WOODHEAD PUBLISHING SERIES IN CIVIL AND STRUCTURAL ENGINEERING

SEISMIC EVALUATION, DAMAGE, AND MITIGATION IN STRUCTURES

Edited by IMAN MANSOURI PAUL O. AWOYERA

Contents

List of contributors About the editors Preface				
Part 1 evaluati	Introduction to earthquake-induced damage ion and repairs in structures	1		
1 Dan rein Julic 1.1 1.2 1.3 Ack Refe	mage indexes for performance assessment of low-riseforced concrete wallsan Carrillo, Orlando Arroyo, and Sergio M. AlcocerIntroductionPerformance variables1.2.1Damage index based on residual cracking1.2.2Damage index based on a fractal dimension of cracking1.2.3Damage index based on stiffness degradation1.2.4Damage index based on the Park and Ang approachFinal remarksnowledgments	3 3 4 4 6 9 13 15 15 15		
2 Con cabl Nota 2.1 2.2 2.3	 trolling the deflection of long steel beams using pretensioned les er Fanaie and Fatemeh Partovi ations Introduction The pretensioned symmetric I-shaped steel beams with steel cables The increment of the pretensioning force in the cable under external loading 2.3.1 The beam with simple supports and the V-shaped cable pattern 2.3.2 The beam with simple supports and the modified V-shaped cable pattern 2.3.3 The beam with simple supports and two V-shaped cable pattern 	17 17 17 20 21 21 21 22 24		

	2.3.4	The beam with fixed supports and the V-shaped	
		cable pattern	26
	2.3.5	The beam with fixed supports and the modified	
		V-shaped cable pattern	27
	2.3.6	The beam with fixed supports and two V-shaped	
		cable patterns	29
	2.3.7	The cantilever beam along with the cables	30
2.4	Defle	ction	31
	2.4.1	Maximum deflection of the beam with simple supports	
		and the V-shaped cable pattern	32
	2.4.2	Maximum deflection of the beam with simple supports	
		and the modified V-shaped cable pattern	33
	2.4.3	Maximum deflection of the beam with simple supports	
		and two V-shaped cable patterns	34
	2.4.4	Maximum deflection of the beam with fixed supports	
		and the V-shaped cable pattern	34
	2.4.5	Maximum deflection of the beam with fixed supports	
		and the modified V-shaped cable pattern	35
	2.4.6	Maximum deflection of the beam with fixed supports	
		and two V-shaped cable patterns	36
	2.4.7	Maximum deflection of cantilever beam along with cables	37
2.5	Finite	element modeling of I-shaped symmetric pretensioned	•
26	steel t	beams with steel cables	38
2.6	Calibi	fation of theoretical relations with numerical models	41
2.7	I ne e	frects of norizontal cable length on the maximum	
		adified V should ash a nettern	42
20	The m	forte of length a on the maximum deflections of the beams	43
2.0	The e	imple and fixed supports with two V shaped cable petterns	44
20	Com	aniple and fixed supports with two v-shaped cable patterns	44
2.9	witho	ut cables	45
	291	Comparison of bending moment diagrams of simply	Ъ
	2.7.1	supported beams without cables and with cables	46
	292	The comparison of the bending moment diagrams of	40
	2.7.2	the beams with fixed supports with and without cables	46
	293	The comparison of the diagrams of the bending moments	10
	2.7.5	of cantilever beams with and without cables	47
2.10	Concl	usion	47
Refer	ences		49
Cabl	e-cyline	der bracing system: theoretical background,	
struc	tural b	ehavior, and seismic design coefficients	51
Nade	r Fanai	ie and Ebrahim Afsar Dizaj	
3.1	Introd	luction	51
3.2	Theor	etical equilibrium relationships	53

3

	3.3	Influence of cylinder size on behavior of the cable-cylinder					
		bracing system	58				
		3.3.1 Cylinder length	58				
		3.3.2 Cylinder diameter	60				
	3.4	Influence of prestressing force of cables on the behavior of the					
		cable-cylinder bracing system	61				
	3.5	Finite element modeling and validation	64				
		3.5.1 Verification of theoretical relationships	64				
		3.5.2 Influence of rigidity of the cylinder	65				
	3.6	Nonlinear time-history analysis	65				
		3.6.1 Case-study structures	65				
		3.6.2 Ground motions	69				
		3.6.3 Results and discussion	69				
	3.7	Proposed fiber element modeling technique and validation	72				
	3.8	Nonlinear dynamic analysis	78				
	3.9	Response modification factor	79				
	3.10	Influence of structural details on response modification factor	80				
	3.11	Sensitivity analysis	83				
	3.12	Proposing an equation for the response modification factor of					
		cable-cylinder bracing system	93				
	3.13	Conclusion	94				
	Refe	rences	95				
4	Met	hod of seismic resistance design—case studies	99				
	Jiuli	lin Bai, Shuangshuang Jin, and Huiming Chen					
	4.1	Introduction					
	4.2	Method of seismic resistant design: reinforced concrete moment					
		frames	99				
		4.2.1 Overview of the design approaches of reinforced concrete					
		frames	99				
		4.2.2 Improved performance-based plastic design method for					
		reinforced concrete moment frames	100				
		4.2.3 Code-based damage control design	108				
	4.3	Method of seismic resistance design: buckling-restrained					
		brace-RCF systems	113				
		4.3.1 Buckling-restrained braces	114				
		4.3.2 Buckling-restrained brace-to-frame connection	117				
		4.3.3 Dual structural system for buckling-restrained brace-RCFs	119				
		4.3.4 Performance-based plastic design of buckling-restrained					
		brace-RCF systems	119				
		4.3.5 Assessing and quantifying seismic performance of					
		buckling-restrained brace-RCFs	122				
		4.3.6 Optimal seismic resistance design parameters	126				
	4.4	Method of seismic resistance design: steel plate shear					
		wall-RCF systems	129				

		4.4.1	Overview of the dual structural system for steel plate	
			shear wall-RCFs	129
		4.4.2	PBPD method for steel plate shear wall-RC moment	
			frames	130
		4.4.3	Design examples	134
		4.4.4	Assessing and quantifying seismic performance of	
			steel plate shear wall-RCFs	135
	4.5	Concl	usion	138
	Refe	erences		139
5	Pro	babilist	ic seismic analysis of reinforced concrete frames	
	usin	g artifi	cial intelligence-enhanced mechanical model	143
	Ниа	n Luo a	und Stephanie German Paal	
	5.1	Introd	uction	143
	5.2	Metho	odology	145
		5.2.1	Monte Carlo-based artificial intelligence-enhanced	
			shear building model	145
	5.3	Illustr	ative example	147
		5.3.1	Description of selected building	148
		5.3.2	Numerical results	149
	5.4	Concl	usion	153
	Refe	erences		154
6	Nov	el techr	ique of performance-based optimum deign of	
6	Nov bucl	el techr kling-re	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization	157
6	Nov bucl algo	el techr kling-re rithms	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization	157
6	Nov bucl algo <i>B. N</i>	el techn kling-re rithms Vouhi, F	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization . Rezazadeh, S.M. Saraee, and Talatahari	157
6	Nov buck algo B. N 6.1	el techr kling-re rithms Vouhi, F Introd	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction	157
6	Nov bucl algo <i>B. N</i> 6.1 6.2	el techr kling-re rithms Jouhi, F Introd Buckl	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames	157 157 158
6	Nov buck algo B. N 6.1 6.2 6.3	el techn kling-re rithms <i>Vouhi, F</i> Introd Buckl Utilize	tique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms	157 157 158 159
6	Nov bucl algo <i>B. N</i> 6.1 6.2 6.3	el techri kling-re rithms <i>Jouhi, F</i> Introd Buckl Utilize 6.3.1	tique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm	157 157 158 159 160
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3	el techri kling-ree rithms <i>Vouhi, F</i> Introd Buckl Utilize 6.3.1 6.3.2	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding	157 157 158 159 160
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3	el techri kling-re rithms <i>louhi, F</i> Introd Buckl Utilize 6.3.1 6.3.2	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization)	157 157 158 159 160 162
6	Nov bucl algo <i>B. N</i> 6.1 6.2 6.3	el techri kling-re rithms <i>louhi, F</i> Introd Buckl Utilize 6.3.1 6.3.2	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies	157 157 158 159 160 162
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3	el techn kling-re rithms louhi, F Introd Buckl Utilize 6.3.1 6.3.2 6.3.3	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization)	157 157 158 159 160 162 163
6	Nov bucl algo <i>B. N</i> 6.1 6.2 6.3	el techri kling-ree rithms louhi, F Introd Buckl Utilize 6.3.1 6.3.2 6.3.3 6.3.4	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding	157 157 158 159 160 162 163
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3	el techri kling-ree rithms louhi, F Introd Buckl Utiliza 6.3.1 6.3.2 6.3.3 6.3.4	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization)	157 157 158 159 160 162 163 163
6	Nov bucl algo <i>B. N</i> 6.1 6.2 6.3	el techri kling-ree rithms Vouhi, F Introd Buckl Utilize 6.3.1 6.3.2 6.3.3 6.3.4 Struct	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis	157 157 158 159 160 162 163 163 163
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3 6.4	el techri kling-ree rithms louhi, F Introd Buckl Utilize 6.3.1 6.3.2 6.3.3 6.3.4 Struct Proble	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis em formulation	157 157 158 159 160 162 163 163 163 165 166
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3 6.4	el techri kling-re rithms louhi, F Introd Buckl Utilize 6.3.1 6.3.2 6.3.3 6.3.3 6.3.4 Struct Proble 6.5.1	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis em formulation Objective function	157 158 159 160 162 163 163 163 165 166 166
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3 6.3	el techri kling-re rithms <i>louhi, F</i> Introd Buckl Utilize 6.3.1 6.3.2 6.3.3 6.3.4 Struct Proble 6.5.1 6.5.2	ique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis em formulation Objective function Design constraints	157 158 159 160 162 163 163 163 165 166 166 166
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3 6.4 6.5 6.6	el techri kling-ree rithms louhi, F Introd Buckl Utiliza 6.3.1 6.3.2 6.3.3 6.3.4 Struct Proble 6.5.1 6.5.2 Evalus	Aique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis em formulation Objective function Design constraints ation of the colliding bodies optimization algorithms	157 158 159 160 162 163 163 163 165 166 166 166 167 168
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3 6.3 6.4 6.5 6.6 6.7	el techri kling-ree rithms louhi, F Introd Buckl Utilize 6.3.1 6.3.2 6.3.3 6.3.4 Struct Proble 6.5.1 6.5.2 Evalu: Design	Aique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis em formulation Objective function Design constraints ation of the colliding bodies optimization algorithms n examples	157 158 159 160 162 163 163 163 163 165 166 166 166 167 168 168
6	Nov bucl algo <i>B</i> . <i>N</i> 6.1 6.2 6.3 6.3 6.4 6.5 6.6 6.7	el techri kling-ree rithms louhi, F Introd Buckl Utiliza 6.3.1 6.3.2 6.3.3 6.3.4 Struct Proble 6.5.1 6.5.2 Evalua Desigi 6.7.1	Aique of performance-based optimum deign of strained braced frames: colliding bodies optimization <i>C. Rezazadeh, S.M. Saraee, and Talatahari</i> uction ing-restrained braced frames ed algorithms The standard colliding bodies optimization algorithm The CBO2 algorithm (two-dimensional colliding bodies optimization) The CBO3 algorithm (enhanced colliding bodies optimization) The CBO4 algorithm (opposition-based colliding bodies optimization) ural analysis em formulation Objective function Design constraints ation of the colliding bodies optimization algorithms n examples Results	157 157 158 159 160 162 163 163 163 163 165 166 166 166 166 167 168 168 174

