
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Caching has been widely considered an efficient

way of reducing and balancing the growing traffic in

communications networks in recent years. The cache network of

interest consists of one content server connected via a shared link

to a number of caching nodes, also known as a single bottleneck

caching network. In this paper, for the first time, the stochastic

requests traffic model in such networks is considered and a

performance analysis is provided based on such a realistic

assumption. In addition, we introduce new comprehensive

performance metrics which simultaneously take into account, the

cache hit probability, load on the bottleneck link, and requests

arrival rates. The main contribution of this paper is to present a

system model based on queuing theory and provide an analysis of

the stability, maximum stable throughput, load on the bottleneck

link and average response delay for various coded and uncoded

caching schemes. Moreover, we propose a novel hybrid scheme

which improves the shared link utilization factor, maximum

stable throughput and delay of single bottleneck caching

networks compared to existing methods. Our results, validated

against simulations and real trace-driven experiments, provide

interesting insights into the performance of single bottleneck

caching networks.

Index Terms— coded caching, delay, maximum stable

throughput, single bottleneck caching networks, stability.

I. INTRODUCTION

EMAND for various types of contents and their growth in

terms of network traffic has led to significant challenges

for communication networks in terms of capacity. As an

approach to alleviate such issues, network caching has become

of interest in recent years. In this paper, a network with a

number of caching nodes connected through a single

bottleneck link to a server is considered. Such a scenario, for

example, is applicable to femto-caching networks formed by

small-cell base stations equipped with caches which receive

data from a serving macro base station via the cellular

downlink [1,2].

This work was supported in part by the Institute for Research in Fundamental
Sciences (IPM) and in part by the Iran National Science Foundation under

Grant 92017806.

Fatemeh Rezaei is with the Department of Electrical Engineering, Sharif
University of Technology, Tehran 11365-11155, Iran (e-mail:

f_rezaei@ee.sharif.edu).

Babak. H. Khalaj is with the Department of Electrical Engineering, Sharif
University of Technology, Tehran 11365-11155, Iran, School of Computer

Science, Institute for Research in Fundamental Sciences (IPM), Tehran

19538-33511, Iran (e-mail: khalaj@sharif.edu).

In our view, there are two categories of caching schemes.

Traditional caching schemes, such as Least Recently Used

(LRU) and Least Frequently Used (LFU) [3], are policies to

manage a single cache by specifying the rules for the insertion

of a new content or eviction of the old contents. Since, there is

no coding in these schemes, we call them uncoded caching

schemes. On the other hand, there are other works considering

caching in communication networks.

These approaches consist of two phases, namely, cache

placement phase and delivery phase. The motivation of these

approaches is to propose caching schemes that enable use of

coding in the delivery phase in order to reduce file

transmissions in the network. We call these approaches as

coded caching schemes. Coded caching schemes have been

proposed for single bottleneck caching networks in some

recent works [4-7]. One key shortcoming of the proposed

coded caching schemes in the literature is their unrealistic

assumption that the requests from all caching nodes are

simultaneously present at the server. In other words, stochastic

arrival time of the requests has not been taken into account in

these schemes. As we will further discuss in the rest of this

paper, taking into account such issues highly affects the

performance of caching schemes in terms of key network

characteristics such as the stability and delay.

In this paper, the stochastic arrival time and traffic model of

the users’ requests arriving at the caching nodes are

considered. In addition, a general framework for the rate-time

analysis of such networks is provided based on the

aforementioned realistic assumption.

On the other hand, in the traditional single-node caching

schemes, the cache hit probability is considered as the

performance metric. Other works considering coded schemes

in single bottleneck caching networks have considered the

peak/average number of file transmissions through the shared

link over all possible demands during the delivery phase as the

performance metric. However, such a metric is not a viable

metric when the requests arrival time is randomly distributed.

In general, such metrics do not encompass the overall

communication characteristics of the network, such as the load

on the bottleneck link, stability, and delay performance which

are of key importance in practical scenarios.

The problem addressed in this paper is how to provide a

general framework based on queuing theory for the

performance analysis of single bottleneck caching networks by

considering stochastic arrivals of the requests at different

nodes. In addition, we address the question that what is a

proper metric for comparing the performance of different

uncoded and coded caching schemes in such networks, and

especially their effects on the performance of the bottleneck

Stability, Rate and Delay Analysis of Single

Bottleneck caching networks

Fatemeh Rezaei, Member, IEEE, and Babak H. Khalaj, Member, IEEE

D

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

link. By means of the proposed queue models, we introduce

comprehensive performance metrics which simultaneously

take into account the cache hit probability, load on the

bottleneck link, and requests arrival rates. Moreover, this

paper provides key insight on the stability characteristic of the

bottleneck link and bounded or unbounded delay behavior of

such networks.

The main contributions of this paper which focuses on

single bottleneck caching networks can be summarized as

follows:

 Proposing a novel platform based on queuing theory and

introducing new performance metrics in order to compare

different uncoded and coded caching schemes.

 Providing the service rate, utilization factor, stability,

maximum stable throughput and delay analysis of

different caching schemes, considering a realistic

framework based on the Independent Reference Model

(IRM) and renewal traffic models for the request.

 Proposing a novel hybrid coded caching scheme which

outperforms other existing schemes in terms of the load

on the bottleneck link, maximum stable throughput and

delay.

The paper is organized as follows. In section II, related

works are reviewed. Section III describes the system model. In

section IV, the performance analysis of caching networks, in

addition to a novel coded caching scheme are proposed. In

section V, the performance evaluation through numerical

results is presented. Finally, section VI concludes the paper.

I. RELATED WORKS

The problem of caching in wireless networks has been

addressed from different perspectives in [1, 2, 8-10]. Some

studies have also investigated the caching problem in content

centric networks [11, 12]. In [13, 14], the caching performance

in terms of hit/miss probability has been investigated.

References [4-7] studied the coded caching schemes in

caching networks. They have considered a single bottleneck

network consisting of a file server connected through a shared

link to a number of users, each equipped with a cache. These

approaches consist of two phases. The cache placement phase

consists of filling up the caches with functions of the files in

the library. After this set-up phase, the network is used for an

arbitrary long time, referred to as the delivery phase. At each

request round, a subset of the nodes request subsets of the files

in the library and the network must coordinate transmissions

such that these requests are satisfied, i.e., at the end of each

round all destinations must decode the requested set of files.

The performance metric in these works is the number of time

slots necessary to satisfy all the demands, which can be

normalized by the number of time slots necessary to send a

single file across the shared link. Therefore, their performance

metric, which is called rate and denoted by R, is defined as the

number of normalized file transmissions [6]. The authors in

[4] have proposed a coded caching approach in order to

achieve a reduction in the maximum number of transmitted

files in the delivery phase compared to previously known

caching schemes. In [5-6], the authors have reduced the

average number of file transmissions over all possible

requests, with nonuniform popularities, by generalizing the

method presented in [4]. The authors in [7] have presented an

index coding approach to address this problem.

II. SYSTEM MODEL

In this paper, we consider a network model with one content

server, N stations equipped with caches (i.e. caching nodes),

and one-hop multicast transmission from the server to the

stations, as illustrated in Fig. 1. Our network model is similar

to [4-7] where requests are drawn from a specific same-size

file library Ғ = {𝑓𝑖 , 𝑖 = 1,… , 𝐹} of size B bits, and the caching

nodes are capable of storing C whole files (i.e. CB bits). The

cache content of station n is denoted by 𝑍𝑛. Moreover, unlike

to previous works, users’ requests sent to station n are

modeled by an aggregate average arrival rate 𝜆𝑟𝑒𝑞𝑛. Without

lack of generality and for deriving closed-form equations, we

assume that the model is homogenous. Therefore, the

subscript (n) is omitted when considering a generic station. In

order to derive closed form results, we consider the IRM

traffic model for the stream of the requests, which is based on

the following fundamental assumptions [13,14]: i) users

request items from a fixed library of F files; ii) the probability

𝑝𝑖 that a request is for file 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝐹, is constant (i.e., the

file popularity does not vary over time) and is also

independent of all past requests, generating an independent

identically distributed (i.i.d.) sequence of requests. We also

assume that requests sent to each station are independent from

requests sent to the other stations.

The IRM traffic model ignores all temporal correlations in

the stream of requests. In order to take into account the

temporal locality, we also consider the renewal traffic model:

The stream of requests arriving at a given station for each file

𝑓𝑖 is considered to be an independent renewal process [15]

where the CDF of the inter-request time t is denoted by

𝐹𝑅(𝑖, 𝑡). The average request rate 𝜆𝑟𝑒𝑞
𝑖 for file 𝑓𝑖 is then given

by 𝜆𝑟𝑒𝑞
𝑖 = 1 ∫ (1 − 𝐹𝑅(𝑖, 𝑡))𝑑𝑡

∞

0
⁄ . The overall average arrival rate

of the requests at a given cache is 𝜆𝑟𝑒𝑞 = ∑ 𝜆𝑟𝑒𝑞
𝑖𝐹

𝑖=1 . Note that,

by adopting a file popularity law analogous to the one

considered by the IRM, we also have 𝜆𝑟𝑒𝑞
𝑖 = 𝜆𝑟𝑒𝑞𝑝𝑖 [14].

The hit probability for file 𝑓𝑖 at a given station is denoted by

𝑝ℎ𝑖𝑡(𝑖), and the hit probability at a given station is given

by 𝑝ℎ𝑖𝑡 = ∑ 𝑝𝑖𝑝ℎ𝑖𝑡(𝑖)
𝐹
𝑖=1 . In our model of interest, if the

requested file is hit in the related cache, the file is delivered

from the caching node, otherwise the request is forwarded to

the content server via the uplink and the server delivers the

requested file by broadcasting the file to all of the stations.

The bottleneck link is a shared channel and its average

capacity is equal to Γ file per second. For instance, considering

the LTE-A network with 500 Mbps average downlink rate

[16], where users are interested in downloading videos of 30

MB size, the channel can approximately transmit 𝛤 = 2 files

per second on the average. We define a time slot (i.e. unit

time) as the average transmission time of one complete file (of

fixed size B bits) via the shared link. Hence, the average

capacity of the shared link will be one file per time slot. In

order to obtain a general framework for the performance

analysis, we propose the following queue models for both

uncoded and coded caching schemes.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Content

Server

1 2 N-1 N

du1 duN

dl1 dlN

Caching Nodes

Fig. 1. Caching network model. dun and dln denote the uplink and downlink

delays, respectively.

