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Abstract— Caching has been widely considered an efficient 

way of reducing and balancing the growing traffic in 

communications networks in recent years. The cache network of 

interest consists of one content server connected via a shared link 

to a number of caching nodes, also known as a single bottleneck 

caching network. In this paper, for the first time, the stochastic 

requests traffic model in such networks is considered and a 

performance analysis is provided based on such a realistic 

assumption. In addition, we introduce new comprehensive 

performance metrics which simultaneously take into account, the 

cache hit probability, load on the bottleneck link, and requests 

arrival rates. The main contribution of this paper is to present a 

system model based on queuing theory and provide an analysis of 

the stability, maximum stable throughput, load on the bottleneck 

link and average response delay for various coded and uncoded 

caching schemes. Moreover, we propose a novel hybrid scheme 

which improves the shared link utilization factor, maximum 

stable throughput and delay of single bottleneck caching 

networks compared to existing methods. Our results, validated 

against simulations and real trace-driven experiments, provide 

interesting insights into the performance of single bottleneck 

caching networks. 

 
Index Terms— coded caching, delay, maximum stable 

throughput, single bottleneck caching networks, stability. 

 

I. INTRODUCTION 

EMAND for various types of contents and their growth in 

terms of network traffic has led to significant challenges 

for communication networks in terms of capacity. As an 

approach to alleviate such issues, network caching has become 

of interest in recent years. In this paper, a network with a 

number of caching nodes connected through a single 

bottleneck link to a server is considered. Such a scenario, for 

example, is applicable to femto-caching networks formed by 

small-cell base stations equipped with caches which receive 

data from a serving macro base station via the cellular 

downlink [1,2].  
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In our view, there are two categories of caching schemes. 

Traditional caching schemes, such as Least Recently Used 

(LRU) and Least Frequently Used (LFU) [3], are policies to 

manage a single cache by specifying the rules for the insertion 

of a new content or eviction of the old contents. Since, there is 

no coding in these schemes, we call them uncoded caching 

schemes. On the other hand, there are other works considering 

caching in communication networks.  

These approaches consist of two phases, namely, cache 

placement phase and delivery phase. The motivation of these 

approaches is to propose caching schemes that enable use of 

coding in the delivery phase in order to reduce file 

transmissions in the network. We call these approaches as 

coded caching schemes. Coded caching schemes have been 

proposed for single bottleneck caching networks in some 

recent works [4-7]. One key shortcoming of the proposed 

coded caching schemes in the literature is their unrealistic 

assumption that the requests from all caching nodes are 

simultaneously present at the server. In other words, stochastic 

arrival time of the requests has not been taken into account in 

these schemes. As we will further discuss in the rest of this 

paper, taking into account such issues highly affects the 

performance of caching schemes in terms of key network 

characteristics such as the stability and delay.  

In this paper, the stochastic arrival time and traffic model of 

the users’ requests arriving at the caching nodes are 

considered. In addition, a general framework for the rate-time 

analysis of such networks is provided based on the 

aforementioned realistic assumption.   

On the other hand, in the traditional single-node caching 

schemes, the cache hit probability is considered as the 

performance metric. Other works considering coded schemes 

in single bottleneck caching networks have considered the 

peak/average number of file transmissions through the shared 

link over all possible demands during the delivery phase as the 

performance metric. However, such a metric is not a viable 

metric when the requests arrival time is randomly distributed. 

In general, such metrics do not encompass the overall 

communication characteristics of the network, such as the load 

on the bottleneck link, stability, and delay performance which 

are of key importance in practical scenarios. 

The problem addressed in this paper is how to provide a 

general framework based on queuing theory for the 

performance analysis of single bottleneck caching networks by 

considering stochastic arrivals of the requests at different 

nodes. In addition, we address the question that what is a 

proper metric for comparing the performance of different 

uncoded and coded caching schemes in such networks, and 

especially their effects on the performance of the bottleneck 
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link. By means of the proposed queue models, we introduce 

comprehensive performance metrics which simultaneously 

take into account the cache hit probability, load on the 

bottleneck link, and requests arrival rates. Moreover, this 

paper provides key insight on the stability characteristic of the 

bottleneck link and bounded or unbounded delay behavior of 

such networks. 

The main contributions of this paper which focuses on 

single bottleneck caching networks can be summarized as 

follows: 

   Proposing a novel platform based on queuing theory and 

introducing new performance metrics in order to compare 

different uncoded and coded caching schemes.  

  Providing the service rate, utilization factor, stability, 

maximum stable throughput and delay analysis of 

different caching schemes, considering a realistic 

framework based on the Independent Reference Model 

(IRM) and renewal traffic models for the request. 

  Proposing a novel hybrid coded caching scheme which 

outperforms other existing schemes in terms of the load 

on the bottleneck link, maximum stable throughput and 

delay. 

The paper is organized as follows. In section II, related 

works are reviewed. Section III describes the system model. In 

section IV, the performance analysis of caching networks, in 

addition to a novel coded caching scheme are proposed. In 

section V, the performance evaluation through numerical 

results is presented. Finally, section VI concludes the paper. 

I. RELATED WORKS 

The problem of caching in wireless networks has been 

addressed from different perspectives in [1, 2, 8-10]. Some 

studies have also investigated the caching problem in content 

centric networks [11, 12]. In [13, 14], the caching performance 

in terms of hit/miss probability has been investigated.  

References [4-7] studied the coded caching schemes in 

caching networks. They have considered a single bottleneck 

network consisting of a file server connected through a shared 

link to a number of users, each equipped with a cache. These 

approaches consist of two phases. The cache placement phase 

consists of filling up the caches with functions of the files in 

the library. After this set-up phase, the network is used for an 

arbitrary long time, referred to as the delivery phase. At each 

request round, a subset of the nodes request subsets of the files 

in the library and the network must coordinate transmissions 

such that these requests are satisfied, i.e., at the end of each 

round all destinations must decode the requested set of files. 

The performance metric in these works is the number of time 

slots necessary to satisfy all the demands, which can be 

normalized by the number of time slots necessary to send a 

single file across the shared link. Therefore, their performance 

metric, which is called rate and denoted by R, is defined as the 

number of normalized file transmissions [6]. The authors in 

[4] have proposed a coded caching approach in order to 

achieve a reduction in the maximum number of transmitted 

files in the delivery phase compared to previously known 

caching schemes. In [5-6], the authors have reduced the 

average number of file transmissions over all possible 

requests, with nonuniform popularities, by generalizing the 

method presented in [4]. The authors in [7] have presented an 

index coding approach to address this problem. 

II. SYSTEM MODEL 

In this paper, we consider a network model with one content 

server, N stations equipped with caches (i.e. caching nodes), 

and one-hop multicast transmission from the server to the 

stations, as illustrated in Fig. 1. Our network model is similar 

to [4-7] where requests are drawn from a specific same-size 

file library Ғ = {𝑓𝑖 , 𝑖 = 1,… , 𝐹} of size B bits, and the caching 

nodes are capable of storing C whole files (i.e. CB bits). The 

cache content of station n is denoted by 𝑍𝑛. Moreover, unlike 

to previous works, users’ requests sent to station n are 

modeled by an aggregate average arrival rate 𝜆𝑟𝑒𝑞𝑛. Without 

lack of generality and for deriving closed-form equations, we 

assume that the model is homogenous. Therefore, the 

subscript (n) is omitted when considering a generic station. In 

order to derive closed form results, we consider the IRM 

traffic model for the stream of the requests, which is based on 

the following fundamental assumptions [13,14]: i) users 

request items from a fixed library of F files; ii) the probability 

𝑝𝑖 that a request is for file 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝐹, is constant (i.e., the 

file popularity does not vary over time) and is also 

independent of all past requests, generating an independent 

identically distributed (i.i.d.) sequence of requests. We also 

assume that requests sent to each station are independent from 

requests sent to the other stations.  

The IRM traffic model ignores all temporal correlations in 

the stream of requests. In order to take into account the 

temporal locality, we also consider the renewal traffic model: 

The stream of requests arriving at a given station for each file 

𝑓𝑖 is considered to be an independent renewal process [15] 

where the CDF of the inter-request time t is denoted by 

𝐹𝑅(𝑖, 𝑡). The average request rate 𝜆𝑟𝑒𝑞
𝑖  for file 𝑓𝑖 is then given 

by 𝜆𝑟𝑒𝑞
𝑖 = 1 ∫ (1 − 𝐹𝑅(𝑖, 𝑡))𝑑𝑡

∞

0
⁄ . The overall average arrival rate 

of the requests at a given cache is  𝜆𝑟𝑒𝑞 = ∑ 𝜆𝑟𝑒𝑞
𝑖𝐹

𝑖=1 . Note that, 

by adopting a file popularity law analogous to the one 

considered by the IRM, we also have 𝜆𝑟𝑒𝑞
𝑖 =  𝜆𝑟𝑒𝑞𝑝𝑖 [14]. 

The hit probability for file 𝑓𝑖 at a given station is denoted by 

𝑝ℎ𝑖𝑡(𝑖), and the hit probability at a given station is given 

by 𝑝ℎ𝑖𝑡 = ∑ 𝑝𝑖𝑝ℎ𝑖𝑡(𝑖)
𝐹
𝑖=1 . In our model of interest, if the 

requested file is hit in the related cache, the file is delivered 

from the caching node, otherwise the request is forwarded to 

the content server via the uplink and the server delivers the 

requested file by broadcasting the file to all of the stations. 

The bottleneck link is a shared channel and its average 

capacity is equal to Γ file per second. For instance, considering 

the LTE-A network with 500 Mbps average downlink rate 

[16], where users are interested in downloading videos of 30 

MB size, the channel can approximately transmit 𝛤 = 2 files 

per second on the average. We define a time slot (i.e. unit 

time) as the average transmission time of one complete file (of 

fixed size B bits) via the shared link. Hence, the average 

capacity of the shared link will be one file per time slot. In 

order to obtain a general framework for the performance 

analysis, we propose the following queue models for both 

uncoded and coded caching schemes.  
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Fig. 1. Caching network model. dun and dln denote the uplink and downlink 

delays, respectively. 

