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A B S T R A C T   

Concentrically braced frames (CBFs) have an excellent performance to the lateral seismic forces at the time of the 
mild earthquakes, but they are weak under severe seismic loads due to the occurrence of buckling of the bracing 
members and the lack of proper ductility in terms of energy absorption and do not behave properly. This article 
introduces the new quarter-elliptic brace. Adding this brace to the moment frame improves the stiffness of this 
system and impedes the excess structural deformation in this system. In the present study, a precise analytical 
formulation is presented using the concept of strain energy and Castigliano’s theorem in order to calculate the 
elastic lateral stiffness of a two-dimensional single-span and single-story steel moment frame equipped with 
quarter-elliptic brace. In this relation, all effective factors, including axial and shear forces as well as bending 
moment, were considered for all frame members. The proposed formulation was controlled by the results of 
various examples in OpenSees software. The error percentage between the results obtained from the newly 
developed formulation and numerical analysis of finite elements is very insignificant so that it can be ignored. 
Also, the seismic performance of this system was investigated according to the FEMA P695 methodology for near- 
field and far-field ground motion records compared with the intermediate moment frame. The results showed 
that using a quarter-elliptic brace in the intermediate moment frame improves the seismic performance of this 
system.   

1. Introduction 

Steel CBFs, due to considerable lateral stiffness, high lateral strength, 
and ease of implementation, are among the most widely used structural 
systems in constructing steel structures. One of the problems of CBFs is 
the occurrence of buckling when applying compressive load, which 
causes instability before reaching the yield strength. In other words, the 
behavior of braces, in tension and compression, is asymmetrical, and as 
a result, the hysteresis curves of these types of bracing frames become 
irregular. In addition, CBFs have limited ductility and energy dissipation 
and have high elastic stiffness. Thus, ordinary braces have limited 
ductility capacity and asymmetric force–displacement loops [1–7]. In 
recent decades, researchers have conducted extensive research on this 
structural system and have developed various methods to increase the 
ductility of common CBFs. The majority of methods used for the 
ductility of bracing steel structures included the use of buckling 
restrained brace (BRB) instead of conventional braces and the use of 
structural fuses locally and in certain parts of the brace throughout the 

length of the brace or bracing connections [8–15]. 
Off-center bracing system (OBS) is one of the systems developed in 

order to improve the concentrically braced structures. In this structural 
system, the bracing element is not direct, and therefore, its primary 
geometry changes when a lateral load is imposed into this system. So, 
the force–displacement curve of these systems is geometrically 
nonlinear, and the degree of nonlinearity of this system is mainly 
dependent on the off-centrality and relative stiffness of the bracing el-
ements [16]. In their study on these systems, Moghaddam and Este-
kanchi found that the force–displacement curve in these systems follows 
a nonlinear hardening pattern with two yield points. Then, using this 
model, the structures of single-story and multi-story were subjected to 
seismic loads. The results of these analyses indicated that this structural 
system has a behavioral like that of base isolation systems and has a 
good strength to lateral loads [17]. Trombetti et al. (2009), in a 
framework design based on stiffness, strength, and ductility, introduced 
a new hysteretic member called crescent shaped brace (CSB) [18]. They 
showed the capability of crescent shaped members using them in a 5- 
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story steel frame designed based on the concept of isolation considering 
the first soft-story [19]. Their results showed that the crescent shaped 
members placed on the first story, due to their specific geometry with 
symmetric cyclic behavior and hardening in high escapes (due to geo-
metric nonlinearity), can prevent total instability caused by the second- 
order effects. In 2015, Palermo et al. conducted comprehensive labo-
ratory studies on crescent shaped braces (Fig. 1). The results showed that 
the initial lateral stiffness and initial yield strength are independent in 
these braces, and these braces have considerable ductility capacity and 
final hardening in order to prevent damage caused by the second-order 
effects. These braces, due to their geometric structure, in addition to 
further energy dissipation, also allow to adjust the stiffness to the 
desired amount [20,21]. In Fig. 1, the knee point distance has been 
denoted by d. Seismic performance factors in the crescent-shaped 
bracing system depend on the value of d. Because this distance is vari-
able, it is impossible to present constant seismic performance factors for 
this system. 

In 2016, Jouneghani et al. introduced the new elliptic brace, and in 
2018, Boostani et al. introduced the circular brace (OGrid) (Fig. 2a). In 
addition to improving structural behavior and higher energy dissipation 
in the structural system, these two braces do not suffer from the lack of 
architectural space in order to create the opening. One of the worst 
disadvantages of these two braces is the connection of the bracing 
members to the columns because a failure to properly connect them and 
the insertion of excess shear force from the braces to the column might 
lead to the emergence of plastic hinges in the middle of the column 
[22–26]. In 2019, Shamivand and Akbari introduced a new ring-shaped 
brace called Shami lateral bracing system (SLB) (Fig. 2b) and used quasi 
columns in order to fix the problem of connecting the brace to the main 
columns [27]. 

In 1972, Davis et al. obtained the stiffness matrix of a finite element 
using force–displacement equations based on differential equations of 
an infinitesimal element in static equilibrium, and the effect of shear 
deformations is also considered [28,29]. In 1981, Yoo and Fehrenbach 
presented a curved element of finite elements for the free vibration of a 
horizontally curved beam, in which the effect of shear deformations was 
ignored [30]. In 2006, Yoon et al. investigated the out-of-plane dynamic 
behavior of thin-wall curved beams as a follow-up study to the research 
developed by Yang and Kuo. They obtained the governing equations on 
the behavior of thin-wall curved beams with seven degrees of freedom 
per node, in which the warping effect has also been taken into account 
[31,32]. In 2009, Kim et al. presented a very thin curved beam element 
in which the transverse shear effect, transverse rotary inertia force, and 
torsional rotary inertia force were considered. The stiffness matrix was 
obtained using strain energy and natural shape functions by integration 
of differential equations obtained from static equilibrium [33]. In 2016, 
a new curved beam element with two nodes and six degrees of freedom 
in order to model arches with parabolic geometry was proposed by 
Rezaiee and Rajabzadeh, and using the stiffness-based finite elements 

method, an explicit stiffness matrix was introduced for the element. 
They stated that the use of the proposed explicit form of the stiffness 
matrix of the curved beam could significantly accelerate the process of 
analysis [34]. In 2018, Marotta and Salvini presented a closed solution 
to the stiffness matrix of the curved beam using Castigliano’s second 
theorem and considering the bending and axial effects. This analytical 
solution for a curved beam was carried out through cubic function of 
radius of curvature. They concluded that this method is also suitable for 
nonlinear analysis with high displacements [35]. 

In this paper, a new quarter-elliptic brace is introduced, and the 
elastic stiffness of the steel moment frame equipped with this brace is 
accurately calculated. By adding this brace to the moment frame, the 
stiffness in this system is improved, and excessive structural deformation 
is prevented in this system. In this research, first, a precise and practical 
formulation is presented using a new and innovative method in order to 
calculate the elastic stiffness of the two-dimensional single-span and 
single-story quarter-elliptic-braced steel moment frame (QEB-MF) under 
lateral force. In this relation, all effective factors, including axial and 
shear forces as well as bending moment, were considered for all frame 
members. This relation was evaluated with different examples in 
OpenSees finite element software. Then, the seismic performance of this 
system was investigated according to the FEMA P695 methodology for 
near-field and far-field ground motion records compared with the in-
termediate moment frame (IMF). The results showed that using a 
quarter-elliptic brace in the intermediate moment frame improves the 
seismic performance of this system. 

2. Presenting a new method for calculating the elastic stiffness 
of QEB-MF systems 

In this section of the study, the elastic lateral stiffness of a two- 
dimensional single-span and single-story QEB-MF system that is under 
the lateral load of P according to Fig. 3a, using the new method based on 
the concept of strain energy and Castigliano’s theorem, and considering 
the axial, shear, and bending deformations is determined [36]. Ac-
cording to Fig. 3b, the length of the beam (Lb) is considered to be semi- 
major axis of the ellipse (a), and the length of the column (Lc) is equal to 
the semi-minor axis of the ellipse (b). Also, the properties of beam, 
column, and quarter-elliptic bracing member cross-sections are consid-
ered as parametric. The geometric specifications of the frame are 
expressed according to Fig. 3b in Eq. (1): 

tanθ =
b
a
=

Lc

Lb
= e ,

sinθ =
b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√ =
e
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + e2

√ ,

cosθ =
a

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√ =
1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + e2

√

(1) 

In this equation, θ is a parameter for the expression of the frame 
diameter angle. 