A. Queue Model for Uncoded Caching Schemes

In single-bottleneck networks, as the bottleneck downlink is

shared among all of the users, there is a competition for each

station to receive files requested by its users via that downlink

path. Therefore, we can model the function of the content

server in the uncoded schemes by a controlled FIFO queue

where a control unit ensures that when multiple users request

the same file concurrently (requests overlap within a time

slot), the server only stores the file in a single location of the

queue. The requests that are missed in the corresponding

caches and have not been serviced within the previous time

slot, enter the server transmission queue and are served based

on their arrival time. The average request arrival rate and

service rate at the server transmission queue are denoted by 𝜆

and μ, respectively. The service times in our queue model

have a general (arbitrary) distribution, with the mean and

coefficient of variation, �̅� =
1

𝜇
 and 𝑐𝑠 =

𝜎𝑠

𝑠̅
, respectively.

Therefore, in case of uncoded caching schemes, we considere

a general G/G/1 queue for the content server, where inter-

arrival and service times have arbitrary distributions. In case

of IRM traffic, the content server functionality is then

modeled by an M/G/1 queue.

B. Queue Model for Coded Caching Schemes

In contrast to the other works studying the coded caching

schemes such as [4-7], in this paper, a realistic framework is

assumed where requests of various users arrive at the stations

randomly according to a traffic model, providing a platform

for analysis of caching networks based on queuing theory.

Since the traditional queuing theory models cannot handle

packet combinations, network coding, and multicasting, we

exploit the concept of virtual queues [17] in this paper. We

consider N virtual queues with infinite buffer lengths at the

content server denoted by Qn, n=1…N, with the average

arrival rates, λn, for the requests of station n sent to the server.

Based on such a framework, at the server, the requested files

of different caching nodes enter their corresponding virtual

queues and are merged together to construct the coded packet

to be transmitted. The server functionality in the coded

caching schemes is then modeled by an overall queue Q(t). It

should be noted that in coded schemes, unlike the uncoded

case, the service rate cannot be pre-determined through a

given distribution and its characteristics may also be non-

stationary. Therefore, we consider general definitions and

theorems for queuing systems in order to model and analyze

the functionality of the coded schemes. Let Q(t) represent the

contents of a single discrete time queuing system defined over

integer steps 𝑡 ∈ {0, 1, 2, . . . }. Specifically, the initial state Q(0)

is assumed to be a non-negative real valued random variable.

Future states are driven by stochastic arrival and service

processes, 𝜆(𝑡) and 𝜇(𝑡), according to the following dynamic

equation [18]:

𝑄(𝑡 + 1) = 𝑚𝑎𝑥[𝑄(𝑡) − 𝜇(𝑡), 0] + 𝜆(𝑡) (1)

The value of 𝜆(𝑡) represents the number of new requests that

arrive during step t, and is assumed to be non-negative. The

value of 𝜇(𝑡) represents the number of requests that can be

served at step t. Without lack of generality and in order to

keep consistency with the provided analysis for the uncoded

schemes in this paper, the process 𝜆(𝑡) is assumed to be

stationary and the average request arrival rate at the server is

denoted by 𝜆.

In the following section, a performance analysis based on

the proposed queue models for various uncoded and coded

caching schemes is presented. Table 1 shows key notations

adopted for the system model and subsequent analysis

presented in this paper.

III. STABILITY, THROUGHPUT AND DELAY ANALYSIS OF

DIFFERENT CACHING SCHEMES

By means of the proposed queue models, we introduce the

server utilization factor, i.e. 𝜌 ≜
𝜆

𝜇
 as a comprehensive

performance metric for the load on the shared link of a single

bottleneck caching network. The key advantage of such a

metric is that it simultaneously takes into account the cache hit

probability, load on the bottleneck link, and requests arrival

rates. Moreover, 𝜌 provides key insight on the stability

characteristic and bounded or unbounded delay behavior of

such networks. We aim to minimize the load on the bottleneck

link, by minimizing 𝜌, for a specific average requests arrival

rate, 𝜆𝑟𝑒𝑞. It should be noted that such utilization factor

minimization is desirable as long as the stability conditions are

met; naturally unstable systems lead to infinite delays.

Definition 1: A packet queue is stable, if the arrival and

service processes of the queue are all stationary and the

average arrival rate is less than the average service rate [17].

By definition, in order to have a stable system, we require 𝜆 <

𝜇 , or in other words, 𝜌 < 1. Moreover, the schemes which

have lower 𝜌 are preferred as they reduce the load on the

bottleneck link and increase the maximum stable throughput

of the network.

TABLE 1. Key notations for the system model and analysis

Notation Semantics (unit)

N Number of caching stations

F Size of the file library users can request files from

𝑝𝑖 Probability of requesting file 𝑓𝑖 from the library

C Cache size: The number of whole files that can be cached

𝜆𝑟𝑒𝑞 Average requests arrival rate at a station [packets / time slot]

Λ Total throughput of the network [packets / time slot]

𝑝ℎ𝑖𝑡 Overall hit probability of the network caches

𝑝𝑚𝑖𝑠𝑠 Overall miss probability of the network caches

λ Average arrival rate at the server queue [packets / time slot]

μ Average service rate at the server queue [packets / time slot]

𝜌 Shared link utilization factor

∆𝑇𝑁
𝑘 Average waiting time in request round k in PCCS [time slot]

w Waiting window size in WPCS [time slot]

𝑑ℎ̅̅̅̅ Average delay of delivering a request via a station [time slot]

𝑑𝑢̅̅̅̅ Average uplink delay over all of the stations [time slot]

𝑑�̅� Average service delay over all of the stations [time slot]

�̅� Average delay of responding to a file request [time slot]

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Definition 2: Maximum stable throughput, i.e. 𝛬𝑚𝑎𝑥, is

defined as the maximum average requests arrival rate over all

of the stations for which the network remains stable, i.e. 𝜌 < 1.

It should be noted that the only requirement for properly

defining the performance metric 𝜌 is having a stationary queue

and no specific queue model has to be assumed. In addition,

whenever the stationary assumption for the arrival or service

process does not hold, we can still use the following general

definition in order to examine the stability of such a system, as

will be described further in the following sections:

Definition 3: A discrete time queue Q(t) is mean rate stable

if lim
𝑡→∞

𝔼[𝑄(𝑡)]

𝑡
= 0 [18].

A. Stability Analysis of Uncoded Caching Schemes

In this section, the utilization factor and maximum stable

throughput for the uncoded caching schemes are proposed.

First, the utilization factor for renewal traffic is derived in

Theorem 1. Then, the utilization factor and maximum stable

throughput in case of IRM traffic are proposed in Proposition

1 and Proposition 2, respectively. Finally, the utilization factor

and maximum stable throughput for different uncoded caching

policies LRU, q-LRU, LFU, and RAND in case of renewal

and IRM traffics, are proposed.

We define 𝑝𝑟𝑒𝑞(𝑖) as the probability that file 𝑓𝑖 is requested

within a time slot at a given station. We also define the

random variable 𝑁𝜏,𝑖, as the number of the requests for file 𝑓𝑖

coming to a given station within a time slot of length τ.

Lemma 1: For the renewal traffic model, 𝑝𝑟𝑒𝑞(𝑖) is obtained

from 𝑝𝑟𝑒𝑞(𝑖) = 1 − 𝐺𝑖(𝜏, 0), where 𝐺𝑖(𝜏, 𝜉) is the probability

generating function of 𝑁𝜏,𝑖.

Proof is provided in the Appendix.

Theorem 1: The utilization factor for uncoded caching

schemes in single bottleneck caching networks in case of the

renewal traffic model is derived as

𝜌 ≜
𝜆

𝜇
= ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁

)𝐹
𝑖=1 (2)

where 𝑝𝑟𝑒𝑞(𝑖) is given by Lemma 1.

Proof: We define the random variable 𝑋𝑖 as the number of

the requests for file 𝑓𝑖 arriving at the content server within a

time slot. Taking into account the effect of the server control

unit, the requests for file 𝑓𝑖 enter the server queue with the

average arrival rate 𝜆𝑓𝑖 given by

𝜆𝑓𝑖 = ∑ P(𝑋𝑖 = 𝑘)
∞
𝑘=1 = 1 − P(𝑋𝑖 = 0) (3)

Since in the uncoded system model, the missed requests of all

of the stations enter the content server, P(𝑋𝑖 = 𝑘) is obtained

from

P(𝑋𝑖 = 𝑘)

= ∑ 𝑃 {
File 𝑓𝑖 is requested from 𝑘 + 𝑙 stations

within a time slot and it is hit in the 𝑙 ones
}

𝑁−𝑘

𝑙=0

 = ∑ (
𝑁

𝑘 + 𝑙
) (𝑝𝑟𝑒𝑞(𝑖))

𝑘+𝑙

(1 − 𝑝𝑟𝑒𝑞(𝑖))
𝑁−(𝑘+𝑙)

.𝑁−𝑘
𝑙=0

 (
𝑘 + 𝑙
𝑙
) (𝑝ℎ𝑖𝑡(𝑖))

𝑙
(1 − 𝑝ℎ𝑖𝑡(𝑖))

𝑘
= (

𝑁
𝑘
) (𝑝𝑟𝑒𝑞(𝑖))

𝑘

(1 −

𝑝ℎ𝑖𝑡(𝑖))
𝑘
(1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁−𝑘

= 𝐵𝑖𝑛𝑜𝑚(𝑁, 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))) (4)

Consequently, according to (3), the average arrival rate at the

server queue, i.e. 𝜆, is obtained from

𝜆 = ∑ 𝜆𝑓𝑖
𝐹
𝑖=1 = ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁

)𝐹
𝑖=1 (5)

In addition, since the bottleneck link is assumed to be error-

free and no coding is performed at the server, the average

service rate of the content server, μ, is considered to be equal

to the link capacity, i.e. one file per time slot, and therefore,

𝜇 = 1. Consequently, (2) is derived.□

Proposition 1: The utilization factor for the uncoded

caching schemes in the single bottleneck caching networks, in

case of the IRM traffic model, is given by

𝜌 ≜
𝜆

𝜇
= ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))

𝑁

)𝐹
𝑖=1 (6)

Proof: The proof is provided in the Appendix.

Proposition 2: The uncoded caching schemes in case of the

IRM traffic model can stabilize the total throughput, 𝛬 ≜

𝑁𝜆𝑅𝑒𝑞 , if 𝛬 <
1

1−𝑝ℎ𝑖𝑡
.

Proof: The proof is provided in the Appendix.

 As mentioned in the proof of Proposition 2 and verified in

the numerical results, the aforementioned bound on the

maximum stable throughput is in fact adequately tight.

The importance of the theorem and propositions proposed

so far is that they are expressed in terms of the network

parameters and hit probability of the applied schemes.