A. Queue Model for Uncoded Caching Schemes 

In single-bottleneck networks, as the bottleneck downlink is 

shared among all of the users, there is a competition for each 

station to receive files requested by its users via that downlink 

path. Therefore, we can model the function of the content 

server in the uncoded schemes by a controlled FIFO queue 

where a control unit ensures that when multiple users request 

the same file concurrently (requests overlap within a time 

slot), the server only stores the file in a single location of the 

queue. The requests that are missed in the corresponding 

caches and have not been serviced within the previous time 

slot, enter the server transmission queue and are served based 

on their arrival time. The average request arrival rate and 

service rate at the server transmission queue are denoted by 𝜆 

and μ, respectively. The service times in our queue model 

have a general (arbitrary) distribution, with the mean and 

coefficient of variation, �̅� =
1

𝜇
 and 𝑐𝑠 =

𝜎𝑠

𝑠̅
, respectively. 

Therefore, in case of uncoded caching schemes, we considere 

a general G/G/1 queue for the content server, where inter-

arrival and service times have arbitrary distributions. In case 

of IRM traffic, the content server functionality is then 

modeled by an M/G/1 queue.  

B. Queue Model for Coded Caching Schemes 

In contrast to the other works studying the coded caching 

schemes such as [4-7], in this paper, a realistic framework is 

assumed where requests of various users arrive at the stations 

randomly according to a traffic model, providing a platform 

for analysis of caching networks based on queuing theory. 

Since the traditional queuing theory models cannot handle 

packet combinations, network coding, and multicasting, we 

exploit the concept of virtual queues [17] in this paper. We 

consider N virtual queues with infinite buffer lengths at the 

content server denoted by Qn, n=1…N, with the average 

arrival rates, λn, for the requests of station n sent to the server. 

Based on such a framework, at the server, the requested files 

of different caching nodes enter their corresponding virtual 

queues and are merged together to construct the coded packet 

to be transmitted. The server functionality in the coded 

caching schemes is then modeled by an overall queue Q(t). It 

should be noted that in coded schemes, unlike the uncoded 

case, the service rate cannot be pre-determined through a 

given distribution and its characteristics may also be non-

stationary. Therefore, we consider general definitions and 

theorems for queuing systems in order to model and analyze 

the functionality of the coded schemes. Let Q(t) represent the 

contents of a single discrete time queuing system defined over 

integer steps 𝑡 ∈ {0, 1, 2, . . . }. Specifically, the initial state Q(0) 

is assumed to be a non-negative real valued random variable. 

Future states are driven by stochastic arrival and service 

processes, 𝜆(𝑡) and 𝜇(𝑡), according to the following dynamic 

equation [18]: 

𝑄(𝑡 +  1) =  𝑚𝑎𝑥[𝑄(𝑡) −  𝜇(𝑡), 0] +  𝜆(𝑡)     (1) 
 

The value of 𝜆(𝑡) represents the number of new requests that 

arrive during step t, and is assumed to be non-negative. The 

value of 𝜇(𝑡) represents the number of requests that can be 

served at step t. Without lack of generality and in order to 

keep consistency with the provided analysis for the uncoded 

schemes in this paper, the process 𝜆(𝑡) is assumed to be 

stationary and the average request arrival rate at the server is 

denoted by 𝜆. 

In the following section, a performance analysis based on 

the proposed queue models for various uncoded and coded 

caching schemes is presented. Table 1 shows key notations 

adopted for the system model and subsequent analysis 

presented in this paper.  

III. STABILITY, THROUGHPUT AND DELAY ANALYSIS OF 

DIFFERENT CACHING SCHEMES 

By means of the proposed queue models, we introduce the 

server utilization factor, i.e. 𝜌 ≜
𝜆

𝜇
 as a comprehensive 

performance metric for the load on the shared link of a single 

bottleneck caching network. The key advantage of such a 

metric is that it simultaneously takes into account the cache hit 

probability, load on the bottleneck link, and requests arrival 

rates. Moreover, 𝜌 provides key insight on the stability 

characteristic and bounded or unbounded delay behavior of 

such networks. We aim to minimize the load on the bottleneck 

link, by minimizing 𝜌, for a specific average requests arrival 

rate, 𝜆𝑟𝑒𝑞. It should be noted that such utilization factor 

minimization is desirable as long as the stability conditions are 

met; naturally unstable systems lead to infinite delays. 

Definition 1: A packet queue is stable, if the arrival and 

service processes of the queue are all stationary and the 

average arrival rate is less than the average service rate [17]. 

By definition, in order to have a stable system, we require 𝜆 <

𝜇 , or in other words, 𝜌 < 1. Moreover, the schemes which 

have lower 𝜌 are preferred as they reduce the load on the 

bottleneck link and increase the maximum stable throughput 

of the network. 

 
TABLE 1. Key notations for the system model and analysis 

Notation Semantics (unit) 

N Number of caching stations 

F Size of the file library users can request files from 

𝑝𝑖 Probability of requesting file 𝑓𝑖 from the library 

C Cache size: The number of  whole files that can be cached 

𝜆𝑟𝑒𝑞 Average requests arrival rate at a station [packets / time slot] 

Λ Total throughput of the network [packets / time slot] 

𝑝ℎ𝑖𝑡 Overall hit probability of the network caches 

𝑝𝑚𝑖𝑠𝑠 Overall miss probability of the network caches 

λ Average arrival rate at the server queue [packets / time slot] 

μ Average service rate at the server queue [packets / time slot] 

𝜌 Shared link utilization factor 

∆𝑇𝑁
𝑘 Average waiting time in request round k in PCCS [time slot] 

w Waiting window size in WPCS [time slot] 

𝑑ℎ̅̅̅̅  Average delay of delivering a request via a station [time slot] 

𝑑𝑢̅̅̅̅  Average uplink delay over all of the stations [time slot] 

𝑑�̅� Average service delay over all of the stations [time slot] 

�̅� Average delay of responding to a file request [time slot] 
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Definition 2: Maximum stable throughput, i.e. 𝛬𝑚𝑎𝑥, is 

defined as the maximum average requests arrival rate over all 

of the stations for which the network remains stable, i.e. 𝜌 < 1. 

It should be noted that the only requirement for properly 

defining the performance metric 𝜌 is having a stationary queue 

and no specific queue model has to be assumed. In addition, 

whenever the stationary assumption for the arrival or service 

process does not hold, we can still use the following general 

definition in order to examine the stability of such a system, as 

will be described further in the following sections: 

Definition 3: A discrete time queue Q(t) is mean rate stable 

if   lim
𝑡→∞

𝔼[𝑄(𝑡)]

𝑡
= 0 [18]. 

A. Stability Analysis of Uncoded Caching Schemes 

In this section, the utilization factor and maximum stable 

throughput for the uncoded caching schemes are proposed. 

First, the utilization factor for renewal traffic is derived in 

Theorem 1. Then, the utilization factor and maximum stable 

throughput in case of IRM traffic are proposed in Proposition 

1 and Proposition 2, respectively. Finally, the utilization factor 

and maximum stable throughput for different uncoded caching 

policies LRU, q-LRU, LFU, and RAND in case of renewal 

and IRM traffics, are proposed.  

We define 𝑝𝑟𝑒𝑞(𝑖) as the probability that file 𝑓𝑖 is requested 

within a time slot at a given station. We also define the 

random variable 𝑁𝜏,𝑖, as the number of the requests for file 𝑓𝑖 

coming to a given station within a time slot of length τ. 

Lemma 1: For the renewal traffic model, 𝑝𝑟𝑒𝑞(𝑖) is obtained 

from 𝑝𝑟𝑒𝑞(𝑖) =  1 − 𝐺𝑖(𝜏, 0), where 𝐺𝑖(𝜏, 𝜉) is the probability 

generating function of 𝑁𝜏,𝑖. 

Proof is provided in the Appendix. 

Theorem 1: The utilization factor for uncoded caching 

schemes in single bottleneck caching networks in case of the 

renewal traffic model is derived as 

𝜌 ≜
𝜆

𝜇
= ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁

)𝐹
𝑖=1    (2) 

 

where 𝑝𝑟𝑒𝑞(𝑖) is given by Lemma 1. 

Proof: We define the random variable 𝑋𝑖 as the number of 

the requests for file 𝑓𝑖 arriving at the content server within a 

time slot. Taking into account the effect of the server control 

unit, the requests for file 𝑓𝑖 enter the server queue with the 

average arrival rate 𝜆𝑓𝑖  given by 

𝜆𝑓𝑖 = ∑ P(𝑋𝑖 = 𝑘)
∞
𝑘=1 = 1 − P(𝑋𝑖 = 0)       (3) 

 

Since in the uncoded system model, the missed requests of all 

of the stations enter the content server, P(𝑋𝑖 = 𝑘) is obtained 

from 

P(𝑋𝑖 = 𝑘)

= ∑ 𝑃 {
File 𝑓𝑖 is requested from 𝑘 + 𝑙 stations 

within a time slot and it is hit in the 𝑙 ones
}

𝑁−𝑘

𝑙=0

 

 = ∑ (
𝑁

𝑘 + 𝑙
) (𝑝𝑟𝑒𝑞(𝑖))

𝑘+𝑙

(1 − 𝑝𝑟𝑒𝑞(𝑖))
𝑁−(𝑘+𝑙)

.𝑁−𝑘
𝑙=0  

 (
𝑘 + 𝑙
𝑙
) (𝑝ℎ𝑖𝑡(𝑖))

𝑙
(1 − 𝑝ℎ𝑖𝑡(𝑖))

𝑘
= (

𝑁
𝑘
) (𝑝𝑟𝑒𝑞(𝑖))

𝑘

(1 −

𝑝ℎ𝑖𝑡(𝑖))
𝑘
(1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁−𝑘

 

= 𝐵𝑖𝑛𝑜𝑚(𝑁, 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))              (4) 

Consequently, according to (3), the average arrival rate at the 

server queue, i.e. 𝜆, is obtained from 

𝜆 = ∑ 𝜆𝑓𝑖
𝐹
𝑖=1 = ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁

)𝐹
𝑖=1      (5) 

 

In addition, since the bottleneck link is assumed to be error-

free and no coding is performed at the server, the average 

service rate of the content server, μ, is considered to be equal 

to the link capacity, i.e. one file per time slot, and therefore, 

𝜇 = 1. Consequently, (2) is derived.□ 

Proposition 1: The utilization factor for the uncoded 

caching schemes in the single bottleneck caching networks, in 

case of the IRM traffic model, is given by 

𝜌 ≜
𝜆

𝜇
= ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁

)𝐹
𝑖=1    (6) 

 

Proof: The proof is provided in the Appendix. 

