
Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

h.khanmirza@kntu.ac.ir

Communication

Slide set 2
Distributed Systems

mailto:h.khanmirza@kntu.ac.ir

Communication

▸Is the heart of all distributed systems

▸End points are reside in physically different systems

▸Need to create messages in a predefined formats to collaborate
▸There is no shared memory!

▸Mostly rely on computer networks (socket API) to exchange
messages
▸These facilities are too primitive to build complex DS systems
▸We need middleware services to perform more complex

communications

Distributed Systems, KNTU 212/28/22

Layered Architecture

▸How endpoints can talk?
▸A set of protocols that determine the

meaning of the bits

▸Layered Architecture
▸An approach to break a complex system

into sub-systems
▸Each layer get service from underlying

layer and give service to the upper layer.
▸In network it is known as: Protocol

Stack
▸OSI Reference Model
▸Replaced with Internet Model

Distributed Systems, KNTU 3

▸communication ▸Foundations

application
presentation
session
transport
network
link

physical

application

transport

network

link

physical

12/28/22

Layered Architecture

Distributed Systems, KNTU 4

▸Communication ▸Foundations

12/28/22

Distributed Systems, KNTU 1-5

▸Communication ▸Foundations

source
application
transport
network
link

physical

HtHn M

segment Ht
datagram

destination
application
transport
network
link

physical
HtHnHl M
HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHn M

HtHnHl M

router

switch

message M

Ht M

Hn
frame

12/28/22

Layered Architecture

▸Why Layering
▸Separation of concerns
▸Ease of developing
▸Ease of maintenance

▸Debug
▸Update
▸Test

▸Disadvantages
▸Proper dividing of sub-systems

▸Cross layer design
▸Duplicate functions

▸Error Checking in all layers

Distributed Systems, KNTU 7

▸Communication ▸Foundation

12/28/22

Layered Architecture

▸Middleware is logically resides in Application layer
▸DNS
▸Distributed Locking
▸Distributed Commit
▸RPC (Remote Procedural Call)
▸Authentication

Distributed Systems, KNTU 8

▸Communication ▸Foundation

12/28/22

Layered Architecture

▸Layered architecture in higher layer
▸Communication stack is embedded in

OS
▸Middleware is like session &

presentation layer in OSI model

Distributed Systems, KNTU 9

▸Communication ▸Foundation

12/28/22

Types of Communication

Distributed Systems, KNTU 1012/28/22

Persistent vs. Transient

▸Persistent
▸The receiver need not be alive when the message is submitted.
▸A middleware takes the message from sender and does the job
▸Needs a middleware to store messages until delivery
▸Example: Mail System

▸Sender sends email, where Receiver may not running at that time

▸Transient
▸Sender and receiver must be alive; otherwise message will be discarded
▸Example: all transport level communications are transient

Distributed Systems, KNTU 11

▸Types of Communication

12/28/22

Synchronous vs. Asynchronous

▸Asynchronous
▸Sender continues to the next task after sending with no waiting
▸When reply is received, a callback routine is called
▸No assumptions about process execution speeds or message delivery

times are made (unbounded)

▸Synchronous
▸Sender blocks after sending until one of the following conditions:

▸A middleware takes the message
▸The message is sent and delivered to the intended recipient
▸The response is received from recipient

▸We assume execution speed and message-delivery time is bounded

Distributed Systems, KNTU 12

▸Types of Communication

12/28/22

Synchronous vs. Asynchronous

▸Partial-Synchronous
▸We estimate a bound for process execution speed and message

delivery
▸We use time-outs to conclude the other side has been crashed, but it

can be false

Distributed Systems, KNTU 13

▸Types of Communication

12/28/22

Synchronous vs. Asynchronous

▸Synchronous Model

▸Print(“Before”);
▸String reply = send_msg(msg)
▸Print(“Receiver said:” +
reply);

▸Print(“After”)

▸Asynchronous Model

▸Print(“Before”);
▸send_msgAsync(msg, reply_rcvd)
▸Print(“After”)

▸void reply_rcvd(String reply){
▸Print(“Receiver said:” + reply);

▸}

Distributed Systems, KNTU 14

▸Types of Communication

Call Back
function

Before
Receiver said: salam!
After

Before
After
Receiver said: salam!