Consequently, for each uncoded caching scheme, by inserting

the value of 𝑝ℎ𝑖𝑡 in Theorem 1 and Propositions 1 and 2, the

utilization factor and bound on the stable throughput can be

computed. In the rest of this section, we will propose such

performance metrics for LRU, q-LRU, LFU and RAND

uncoded caching schemes. In order to express the hit

probability of various uncoded caching schemes in terms of

the network parameters, we use Che’s approximation which

enables us to simply express the hit probability in terms of

cache eviction time Tc, i.e., the time needed before C distinct

files are requested by the users. In other words, a file is in the

cache at time t, if and only if a time smaller than TC has

elapsed since the last request for this file, where Tc can be

determined based on the cache size [14].

1) LRU

In case of the LRU caching strategy, the following results

are achieved.

Corollary 1: The utilization factor for LRU in case of IRM

traffic is given by:

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1 (7)

and LRU can stabilize the total throughput, if

𝛬 <
1

(1−∑ 𝑝𝑖.(1−𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)𝐹

𝑖=1)
 (8)

where Tc is obtained iteratively from 𝐶 = ∑ (1 −𝐹
𝑖=1

𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐).
Corollary 2: The utilization factor for LRU in case of

renewal traffic is given by:

𝜌 = ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝐹𝑅(𝑖, 𝑇𝑐)))
𝑁

)𝐹
𝑖=1 (9)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

2) q-LRU

q-LRU is one of the variations of LRU which differs from

LRU for the insertion policy: upon arrival of a request, a

content not yet stored in the cache is inserted into it with

probability q. The eviction policy is the same as LRU [14].

Corollary 3: The utilization factor for q-LRU in case of

IRM traffic is given by:

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖) (1 −𝐹
𝑖=1

𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐+𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
))

𝑁

) (10)

 and q-LRU can stabilize the total throughput, if

𝛬 <
1

(1−∑ 𝑝𝑖.(
𝑞(1−𝑒

−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐+𝑞(1−𝑒

−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
)𝐹

𝑖=1)

 (11)

Corollary 4: The utilization factor for q-LRU in case of

renewal traffic is given by:

𝜌 = ∑ (1 − (1 − 𝑝𝑟𝑒𝑞(𝑖) (1 −
𝑞𝐹𝑅(𝑖,𝑇𝑐)

1+(𝑞−1)𝐹𝑅(𝑖,𝑇𝑐)
))

𝑁

)𝐹
𝑖=1 (12)

3) LFU

Corollary 5: The utilization factor for LFU in case of IRM

traffic is obtained from

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖))
𝑁

)𝐹
𝑖=𝐶+1 (13)

and LFU can stabilize the total throughput, if

𝛬 <
1

(1−∑ 𝑝𝑖
𝐶
𝑖=1)

 (14)

4) RAND

RAND is the simplest cache replacement scheme

considered in a single cache. In this scheme, to make room

for a new file, a random file stored in the cache is evicted

[3].

Corollary 6: The utilization factor for RAND in case of

IRM traffic is given by

𝜌 = ∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 −
𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]

1+𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]
))
𝑁

)𝐹
𝑖=1

 (15)

and RAND can stabilize the total throughput if

 𝛬 <
1

(1−∑ 𝑝𝑖.
𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]

1+𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]
𝐹
𝑖=1)

 (16)

The proofs of these corollaries are provided in the

Appendix.

B. Stability Analysis of Coded Caching Schemes

As mentioned earlier, in the coded caching schemes, a

virtual queue is considered for the requests of each station sent

to the server. The role of the virtual queue modeling is to

enable the server to code the requested files of different

stations together and send the coded packets. The average rate

of the requests of station n sent to the server, which is the

average arrival rate of virtual queue 𝑄𝑛, is denoted by 𝜆𝑛. For

the performance analysis, the server functionality is modeled

by an overall queue with the aggregate average arrival rate λ

and service rate 𝜇(𝑡). By considering the cache placement and

delivery phase of the desired coded caching scheme, the

parameters of the proposed queue model, i.e. λ and 𝜇(𝑡) can be

determined. In [4], a coded caching scheme, which we denote

by Partition Coded Caching Scheme (PCCS) is proposed.

Such an approach is also the basis of the coded schemes for

the subsequent papers [5-7], as discussed in section II. In

PCCS, each file is partitioned into μ0 = (
N
𝛾
) subfiles of equal

size. It should be noted that PCCS is only proposed for cache

sizes 𝐶 such that 𝛾 = 𝐶
𝑁

𝐹
 is an integer less than 𝑁. In the

placement phase, each station caches an equal number of the

subfiles of all of the F files. The main idea of PCCS is to

design the cache placement in order to create coded

multicasting opportunities for any 𝛾 + 1 users even with

different requests. In such a scheme, the requests of all of the

stations are considered together. Subsequently, in the delivery

phase, the required subfiles of the requested files are coded

together by linear coding (through XOR) and the coded small

packets are created. The coded small packets are then

transmitted via the shared link to simultaneously serve 𝛾 +

1 stations. The corresponding requests at each station are

obtained by decoding the received coded packets given the

cache contents.

As an example, considering the case of a simple network

with three caching nodes, we can model the coded caching

scheme, as shown in Fig. 2, by defining three virtual queues,

i.e. Q1, Q2 and Q3 with average arrival rates λ1, λ2, λ3 for

requests of stations 1, 2, and 3, respectively. In this example,

we have considered a library of three files, namely A, B, C,

and three stations, i.e. N=F=3 and caches of size one.

Subsequently, 𝛾 is equal to one and so we have μ0 = 3.

Therefore according to PCCS, each file is split into μ0 equal

size subfiles, i.e., A = (A1, A2, A3), B =(B1, B2, B3), and C =

(C1, C2, C3). In the placement phase, the cache content of

station n is selected as Zn = (An, Bn, Cn). For the delivery

phase, assume for example that at a given request round,

station one requests file A, station two file B, and station three

file C. Consequently, the missing subfiles are A2 and A3 for

station one, B1 and B3 for station two, and C1 and C2 for

station three, which enter the virtual queue of the

corresponding stations, i.e. Q1, Q2 and Q3, respectively. Given

the cache contents, stations one and two aim to exchange A2

and B1, stations one and three aim to exchange A3 and C1, and

stations two and three aim to exchange B3 and C2. By sending

(A2⊕B1, A3⊕C1, B3⊕C2), the server enables all of these three

exchanges. Consequently, in the delivery phase of the given

request round, when the three corresponding virtual queues

have packets to transmit, the server transmits three coded

packets which are of size one third of a whole file. Therefore,

the so called rate in this example equals R=1 whole file.

In PCCS, for any requested file from a given station, its

cache does not contain the whole file and only contains a

subset of the required subfiles. Therefore, that station needs to

submit that request to the server. Consequently, 𝜆𝑛 will be

equal to the average requests arrival rate at station n, that is

𝜆𝑛 = 𝜆𝑟𝑒𝑞 , ∀𝑛 = 1,… , 𝑁. Therefore, the overall queue average

arrival rate, λ, is equal to the sum of the average arrival rates

of the virtual queues, that is

𝜆 = ∑ 𝜆𝑛
𝑁
𝑛=1 = 𝑁 𝜆𝑟𝑒𝑞 (17)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

It should be noted that due to the design of the studied

coded caching schemes, unlike the uncoded schemes, 𝜆𝑛 is not

reduced by the miss probability. In fact, the key role of

caching in PCCS is that the server sends only the missing

subfiles for each requested file, instead of sending the whole

file for the missed requests in the uncoded schemes.

Therefore, the total transmission time for sending the missing

subfiles in PCCS is less than the transmission time of sending

the whole file. We will consider this effect in our analysis of

PCCS service rate, later in this section. In order to calculate

the service rate of PCCS, we define the following parameters:

Definition 4: Let 𝑇𝑛
𝑘 , 𝑛 = 1,… . , 𝑁, denotes the random

variable of the request arrival time of station n at the server at

request round (step) 𝑘 ≥ 0. We define ∆𝑇𝑁
𝑘 as the expectation

of the order statistical range [20] of these random variables,

i.e. ∆𝑇𝑁
𝑘 = 𝔼[𝑇𝑁:𝑁

𝑘 − 𝑇1:𝑁
𝑘], where 𝑇1:𝑁

𝑘 = min (𝑇1
𝑘 , 𝑇2

𝑘, … , 𝑇𝑁
𝑘)

and 𝑇𝑁:𝑁
𝑘 = max (𝑇1

𝑘 , 𝑇2
𝑘, … , 𝑇𝑁

𝑘).
According to Definition 4, ∆𝑇𝑁

𝑘 represents the average

interval between the arrival of the first and last requests, or in

other words the average waiting time at request round k. We

also define 𝑇𝑡𝑟𝑎𝑛𝑠 as the number of time slots required for

sending the coded packets over the shared link, in order to

serve requests of all stations at any given request round. Since

the subfiles from 𝛾 + 1 virtual queues are combined by linear

coding before transmission, the number of transmitted coded

packets to serve all of the requests for any given request round

is (
𝑁

𝛾 + 1
). In addition, the transmission time of each small

coded packet is equal to 1 μ0⁄ . Consequently, we have 𝑇𝑡𝑟𝑎𝑛𝑠 =

(
𝑁

𝛾 + 1
) μ0⁄ . (It should be noted that in the notation of [4], the

so called rate parameter, i.e. 𝑅 = (
𝑁

𝛾 + 1
) μ

0
⁄ , is equal to 𝑇𝑡𝑟𝑎𝑛𝑠.

The goal in [4] is to minimize the value of R under the

assumption that all of the stations’ requests are available

simultaneously and the server can form any coded small

packet at its own discretion at any time. Naturally, such an

assumption is not valid in many practical scenarios. Therefore,

by taking into account the stochastic arrival nature of the

requests, the metric R on its own is no longer a proper figure

of merit for such a network.)

In addition, let 𝑇𝑡𝑟𝑎𝑛𝑠,1 denote the number of time slots

needed for transmitting the required small coded packets over

the shared link in order to serve the requests of any given

station. In PCCS, each cache contains
𝐶

𝐹
 of each file.

Therefore, the number of the required subfiles to be

transmitted to each station is (1 −
𝐶

𝐹
)μ0. Since the transmission

time of each subfile is
1

μ0
 , 𝑇𝑡𝑟𝑎𝑛𝑠,1 is given by 𝑇𝑡𝑟𝑎𝑛𝑠,1 = 1 −

𝐶

𝐹
 .