	6.8	Conclusion	181			
	Refe	erences	181			
-	Б					
7	Dev	elopment and application of the Bouc– wen model in seismic	105			
	peri	ormance evaluation of reinforced concrete members	185			
	Snu	o wang, Xiaonui Yu, ana Chao-Lie Ning	105			
	/.1	Introduction	185			
	7.2	Development of the Bouc–Wen model	180			
	7.3	Parameter identification	188			
		7.3.1 Columns	189			
		7.3.2 Joints	192			
	7.4	7.3.3 Walls	192			
	7.4	Seismic demand prediction using the Bouc–Wen model	194			
	/.S	Conclusion	197			
	Refe	erences	199			
Pa	rt 2	Renair of structural and non-structural				
	1 t 2 mmor	hents	203			
COL	npon		205			
8	Dev	eloping seismic fragility curves for caisson-type quay				
	walls with improved backfill soil					
	Bab	ak Ebrahimian and Amir Reza Zarnousheh Farahani				
	Sym	ibols	205			
	8.1	Introduction	206			
	8.2	Numerical modeling	208			
		8.2.1 Constitutive model	208			
		8.2.2 Construction of the finite difference mesh	211			
		8.2.3 Boundary conditions	211			
		8.2.4 Interface characteristics	214			
		8.2.5 Damping characteristics	214			
	8.3	Validation of the developed numerical model	214			
	8.4	Improvement patterns of backfill soil behind caisson-type				
		quay wall	215			
	8.5	Fragility analysis	215			
		8.5.1 Selection and preparation of input earthquake motions	215			
		8.5.2 Defining damage state criteria	219			
		8.5.3 Developing fragility curves	220			
	8.6	Comparing the effectiveness of various backfill improvement				
		patterns of the caisson-type quay walls	222			
	8.7	Comparing the efficiencies of various backfill improvement				
		patterns of the caisson-type quay walls	226			
	8.8	Summary and conclusions	229			
	Ack	nowledgments	230			
	Refe	erences	231			

Pa	rt 3	Seismi	c damage mitigation strategies	235
9	Mac	hine lear	ning approach for seismic assessment	237
	Mon	ique Head	d and Wael Aloqaily	
	9.1	Machine	e learning: an overview	237
	9.2	Basic ap	plications of machine learning	238
	9.3	Example	es of machine learning for seismic assessment	239
		9.3.1 R	Response prediction	239
		9.3.2 S	system identification and damage detection	240
		9.3.3 F	Fragility curves and collapse capacity	240
		9.3.4 H	Hazard analysis	240
	9.4	Case stud	ly using neural networks for predicting earthquake	
		responses	S	241
	9.5	Challeng	ges and future opportunities for machine learning and	
		seismic a	assessment	243
	Refe	rences		244
10	D 1			
10	Rob	ust desigi	n of intelligent control systems to mitigate	• • •
	eart	hquake-ii	nduced vibrations under uncertain conditions	249
	Javie	er Fernan	do Jiménez-Alonso, José M. Soria, Iván M. Díaz,	
	and .	Andrés Sa	íez,	
	10.1	Introdu	ction	249
	10.2	Tuned	mass damper-shear building interaction model under	
		earthqu	ake action	252
	10.3	Motion	-based design method under uncertain conditions	256
	10.4	Applica	ation example	261
		10.4.1	Description of the benchmark building and preliminary	
			analysis of its structural behavior	262
		10.4.2	Motion-based design of the benchmark building	
			equipped with active tuned mass damper under	
			uncertain conditions	264
		10.4.3	Motion-based design of the benchmark building	
			equipped with semiactive tuned mass damper under	
			uncertain conditions	265
		10.4.4	Motion-based design of the benchmark building	
			equipped with passive tuned mass damper under	
			uncertain conditions	269
		1045	Discussion of the results	202
	10.5	Conclu	sion	275
	Acki	owledge	pents	275
	Decl	aration of	f conflicting interests	276
	Deel	rances	conneting interests	276
	Rele	rences		270
11	Mul	tistory bu	uildings equipped with innovative structural	
	seisn	nic shear	fuse systems	279
	Alire	za Farza	mpour, Seved Javad Mortazavi. Iman Mansouri.	
	Paul	O. Awov	era. and Jong Wan Hu	
	11.1	Introdu	ction	279

	11.2	Verifica	ation of modeling methodology	281
		11.2.1	Finite element modeling methodology verification	202
		11 2 2	With laboratory test II Validation of raduced order models implemented for	282
		11.2.2	walidation of reduced order models implemented for multistory structures modeling and conventional systems	281
	113	Dampa	rs equipped with butterfly shaped link design procedure	204
	11.5	1131	Brittle and ductile limit states for dampers equipped	285
		11.5.1	with butterfly-shaped shear links	286
		1132	Controlling the drift ratios and stiffness equation	200
		11.5.2	requirement	289
	11.4	Design	of prototype six-story structure with structural shear links	291
		11.4.1	The comparison of the monotonically loaded	_/ 1
			butterfly-shaped damper system with conventional	
			EBF system	293
	11.5	Discuss	sion of the results for nonlinear response history	
		analysis	s for multistory building	293
	11.6	Nonline	ear response history analysis results under for	
		butterfl	y-shaped and conventional EBF systems	297
	11.7	Conclu	sion	302
	State	ments an	d declarations	302
	Fu	nding		302
	Co	ompeting	interests	303
	Da	ata availa	ıbility	303
	Refer	rences		303
12	Seisn	nic prote	ction strategies for damage mitigation in structures	307
	Ayşeg	gül Erdog	ğan, Süleyman İpek, and Esra M. Güneyisi	
	Abbr	eviations		307
	12.1	Introdu	ction	307
	12.2	Seismic	c protection strategies	310
		12.2.1	Seismic isolation systems	310
		12.2.2	Passive energy dissipation systems	317
		12.2.3	Semiactive and active systems	327
		12.2.4	Hybrid systems	331
	12.3	Conclu	sions	333
	Refer	rences		333
13	Anal	ytical fo	ormulas of the mechanical behavior of	
	rubb	er bearii	ags considering the isolator nonlinearities and the	242
	influ	ence of s	hear modulus	343
	Kons	tantinos I	N. Kaijas and Davide Forcellini	2.42
	13.1	Introdu	cuon	343
	13.2		Machanical momentia and validation of million having	545 245
		13.2.1	Nucchanical properties and validation of rubber bearings	545 249
		15.2.2	Design of the numerical models	348

		13.2.3 Numerical analyses and boundary conditions	349			
	13.3	3.3 Mechanical behavior of rubber bearings				
		13.3.1 Analytical, linear elastic model	350			
		13.3.2 Development of the nonlinear rubber bearing model	352			
		13.3.3 Analytical formula accounting for the nonlinear	252			
		relationship between G_b , θ , and P	353			
		13.3.4 Influence of the behavior of rubber bearings from	250			
	10.4	the shear modulus, G_b	358			
	13.4	Conclusion	359			
	Refer	ences	360			
14	Mitig	ation of deformations of a hunchbacked block-type				
	gravi	ty quay wall subjected to dynamic loading through				
	optin	nizing its back-face configuration	365			
	Baba	k Ebrahimian and Amir Reza Zarnousheh Farahani				
	14.1	Introduction	365			
	14.2	Numerical simulation of the seismic behavior of hunchbacked				
		block-type gravity quay wall	367			
	14.3	Sensitivity analysis on hunch angle, backfill friction angle,				
		and hunch height-to-wall height ratio	371			
	14.4	Estimation of the optimum hunch angle corresponding to the				
		minimum deformation of the wall	374			
	14.5	Summary and conclusions	377			
	Refer	ences	378			
15	Mod	el-based adaptive control system for magneto-rheological				
	damp	per-controlled structures	381			
	Zuba	ir Rashid Wani				
	15.1	Introduction	381			
	15.2	Methodology	382			
		15.2.1 Basic principle of response-based adaptive control	382			
	15.3	Control strategy formulation	383			
		15.3.1 Design and modeling of the controlled structure	383			
		15.3.2 Implementation of control algorithm	383			
	15.4	Numerical study	386			
		15.4.1 Control parameters of magneto-rheological dampers	387			
		15.4.2 Optimizing the number of controllers	391			
	15.5	Results and discussions	391			
	15.6	Conclusion	396			
	Refer	ences	397			

Index

Cable-cylinder bracing system: theoretical background, structural behavior, and seismic design coefficients

3

Nader Fanaie¹ and Ebrahim Afsar Dizaj²

¹Department of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran, ²Department of Civil Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

3.1 Introduction

Lateral load-resisting systems are recognized as an efficient approach to mitigating the excessive damage of structures under earthquake loading [1]. Bracing systems have been among the most popular lateral systems for structural engineers. Several researchers have used different bracing configurations to enhance the lateral stiffness and ductility of existing steel frames [2,3]. Among the typical bracing systems, implementing the most recent types of bracing systems, called buckling restrained braces, as well as novel dampers, to improve the seismic response of buildings, was investigated in several studies [4-10].

Over the past decades, several studies have investigated the advantages of using cable bracing system as an advanced tool to control the excessive lateral displacement of existing steel moment-resisting frames under seismic shaking [11]. The research in this area, however, was not limited to steel frames. Several pieces of research have focused on applying cables in reinforced concrete beams as an alternative to conventional shear reinforcement.

In literature, cables are known as axial tensile load-resisting members with negligible flexural rigidity. Cables are frequently used in large-span roofs and bridges [12-16]. Due to their advantages, researchers have studied the application of cable bracing in existing structures. In tall buildings, cables are used to keep the lateral displacement of the structure in its allowable limit state [11]. Some studies have investigated the application of cables in preventing the progressive damage of steel frames [17,18] and bridges [19]. Recently, different types of cable bracing systems have been proposed by various researchers [20–23]. Cables as bracing systems have several advantages, such as (1) high capacity in tolerating tensile forces, (2) high flexibility, (3) easy and fast installation and construction, and (4) causing fewer noises during installation [21].

Cable-cylinder bracing system, proposed by Tagawa and Hou [24] for strengthening of steel moment-resisting frames, is a novel configuration of cable bracing

Figure 3.1 Cable-cylinder bracing system: (A) configuration and (B) deformed shape [26].

systems. In this system, the cables and hollow cylinder are used together in such a way that the wire ropes pass at their intersections. Fig. 3.1 shows a typical configuration of a cable-cylinder bracing system. Both the PVC and steel pipes, with either high or low flexural rigidity, can be used as the cylinder. In Fig. 3.1A l_b is the length of the beam, h_c is the height of columns, u is the cylinder length, and v is the inner diameter of the cylinder. The rotation of the cylinder, as it is shown in Fig. 3.1B, causes both the cables to be in tension up to the $\delta = \delta_{sr}$, where δ_{sr} is the lateral displacement of the frame corresponding to the straightening of one of the cables. In Fig. 3.1B, F_L and F_R are the axial tensile forces of the left and right cables, respectively, corresponding to the δ . The structural behavior of the cable-cylinder bracing system, however, depends significantly on the flexural rigidity, the prestressing force of the cables, and cylinder dimension [25].

Currently, strengthening the existing moment-resisting steel frames using X cables is a common practice of structural engineers. Replacing the X cables with cable-cylinder bracing could have several advantages, as summarized below:

- 1. The cable-cylinder bracing system has negligible lateral stiffness at low drift ratios. Therefore adding this system to the moment frames will not affect the fundamental period of a structure [27].
- **2.** The cable-cylinder bracing system can effectively prevent the damage concentration in a specific building story; therefore it prevents the formation of the soft story in a building frame [27].
- **3.** The cable-cylinder bracing system can act as a passive control system to prevent the excessive lateral drift of the existing structure without increasing the base shear or causing an increase in the compressive axial load of columns.