Proposition 2: The uncoded caching schemes in case of the 

IRM traffic model can stabilize the total throughput, 𝛬 ≜

𝑁𝜆𝑅𝑒𝑞 , if 𝛬 <
1

1−𝑝ℎ𝑖𝑡
. 

Proof: The proof is provided in the Appendix. 

 As mentioned in the proof of Proposition 2 and verified in 

the numerical results, the aforementioned bound on the 

maximum stable throughput is in fact adequately tight.  

The importance of the theorem and propositions proposed 

so far is that they are expressed in terms of the network 

parameters and hit probability of the applied schemes. 

Consequently, for each uncoded caching scheme, by inserting 

the value of 𝑝ℎ𝑖𝑡 in Theorem 1 and Propositions 1 and 2, the 

utilization factor and bound on the stable throughput can be 

computed. In the rest of this section, we will propose such 

performance metrics for LRU, q-LRU, LFU and RAND 

uncoded caching schemes. In order to express the hit 

probability of various uncoded caching schemes in terms of 

the network parameters, we use Che’s approximation which 

enables us to simply express the hit probability in terms of 

cache eviction time Tc, i.e., the time needed before C distinct 

files are requested by the users. In other words, a file is in the 

cache at time t, if and only if a time smaller than TC has 

elapsed since the last request for this file, where Tc can be 

determined based on the cache size [14]. 

1)  LRU  

In case of the LRU caching strategy, the following results 

are achieved. 

Corollary 1: The utilization factor for LRU in case of IRM 

traffic is given by: 

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1     (7) 

 

and LRU can stabilize the total throughput, if 

𝛬 <
1

(1−∑ 𝑝𝑖.(1−𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)𝐹

𝑖=1 )
            (8) 

 

where Tc is obtained iteratively from 𝐶 = ∑ (1 −𝐹
𝑖=1

𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐). 
Corollary 2: The utilization factor for LRU in case of 

renewal traffic is given by: 

𝜌 = ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝐹𝑅(𝑖, 𝑇𝑐)))
𝑁

)𝐹
𝑖=1    (9) 
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2)  q-LRU  

q-LRU is one of the variations of LRU which differs from 

LRU for the insertion policy: upon arrival of a request, a 

content not yet stored in the cache is inserted into it with 

probability q. The eviction policy is the same as LRU [14]. 

Corollary 3: The utilization factor for q-LRU in case of 

IRM traffic is given by: 

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖) (1 −𝐹
𝑖=1

𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐+𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
))

𝑁

)         (10) 

 and q-LRU can stabilize the total throughput, if 

𝛬 <
1

(1−∑ 𝑝𝑖.(
𝑞(1−𝑒

−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐+𝑞(1−𝑒

−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
)𝐹

𝑖=1 )

        (11) 

 

Corollary 4: The utilization factor for q-LRU in case of 

renewal traffic is given by: 

𝜌 = ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖) (1 −
𝑞𝐹𝑅(𝑖,𝑇𝑐)

1+(𝑞−1)𝐹𝑅(𝑖,𝑇𝑐)
))

𝑁

)𝐹
𝑖=1  (12) 

3)   LFU 

Corollary 5: The utilization factor for LFU in case of IRM 

traffic is obtained from 

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖))
𝑁

)𝐹
𝑖=𝐶+1           (13) 

 

and LFU can stabilize the total throughput, if 

𝛬 <
1

(1−∑ 𝑝𝑖
𝐶
𝑖=1 )

                   (14) 

4) RAND  

RAND is the simplest cache replacement scheme 

considered in a single cache. In this scheme, to make room 

for a new file, a random file stored in the cache is evicted 

[3]. 

Corollary 6: The utilization factor for RAND in case of 

IRM traffic is given by 

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 −
𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]

1+𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]
))
𝑁

)𝐹
𝑖=1    

 (15) 

and RAND can stabilize the total throughput if 

       𝛬 <
1

(1−∑ 𝑝𝑖.
𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]

1+𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]
𝐹
𝑖=1 )

             (16) 

 

The proofs of these corollaries are provided in the 

Appendix.  

B. Stability Analysis of Coded Caching Schemes 

As mentioned earlier, in the coded caching schemes, a 

virtual queue is considered for the requests of each station sent 

to the server. The role of the virtual queue modeling is to 

enable the server to code the requested files of different 

stations together and send the coded packets. The average rate 

of the requests of station n sent to the server, which is the 

average arrival rate of virtual queue 𝑄𝑛, is denoted by 𝜆𝑛. For 

the performance analysis, the server functionality is modeled 

by an overall queue with the aggregate average arrival rate λ 

and service rate 𝜇(𝑡). By considering the cache placement and 

delivery phase of the desired coded caching scheme, the 

parameters of the proposed queue model, i.e. λ and 𝜇(𝑡) can be 

determined. In [4], a coded caching scheme, which we denote 

by Partition Coded Caching Scheme (PCCS) is proposed. 

Such an approach is also the basis of the coded schemes for 

the subsequent papers [5-7], as discussed in section II. In 

PCCS, each file is partitioned into μ0 = (
N
𝛾
) subfiles of equal 

size. It should be noted that PCCS is only proposed for cache 

sizes 𝐶 such that 𝛾 = 𝐶
𝑁

𝐹
  is an integer less than 𝑁. In the 

placement phase, each station caches an equal number of the 

subfiles of all of the F files. The main idea of PCCS is to 

design the cache placement in order to create coded 

multicasting opportunities for any 𝛾 + 1  users even with 

different requests. In such a scheme, the requests of all of the 

stations are considered together. Subsequently, in the delivery 

phase, the required subfiles of the requested files are coded 

together by linear coding (through XOR) and the coded small 

packets are created. The coded small packets are then 

transmitted via the shared link to simultaneously serve 𝛾 +

1 stations. The corresponding requests at each station are 

obtained by decoding the received coded packets given the 

cache contents. 

As an example, considering the case of a simple network 

with three caching nodes, we can model the coded caching 

scheme, as shown in Fig. 2, by defining three virtual queues, 

i.e. Q1, Q2 and Q3 with average arrival rates λ1, λ2, λ3 for 

requests of stations 1, 2, and 3, respectively.  In this example, 

we have considered a library of three files, namely A, B, C, 

and three stations, i.e. N=F=3 and caches of size one. 

Subsequently, 𝛾 is equal to one and so we have μ0 = 3. 

Therefore according to PCCS, each file is split into μ0 equal 

size subfiles, i.e., A = (A1, A2, A3), B =(B1, B2, B3), and C = 

(C1, C2, C3). In the placement phase, the cache content of 

station n is selected as Zn = (An, Bn, Cn). For the delivery 

phase, assume for example that at a given request round, 

station one requests file A, station two file B, and station three 

file C. Consequently, the missing subfiles are A2 and A3 for 

station one, B1 and B3 for station two, and C1 and C2 for 

station three, which enter the virtual queue of the 

corresponding stations, i.e. Q1, Q2 and Q3, respectively. Given 

the cache contents, stations one and two aim to exchange A2 

and B1, stations one and three aim to exchange A3 and C1, and 

stations two and three aim to exchange B3 and C2. By sending 

(A2⊕B1, A3⊕C1, B3⊕C2), the server enables all of these three 

exchanges. Consequently, in the delivery phase of the given 

request round, when the three corresponding virtual queues 

have packets to transmit, the server transmits three coded 

packets which are of size one third of a whole file. Therefore, 

the so called rate in this example equals R=1 whole file.  

In PCCS, for any requested file from a given station, its 

cache does not contain the whole file and only contains a 

subset of the required subfiles. Therefore, that station needs to 

submit that request to the server. Consequently, 𝜆𝑛 will be 

equal to the average requests arrival rate at station n, that is 

𝜆𝑛 = 𝜆𝑟𝑒𝑞 , ∀𝑛 = 1,… , 𝑁. Therefore, the overall queue average 

arrival rate, λ, is equal to the sum of the average arrival rates 

of the virtual queues, that is 

𝜆 = ∑ 𝜆𝑛
𝑁
𝑛=1 = 𝑁 𝜆𝑟𝑒𝑞            (17) 
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It should be noted that due to the design of the studied 

coded caching schemes, unlike the uncoded schemes, 𝜆𝑛 is not 

reduced by the miss probability. In fact, the key role of 

caching in PCCS is that the server sends only the missing 

subfiles for each requested file, instead of sending the whole 

file for the missed requests in the uncoded schemes. 