Internal efforts of the studied frame under lateral force of P and 
considering FAC and FCA as forces of the two sides of quarter-elliptic 
brace cross-section were shown in Fig. 4. 

Using compatibility equations for nodes A, B, C, and D, internal ef-
forts for frame members were calculated according to Fig. 5: 

For node A (Fig. 5a): 

MAB = MAD = MA (2) 

For node B (Fig. 5b): 

MBC = MBA = MB (3)  

∑
Fx = 0→P + NBC + VBA = 0

→NBC = − (P + VBA)
(4)  

∑
Fy = 0→NBA = VBC (5) 

Fig. 1. A bilinear CSB inserted into a frame as diagonal brace [20].  
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For node C (Fig. 5c): 

MCB = MCD = MC (6)  

∑
Fx = 0→VCD − NCB − FCAcosθ = 0

→FCA =
VCD − NCB

cosθ
(7) 

For node D (Fig. 5d): 

MDC = MDA = MD (8)  

∑
Fy = 0→NDC = VDA −

PLc

Lb
(9) 

The internal efforts of columns AB and DC and beams AD and BC 
were shown in Fig. 6. Using static equilibrium equations and calculation 
of moment value in the two end nodes of columns and beams, shear and 
axial forces are calculated on both sides of the members: 

For column AB (Fig. 6a): 

NAB = NBA (10)  

∑
MA = 0→VBA = −

MAB + MBA

Lc
(11) 

(a) (b)

Fig. 2. (a) Shami lateral bracing system (SLB), (b) OGrid-I bracing system [25,27].  

(a) )b(

Fig. 3. (a) The desired steel moment frame with directly welded rigid connections equipped with quarter-elliptic brace, (b) Side view of QEB-MF systems.  

Fig. 4. The internal efforts of the QEB-MFs.  
Fig. 5. Analysis of joints in the QEB-MFs; (a) joint A, (b) joint B, (c) joint C, (d) 
joint D. 
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∑
MB = 0→VAB = −

MAB + MBA

Lc
(12) 

By inserting Eqs. (2) and (3) in Eqs. (11) and (12), we can conclude 
that: 

VAB = VBA = −
MA + MB

Lc
(13) 

For column DC (Fig. 6b): 

NCD = NDC (14)  

∑
MC = 0→VDC =

MDC + MCD

Lc
(15)  

∑
MD = 0→VCD =

MDC + MCD

Lc
(16) 

By inserting Eqs. (6) and (8) in Eqs. (15) and (16), we can conclude 
that: 

VCD = VDC =
MD + MC

Lc
(17) 

For beam BC (Fig. 6c): 

NBC = NCB (18)  

∑
MB = 0→VCB =

MBC − MCB

Lb
(19)  

∑
MC = 0→VBC =

MBC − MCB

Lb
(20) 

By inserting Eqs. (3) and (6) in Eqs. (19) and (20), we can conclude 
that: 

VCB = VBC =
MB − MC

Lb
(21) 

For beam AD (Fig. 6d): 

δAD = δDA = 0→NAD = NDA = 0 (22)  

∑
MA = 0→VDA =

MAD − MDA

Lb
(23)  

∑
MD = 0→VAD =

MAD − MDA

Lb
(24) 

Because of the existence of support on both sides of the beam AD and the 
absence of axial force throughout the beam, the axial deformation on the 
two sides of this beam is equal to zero; therefore, considering δ = NL/ EA , 
the axial force at the two sides of this member is also equal to zero. By 

inserting Eqs. (2) and (8) in Eqs. (19) and (20), we can conclude that: 

VDA = VAD =
MA − MD

Lb
(25) 

With the placement of Eqs. (13) and (18) in Eq. (4), a new equation 
has been obtained, so that by inserting this equation and Eq. (17) in Eq. 
(7), internal efforts of the quarter-elliptic bracing member are calculated 
as follows: 

FAC = FCA =
P + VCD + VBA

cosθ

=

P +
(MD + MC)

Lc
−
(MA + MB)

Lc

cosθ
=

PLc − MA − MB + MD + MC

Lccosθ

(26) 

The shear modulus of steel (G) is obtained based on Young’s modulus 
(E) and Poisson’s ratio (ν) in Eq. (27): 

G =
E

2(1 + υ), υ = 0.3→G =
E

2(1 + 0.3)
=

E
2.6

(27) 

The total area and effective shear area was obtained for column 
cross-section in Eq. (28), for beam cross-section in Eq. (29), and for 
quarter-elliptic brace cross-section in Eq. (30) and according to Fig. 2b: 

A′

c =
Ac

αc
, Ac =

Ic

r2
c

(28)  

A′

b =
Ab

αb
, Ab =

Ib

r2
b

(29)  

A′

q =
Aq

αq
, Aq =

Iq

r2
q

(30) 

In these equations, A is the cross-sectional area, A′ is the effective 
shear area of the cross-section, α is the shear shape coefficient of the 
cross-section, and I and r are the moment of inertia and radius of gy-
ration of the cross-section about the bending axis (strong axis), 
respectively. 

2.1. Calculating strain energy of the columns 

Strain energy for columns is calculated under the effect of internal 
bending moment, internal axial force, and internal shear force. To 
calculate strain energy in the columns, first, we obtained the equation of 
internal force changes in columns AB and DC according to Fig. 6a and b, 
and then, using the general energy equation, we obtained the amount of 
strain energy stored in the columns. The internal moment values of the 
columns were obtained by Eqs. (31) and (32): 

Fig. 6. The internal efforts; (a) column AB, (b) column DC, (c) beam BC, (d) beam AD.  

N. Fanaie and A. Shirpour                                                                                                                                                                                                                    



Structures 49 (2023) 426–442

430

MAB(y) = MAB +VABy, 0 ≤ y ≤ Lc (31)  

MDC(y) = MDC − VDCy, 0 ≤ y ≤ Lc (32) 

Strain energy values due to bending, axial, and shear deformations 
for columns were calculated by Eqs. (33) and (34). In these equations, E 
is Young’s modulus and G is shear modulus of steel that is obtained in 
Eq. (27). Also, Ac is the area of column cross-section, and A′

c is the 
effective shear area of the column cross-section obtained in Eq. (28). 

UAB =
1

2EIc

∫ Lc

0
M2

AB(y)dy+
V2

ABLc

2GA′

c
+

N2
ABLc

2EAc

=
1

2EIc

∫ Lc

0
(MAB + VABy)2dy+ 2.6αc

V2
ABLc

2EAc
+

N2
ABLc

2EAc

=
M2

ABLc

2EIc
+

MABVABL2
c

2EIc
+

V2
ABL3

c

6EIc
+

(
2.6αcV2

AB + N2
AB

)
Lcr2

c

2EIc
(33)  

UDC =
1

2EIc

∫ Lc

0
M2

DC(y)dy+
V2

DCLc

2GA′

c
+

N2
DCLc

2EAc

=
1

2EIc

∫ Lc

0
(MDC − VDCy)2dy+ 2.6αc

V2
DCLc

2EAc
+

N2
DCLc

2EAc

=
M2

DCLc

2EIc
−

MDCVDCL2
c

2EIc
+

V2
DCL3

c

6EIc
+

(
2.6αcV2

DC + N2
DC

)
Lcr2

c

2EIc
(34) 

By combining Eqs. (5), (10), and (21), NAB was obtained, and by 
substitution of this equation, Eq. (2) and Eq. (13) in Eq. (33), the value of 
strain energy of column AB in Eq. (35) is obtained:  

By combining Eq. (9), and Eq. (21), NDC was obtained, and by sub-
stitution of this equation, Eq. (8) and Eq. (17) in Eq. (34), the value of 
strain energy of column DC in Eq. (36) is obtained:  

By adding up Eqs. (35) and (36), the total strain energy caused by 
bending, axial, and shear deformations is calculated for columns:  

2.2. Calculating strain energy of the beams 

Strain energy for beams is calculated under the effect of internal 
bending moment, internal axial force, and internal shear force. To 
calculate strain energy in the beams, first, we obtained the equation of 
internal force changes in beams AD and BC according to Fig. 6c and d, 
and then, using the general energy equation, we obtained the amount of 
strain energy stored in the beams. The internal moment values of the 
beams were obtained by Eqs. (38) and (39): 

MAD(x) = MAD − VADx, 0 ≤ x ≤ Lb (38)  

MBC(x) = MBC − VBCx, 0 ≤ x ≤ Lb (39) 

Strain energy values due to bending, axial, and shear deformations 
for beams were calculated by Eq. (40) and Eq. (41). In these equations, E 
is Young’s modulus and G is shear modulus of steel that is obtained in 
Eq. (27). Also, Ab is the area of beam cross-section, and A′

b is the 
effective shear area of the beam cross-section obtained in Eq. (29). 