The study presented herein aims to comprehensively investigate the structural performance of the cable-cylinder bracing system as a promising alternative to the conventional X cable bracing system. To this end, the theoretical background of this system and its governing equilibrium relationships are presented. Subsequently, the effect of cylinder dimension and the level of prestressing force on the behavior of this system are discussed. Then, the nonlinear static and dynamic responses of this bracing system are compared with those of the conventional cable bracing

system. Using the incremental dynamic analysis (IDA) results, the response modification factor of this system is estimated. Finally, a sensitivity analysis is carried out on this system, and an equation is proposed for the R factor (response modification factor) of the proposed cable-cylinder bracing system.

In the following sections, the above items are presented in detail.

3.2 Theoretical equilibrium relationships

Fig. 3.2A shows the configuration and deformed shape of a simple frame braced with the cable-cylinder bracing system. In this figure, all the parameters involved in the derivation of theoretical equations are shown. Here, for simplicity, the cylinder is supposed to be rigid. Pushing the frame δ mm toward the right (where under this displacement, the behavior of the frame is in the elastic range), the center point of the cylinder (*O*) will move as $\delta/2$ mm and will rotate as θ radians toward the counterclockwise direction (Fig. 3.2B). It should be noted that it is assumed that the center point of the cylinder will not move alongside the vertical axis. Using the equilibrium laws for the cylinder, the relationships between δ and θ are derivated. Subsequently, the variation of lateral static loading (*P*) against δ (i.e., *P*- δ curve), as well as the variation of the strain of cables (ε) versus δ (i.e., ε - δ curve), is plotted.

Assuming that the cylinder is placed in the center of the frame, the slope of the cable AE will be equal to that of cable GC. Similarly, the slope of cables BF and HD will be the same. From Fig. 3.2B, under δ displacement of the frame toward the right, the coordinate of points A, B, C, and D will be $\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} \delta\\h_c \end{bmatrix}, \begin{bmatrix} l_b+\delta\\h_c \end{bmatrix}$ and $\begin{bmatrix} l_b\\0 \end{bmatrix}$, respectively. Therefore the updated coordinates of the cylinder boundaries and center points, that is, points E, F, G, H, and O will be

Figure 3.2 Important points and dimensions involved in the derivation of theoretical equations: (A) undeformed state and (B) deformed state.

$$\frac{1}{2} \begin{bmatrix} (l_b + \delta) - u\cos\theta + v\sin\theta \\ h_c - u\sin\theta - v\cos\theta \end{bmatrix}, \begin{bmatrix} (l_b + \delta) - u\cos\theta - v\sin\theta \\ h_c - u\sin\theta + v\cos\theta \end{bmatrix}, \frac{1}{2} \begin{bmatrix} (l_b + \delta) + u\cos\theta - v\sin\theta \\ h_c + u\sin\theta + v\cos\theta \end{bmatrix}, \text{ and } \frac{1}{2} \begin{bmatrix} l_b + \delta \\ h_c \end{bmatrix}, \text{ respectively.}$$

From the equilibrium law, the summation of moments about *O* should be zero $((\sum M_o = 0))$; therefore:

$$F_{\rm R} \times \frac{\left|\vec{AE} \times \vec{EG}\right|}{\left|\vec{AE}\right|} = F_L \times \frac{\left|\vec{DH} \times \vec{FH}\right|}{\left|\vec{DH}\right|} \tag{3.1}$$

where F_L and F_R can be obtained from Eqs. (3.2–3.3):

$$F_L = \frac{AE}{L_{DH} + L_{Ho}} \times \Delta_{DH}$$
(3.2)

$$F_R = \frac{AE}{L_{AE} + L_{EO}} \times \Delta_{AE} \tag{3.3}$$

where *E* and *A* are the modulus of elasticity and cross-sectional area of each cable, Δ_{AE} is the elongation of cable AE and Δ_{DH} is the elongation of cable DH. Therefore Eq. (3.1) can be rewritten as:

$$\Delta_{AE} \times \frac{\left|\vec{AE} \times \vec{EG}\right|}{\left|\vec{AE}\right|} = \Delta_{DH} \times \frac{\left|\vec{DH} \times \vec{FH}\right|}{\left|\vec{DH}\right|}$$
(3.4)

Eq. (3.4) is expressed considering the undeformed (initial) length of the cables, cross product of direction of each cable, and elongation of cables. The coordinate of vectors AE, EG, FH, and DH will be $\frac{1}{2} \begin{bmatrix} (l_b + \delta) - u\cos\theta + v\sin\theta \\ h_c - u\sin\theta - v\cos\theta \end{bmatrix}$, $\begin{bmatrix} u\cos\theta + v\sin\theta \\ u\sin\theta + v\cos\theta \end{bmatrix}$, $\begin{bmatrix} u\cos\theta + v\sin\theta \\ u\sin\theta - v\cos\theta \end{bmatrix}$, and $\frac{1}{2} \begin{bmatrix} (l_b - \delta) - u\cos\theta - v\sin\theta \\ -h_c - u\sin\theta + v\cos\theta \end{bmatrix}$, respectively. Having these coordinates, the cross products presented in Eq. (3.4) can be obtained from Eqs. (3.5–3.6):

$$\left|\vec{AE} \times \vec{EG}\right| = \frac{1}{2} \left| (l_b + \delta)(u\sin\theta + v\cos\theta) - h_c(u\cos\theta - v\sin\theta) \right|$$
(3.5)

$$\left|\vec{DH} \times \vec{FH}\right| = \frac{1}{2} \left| (l_b - \delta)(u\sin\theta - v\cos\theta) + h_c(u\cos\theta + v\sin\theta) \right|$$
(3.6)

Therefore Δ_{AE} and Δ_{DH} can be determined using Eqs. (3.7–3.8), respectively:

$$\Delta_{AE} = \frac{1}{2}\sqrt{((l_b + \delta) - u\cos\theta + v\sin\theta)^2 + (h_c - u\sin\theta - v\cos\theta)^2} - \frac{1}{2}\sqrt{(l_b - u)^2 + (h_c - v)^2}$$
(3.7)

$$\Delta_{DH} = \frac{1}{2} \sqrt{((l_b - \delta) - u\cos\theta - v\sin\theta)^2 + (-h_c - u\sin\theta + v\cos\theta)^2} - \frac{1}{2} \sqrt{(l_b - u)^2 + (h_c - v)^2}$$
(3.8)

Putting Eqs. (3.5-3.8) into Eq. (3.4) will lead to the following implicit Eq. (3.9) which relates cylinder rotation to the lateral static displacement of the frame:

$$\begin{bmatrix} 1 - \frac{\sqrt{(l_b - u)^2 + (h_c - v)^2}}{\sqrt{((l_b + \delta) - u\cos\theta + v\sin\theta)^2 + (h_c - u\sin\theta - v\cos\theta)^2}} \end{bmatrix} \\ \times \left| (l_b + \delta)(u\sin\theta + v\cos\theta) - h_c(u\cos\theta - v\sin\theta) \right| \\ = \begin{bmatrix} 1 - \frac{\sqrt{(l_b - u)^2 + (h_c - v)^2}}{\sqrt{((-l_b + \delta) + u\cos\theta + v\sin\theta)^2 + (h_c + u\sin\theta - v\cos\theta)^2}} \end{bmatrix} \\ \times \left| (-l_b + \delta)(-u\sin\theta + v\cos\theta) + h_c(u\cos\theta + v\sin\theta) \right|$$
(3.9)

The angles α_L and α_R (shown in Fig. 3.2) can be expressed as follows:

$$\cos\alpha_{R} = \cos\alpha_{\overrightarrow{AE}} = \frac{(l_{b} + \delta) - u\cos\theta + v\sin\theta}{\sqrt{((l_{b} + \delta) - u\cos\theta + v\sin\theta)^{2} + (h_{c} - u\sin\theta - v\cos\theta)^{2}}}$$
(3.10)
$$-\cos\alpha_{L} = \cos\alpha_{\overrightarrow{DH}} = -\frac{(-l_{b} + \delta) + u\cos\theta + v\sin\theta}{\sqrt{((-l_{b} + \delta) + u\cos\theta + v\sin\theta)^{2} + (h_{c} + u\sin\theta - v\cos\theta)^{2}}}$$
(3.11)

From the equilibrium equation, the summation of horizontal forces should be zero $(\sum F_x = 0)$. This will lead to the following relationship between *P* and δ :

$$P = \frac{2AE}{l_t} \begin{bmatrix} \Delta_{AE} \times \frac{(l_b + \delta) - u\cos\theta + v\sin\theta}{\sqrt{((l_b + \delta) - u\cos\theta + v\sin\theta)^2 + (h_c - u\sin\theta - v\cos\theta)^2}} \\ + \Delta_{DH} \times \frac{(-l_b + \delta) + u\cos\theta + v\sin\theta}{\sqrt{((-l_b + \delta) + u\cos\theta + v\sin\theta)^2 + (h_c + u\sin\theta - v\cos\theta)^2}} \end{bmatrix}$$
(3.12)

where l_t is the total length of each cable $(l_t = l_i + 2l_o)$ as shown in Fig. 3.2. In Fig. 3.2 l_o is the length of each cable outside the cylinder and l_i is the length of the cable inside the cylinder.

Eqs. (3.13–3.14) present the relationship between the strain of right cable (ε_R) and the strain of left cable (ε_L) with δ :

$$\varepsilon_{R} = \frac{1}{2} \left[\frac{\sqrt{((l_{b} + \delta) - u\cos\theta + v\sin\theta)^{2} + (h_{c} - u\sin\theta - v\cos\theta)^{2} - \frac{1}{2}\sqrt{(l_{b} - u)^{2} + (h_{c} - v)^{2}}}{L_{AE} + L_{Eo}} \right]$$

$$\varepsilon_{L} = \frac{1}{2} \left[\frac{\sqrt{((l_{b} - \delta) - u\cos\theta - v\sin\theta)^{2} + (-h_{c} - u\sin\theta + v\cos\theta)^{2}} - \frac{1}{2}\sqrt{(l_{b} - u)^{2} + (h_{c} - v)^{2}}}{L_{DH} + L_{Ho}} \right]$$

$$(3.14)$$

It is worth noting that the above equations are valid until a cable straightened. Once one of the cables straightened, the other cable will not tolerate axial force anymore, because the summation of moments about *O* should be zero (equilibrium equation). Beyond this, the slopes of the cables inside and outside of the cylinder will be equal for the straightened cable. Moreover, the other cable will be loosened. Considering the deformed shape of the frame shown in Fig. 3.2B, for $\delta > \delta_{sr}$ the elongation of cable AC will be equal to $\delta \cos\theta$ ($\delta_{AC} = \delta \cos\theta$). Therefore the strain of cable AC (ε_{AC}) can be expressed in term of δ using Eq. (3.15):

$$\varepsilon_{AC} = \frac{\delta_{AC}}{l_{AC}} = \delta \frac{l_b}{l_b^2 + h_c^2}$$
(3.15)

Moreover, from the equilibrium equation, the lateral force of the storey (*P*) can be related to the δ using Eq. (3.16):

$$P = AE \frac{l_b}{{l_b}^2 + {h_c}^2} \delta \times \frac{l_b}{\sqrt{l_b}^2 + {h_c}^2} = \frac{{l_b}^2}{\left({l_b}^2 + {h_c}^2\right)^{\frac{3}{2}}} AE\delta$$
(3.16)

Using Eq. (3.16), in Fig. 3.3 the variation of the P/AE is plotted against δ . To plot Fig. 3.3, as a numerical example, it is assumed that $l_b = 4$ m, $h_c = 3$ m, u = 22 cm, and v = 5 cm. For comparison, the same curve is also plotted for the X cable bracing system.

