEIÞblc

ðAEÞc 1 48Iblbcos2θ
Ab

� � (2.16)
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As Fig. 2.5 presents, if sinθ5 2y0
lc

and cosθ5 lb
2lc

were replaced in Eq. (2.16), the

fixed end moment (M) would be equal to
ql2

b

12
related to the moment at a fixed end in

steel beam without cable.

2.3.5 The beam with fixed supports and the modified V-shaped
cable pattern

In the beam with fixed supports and the modified V-shaped cable pattern (Fig. 2.6),

ΔF presents the increase in the cable’s pretensioning force in the inclined parts.

Pretensioning force of the cable in the horizontal part should be ΔFcosθ to main-

tain a constant bending moment at the cable inclination change region. Therefore

the beam’s axial force equals ΔFcosθ. Moreover, the beam with fixed supports and

the modified V-shaped cable pattern has two degrees of indeterminacy (the preten-

sioning force’s increment of the cable, ΔF, and the fixed end moment, M). Thus

the bending moment for half of the beam with fixed supports and the modified V-

shaped cable pattern subjected to uniform distributed loading is determined by the

following relations [20] to obtain the total strain energy.

For 0# x# a range,

M1 xð Þ52M1ΔFcosθy0 2 ΔFsinθ2
qlb

2

� �
x2

qx2

2
(2.17)

For a# x# lb
2
range,

M2 xð Þ52M2ΔFcosθy0 1
qlbx

2
2

qx2

2
(2.18)

Because the structure and the loading both are symmetric, the total strain energy

can be obtained as below:

Figure 2.5 The beam with fixed supports and the V-shaped cable pattern.
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(2.19)

Using the least work method, the fixed end moment (M) and the increment of

the cable’s pretensioning force (ΔF) are obtained as below [20]:

M5
ql2b
12

2
ΔFa2sinθ

lb
1

4ΔFy0acosθ
lb

2ΔFy0cosθ (2.20)

ΔF5
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(2.21)

In Eq. (2.21), if the length of horizontal cable (lb 2 2a, presented in Fig. 2.6)

moved toward zero, Eq. (2.16) would be acquired related to the V-shaped cable

pattern.

Figure 2.6 The beam with fixed supports and the modified V-shaped cable pattern.
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2.3.6 The beam with fixed supports and two V-shaped cable
patterns

In the beam with fixed supports and two V-shaped cable patterns (Fig. 2.7), the incre-

ment of the pretensioning force in the cable equals ΔF in the first inclined part (C1)

and equals ΔFcosθ1
cosθ2

in the second inclined part (C2) to maintain a constant bending

moment at the cable inclination change region. Accordingly, the axial force of the beam

equals 2ΔFcosθ1. Furthermore, the beam with fixed supports and two V-shaped cable

patterns has two degrees of indeterminacy (the increment in the pretensioning force of

the cable, ΔF, and the fixed end moment, M). Therefore the bending moment for half

of the beam with fixed supports and two V-shaped cable patterns subjected to a uniform

distributed loading is obtained as below [21] to determine the total strain energy:

For 0# x# a range,

M1 xð Þ52M1 2ΔFcosθ1y0 2 ΔFsinθ1 1ΔFcosθ1tanθ2 2
qlb
2
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x2

qx2

2
(2.22)

For a# x# lb
2
range,

M2 xð Þ52M2ΔFcosθ1tanθ2a1
qlbx

2
2

qx2

2
(2.23)

Because the structure and the loading both are symmetric, the total strain energy

is determined using the relation as below:
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Using the least work method, the fixed end moment (M) and the increment of

the pretensioning force in the cable, ΔF, are determined as follows [21]:

M5
ql2b
12
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As Fig. 2.7 shows, if sinθ1 5 2y0ffiffiffiffiffiffiffiffiffiffiffiffi
a2 1 4y2

0

p , cosθ1 5 affiffiffiffiffiffiffiffiffiffiffiffi
a2 1 4y2

0

p , and tanθ2 5 2y0
lb 2 a

were

replaced in Eq. (2.25), the fixed end moment would be equal to
ql2

b

12
related to the

fixed end moment in the steel beam without cable.