UAD =
1

2EIb

∫ Lb

0
M2

AD(x)dx+
V2

ADLb

2GA′

b
+

N2
ADLb

2EAb

=
1

2EIb

∫ Lb

0
(MAD − VADx)2dx+ 2.6αb

V2
ADLb

2EAb
+

N2
ADLb

2EAb

=
M2

ADLb

2EIb
−

MADVADL2
b

2EIb
+

V2
ADL3

b

6EIb
+

(
2.6αbV2

AD + N2
AD

)
Lbr2

b

2EIb
(40)  

UAB =
Lc

6EIc

[

3M2
A + 3MA( − MA − MB) + ( − MA − MB)

2
+ 3r2

c

(

2.6αc

(
− MA − MB

Lc

)2

+

(
MB − MC

Lb

)2
)]

=
Lc

6EIc

[

M2
A − MAMB + M2

B +
7.8αcr2

c

L2
c

(
M2

A + 2MAMB + M2
B

)
+

3r2
c

L2
b

(
M2

B − 2MBMC + M2
C

)
] (35)   

UDC =
Lc

6EIc

[

3M2
D − 3MD(MD + MC) + (MD + MC)

2
+ 3r2

c

(

2.6αc

(
MD + MC

Lc

)2

+

(
MA − MD − PLc

Lb

)2
)]

=
Lc

6EIc

[

M2
D − MDMC + M2

C +
7.8αcr2

c

L2
c

(
M2

D + 2MDMC + M2
C

)
+

3r2
c

L2
b

(
M2

A − 2MAMD − 2MAPLc + 2MDPLc + M2
D + P2L2

c

)
] (36)   

Ucolumns,bav=UAB+UDC

=
Lc

6EIc

[

M2
A − MAMB+M2

B+M2
D − MDMC+M2

C+
7.8αcr2

c

L2
c

(
M2

A+2MAMB+M2
B+M2

D+2MDMC+M2
C

)
+

3r2
c

L2
b

(
M2

B − 2MBMC+M2
C 

+M2
A − 2MAMD − 2MAPLc+2MDPLc+M2

D+P2L2
c

)
]

(37)   
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UBC =
1

2EIb

∫ Lb

0
M2

BC(x)dx+
V2

BCLb

2GA′

b
+

N2
BCLb

2EAb

=
1

2EIb

∫ Lb

0
(MBC − VBCx)2dx+ 2.6αb

V2
BCLb

2EAb
+

N2
BCLb

2EAb

=
M2

BCLb

2EIb
−

MBCVBCL2
b

2EIb
+

V2
BCL3

b

6EIb
+

(
2.6αbV2

BC + N2
BC

)
Lbr2

b

2EIb
(41) 

By substitution of Eqs. (2), (8), (22), and (24) in Eq. (40), the strain 
energy value of beam AD in Eq. (42) is obtained: 

UAD=
Lb

6EIb

[

3M2
A − 3MA(MA − MD)+(MA − MD)

2
+3r2

b

(

2.6αb

(
MA − MD

Lb

)2
)]

=
Lb

6EIb

[

M2
A+MAMD+M2

D+
7.8αbr2

b

L2
b

(
M2

A − 2MAMD+M2
D

)
]

(42) 

By substitution of Eqs. (2), (4), (6), (13), and (21) in Eq. (41), the 
strain energy value of beam BC in Eq. (43) is obtained:  

By adding up Eqs. (42) and (43), the total strain energy caused by 
bending, axial, and shear deformations is calculated for beams:  

2.3. Calculating strain energy of the quarter-elliptic brace 

Strain energy is calculated under the effect of internal bending 
moment, internal axial force, and internal shear force for the quarter- 
elliptic brace. To calculate the strain energy in the quarter-elliptic 
brace, we first obtained the equation of changes of internal forces in 
the quarter-elliptic brace AC according to Fig. 7 and the elliptic equation 
(Eq. (45)), and then, using the general energy equation, we obtained the 
amount of strain energy stored in the member: 

x2

a2 +
y2

b2 = 1→y = b
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√

, 0 ≤ x ≤ a (45) 

An infinitesimal arc length (ds) is obtained using Eq. (46) for any 
desired point in coordinates (x, y): 

ds =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
dx2 + dy2

√
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +

(
dy
dx

)2
√

dx =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y′ 2
√

dx (46) 

Using Eq. (45), the inclination angle of the tangent line from each 
point to the horizontal axis (ϕ) is obtained for the quarter-elliptic 
bracing member: 

y′

= − b.
x

a2
̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2

a2

√ →|y′

| = tanϕ (47) 

According to Eq. (47), and the use of trigonometric identities (Py-
thagorean identities), sinϕ and cosϕ in terms of × were obtained in Eqs. 
(48) and (49): 

cos2ϕ =
1

1 + tan2ϕ
=

1

1 +
b2x2

a4

1 −
x2

a2

=
1 −

x2

a2

1 −
x2

a2 +
b2x2

a4

→cosϕ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

1 −
x2

a2 +
b2x2

a4

√
√
√
√
√
√
√

(48)  

Fig. 7. The internal efforts of the element AC in the quarter-elliptic brace.  

UBC =
Lb

6EIb

[

3M2
B − 3MB(MB − MC) + (MB − MC)

2
+ 3r2

b

(

2.6αb

(
MB − MC

Lb

)2

+

(
MA + MB − PLc

Lc

)2
)]

=
Lb

6EIb

[

M2
B + MBMC + M2

C +
7.8αbr2

b

L2
b

(
M2

B − 2MBMC + M2
C

)
+

3r2
b

L2
c

(
M2

A + 2MAMB − 2MAPLc − 2MBPLc + M2
B + P2L2

c

)
] (43)   

Ubeams,bav =UAD +UBC

=
Lb

6EIb

[

M2
A +MAMD +M2

D +M2
B +MBMC +M2

C +
7.8αbr2

b

L2
b

(
M2

A − 2MAMD +M2
D +M2

B − 2MBMC +M2
C

)
+

3r2
b

L2
c

(
M2

A +2MAMB − 2MAPLc − 2MBPLc +M2
B +P2L2

c

)
]

(44)   
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sin2ϕ = 1 − cos2ϕ =

1 −
x2

a2 +
b2x2

a4 − 1 +
x2

a2

1 −
x2

a2 +
b2x2

a4

=

b2x2

a4

1 −
x2

a2 +
b2x2

a4

→sinϕ =
b

x
a2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 +
b2x2

a4

√

(49) 

Using static equilibrium equations and according to Fig. 7, internal 
bending, axial, and shear efforts for quarter-elliptic bracing member 
were calculated in Eqs. (50)–(53): 

FAC = FCA = F (50)  

∑
Fx = 0→Fcosθ = N(x)cosϕ+V(x)sinϕ (51)  

∑
Fy = 0→Fsinθ = N(x)sinϕ − V(x)cosϕ (52)  

∑
ME = 0→M(x) = Fsinθ.x

− Fb

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ )

cosθ
(53) 

The sinθ and cosθ values are dependent on beam length (Lb) and 
column length (Lc). By solving the system of equations (51) and (52), 
axial force and shear force of quarter-elliptic bracing member in terms 
of x were calculated in Eqs. (54) and (55): 

N(x) = F(cosθcosϕ+ sinθsinϕ) (54)  

V(x) = F(cosθsinϕ − sinθcosϕ) (55) 

The strain energy stored in the quarter-elliptic bracing member 
under the effect of internal bending moment, internal axial force, and 
internal shear force based on general energy equation and Eq. (46) are as 
follows: 

Uquarter− elliptic brace,bav = Ub + Ua + Uv

=

∫
M(x)2

2EIq
ds +

∫
N(x)2

2EAq
ds +

∫
V(x)2

2GA’
q

ds

=

∫ a

0

M(x)2

2EIq
.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y’2
√

dx +
∫ a

0

N(x)2

2EAq
.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y’2
√

dx

+

∫ a

0

V(x)2

2GA’
q
.