Fig. 3.3 shows that the lateral stiffness of the cable-cylinder bracing system is approximately zero in the initial stages of the loading, but its value increases as the story displacement increases. This finding confirms that the cable-cylinder bracing system will not change the fundamental period of the frame. However, as can be seen in Fig. 3.3, the lateral stiffness of the X cable bracing system is a constant parameter and is significantly greater than that of the cable-cylinder bracing system.

Fig. 3.4 shows the strain variation of left and right cables versus the δ using Eqs. (3.13–3.14). In this figure, RC and LC denote the right and left cables, respectively.

Figure 3.3 Comparing the variation of story force versus story displacement in cablecylinder and X cable bracing systems.

Figure 3.4 Comparing ε - δ curves of cable-cylinder and X cable bracing systems.

Fig. 3.4 shows that cables of the cable-cylinder bracing system will reach their fracture strain in higher story displacements. This will increase the ductility of the frame comparing to the X cable bracing system. Moreover, as Fig. 3.4 shows, both the cables are in tension in a wide storey displacement range in this bracing system. Therefore the impulses (caused by the loosening of cables) will be improved using the cable-cylinder bracing system. However, as discussed earlier in the text, once

the lateral story displacement reached the δ_{sr} (toward the right), the right cable will be straightened while the force will be zero in the left cable. Therefore, to ensure that both the left and right cables are in tension, the cylinder length and diameter should be selected such that δ_{sr} be equal or slightly greater than the target damage limit state (in terms of lateral displacement) of the frame. Moreover, the cylinder size should be selected to allow the cables to reach their fracture strain at the displacement limit of the frame.

The next section sheds light on the importance of cylinder size in the cablecylinder bracing system.

3.3 Influence of cylinder size on behavior of the cablecylinder bracing system

The cylinder size (both the length and diameter) is an important parameter affecting the structural behavior of the cable-cylinder bracing system. Such dimension of the cable should be selected that makes it to be crooked. The following equation shows the proportionality of the cable length (u) and diameter (v) with the beam length (l_b) , and column height (h_c) :

$$\frac{v}{u} < \frac{h_c}{l_b} \tag{3.17}$$

where u/v is the slope of the cable inside the cylinder and h_c/l_b is the slope of the cable in the corresponding X cable bracing system. The more the difference between the slopes of cables outside and inside the cylinder, the more the difference between the structural behavior of the cable-cylinder and the X cable bracing systems. Apparently, for $\frac{v}{u} = \frac{h_c}{l_b}$ the cable-cylinder bracing system will behave the same as the X cable bracing system.

3.3.1 Cylinder length

In this section, to study the impact of cylinder length on the structural behavior of a steel frame braced with the cable-cylinder bracing system, the results presented in Figs. 3.3 and 3.4 are reproduced for different cylinder lengths. To this end, various cylinder lengths (u) are considered, including 20, 22, 24, 26, and 28 cm. Other parameters are supposed to be the same as those considered to plot Figs. 3.3 and 3.4.

Fig. 3.5 shows *P*- δ curves and Fig. 3.6 shows ε - δ curves for the various considered cylinder lengths. The curves shown in these figures are plotted up to $\delta = \delta_{sr}$ (i.e., up to where one of the cables become straightened), where the value of δ_{sr} is different for each case. Figs. 3.5 and 3.6 indicates that as cylinder length increases, the value of δ_{sr} increases as well. Moreover, Fig. 3.5 shows that for a given δ the value of *P/AE* becomes lesser for the frame with the greater length of the cylinder, therefore as cylinder length increases, the frame can sustain larger lateral

Figure 3.5 *P*- δ curves for the cable-cylinder braced frame with different cylinder lengths.

Figure 3.6 ε - δ curves for the cable-cylinder braced frame with different cylinder lengths.

displacement. This implies that the larger the cylinder length is, the higher ductility of the frame is. Fig. 3.6 shows that in a wider range both the cables are in tension, that is, the cables can sustain larger tensile strain to reach $\delta = \delta_{sr}$. The reason is behind the geometry of the braced frame shown in Fig. 3.2. For the larger cylinder

length, more rotation of the cable is needed to cause the cable to become straightened (i.e., to reach $\delta = \delta_{sr}$). Therefore, for the greater cylinder length, the frame should be pushed more to reach δ_{sr} .

In the next section, the influence of cylinder diameter on the structural performance of the cable-cylinder bracing system is discussed.

3.3.2 Cylinder diameter

Figs. 3.7 and 3.8 present the *P*- δ and ε - δ curves for different hypothetical cylinder diameters, respectively. Here, the internal cylinder diameter is considered to be 4, 5, 6, and 8 cm. Other variables are assumed to be the same as those considered to plot Figs. 3.3 and 3.4. Same as Figs. 3.5 and 3.6, in Figs. 3.7 and 3.8 the curves are plotted up to $\delta = \delta_{sr}$.

Fig. 3.7 shows that despite the cylinder length, an increase in the cylinder diameter results in a decrease in the value of δ_{sr} . For example, as can be seen in Fig. 3.7, while for 4 mm of cylinder diameter δ_{sr} is approximately 82 mm, for the same frame with 8 mm of cylinder diameter δ_{sr} is around 38 mm. Moreover, Fig. 3.8 shows that the greater the cylinder diameter is, the smaller the tensile strain corresponding to the δ_{sr} is. For example, while for the active cable with 4 mm cylinder diameter, the associated tensile strain of δ_{sr} is approximately 0.0088; for the same case with 8 mm cylinder diameter, the corresponding strain of active cable to δ_{sr} is 0.004. Therefore it can be concluded from the results presented in Figs. 3.7 and 3.8 that increasing the diameter of the cylinder has a negative influence on the ductility of the braced frame.

Figure 3.7 *P*- δ curves for the cable-cylinder braced frame with different cylinder diameters.

Figure 3.8 ε - δ curves for the cable-cylinder braced frame with different cylinder diameters.

3.4 Influence of prestressing force of cables on the behavior of the cable-cylinder bracing system

This section studies the effect of prestressing force of cables on the structural performance of the cable-cylinder bracing system. If the prestressing force in the cables is supposed to be F_p , the moment equilibrium of the cylinder can be expressed as Eq. (3.18):

$$\left(\frac{l_t}{2AE}F_P + \Delta_{AE}\right) \times \left|\frac{\vec{AE} \times \vec{EG}}{\vec{AE}}\right| = \left(\frac{l_t}{2AE}F_P + \Delta_{DH}\right) \times \left|\frac{\vec{DH} \times \vec{FH}}{\vec{DH}}\right|$$
(3.18)

Putting Eqs. (3.5–3.8) into Eq. (3.18), the following implicit relationship between θ , δ , and F_p will be obtained:

$$\begin{bmatrix} \frac{l_t}{AE}F_P + \sqrt{((l_b+\delta) - u\cos\theta + v\sin\theta)^2 + (h_c - u\sin\theta - v\cos\theta)^2} - 2l_e \end{bmatrix} \\ \times \frac{|(l_b+\delta)(u\sin\theta + v\cos\theta) - h_c(u\cos\theta - v\sin\theta)|}{\sqrt{((l_b+\delta) - u\cos\theta + v\sin\theta)^2 + (h_c - u\sin\theta - v\cos\theta)^2}} \\ = \begin{bmatrix} \frac{l_t}{AE}F_P + \sqrt{((-l_b+\delta) + u\cos\theta + v\sin\theta)^2 + (h_c + u\sin\theta - v\cos\theta)^2} - 2l_e \end{bmatrix}$$

$$= \left[\frac{A_{e}}{AE}F_{P} + \sqrt{\left(\left(-l_{b}+\delta\right) + u\cos\theta + v\sin\theta\right)^{2} + \left(h_{c}+u\sin\theta - v\cos\theta\right)^{2} - 2l_{e}}\right]} \times \frac{\left|\left(-l_{b}+\delta\right)\left(-u\sin\theta + v\cos\theta\right) + h_{c}\left(u\cos\theta + v\sin\theta\right)\right|}{\sqrt{\left(\left(-l_{b}+\delta\right) + u\cos\theta + v\sin\theta\right)^{2} + \left(h_{c}+u\sin\theta - v\cos\theta\right)^{2}}}$$
(3.19)

The equilibrium of the horizontal forces will yield Eq. (3.20):

$$P = F_R \cos\alpha_R - F_L \cos\alpha_L \tag{3.20}$$

where F_R and F_L are the axial force in the right and left cables, respectively (Eqs. 3.21-3.22):

$$F_R = \frac{2AE}{l_t} \left(\Delta_{AE} + \frac{F_p l_t}{2AE} \right) \tag{3.21}$$

$$F_L = \frac{2AE}{l_t} \left(\Delta_{DH} + \frac{F_p l_t}{2AE} \right) \tag{3.22}$$

Putting Eqs. (3.21-3.22) into Eq. (3.20) will give the following equation:

$$P = \frac{2AE}{l_t} \begin{bmatrix} \left(\Delta_{AE} + \frac{F_p l_t}{2AE} \right) \times \frac{(l_b + \delta) - u\cos\theta + v\sin\theta}{\sqrt{((l_b + \delta) - u\cos\theta + v\sin\theta)^2 + (h_c - u\sin\theta - v\cos\theta)^2}} \\ + \left(\Delta_{DH} + \frac{F_p l_t}{2AE} \right) \times \frac{(-l_b + \delta) + u\cos\theta + v\sin\theta}{\sqrt{((-l_b + \delta) + u\cos\theta + v\sin\theta)^2 + (h_c + u\sin\theta - v\cos\theta)^2}} \end{bmatrix}$$
(3.23)

The tensile strain in right and left cables, therefore, can be expressed using the following equations:

$$\varepsilon_R = \frac{2\Delta_{AE}}{l_t} + \frac{F_p}{AE} \tag{3.24}$$

$$\varepsilon_L = \frac{2\Delta_{DH}}{l_t} + \frac{F_p}{AE} \tag{3.25}$$

Employing Eq. (3.23), in Fig. 3.9 the P- δ curves corresponding to various prestressing levels, including 0 (without prestressing), 200, 400, 600, and 800 MPa are shown. Other parameters are supposed to be the same as those assumed to plot Fig. 3.3.

Fig. 3.9 shows that as the prestressing level increases the value of δ_{sr} increases significantly. This means that the prestressing force causes both cables to be active in a wider range of lateral frame displacement. For example, the 800 MPa prestressing level of the cables increases the δ_{sr} from approximately 70 mm (for the case without prestressing) to around 100 mm. Therefore the prestressing force will increase the ductility of the frame.

Figure 3.9 *P*- δ curves for the cable-cylinder braced frame with different prestressing levels.

Figure 3.10 ε - δ curves for the cable-cylinder braced frame with different prestressing levels.

Fig. 3.10 shows the effect of prestressing level of the cables on ε - δ curves. To this end, the ε - δ curves of left and right cables without prestressing force are compared with those corresponding to the 400 MPa prestressing level of cables.

Fig. 3.10 indicates that the prestressing force of the cables causes them to tolerate higher tensile strains before the lateral displacement of the frame equals δ_{sr} . Therefore the cables will be active for the higher value of δ , and therefore the ductility of the frame will be increased significantly.