Therefore, the total transmission time for sending the missing 

subfiles in PCCS is less than the transmission time of sending 

the whole file. We will consider this effect in our analysis of 

PCCS service rate, later in this section. In order to calculate 

the service rate of PCCS, we define the following parameters: 

Definition 4: Let 𝑇𝑛
𝑘 , 𝑛 = 1,… . , 𝑁, denotes the random 

variable of the request arrival time of station n at the server at 

request round (step) 𝑘 ≥ 0. We define ∆𝑇𝑁
𝑘 as the expectation 

of the order statistical range [20] of these random variables, 

i.e. ∆𝑇𝑁
𝑘 = 𝔼[𝑇𝑁:𝑁

𝑘 − 𝑇1:𝑁
𝑘 ], where 𝑇1:𝑁

𝑘 = min (𝑇1
𝑘 , 𝑇2

𝑘, … , 𝑇𝑁
𝑘)  

and 𝑇𝑁:𝑁
𝑘 = max (𝑇1

𝑘 , 𝑇2
𝑘, … , 𝑇𝑁

𝑘). 
According to Definition 4, ∆𝑇𝑁

𝑘  represents the average 

interval between the arrival of the first and last requests, or in 

other words the average waiting time at request round k. We 

also define 𝑇𝑡𝑟𝑎𝑛𝑠 as the number of time slots required for 

sending the coded packets over the shared link, in order to 

serve requests of all stations at any given request round. Since 

the subfiles from 𝛾 + 1 virtual queues are combined by linear 

coding before transmission, the number of transmitted coded 

packets to serve all of the requests for any given request round 

is (
𝑁

𝛾 + 1
). In addition, the transmission time of each small 

coded packet is equal to 1 μ0⁄ . Consequently, we have 𝑇𝑡𝑟𝑎𝑛𝑠 =

(
𝑁

𝛾 + 1
) μ0⁄  . (It should be noted that in the notation of [4], the 

so called rate parameter, i.e. 𝑅 = (
𝑁

𝛾 + 1
) μ

0
⁄ , is equal to 𝑇𝑡𝑟𝑎𝑛𝑠. 

The goal in [4] is to minimize the value of R under the 

assumption that all of the stations’ requests are available 

simultaneously and the server can form any coded small 

packet at its own discretion at any time. Naturally, such an 

assumption is not valid in many practical scenarios. Therefore, 

by taking into account the stochastic arrival nature of the 

requests, the metric R on its own is no longer a proper figure 

of merit for such a network.) 

In addition, let 𝑇𝑡𝑟𝑎𝑛𝑠,1 denote the number of time slots 

needed for transmitting the required small coded packets over 

the shared link in order to serve the requests of any given 

station. In PCCS, each cache contains 
𝐶

𝐹
 of each file. 

Therefore, the number of the required subfiles to be 

transmitted to each station is (1 −
𝐶

𝐹
 )μ0. Since the transmission 

time of each subfile is 
1

μ0
 , 𝑇𝑡𝑟𝑎𝑛𝑠,1 is given by 𝑇𝑡𝑟𝑎𝑛𝑠,1 = 1 −

𝐶

𝐹
 . 

Proposition 3: The overall average service rate of the server 

queue at request round k in PCCS is obtained from 

�̅�(𝑘)): = 𝔼[𝜇(𝑘)] =
𝑁

max ( 
(
𝑁
𝛾+1

)

μ0
 ,   ∆𝑇𝑁

𝑘+(1−
𝐶

𝐹
) )

             (18)  

 

Proof: In PCCS, the server transmits the coded small 

packets at each request round to serve the requests of all of the 

N stations. Let 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘  denote the number of time slots 

required to serve the requests of all of the stations at request 

round k, (including the waiting time at the request round and 

the transmission time of the coded packets sent through the 

shared link). Therefore, the average service time at request 

step k is obtained from 

�̅�(𝑘) =
1

�̅�(𝑘)
 =

𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘

𝑁
            (19) 

In order to reduce latency, we assume that as soon as the 

server has received enough requests so that it can form the 

corresponding packet and transmit it, the server will do so. In 

other words, the server does not wait till all the requests arrive 

at each request round in order to start transmission. Based on 

such a strategy, in order to determine 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 , we should 

consider the following two situations: 

a)  Let’s consider the case that the waiting time at request 

round k, i.e. ∆𝑇𝑁
𝑘 is large enough such that when the last 

request at this round arrives, all of the coded packets 

corresponding to the previous N-1 requests have been already 

transmitted. After the arrival of the last request, only coded 

packets that rely on that request need to be transmitted, where 

by definition is performed in 𝑇𝑡𝑟𝑎𝑛𝑠,1 time slots. Therefore, in 

this case, the total time for serving all of the requests at 

request round k, i.e. 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 , takes ∆𝑇𝑁

𝑘 + 𝑇𝑡𝑟𝑎𝑛𝑠,1 time slots. 

It is clear that this situation holds if the duration of the request 

step, i.e. ∆𝑇𝑁
𝑘, is larger than the transmission time of all of the 

coded packets to serve all of the node requests except for the 

coded packets corresponding to the last request, i.e. 𝑇𝑡𝑟𝑎𝑛𝑠 −

𝑇𝑡𝑟𝑎𝑛𝑠,1. Therefore, if ∆𝑇𝑁
𝑘 > 𝑇𝑡𝑟𝑎𝑛𝑠 − 𝑇𝑡𝑟𝑎𝑛𝑠,1, then 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠

𝑘 =

∆𝑇𝑁
𝑘 + 𝑇𝑡𝑟𝑎𝑛𝑠,1. Consequently, in case of  ∆𝑇𝑁

𝑘 >
(
𝑁
𝛾+1

)

μ0
 − (1 −

𝐶

𝐹
 ), 

the average service time at request step k is obtained from 

�̅�(𝑘) =
∆𝑇𝑁

𝑘+(1−
𝐶

𝐹
 )

𝑁
                 (20) 

b) On the other hand, consider the case that ∆𝑇𝑁
𝑘 ≤ 𝑇𝑡𝑟𝑎𝑛𝑠 −

𝑇𝑡𝑟𝑎𝑛𝑠,1. In such a case, the waiting time at request step k is 

negligible compared to the total service time and we have 

𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 = 𝑇𝑡𝑟𝑎𝑛𝑠. Therefore, in case of ∆𝑇𝑁

𝑘 ≤
(
𝑁
𝛾+1

)

μ0
 − (1 −

𝐶

𝐹
 ), the average service time at request step k is 

�̅�(𝑘) =
𝑇𝑡𝑟𝑎𝑛𝑠

𝑁
=

(
𝑁
𝛾+1

)

𝑁μ0
             (21) 

Finally, combining (20) and (21) results in (18). □ 

The following two lemmas specify the characteristics of the 

parameter ∆𝑇𝑁
𝑘.  

Lemma 2: ∆𝑇𝑁
𝑘 in PCCS with IRM traffic is given by: 

 

∆𝑇𝑁
𝑘 = {

∑ (−1)𝑗+1 (
𝑁
𝑗
)𝜑𝑗(𝑘)

𝑁−1
𝑗=1 𝑜𝑑𝑑 𝑁

∑ (−1)𝑗+1 (
𝑁
𝑗
)𝜑𝑗(𝑘)

𝑁−1
𝑗=1 − 2𝜑𝑁(𝑘) 𝑒𝑣𝑒𝑛 𝑁

}  (22) 

where 

𝜑𝑗(𝑘) =
1

 𝜆𝑅𝑒𝑞
∑ (

𝑗
𝑡0, 𝑡1, … , 𝑡𝑘−1

)
(∑ 𝑠𝑡𝑠
𝑘−1
𝑠=0 )!

𝑗∑ 𝑠𝑡𝑠
𝑘−1
𝑠=0 +1

∏
1

(𝑠!)𝑡𝑠
𝑘−1
𝑠=0𝑡0+𝑡1+⋯+𝑡𝑘−1=𝑗

   

(23) 

Proof: The proof is provided in the Appendix. 

Lemma 3: The lower bound on ∆𝑇𝑁
𝑘 in PCCS with IRM 

traffic is given by ∆𝑇𝑁
𝑘 ≥

𝑑𝑁√𝑘

𝜆𝑟𝑒𝑞
, where 𝑑𝑁 = min ( 2 (1 −

(
1

2
)
𝑁−1

) ,
(1−𝑝𝑁−𝑞𝑁)

√𝑝𝑞
),  𝑝 =

𝑎2

1+𝑎2
 for any a that 𝑇𝑛

𝑘 ≤ 𝑎, and 𝑞 =

1 − 𝑝. 
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Fig. 2. An example of the virtual queue model for the coded caching schemes. 

 

Proof: The proof is provided in the Appendix. 

According to Proposition 3, the service rate in PCCS 

depends on request round k, and hence, PCCS does not yield 

stationary service rates. This is due to the fact that the service 

rate in PCCS depends on the waiting time at each request 

round. The waiting time also varies at each request round 

according to Lemma 2 and Lemma 3. Consequently, in order 

to analyze the stability of PCCS, we need to consider the 

general definitions and theorems of queuing systems that go 

beyond the stationary queues, as discussed in section III. B. 

Lemma 4: (Necessary condition for mean rate stability [18]) 

Suppose 𝑄(𝑡) evolves according to (1), with general processes 

𝜆(𝑡) and 𝜇(𝑡) such that 𝜆(𝑡) ≥ 0 for all t and 𝔼[𝑄(0)] < ∞. If 

𝑄(𝑡) is mean rate stable, then 

lim sup
𝑡→∞

1

𝑡
∑ 𝔼[𝜆(𝑘) − 𝜇(𝑘)]𝑡−1
𝑘=0 ≤ 0    (24) 

Proof: The proof is provided in [18]. 

Theorem 2: The server queue is not mean rate stable in 

PCCS.  