Code blocks here

12/28/22

Synchronous vs. Asynchronous

▸Isochronous:
▸Communication has maximum and minimum end-to-end delays
▸jitter is bounded (streaming audio, video, sensor data)

▸Stream-Oriented Communication
▸A (continuous) data stream is a connection-oriented communication

facility that supports isochronous data transmission
▸Stream types

▸Simple: consists of a single flow of data (e.g., audio or video)
▸Complex: multiple data flows (e.g., stereo audio or combination audio/video)

Distributed Systems, KNTU 15

▸Types of Communication

12/28/22

Combinations

▸Persistent + Synchronous
▸Email
▸Message Queuing systems

▸Transient + Synchronous
▸RPC

Distributed Systems, KNTU 16

▸Types of Communication

12/28/22

Remote Procedural Call (RPC)

Distributed Systems, KNTU 1712/28/22

RPC

▸Hiding Complexity
▸IP hides complexities in routing
▸TCP hides complexities in reliable communication

▸RPC Scenario
▸Process A calls a function C from service on machine B
▸Process A is blocked until completion of the procedure and return of response
▸Function C is executed on machine B

▸RPC hides complexities of explicit message exchange
▸RPC transparency, make it looks like a local procedure call

Distributed Systems, KNTU 1812/28/22

Remote Call - Client

Distributed Systems, KNTU 19

When a local call is done Linker loads the library file Finds the function offset and executes it

1. A Library called client stub is linked
2. Client stub has the same interface as the intended function but has no

implementation
3. Client stub packs (marshals) variables into a message
4. Sends it to a RPC server on other machine

▸RPC

12/28/22

Remote Call - Server

Distributed Systems, KNTU 20

1. In Server, server stub receives the message
2. Server stub unpacks (unmarshall) the message,
3. Loads and links the library then calls the intended function
4. Packs the result in a message
5. Sends back the result to client stub
6. Client stub returns the result to the caller which is blocked up-to-now

▸RPC

12/28/22

Simple Sample in Python

Distributed Systems, KNTU 21

▸RPC

void main () {
….
client.append(“item”, prevList)
…

Client Stub Server Stub

Same Interface

12/28/22

Simple Sample in Python

Distributed Systems, KNTU 22

▸RPC

void main () {
….
client.append(“item”, prevList)
…

Client Stub Server Stub

Some Languages generate stub code automatically

12/28/22

RPC

▸RPC Problems
▸Parameter passing (pointers, objects)

▸Processes run on different address space
▸Failure

Distributed Systems, KNTU 2312/28/22

Parameter Passing

▸Un/Marshaling
▸Un/Packing parameters in a message

▸What happens if client and server machines has different
platforms
▸Big Endian / Little endian format battle
▸Use machine- and network-independent format (normally Big-Endian!)

Distributed Systems, KNTU 24

▸RPC ▸RPC Problems

12/28/22

Parameter Passing: Big Endian vs Little Endian

Distributed Systems, KNTU 25

▸RPC ▸RPC Problems

12/28/22

Parameter Passing

▸How about sending pointers and references?
▸A pointer is meaningful only within the address space of the process in

which it is being used.

▸Common local parameter passing models
▸Copy-By-Value func(int x) { x = 10;}
▸Copy-By-Reference func(int *x) { *x = 10}

▸In case of RPC we may use the following strategy
▸Copy-By-Value/Restore

▸What is difference with Copy-By-Refrence?

Distributed Systems, KNTU 26

▸RPC ▸RPC Problems

12/28/22

Parameter Passing

▸Solutions
▸Forbid pointers and references

▸Pointers and references must be used only for
▸Fixed-Size data structures
▸Dynamic-sized data structures if their size can be computed easily in run-time

▸Like String/dynamic arrays
▸Just do Copy-By-Value/Restore instead of Copy-By-Ref

▸It is good enough
▸What if the pointer points to a file, net socket, …?