3.5 Finite element modeling and validation

3.5.1 Verification of theoretical relationships

In this section, the validity of the theoretical equations developed in the previous sections of the chapter is investigated using the finite element modeling technique. To this end, a portal frame with hinged beam-column connections braced with the cable-cylinder bracing system is simulated in the Abaqus finite element platform. The modeling is carried out in both the two-dimensional (2D) and 3D spaces. To simulate the frame, it is assumed that $l_b = 4$ m, $h_c = 3$ m, u = 22 cm, and v = 5 cm. For the columns, a $100 \times 100 \times 8$ mm box profile is considered and for the cables, the cross-sectional area is regarded as 1 cm². Moreover, the cylinder is assumed to be a rigid element.

In Fig. 3.11 *P*- δ curves and in Fig. 3.12 ε - δ curves of theoretical relationships are compared with those of 2D and 3D finite element models.

As can be seen in Fig. 3.11, there is a slight difference between the results of finite element models and the theoretical relationships. This is because the axial deformation of columns and beam was disregarded in the development of theoretical equations. Moreover, the contact between the cable and cylinder is modeled more realistically in the 3D model. However, in the 2D model, the cables outside and inside of the cylinder are simulated as separate truss elements.

Figure 3.11 Comparing *P*- δ curves of theoretical relationships with those of finite element simulation.

Figure 3.12 Comparing ε - δ curves of theoretical relationships with those of finite element simulation.

3.5.2 Influence of rigidity of the cylinder

To investigate the influence of rigidity of the cylinder on the structural performance of the cable-cylinder bracing system, two nonlinear pushover analyses carried out on the hypothetical frame employed in the previous section using the 3D modeling scheme. In the first analysis, the cylinder is considered to be fully rigid, and in the second analysis, the modulus of elasticity of the cylinder was taken as $0.001E_s$ (i.e., soft cylinder), where E_s is the modulus of elasticity of cables. The thickness of the cylinder was assumed to be 5 mm. Figs. 3.13 and 3.14 compare the P- δ and ε - δ curves of the cable-rigid cylinder system with those of the cable-soft cylinder system.

As Figs. 3.13 and 3.14 show, the results of the rigid and soft cylinders are approximately the same. As mentioned earlier in the text, in this study the theoretical equations are developed assuming the rigid cylinder, therefore this assumption will not affect the results significantly. Here, to perform nonlinear time-history analyses (NTHAs) (next section), the properties of the cylinder are considered to be the same as those of the cables.

3.6 Nonlinear time-history analysis

3.6.1 Case-study structures

In this study, three case-study structures including 2, 4, and 6-storey moment-resisting steel frames are considered to evaluate the dynamic response of the cablecylinder bracing system. Two different strengthening methodologies are considered here for comparison: (1) using conventional X cable bracings and (2) using the

Figure 3.13 Influence of rigidity of the cylinder on *P*- δ curves of simple frame braced with the cable-cylinder bracing system.

Figure 3.14 Influence of rigidity of the cylinder on ε - δ curves of simple frame braced with the cable-cylinder bracing system.

cable-cylinder bracing system. The plan and elevation view of the considered moment frames are shown in Fig. 3.15. As an example, the schematic view of the 4-story moment-resisting frame strengthened with X cable and the cable-cylinder bracing systems is shown in Fig. 3.16. These frames are designed based on the

Figure 3.15 The studied moment-resisting frames: (A) plan view and (B) elevation view.

Figure 3.16 The considered strengthening systems: (A) cable-cylinder bracing system and (B) X cable bracing system.

Number of storeys	Steel frame (s)	Steel frame braced with cable-cylinder bracings (s)	Steel frame braced with X cable bracings (s)
2	0.8	0.33	0.8
4	1.26	0.58	1.26
6	1.7	0.85	1.7

Table 3.1 The natural periods of the case-study frames.

AISC360–10 [28] code. The considered frames are assumed to be located in Tehran. To design the frames, the live load and dead load on each story floor are assumed to be 2 and 6 kN/m^2 , respectively. The seismic loading is calculated based on the specifications provided in ASCE7–10 [29]. All the story floors are considered to be rigid.

In order to conduct NTHA, for simplification, the 2D frame in B-axis (Fig. 3.15A) is extracted from the structure and simulated in Abaqus. The reason behind this simplification is to reduce the analyses time. The nonlinear elastoplastic material is adopted to simulate the nonlinear behavior of steel material used in beam and columns. A bilinear constitutive stress-strain model with yielding stress of 240 MPa (representing ST-37 steel grade) and a postyield strain hardening ratio of 0.02 is considered here. Rayleigh damping was used in dynamic analyses.

Based on the eigenvalue analysis, the natural period of the considered frames was evaluated and tabulated in Table 3.1. As can be seen in Table 3.1, the natural period of frames braced with X cable bracings is lower than that of corresponding moment-resisting frames. However, the natural period of frames braced with cable-cylinder bracings is the same as that of moment-resisting frames. This is because the cable-cylinder braces are not active in the lower lateral displacements due to their geometry.

3.6.2 Ground motions

To carry out the NTHA, five ground motions records of important earthquakes worldwide, including Morgan Hill, Loma Prieta, Northridge, Kobe, and Bam, were selected from the NGA database [30]. Fig. 3.17 shows the spectral acceleration spectrum of these ground motion records. The selected records scaled to PGA = 0.35 g, to comply with the Iranian code of practice for the seismic-resistant design of buildings, Standard No. 2800 [31], where the buildings located in high seismicity regions are designed for PGA = 0.35 g.

It is worth mentioning that the cross sectional-area of cables in X cable bracing system was calculated to remain within the elastic range under the ground motion records scaled to PGA = 0.350 g. The cross-sectional area of cables in the cable-cylinder bracing system was considered the same as those of the X cable bracing system. Using this procedure, the cross-sectional area of cables is considered to be 5.9, 6.5, and 7 cm² for 2-, 4-, and 6-story case-study frames, respectively.

3.6.3 Results and discussion

3.6.3.1 Hysteretic response

In this section, the hysteretic base shear—roof displacement response of the casestudy structures under the Kobe ground motion record is discussed. Figs. 3.18–3.20 show the hysteretic response of the 2-, 4-, and 6-story frames, respectively. Fig. 3.18 shows that the moment-resisting frame tolerates relatively large lateral displacements; more specifically, large residual displacements can be seen in the

Figure 3.17 Spectral acceleration spectrum of the selected ground motions to conduct NTHAs. *NTHAs*, Nonlinear time-history analyses.

Figure 3.18 Comparing the hysteresis response of 2-story case-study frames: (A) story 2 and (B) story 1.

Figure 3.19 Comparing the hysteresis response of 4-story case-study frames: (A) story 4, (B) story 3, (C) story 2, and (D) story 1.

Figure 3.20 Comparing the hysteresis response of 6-story case-study frames: (A) story 6, (B) story 5, (C) story 4, (D) story 3, (E) story 2, and (F) story 1.

first story of this frame. However, adding X cables significantly reduces the lateral displacement, because this system significantly increases the lateral stiffness of the structure. However, this bracing system significantly increases the story shear in comparison with the cable-cylinder bracing system. This triggers higher axial forces in the cables, which applies higher axial compressive forces to the adjacent column.

Fig. 3.19 shows that in the lower story levels, the area under the base shear-lateral displacement response of the frame braced with the cable-cylinder bracing system is considerably higher than the moment-resisting frame and frame braced with X cable bracing system. This confirms the advantage of the cable-cylinder bracing system in comparison with the X cable bracing system. The results presented in Fig. 3.20 are in line with those presented in Figs. 3.18 and 3.19). Therefore it can be concluded that the able-cylinder bracing system is an effective tool for improving the seismic performance of moment-resisting steel frames.

3.6.3.2 Distribution of drifts along with the height of structures

Figs. 3.21-3.23 show the distribution of the drift ratio along with the height of the case-study structures under the selected set of ground motion records. These figures show that both the cable-cylinder and X cable bracing systems significantly decrease the lateral displacement of the frames. However, almost in all cases, the drift ratio is lower in the X cable bracing system compared to the moment-resisting frame and cable-cylinder bracing system. The results indicate that using the cable-cylinder bracing system prevents the damage accumulation in a particular story; it distributes the drifts in frame height. This can be seen in Fig. 3.23. Therefore it can be concluded that strengthening moment-resisting frames by the cable-cylinder system improves their seismic performance due to the approximate distribution of damage in the height of the structure.

3.7 Proposed fiber element modeling technique and validation

As an alternative simulation methodology, in this part, the fiber modeling technique [32] is employed to simulate the nonlinear structural behavior of the cable-cylinder bracing system. The main advantage of the fiber technique is its capability in performing accurate nonlinear analyses in a considerably shorter time comparing to microscopic finite element models.

OpenSees [33] is employed in this study to develop the fiber element model of the steel frame with the cable-cylinder bracing system. A force-based beam-column element is used to simulate the nonlinear behavior of column and beam. The non-linear behavior of the steel is modeled using *Steel 02* material model available in the OpenSees. To this aim, the postyield hardening ratio is considered to be 1%.

Cable elements are modeled using the Corotational truss element with no compression elastic—perfectly plastic material. InitStressMaterial (available in OpenSees) is used to define the prestressing force in the cables. In the fiber modeling technique, a local coordinate system is assigned for each element that is different from the global system. Various characteristics of each element such as ductility and stiffness should be transformed using the predefined transformation

Figure 3.21 Distribution of drift ratios along with the height of 2-story case-study frames under selected ground motions: (A) Bam, (B) Kobe, (C) Loma Prieta, (D) Morgan Hill, and (E) Northridge.

Figure 3.22 Distribution of drift ratios along with the height of 4-storey case-study frames under selected ground motions: (A) Bam, (B) Kobe, (C) Loma Prieta, (D) Morgan Hill, and (E) Northridge.

Figure 3.23 Distribution of drift ratios along with the height of 6-storey case-study frames under selected ground motions: (A) Bam, (B) Kobe, (C) Loma Prieta, (D) Morgan Hill, and (E) Northridge.

Figure 3.24 Modeling cable and cylinder [26].

Table 3.2 Structural details of cable-cylinder bracing system used in Re. [26].

Modulus of elasticity (MPa)	Cross- sectional area (mm ²)	Rupture strain	Diameter (mm)	Internal diameter (mm)	Cylinder length (mm)
137000	374	0.015	28	200	703

schemes in OpenSees. Here, P-delta transformation is used to consider the secondary effects (P-delta effects) in the nonlinear behaviour of the structural system.

To validate the proposed modeling technique, the structural details of the 1-story steel frame simulated by Hou and Tagawa [26] is adopted here. The details of this frame are shown in Fig. 3.24. The yield strength and elastic modulus of steel are considered to be 300 MPa and 205 GPa. The story height and span length are considered to be 3.5 and 5 m, respectively. The elements of the cable-cylinder bracing system are simulated employing hinged truss elements. To this aim, the axial rigid-ity of the cylinder and its inner cables are considered 1500 times outside cables [26]. In Table 3.2 the structural details of the cable-cylinder bracing system used in Refs. [26,34] are presented.

Using the developed model in OpenSees, the calculated fundamental period of the structure is 0.69 seconds which shows a good agreement with the one reported in Ref. [26]. In Fig. 3.25 the result of the nonlinear pushover analysis of the proposed model is compared with the result of the pushover analysis conducted by Hou and Tagwa [26]. As can be seen in Fig. 3.25, the proposed modeling technique accurately simulates the base shear—roof displacement response of the considered structure.

Using the outputs of the pushover analysis, the variations of the lateral stiffness of the cable-cylinder bracing system is plotted in Fig. 3.26 against the lateral displacement of the frame. This figure shows that the lateral stiffness of the cable-cylinder bracing system is not a constant parameter; its value depends on the extent of the lateral displacement of the roof.