2.3.7 The cantilever beam along with the cables

Since the steel cable inclination is constant, the increment in the pretensioning force of

the cable equals ΔF in the cantilever beam along with the cables (Fig. 2.8).

Accordingly, the axial force of the beam equals ΔFcosθ. Therefore the bending

moment of the cantilever beam along with the cables under uniform distributed loading

is achieved by the following relation [22] to calculate the total strain energy.

For 0# x# lb range,

M xð Þ5ΔFcosθy0 2
ql2b
2

2 ΔFsinθ2 qlbð Þx2 qx2

2
(2.27)

Figure 2.7 The beam with fixed supports and two V-shaped cable patterns.
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The total strain energy is determined through:
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Using the least work method, the increase in the pretensioning force of the cable

(ΔF) can be determined as below [22]:

ΔF5
2 ql4bsinθ1 4ql3by0cosθ

8 l3bsin
2θ1 3lby

2
0cos

2θ2 3l2by0sinθcosθ1
3 EIð Þblc
AEð Þc 1 3Iblbcos2θ

Ab

� � (2.29)

2.4 Deflection

Using the method of virtual work and neglecting the effects of shear and axial

force, the beams’ deflection with different types of support both without cable and

with different cable patterns can be determined by using the method of virtual

work. Maximum deflection of the beams with simple supports, fixed supports, and

cantilever beams without cable subjected to uniform distributed load q with length

and flexural rigidity of lb and (El)b, respectively, is obtained as follows:

The maximum deflection of beams with simple supports without cable:

Δmid 5
5ql4b

384ðEIÞb
(2.30)

Figure 2.8 Cantilever beam along with cables.
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The maximum deflection of beams with fixed supports without cable:

Δmid 5
ql4b

384ðEIÞb
(2.31)

The maximum deflection of cantilever beams without cable:

Δend 5
ql4b

8ðEIÞb
(2.32)

2.4.1 Maximum deflection of the beam with simple supports
and the V-shaped cable pattern

Due to the existed symmetry in the structure and loading (as presented in Fig. 2.2),

the bending moment for half of the beams with simple supports and the V-shaped

cable pattern subjected to real loading with the cable force equal to F is calculated

as follows [20]:

For 0# x# lb
2
range:

M xð Þ5Fcosθy0 2 Fsinθ2
qlb
2

� �
x2

qx2

2
(2.33)

where F5Fpt 1ΔF presents the total cable force; Fpt is used for the initial pre-

tensioning force of the cable; and ΔF shows the increment of the pretensioning

force in the cable.

In the analysis of the structure subjected to virtual loading, the constraints can

be omitted to make a stable determinate structure in case the system was indetermi-

nate. In the system of beam and cable, the cable is a redundant constraint.

Therefore it can be removed. Thus the bending moment for half of the beams with

simple supports under virtual loading (Fig. 2.9) is calculated as follows:

For 0# x# lb
2
range:

m xð Þ5 x

2
(2.34)

Figure 2.9 Simply supported beam under virtual loading.
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Using the method of virtual work, the maximum deflection of the simply sup-

ported beam along with the V-shaped cable pattern is obtained through [20] as

below:

13Δ5
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dx5
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8


 � (2.35)

2.4.2 Maximum deflection of the beam with simple supports
and the modified V-shaped cable pattern

Due to the existed symmetry in the structure and loading (as presented in Fig. 2.3),

if the cable force was equal to F in the inclined parts and equal to Fcosθ in the hor-

izontal part, the bending moment for half of the beam with simple supports and the

modified V-shaped cable pattern subjected to a real loading is calculated through

[20] as below:

For 0# x# a range,
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(2.36)
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2
2

qx2

2
(2.37)

Using the virtual work method, the maximum deflection of the beam with simple

supports and the modified V-shaped cable pattern is calculated using Eq. (2.34) as

follows [20]:
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(2.38)
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In Eq. (2.38), if the length of horizontal cable (lb 2 2a, as observed in Fig. 2.3)

moved toward zero, Eq. (2.35) would be acquired related to the V-shaped cable

pattern.