Proposition 3: The overall average service rate of the server

queue at request round k in PCCS is obtained from

�̅�(𝑘)): = 𝔼[𝜇(𝑘)] =
𝑁

max (
(
𝑁
𝛾+1

)

μ0
 , ∆𝑇𝑁

𝑘+(1−
𝐶

𝐹
))

 (18)

Proof: In PCCS, the server transmits the coded small

packets at each request round to serve the requests of all of the

N stations. Let 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 denote the number of time slots

required to serve the requests of all of the stations at request

round k, (including the waiting time at the request round and

the transmission time of the coded packets sent through the

shared link). Therefore, the average service time at request

step k is obtained from

�̅�(𝑘) =
1

�̅�(𝑘)
 =

𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘

𝑁
 (19)

In order to reduce latency, we assume that as soon as the

server has received enough requests so that it can form the

corresponding packet and transmit it, the server will do so. In

other words, the server does not wait till all the requests arrive

at each request round in order to start transmission. Based on

such a strategy, in order to determine 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 , we should

consider the following two situations:

a) Let’s consider the case that the waiting time at request

round k, i.e. ∆𝑇𝑁
𝑘 is large enough such that when the last

request at this round arrives, all of the coded packets

corresponding to the previous N-1 requests have been already

transmitted. After the arrival of the last request, only coded

packets that rely on that request need to be transmitted, where

by definition is performed in 𝑇𝑡𝑟𝑎𝑛𝑠,1 time slots. Therefore, in

this case, the total time for serving all of the requests at

request round k, i.e. 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 , takes ∆𝑇𝑁

𝑘 + 𝑇𝑡𝑟𝑎𝑛𝑠,1 time slots.

It is clear that this situation holds if the duration of the request

step, i.e. ∆𝑇𝑁
𝑘, is larger than the transmission time of all of the

coded packets to serve all of the node requests except for the

coded packets corresponding to the last request, i.e. 𝑇𝑡𝑟𝑎𝑛𝑠 −

𝑇𝑡𝑟𝑎𝑛𝑠,1. Therefore, if ∆𝑇𝑁
𝑘 > 𝑇𝑡𝑟𝑎𝑛𝑠 − 𝑇𝑡𝑟𝑎𝑛𝑠,1, then 𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠

𝑘 =

∆𝑇𝑁
𝑘 + 𝑇𝑡𝑟𝑎𝑛𝑠,1. Consequently, in case of ∆𝑇𝑁

𝑘 >
(
𝑁
𝛾+1

)

μ0
 − (1 −

𝐶

𝐹
),

the average service time at request step k is obtained from

�̅�(𝑘) =
∆𝑇𝑁

𝑘+(1−
𝐶

𝐹
)

𝑁
 (20)

b) On the other hand, consider the case that ∆𝑇𝑁
𝑘 ≤ 𝑇𝑡𝑟𝑎𝑛𝑠 −

𝑇𝑡𝑟𝑎𝑛𝑠,1. In such a case, the waiting time at request step k is

negligible compared to the total service time and we have

𝑇𝑤𝑎𝑖𝑡&𝑡𝑟𝑎𝑛𝑠
𝑘 = 𝑇𝑡𝑟𝑎𝑛𝑠. Therefore, in case of ∆𝑇𝑁

𝑘 ≤
(
𝑁
𝛾+1

)

μ0
 − (1 −

𝐶

𝐹
), the average service time at request step k is

�̅�(𝑘) =
𝑇𝑡𝑟𝑎𝑛𝑠

𝑁
=

(
𝑁
𝛾+1

)

𝑁μ0
 (21)

Finally, combining (20) and (21) results in (18). □

The following two lemmas specify the characteristics of the

parameter ∆𝑇𝑁
𝑘.

Lemma 2: ∆𝑇𝑁
𝑘 in PCCS with IRM traffic is given by:

∆𝑇𝑁
𝑘 = {

∑ (−1)𝑗+1 (
𝑁
𝑗
)𝜑𝑗(𝑘)

𝑁−1
𝑗=1 𝑜𝑑𝑑 𝑁

∑ (−1)𝑗+1 (
𝑁
𝑗
)𝜑𝑗(𝑘)

𝑁−1
𝑗=1 − 2𝜑𝑁(𝑘) 𝑒𝑣𝑒𝑛 𝑁

} (22)

where

𝜑𝑗(𝑘) =
1

 𝜆𝑅𝑒𝑞
∑ (

𝑗
𝑡0, 𝑡1, … , 𝑡𝑘−1

)
(∑ 𝑠𝑡𝑠
𝑘−1
𝑠=0)!

𝑗∑ 𝑠𝑡𝑠
𝑘−1
𝑠=0 +1

∏
1

(𝑠!)𝑡𝑠
𝑘−1
𝑠=0𝑡0+𝑡1+⋯+𝑡𝑘−1=𝑗

(23)

Proof: The proof is provided in the Appendix.

Lemma 3: The lower bound on ∆𝑇𝑁
𝑘 in PCCS with IRM

traffic is given by ∆𝑇𝑁
𝑘 ≥

𝑑𝑁√𝑘

𝜆𝑟𝑒𝑞
, where 𝑑𝑁 = min (2 (1 −

(
1

2
)
𝑁−1

) ,
(1−𝑝𝑁−𝑞𝑁)

√𝑝𝑞
), 𝑝 =

𝑎2

1+𝑎2
 for any a that 𝑇𝑛

𝑘 ≤ 𝑎, and 𝑞 =

1 − 𝑝.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

A2

A3

B1

B3

A3 B3

λ

λ1 λ2

μA2 B1

Content Server

Caching Nodes

Q1 Q2
C1

C2

λ3

Q3

C3A2 B2 C2A1 B1 C1

A3 C1

C2 B3

B2

B3

C1

C3

A1

A2

C A B

Request round 1:
Request round 2:

A
B

Request round 3:

B
C

C
A

C3

C2 A1

A3

B1

B2

Fig. 2. An example of the virtual queue model for the coded caching schemes.

Proof: The proof is provided in the Appendix.

According to Proposition 3, the service rate in PCCS

depends on request round k, and hence, PCCS does not yield

stationary service rates. This is due to the fact that the service

rate in PCCS depends on the waiting time at each request

round. The waiting time also varies at each request round

according to Lemma 2 and Lemma 3. Consequently, in order

to analyze the stability of PCCS, we need to consider the

general definitions and theorems of queuing systems that go

beyond the stationary queues, as discussed in section III. B.

Lemma 4: (Necessary condition for mean rate stability [18])

Suppose 𝑄(𝑡) evolves according to (1), with general processes

𝜆(𝑡) and 𝜇(𝑡) such that 𝜆(𝑡) ≥ 0 for all t and 𝔼[𝑄(0)] < ∞. If

𝑄(𝑡) is mean rate stable, then

lim sup
𝑡→∞

1

𝑡
∑ 𝔼[𝜆(𝑘) − 𝜇(𝑘)]𝑡−1
𝑘=0 ≤ 0 (24)

Proof: The proof is provided in [18].

Theorem 2: The server queue is not mean rate stable in

PCCS.

Proof: According to Proposition 3, we can write

∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 = ∑

𝑁

max(
(
𝑁
𝛾+1

)

μ0
 , ∆𝑇𝑁

𝑘+(1−
𝐶

𝐹
))

𝑡−1
𝑘=0 (25)

Moreover, according to Lemma 2 and 3, ∆𝑇𝑁
𝑘 increases by

increasing k. Therefore, there exists a 𝐾 > 0 such that for 𝑘 >

𝐾, the inequality ∆𝑇𝑁
𝑘 + (1 −

𝐶

𝐹
) ≥

(
𝑁
𝛾+1

)

μ0
 holds. Consequently,

we have

∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 = 𝐾

𝑁μ0

(
𝑁
𝛾+1

)
+∑

𝑁

 ∆𝑇𝑁
𝑘+(1−

𝐶

𝐹
)

𝑡−1
𝑘=𝐾+1 (26)

Furthermore, according to Lemma 3, we can write

∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 ≤ 𝐾

𝑁μ0

(
𝑁
𝛾+1

)
+ ∑

𝑁𝜆𝑟𝑒𝑞

𝑑𝑁√𝑘

𝑡−1
𝑘=𝐾+1 (27)

Due to the stationary assumption on 𝜆(𝑘) and (17), we have

lim sup
𝑡→∞

1

𝑡
∑𝔼[𝜆(𝑘) − 𝜇(𝑘)]

𝑡−1

𝑘=0

= lim sup
𝑡→∞

1

𝑡
∑(𝑁 𝜆𝑟𝑒𝑞 − 𝔼[𝜇(𝑘)]

𝑡−1

𝑘=0

)

= 𝑁 𝜆𝑟𝑒𝑞 − lim sup
𝑡→∞

1

𝑡
∑ 𝔼[𝜇(𝑘)]𝑡−1
𝑘=0 (28)

Substituting (27) in (28) results in

lim sup
𝑡→∞

1

𝑡
∑𝔼[𝜆(𝑘) − 𝜇(𝑘)]

𝑡−1

𝑘=0

≥

𝑁 𝜆𝑟𝑒𝑞 − lim sup
𝑡→∞

1

𝑡
(𝐾

𝑁μ0

(
𝑁

𝛾 + 1
)
+ ∑

𝑁𝜆𝑟𝑒𝑞

𝑑𝑁√𝑘

𝑡−1

𝑘=𝐾+1

)

= 𝑁 𝜆𝑟𝑒𝑞 −
𝑁𝜆𝑟𝑒𝑞

𝑑𝑁
lim sup
𝑡→∞

1

𝑡
∑

1

√𝑘

𝑡−1
𝑘=𝐾+1 (29)

In addition, using the Right Riemann Sum for underestimating

the area under the function
1

√𝑥
, we have ∑

1

√𝑘
𝑡−1
𝑘=𝐾+1 <

∫
1

√𝑥

𝑡−1

𝐾
𝑑𝑥. Therefore, (29) can be written as

lim sup
𝑡→∞

1

𝑡
∑𝔼[𝜆(𝑘) − 𝜇(𝑘)]

𝑡−1

𝑘=0

>

𝑁 𝜆𝑟𝑒𝑞 −
𝑁𝜆𝑟𝑒𝑞

𝑑𝑁
lim sup
𝑡→∞

1

𝑡
∫

1

√𝑥

𝑡−1

𝐾

𝑑𝑥 =

𝑁 𝜆𝑟𝑒𝑞 −
𝑁𝜆𝑟𝑒𝑞

𝑑𝑁
lim sup
𝑡→∞

1

𝑡
(2√𝑡 − 1 − √𝐾) = 𝑁 𝜆𝑟𝑒𝑞 > 0

(30)

Therefore, according to Lemma 4, 𝑄(𝑡) in PCCS is not mean

rate stable for any nonzero requests arrival rate, 𝜆𝑟𝑒𝑞 > 0.□

C. WPCS (Window Partition Coded caching Scheme)

As shown in Theorem 2, PCCS cannot maintain the stability

of the system. This fact is mainly due to the long waiting times

for the requests arrivals from all of the stations to properly

encode the packets. In order to overcome this problem, a

natural extension is to encode as many packets as possible

during a given window size and do not delay transmissions

further in time. For such an approach, we consider a modified

version of PCCS, denoted by Window Partition Coded

caching Scheme (WPCS). In WPCS, the cache placement

phase is the same as in PCCS, however, the delivery phase is

modified. In WPCS, we consider a slotted transmission of

window size w for the server transmissions. At the end of w, if

only one request has arrived at the server, the requested file is

sent without coding. Otherwise, the server codes as many

subfiles as possible and sends the remaining subfiles without

coding. If the requests of all of the stations have reached the

server during a given window, the server sends the coded

subfiles according to PCCS. WPCS is described in Table 2.