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y’2
√

dx

(56)  

where: 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + y′ 2
√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
b2x2

a4

1 − x2

a2

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − x2

a2 + b2x2

a4

1 − x2

a2

√

(57) 

In this equation, E is Young’s modulus, and G is shear modulus of steel 
which is obtained in Eq. (27). Also, Aq is the cross-sectional area of 
quarter-elliptic brace, and A′

q is the effective shear area of cross-section of 
the quarter-elliptic brace obtained in Eq. (30). Strain energy was obtained 
under the effect of internal bending moment in quarter-elliptic bracing 
member by inserting Eqs. (1), (53), and (57) in the first term of Eq. (56): 

Ub =
F2

2EIq

∫ a

0

[

sinθ.x − bcosθ.

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ )]2

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + b2x2

a4

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ dx

=
F2b2

2EIq.
(
1 + e2)

∫ a

0

[
x
a
−

(

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ )]2

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ dx

(58) 

To solve integrals in Eq. (58), variable substitution (variable change) 
based on Eq. (59) was used: 

t =
x
a
→dt =

dx
a

→dx = a.dt (59) 

By inserting Eq. (59) in Eq. (58), we can conclude: 

Ub =
F2b2a
2EIq

∫ 1

0

[
t − 1 +

̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ ]2
.
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (e2 − 1).t2

√

(1 + e2).
̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ dt (60) 

If: 

λb(e) =
∫ 1

0

[
t − 1 +

̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ ]2
.
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (e2 − 1).t2

√

(1 + e2).
̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ dt (61) 

Then, the strain energy under the effect of internal bending moment 
in the quarter-elliptic bracing member is equal to: 

Ub =
F2ab2

2EIq
.λb(e) (62) 

λb(e) is a function in terms of e (the ratio of column length to beam 
length) that can be calculated numerically. The λb(e) value for different 
values of e is graphically shown in Fig. 8a. Strain energy was obtained 
under the effect of internal axial force in quarter-elliptic bracing mem-
ber by inserting Eqs. (1), (54), and (57) in the second term of Eq. (56): 

Ua =
F2

2EAq

∫ a

0
[cosθcosϕ + sinθsinϕ]2 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ dx

=
F2

2EAq

∫ a

0

⎡

⎢
⎢
⎢
⎣

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + e2

√ .

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√ +
e
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + e2

√ .
e

x
a̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

⎤

⎥
⎥
⎥
⎦

2

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ dx

(63) 

To solve integrals in Eq. (63), variable substitution (variable change) 
based on Eq. (59) was used. By inserting Eq. (59) in Eq. (63), we can 
conclude: 

Ua =
F2a

2EAq
.

∫ 1

0

1
(1 + e2)

.

[ ̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√
+ e2t

]2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − t2).[1 + (e2 − 1)t2 ]

√ dt (64) 

If: 

λa(e) =
∫ 1

0

1
(1 + e2)

.

[ ̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√
+ e2t

]2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − t2).[1 + (e2 − 1)t2 ]

√ dt (65) 

Then, the strain energy under the effect of internal axial force in the 
quarter-elliptic bracing member is equal to: 

Ua =
F2a

2EAq
.λa(e) (66) 

λa(e) is a function in terms of e (the ratio of column length to beam 
length) that can be calculated numerically. The λa(e) value for different 
values of e is graphically shown in Fig. 8a. Strain energy was obtained 
under the effect of internal shear force in quarter-elliptic bracing 
member by inserting Eqs. (1), (55), and (57) in the third term of Eq. (56): 
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Uv =
αq.F2

2GAq

∫ a

0
[cosθsinϕ − sinθcosϕ]2 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ dx

= αq.
F2

2GAq

∫ a

0

⎡

⎢
⎢
⎢
⎣

1
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + e2

√ .
e.

x
a̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√ −
e
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + e2

√ .

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

⎤

⎥
⎥
⎥
⎦

2

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2 + e2x2

a2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
x2

a2

√ dx

(67) 

To solve integrals in Eq. (67), variable substitution (variable change) 
based on Eq. (59) was used. By inserting Eq. (59) in Eq. (67), we can 
conclude: 

Uv = αq.
F2a

2GAq
.

∫ 1

0

e2

(1 + e2)
.

[
t −

̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ ]2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − t2).[1 + (e2 − 1)t2 ]

√ dt (68) 

If: 

λv(e) =
∫ 1

0

e2

(1 + e2)
.

[
t −

̅̅̅̅̅̅̅̅̅̅̅̅
1 − t2

√ ]2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − t2).[1 + (e2 − 1)t2 ]

√ dt (69) 

Then, the strain energy under the effect of internal shear force in the 
quarter-elliptic bracing member is equal to: 

Uv = αq.
F2.a
2GAq

.λv(e) (70) 

λv(e) is a function in terms of e (the ratio of column length to beam 
length) that can be calculated numerically. The λv(e) value for different 
values of e is graphically shown in Fig. 8a. The amount of strain energy 

stored in the quarter-elliptic brace is simplified by inserting Eqs. (62), 
(66), and (70) in Eq. (56) as follows: 

Uquarter− elliptic brace,bav = Ub + Ua + Uv

=
F2ab2

2EIq
.λb(e) +

F2a
2EAq

.λa(e) + αq.
F2.a
2GAq

.λv(e)

=
F2.a
2EAq

[(
b
rq

)2

.λb + λa + 2.6αqλv

]

=
F2.a
2EAq

.
λbav

1 + e2

(71)  

where: 

λbav =

[(
b
rq

)2

.λb + λa + 2.6αqλv

]

.
(
1+ e2) (72) 

λbav(e) is a function in terms of e (the ratio of column length to beam 
length) that can be calculated numerically. The λbav(e) value for different 
values of e is graphically shown in Fig. 8b considering the shear shape 
coefficient of the cross-section of the quarter-elliptic brace equal to 2 
(BOX sections). With fitting curves λb, λa and λv using linear regression in 
Fig. 8a and inserting obtained linear equations in Eq. (72), the λbav(e)
value is equal to  

The amount of strain energy stored in quarter-elliptic brace is 
calculated by inserting Eqs. (1) and (26) in Eq. (71) as follows: 

Uquarter− elliptic brace,bav =
a.λbav

2EAqLc
2

×(PLc − MA − MB + MC + MD)
2

(74)  

2.4. Strain energy of the QEB-MFs 

By adding strain energy (caused by bending, axial, and shear de-
formations) of columns, beams, and quarter-elliptic bracing member 
according to Eqs. (37), (44), and (74), strain energy of steel moment 
frame equipped with quarter-elliptic brace is obtained as follows: 

 

)b( )a( 

Fig. 8. (a) The λb(e), λa(e), and λv(e) parameters as a function of parameter e, (b) λbav(e) as a function of parameter e assuming constant αq = 2.  