Distributed Systems, KNTU 28

▸RPC ▸RPC Problems

12/28/22

Remote Method Invocation (RMI)

▸The first Object-Oriented RPC

▸Calls methods of an object from another Java Virtual Machine
(JVM)

▸Language Support
▸Un/Packing is simpler just make objects implement Serializable

Interface
▸Distributed Garbage Collection

▸Automatic collection of remote objects when no client using them

Distributed Systems, KNTU 29

▸RPC

12/28/22

RMI Sample

public interface RemoteServerInterface extends Remote{
double computeOnDoubles(List<Double> numbers) throws RemoteException;
int computeOnIntegers(List<Integer> numbers) throws RemoteException;

}

Distributed Systems, KNTU 30

▸RPC

12/28/22

RMI Sample (server impl.)

public class RemoteServerInterfaceImpl extends UnicastRemoteObject implements
RemoteServerInterface
{

protected RemoteServerInterfaceImpl() throws RemoteException {super(0);}
public double computeOnDoubles(List<Double> numbers) {

double sum = 0.0;
for (Double number : numbers) {sum += number;}
return sum;

}
public int computeOnIntegers(List<Integer> numbers) {

int sum = 0;
for (Integer number : numbers) {sum += number; }
return sum;

}}

Distributed Systems, KNTU 31

▸RPC

12/28/22

RMI Sample (starting server)

public static void main(String[] args) {
System.out.println("RMI server started");
try {

LocateRegistry.createRegistry(1099);
System.out.println("java RMI registry created.");

} catch (RemoteException e) {
System.out.println("java RMI registry already exists."); }

try {
RemoteServerInterfaceImpl obj = new RemoteServerInterfaceImpl();
// Bind this object instance to the name "RmiServer“
Naming.rebind("//localhost/RmiServer", obj);

System.out.println("PeerServer bound in registry");
} catch (RemoteException e) { e.printStackTrace(); }
catch (MalformedURLException e) { e.printStackTrace(); }}

Distributed Systems, KNTU 3212/28/22

RMI Sample (client impl.)

public class RemoteServerClient {
public static void main(String[] args) {

try {
RemoteServernIterface remoteServer =

(RemoteServerInterface) Naming.lookup("//localhost/RmiServer");

List<Double> list = new ArrayList<Double>(Arrays.asList(1.0, 2.3));

double result = remoteServer.computeOnDoubles(list);

System.out.println("result = " + result);

}
catch (Exception e) {e.printStackTrace();}

}

Distributed Systems, KNTU 33

▸RPC

12/28/22

RMI Sample

▸Then you compile it with rmic.exe (RMI compiler)
▸It generates RemoteServerInterfaceImpl_Stub class
▸In newer versions, there is no need to skeleton (server stub) class

Distributed Systems, KNTU 34

▸RPC

12/28/22

RMI Sample

Distributed Systems, KNTU 35

▸RPC

Generated Client Stub

12/28/22

RMI

▸RMI generates all the code in the next slides
▸You had to write yourself

Distributed Systems, KNTU 36

▸RPC

12/28/22

RMI

Distributed Systems, KNTU 37

▸RPC

12/28/22

RMI

Distributed Systems, KNTU 38

▸RPC

12/28/22

RMI

▸RMI mechanism works only in Java Virtual Machine

▸Platform-Independent Mechanisms
▸CORBA

▸Is language independent RPC system based on objects
▸It defines IIOP, a protocol to exchange binary data between end points

▸RMI also supports IIOP
▸In CORBA you should define procedures using an IDL
▸It was very heavy weight and had vendor lock-in problem

▸Web Services
▸CORBA is killed by emergence of XML and Web Services
▸Objects can be serialized to XML, text-based readable format
▸IDL in Web Services is WSDL (Web Service Definition Language)

Distributed Systems, KNTU 39

▸RPC

12/28/22

RPC Variations

▸Asynchronous RPC
▸Client send request and waits for the server to accept the request, but

does not wait for the result

▸Multicast RPC for fault-tolerant communication
▸Sending to several servers
▸Just keep first reply, ignore subsequent replies

Distributed Systems, KNTU 40

▸RPC

12/28/22

RPC Semantics in Failures

12/28/22 Distributed Systems, KNTU 41

RPC Semantics in failures

1- Client is unable to locate the server
▸Loss of transparency in case of reporting error!