In Fig. 3.27, the pushover result of the 1-story steel frame braced with the cablecylinder bracing system is compared with that of the X cable bracing system. To

Figure 3.25 Validation of the proposed fiber element modeling technique.

Figure 3.26 Lateral stiffness variation of the cable-cylinder bracing system.

conduct pushover analysis, the target displacement is considered to be 0.02h, where h is the story height [29]. As can be seen in this figure, the lateral stiffness of the X cable bracing system is significantly greater than the cable-cylinder bracing system. Therefore, this system tolerates higher lateral loading for a given roof displacement. In Table 3.3 the values of base shear associated with the first yielding of the structure are tabulated for both frames. These quantities will be used in Section 3.9 for the calculation of the response modification factor.

Figure 3.27 Comparing nonlinear pushover analysis results of the cable-cylinder bracing system with the X cable bracing system.

Table 3.3 Base shear associated with the first yielding of the structure.

Structure	Base shear (kN)
Moment-resisting frame braced with the X cable bracing system	361.64
Moment-resisting frame braced with the cable-cylinder bracing system	155.89

3.8 Nonlinear dynamic analysis

The validated model of the 1-story steel frame is adopted in this section to conduct IDA. The first step to carry out IDA is the selection of an appropriate suite of earthquake ground motion records. To conduct IDAs, 10 earthquake records are selected from the far-field ground motion suite presented in FEMA P695 [35]. Details of the selected earthquake records are tabulated in Table 3.4. The PGA of the selected ground motions varies from 0.33 to 0.52 g. Further details are available in Ref. [35].The spectral acceleration at the fundamental period of the structure, Sa(T₁, 5%), is considered here as the intensity measure (IM) and the maximum interstory drift ratio (MIDR) is considered as damage measure. These ground motions are applied to the case-study structure with increasing levels of IMs to cover its response from the elastic response all the way to its complete collapse.

Fig. 3.28 shows the IDA results of the examined frame. As this figure shows, the response of the frame in the elastic range (here up to approximately 0.01 drift ratio) is the same under all the considered ground motions records. However, beyond the elastic range, the response of the frame under each record becomes different from

Record no.	Record	Station name	PGA(g)	Occurrence year
1	Chi Chi-Taiwan	CHY101	0.398	1999
2	Hectormine	Hector	0.328	1999
3	Imperial valley	Delta	0.35	1979
4	Kobe	Nishi-Akashi	0.483	1995
5	Landers	Cool Water	0.417	1992
6	Kocaeli	Duzce	0.364	1999
7	Loma Prieta	Capitola	0.511	1989
8	Manjil	Abbar	0.515	1990
9	Northridge	Canyon Country	0.472	1994
10	Superstition Hills	Poe Road	0.475	1987

Table 3.4 Details of the selected ground motion records.

Figure 3.28 IDA results for the 1-storey steel frame braced with the cable-cylinder bracing system. *IDA*, Incremental dynamic analysis.

others, highlighting the importance of considering uncertainties associated with the input excitation. These results will be used in the next section of the study to compute the R factor of the frame.

3.9 Response modification factor

In this section, the response modification factor of the considered frame braced with the cable-cylinder bracing system is computed and compared with the conventional X cable bracing system. To this end, nonlinear pushover analysis, IDA, and linear time-history analyses were conducted on the considered 1-story frame. Using the analyses results, overstrength, ductility and response modification factor of the frame is calculated using the methodology presented in [9] under each ground motion record. It is worth mentioning that, employing FEMA P695 [35] methodology, seismic design coefficients of dual system with cable-cylinder bracing and intermediate moment resisting frame (IMRF) are calculated by Ghasemi et al. [36]. Tables 3.5–3.6 present the obtained results for the frame braced with the X cable bracing system and the cable-cylinder braced frame, respectively. In these tables, DM is the damage limit state of the target performance level of the structure. Here, DM is assumed to be 0.02, corresponding to the limit state of Life Safety (LS) performance level. This assumption was based on the maximum relative story drift ratio threshold proposed in the Standard No. 2800 [31].

 $V_{b\ (Dyn,u)}$ is the associated base shear with the DM for each ground motion, which is obtained from the results of the IDA (Fig. 3.28). $V_{b\ (st,y)}$ is the base shear associated with the first yielding of the structure, which is obtained from the results of the pushover analysis (as presented in Table 3.3). $V_{b\ (Dyn,e)}$ is the base shear corresponding to the DM = 0.02 in the linear time-history analysis. It should be noted that to conduct linear time-history analysis, the material behavior of the steel is assumed to be linear. $R_s = V_b\ (Dyn,u)/V_b\ (st,y)$ and $R_u = V_b\ (Dyn,e)/V_b\ (Dyn,u)$ are the overstrength factor and ductility factor, respectively. R_{LRFD} and R_{ASD} are response modification factors for the Load and Resistance Factor Design (LRFD) and Allowable Stress Design (ASD) methods, respectively. The average of the results is summarized in Table 3.7. Results tabulated in Tables 3.5–3.7 show that the ductility factor of the cable-cylinder bracing system is greater than that of the X cable bracing system. This is because in the cable-cylinder bracing system cables reach their fracture strain in higher lateral displacement of the roof.

According to the summarized results in Table 3.7, R_{ASD} is 4.94 and 4.17 for the cable-cylinder bracing and X cable bracing systems. This indicates that the response modification factor of the cable-cylinder bracing system is higher than the X cable bracing system. The reason, as discussed earlier in the text, is related to the higher ductility of the cable-cylinder bracing system compared to conventional X cable bracing.

3.10 Influence of structural details on response modification factor

In this section, the influence of cross-sectional details of columns and beams on the response modification factor of the case-study structures is investigated. In Table 3.8, different cross-sectional details of the considered structures as well as the obtained overstrength, ductility, and response modification factors are presented.

Results show that the obtained response modification factors for the weaker beam sections are greater. This is because the first plastic hinge is formed in a relatively lower base shear for the weaker beam section cases, and therefore, the

Records	DM	IM	$V_{b(Dyn,u)}$	$V_{b(st,y)}$	$V_{b(Dyn,e)}$	R_s	R_{μ}	R _{LRFD}	R _{ASD}
	Max Drift	$S_a(T_1, 5\%)$	(kN)	(kN)	(kN)				
Chi Chi	0.02	0.62	804.28	361.64	1026.90	2.22	1.28	2.84	4.09
Hectormine	0.02	0.59	801.45	361.64	906.91	2.22	1.13	2.51	3.61
Imperial valley	0.02	0.92	805.24	361.64	1106.06	2.23	1.37	3.06	4.40
Kobe	0.02	0.79	806.43	361.64	1106.43	2.23	1.37	3.06	4.41
Landers (Cool Water)	0.02	0.52	800.97	361.64	960.29	2.21	1.20	2.66	3.82
Kocaeli (Duzce)	0.02	0.59	802.37	361.64	987.95	2.22	1.23	2.73	3.93
Loma Prieta	0.02	0.99	806.96	361.64	1264.75	2.23	1.57	3.50	5.04
Manjil	0.02	2.08	803.35	361.64	1048.47	2.22	1.31	2.90	4.17
Northridge	0.02	1.13	802.05	361.64	937.66	2.22	1.17	2.59	3.73
Superstition	0.02	0.71	806.58	361.64	1118.99	2.23	1.39	3.09	4.46
						2.22	1.20	2 80	4 17
average			_			2.22	1.30	2.89	4.17
sigma			_			0.12	0.40	0.28	0.30
C.V.			—			0.06	0.31	0.10	0.07

 Table 3.5 Ductility, overstrength, and R factors of the frame braced with the X cable bracing system.

Records	DM	IM	$V_{b(Dyn,u)}$	$V_{b(st,y)}$	$V_{b(Dyn,e)}$	R _s	R_{μ}	R _{LRFD}	R _{ASD}
	Max Drift	$S_a(T_1, 5\%)$	(kN)	(kN)	(kN)				
Chi Chi	0.02	0.83	372.50	155.89	444.72	2.39	1.19	2.85	4.11
Hectormine	0.02	0.98	353.87	155.89	482.18	2.27	1.36	3.09	4.45
Imperial valley	0.02	0.73	355.03	155.89	469.13	2.28	1.32	3.01	4.33
Kobe	0.02	1.34	360.59	155.89	574.23	2.31	1.59	3.68	5.30
Landers (Cool Water)	0.02	1.25	359.37	155.89	462.35	2.31	1.29	2.97	4.27
Kocaeli (Duzce)	0.02	1.11	359.37	155.89	538.13	2.31	1.50	3.45	4.97
Loma Prieta	0.02	1.81	363.86	155.89	762.98	2.33	2.10	4.89	7.05
Manjil	0.02	1.15	367.38	155.89	654.11	2.36	1.78	4.20	6.04
Northridge	0.02	1.25	368.66	155.89	460.66	2.36	1.25	2.96	4.26
Superstition	0.02	0.73	368.41	155.89	494.89	2.36	1.34	3.17	4.57
avera de						2 22	1.47	3 /3	1.01
average			_			2.33	1.47	5.45 0.62	4.94
			_			0.04	0.27	0.05	0.90
C.V.			_			0.02	0.18	0.18	0.18

 Table 3.6 Ductility, overstrength, and R factors of the frame braced with the cable-cylinder bracing system.

Table 3.7 The summarized results for overstrength, ductility, and response modification factors.

Structure	R _S	R_{μ}	R _{LRFD}	R _{ASD}
Moment-resisting frame braced with the X cable	2.22	1.3	2.89	4.17
bracing system Moment-resisting frame braced with the cable- cylinder bracing system	2.33	1.47	3.43	4.94

overstrength factor increases. Moreover, the response modification factor for a given beam section is lower for the lower columns cross-section. This is because the frame with the weaker column section meets the damage limit state in lower base shear values. Furthermore, Table 3.8 shows that, for a given beam section, the base shear associated with forming the first plastic hinge is approximately constant for the frames braced with the cable-cylinder bracing system.

3.11 Sensitivity analysis

In Sections 3.3 and 3.4, it was shown that the cylinder dimensions and prestressing force play a critical role in the seismic performance of the cable-cylinder bracing system. Therefore, in this section, a sensitivity analysis is conducted to study the significance of various parameters, such as u, prestress of cables (f_{ps}) and v to in structural response of cable-cylinder braced frames. As presented in Table 3.9, totally 27 different combinations of u, v, and f_{ps} have been considered for sensitivity analysis.

For each combination tabulated in Table 3.9, IDA is conducted and subsequently, for each case, the response modification response is computed. As an example, in Figs. 3.29 and 3.30 the IDA results are presented for combinations 7 and 27, respectively.

In Tables 3.10 and 3.11, the response modification factor of the one-story frame braced with cable-cylinder braces are tabulated for combination 7 and combination 27, respectively. Table 3.12 presents the mean value of calculated ductility over strength and response modification factors for each combination.

As can be seen in Table 3.12, for all the combinations, the response modification factor of the system decreases as the prestressing force of cables increases. The reason is that when the prestressing force increases, the base shear associated with forming the first plastic hinge increases. Moreover, the fundamental period of the system is reduced with an increase in pre-stress value, leading to a stiffer system.

In most of the considered combinations, an increase in u and a decrease in v increase the ductility factor. This is because, in such cases, the length of cables increases in comparison with their original length. This causes the cable to reach its ultimate strength in the higher drifts. Moreover, the overstrength factor is decreased with an increase in δ_{sr} value.