λbav =

[(
b
rq

)2

× ( − 0.0336e + 0.1046) + (0.4005e + 0.8586) + 2.6αq.(0.2802e + 0.0191)

]

×
(
1 + e2)

(73)   
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In this equation, R, κc, and μc are modification coefficients for 
simplification of strain energy of columns; S, κb, and μb are modification 
coefficients for simplification of strain energy of beams; and T is the 
modification coefficient for simplification of strain energy of quarter- 
elliptic bracing member, which are equal to: 

R =
Lc

6EIc
, κc =

7.8αcr2
c

L2
c

, μc =
3r2

c

L2
b

(76)  

S =
Lb

6EIb
, κb =

7.8αbr2
b

L2
b

, μb =
3r2

b

L2
c

(77)  

T =
a.λbav

2EAqLc
2 (78) 

Based on Castigliano’s second theorem, in a structure with linear 
elastic behavior, in the absence of temperature change and support 
settlement, if we have the stored strain energy in terms of the effective 
forces of the node or the concentrated moments of the node on that 
structure, the partial derivative of the strain energy function will be 
equal to the displacement along that force in the structure compared to 
any of the effective forces involved in the structure. Also, the partial 
derivative of energy function in relation to each concentrated moment 
imposed on the structure is equal to the corresponding rotation of that 
moment in the main structure [36]. According to this theorem and Eq. 
(75) in nodes A, B, C, and D, it is as below:   

By solving the system of equations (79) to (82), unknown moments 
MA, MB, MC, and MD with a good approximation are equal to the 
following values: 

MA = MB ≈ ηP (83)  

MC = MD ≈ − ηP (84) 

In these equations: 

η =
2Lc(μcR + μbS + T)

R(1 + 4κc + 4μc) + S(1 + 4κb + 4μb) + 8T
(85) 

κc and μc are the modification coefficients for considering the effects 
of shear deformations and axial deformation of columns, respectively; 
and κb and μb are modification coefficients for considering the effects of 
shear deformation and axial deformation of beams, respectively. If 
κc +μc ≈ κc and κb + μb ≈ κb, then by simplifying Eq. (85), it is as below: 

η =
2Lc(μcR + μbS + T)

R(1 + 4κc) + S(1 + 4κb) + 8T
(86) 

By inserting Eqs. (83) and (84) in Eq. (75), the strain energy of the 
steel moment frame equipped with quarter-elliptic brace is obtained as 
follows: 

U = R.
(
2η2P2 + 8κcη2P2 + μc.

(
8η2P2 − 4ηP2Lc + P2L2

c

) )

+S.
(
2η2P2 + 8κbη2P2 + μb.

(
4η2P2 − 4ηP2Lc + P2L2

c

) )
+ T.(PLc − 4ηP)2

(87) 

ΔθA =
∂U

∂MA
=0

→R.(2MA − MB+κc.(2MA+2MB)+μc.(2MA − 2MD − 2PLc))+S.(2MA+MD+κb.(2MA − 2MD)+μb.(2MA+2MB − 2PLc))+2T.(MA+MB − MC − MD − PLc)=0
(79)  

ΔθB =
∂U

∂MB
= 0

→R.(2MB − MA +κc.(2MB +2MA)+μc.(2MB − 2MC))+S.(2MB +MC +κb.(2MB − 2MC)+μb.(2MB +2MA − 2PLc))+2T.(MA +MB − MC − MD − PLc)= 0
(80)  

ΔθC =
∂U

∂MC
= 0

→R.(2MC − MD + κc.(2MC + 2MD) + μc.(2MC − 2MC)) + S.(2MC + MB + κb.(2MC − 2MB)) + 2T .(PLc − MA − MB + MC + MD) = 0
(81)  

ΔθD =
∂U

∂MD
= 0

→R.(2MD − MC + κc.(2MD + 2MC) + μc.(2MD − 2MA + 2PLc)) + S.(2MD + MA + κb.(2MD − 2MA)) + 2T.(PLc − MA − MB + MC + MD) = 0
(82)   

U = Ucolumns,bav + Ubeams,bav + Uquarter− elliptic brace,bav

= R.
(
M2

A − MAMB + M2
B + M2

D − MDMC + M2
C + κc.

(
M2

A + 2MAMB + M2
B + M2

D + 2MDMC + M2
C

)
+ μc.

(
M2

B − 2MBMC + M2
C + M2

A − 2MAMD − 2MAPLc 

+2MDPLc + M2
D + P2L2

c

) )
+ S.

(
M2

A + MAMD + M2
D + M2

B + MBMC + M2
C + κb.

(
M2

A − 2MAMD + M2
D + M2

B − 2MBMC + M2
C

)
+ μb.

(
M2

A + 2MAMB − 2MAPLc

− 2MBPLc + M2
B + P2L2

c

) )
+ T.(PLc − MA − MB + MC + MD)

2

(75)   
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To calculate the stiffness of the frame, first, using Castigliano’s sec-
ond theorem and according to Eq. (87), the horizontal displacement of 
the frame (ΔCx) is calculated as follows:   

By inserting Eq. (86) in Eq. (88), it is as below:  

If κc + μc ≈ κc, κb + μb ≈ κb, and μ2
c = μ2

b = μbμc ≈ 0, then by 
simplifying Eq. (89), it is as below: 

ΔCx = 2PL2
c

(
(4κcR + 4κbS + R + S)(μcR + μbS + T)

R(1 + 4κc) + S(1 + 4κb) + 8T

)

(90) 

Then, the elastic stiffness of the steel moment frame equipped with 
quarter-elliptic brace under lateral load of P according to Eq. (90) is 
obtained as follows: 

K =
P

ΔCx
=

R(1 + 4κc) + S(1 + 4κb) + 8T
2Lc(4κcR + 4κbS + R + S)(μcR + μbS + T)

(91) 

To simplify the stiffness equation, two parameters β and γ are 
introduced, and their values according to Eqs. (77) and (78) are as 
follows: 

β =
Ib

Ic
(92)  

γ =
T
S
=

a.λbav
2EAqLc

2

Lb
6EIb

=
3Ibλbav

AqLc
2 (93) 

Also, the ratio of parameter R to parameter S according to Eqs. (76) 
and (77) and placement of Eqs. (1) and (92) in these equations is equal 
to: 

R
S
=

Lc
6EIc

Lb
6EIb

=
Lc

Lb
×

Ib

Ic
= eβ (94) 

By factoring the S parameter from the numerator and denominator of 
Eq. (91) and placement of Eqs. (78), (93), and (94) in this equation, the 
final stiffness value is obtained as follows: 

K =

(
R
S

)

(1 + 4κc) + (1 + 4κb) + 8
(

T
S

)

2SL2
c

(

4κc

(
R
S

)

+ 4κb +

(
R
S

)

+ 1
)(

μc

(
R
S

)

+ μb +

(
T
S

)) (95)  

→K =
EAqγ((eβ)(1 + 4κc) + (1 + 4κb) + 8γ )

Lb.λbav((eβ)(1 + 4κc) + (1 + 4κb) )(μc(eβ) + μb + γ )

By simplifying Eq. (95) by Eqs. (1), (92), and (93), it is as below: 

K=Kframe,bav+Kbrace,bav

=
24EIc

L3
c

⎛

⎜
⎜
⎝

eβ

(eβ+1+4κc(eβ)+4κb)

(
μc(eβ)+μb

γ
+1
)

⎞

⎟
⎟
⎠+

EAqγ
Lb.λbav(μc(eβ)+μb+γ)

(96) 

In this equation, the first term is the stiffness of the steel moment 
frame considering bending, shear, and axial deformations, and the sec-
ond term is the stiffness of the quarter-elliptic brace considering 
bending, shear, and axial deformations. If the effect of axial de-
formations and shear deformations on the beams and columns of the 
steel moment frame is negligible (κc=κb=μc=μb=0), then the elastic 
stiffness of the steel moment frame equipped with quarter-elliptic brace 
according to Eq. (95) is equal to: 

Fig. 9. The equivalent element for the quarter-elliptic brace.  

ΔCx =
∂U
∂P

= R.
(
4η2P + 16κcη2P + μc.

(
16η2P − 8ηPLc + 2PL2

c

) )

+S.
(
4η2P + 16κbη2P + μb.

(
8η2P − 8ηPLc + 2PL2

c

) )
+ T.

(
2PLc

2 − 16ηPLc + 32η2P
)

(88)   

ΔCx =
32PL2

c(μcR + μbS + T)
(4κcR + 4κbS + R + S + 8T)2

×

[(

2μ2
c +

(

κc +
1
4

)2
)

R2 +

((

3μbμc + 2
(

κc +
1
4

)(

κb +
1
4

))

S + 2
(

κc + μb +
1
4

)

T
)

R +

((

μ2
b +

(

κb +
1
4

)2
)

S + 2
(

κb +
1
2
μb +

1
4

)

T

)

S

] (89)   
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K =
EAq(eβ + 1 + 8γ)

Lb.λbav(eβ + 1)
(97) 

By simplifying Eq. (97) by Eqs. (1), (92), and (93), it is as below: 

K = Kframe,b +Kbrace,bav =
24EIc

L3
c

(
eβ

1 + eβ

)

+
EAq

Lb.λbav
(98) 

To obtain normalized stiffness (dimensionless stiffness), the param-
eter ρ is introduced, which according to Eq. (97) is equal to: 

ρ
(

e, β, γ,
b
rq
, αq

)

=
K
EAq
Lb

=
eβ + 1 + 8γ
λbav(eβ + 1)

(99) 

Consequently, by having the geometric specifications of column, 
beams and quarter-elliptic bracing member cross-sections and having 
material properties, the stiffness of steel moment frame equipped with 
quarter-elliptic brace under lateral load can be calculated through Eq. 
(96) with a new and quite accurate method. The calculation steps are as 
follows: 

• Calculation of e (the ratio of column length to beam length) ac-
cording to Eq. (1).  