Distributed Systems, KNTU 42

▸RPC

12/28/22

RPC Semantics in failures

2- Request message from the client to the server is lost.
▸Use timeout mechanism to re-send the request

▸After several re-sends and getting no response, we are back to the 1st

error

Distributed Systems, KNTU 43

▸RPC

12/28/22

RPC Semantics in failures

3- Server crashes after receiving a request
▸Just do the timeout trick

Distributed Systems, KNTU 44

▸RPC

12/28/22

Exactly-Once Execution

▸In some scenarios we want to execute a process exactly-once.
▸Why this is important?

▸Idempotent requests vs. non-idempotent
▸Solving an equation
▸Depositing from a bank account

▸It Is not clear for client when the failure has been occurred, both
of them appears as a timeout

Distributed Systems, KNTU 45

▸RPC ▸RPC Semantics in failures

12/28/22

Exactly-Once Execution

▸Suppose server crashes after receiving a request, could we
provide a guarantee that a request will execute exactly once?

▸To guarantee we do some extra actions in server
▸Server sends ACK after receiving request as a message delivery ack
▸Possible sever strategies

▸Send completion message before processing (M à P)
▸Send completion message after processing (P à M)

▸Possible time-out client strategies
▸Resend request
▸Give-up and report failure
▸Resend request when receive ack message
▸Resend request when not receive any ack message

Distributed Systems, KNTU 46

▸RPC ▸RPC Semantics in failures

12/28/22

Exactly-Once Execution

Distributed Systems, KNTU 47

▸RPC ▸RPC Semantics in failures

Server Strategies

Client
Strategies

12/28/22

Exactly-Once Execution

Distributed Systems, KNTU 48

▸RPC ▸RPC Semantics in failures

12/28/22

Exactly-Once Execution

Distributed Systems, KNTU 49

▸RPC ▸RPC Semantics in failures

No Guarantee for Exactly-Once

12/28/22

RPC Semantics in failures

4- Reply message from the server to the client is lost
▸Client just sees timeout!

▸Client can set a SeqNo for each message and set a retry flag for
subsequent requests

▸Server must maintain state for each client , to remember recent SeqNo
and send a response to client

Distributed Systems, KNTU 50

▸RPC

12/28/22

RPC Semantics in failures

5- Client crashes after sending a request.
▸Orphan computation (no parent waiting for the result!)

▸Orphan Extermination:
▸Keep log for each RPC in client stubs, in restart kill orphans!

▸Large log files
▸Orphans may start several other RPCs

▸Reincarnation
▸Divide time to numbered epochs, on reboot broadcast new epoch to all servers,

they kill orphans
▸No write in disk
▸Unreachable servers when report back the result, their result will have obsolete epoch

Distributed Systems, KNTU 51

▸RPC

12/28/22

RPC Semantics in failures

5- The client crashes after sending a request (cont.)

▸Expiration
▸Consider a Time T, for completion of each request. If job not finished client must

explicitly request for further time.
▸When client crash and time T is passed, all computations are killed
▸Choosing right T can be tricky

▸All solutions have problems
▸If orphan acquired lock of resources?
▸If orphan already updated some DB records?
▸If orphan started new computations on other servers, they may not be trackable

Distributed Systems, KNTU 52

▸RPC

12/28/22

Message-Oriented
Communication

Distributed Systems, KNTU 5312/28/22

Message-Oriented Communication

▸Transport-level sockets
▸It is still very low-level
▸You need to code for any extra features beyond UDP and TCP
▸You may easily do mistakes

▸RPC
▸Transient message-oriented communication
▸Good abstraction, but it is still low-level, we need higher abstractions

Distributed Systems, KNTU 5412/28/22

Message-Oriented Communication

▸Message Queuing
▸Persistent message-oriented communication
▸Provides new common communication patterns

▸Famous products
▸ZeroMQ
▸RabbitMQ
▸Apache ActiveMQ
▸.....