2.4.3 Maximum deflection of the beam with simple supports
and two V-shaped cable patterns

Because the structure and the loading both are symmetric (as demonstrated in

Fig. 2.4), if the cable force was equal to F in the first inclined part (C1) and equal

to Fcosθ1
cosθ2

in the second inclined part (C2), the bending moment for half of the beam

with simple supports and two V-shaped cable patterns subjected to a real loading

would be calculated through [21] as below:

For 0# x# a range,
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(2.39)

For a# x# lb
2
range,
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qx2

2
(2.40)

Using the virtual work method, the maximum deflection of the beam with simple

supports and two V-shaped cable patterns is determined using Eq. (2.34) as follows

[21]:
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(2.41)

2.4.4 Maximum deflection of the beam with fixed supports and
the V-shaped cable pattern

Due to the symmetry of the structure and loading (as showed in Fig. 2.5), if the

cable force was equal to F, and the fixed end moment (M) was equal to
ql2

b

12
, the

bending moment for half of the beam with fixed supports and the V-shaped cable

pattern subjected to real loading could be obtained as below [20]:
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The bending moment for half of the beam with fixed supports subjected to a vir-

tual loading (Fig. 2.10) is calculated as follows:

For 0# x# lb
2
range,

m xð Þ5 x

2
2

lb

8
(2.43)

Using the virtual work method, the maximum deflection of the beam with fixed sup-

ports and the V-shaped cable pattern is calculated using Eq. (2.43) as follows [20]:
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2.4.5 Maximum deflection of the beam with fixed supports and
the modified V-shaped cable pattern

If the cable force equals F in the inclined part and equals Fcosθ in the horizontal

part, the fixed end moment (M) is determined by the following relation (as dis-

played in Section 2.3.5):

M5
ql2b
12

2
Fa2sinθ

lb
1

4Fy0acosθ
lb

2Fy0cosθ (2.45)

Because both the structure and the loading are symmetric (Fig. 2.6), the bending

moment for half of the beam with fixed supports and the modified V-shaped cable

pattern subjected to a real loading is calculated through [20] as below:

Figure 2.10 Fixed supported beam under virtual loading.
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Employing the virtual work method, the maximum deflection of the beam with

fixed supports and the modified V-shaped cable pattern is obtained using Eq. (2.43)

as follows [20]:
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In Eq. (2.48), if the length of horizontal cable (lb 2 2a, as observed in Fig. 2.6)

approached zero, Eq. (2.44) would be acquired related to the V-shaped cable

pattern.

2.4.6 Maximum deflection of the beam with fixed supports and
two V-shaped cable patterns

Due to the existed symmetry in the structure and loading (as presented in Fig. 2.7),

if the cable force was equal to F in the first inclined part (C1) and was equal to
Fcosθ1
cosθ2

in the second inclined part (C2), and the fixed end moment (M) was equal to
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ql2
b

12
, the bending moment for half of the beam with fixed supports and two V-shaped

cable patterns subjected to real loading could be calculated through [21] as below:
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Utilizing the virtual work method, the maximum deflection of the beam with

fixed supports and two V-shaped cable patterns is obtained using Eq. (2.43) as fol-

lows [21]:
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2.4.7 Maximum deflection of cantilever beam along with cables

If the cable force was equal to F, the bending moment for the cantilever beam

along with cables under real loading would be calculated as follows [22]:
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The bending moment for the cantilever beam under virtual loading (Fig. 2.11) is

calculated as follows:

For 0# x# lb range,

M xð Þ5 x2 lb (2.53)