• Calculation of β (the ratio of moment of inertia of strong axis of beam 
to moment of inertia of strong axis of column) according to Eq. (92).  

• Calculation of γ (ratio of modification coefficients of quarter-elliptic 
brace member to beams) according to Eq. (93).  

• Calculation of λbav according to Eq. (73) or Fig. 8b.  
• Calculation of modification coefficients κc and μc by inserting the 

columns specifications in Eq. (76).  
• Calculation of modification coefficients κb and μb by inserting beam 

specifications in Eq. (77).  
• Calculation of elastic stiffness of steel moment frame equipped with 

quarter-elliptic brace according to Eq. (96). 

2.5. Calculation of elastic lateral stiffness of quarter-elliptic-braced steel 
simple frames (QEB-SFs) 

This method can also be used to calculate the elastic lateral stiffness 
of the simple frame equipped with quarter-elliptic brace (QEB-SF). To 
this end, first, the axial stiffness of an element equivalent to the quarter- 
elliptic bracing member under the axial force of F was calculated ac-
cording to Fig. 9. Then, using this equation and the concepts of spring 
modeling, the stiffness of the quarter-elliptic brace under lateral force 
was calculated. 

According to Eq. (71), strain energy stored in the quarter-elliptic 
brace is calculated as follows: 

Uquarter− elliptic brace,bav =
F2.a
2EAq

.
λbav

1 + e2 (100) 

To calculate the stiffness of the element equivalent to the quarter- 
elliptic bracing member, first, using Castigliano’s second theorem and 
according to Eq. (100), axial displacement (Δe) is obtained as follows: 

Δe =
∂U
∂F

=
F.a
EAq

.
λbav

1 + e2 (101) 

Then, according to Eqs. (1) and (101), the elastic axial stiffness of the 
element equivalent to the quarter-elliptic bracing member under axial 
force of F is obtained as follows: 

Ke =
F
Δe

=
EAq(1 + e2)

Lb.λbav
(102) 

If we have a two-dimensional single-span and single-story simple 
frame equipped with quarter-elliptic brace under lateral force, the 
elastic lateral stiffness of this brace frame using Eq. (1), Eq. (102), and 
spring modeling concepts is equal to as below: 

K = Kecos2θ =
EAq

Lb.λbav
(103) 

Consequently, by having the geometric specifications of column, 
beams, and quarter-elliptic bracing member cross-sections and having 
material properties, the elastic lateral stiffness of the simple frame 
equipped with quarter-elliptic brace under the lateral load can be 
calculated through Eq. (103) with a new method precisely. 

Table 1 
Special cases of elastic lateral stiffness in QEB-MF systems.  

Case Beam 
condition 

Deflected shape Lateral stiffness 

a Rigid 
beam 

K =

1
m1

[

(n1 + 1)

(
12EIc

L3
c

)

+n2

(
EAq

Lb.λbav

)]

b Elastic 
beam* K = n1

(
24EIc

L3
c

(
eβ

1 + eβ

))

+

n2

(
EAq

Lb .λbav

)

* For single-story and even-span 
(
n1 = 2N) frames.  

 

)b( )a( 

Fig. 10. The changes in normalized stiffness of the QEB-MF system (ρ); (a) versus parameter γ for different values of β, (b) versus parameter β for different values 
of γ. 
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2.6. Developing the proposed formulation for special cases of the QEB-MF 
systems 

The elastic stiffness of a two-dimensional single-span and single- 
story QEB-MF system under lateral force, P, is obtained in Eq. (98) by 
assuming the effect of shear and axial deformations to be insignificant 
on the beams and columns of a steel moment frame. In order to develop 
this formulation in structural frames, we consider two different condi-
tions for the beams of the moment frame. In the first condition, we 
consider all of the moment frame system’s beams to be rigid 
(β = Ib/Ic = ∞); and in the second condition, we consider all of the 
moment frame’s beams to be elastic.  

• In the first case, if we have a QEB-MF system with n1 spans, in which 
n2 spans are equipped with quarter-elliptic brace, and also the system 
has m1 stories, then its lateral stiffness can be accurately calculated 
from the equation in Table 1(a) under the force P, which is applied to 
the highest story, in a condition in which all the beams are assumed 
to be a rigid element with infinite bending stiffness. In this case, all of 
the columns’ support is rigid, and there is no rotation in the 
connection zone of beams and columns; as a result, in this special 
case, each column behaves like a beam that has fixed support at one 
end and sliding support at the other end with the stiffness of 12EIc

L3
c

. In 
this case, the lateral force is divided between the columns and 
quarter-elliptic braces, and according to the modeling concepts of 
springs, they act like parallel springs, and their lateral stiffness is 
added together because they have equal deformations. Also, the 
stories’ lateral stiffnesses are combined like series springs according 
to the concepts of spring modeling.  

• In the second case, if we have a QEB-MF system with n1 spans (n1 =

2N), in which n2 spans are equipped with quarter-elliptic brace, then 

its lateral stiffness can be accurately calculated from the equation in 
Table 1(b) under the force P, which is applied to the highest story, in 
a condition that all the beams are assumed to be an elastic element. 
In this case, the lateral force is divided between the moment frame 
and the quarter-elliptic braces, and they act like parallel springs, and 
their lateral stiffness is added together according to the concepts of 
spring modeling because they have equal deformations. 

3. Accuracy verification of QEB-MFs elastic stiffness formulation 
by finite element modeling 

To control and verify the accuracy of elastic stiffness formulation 
obtained by the strain energy concept and Castigliano’s theorem, 1600 
two-dimensional single-span and single-story steel moment frames 
equipped with quarter-elliptic brace under lateral force of 10,000N were 
modeled in OpenSees [37]. The length of columns and the length of 
beams were considered 3000 mm and 5000 mm, respectively, and the 
area and moment of inertia of bending axis (strong axis) of quarter- 
elliptic bracing member were considered 2256 mm2 and 33.35 × 105 

mm4, respectively. For all members of frames, the elastic beam-column 
element was used. Elastic uniaxial materials were used to simulate the 
behavior of steel in all frames. Using MATLAB programming code, 40 
different values for the ratio of moment of inertia of strong axis of beam 
to moment of inertia of strong axis of column (β) according to Eq. (92) 
and 40 different values for the ratio of modification coefficients of 
quarter-elliptic brace member to beams (γ) according to Eq. (93) are 
assigned to the model made in OpenSees software, and the displacement 
of 1600 QEB-MF systems was obtained. Then, using the stiffness relation 
and considering the lateral force of 10,000 N, the elastic stiffness of these 
frames was calculated. 

In Fig. 10a, diagrams of normalized stiffness variations (ρ) of QEB- 

 

)b( )a( 

Fig. 11. Comparison of the results obtained by the numerical models and Eq. (99) for ρ; (a) versus parameter γ assuming constant β = 1, (b) versus parameter β 
assuming constant γ = 10. 

Fig. 12. Modelling of the two-dimensional single-story single-span QEB-MF.  

Table 2 
Section properties.  

Section properties HEB 300 IPE 300 BOX 100 × 100 × 6 

A
(
mm2) 14,900 5380 2256 

Ix
(
mm4) 2517 × 105 836 × 105 33.36 × 105 

rx (mm) 130 125 38.45 
α = A/A′ 4.25 2.48 2  

Table 3 
Material properties.  

Standard and Steel grade t ≤ 40mm  

Fy[N/mm2] Fu[N/mm2] E[N/mm2] ν 

S235JR 235 360 210,000 0.3  
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MF system versus different values of γ and for different values of β are 
shown. Because of the fact that the software can not consider the shear 
shape coefficient of the quarter-elliptic brace section 

(
αq
)

due to using 
elastic beam-column elements, this value is considered to be zero. These 
diagrams are drawn for 40 different values for γ between 0.5 and 20, and 
40 different values for β between 0.05 and 2. For easier evaluation, in 
Fig. 10a only 9 diagrams of 40 diagrams related to different values of β 
between 0.05 and 2 were drawn. According to Fig. 10a, changes in 
normalized stiffness (ρ) of QEB-MF system versus different values of γ 
and β are linear, and it increases as γ increases. 