For example, in the case illustrated in Fig. 2 with three

stations, consider the situation where only requests of the

nodes 1 and 3 have arrived during a given window. In WPCS,

packets that contain the subfiles of the nodes 1 and 3 are sent

after proper coding and the other subfiles are sent without

coding. Therefore, the packets 𝐴3⨁𝐶1, 𝐴2 and 𝐶2 are

transmitted. In the following proposition, the average service

time of WPCS is derived.

Proposition 4: The average service time of WPCS is

�̅�𝑤 =

{

𝑤

2
+ (1 −

𝐶

𝐹
) 𝑖𝑓 𝑁𝑤 = 1

𝑤

2
+

1

μ0
(
1

𝑁𝑤
+ (

𝑁 − 1
𝛾

) − 1) 𝑖𝑓 1 < 𝑁𝑤 < 𝛾 + 1

𝑤

2
+

1

μ0
(
(
𝑁𝑤
𝛾+1

)

𝑁𝑤
+ (

𝑁 − 1
𝛾

) − (
𝑁𝑤 − 1
𝛾

)) 𝑂.𝑊.
}

 (31)

where 𝑁𝑤 is the number of stations whose requests arrive

during a window size w.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

TABLE 2.WindowPartitionCodedcaching Scheme (WPCS)

Algorithm 1 Window Partition Coded caching Algorithm

1: N :The set of all stations
2: R :The stream of all requests sent to the server

3: Zn :The cache contents of station n

4: 𝐐𝒏 :Virtual queue of station n at the server

5:ℎ𝑒𝑎𝑑(𝐐𝒏) :The packets at the head of 𝐐𝒏

6:ℎ𝑒𝑎𝑑𝑐𝑜𝑑𝑒𝑑(𝐐𝒏) :The packets at the head of 𝐐𝒏 which will be sent coded

7:ℎ𝑒𝑎𝑑𝑢𝑛𝑐𝑜𝑑𝑒𝑑(𝐐𝒏):The packets at the head of 𝐐𝒏 which will be sent uncoded
8: t(.) :Arrival time function

9: Npres(W) : Set of virtual queue indexes whose request arrives within the

 server transmission window W
10: Step 1: Cache Placement Phase

11: for all n ∈ N do

12: Zn ← Fill the cache based on PCCS cache placement

13: 𝐐𝒏 ←Send missed partitions of the requested files at cache n to the server
14: end for

15: Step 2: Delivery Phase

16:W=[0,w]
17:While R has unserved requests

18: for all n ∈ N do

19: if t(ℎ𝑒𝑎𝑑(𝐐𝒏))∈ W then add n to Npres(W)

20: end for

21: Send ⨁(ℎ𝑒𝑎𝑑𝑐𝑜𝑑𝑒𝑑(𝐐𝒏)) for 𝑛 ∈ Npres(W) (Send XOR of possible
 packets at W)

22: Send ℎ𝑒𝑎𝑑𝑢𝑛𝑐𝑜𝑑𝑒𝑑(𝐐𝒏) for 𝑛 ∈ Npres(W) (Send remaining
 packets without coding)

23: update ℎ𝑒𝑎𝑑(𝐐𝒏), ℎ𝑒𝑎𝑑𝑐𝑜𝑑𝑒𝑑(𝐐𝒏), ℎ𝑒𝑎𝑑𝑢𝑛𝑐𝑜𝑑𝑒𝑑(𝐐𝒏) for 𝑛 ∈ Npres(W)
24: update W by shifting the window w time slots to the right
25: end while

Proof: The proof is provided in the Appendix.

Corollary 7: The shared link utilization factor of WPCS in

single bottleneck caching networks is given by 𝜌 = 𝑁 𝜆𝑟𝑒𝑞�̅�𝑤.

Proof: Since the cache placement is the same as PCCS, the

average requests arrival rate at the server queue is given by

(17), and 𝜌 is derived from (17) and (31).□

As we will present at the end of this section, unlike PCCS,

WPCS can maintain the stability of the system for a given

range of 𝜆𝑟𝑒𝑞 and 𝑤. Naturally, as w becomes very small,

WPCS behaves more closely to the uncoded schemes, so the

stability is achieved at the cost of a lower caching gain.

D. Proposing Coded-Delivery LRU caching Scheme (CDLS)

In this section, we propose a caching scheme, namely

Coded-Delivery LRU caching Scheme (CDLS), which

benefits from applying coding in the delivery phase, while

maintaining the stability of the caching network. Moreover, it

improves the performance compared to the caching schemes

presented earlier, by decreasing the shared link utilization

factor and increasing the maximum stable throughput. As

illustrated in Table 3, CDLS performs LRU caching

replacement at each cache station and uses coding in the

delivery of the packets from the server. In the delivery phase,

the server takes into account the contents of the virtual queues

before each packet transmission. Through this process, at the

earliest time that the server detects that the requested files of

two stations are mutually present in each other’s cache, it

forms the XOR of these two requested files and transmits it at

the first available transmission round. Consequently, both

stations can obtain their desired files by decoding the received

coded packet given their own cache content. It is evident that

due to the nature of LRU, the cache of each station contains

the last C files requested by that station and therefore, content

of the caches are already known to the server by keeping a list

of such files. We should mention that the proposed scheme

can be easily extended to coding of three or more files.

However, for simplicity, we concentrate on the coding of two

files in this paper. CDLS is described in Table 3.

Proposition 5: The shared link utilization factor for the

proposed CDLS scheme in the single bottleneck caching

networks in case of IRM traffic is given by:

𝜌 = 𝛼∑ (1 − (1 − (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1 (32)

and CDLS can stabilize the total throughput, if

𝛬 <
1

𝛼(1−∑ 𝑝𝑖.(1−𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)𝐹

𝑖=1)
 (33)

where
1

2
≤ 𝛼 ≤ 1.

 Proof: Due to the potential possibility of the coded delivery

of two requested files in CDLS, we have 1 ≤ 𝜇 ≤ 2.

Consequently, the desired results are simply derived from

Corollary 1, by changing the value of 𝜇. □

It can be easily verified that while CDLS maintains the

system stability, it also results in a lower shared link

utilization factor compared to the uncoded schemes.

E. Delay Analysis

In this section, we address the delay analysis of single

bottleneck caching networks. The system model is as in Fig. 1:

If the requested file is hit at caching node n, it is delivered

from the cache with a cache response delay, dhn, otherwise,

the request is forwarded to the content server via the uplink

with a communication delay, dun, and the server delivers the

requested file via the downlink with a response delay, dln.

Definition 5: The average response delay, �̅�, is defined as

the average delay experienced by a given users in the single

bottleneck caching network, for obtaining the requested files,

either delivered directly from the corresponding station or sent

from the content server.

By definition, the average response delay is obtained from

�̅� = 𝑝ℎ𝑖𝑡 𝑑ℎ̅̅̅̅ + (1 − 𝑝ℎ𝑖𝑡)(𝑑𝑢̅̅̅̅ + 𝑑�̅�) (34)

TABLE 3. Coded-Delivery LRU caching Scheme (CDLS)

Algorithm 2 Coded-Delivery LRU caching Scheme (CDLS)

1: N :The set of all caching nodes

2: R : The stream of all requests sent to the server
3: Rn : The stream of requests at station n

4: Zn : The cache contents of station n

5: 𝐐𝒏 : Virtual queue of station n at the server

6: ℎ𝑒𝑎𝑑(𝐐𝒏):The packet at the head of 𝐐𝒏

7: t(.) :Arrival time function
8: at the stations side:

9: for all n ∈ N and i ∈ Rn do

10: Zn ← Fill cache n based on LRU

11: 𝐐𝒏 ←send missed requested files at cache n to the server

12:end for
13: at the server side:

14: while R has unserved requests

15: if (there is at least two nonempty virtual queues, 𝐐𝒎,and 𝐐𝒏)

16: and (ℎ𝑒𝑎𝑑(𝐐𝒎) ∈ Zn and ℎ𝑒𝑎𝑑(𝐐𝒏) ∈ Zm) then

17: send ℎ𝑒𝑎𝑑(𝐐𝒏)⨁ ℎ𝑒𝑎𝑑(𝐐𝒎)
18: update ℎ𝑒𝑎𝑑(𝐐𝒏)
19: update ℎ𝑒𝑎𝑑(𝐐𝒎)
20: else

21: 𝑛 = argmin
𝒙

 𝑡(ℎ𝑒𝑎𝑑(𝐐𝒙))

22: send ℎ𝑒𝑎𝑑(𝐐𝒏)
23: update ℎ𝑒𝑎𝑑(𝐐𝒏)
24: end if

25: end while

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

where the average service delay via the downlink path, 𝑑�̅�, is

given by the sum of the average service time, �̅�, and the

average time spent in the server queue, 𝑇𝑞: 𝑑�̅� = �̅� + 𝑇𝑞.

Equation (34) describes the relation between the average

response delay and the hit probability. The definition of the hit

probability in the traditional cache schemes is the probability

of existence of the requested files in the caches. In contrast,

partition caching schemes, such as PCCS and WPCS, only

cache fractions of the files rather than the whole files.

Therefore, in order to have a comparison among different

schemes, we consider the hit probability in the partition

schemes as the ratio of the number of subfiles of the requested

files that are stored in the cache, to the total number of subfiles

of the requested files. In PCCS and WPCS, each cache

contains an equal number of the subfiles of all of the F files.