	Beam	Column	$V_{b(st,y)}$ (kN)	$V_{b(Dyn,u)}$ (kN)	V _{b(Dyn,e)} (kN)	R _s	R_{μ}	R _{LRFD}
Moment-resisting frame braced with X cable bracing system	IPE270	IPB200	361.64	803.97	1046.44	2.22	1.3	2.89
	IPE240		282.34	777.10	893.25	2.75	1.15	3.16
	IPE220		218.96	761.92	874.89	3.48	1.15	4.00
	IPE220	IPB200	218.96	761.92	874.89	3.48	1.15	4.00
		IPB180	247.87	735.41	865.86	2.97	1.18	3.49
		IPB160	307.94	711.90	848.08	2.31	1.19	2.75
Moment-resisting frame braced with cable-	IPE270	IPB200	155.89	368.66	460.66	2.36	1.25	2.95
cylinder bracing system								
	IPE240		106.89	348.57	469.14	3.26	1.35	4.39
	IPE220		73.04	335.63	467.51	4.60	1.39	6.40
	IPE220	IPB200	73.04	335.63	467.51	4.60	1.39	6.40
		IPB180	73.46	306.18	393.07	4.17	1.28	5.35
		IPB160	81.86	282.44	341.92	3.45	1.21	4.18

 Table 3.8 Response modification factor for different structural details.

Combination No.	и	v	f_{ps}	Combination No.	и	v	f_{ps}	Combination No.	u	v	f_{ps}
	(mm)	(mm)	(MPa)		(mm)	(mm)	(MPa)		(mm)	(mm)	(MPa)
1	580	80	100	10	640	80	100	19	700	80	100
2	580	80	300	11	640	80	300	20	700	80	300
3	580	80	500	12	640	80	500	21	700	80	500
4	580	140	100	13	640	140	100	22	700	140	100
5	580	140	300	14	640	140	300	23	700	140	300
6	580	140	500	15	640	140	500	24	700	140	500
7	580	200	100	16	640	200	100	25	700	200	100
8	580	200	300	17	640	200	300	26	700	200	300
9	580	200	500	18	640	200	500	27	700	200	500

 Table 3.9 Different combinations of cylinder length, prestress of cables, and the inner diameter of the cylinder.

Figure 3.29 IDA results of one-story frame braced with the cable-cylinder bracing system for combination No.7. *IDA*, Incremental dynamic analysis.

Figure 3.30 IDA results of one-story frame braced with the cable-cylinder bracing system for combination No.27. *IDA*, Incremental dynamic analysis.

However, the decrease in the overstrength factor is greater than the increase in the ductility factor. Therefore, for these combinations, the response modification factor decreases. However, it should be noted that, based on the obtained results, it is hard to make a general conclusion on the relationship between the prestressing force and

Records	DM	IM	$V_{b(Dyn,u)}$	$V_{b(st,y)}$	$V_{b(Dyn,e)}$	R_s	R_{μ}	R _{LRFD}	R _{ASD}
	Max drift	$S_a(T_1, 5\%)$	(kN)	(kN)	(kN)				
Chi Chi	0.02	0.81	596.52	213.92	694.44	2.79	1.16	3.25	4.67
Hectormine	0.02	0.83	535.53	213.92	625.01	2.50	1.17	2.92	4.21
Imperial valley	0.02	0.68	596.52	213.92	756.28	2.79	1.27	3.54	5.09
Kobe	0.02	1.29	596.52	213.92	796.91	2.79	1.34	3.73	5.36
Landers (Cool Water)	0.02	0.92	516.74	213.92	596.52	2.42	1.15	2.79	4.02
Kocaeli (Duzce)	0.02	1.34	516.74	213.92	619.78	2.42	1.20	2.90	4.17
Loma Prieta	0.02	2.00	516.74	213.92	769.24	2.42	1.49	3.60	5.18
Manjil	0.02	1.14	516.74	213.92	867.08	2.42	1.68	4.05	5.84
Northridge	0.02	1.02	539.47	213.92	815.79	2.52	1.51	3.81	5.49
Superstition	0.02	0.84	534.07	213.92	596.52	2.50	1.12	2.79	4.02
						0.55	1.01	2.24	1.00
average	_		_			2.55	1.31	3.34	4.80
sigma	-		-			0.16	0.18	0.44	0.64
C.V.	—		-			0.06	0.14	0.13	0.13

 Table 3.10 Ductility, overstrength, and *R* factors for combination No. 7.

Records	DM Max drift	IM S ₂ (T ₁ .5%)	$V_{b(Dyn,u)}$ (kN)	$V_{b(st,y)}$ (kN)	$V_{b(Dyn,e)}$ (kN)	R _s	R_{μ}	R _{LRFD}	R _{ASD}
		Sa(-1), (C)	((111.1)	(111.1)				
Chi Chi	0.02	0.65	475.15	239.49	546.74	1.98	1.15	2.28	3.29
Hectormine	0.02	0.63	475.07	239.49	529.61	1.98	1.11	2.21	3.18
Imperial valley	0.02	0.68	447.94	239.49	730.96	1.87	1.63	3.05	4.40
Kobe	0.02	1.48	459.13	239.49	785.02	1.92	1.71	3.28	4.72
Landers (Cool Water)	0.02	0.82	467.98	239.49	578.66	1.95	1.24	2.42	3.48
Kocaeli (Duzce)	0.02	0.99	452.53	239.49	515.37	1.89	1.14	2.15	3.10
Loma Prieta	0.02	1.52	449.86	239.49	589.09	1.88	1.31	2.46	3.54
Manjil	0.02	1.23	451.59	239.49	713.58	1.89	1.58	2.98	4.29
Northridge	0.02	1.21	476.64	239.49	706.54	1.99	1.48	2.95	4.25
Superstition	0.02	0.58	470.38	239.49	495.83	1.96	1.05	2.07	2.98
						4.0.0			
average	-		-			1.93	1.34	2.59	3.72
sigma	-		-			0.05	0.23	0.41	0.60
C.V.	—		-			0.02	0.17	0.16	0.16

Table 3.11 Ductility, overstrength, and *R* factors for combination No. 27.

Run	u	v	f_{ps}	R _s	R_{μ}	R _{LRFD}
	(mm)	(mm)	(MPa)			
1	580	80	100	1.83	1.68	3.05
2	580	80	300	1.79	1.58	2.83
3	580	80	500	1.77	1.50	2.64
4	580	140	100	2.18	1.46	3.18
5	580	140	300	2.05	1.43	2.92
6	580	140	500	1.92	1.34	2.56
7	580	200	100	2.56	1.31	3.34
8	580	200	300	2.23	1.43	3.20
9	580	200	500	2.04	1.37	2.80
10	640	80	100	1.72	1.72	2.95
11	640	80	300	1.70	1.64	2.78
12	640	80	500	1.70	1.54	2.61
13	640	140	100	2.01	1.56	3.12
14	640	140	300	1.94	1.46	2.83
15	640	140	500	1.84	1.43	2.63
16	640	200	100	2.37	1.41	3.33
17	640	200	300	2.12	1.35	2.85
18	640	200	500	2.02	1.41	2.86
19	700	80	100	1.68	1.73	2.90
20	700	80	300	1.64	1.70	2.77
21	700	80	500	1.64	1.63	2.68
22	700	140	100	1.87	1.65	3.07
23	700	140	300	1.83	1.53	2.81
24	700	140	500	1.80	1.48	2.66
25	700	200	100	2.20	1.45	3.19
26	700	200	300	2.07	1.42	2.92
27	700	200	500	1.93	1.34	2.59

 Table 3.12 The mean value of ductility, overstrength, and R factors for considered combinations.

the value of the response modification factor. From Table 3.12, it can be concluded that the *R* factor is more sensitive to the value of the prestressing force of cables, comparing to the other parameters. The sensitivity of the response modification factor versus each considered variables parameter is plotted in Fig. 3.31. As Fig. 3.31 shows, for a constant value of *u*, the R_{LRFD} is increased significantly with an increase in *v*. For example, for u = 600 mm, the value of *R* factor is obtained at approximately 3, 3.15, and 3.32 for v = 80, 140, and 200 mm, respectively.

Fig. 3.32 shows the variation of the response modification factor for a given value of cylinder length. Fig. 3.32 shows that for a given value of cylinder length (here u = 580 mm), while the higher v results in a higher R factor, increasing the extent of prestressing causes the reduction of the R factor.

Figure 3.31 The variation of response modification factor against cylinder length and cylinder internal diameter for $f_{ps} = 100$ MPa.

Figure 3.32 The variation of response modification factor against internal cylinder diameter and prestressing for u = 580 mm.

Figure 3.33 The variation of response modification factor against prestressing and cylinder length for v = 80 mm.

Table 3.13 The variation of responsemodification factor against cylinder length anddiameter for $f_{ps} = 100$ MPa.

$f_{ps} = 100 \text{ MPa}$							
<i>u</i> (mm)	v(mm)	R _{LRFD}					
580	80	3.05					
580	140	3.18					
580	200	3.34					
640	80	2.95					
640	140	3.11					
640	200	3.33					
700	80	2.90					
700	140	3.07					
700	200	3.19					

Fig. 3.33 shows the variation of the *R* factor versus the different cylinder lengths and prestressing force for v = 80 mm. As can be seen in this figure, up to about $f_{ps} = 300$ MPa, increasing the cylinder length decreases the *R* factor. However, for

u = 580 mm								
v(mm)	f _{ps} (MPa)	R _{LRFD}						
80	100	3.05						
80	300	2.83						
80	500	2.64						
140	100	3.18						
140	300	2.92						
140	500	2.56						
200	100	3.34						
200	300	3.20						
200	500	2.80						

Table 3.14 The variation of response modification factor against prestressing and cylinder diameter for u = 580 mm.

Table 3.15 The variation of response modification factor against prestressing and cylinder length for v = 80 mm.

v = 80 mm								
u(mm)	R _{LRFD}							
580	100	3.05						
580	300	2.83						
580	500	2.64						
640	100	2.95						
640	300	2.78						
640	500	2.61						
700	100	2.90						
700	300	2.77						
700	500	2.68						

higher prestress values increasing the cylinder length leads to a slight increase in the R factor.

The detailed results on variation of response modification factor for different cylinder lengths, prestressing stress of cables, and the internal diameter of the cylinder are tabulated in Tables 3.13-3.15.

3.12 Proposing an equation for the response modification factor of cable-cylinder bracing system

Using the results of sensitivity analysis carried out in the previous section, here an equation is proposed for the response modification factor of the cable-cylinder bracing system in terms of prestress of cables cylinder internal diameter and cylinder length.

Response surface methodology (RSM) describes a relationship between a dependent variable and several independent variables. This methodology is a combination of mathematical and statistical techniques that are used to link the considered response surface (y) and independent input variables $(x_1, x_2, ..., x_k)$. Among the existing RSMs, central composite methodology (CCM) is recognized as the most suitable methodology. In this methodology, three different surfaces such as high surface, medium surface, and low surface are assumed for each factor. Each of these surfaces can be used in all the possible experiments (3^k experiments) or a subset of 3^k experiments, where k is the number of the existing independent variables. In the current study, the CCM has been used for developing an equation for the response modification factor [37].