In Fig. 10b, diagrams of normalized stiffness changes of (ρ) of QEB- 
MF system versus different values of β and for different values of γ is 
shown. These diagrams are drawn by assuming the shear shape coeffi-
cient of the quarter-elliptic brace cross-section 

(
αq
)

equal to zero and for 
40 different values for γ between 0.5 and 20, and 40 different values for 
β between 0.05 and 2. For easier evaluation, in Fig. 10b only 9 diagrams 
of 40 diagrams related to different values of γ between 0.05 and 2 were 
drawn. According to Fig. 10b, changes in the normalized stiffness (ρ) of 
QEB-MF system was reduced as the moment of inertia of strong axis of 
beam to moment of inertia of strong axis of column (increase ofβ) 

decreased. 
Assuming β equal to 1, the normalized stiffness changes (ρ) of QEB- 

MF system for 40 different values of γ between 0.5 and 20 were calcu-
lated through Eq. (99) and its diagram was drawn in Fig. 11a. This di-
agram was also drawn by assuming the shear shape coefficient of the 
quarter-elliptic brace cross-section 

(
αq
)

equal to zero in Eq. (73). 
Assuming γ to be 10, the normalized stiffness changes (ρ) of QEB-MF 
system for 40 different values β between 0.05 and 2 were calculated 
by Eq. (99), and its diagram is drawn in Fig. 11b. This diagram is also 
drawn by assuming the shear shape coefficient of the quarter-elliptic 
brace cross-section 

(
αq
)

equal to zero in Eq. (73). According to 
Fig. 11, the error percentage between the results obtained from the 
proposed relation and those obtained from numerical analysis of finite 
elements is tiny, so it can be neglected. 

4. Numerical example for calculating elastic stiffness of QEB-MF 
system 

In this section, the accuracy of the proposed relation for calculating 
the lateral stiffness of QEB-MF system is investigated and verified by a 
numerical example. For this purpose, a two-dimensional single-span and 
single-story QEB-MF system is modeled by SAP2000 software and 
Abaqus software [38]. In this frame, the length of the columns and the 
length of the beams are 3,000 mm and 5,000 mm, respectively, and this 
frame is considered under the lateral force of 10,000 N according to 
Fig. 12. 

HEB 300, IPE 300, and BOX 100 × 100 × 6 cross-sections were used 
for columns, beams, and quarter-elliptic bracing member, respectively, 
in this frame, the properties of which are presented in Table 2. In this 
table, A is the area of the cross-section, and Ix and rx the moment of 
inertia and the radius of gyration of the cross-section about the bending 
axis (strong axis), respectively, and α the shear shape coefficient of the 
cross-section. 

For better modeling of quarter-elliptic bracing member in SAP2000 
software, this member was divided into ten equal parts. The chosen 
element for the modeling all frame members in the Abaqus software was 
element B21 (beam element), which is a 2D element with two nodes, 

Fig. 13. Elastic displacement of frame subjected to lateral force; (a) Abaqus, (b) SAP2000.  

Table 4 
Lateral stiffness QEB-MF using the proposed formulation.  

No. Equation or Figure number Parameters Calculation of the 
parameter(s) 

1 Eq. (1) e 0.6 
2 Eq. (92) β 0.332 
3 Eq. (93) γ 8.66 
4 Eq. (76) κcandμc κc = 0.0622    

μc = 0.002 
5 Eq. (77) κbandμb κb = 0.0121    

μb = 0.0052 
6 Eqs. (61), (65) and. (69) or 

Fig. 8a 

λb(e),λa(e) and 
λv(e)

λb(e) = 0.0852    

λa(e) = 1.079064    
λv(e) = 0.197287 

7 Eq. (73) or Fig. 8b λbav(e) 701.91 
8 Eq. (95) K 6990.48N/mm2  

 

Fig. 14. QEB-MF system modeling approach in OpenSees.  
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each of which with two translational degrees of freedom and one rota-
tional degree of freedom. In addition, multi-point constraints (MPCs) 
were for pinned connections of the quarter-elliptic brace. And, S235JR 
steel was used for all parts, the specifications of which are provided in 
Table 3 according to EN1993-1–1 standard [39]. 

First, the lateral displacement of the studied frame in both software 
was obtained in accordance with Fig. 13. Then, using the stiffness 
equation and assuming the lateral force as 10,000 N, the elastic stiffness 
of these frames was calculated in Eq. (104) and Eq. (105). In Abaqus 
software and according to Fig. 13a, the lateral stiffness of QEB-MF sys-
tem is obtained as follows: 

K =
P
Δ
=

10000
1.4137

= 7073.63
N

mm
(104) 

In SAP2000 software and according to Fig. 13b, the lateral stiffness 
of QEB-MF system is obtained as follows: 

K =
P
Δ
=

10000
1.4124

= 7080.14
N

mm
(105) 

Also, the lateral stiffness of QEB-MF system was calculated using the 
proposed relation in this study in Table 4: 

Comparing the results of the analysis of the two finite element soft-
ware and the proposed relation in this study for QEB-MF system shows 
that the error percentage is less than 1.5 %. This error is due to 
considering the shear shape coefficient of the cross-sections (α) and 
simplifications in equations. If the shear shape coefficient of the cross- 
sections equals zero, the difference between results will be negligible. 

5. Seismic performance evaluation of the QEB-MF system 

In this section, to evaluate the seismic performance of the steel 
moment frames equipped with quarter-elliptic braces, a single-span and 
single-story frame from a three-dimensional archetype designed in the 
seismic design category (SDC) Dmax with a response modification factor 
of 5 has been selected. Gravitational dead and live loads for the design of 
this archetype are considered 500 kgf/m2 and 200 kgf/m2, respectively, 
and S235JR steel is used for all cross-sections. Non-linear modeling has 
been done in OpenSees software, which meets the requirements of FEMA 
P695 methodology for modeling and analysis [40]. Concentrated plastic 
hinge modeling is used to show the softening and deterioration of the 
studied frames; based on this method, plastic hinges are placed at both 
ends of the columns and beams, and the middle element is modeled 
elastically. Quarter-elliptic member with twelve elements and five 
plastic hinges is modeled, so a plastic hinge is placed at one end of each 
element. The eight-element Krawinkler model was used to model the 
panel zone in the moment frame system [41]. The axial load ratio, which 
is defined as applied axial load (N) to axial load capacity (Ny) at a 
compressive cross-section, according to Jouneghani et al.’s studies on 
elliptical braces has been considered equal to 0.4 and 0.3 in Lignos re-
lations for columns and bracing member, respectively [42]. A tiny per-
centage of rigidity has been considered in the bracing members’ 
connections to gusset plates because these connections are not fully 

jointed. According to Fig. 14, HEB 140, IPE 200, and BOX 100 × 100 ×
10 cross-sections were used for columns, beam, and quarter-elliptic 
bracing member, respectively. In all members, the moment-rotation 
behavior of the concentric hinges is considered based on the modified 
Ibarra-Medina-Krawinkler (IMK) deterioration model with a bilinear 
hysteretic response [43–45]. 

In the following, to evaluate the seismic performance of the QEB-MF 
system, non-linear static analysis (pushover) and incremental dynamic 
analysis (IDA) are performed on the QEB-MF and IMF systems, and the 
results are compared. 

5.1. Non-linear static analysis (pushover) 

Nonlinear static analysis is performed under lateral static loads and 
gravity loads. First, gravity loads are placed on the structure, and then 
the structure is subjected to the lateral loading pattern. In the non-linear 
static analysis, according to FEMA P695, gravity load is applied on the 
structure using the load combination in Eq. (106): 

1.05D+ 0.25L (106) 

In this equation, D is the nominal dead load, and L is the nominal live 
load. The above equation coefficients represent the expected values of 
loads with normal probability distribution. Then, in this analysis, the 
distribution of the lateral force equivalent to the earthquake at the 
structure’s height corresponding to the structure’s first mode and the 
effective mass of the floors is performed according to Eq. (107): 

Fx∝mxφ1,x (107)  

where Fx is the lateral force distribution in height at each floor level (x), 
mx is the structure’s mass at level x, and φ1,x is the first mode of the 
structure at level x. The pushover curve of the QEB-MF and IMF systems 
is shown in Fig. 15. In this figure, Vmax/w is equal to the maximum 
amount of base shear normalized by weight, δu is equal to the roof 
displacement at the point where 20 % of the maximum base shear is 
reduced, and δy,eff is the effective yield displacement of the roof calcu-
lated according to FEMA P695 methodology [40]. 