Proof: According to Proposition 3, we can write 

∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 = ∑

𝑁

max( 
(
𝑁
𝛾+1

)

μ0
 ,   ∆𝑇𝑁

𝑘+(1−
𝐶

𝐹
) )

𝑡−1
𝑘=0            (25) 

Moreover, according to Lemma 2 and 3, ∆𝑇𝑁
𝑘 increases by 

increasing k. Therefore, there exists a 𝐾 > 0 such that for 𝑘 >

𝐾, the inequality ∆𝑇𝑁
𝑘 + (1 −

𝐶

𝐹
) ≥

(
𝑁
𝛾+1

)

μ0
  holds. Consequently, 

we have 

∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 = 𝐾

𝑁μ0

(
𝑁
𝛾+1

)
+∑

𝑁

 ∆𝑇𝑁
𝑘+(1−

𝐶

𝐹
)

𝑡−1
𝑘=𝐾+1        (26) 

Furthermore, according to Lemma 3, we can write 

∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 ≤ 𝐾

𝑁μ0

(
𝑁
𝛾+1

)
+ ∑

𝑁𝜆𝑟𝑒𝑞

𝑑𝑁√𝑘

𝑡−1
𝑘=𝐾+1       (27) 

Due to the stationary assumption on 𝜆(𝑘) and (17), we have 

lim sup 
𝑡→∞

1

𝑡
∑𝔼[𝜆(𝑘) − 𝜇(𝑘)]

𝑡−1

𝑘=0

 

= lim sup
𝑡→∞

1

𝑡
∑(𝑁 𝜆𝑟𝑒𝑞 − 𝔼[𝜇(𝑘)]

𝑡−1

𝑘=0

) 

= 𝑁 𝜆𝑟𝑒𝑞 − lim sup
𝑡→∞

1

𝑡
∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0        (28) 

 

Substituting (27) in (28) results in  

lim sup
𝑡→∞

1

𝑡
∑𝔼[𝜆(𝑘) − 𝜇(𝑘)]

𝑡−1

𝑘=0

≥ 

𝑁 𝜆𝑟𝑒𝑞 − lim sup
𝑡→∞

 
1

𝑡
( 𝐾

𝑁μ0

(
𝑁

𝛾 + 1
)
+ ∑

𝑁𝜆𝑟𝑒𝑞

𝑑𝑁√𝑘

𝑡−1

𝑘=𝐾+1

) 

= 𝑁 𝜆𝑟𝑒𝑞 −
𝑁𝜆𝑟𝑒𝑞

𝑑𝑁
lim sup
𝑡→∞

 
1

𝑡
∑

1

√𝑘

𝑡−1
𝑘=𝐾+1         (29) 

 

In addition, using the Right Riemann Sum for underestimating 

the area under the function 
1

√𝑥
, we have  ∑

1

√𝑘
𝑡−1
𝑘=𝐾+1 <

∫
1

√𝑥

𝑡−1

𝐾
𝑑𝑥. Therefore, (29) can be written as 

lim sup
𝑡→∞

 
1

𝑡
∑𝔼[𝜆(𝑘) − 𝜇(𝑘)]

𝑡−1

𝑘=0

> 

𝑁 𝜆𝑟𝑒𝑞 −
𝑁𝜆𝑟𝑒𝑞

𝑑𝑁
lim sup
𝑡→∞

 
1

𝑡
∫

1

√𝑥

𝑡−1

𝐾

𝑑𝑥 = 

𝑁 𝜆𝑟𝑒𝑞 −
𝑁𝜆𝑟𝑒𝑞

𝑑𝑁
lim sup
𝑡→∞

 
1

𝑡
(2√𝑡 − 1 − √𝐾) = 𝑁 𝜆𝑟𝑒𝑞 > 0   

(30) 

Therefore, according to Lemma 4, 𝑄(𝑡) in PCCS is not mean 

rate stable for any nonzero requests arrival rate, 𝜆𝑟𝑒𝑞 > 0.□ 

C. WPCS (Window Partition Coded caching Scheme) 

As shown in Theorem 2, PCCS cannot maintain the stability 

of the system. This fact is mainly due to the long waiting times 

for the requests arrivals from all of the stations to properly 

encode the packets. In order to overcome this problem, a 

natural extension is to encode as many packets as possible 

during a given window size and do not delay transmissions 

further in time. For such an approach, we consider a modified 

version of PCCS, denoted by Window Partition Coded 

caching Scheme (WPCS). In WPCS, the cache placement 

phase is the same as in PCCS, however, the delivery phase is 

modified. In WPCS, we consider a slotted transmission of 

window size w for the server transmissions. At the end of w, if 

only one request has arrived at the server, the requested file is 

sent without coding. Otherwise, the server codes as many 

subfiles as possible and sends the remaining subfiles without 

coding. If the requests of all of the stations have reached the 

server during a given window, the server sends the coded 

subfiles according to PCCS. WPCS is described in Table 2. 

For example, in the case illustrated in Fig. 2 with three 

stations, consider the situation where only requests of the 

nodes 1 and 3 have arrived during a given window. In WPCS, 

packets that contain the subfiles of the nodes 1 and 3 are sent 

after proper coding and the other subfiles are sent without 

coding. Therefore, the packets 𝐴3⨁𝐶1, 𝐴2 and 𝐶2 are 

transmitted. In the following proposition, the average service 

time of WPCS is derived. 

Proposition 4: The average service time of WPCS is 

 

�̅�𝑤 =

{
  
 

  
 
𝑤

2
+ (1 −

𝐶

𝐹
 )                                              𝑖𝑓 𝑁𝑤 = 1

𝑤

2
+

1

μ0
(
1

𝑁𝑤
+ (

𝑁 − 1
𝛾

) − 1)   𝑖𝑓 1 < 𝑁𝑤 < 𝛾 + 1

𝑤

2
+

1

μ0
( 
(
𝑁𝑤
𝛾+1

)

𝑁𝑤
+ (

𝑁 − 1
𝛾

) − (
𝑁𝑤 − 1
𝛾

) )    𝑂.𝑊.
}
  
 

  
 

  

                       (31) 

where 𝑁𝑤 is the number of stations whose requests arrive 

during a window size w. 
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TABLE 2.WindowPartitionCodedcaching Scheme (WPCS) 

Algorithm 1  Window Partition Coded caching Algorithm 

1:  N        :The set of all stations 
2:  R        :The stream of all requests sent to the server 

3:  Zn       :The cache contents of station n 

4:  𝐐𝒏      :Virtual queue of station n at the server 

5:ℎ𝑒𝑎𝑑(𝐐𝒏) :The packets at the head of 𝐐𝒏 

6:ℎ𝑒𝑎𝑑𝑐𝑜𝑑𝑒𝑑(𝐐𝒏) :The packets at the head of 𝐐𝒏 which will be sent coded 

7:ℎ𝑒𝑎𝑑𝑢𝑛𝑐𝑜𝑑𝑒𝑑(𝐐𝒏):The packets at the head of 𝐐𝒏 which will be sent uncoded 
8:  t(.)    :Arrival time function 

9: Npres(W) : Set of virtual queue indexes whose request arrives within the                 

                       server transmission window W 
10: Step 1: Cache Placement Phase 

11: for all n ∈ N  do 

12:   Zn ← Fill the cache based on  PCCS cache placement  

13:   𝐐𝒏 ←Send missed partitions of the requested files at cache n to the server 
14: end for 

15: Step 2: Delivery Phase 

16:W=[0,w]  
17:While R  has unserved requests 

18:    for all n ∈ N do 

19:           if t(ℎ𝑒𝑎𝑑(𝐐𝒏))∈  W  then add n to Npres(W) 

20:    end for 

21:   Send  ⨁(ℎ𝑒𝑎𝑑𝑐𝑜𝑑𝑒𝑑(𝐐𝒏))    for  𝑛 ∈ Npres(W)    (Send XOR of possible         
                                                                                         packets at W) 

22:   Send ℎ𝑒𝑎𝑑𝑢𝑛𝑐𝑜𝑑𝑒𝑑(𝐐𝒏)        for  𝑛 ∈ Npres(W)    (Send remaining  
                                                                                       packets without coding) 

23:   update ℎ𝑒𝑎𝑑(𝐐𝒏), ℎ𝑒𝑎𝑑𝑐𝑜𝑑𝑒𝑑(𝐐𝒏), ℎ𝑒𝑎𝑑𝑢𝑛𝑐𝑜𝑑𝑒𝑑(𝐐𝒏)  for  𝑛 ∈ Npres(W)  
24:   update W by shifting the window w time slots to the right 
25: end while 

 

Proof: The proof is provided in the Appendix. 

Corollary 7: The shared link utilization factor of WPCS in 

single bottleneck caching networks is given by 𝜌 = 𝑁 𝜆𝑟𝑒𝑞�̅�𝑤.  

Proof: Since the cache placement is the same as PCCS, the 

average requests arrival rate at the server queue is given by 

(17), and 𝜌 is derived from (17) and (31).□ 

As we will present at the end of this section, unlike PCCS, 

WPCS can maintain the stability of the system for a given 

range of 𝜆𝑟𝑒𝑞 and 𝑤. Naturally, as w becomes very small, 

WPCS behaves more closely to the uncoded schemes, so the 

stability is achieved at the cost of a lower caching gain. 

D. Proposing Coded-Delivery LRU caching Scheme (CDLS) 

In this section, we propose a caching scheme, namely 

Coded-Delivery LRU caching Scheme (CDLS), which 

benefits from applying coding in the delivery phase, while 

maintaining the stability of the caching network. Moreover, it 

improves the performance compared to the caching schemes 

presented earlier, by decreasing the shared link utilization 

factor and increasing the maximum stable throughput. As 

illustrated in Table 3, CDLS performs LRU caching 

replacement at each cache station and uses coding in the 

delivery of the packets from the server. In the delivery phase, 

the server takes into account the contents of the virtual queues 

before each packet transmission. Through this process, at the 

earliest time that the server detects that the requested files of 

two stations are mutually present in each other’s cache, it 

forms the XOR of these two requested files and transmits it at 

the first available transmission round. Consequently, both 

stations can obtain their desired files by decoding the received 

coded packet given their own cache content. It is evident that 

due to the nature of LRU, the cache of each station contains 

the last C files requested by that station and therefore, content 

of the caches are already known to the server by keeping a list 

of such files. We should mention that the proposed scheme 

can be easily extended to coding of three or more files. 

However, for simplicity, we concentrate on the coding of two 

files in this paper. CDLS is described in Table 3. 

Proposition 5: The shared link utilization factor for the 

proposed CDLS scheme in the single bottleneck caching 

networks in case of IRM traffic is given by: 

𝜌 = 𝛼∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1     (32) 

 

and CDLS can stabilize the total throughput, if 

𝛬 <
1

𝛼(1−∑ 𝑝𝑖.(1−𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)𝐹

𝑖=1 )
                (33) 

where  
1

2
≤ 𝛼 ≤ 1. 

 Proof: Due to the potential possibility of the coded delivery 

of two requested files in CDLS, we have 1 ≤ 𝜇 ≤ 2. 

Consequently, the desired results are simply derived from 

Corollary 1, by changing the value of 𝜇. □ 

It can be easily verified that while CDLS maintains the 

system stability, it also results in a lower shared link 

utilization factor compared to the uncoded schemes.  