Distributed Systems, KNTU 5512/28/22

ZeroMQ

▸A wrapper on Socket API
▸Supports several underlying protocols

▸inproc: inter-thread shared memory
▸IPC: between processes
▸TCP
▸Pgm, and epgm: for multicast

▸ZeroMQ higher level sockets support one-to-many and many-to-one
communication

▸Setting up, and maintaining connections, protocol issues, … all is
kept mostly under the hood

Distributed Systems, KNTU 56

▸Message-Oriented Communication ▸Message Queuing

12/28/22

ZeroMQ

▸ZeroMQ uses special paired higher level socket types
▸Each pair of socket types corresponds to a communication pattern

▸Request-Reply
▸Publish-Subscribe
▸Pipeline
▸Router-Dealer

Distributed Systems, KNTU 57

▸Message-Oriented Communication ▸Message Queuing

12/28/22

ZeroMQ

▸Request-Reply pattern
▸Client uses REQ socket type
▸Server uses REP socket type
▸And nothing!

Distributed Systems, KNTU 58

▸Message-Oriented Communication ▸Message Queuing

Server Code

12/28/22

ZeroMQ

▸Request-Reply pattern
▸Client uses REQ socket type
▸Server uses REP socket type
▸And nothing!

Distributed Systems, KNTU 59

▸Message-Oriented Communication ▸Message Queuing

Client Code

12/28/22

ZeroMQ

Distributed Systems, KNTU 60

▸Message-Oriented Communication ▸Message Queuing

12/28/22

ZeroMQ

▸Publish-subscribe pattern
▸An architectural style
▸Very useful to implement opennes
▸Clients subscribe to specific messages

that are published by servers

Distributed Systems, KNTU 61

▸Message-Oriented Communication ▸Message Queuing

12/28/22

ZeroMQ

Distributed Systems, KNTU 62

▸Message-Oriented Communication ▸Message Queuing

Server Code Client Code

12/28/22

ZeroMQ

▸Pipeline pattern
▸A process wants to push out its results,

assuming that there are other processes that
want to pull in those results
▸Pushing process has no care about which other

process pulls in the results
▸One of the workers pulls the last result and

do the computation task
▸Suitable for

▸Computation applied on a set of data
▸Parallel computation

Distributed Systems, KNTU 63

▸Message-Oriented Communication ▸Message Queuing

12/28/22

ZeroMQ

Distributed Systems, KNTU 64

▸Message-Oriented Communication ▸Message Queuing

12/28/22

ZeroMQ

▸Router-Dealer Sockets
▸Proxy pattern
▸Broker Pattern

▸Advantage
▸No need for explicit connection

of pairing sockets
▸Dynamic connection

▸Easy to add/remove nodes
▸Load Balancing
▸Routing Capabilities (general

pub/sub pattern)
▸Non-blocking

▸Disadvantage
▸An intermediate point needs

higher memory and adds delay

Distributed Systems, KNTU 65

▸Message-Oriented Communication ▸Message Queuing

12/28/22

Advanced Message Queuing Protocol

▸AMQP
▸Open application-layer standard for exchanging messages
▸Defines binary wire-level protocol (No standard API)

▸Description of the format of the data that is sent across the network as a stream
of bytes

▸Products can be compliant to this standard
▸Apache ActiveMQ
▸RabbitMQ
▸Azur ServiceBus

Distributed Systems, KNTU 66

▸Message-Oriented Communication ▸Message Queuing

12/28/22

Higher Abstractions…

Distributed Systems, KNTU 6712/28/22

Message Passing Interface (MPI)

▸A higher level than sockets
with minimal overhead
▸Sum, Reduce, …
▸Runs on IP with a fast efficient

protocol for server clusters
▸Assumes serious failures such as

process crashes or network
partitions are fatal and do not
require automatic recovery

Distributed Systems, KNTU 68

▸Higher Abstractions

12/28/22

MPI: Message Passing Interface

▸Why so many different forms of communication
▸It gives users of MPI systems enough possibilities for optimizing

performance
▸MPI v3 has 440 operations!