Therefore, due to the symmetry in the cache placement, the hit

probability will be 𝑝ℎ𝑖𝑡 =
𝐶

𝐹
. Hence, according to (34), the

average response delay of PCCS and WPCS is given by:

�̅� =
𝐶

𝐹
 𝑑ℎ̅̅̅̅ + (1 −

𝐶

𝐹
)(𝑑𝑢̅̅̅̅ + �̅� + 𝑇𝑞) (35)

Since, as shown earlier, the server queue becomes unstable in

PCCS, the average time spent in the queue, 𝑇𝑞, and

consequently, the average response delay will be unbounded.

In the following, we focus on obtaining the average response

delay for the uncoded schemes. In case of IRM traffic, as

discussed in section III, we consider an M/G/1 queue for the

shared downlink. According to Pollaczek-Khinchin (P-K)

relation [19], the average downlink delay is given by 𝑑�̅� =

�̅�(1 +
𝜌(1+𝑐𝑠

2)

2(1−𝜌)
). Therefore, the average response delay is

obtained from

�̅� = 𝑝ℎ𝑖𝑡 𝑑ℎ̅̅̅̅ + (1 − 𝑝ℎ𝑖𝑡) (𝑑𝑢̅̅̅̅ +
1

𝜇
(1 +

𝜌(1+𝑐𝑠
2)

2(1−𝜌)
)) (36)

 Proposition 6: In the single bottleneck caching networks

with IRM traffic and the uncoded caching schemes, the

average response delay is obtained from

�̅� = 𝑝ℎ𝑖𝑡 𝑑ℎ̅̅̅̅ + (1 − 𝑝ℎ𝑖𝑡)

(𝑑𝑢̅̅̅̅ + 1 +
(1+𝑐𝑠

2) ∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1−𝑝ℎ𝑖𝑡(𝑖)))
𝑁
)𝐹

𝑖=1

2(1−∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1−𝑝ℎ𝑖𝑡(𝑖)))
𝑁
)𝐹

𝑖=1)

)

 (37)

 Proof: Combining (6) and (36) results in (37). □

Proposition 6 shows that the average response delay of the

uncoded schemes in unsaturated cases (𝜌 < 1) is bounded and

is given as a function of the hit probability and network

parameters. Moreover, using the formulas of 𝜌 and 𝑝ℎ𝑖𝑡 for

different uncoded caching schemes, provided in section IV.A,

the average response delay in terms of the network parameters

is obtained. For instance, �̅� for LRU is provided by the

following corollary.

 Corollary 8: The average response delay for the LRU

caching scheme in the single bottleneck caching networks

with IRM traffic is given by

�̅� = 𝑑ℎ̅̅̅̅ ∑𝑝𝑖 . (1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝐹

𝑖=1

+(1 −∑𝑝𝑖 . (1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝐹

𝑖=1

).

(𝑑𝑢̅̅̅̅ + 1 +
(1+𝑐𝑠

2) ∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1

2(1−∑ (1−(1−(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
𝑁
)𝐹

𝑖=1)
) (38)

Proof: Equation (38) is simply derived by applying 𝑝ℎ𝑖𝑡(𝑖) =

1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐, derived from the Che’s approximation for LRU

[14], in (37).□

F. Discussion on the Performance Evaluation

Earlier in this section, we have shown that although PCCS

decreases the number of file transmissions on the shared link

with the assumption of co-existence of the requests of all of

the stations, the price to pay is the instability of the system in

case of the stochastic requests arrivals, as shown in Theorem

2. From the derivations presented so far, it is evident that

uncoded schemes, WPCS, and CDLS, through proper system

configuration result in stable systems up to the maximum

stable throughput. The key question based on such a general

view is then about finding a proper metric for comparison of

different caching schemes. At first sight, increasing the

average service rate seems to be a good measure of

comparison. For example, it is evident from Proposition 4 that,

if 𝑤 <
2𝐶

𝐹
, the average service rate of WPCS is greater than the

service rate of the uncoded schemes, for sufficiently small

values of 𝜆𝑟𝑒𝑞. However, it should be noted that such an

increase in the average service rate comes at the cost of an

increase in the average request arrival rate at the server, 𝜆. In

fact, for a specific value of 𝜆𝑟𝑒𝑞, in the uncoded schemes only

those requests that were missed in the caches enter the server

queue. Thus, for the uncoded schemes, according to (5), 𝜆, is

reduced by 𝑝𝑚𝑖𝑠𝑠 = 1 − 𝑝ℎ𝑖𝑡. However, according to (17), due

to the cache partitioning in WPCS, all the requests arriving at

the stations are sent to the server, and consequently 𝜆 will not

change. Therefore, for a performance comparison, a sole

comparison of the average service rates is not justified and it is

the comparison of the utilization factors that provides a

comprehensive measure of performance, due to the fact that

the effect of 𝜆 and µ is jointly taken into account in 𝜌. As

discussed earlier, the scheme that provides a smaller 𝜌, for a

given 𝜆𝑟𝑒𝑞, improves the performance of the caching networks

by decreasing the load on the bottleneck link and increasing

the maximum stable throughput.

It should be noted that the utilization factor also gives a

measure on the shared link rate, 𝑅′, which is defined as the

average number of the whole files transmitted over the shared

link at each time slot. Under the assumptions of [4] in which

all of the stations’ requests are available simultaneously and

there is no constraint on the shared link capacity, 𝑅′ will in

fact be equal to 𝔼[𝑅]. However, as mentioned earlier, if these

assumptions are not met, 𝑅 and subsequently 𝔼[𝑅] will not

constitute well-justified performance metrics, while 𝑅′can still

be considered a proper indicator of the shared link rate. In case

of saturated and oversaturated systems, 𝜌 ≥ 1, 𝑅′ will be equal

to the full link capacity, i.e. 𝑅′ = 1. On the other hand, in case

of unsaturated systems where 𝜌 < 1, we have 𝑅′ = 𝜌.

Therefore, in PCCS which leads to an unstable system, we

have 𝑅′ = 1, while in the stable regions of the other schemes,

we have 𝑅′ = 𝜌 < 1. Therefore, in such networks, a scheme

with a lower 𝜌 is preferred as it will lead to a lower shared link

average rate.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

TABLE 4. The simulation and trace-driven experiment parameters

Notation Value

N 10, 40, 360

F 100,78.9K

C Variable, 10,40,1000

Number of Requests 10K, 123.3K

As will be shown numerically in section V, the proposed

CDLS leads to a significant performance improvement as it

takes the advantages of both uncoded and coded caching

schemes. While the strength of the traditional uncoded

schemes is in their high hit probabilities and reducing the

average arrival rate at the server, the advantage of the coded

schemes, such as PCCS and WPCS, is in their potential to

increase the average service rate. Therefore, as shown earlier,

CDLS achieves the smaller utilization factor compared to

other schemes, in addition to the higher maximum stable

throughput, by maintaining the smaller value of 𝜆, resulting

from the LRU cache replacement, and increasing 𝜇 by

exploiting the proper coding at the server.

IV. PERFORMANCE EVALUATION THROUGH SIMULATIONS AND

TRACE-DRIVEN EXPERIMENTS AND INSIGHTS

In this section, the analytic expressions derived in this paper

are validated through simulations and real trace-driven

experiments. Figs. 3-5, provide simulations as well as the

analytic results, demonstrating the accuracy of our analytic

results. We model the network and arriving requests in

MATLAB environment where simulations are performed for

various number of caching nodes N, and cache sizes C. First,

we present the results achieved with the assumption of IRM

traffic and the Zipf file popularity distribution [21] with the

exponent parameter 𝛼 = 1 for a total 10K of requests. Next,

we further validate our results by a real trace-driven

experiment on traffic of YouTube video requests, as illustrated

in Fig. 6. The values of the simulation and trace-driven

experiment parameters are given in Table 4.

Fig. 3 plots the hit probability as a function of the cache size

for different caching schemes. As illustrated in Fig. 3,

although the hit probabilities are close to each other under the

Uniform popularity distribution, the hit probability of the

partition coded schemes, i.e. PCCS and WPCS, is less than the

hit probability of LRU, CDLS and LFU for all of the cache

sizes in case of the Zipf distribution.

Fig. 4.a shows the server utilization factor as a function of

the overall average requests rate, = 𝑁𝜆𝑟𝑒𝑞, for all of the

schemes except for PCCS. Naturally, as shown in Theorem 2,

PCCS leads to an unstable system for which 𝜌 is not well-

defined. On the other hand, we can ensure stable WPCS

systems by choosing small enough window sizes. We should

note that in terms of the utilization factor, WPCS does not

perform better than the uncoded schemes. However, in the

proposed CDLS scheme, the arrival rate at the server queue is

the same as in LRU. Therefore, the higher service rate of

CDLS results in the lower server utilization factor and higher

maximum stable throughput as illustrated in Fig. 4.a.

According to Fig. 4.a, the maximum stable throughput for

LRU is 𝑚𝑎𝑥 = 4.02 and for LFU is 𝑚𝑎𝑥 = 5.64. As

illustrated in Fig. 3, in case of the Zipf distribution and at 𝐶 =

40, the hit probability of LRU is 0.752, and for LFU it is

0.825. According to Proposition 2, in case of LRU we have

𝑚𝑎𝑥 <
1

(1−0.752)
= 4.032, and in case of LFU we have 𝑚𝑎𝑥 <

1

(1−0.825)
= 5.714, illustrating that this bound is adequately

tight. In addition, for WPCS with 𝑤 = 0.1, we have 𝑚𝑎𝑥 =

1.5, which is significantly less than 𝑚𝑎𝑥 of LRU and LFU. By

increasing the window size w, 𝑚𝑎𝑥 of WPCS decreases until

the system becomes totally unstable. As illustrated in Fig. 4.a,

for the proposed CDLS scheme, we have 𝑚𝑎𝑥 = 7.8, which is

explicitly more than 𝑚𝑎𝑥 of the other schemes. As shown in

Fig. 4.a, 𝑚𝑎𝑥 for RAND is less than other uncoded schemes,

while the performance of q-LRU with 𝑞 = 0.01 is slightly

better than LRU.

Fig. 3. Comparison of the hit probabilities of different schemes under Zipf and

Uniform popularity distributions. N=10, F=100.

Fig. 4. a) Utilization factors and maximum stable throughputs of different

schemes. b) The average response delay of different schemes as a function of

Λ. Parameters: F=100, N=10, C=40,𝛼 = 1, 𝑑ℎ̅̅̅̅ = 0.1, 𝑑𝑢̅̅̅̅ = 10−7.