E. Delay Analysis 

In this section, we address the delay analysis of single 

bottleneck caching networks. The system model is as in Fig. 1: 

If the requested file is hit at caching node n, it is delivered 

from the cache with a cache response delay, dhn, otherwise, 

the request is forwarded to the content server via the uplink 

with a communication delay, dun, and the server delivers the 

requested file via the downlink with a response delay, dln. 

Definition 5: The average response delay, �̅�, is defined as 

the average delay experienced by a given users in the single 

bottleneck caching network, for obtaining the requested files, 

either delivered directly from the corresponding station or sent 

from the content server. 

By definition, the average response delay is obtained from 

�̅� = 𝑝ℎ𝑖𝑡  𝑑ℎ̅̅̅̅ + (1 − 𝑝ℎ𝑖𝑡)(𝑑𝑢̅̅̅̅ + 𝑑�̅�)                 (34) 

 
TABLE 3. Coded-Delivery LRU caching Scheme (CDLS) 

Algorithm 2  Coded-Delivery LRU caching Scheme (CDLS) 

1: N     :The set of all caching nodes 

2: R     : The stream of all requests sent to the server 
3: Rn    : The stream of requests at station n 

4: Zn       : The cache contents of station n 

5: 𝐐𝒏    : Virtual queue of station n at the server 

6: ℎ𝑒𝑎𝑑(𝐐𝒏):The packet at the head of 𝐐𝒏 

7: t(.)  :Arrival time function  
8: at the stations side: 

9:  for all n ∈ N and i ∈ Rn do 

10:   Zn ← Fill cache n based on LRU 

11:   𝐐𝒏 ←send missed requested files at cache n to the server 

12:end for     
13: at the server side: 

14: while R  has unserved requests  

15:     if (there is at least two nonempty virtual queues, 𝐐𝒎,and 𝐐𝒏) 

16:             and ( ℎ𝑒𝑎𝑑(𝐐𝒎) ∈ Zn  and  ℎ𝑒𝑎𝑑(𝐐𝒏) ∈ Zm ) then 

17:            send   ℎ𝑒𝑎𝑑(𝐐𝒏)⨁ ℎ𝑒𝑎𝑑(𝐐𝒎) 
18:            update ℎ𝑒𝑎𝑑(𝐐𝒏) 
19:            update ℎ𝑒𝑎𝑑(𝐐𝒎) 
20:      else                  

21:                 𝑛 = argmin
𝒙

 𝑡(ℎ𝑒𝑎𝑑(𝐐𝒙))  

22:             send   ℎ𝑒𝑎𝑑(𝐐𝒏) 
23:             update ℎ𝑒𝑎𝑑(𝐐𝒏) 
24:       end if 

25: end while  
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where the average service delay via the downlink path, 𝑑�̅�, is 

given by the sum of the average service time, �̅�, and the 

average time spent in the server queue, 𝑇𝑞: 𝑑�̅� = �̅� + 𝑇𝑞. 

Equation (34) describes the relation between the average 

response delay and the hit probability. The definition of the hit 

probability in the traditional cache schemes is the probability 

of existence of the requested files in the caches. In contrast, 

partition caching schemes, such as PCCS and WPCS, only 

cache fractions of the files rather than the whole files. 

Therefore, in order to have a comparison among different 

schemes, we consider the hit probability in the partition 

schemes as the ratio of the number of subfiles of the requested 

files that are stored in the cache, to the total number of subfiles 

of the requested files. In PCCS and WPCS, each cache 

contains an equal number of the subfiles of all of the F files. 

Therefore, due to the symmetry in the cache placement, the hit 

probability will be 𝑝ℎ𝑖𝑡 =
𝐶

𝐹
. Hence, according to (34), the 

average response delay of PCCS and WPCS is given by: 

�̅� =
𝐶

𝐹
 𝑑ℎ̅̅̅̅ + (1 −

𝐶

𝐹
)(𝑑𝑢̅̅̅̅ + �̅� + 𝑇𝑞)               (35) 

Since, as shown earlier, the server queue becomes unstable in 

PCCS, the average time spent in the queue, 𝑇𝑞, and 

consequently, the average response delay will be unbounded.  

In the following, we focus on obtaining the average response 

delay for the uncoded schemes. In case of IRM traffic, as 

discussed in section III, we consider an M/G/1 queue for the 

shared downlink. According to Pollaczek-Khinchin (P-K) 

relation [19], the average downlink delay is given by 𝑑�̅� =

�̅�(1 +
𝜌(1+𝑐𝑠

2)

2(1−𝜌)
). Therefore, the average response delay is 

obtained from 

�̅� = 𝑝ℎ𝑖𝑡  𝑑ℎ̅̅̅̅ + (1 − 𝑝ℎ𝑖𝑡) (𝑑𝑢̅̅̅̅ +
1

𝜇
(1 +

𝜌(1+𝑐𝑠
2)

2(1−𝜌)
))      (36) 

 

 Proposition 6: In the single bottleneck caching networks 

with IRM traffic and the uncoded caching schemes, the 

average response delay is obtained from 

�̅� = 𝑝ℎ𝑖𝑡  𝑑ℎ̅̅̅̅ + (1 − 𝑝ℎ𝑖𝑡) 

(𝑑𝑢̅̅̅̅ + 1 +
(1+𝑐𝑠

2) ∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1−𝑝ℎ𝑖𝑡(𝑖)))
𝑁
)𝐹

𝑖=1

2(1−∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1−𝑝ℎ𝑖𝑡(𝑖)))
𝑁
)𝐹

𝑖=1 )

)               

                      (37) 

 Proof: Combining (6) and (36) results in (37). □ 

Proposition 6 shows that the average response delay of the 

uncoded schemes in unsaturated cases (𝜌 < 1) is bounded and 

is given as a function of the hit probability and network 

parameters. Moreover, using the formulas of 𝜌 and 𝑝ℎ𝑖𝑡 for 

different uncoded caching schemes, provided in section IV.A, 

the average response delay in terms of the network parameters 

is obtained. For instance, �̅� for LRU is provided by the 

following corollary. 

 Corollary 8: The average response delay for the LRU 

caching scheme in the single bottleneck caching networks 

with IRM traffic is given by 

�̅� = 𝑑ℎ̅̅̅̅ ∑𝑝𝑖 . (1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝐹

𝑖=1

 

+(1 −∑𝑝𝑖 . (1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝐹

𝑖=1

). 

(𝑑𝑢̅̅̅̅ + 1 +
(1+𝑐𝑠

2) ∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1

2(1−∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1 )
)        (38) 

 

Proof: Equation (38) is simply derived by applying 𝑝ℎ𝑖𝑡(𝑖) =

1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐, derived from the Che’s approximation for LRU 

[14], in (37).□ 

F. Discussion on the Performance Evaluation 

Earlier in this section, we have shown that although PCCS 

decreases the number of file transmissions on the shared link 

with the assumption of co-existence of the requests of all of 

the stations, the price to pay is the instability of the system in 

case of the stochastic requests arrivals, as shown in Theorem 

2. From the derivations presented so far, it is evident that 

uncoded schemes, WPCS, and CDLS, through proper system 

configuration result in stable systems up to the maximum 

stable throughput. The key question based on such a general 

view is then about finding a proper metric for comparison of 

different caching schemes. At first sight, increasing the 

average service rate seems to be a good measure of 

comparison. For example, it is evident from Proposition 4 that, 

if 𝑤 <
2𝐶

𝐹
, the average service rate of WPCS is greater than the 

service rate of the uncoded schemes, for sufficiently small 

values of 𝜆𝑟𝑒𝑞. However, it should be noted that such an 

increase in the average service rate comes at the cost of an 

increase in the average request arrival rate at the server, 𝜆. In 

fact, for a specific value of  𝜆𝑟𝑒𝑞, in the uncoded schemes only 

those requests that were missed in the caches enter the server 

queue. Thus, for the uncoded schemes, according to (5), 𝜆, is 

reduced by 𝑝𝑚𝑖𝑠𝑠 = 1 − 𝑝ℎ𝑖𝑡.  However, according to (17), due 

to the cache partitioning in WPCS, all the requests arriving at 

the stations are sent to the server, and consequently 𝜆 will not 

change. Therefore, for a performance comparison, a sole 

comparison of the average service rates is not justified and it is 

the comparison of the utilization factors that provides a 

comprehensive measure of performance, due to the fact that 

the effect of 𝜆 and µ is jointly taken into account in 𝜌. As 

discussed earlier, the scheme that provides a smaller 𝜌, for a 

given 𝜆𝑟𝑒𝑞, improves the performance of the caching networks 

by decreasing the load on the bottleneck link and increasing 

the maximum stable throughput. 

It should be noted that the utilization factor also gives a 

measure on the shared link rate, 𝑅′, which is defined as the 

average number of the whole files transmitted over the shared 

link at each time slot. Under the assumptions of [4] in which 

all of the stations’ requests are available simultaneously and 

there is no constraint on the shared link capacity, 𝑅′ will in 

fact be equal to 𝔼[𝑅]. However, as mentioned earlier, if these 

assumptions are not met, 𝑅 and subsequently 𝔼[𝑅] will not 

constitute well-justified performance metrics, while 𝑅′can still 

be considered a proper indicator of the shared link rate. In case 

of saturated and oversaturated systems, 𝜌 ≥ 1, 𝑅′ will be equal 

to the full link capacity, i.e. 𝑅′ = 1. On the other hand, in case 

of unsaturated systems where 𝜌 < 1, we have 𝑅′ = 𝜌. 