Using the method of virtual work, the maximum deflection of the cantilever

beam along with cables can be obtained using Eq. (2.53) as follows [22]:
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2.5 Finite element modeling of I-shaped symmetric
pretensioned steel beams with steel cables

Using the method of load and resistance factor design, the beams with simple sup-

ports, fixed supports, and cantilever beams were designed using AISC360�10 code

[26]. The maximum deflections of the beam with simple supports and cantilever

beams subjected to dead load and live load exceed the allowable range ( 1
240

of the

beam length). However, the maximum deflection of the fixed supported beam meets

the code’s limitation because of the high stiffness. Therefore the beam with fixed

supports was considered to investigate the cable’s effects. Table 2.1 presents the

properties of the simply supported, fixed supported, and cantilever beams. It is

momentous to be mentioned that the loading span is 1.5 m long, and the dead load

and live load are 450 and 200 kg m22, respectively [20�22].

Figure 2.11 Cantilever beam under virtual loading.
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As Fig. 2.12 shows, the simply supported, fixed supported, and cantilever

beams with different cable patterns subjected to uniform distributed loading are

modeled employing the Abaqus FE software. The shell and truss elements are

used to model the beams and cables, respectively, in three-dimensional space.

The weld’s connector provided a perfect connection between the cable and the

top flange of the beam nodes. Besides, the coupling constraint is employed to

model the behavior of the deviator. The uniform distributed loading and the

cable’s pretensioning initial force applied to the models using the surface

Table 2.1 Properties of beams with various support conditions.

Type of beam Cross section

of the beam

Span

length

(m)

Maximum

deflection (cm)

Allowable

deflection (cm)

Simply supported

beam

IPE400 12 5.691 5

Fixed supported

beam

IPE330 12 2.237 5

Cantilever beam IPB120 2 1.128 0.833

Figure 2.12 Finite element models: (A) the beam with simple or fixed supports with the V-

shaped cable pattern; (B) the beam with simple or fixed supports with the modified V-shaped

cable pattern; (C) the beam with simple or fixed supports with two V-shaped cable patterns;

(D) the cantilever beam along with the cables.
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traction type and predefined field tool, respectively. Furthermore, static general

assessment of Abaqus FE software is employed to evaluate the systems of beam

and cable. Fig. 2.13 represents the cables’ locations in the beams with various

support conditions [20�22].

The results of the modeling of steel beams without cable and with various cable

patterns are compared with each other to investigate the behavior of the systems of

beam and cable. The beams’ material is steel ST-37 with yield stress of 240 MPa,

elasticity modulus of 200 GPa, Poisson’s ratio of 0.3, and density of 7850 kg m23.

The steel cable’s material is determined based on ASTM A416M standard [27].

7-wire strand [grade 270 (1860)] is regarded for the steel cable with low relaxation,

minimum ultimate strength (fpu) of 270 ksi (1860 MPa), minimum yield strength at

Figure 2.13 The locations of cables in the beams: (A) the beam with simple supports and

the V-shaped cable pattern; (B) the beam with simple supports and the modified V-shaped

cable pattern; (C) the beam with simple supports and two V-shaped cable patterns; (D) the

beam with fixed supports and the V-shaped cable pattern; (E) the beam with fixed supports

and the modified V-shaped cable pattern; (F) the beam with fixed supports and two V-shaped

cable patterns; (G) the cantilever beam along with the cables.

40 Seismic Evaluation, Damage, and Mitigation in Structures



1% extension of 52.74 kip (234.6 kN), elasticity modulus of 28.53 106 psi

(196501.8 MPa), and Poisson’s ratio of 0.3 [20�22].

Since the horizontal component of the cable force produces axial forces in steel

beams, they are designed as beam-columns based on AISC360�10 code to consider

simultaneous effects of axial force and bending moment. It should be noted that the

lateral braces are considered to prevent the beam from buckling about the longitudi-

nal axis [20�22].