Fig. 5. Effects of the number of caching nodes, N, and the cache size, C, on
the utilization factors. F=100, and w=0.1 for WPCS.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Fig. 6. Performance comparison of different schemes for the real trace-driven

experiment and equations based on IRM traffic and 𝛼 = 0.6 Zipf distribution.
Network parameters: F=78.9K, N=360, C=1000.

Fig. 4.b shows the average response delay, �̅�, versus Λ for

different caching schemes. We consider an LTE-A network

with 1 Gbps downlink peak rate, 500 Mbps uplink peak rate

[16], files of size B=1 Gb, and 10 Byte for the uplink requests

packets size. Therefore, we have Γ=1 file per second. In

addition, we consider a typical 10 Gbps rate for the data

access to the cache memories [22]. Therefore, the typical

delay parameters 𝑑ℎ̅̅̅̅ = 10−1(s) and 𝑑𝑢̅̅̅̅ = 10−7(s) are

considered in this paper. Fig. 4.b shows the transition from

stability to eventual instability at 𝑚𝑎𝑥. Due to the instability

of PCCS, �̅� becomes unbounded for all of the values of Λ and

is not shown in this figure. We should mention that

the confidence intervals for the desired parameters ρ, Λmax

and �̅�, with confidence level 0.95, are found as �̂� ∓ 0.04�̂�,

Λ̂max ∓ 0.02Λ̂max and �̂̅� ∓ 0.05�̂̅�, respectively. (Note that the

hat on top of each character shows the reported value of the

related parameter in the numerical results.)

In Fig. 5, we investigate the effect of the number of caching

nodes, N, and cache sizes, C, on the stability behavior. From a

design perspective, for a fixed network-wide cache size, i.e.

NC, designing a system with smaller N and larger C improves

the performance by increasing the hit probability. As a result,

the load on the bottleneck link decreases, leading to an

increase in the maximum stable throughput. Therefore, in

terms of 𝑚𝑎𝑥, increasing C always improves the system

performance. However, the downside effect of increasing C

(for a fixed value of NC) is the resulting increase in the delay

due to an increase in 𝑑ℎ̅̅̅̅ . We should note to the fact that as the

number of the requests to a cache increases (due to the smaller

N for a fixed total throughput), its response time will also

increase, leading to larger values of 𝑑ℎ̅̅̅̅ (due to larger internal

collisions between the requests or the internal cache queues).

Taking into account all of such intra-cache effects, although

important, is beyond the scope of the current paper.

In another perspective, it is evident that for a fixed size N,

increasing C also improves the system performance. However,

for a fixed C, as N is increased in LRU, LFU and WPCS

schemes, no change in the overall system performance is

observed, as Λ is kept fixed by decreasing 𝜆𝑟𝑒𝑞. In CDLS, the

possibility of exchanging information between the stations

through proper coding increases as N is increased, leading to a

slight increase in the maximum stable throughput as illustrated

in Fig. 5. However, as can be observed, the effect of the cache

size is dominant in all of the schemes.

To further validate our analysis, we have also run a trace-

driven experiment, using a real trace of video clips requests

from a campus network measurement on YouTube traffic in

2008 [23], with a total 123.3K requests for 78.9K videos,

arriving at 360 distinct stations. Fig. 6 reports the utilization

factors and maximum stable throughputs achieved by different

caching schemes for the trace-driven experiment. We observe

that the results achieved under synthetic traffic still hold when

the cache is fed by real traffic taken from an operational

network. As shown in Fig.6, in case of the real trace, the

performance of different schemes is sorted as

WPCS<RAND<LRU<q-LRU<LFU<CDLS, which matches

the simulation results shown in Fig. 4.a. Moreover, the

proposed CDLS scheme has significantly better performance

than the other schemes, approximately by a factor 2, which

matches with the results illustrated in Fig. 4.a. It should be

noted that according to the discussion under Fig. 5, since in

the real trace-driven experiment, the ratio of 𝐶 𝐹⁄ is less than

this ratio in the simulation scenarios, the values of Λmax

decreases, but the comparative performance of different

schemes are the same as in the simulation results. In addition,

we have compared the real trace results with the derived

equations for IRM traffic. We have estimated the value of 𝛼 =

0.6 as the exponent parameter of the Zipf distribution for the

popularity of the real trace requests. As shown in Fig. 6, the

difference between the results of the equations derived in this

paper under the assumption of IRM traffic and the results of

the real trace is adequately small. Therefore, it validates that

the models and derivations proposed in this paper can

reasonably represent the performance of different schemes in

real applications.

V. CONCLUSION

In this paper, we have presented the queue models for single

bottleneck caching networks and derived the shared link

utilization factors and delays for different coded and uncoded

schemes. It has been shown that the uncoded caching schemes,

guarantee the network stability by limiting the network

throughput. On the other hand, earlier coded caching schemes

in the literature lead to unstable systems if stochastic models

for their requests arrivals are taken into account. Moreover, we

have proposed a novel scheme, CDLS, which improves the

network performance by decreasing the load on the bottleneck

link and increasing the maximum stable throughput. We have

shown that the sole use of the coded caching schemes does not

lead to the performance improvement and its overall effect on

the caching networks should be taken into account.

APPENDIX (PROOFS)

Proof of Lemma 1: According to the definitions of 𝑝𝑟𝑒𝑞(𝑖)

and 𝑁𝜏,𝑖, we have

𝑝𝑟𝑒𝑞(𝑖) = 1 − 𝑃(𝑁𝜏,𝑖 = 0) = 1 − 𝐺𝑖(𝜏, 0) (39)

Áwhere 𝐺𝑖(𝜏, 𝜉) is the probability generating function of 𝑁𝜏,𝑖.

In case of the renewal traffic model, the Laplace transform of

𝐺𝑖(𝜏, 𝜉) is given by [15]

𝐺𝑖
∗(𝑠, 𝜉) =

1−𝑓𝑅
∗(𝑖,𝑠)

𝑠(1−𝜉𝑓𝑅
∗(𝑖,𝑠))

 (40)

where 𝑓𝑅
∗(𝑖, 𝑠) is the Laplace transform of the PDF of the inter-

request time distribution for file 𝑓𝑖 .□

 Proof of Proposition 1: In case of IRM traffic, the

distribution of 𝑁𝜏,𝑖 is Poisson with mean 𝜆𝑟𝑒𝑞𝑝𝑖. So, we have

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

𝑝𝑟𝑒𝑞(𝑖) = 1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖 (41)

Substituting (41) in Theorem 1, results in equation (6).□

Proof of Proposition 2: We use the function ℎ(𝑥) = 𝑥 +
(1 − 𝑥)𝑢(𝑥 − 1), where 𝑢(𝑥) denotes the step function to

model the server’s control unit. According to Jensen’s

inequality for concave functions, we have

𝜌 =∑𝜆𝑓𝑖

𝐹

𝑖=1

=∑𝔼[ℎ(𝑋𝑖)]

𝐹

𝑖=1

≤∑ℎ(𝔼[𝑋𝑖])

𝐹

𝑖=1

= ∑ ℎ (𝑁𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖)))
𝐹
𝑖=1 (42)

where the RHS results from (4) which proves that the

distribution of 𝑋𝑖 is 𝐵𝑖𝑛𝑜𝑚(𝑁, 𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))). Given that

ℎ(𝑥) ≤ 𝑥, an upper bound for 𝜌 is given by:

𝜌 ≤ ∑ 𝑁𝑝𝑟𝑒𝑞(𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))
𝐹
𝑖=1 (43)

In case of IRM traffic, according to (41) and given that 1 −

𝑒−𝑥 ≤ 𝑥, the upper bound is obtained from

𝜌 ≤∑𝑁(1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))

𝐹

𝑖=1

≤ ∑ 𝑁𝜆𝑟𝑒𝑞𝑝𝑖(1 − 𝑝ℎ𝑖𝑡(𝑖))
𝐹
𝑖=1 = 𝑁𝜆𝑟𝑒𝑞(1 − 𝑝ℎ𝑖𝑡) (44)

Therefore, for the system stability, i.e. 𝜌 < 1, it is sufficient

that 𝛬 satisfies the condition 𝛬 <
1

1−𝑝ℎ𝑖𝑡
. It should be noted that

we have 0 ≤ 𝑝ℎ𝑖𝑡 ≤ 1. Therefore, to ensure the stability of the

server queue, it is sufficient that 𝛬 ≤ 1. In case of 𝛬 ≤ 1, the

inequality ℎ(𝑥) ≤ 𝑥 converts to equality. Hence, we have

ℎ (𝑁(1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))) = 𝑁(1 − 𝑒
−𝜆𝑟𝑒𝑞𝑝𝑖)(1 − 𝑝ℎ𝑖𝑡(𝑖))

(45)

which shows that the upper bound is tight enough. □

Proof of Corollary 1: In case of the LRU policy and IRM

traffic, 𝑝ℎ𝑖𝑡(𝑖) is given by

𝑝ℎ𝑖𝑡(𝑖) = 1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐 (46)

where Tc is obtained from 𝐶 = ∑ (1 − 𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)𝐹
𝑖=1 [14].

Inserting (46) in Proposition 1 and 2 results in Corollary 1.□

Proof of Corollary 2: In case of the LRU policy and renewal

traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by

𝑝ℎ𝑖𝑡(𝑖) = 𝐹𝑅(𝑖, 𝑇𝑐) (47)

Inserting (47) in Theorem 1 results in Corollary 2.□

Proof of Corollary 3: In case of the q-LRU policy and IRM

traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by

𝑝ℎ𝑖𝑡(𝑖) =
𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)

𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐+𝑞(1−𝑒−𝜆𝑟𝑒𝑞𝑝𝑖𝑇𝑐)
 (48)

Inserting (48) in Proposition 1 and 2 results in Corollary 3.□

Proof of Corollary 4: In case of the q-LRU policy and

renewal traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by

𝑝ℎ𝑖𝑡(𝑖) =
𝑞𝐹𝑅(𝑖,𝑇𝑐)

1+(𝑞−1)𝐹𝑅(𝑖,𝑇𝑐)
 (49)

Inserting (49) in Theorem 1 results in Corollary 4.□

Proof of Corollary 5: The hit probability for file 𝑓𝑖 in a

cache with the LFU policy is given by

𝑝ℎ𝑖𝑡(𝑖) = {
1 ∀𝑖 ∈ {1, … , 𝐶}
0 𝑂.𝑊.