Therefore, in PCCS which leads to an unstable system, we 

have 𝑅′ = 1, while in the stable regions of the other schemes, 

we have 𝑅′ = 𝜌 < 1. Therefore, in such networks, a scheme 

with a lower 𝜌 is preferred as it will lead to a lower shared link 

average rate. 
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TABLE 4. The simulation and trace-driven experiment parameters 

Notation Value 

N 10, 40, 360 

F 100,78.9K 

C Variable, 10,40,1000 

Number of Requests 10K, 123.3K 

 

As will be shown numerically in section V, the proposed 

CDLS leads to a significant performance improvement as it 

takes the advantages of both uncoded and coded caching 

schemes. While the strength of the traditional uncoded 

schemes is in their high hit probabilities and reducing the 

average arrival rate at the server, the advantage of the coded 

schemes, such as PCCS and WPCS, is in their potential to 

increase the average service rate. Therefore, as shown earlier, 

CDLS achieves the smaller utilization factor compared to 

other schemes, in addition to the higher maximum stable 

throughput, by maintaining the smaller value of 𝜆, resulting 

from the LRU cache replacement, and increasing 𝜇 by 

exploiting the proper coding at the server. 

IV. PERFORMANCE EVALUATION THROUGH SIMULATIONS AND 

TRACE-DRIVEN EXPERIMENTS AND INSIGHTS 

In this section, the analytic expressions derived in this paper 

are validated through simulations and real trace-driven 

experiments. Figs. 3-5, provide simulations as well as the 

analytic results, demonstrating the accuracy of our analytic 

results. We model the network and arriving requests in 

MATLAB environment where simulations are performed for 

various number of caching nodes N, and cache sizes C. First, 

we present the results achieved with the assumption of IRM 

traffic and the Zipf file popularity distribution [21] with the 

exponent parameter 𝛼 = 1 for a total 10K of requests. Next, 

we further validate our results by a real trace-driven 

experiment on traffic of YouTube video requests, as illustrated 

in Fig. 6. The values of the simulation and trace-driven 

experiment parameters are given in Table 4.  

Fig. 3 plots the hit probability as a function of the cache size 

for different caching schemes. As illustrated in Fig. 3, 

although the hit probabilities are close to each other under the 

Uniform popularity distribution, the hit probability of the 

partition coded schemes, i.e. PCCS and WPCS, is less than the 

hit probability of LRU, CDLS and LFU for all of the cache 

sizes in case of the Zipf distribution.  

Fig. 4.a shows the server utilization factor as a function of 

the overall average requests rate,  = 𝑁𝜆𝑟𝑒𝑞, for all of the 

schemes except for PCCS. Naturally, as shown in Theorem 2, 

PCCS leads to an unstable system for which 𝜌 is not well-

defined. On the other hand, we can ensure stable WPCS 

systems by choosing small enough window sizes. We should 

note that in terms of the utilization factor, WPCS does not 

perform better than the uncoded schemes. However, in the 

proposed CDLS scheme, the arrival rate at the server queue is 

the same as in LRU. Therefore, the higher service rate of 

CDLS results in the lower server utilization factor and higher 

maximum stable throughput as illustrated in Fig. 4.a. 

According to Fig. 4.a, the maximum stable throughput for 

LRU is 𝑚𝑎𝑥 = 4.02  and for LFU is 𝑚𝑎𝑥 = 5.64. As 

illustrated in Fig. 3, in case of the Zipf distribution and at 𝐶 =

40, the hit probability of LRU is 0.752, and for LFU it is 

0.825. According to Proposition 2, in case of LRU we have 

𝑚𝑎𝑥 <
1

(1−0.752)
= 4.032, and in case of LFU we have 𝑚𝑎𝑥 <

1

(1−0.825)
= 5.714, illustrating that this bound is adequately 

tight. In addition, for WPCS with 𝑤 = 0.1, we have 𝑚𝑎𝑥 =

1.5, which is significantly less than 𝑚𝑎𝑥 of LRU and LFU. By 

increasing the window size w, 𝑚𝑎𝑥 of WPCS decreases until 

the system becomes totally unstable. As illustrated in Fig. 4.a, 

for the proposed CDLS scheme, we have 𝑚𝑎𝑥 = 7.8, which is 

explicitly more than 𝑚𝑎𝑥 of the other schemes. As shown in 

Fig. 4.a, 𝑚𝑎𝑥 for RAND is less than other uncoded schemes, 

while the performance of q-LRU with 𝑞 = 0.01 is slightly 

better than LRU.  

 

 
Fig. 3. Comparison of the hit probabilities of different schemes under Zipf and 

Uniform popularity distributions. N=10, F=100. 
 

 

 
Fig. 4. a) Utilization factors and maximum stable throughputs of different 

schemes. b) The average response delay of different schemes as a function of 

Λ. Parameters: F=100, N=10, C=40,𝛼 = 1, 𝑑ℎ̅̅̅̅ = 0.1, 𝑑𝑢̅̅̅̅ = 10−7. 

 

 
Fig. 5. Effects of the number of caching nodes, N, and the cache size, C, on 
the utilization factors. F=100, and w=0.1 for WPCS. 
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Fig. 6.  Performance comparison of different schemes for the real trace-driven 

experiment and equations based on IRM traffic and 𝛼 = 0.6 Zipf distribution. 
Network parameters: F=78.9K, N=360, C=1000. 

 

Fig. 4.b shows the average response delay, �̅�, versus Λ for 

different caching schemes. We consider an LTE-A network 

with 1 Gbps downlink peak rate, 500 Mbps uplink peak rate 

[16], files of size B=1 Gb, and 10 Byte for the uplink requests 

packets size. Therefore, we have Γ=1 file per second. In 

addition, we consider a typical 10 Gbps rate for the data 

access to the cache memories [22]. Therefore, the typical 

delay parameters 𝑑ℎ̅̅̅̅ = 10−1(s) and 𝑑𝑢̅̅̅̅ = 10−7(s) are 

considered in this paper. Fig. 4.b shows the transition from 

stability to eventual instability at 𝑚𝑎𝑥. Due to the instability 

of PCCS, �̅� becomes unbounded for all of the values of Λ and 

is not shown in this figure. We should mention that 

the confidence intervals for the desired parameters ρ, Λmax 

and �̅�, with confidence level 0.95, are found as �̂� ∓ 0.04�̂�, 

Λ̂max ∓ 0.02Λ̂max and �̂̅� ∓ 0.05�̂̅�, respectively. (Note that the 

hat on top of each character shows the reported value of the 

related parameter in the numerical results.) 

In Fig. 5, we investigate the effect of the number of caching 

nodes, N, and cache sizes, C, on the stability behavior. From a 

design perspective, for a fixed network-wide cache size, i.e. 

NC, designing a system with smaller N and larger C improves 

the performance by increasing the hit probability. As a result, 

the load on the bottleneck link decreases, leading to an 

increase in the maximum stable throughput. Therefore, in 

terms of  𝑚𝑎𝑥, increasing C always improves the system 

performance. However, the downside effect of increasing C 

(for a fixed value of NC) is the resulting increase in the delay 

due to an increase in 𝑑ℎ̅̅̅̅ . We should note to the fact that as the 

number of the requests to a cache increases (due to the smaller 

N for a fixed total throughput), its response time will also 

increase, leading to larger values of 𝑑ℎ̅̅̅̅  (due to larger internal 

collisions between the requests or the internal cache queues). 

Taking into account all of such intra-cache effects, although 

important, is beyond the scope of the current paper.   

In another perspective, it is evident that for a fixed size N, 

increasing C also improves the system performance. However, 

for a fixed C, as N is increased in LRU, LFU and WPCS 

schemes, no change in the overall system performance is 

observed, as Λ is kept fixed by decreasing 𝜆𝑟𝑒𝑞. In CDLS, the 

possibility of exchanging information between the stations 

through proper coding increases as N is increased, leading to a 

slight increase in the maximum stable throughput as illustrated 

in Fig. 5. However, as can be observed, the effect of the cache 

size is dominant in all of the schemes. 

To further validate our analysis, we have also run a trace-

driven experiment, using a real trace of video clips requests 

from a campus network measurement on YouTube traffic in 

2008 [23], with a total 123.3K requests for 78.9K videos, 

arriving at 360 distinct stations. Fig. 6 reports the utilization 

factors and maximum stable throughputs achieved by different 

caching schemes for the trace-driven experiment. We observe 

that the results achieved under synthetic traffic still hold when 

the cache is fed by real traffic taken from an operational 

network. As shown in Fig.6, in case of the real trace, the 

performance of different schemes is sorted as 

WPCS<RAND<LRU<q-LRU<LFU<CDLS, which matches 

the simulation results shown in Fig. 4.a. Moreover, the 

proposed CDLS scheme has significantly better performance 

than the other schemes, approximately by a factor 2, which 

matches with the results illustrated in Fig. 4.a. It should be 

noted that according to the discussion under Fig. 5, since in 

the real trace-driven experiment, the ratio of 𝐶 𝐹⁄  is less than 

this ratio in the simulation scenarios, the values of Λmax 

decreases, but the comparative performance of different 

schemes are the same as in the simulation results. In addition, 

we have compared the real trace results with the derived 

equations for IRM traffic. We have estimated the value of 𝛼 =

0.6 as the exponent parameter of the Zipf distribution for the 

popularity of the real trace requests. As shown in Fig. 6, the 

difference between the results of the equations derived in this 

paper under the assumption of IRM traffic and the results of 

the real trace is adequately small. Therefore, it validates that 

the models and derivations proposed in this paper can 

reasonably represent the performance of different schemes in 

real applications. 

V. CONCLUSION 

In this paper, we have presented the queue models for single 

bottleneck caching networks and derived the shared link 

utilization factors and delays for different coded and uncoded 

schemes. It has been shown that the uncoded caching schemes, 

guarantee the network stability by limiting the network 

throughput. On the other hand, earlier coded caching schemes 

in the literature lead to unstable systems if stochastic models 

for their requests arrivals are taken into account. Moreover, we 

have proposed a novel scheme, CDLS, which improves the 

network performance by decreasing the load on the bottleneck 

link and increasing the maximum stable throughput. We have 

shown that the sole use of the coded caching schemes does not 

lead to the performance improvement and its overall effect on 

the caching networks should be taken into account. 