2.6 Calibration of theoretical relations with numerical
models

Based on the ASTM A416 standard, the cross-sectional areas of the steel cables are

considered as presented in Table 2.2. Moreover, the initial pretensioning stress of

the cable is 600 MPa. Therefore the maximum deflections of the beams with simple

and fixed supports, and the cantilever beam with and without various cable patterns

acquired from numerical models are compared to those of theoretical equations in

Table 2.3 [20�22] to validate the theoretical relations.

The beam haunch cannot be modeled because the beam was modeled as shell

elements in Abaqus FE software. Therefore, as Table 2.3 presents, the maximum

deflections of the beam without cable acquired from numerical models are to some

extent more than those resulted from theoretical relations. As a result, reducing the

moment of inertia of beam sections in the numerical models increases the maxi-

mum deflections of the beams without cables. Besides, the beams’ maximum

deflections along with different cable patterns acquired from numerical models are

very close to the results from theoretical relations. In fact, in the numerical models,

the errors, which occurred while calculating the maximum deflection of the beams

along with different cable patterns related to the increase of the pretensioning force

in the cable and the maximum deflection of the beams without cables caused by the

uniform distributed loading, neutralize the effects of each other. It should be noted

that the cable force causes a bending moment in the opposite direction of the bend-

ing moment caused by the uniform distributed loading. Therefore the beams’ maxi-

mum deflections with varying conditions of support compared to the beams without

cables are reduced by using different cable patterns and lead to satisfying the code’s

allowable limit. Based on the obtained results (as presented in Table 2.3), the most

Table 2.2 Cross-sectional area of cables for beams with different types of supports.

Type of beam Simply

supported

beam

Fixed

supported

beam

Cantilever

beam

Total cross-sectional area of steel

cable (mm2)

560 395 297
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Table 2.3 Maximum deflections acquired from numerical models and theoretical relations.

Type of beam Maximum deflection of

beam calculated by

modeling (cm)

Maximum deflection of

beam calculated by

theoretical equations (cm)

Allowable

deflection (cm)

Simply supported

beam

Without cable 5.877 5.691 5

With V-shaped cable pattern 4.898 4.851

With modified V-shaped

cable pattern

3.768 3.833

With two V-shaped cable

patterns

4.270 4.302

Fixed supported

beam

Without cable 2.381 2.237 5

With V-shaped cable pattern 1.253 1.258

With modified V-shaped

cable pattern

1.122 1.140

With two V-shaped cable

patterns

0.521 0.622

Cantilever beam Without cable 1.151 1.128 0.833

With cable 0.685 0.783



appropriate cable patterns for reducing the maximum deflection are the modified

V-shaped cable pattern, and two V-shaped cable patterns in the beams with simple

and fixed supports, respectively [20�22].

2.7 The effects of horizontal cable length on the
maximum deflections of the beams with simple and
fixed supports with the modified V-shaped cable
pattern

Figs. 2.14 and 2.15 show the maximum deflections in the beams with simple and

fixed supports with the modified V-shaped cable pattern. The deflections are plotted

based on the horizontal cable length (lb 2 2a, as observed in Figs. 2.3 and 2.6) accord-

ing to Eqs. (2.38) and (2.48), Table 2.1 for the cross section of the beams with simple

and fixed supports, and Table 2.2 for the cross section of steel cable [20].