} , ∀𝑖 ∈ {1, … , 𝐹} (50)

Inserting (50) in Proposition 1 and 2 results in Corollary 5.□

Proof of Corollary 6: In case of the LRU policy and IRM

traffic, according to [14], 𝑝ℎ𝑖𝑡(𝑖) is given by

 𝑝ℎ𝑖𝑡(𝑖) =
𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]

1+𝜆𝑟𝑒𝑞𝑝𝑖𝔼[𝑇𝑐]
 (51)

Inserting it in Proposition 1 and 2 results in Corollary 6.□

 Proof of Lemma 2: By definition, 𝑇𝑛
𝑘 is the time that the kth

request of station n arrives at the server. In case of IRM

traffic, 𝑇1
𝑘 , 𝑇2

𝑘 , … , 𝑇𝑁
𝑘 are i.i.d r.v.’s with the Erlang distribution

with the CDF:

𝐹𝑘(𝑥) = 1 − ∑
(𝜆𝑟𝑒𝑞𝑥)

𝑖𝑒−𝜆𝑟𝑒𝑞𝑥

𝑖!

𝑘−1
𝑖=0 , 𝑥 > 0 (52)

Since ∆𝑇𝑁
𝑘 is the expectation of the order statistical range of

these random variables, according to [20], it is obtained from

∆𝑇𝑁
𝑘 = 𝔼[𝑇𝑁:𝑁

𝑘 − 𝑇1:𝑁
𝑘] = ∫ [1 − (𝐹𝑘(𝑥))

𝑁
−

∞

0

(1 − 𝐹𝑘(𝑥))
𝑁
]𝑑𝑥 (53)

Inserting (52) in (53) and using the multinomial theorem result

in Lemma 2.□

Proof of Lemma 3: As discussed in the proof of Lemma 2,

∆𝑇𝑁
𝑘 is the expectation of the order statistical range of N i.i.d

r.v.’s with the Erlang (k, 𝜆𝑟𝑒𝑞) distribution. According to [24],

the lower bound on the expectation of the range of N i.i.d

r.v.’s is given by ∆𝑇𝑁
𝑘 ≥ 𝑑𝑁𝜎𝑘, where 𝜎𝑘 is the standard

deviation of the distribution of these random variables.

Therefore, given the standard deviation of the Erlang

distribution, 𝜎𝑘 =
√𝑘

𝜆𝑟𝑒𝑞
 [25], the desired bound is derived.

 Proof of Proposition 4: If the number of the requests

arriving during window w is one, no coding is performed on

the packets and the server has to send all of the uncached

subfiles, whose number is 1 −
𝐶

𝐹
. Since during window w, the

additional waiting time at the server for each request is on

average equal to
𝑤

2
, �̅�𝑤 in this case is

𝑤

2
+ (1 −

𝐶

𝐹
). Otherwise,

the average service time in WPCS is given by

�̅�𝑤 =
𝑤

2
+ �̅�𝑤,𝑐 + �̅�𝑤,𝑢𝑛𝑐 (54)

which consists of three components: first, the average

additional waiting time for each request, i.e.
𝑤

2
, second, the

average service time for the coded packets, �̅�𝑤,𝑐, and third, the

average service time for the uncoded packets, i.e. �̅�𝑤,𝑢𝑛𝑐.

We denote the number of the transmittable coded small

packets corresponding to the request that arrived at w by 𝑁𝑤,𝑐.

Since the number of stations that are served by each coded

small packet is 𝛾 + 1, if the number of the requests arriving

during window w is less than 𝛾 + 1, there is only one coded

packet to be sent. Otherwise, 𝑁𝑤,𝑐 is obtained from (
𝑁𝑤
𝛾 + 1

).

Therefore, �̅�𝑤,𝑐 is given by

�̅�𝑤,𝑐 =

𝑁𝑤,𝑐
μ0

𝑁𝑤
= {

(
𝑁𝑤
𝛾+1

)

μ0𝑁𝑤
𝑖𝑓 𝛾 + 1 ≤ 𝑁𝑤

1

μ0𝑁𝑤
1 < 𝑁𝑤 < 𝛾 + 1

} (55)

Subsequently, the number of coded packets containing the

subfiles of a given file is equal to 𝑁𝑤,𝑓 = (
𝑁 − 1
𝛾

). The number

of transmittable coded packets containing the subfiles of each

file is also obtained from

𝑁𝑤,𝑐,𝑓 = {
(
𝑁𝑤 − 1
𝛾

) 𝑖𝑓 𝛾 + 1 ≤ 𝑁𝑤

1 1 < 𝑁𝑤 < 𝛾 + 1
} (56)

The average service time for the uncoded packets is then

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

�̅�𝑤,𝑢𝑛𝑐 =
𝑁𝑤,𝑓−𝑁𝑤,𝑐,𝑓

μ0

{

 (

𝑁−1
𝛾)−(

𝑁𝑤−1
𝛾)

μ0
𝑖𝑓 𝛾 + 1 ≤ 𝑁𝑤

(
𝑁−1
𝛾
)−1

μ0
1 < 𝑁𝑤 < 𝛾 + 1

}

 (57)

Finally, combining (54), (55) and (57) results in (31).□

REFERENCES

[1] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire,

“Femtocaching and device-to-device collaboration: A new architecture
for wireless video distribution,”IEEE Communications Magazine, vol.

51, no. 4, pp. 142–149, 2013.

[2] X. Wang, M. Chen, T. Taleb, A. Ksentini, V. C. M. Leung, “Cache in
the air: Exploiting content caching and delivery techniques for 5G

systems,” IEEE Communications Magazine, 2014.
[3] S. Podlipnig and L. Boszormenyi, “A survey of Web cache replacement

strategies”, ACM Computing Surveys, vol. 35, no. 4, 2003.

[4] M. A. Maddah-Ali and U. Niesen,“Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, 2014.

[5] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform

demands,” in IEEE INFOCOM WKSHPS, 2014.
[6] M. Ji, A. M. Tulinoy, J. Llorcay, and G. Caire,“Order optimal coded

caching-aided multicast under Zipf demand distributions,”

arXiv:1402.4576v1 [cs.IT] , 2014.
[7] M. Ji, A. M. Tulino, J. Llorcay, and G. Caire,“Order optimal coded

delivery and caching: Multiple groupcast index coding,”

arXiv:1402.4572v1 [cs.IT] , 2014.
[8] K. Poularakis, G. Iosifidis, L. Tassiulas, “Approximation Algorithms for

Mobile Data Caching in Small Cell Networks”, IEEE Transactions on

Communications, vol. 62, issue 10, 2014.
[9] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of distributed

caching in D2D wireless networks,” IEEE Information Theory

Workshop (ITW) , 2013.
[10] A. Liu and V. Lau, “Mixed-timescale precoding and cache control in

cached MIMO interference network,” IEEE Transactions on Signal

Processing, vol. 61, pp. 6320-6332, 2013.
[11] J. M. Wang, J. Zhang, and B. Bensaou, “Intra-AS cooperative caching

for content-centric networks,” in SIGCOMM WKSHPS on ICN, 2013.

[12] L. Wang, S. Bayhan, and J. Kangasharju, “Effects of cooperation policy

and network topology on performance of in-network caching,” IEEE

Communications Letters, vol. 18, pp. 680-683, 2014.

[13] E. Rosensweig, J. Kurose, and D. Towsley, “Approximate models for
general cache networks,” in IEEE INFOCOM, 2010.

[14] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the

performance analysis of caching systems,” in IEEE INFOCOM, 2014.
[15] D. R. Cox, Renewal Theory, Methuen & Co. LTD,1962.

[16] S. Parkvall, E. Dahlman, A. Furuskär, Y. Jading, M. Olsson, S.

Wänstedt, and K. Zangi, “LTE-Advanced – Evolving LTE towards
IMT-Advanced,” IEEE Vehicular Technology Conference, 2008.

[17] Y. E. Sagduyuand and A. Ephremides, “On broadcast stability of queue-

based dynamic network coding over erasure channels,” IEEE
Transaction on Information Theory, vol. 55, no. 12, pp. 5463-5478,

2009.

[18] M. J. Neely, “Stability and Capacity Regions for Discrete Time
Queueing Networks”, arXiv:1003.3396v1 [cs.NI] , 2010.

[19] L. Kleinrock, Queueing Systems: Vol. I, New York: Wiley Interscience,

1975.
[20] B.C Arnold, N, Balakrishnan, Relations,Bounds and Approximations for

Order statistic,Lecture Notes in Statistics, Springer,1989.

[21] L. Shi1, Z. Gu, L. Wei, and Y. Shi, “An Applicative Study of Zipf’s
Law on Web Cache,” Interntionsl Journal of Information Technology,

vol. 12, no.4, 2006.

[22] K. Sohn, T. Na, I. Song, Y. Shim, et al., “A 1.2 V 30 nm 3.2 Gb/s/pin 4
Gb DDR4 SDRAM With Dual-Error Detection and PVT-Tolerant Data-

Fetch Scheme,” IEEE Journal of Solid-State Circuits, vol. 48, no. 1,

2013.
[23] M. Zink, K. Suh, Y.Gu and J.Kurose, “Characteristics of YouTube

network traffic at a campus network -Measurements, models, and

implications”, International Journal of Computer and
Telecommunications Networking, vol. 53 no. 4, 2009.

[24] H. O. Hartley and H. A. David, “Universal Bounds for Mean Range and

Extreme Observation”,The Annals of Mathematical Statistics, vol. 25,
no. 1, pp. 85-99, 1954.

[25] Oliver Ibe, Fundamentals of Applied Probability and Random

Processes, Elsevier Academic Press, 2005.

Fatemeh Rezaei received the B.Sc. and

M.Sc. degrees in electrical engineering from Sharif University

of Technology, Tehran, Iran in 2010 and 2012, respectively.

She is currently working toward the Ph.D. degree. Her current

research interests include communication systems and data

networks.

Babak H. Khalaj received his B.Sc. degree

from Sharif University of Technology,

Tehran, Iran, in 1989, and the M.Sc. and

Ph.D. degrees from Stanford University,

Stanford, CA, in 1993 and 1996, respectively, all in Electrical

Engineering. He joined KLA-Tencor in 1995 as a Senior

Algorithm Designer working on advanced processing

techniques for signal estimation. From 1996 to 1999, he was

with Advanced Fiber Communications and Ikanos

Communications. Since then, he has been a Senior Consultant

in the area of Data Communications, and a visiting professor

at CEIT, San Sebastian from 2006 till 2007. Dr. Khalaj has

also been the recipient of Alexander von Humboldt

Fellowship in the year 2007–2008. He has also been a senior

member of Advanced Communications Research Institute

(ACRI) at Sharif University. He was the Co-Editor of the

Special Compatibility Standard Draft for ANSI-T1E1 group

from 1998 till 1999, and he is the author of two U.S. patents

and many papers in signal processing and digital

communications.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TCOMM.2015.2498177

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