The over-strength factor ,Ω, according to Eq. (108), is equal to the 
ratio of the maximum base shear (Vmax) to the design base shear (V): 

Ω =
Vmax

V
(108) 

Also, period-based ductility, μT , based on Eq. (109) is equal to the 
ratio of the ultimate displacement of the roof (δu) to the effective yield 
displacement of the roof (δy,eff ): 

μT =
δu

δy,eff
(109) 

The comparison of two push-over curves in Fig. 15 shows that adding 
a quarter-elliptic brace to the moment frame system has improved 
performance, increased elastic stiffness, increased maximum base shear, 
and increased ultimate displacement of this structural system. 

Fig. 15. Pushover curves of archetypes.  
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5.2. Incremental dynamic analysis (far field and near field ground motion 
records) 

In the method presented in the FEMA P695 methodology to evaluate 

the seismic performance of structures, the median collapse capacity and 
safety margin are determined using incremental dynamic analysis [40]. 
In this study, the selected parameters for damage measure (DM) and 
intensity measure (IM), respectively, are maximum inter-story drift ratio 

Fig. 16. IDA curves for QEB-MF and IMF archetypes under far-field ground motion records.  

Fig. 17. IDA curves for QEB-MF and IMF archetypes under near-field ground motion records.  

Fig. 18. Fragility curves for QEB-MF and IMF archetypes under far-field ground motion records.  

Fig. 19. Fragility curves for QEB-MF and IMF archetypes under near-field ground motion records.  
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(MIDR) and first mode-5 % damped spectral acceleration, Sa(T1, 5%). 
The median collapse capacity of each structure, ŜCT , is calculated using 
IDA analysis under specific records, and the collapse margin ratio (CMR) 
is obtained according to the following equation: 

CMR =
ŜCT

SMT
(110) 

In this equation, SMT is the maximum considered earthquake (MCE) 
ground motion intensity, which in this research is equal to 1.5 for 
models based on structural period (T1) and SDC Dmax, according to 
FEMA P695. In order to consider the effects of frequency content 
(spectral shape) and adjust the records used, the CMR index is multiplied 
by a parameter called the spectral shape factor (SSF) to obtain the 
adjusted collapse margin ratio (ACMR). SSF values are calculated using 
FEMA P695 tables based on T1 and μT. 

ACMR = CMR × SSF (111) 

The criteria for acceptance of the collapse performance of structural 
systems depend on the total amount of uncertainties involved in the 
performance evaluation process. These uncertainities include record-to- 
record uncertainty (βRTR), modeling uncertainty (βMDL), test data un-
certainty (βTD), and design requirements uncertainty (βDR). In this study, 
according to FEMA P695 methodology, βMDL, βTD and βDR are considered 
equal to 0.2 for the good quality level. βRTR is considered equal to 0.4 for 
structures with μT greater than 3, and for structures with μT smaller than 
3, the following equation is used to calculate this uncertainty: 

0.2 ≤ βRTR = 0.1+ 0.1μT ≤ 0.4 (112) 

Because the four mentioned uncertainty sources are independent of 
each other, their total standard deviation is geometrically added to 
obtain the total collapse uncertainty (βTOT): 

βTOT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

βRTR
2 + βMDL

2 + βTD
2 + βDR

2
√

(113) 

In order to compare the seismic performance of the moment frame 
system with quarter-elliptic brace and without brace under the influence 
of far-field and near-field ground motion records, from the set of records 
proposed by FEMA P 695, including 22 pairs of far-field records and 28 
pairs of near-field records (with and without pulses) is used. Also, the 
advanced “hunt and fill” algorithm was used to perform an optimal and 
intelligent scale for the intensity measure. The initial step, step incre-
ment, and the allowed number of runs per record in the hunt and fill 
algorithm were considered equal to 0.05, 0.05, and 30, respectively 
[46]. Fig. 16 shows IDA curves with 16 %, 50 %, and 84 % fractile curves 
under 44 far-field records, and Fig. 17 shows IDA curves with 16 %, 50 
%, and 84 % fractile curves under 56 near-field records. 

The acceptable collapse margin ratio (ACMR10%) for QEB-MF and 
IMF archetypes according to FEMA P695 and uncertainties are obtained 
as 1.97 and 1.93, respectively. Therefore, the criterion ACMR >
ACMR10% is passed per archetype. Examining the IDA analysis results of 
the archetypes shows that the use of quarter-elliptic braces in the 
moment frame system increases ŜCT and, as a result, increases ACMR 
and improves the seismic performance of these systems. Using these 
braces increases the ACMR by 54.72 % for far-field ground motion re-
cords and 60.85 % for near-field ground motion records in the moment 
frame system. 

5.3. Collapse fragility evaluation 

The collapse probability of structures for different intensity measures 
is displayed using fragility curve. It shows the collapse probability for 
each spectral acceleration level. The fragility curve is plotted consid-
ering a cumulative distribution function (CDF) from IDA results. The 
lognormal collapse fragility is determined by two main factors: the 
median collapse intensity (ŜCT) and the standard deviation of the natural 

logarithm. Fig. 18 shows the fragility curve for archetypes under far- 
field ground motion records, and Fig. 19 shows the fragility curve for 
archetypes under near-field ground motion records. 

In these figures, two dashed fragility curves are drawn by consid-
ering βRTR and βTOT (all uncertaintiesas) the standard deviation param-
eter in the lognormal cumulative distributive function. Also, the solid 
curve (shifted fragility curve) is drawn by multiplying the fragility curve 
with the standard deviation parameter βTOT in SSF. The fragility curve 
slope has increased with the median collapse intensity (ŜCT) increase 
and the standard deviation increase. 

6. Conclusions 

In this research, the new quarter-elliptic brace was introduced. The 
stiffness and stability of the steel moment frame equipped with quarter- 
elliptic brace have been investigated analytically and numerically with 
an innovative new method. To this end, a new and completely accurate 
analytical formulation is presented using the concept of strain energy 
and Castigliano’s theorem in order to calculate the elastic lateral stiff-
ness of a two-dimensional single-span and single-story quarter-elliptic- 
braced steel moment frame (QEB-MF) under lateral load and taking into 
account all effective factors, including axial and shear forces as well as 
bending moment, for all the frame members. Then, the accuracy of this 
relation was investigated and controlled by means of modeling of QEB- 
MF system by OpenSees software and assigning 40 different values for 
the ratio of moment of inertia of strong axis of beam to moment of 
inertia of strong axis of column and 40 different values for the ratio of 
modification coefficients of quarter-elliptic bracing member to beams by 
MATLAB programming code. And also, using two finite element soft-
ware, a numerical example was solved, and the obtained results were 
compared with the results obtained from the proposed relation. The 
error percentage is less than 1.5 % which shows that the accuracy and 
reliability of the proposed relation are high; therefore, by having the 
geometric specifications of column, beams, and quarter-elliptic bracing 
member cross-sections and having material properties, the elastic stiff-
ness of the QEB-MF system under the lateral load can be easily calcu-
lated with conservative considerations considering the uncertainties. 
Then, the seismic performance of this system was investigated according 
to the FEMA P695 methodology for near-field and far-field ground 
motion records compared with the intermediate moment frame (IMF). 
For this purpose, first, non-linear static analysis was performed on the 
archetypes, and over-strength factor and period-based ductility were 
calculated using pushover curves. Next, IDA analysis was performed for 
44 far-field and 56 near-field ground motion records, and fragility 
curves were drawn using the collapse data. The comparison of the ob-
tained results showed that adding a quarter-elliptic brace to the moment 
frame system increases ACMR (54.72 % for far-field ground motion re-
cords and 60.85 % for near-field ground motion records) and thus im-
proves the seismic performance of this system. 
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