APPENDIX (PROOFS)  

Proof of Lemma 1: According to the definitions of 𝑝𝑟𝑒𝑞(𝑖) 

and 𝑁𝜏,𝑖, we have 

𝑝𝑟𝑒𝑞(𝑖) = 1 − 𝑃(𝑁𝜏,𝑖 = 0) = 1 − 𝐺𝑖(𝜏, 0)    (39) 

Áwhere 𝐺𝑖(𝜏, 𝜉) is the probability generating function of 𝑁𝜏,𝑖. 

In case of the renewal traffic model, the Laplace transform of 

𝐺𝑖(𝜏, 𝜉) is given by [15] 

𝐺𝑖
∗(𝑠, 𝜉) =

1−𝑓𝑅
∗(𝑖,𝑠)

𝑠(1−𝜉𝑓𝑅
∗(𝑖,𝑠))

           (40) 

where 𝑓𝑅
∗(𝑖, 𝑠) is the Laplace transform of the PDF of the inter-

request time distribution for file 𝑓𝑖 .□ 

 Proof of Proposition 1: In case of IRM traffic, the 

distribution of 𝑁𝜏,𝑖 is Poisson with mean 𝜆𝑟𝑒𝑞𝑝𝑖. So, we have 
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𝑝𝑟𝑒𝑞(𝑖) = 1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖            (41) 

Substituting (41) in Theorem 1, results in equation (6).□ 

Proof of Proposition 2:  We use the function ℎ(𝑥) = 𝑥 +
(1 − 𝑥)𝑢(𝑥 − 1), where 𝑢(𝑥) denotes the step function to 

model the server’s control unit. According to Jensen’s 

inequality for concave functions, we have 

𝜌 =∑𝜆𝑓𝑖

𝐹

𝑖=1

=∑𝔼[ℎ(𝑋𝑖)]

𝐹

𝑖=1

≤∑ℎ(𝔼[𝑋𝑖])

𝐹

𝑖=1

 

= ∑ ℎ (𝑁𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))
𝐹
𝑖=1       (42) 

 

where the RHS results from (4) which proves that the 

distribution of 𝑋𝑖 is 𝐵𝑖𝑛𝑜𝑚(𝑁, 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))). Given that 

ℎ(𝑥) ≤ 𝑥, an upper bound for 𝜌 is given by: 

𝜌 ≤ ∑ 𝑁𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))
𝐹
𝑖=1          (43) 

 

In case of IRM traffic, according to (41) and given that 1 −

𝑒−𝑥 ≤ 𝑥, the upper bound is obtained from 

𝜌 ≤∑𝑁(1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))

𝐹

𝑖=1

 

≤ ∑ 𝑁𝜆𝑟𝑒𝑞𝑝𝑖(1 − 𝑝ℎ𝑖𝑡(𝑖))
𝐹
𝑖=1 = 𝑁𝜆𝑟𝑒𝑞(1 − 𝑝ℎ𝑖𝑡)     (44) 

 

Therefore, for the system stability, i.e. 𝜌 < 1, it is sufficient 

that 𝛬 satisfies the condition  𝛬 <
1

1−𝑝ℎ𝑖𝑡
. It should be noted that 

we have 0 ≤ 𝑝ℎ𝑖𝑡 ≤ 1. Therefore, to ensure the stability of the 

server queue, it is sufficient that 𝛬 ≤ 1. In case of 𝛬 ≤ 1, the 

inequality ℎ(𝑥) ≤ 𝑥 converts to equality. Hence, we have 

ℎ (𝑁(1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))) = 𝑁(1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))  

(45) 

which shows that the upper bound is tight enough. □ 

Proof of Corollary 1: In case of the LRU policy and IRM 

traffic, 𝑝ℎ𝑖𝑡(𝑖) is given by 

𝑝ℎ𝑖𝑡(𝑖) = 1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐           (46) 

where Tc is obtained from 𝐶 = ∑ (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)𝐹
𝑖=1 [14]. 

Inserting (46) in Proposition 1 and 2 results in Corollary 1.□ 

Proof of Corollary 2: In case of the LRU policy and renewal 

traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by 

𝑝ℎ𝑖𝑡(𝑖) = 𝐹𝑅(𝑖, 𝑇𝑐)             (47) 

Inserting (47) in Theorem 1 results in Corollary 2.□ 

Proof of Corollary 3: In case of the q-LRU policy and IRM 

traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by 

𝑝ℎ𝑖𝑡(𝑖) =
𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐+𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
        (48) 

Inserting (48) in Proposition 1 and 2 results in Corollary 3.□ 

Proof of Corollary 4: In case of the q-LRU policy and 

renewal traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by 

𝑝ℎ𝑖𝑡(𝑖) =
𝑞𝐹𝑅(𝑖,𝑇𝑐)

1+(𝑞−1)𝐹𝑅(𝑖,𝑇𝑐)
          (49) 

Inserting (49) in Theorem 1 results in Corollary 4.□ 

Proof of Corollary 5: The hit probability for file 𝑓𝑖 in a 

cache with the LFU policy is given by 

𝑝ℎ𝑖𝑡(𝑖) = {
1 ∀𝑖 ∈ {1, … , 𝐶}
0 𝑂.𝑊.

} ,   ∀𝑖 ∈ {1, … , 𝐹}   (50) 

Inserting (50) in Proposition 1 and 2 results in Corollary 5.□ 

Proof of Corollary 6: In case of the LRU policy and IRM 

traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by 

 𝑝ℎ𝑖𝑡(𝑖) =
𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]

1+𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]
            (51) 

Inserting it in Proposition 1 and 2 results in Corollary 6.□ 

 Proof of Lemma 2: By definition, 𝑇𝑛
𝑘 is the time that the kth 

request of station n arrives at the server. In case of IRM 

traffic, 𝑇1
𝑘 , 𝑇2

𝑘 , … , 𝑇𝑁
𝑘 are i.i.d r.v.’s with the Erlang distribution 

with the CDF: 

𝐹𝑘(𝑥) = 1 − ∑
(𝜆𝑟𝑒𝑞𝑥)

𝑖𝑒−𝜆𝑟𝑒𝑞𝑥

𝑖!

𝑘−1
𝑖=0 , 𝑥 > 0      (52) 

Since ∆𝑇𝑁
𝑘 is the expectation of the order statistical range of 

these random variables, according to [20], it is obtained from 

∆𝑇𝑁
𝑘 = 𝔼[𝑇𝑁:𝑁

𝑘 − 𝑇1:𝑁
𝑘 ] = ∫ [1 − (𝐹𝑘(𝑥))

𝑁
−

∞

0

(1 − 𝐹𝑘(𝑥))
𝑁
]𝑑𝑥                  (53) 

Inserting (52) in (53) and using the multinomial theorem result 

in Lemma 2.□ 

Proof of Lemma 3: As discussed in the proof of Lemma 2, 

∆𝑇𝑁
𝑘 is the expectation of the order statistical range of N i.i.d 

r.v.’s with the Erlang (k, 𝜆𝑟𝑒𝑞) distribution. According to [24], 

the lower bound on the expectation of the range of N i.i.d 

r.v.’s is given by ∆𝑇𝑁
𝑘 ≥ 𝑑𝑁𝜎𝑘, where 𝜎𝑘 is the standard 

deviation of the distribution of these random variables. 

Therefore, given the standard deviation of the Erlang 

distribution, 𝜎𝑘 =
√𝑘

𝜆𝑟𝑒𝑞
 [25], the desired bound is derived. 

 Proof of Proposition 4: If the number of the requests 

arriving during window w is one, no coding is performed on 

the packets and the server has to send all of the uncached 

subfiles, whose number is 1 −
𝐶

𝐹
. Since during window w, the 

additional waiting time at the server for each request is on 

average equal to 
𝑤

2
, �̅�𝑤 in this case is 

𝑤

2
+ (1 −

𝐶

𝐹
 ). Otherwise, 

the average service time in WPCS is given by 

�̅�𝑤 =
𝑤

2
+ �̅�𝑤,𝑐 + �̅�𝑤,𝑢𝑛𝑐           (54) 

which consists of three components: first, the average 

additional waiting time for each request, i.e. 
𝑤

2
, second, the 

average service time for the coded packets, �̅�𝑤,𝑐, and third, the 

average service time for the uncoded packets, i.e. �̅�𝑤,𝑢𝑛𝑐.  

We denote the number of the transmittable coded small 

packets corresponding to the request that arrived at w by 𝑁𝑤,𝑐. 

Since the number of stations that are served by each coded 

small packet is 𝛾 + 1, if the number of the requests arriving 

during window w is less than 𝛾 + 1, there is only one coded 

packet to be sent. Otherwise, 𝑁𝑤,𝑐 is obtained from (
𝑁𝑤
𝛾 + 1

). 

Therefore, �̅�𝑤,𝑐 is given by 

�̅�𝑤,𝑐 = 

𝑁𝑤,𝑐
μ0

𝑁𝑤
= {

(
𝑁𝑤
𝛾+1

)

μ0𝑁𝑤
𝑖𝑓   𝛾 + 1 ≤  𝑁𝑤

1

μ0𝑁𝑤
1 < 𝑁𝑤 < 𝛾 + 1

}     (55) 

Subsequently, the number of coded packets containing the 

subfiles of a given file is equal to 𝑁𝑤,𝑓 = (
𝑁 − 1
𝛾

). The number 

of transmittable coded packets containing the subfiles of each 

file is also obtained from   

𝑁𝑤,𝑐,𝑓 = {
(
𝑁𝑤 − 1
𝛾

) 𝑖𝑓   𝛾 + 1 ≤  𝑁𝑤

1 1 < 𝑁𝑤 < 𝛾 + 1
}      (56) 

The average service time for the uncoded packets is then 
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�̅�𝑤,𝑢𝑛𝑐 =
𝑁𝑤,𝑓−𝑁𝑤,𝑐,𝑓

μ0

{
 
 

 
 (

𝑁−1
𝛾 )−(

𝑁𝑤−1
𝛾 )

μ0
𝑖𝑓   𝛾 + 1 ≤  𝑁𝑤

(
𝑁−1
𝛾
)−1

μ0
1 < 𝑁𝑤 < 𝛾 + 1

}
 
 

 
 

  (57) 

Finally, combining (54), (55) and (57) results in (31).□ 
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