Distributed Systems, KNTU 69

▸Higher Abstractions

12/28/22

MPI Sample

Distributed Systems, KNTU 70

▸Higher Abstractions

float *rand_nums = NULL;
rand_nums = create_rand_nums(num_elements_per_proc);
// Sum the numbers locally
float local_sum = 0; int i;
for (i = 0; i < num_elements_per_proc; i++) {

local_sum += rand_nums[i];
}
// Print the random numbers on each process
printf("Local sum for process %d - %f, avg = %f\n",

world_rank, local_sum, local_sum / num_elements_per_proc);

// Reduce all of the local sums into the global sum
float global_sum;
MPI_Reduce(&local_sum, &global_sum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD);

if (world_rank == 0) { //if this is the root process
printf("Total sum = %f, avg = %f\n", global_sum,
global_sum / (world_size * num_elements_per_proc));

}

12/28/22

Distributed Shared Memory (DSM)

Distributed Systems, KNTU 71

▸Highest possible abstraction!
▸DSM provides the illusion of shared memory on a distributed system
▸DSM Purpose

▸Programmer writes parallel program: threads, shared variables, locks
▸DSM system farms out threads to a cluster of machines

▸Higher Abstractions

12/28/22

DSM

▸Why we need DSM
▸No change need for existing codes and libraries (= transparency)
▸ Familiar model for developers
▸General purpose (vs. MapReduce, Spark)

▸DSM high level scenario
▸DSM runtime sends updates in messages between computers
▸Each computer has a local copy of recently accessed data items stored in DSM,

for speed of access (cache)
▸DSM hides complexity of writing and dealing with message passing
▸Main problem is managing replicated data (efficient consistency)

Distributed Systems, KNTU 72

▸Higher Abstractions

12/28/22

DSM

▸Very similar to NUMA architecture
▸However, DSM usually is implemented in LAN

▸In multi-processor system, processors have very high speed connection to
remote memories

▸DSM is working over network, has to read from/write to another system
▸We need messaging for accessing remote memories

▸It is very hard to implement an efficient real DSM!
▸We skip implementation models!

Distributed Systems, KNTU 73

▸Higher Abstractions

12/28/22

DSM

Distributed Systems, KNTU 74

▸Higher Abstractions

NUMA Architecture

12/28/22

DSM vs. Messaging

▸DSM
▸Variables are accessed directly

▸Some implementations use built-in virtual
memory and page fault mechanisms

▸Some implementations access variables
with name

▸Needs other mechanisms like distributed
locks, ..

▸Processes can have persistent
communication

▸Measuring efficiency is very difficult
▸DSM is implicit and greatly depends on

patterns of data sharing and data access

▸Messaging
▸Marshaling/Unmarshaling
▸Persistent communications needs an extra

entity
▸Efficiency can be measured explicitly in

message-passing

Distributed Systems, KNTU 7512/28/22

Tuple Spaces

▸A form of DSM or content-based publish-subscribe system
▸Processes communicate indirectly by placing tuples in a tuple

space
▸Several processes can read or remove tuples.
▸Tuples do not have an address but are accessed by pattern

matching on content
▸Tuples spaces model has created Linda programming model

▸Vs. message passing, MapReduce, Spark, …

Distributed Systems, KNTU 76

▸Higher Abstractions ▸DSM

12/28/22

Tuple Spaces

▸Terminology
▸Tuple: consists of a sequence of one or more typed data fields:

▸Tuple space: a shared collection of tuples
▸Processes share data by accessing the same tuple space

▸Operations
▸Write: put tuple into a tuple space
▸Read: reads tuple
▸Take: removes the tuple from tuple space and keeps a local copy
▸Notify: when a tuple updated, inform listeners