As Figs. 2.14 and 2.15 show, when the horizontal cable lengths (lb 2 2a, as observed

in Figs. 2.3 and 2.6) are zero, the maximum deflections of the beams with simple and

fixed supports with the modified V-shaped cable pattern equal 4.851 and 1.258 cm,

respectively, related to the V-shaped cable pattern in Table 2.3. By increasing the hori-

zontal cable length, the maximum deflections reduce. Finally, the maximum deflections

in the beams with simple and fixed supports with the modified V-shaped cable pattern

for the horizontal cable lengths of 9.4 and 3 m are minimums as 3.121 and 1.127 cm,

respectively. As the horizontal cable lengths increase, the maximum deflections increase

as well. When the horizontal cable lengths equal beam lengths, the maximum deflections

of the beams with simple and fixed supports with the modified V-shaped cable pattern

equal 5.691 and 2.237 cm, respectively, related to the beams without cables in Table 2.3.
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Figure 2.14 Maximum deflections of the beam with simple supports and the modified

V-shaped cable pattern for various horizontal cable lengths.
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The explanation is that the force of the horizontal cable should equal the horizontal com-

ponent of the inclined cable force to maintain a constant amount of bending moment at

the cable inclination change region. Hence, in this particular condition, when the horizon-

tal component of the vertical cable force equals zero, the horizontal cable force equals

zero as well. Furthermore, since the length of the vertical cable (the distance between

two flanges of the beam) remains constant, no force is produced in the length of the

cable. Generally, it can be concluded that when the length of the horizontal cable equals

beam length, the cable does not have any influence on the behavior of the beam.

Therefore the maximum deflection of the beam without cables is obtained [20].

2.8 The effects of length a on the maximum deflections
of the beams with simple and fixed supports with
two V-shaped cable patterns

In Figs. 2.16 and 2.17, the maximum deflections of the beams with simple and

fixed supports with two V-shaped cable patterns are plotted based on the length a,

as showed in Figs. 2.4 and 2.7, for half of the beam according to Eqs. (2.41) and

(2.51), Table 2.1 for the cross section of the beams with simple and fixed supports,

and Table 2.2 for the steel cable’s cross section [21].

As shown in Figs. 2.16 and 2.17, when the length a (as observed in Figs. 2.4 and

2.7) is zero, the maximum deflections of the beams with simple and fixed supports

with two V-shaped cable patterns equal 5.691 and 2.237 cm, respectively, related to

the beams without cables in Table 2.3 (the reason was explained in Section 2.7).

Finally, when the length a equals half-length of the beam, the maximum deflections

of the beams with simple and fixed supports with two V-shaped cable patterns are

minimums of 4.016 and 0.286 cm, respectively [21].
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Figure 2.15 Maximum deflections of the beam with fixed supports and the modified V-

shaped cable pattern for various horizontal cable lengths.

44 Seismic Evaluation, Damage, and Mitigation in Structures



2.9 Comparison of bending moment diagrams of beams
with and without cables

The bending moment diagrams of the simply supported, fixed supported, and canti-

lever beams without cable and with various cable patterns are drawn according to

Table 2.1 for the cross section of simply supported and fixed supported beams and

also, Table 2.2 for the cross section of steel cable. The graphs were compared with

each other then. Furthermore, in those diagrams, the initial pretensioning stress of

the cable is 600 MPa.
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Figure 2.17 Maximum deflections of the beams with fixed supports and two V-shaped cable

patterns for various values of length a.
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Figure 2.16 Maximum deflections of the beams with simple supports and two V-shaped

cable patterns for various values of length a.
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2.9.1 Comparison of bending moment diagrams of simply
supported beams without cables and with cables

In Fig. 2.18, the diagrams of bending moments for the beams with simple supports

and either without cable or with various cable patterns (V-shaped cable pattern,

modified V-shaped cable pattern, and two V-shaped cable patterns) are drawn

according to Eqs. (2.33), (2.36), (2.37), (2.39), and (2.40) [20,21].

As observed in Fig. 2.18, the bending moment of the beams with simple supports

with various cable patterns is increased compared to those without cables from each

support to the bending moment location being equal to those of beams with simple

supports and without cables and then is reduced between two equivalent bending

moment locations of the beams with simple supports and various cable patterns,

and the beams with simple supports but without cables. Thus it is inferred that

should the cables start from the neutral surface at each support, the bending

moment of the beam with simple supports and various cable patterns will not

increase compared to the simply supported beam without cables [20,21].