Using the CCM, three different values are assumed for each variable: (1) cylinder lengths to be 580, 640, and 700 mm; (2) cylinder diameters to be 80, 140, and 200 mm, and (3) cables' prestressing level of 100, 300, and 500 MPa. It worth mentioning that Minitab software is used to develop the equations of response modification factor. Eq. (3.26) presents the proposed equation for R_{LRFD} in terms of the considered variables:

$$R_{LRFD} = 7.03 - 0.01297u + 0.00892v - 0.001881f_{ps} + 0.000010u^2 - 0.000003v^2 + 0.000001f_{ps}^2 - 0.000008uv + 0.000001uf_{ps} - 0.000005vf_{ps} (3.26)$$

To evaluate the accuracy of the proposed Eq. (3.26), the obtained values of R_{LRFD} from Eq. (3.26) are compared with the corresponding calculated response modification factors (as presented in Tables 3.13-3.15) in Table 3.16. As can be seen in Table 3.16, there is a negligible difference between the calculated value of the *R* factor using the proposed equation and those obtained from the nonlinear analyses. Therefore it can be concluded that Eq. (3.26) is a promising simple way to estimate the *R* factor of the cable-cylinder bracing system with different cylinder length, prestressing, and cylinder diameter of cables.

No.	u (mm)	v (mm)	f _{ps} (MPa)	<i>R_{LRFD}</i> (calculated)	<i>R_{LRFD}</i> (Minitab)	Error (%)
1	580	80	100	3.05	3.03	0.64
2	580	80	300	2.83	2.77	1.90
3	580	80	500	2.64	2.59	1.74
4	580	140	100	3.18	3.22	1.47
5	580	140	300	2.92	2.90	0.46
6	580	140	500	2.56	2.66	3.84
7	580	200	100	3.34	3.39	1.51
8	580	200	300	3.20	3.01	5.88
9	580	200	500	2.80	2.71	3.32
10	640	80	100	2.95	2.96	0.10
11	640	80	300	2.78	2.71	2.60
12	640	80	500	2.61	2.54	2.70
13	640	140	100	3.11	3.11	0.14
14	640	140	300	2.83	2.81	0.77
15	640	140	500	2.63	2.58	1.94
16	640	200	100	3.33	3.25	2.37
17	640	200	300	2.85	2.88	1.15
18	640	200	500	2.86	2.75	3.74
19	700	80	100	2.90	2.95	1.77
20	700	80	300	2.77	2.71	1.88
21	700	80	500	2.68	2.56	4.59
22	700	140	100	3.07	3.08	0.45
23	700	140	300	2.81	2.78	0.83
24	700	140	500	2.66	2.57	3.52
25	700	200	100	3.19	3.19	0.22
26	700	200	300	2.92	2.83	3.03
27	700	200	500	2.59	2.55	1.18

Table 3.16 The values of the *R* factor obtained from the incremental dynamic analysis methodology and Minitab software.

3.13 Conclusion

In this chapter, concepts of a novel bracing system called cable-cylinder bracing system are introduced. First, the theoretical equilibrium relationships of this system are derivated. Then, the influence of different parameters such as cylinder length, cylinder diameter, cylinder rigidity, and prestressing force on the structural behavior of moment-resisting framer braced with the cable-cylinder bracing system is investigated. Subsequently, the developed theoretical relationships are verified using the finite element model of the proposed bracing system. This is followed then by NTHA of this bracing system. For comparison purposes, in all the analyses, the

structural behavior of the cable-cylinder bracing system is compared with the conventional X cable bracing system. The hysteretic response, drifts distribution, and height of the considered case study frames are discussed. Then, using the fiber element modeling technique, the response modification factor of the proposed bracing system is calculated employing an IDA approach. Finally, a sensitivity analysis is carried out considering various cylinder lengths, cylinder diameters, and prestressing forces. Using the sensitivity analysis outputs, a relationship is introduced for the response modification factor of the steel frames with the cable-cylinder bracing system.

Overall, the research carried out in this chapter confirms that the cable-cylinder bracing system could be a promising alternative for strengthening existing moment-resisting steel frames compared to the conventional X cable bracing system. However, the authors of this chapter believe that further experimental studies with different structural details are required to ensure the adequate seismic performance of this bracing system under large impulsive earthquakes.

References

- M. Bruneau, T. Bhagwagar, Seismic retrofit of flexible steel frames using thin infill panels, Engineering Structures 24 (4) (2002) 443–453. Available from: https://doi.org/ 10.1016/S0141-0296(01)00111-0.
- [2] F. Bartera, R. Giacchetti, Steel dissipating braces for upgrading existing building frames, Journal of Constructional Steel Research 60 (3–5) (2004) 751–769. Available from: https://doi.org/10.1016/S0143-974X(03)00141-X.
- [3] L.D. Sarno, Bracing systems for seismic retrofitting of steel frames. In: Proceedings of the fifth international conference on behaviour of steel structures in seismic areas, 2006, pp. 821–826.
- [4] R.H. Hanson, Supplemental damping for improved seismic performance, Earthquake Spectra 9 (3) (1993) 319–334. Available from: https://doi.org/10.1193/1.1585719.
- [5] T.T. Soong, G.F. Dargush, Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons, 1997.
- [6] I.D. Aiken, D.K. Nims, A.S. Whittaker, J.M. Kelly, Testing of passive energy dissipation systems, Earthquake Spectra 9 (3) (1993) 335–370. Available from: https://doi. org/10.1193/1.1585720.
- [7] S. Stefano, G. Terenzi, The damped cable system for seismic protection of frame structures—Part II: design and application, Earthquake Engineering and Structural Dynamics 41 (2012) 929–947. Available from: https://doi.org/10.1002/eqe.1165.
- [8] M. Kurata, R. Leon, R. DesRoches, Rapid seismic rehabilitation strategy: concept and testing of cable bracing with couples resisting damper, Journal of Structural Engineering 138 (3) (2012). Available from: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000401.
- [9] N. Fanaie, E. Afsar Dizaj, Response modification factor of the frames braced with reduced yielding segment BRB, Structural Engineering and Mechanics 50 (1) (2014) 1–17. Available from: https://doi.org/10.12989/sem.2014.50.1.001.
- [10] E. Afsar Dizaj, N. Fanaie, A. Zarifpour, Probabilistic seismic demand assessment of steel frames braced with reduced yielding segment buckling restrained braces,

Advances in Structural Engineering 21 (7) (2018) 1002–1020. Available from: https://doi.org/10.1177/1369433217737115.

- [11] M.A. Saleem, M.M. Saleem, Cable Bracing System to Resist Wind Forces on Tall Building in Miami, 3rd FIB International Congress, Washington, DC, USA, 2010.
- [12] H. Osamu, S. Kouhei, M. Taro, The role of cables in large span spatial structures: introduction of recent space structures with cables in Japan, Engineering Structures 21 (8) (1999) 795–804. Available from: https://doi.org/10.1016/S0141-0296(98)00029-7.
- [13] O. Ben Mekki, F. Auricchio, Performance evaluation of shape-memory-alloy superelastic behavior to control a stay cable in cable-stayed bridges, International Journal of Non-Linear Mechanics 46 (2) (2011) 470–477. Available from: https://doi.org/ 10.1016/j.ijnonlinmec.2010.12.002.
- [14] V. Straupe, A. Paeglitis, Analysis of geometrical and mechanical properties of cablestayed bridge, Modern Building Materials, Structures and Techniques 57 (2013) 1086–1093. Available from: https://doi.org/10.1016/j.proeng.2013.04.137.
- [15] H. Wu, XiangY, J. Wang, Condition assessment of long span cable-stayed bridge, Journal of Zhejiang University SCIENCE A 7 (2) (2006) 297–308. Available from: https://doi.org/10.1631/jzus.2006.AS0297.
- [16] H. Kang, Y. Zhao, H. Zhu, Analytical and experimental dynamic behavior of a new type of cable-arch bridge, Journal of Constructional Steel Research 101 (2014) 385–394. Available from: https://doi.org/10.1016/j.jcsr.2014.06.005.
- [17] S. Tan and A. Astaneh-Asl, Use of steel cables to prevent progressive collapse of existing buildings. Proceedings of sixth conference on tall buildings in seismic regions, Los Angeles, California, 2003.
- [18] M. Hadi, A.T. Saeed, New building scheme to resist progressive collapse, Journal of Architectural Engineering 18 (4) (2012) 324–331. Available from: https://doi.org/ 10.1061/(ASCE)AE.1943-5568.0000088.
- [19] J. Cai, Y. Xu, L. Zhuang, J. Feng, J. Zhang, Comparison of various procedures for progressive collapse analysis of cable-stayed bridges, Journal of Zhejiang University SCIENCE A 13 (5) (2012) 323–334. Available from: https://doi.org/10.1631/jzus. A1100296.
- [20] M. Razavi, M.R. Sheidaii, Seismic performance of cable zipper-braced frames, Journal of Constructional Steel Research 74 (2012) 49–57. Available from: https://doi.org/ 10.1016/j.jcsr.2012.02.007.
- [21] M. Kurata, R. Leon, R. DesRoches, Rapid seismic rehabilitation strategy: concept and testing of cable bracing with couples resisting damper, Journal of Structural Engineering 138 (3) (2012). Available from: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000401.
- [22] S. Chuang, Y. Zhuge, P.C. McBean, Seismic retrofitting of unreinforced masonry walls by cable system, 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
- [23] S.M. Zahrai, M.J. Hamidia, Studying the Rehabilitation of Existing Structures Using Compound System of Cables and Shape Memory Alloys. ATC & SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, San Francisco, California, 2009.
- [24] H. Tagawa, X. Hou, Seismic retrofit of ductile moment resisting frames using wire-rope bracing, Proceedings of the eighth pacific conference on earthquake engineering, 2007.
- [25] N. Fanaie S. Aghajani, S. Shamloo Theoretical assessment of wire rope bracing system with soft central cylinder. 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.

- [26] X. Hou, H. Tagawa, Displacement-restraint bracing for seismic retrofit of steel moment frames, Journal of Constructional Steel Research 65 (5) (2009) 1069–1104. Available from: https://doi.org/10.1016/j.jcsr.2008.11.008.
- [27] N. Fanaie, S. Aghajani, E. Afsar Dizaj, Strengthening of moment-resisting frame using cable-cylinder bracing, Advances in Structural Engineering 19 (11) (2016) 1736–1754. Available from: https://doi.org/10.1177/1369433216649382.
- [28] American Institute of Steel Construction (AISC), ANSI/AISC360-10: Specification for Structural Steel Buildings, AISC, Chicago, IL, 2010.
- [29] American Society of Civil Engineers (ASCE), Minimum design loads for buildings and other structures (ASCE7-10), ASCE, Reston, VA, 2010.
- [30] PEER (Pacific Earthquake Engineering Research Center). PEER NGA ground motion database. http://peer.berkeley.edu/nga; 2011.
- [31] Standard No 2800 V4. Iranian code of practice for seismic resistant design of buildings. Tehran, Iran: Building and Housing Research Center, 2014.
- [32] F. Taucer, E. Spacone, F.C. Filippou, A fiber beam-column element for seismic response analysis of reinforced concrete structures. Berkeley: EERC College of Engineering, University of California, 1991.
- [33] F. McKenna, OpenSees: a framework for earthquake engineering simulation, Computing in Science and Engineering 13 (4) (2011) 58–66. Available from: https:// doi.org/10.1109/MCSE.2011.66.
- [34] G.D. Nolan, Bond properties of CFCC Prestressing strand in pretensioned concrete beams. Master of Science in Civil Engineering, Department of Civil and Geological Engineering, University of Manitoba, 1995.
- [35] FEMA P695, Quantification of building seismic performance factors. Federal Emergency Management Agency, Washington, DC, 2009.
- [36] M. Ghasemi, N. Fanaie, H. Khorshidi, Seismic performance factors of a dual system with IMRF and cable-cylinder bracing, Journal of Building Engineering (2021). Available from: https://doi.org/10.1016/j.jobe.2021.102309 (in press).
- [37] A. Khuri, s Mukhopadhyay, Response surface methodology, Wiley Interdisciplinary Reviews: Computational Statistics 2 (2) (2010) 128–149.