2.9.2 The comparison of the bending moment diagrams of the
beams with fixed supports, with and without cables

In Fig. 2.19, the bending moment diagrams of the beams with fixed supports

without cable and with various cable patterns (V-shaped cable pattern, modified

V-shaped cable pattern, and two V-shaped cable patterns) are drawn according to

Eqs. (2.42), (2.46), (2.47), (2.49), and (2.50) [20,21].
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Figure 2.18 Bending moment diagrams of the beams with simple supports either without

cable or with various cable patterns.
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As Fig. 2.19 presents, the bending moment of the beams with fixed supports and

various cable patterns is reduced in comparison with those of fixed supported

beams without cables [20,21].

2.9.3 The comparison of the diagrams of the bending moments
of cantilever beams with and without cables

In Fig. 2.20, the diagrams of the bending moments of cantilever beams with and

without cables are drawn according to Eq. (2.52) [22].

As observed in Fig. 2.20, the bending moment of the cantilever beam with cables

is reduced in comparison to that of the cantilever beam without cables from each

support to the bending moment location being equal to that of cantilever beam

without cables and after that is augmented. Thus it is inferred that should the cables

lead to the neutral surface at the free end, the bending moment of the cantilever

beam with cables will not increase in comparison to the cantilever beam without

cables [22].

2.10 Conclusion

In this research, the steel cables are used to control the maximum deflection of long

steel beams under uniform distributed loadings. In spite of proper design subjected

to bending and shear the maximum deflections of the beams are not within the
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Figure 2.19 The bending moment diagrams of the beams with fixed supports without cable

and with various cable patterns.
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allowable range due to their distinguishing characteristics such as high tensile

strength, small cross section, and low weight. The theoretical relations were derived

to determine the increment of the pretensioning force in the cable and the maximum

deflection in the beams with simple and fixed supports and the cantilever beam

with various cable patterns. The results compared with the results of numerical

models employing the Abaqus FE software. The most important results of this

research can be summarized as below:

1. Although the fixed end moment (M) in the beams with fixed supports and the V-shaped

cable pattern and two V-shaped cable patterns is equal to that of the beam without cable,

(
ql2

b

12
), the fixed end moment in the beam with fixed supports and the modified V-shaped

cable pattern is dependent on the external loading and the total cable force.

2. Based on the results of numerical models, the theoretical equations can satisfactorily pre-

dict the maximum deflections of beams with different support conditions and cable

patterns.

3. Utilizing different cable patterns reduces the beams’ maximum deflections with various

support conditions compared to the beams without cables and satisfies the code’s allow-

able limit.

4. The most appropriate cable patterns to reduce the maximum deflection are the modified

V-shaped cable pattern and two V-shaped cable patterns in the simply supported and fixed

supported beams, respectively.

5. Based on the obtained results from the investigation of the effects of the horizontal

cable lengths on the maximum deflection, when the horizontal cable lengths are zero,

the maximum deflections in the beams with simple and fixed supports and the

V-shaped cable pattern are acquired. By increasing the horizontal cable length, the

maximum deflection is reduced. Eventually, the maximum deflections for specific hor-

izontal cable lengths are minimum. After that, as the horizontal cable lengths increase,

the maximum deflections increase too. When the horizontal cable lengths equal beam

lengths, the maximum deflections in the beams with simple and fixed supports without

cables are acquired.
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Figure 2.20 Bending moment diagrams of cantilever beams with and without cables.
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6. Based on the obtained results from the investigation of the influences of the length a on

the maximum deflection, when the length a is zero, the maximum deflections in the

beams with simple and fixed supports without cables are acquired. Finally, when the

length a equals half-length of the beam, the maximum deflections in the beams with sim-

ple and fixed supports and two V-shaped cable patterns are minimums.

7. According to the bending moment diagrams, the bending moments of the simply sup-

ported, fixed supported, and cantilever beams with various cable patterns are reduced

compared to those of beams without cables.
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