Distributed Systems, KNTU 77

▸Higher Abstractions ▸DSM

12/28/22

Tuple Spaces

Distributed Systems, KNTU 78

▸Higher Abstractions ▸DSM

12/28/22

Tuple Spaces

▸Modification cannot be done in-place
▸Take the tuple
▸Write modified tuple
▸Example

▸Processes can register to receive notification when a particular
tuple is updated

Distributed Systems, KNTU 79

▸Higher Abstractions ▸DSM

12/28/22

Tuple Spaces

▸Variations
▸Having multiple Tuple Spaces (like variable scoping in {})
▸Replicate tuple space in several machines (consistency problem)
▸Put each tuple space in just one machine

▸How to find the intended tuple?
▸P2P models

▸Implementations
▸JavaSpaces (high-throughput, low-delay, no fault-tolerant)
▸GigaSpaces: clustered & fault tolerant
▸Linda in a Mobile Environment (LIME): for mobile environments, needs

no server

Distributed Systems, KNTU 80

▸Higher Abstractions ▸DSM

12/28/22

Tuple Spaces

▸Java Spaces adds notify + transaction
features
▸Easily build a chat server
▸Easily build a computation server
▸Easily build a distributed coordination

service

Distributed Systems, KNTU 81

▸Higher Abstractions ▸DSM

12/28/22

Multicast Communication

one-to-many communications

Distributed Systems, KNTU 8212/28/22

Multicast Communication

▸Sending one data to several receivers
▸At first, it was considered at lower-layer protocols, (Layers 2, 3, 4)

▸How to set-up minimum data distribution tree to deliver data

Distributed Systems, KNTU 8312/28/22

Multicast Tree

▸Hosts cooperatively construct
a tree
▸Efficient trees are Minimum

Spanning Tree (MST) or a
structure containing MST

▸It needs support of
intermediate devices (routers,
switches)

▸Huge management efforts

Distributed Systems, KNTU 84

▸Multicast Comm.

12/28/22

Multicast Communication

▸With emergence of peer-to-peer applications, these protocols
mostly implemented in application layer, as overlay networks
▸Implementation is easy in application layer
▸No need to interfere with network core
▸But, it may not be efficient

Distributed Systems, KNTU 85

▸Multicast Comm.

12/28/22

Broadcast

▸Broadcast is a special case of Multicast
▸A key design factor:

▸Minimize the use of intermediate nodes for which the message is not
intended.
▸In multi-level trees, only the leaf nodes are the recipient of the message, others

are mostly forwarders!

▸Build a tree for each multicast group
▸Nodes belonging to several groups are in trouble!

▸Keep several list
▸Managing higher traffic

Distributed Systems, KNTU 86

▸Multicast Comm.

12/28/22

Broadcast

▸Just flood a message in a multicast group in overlay network!
▸Very inefficient
▸Consider graph G(N,M), flooding means sending ≈ M messages

▸In tree, M = N -1 messages, the most efficient structure
▸In complete graph à !

" = #
"𝑁(𝑁 − 1) messages

▸For other graphs we can have a estimate with Random Graphs or
Erdös-Rényi graph.
▸Probability of having a link between two nodes is 𝑝$%&$.
▸No of links ~ No of messages ~ #

"
𝑝$%&$𝑁(𝑁 − 1)

Distributed Systems, KNTU 87

▸Multicast Comm.

12/28/22

Broadcast

▸How to reduce flooding load?
▸ Each node forward the message with 𝑝!"##$

▸The total no. of messages drops linearly with this probability
▸If 𝑝'())% is small, some nodes may not receive the message
▸The probability of not receiving for a node with n neighbors is 1 − 𝑝'())%

*

▸Enhancement
▸Instead of an static probability use degree-dependent one

Distributed Systems, KNTU 88

▸Multicast Comm.

12/28/22

Gossiping

▸Also known as Epidemic Behavior
▸Theory of epidemics studies the spreading of infectious diseases.

▸While health organizations use this theory to prevent spreading
infection, distributed system designers use the theory “infect” all
nodes with new information as fast as possible.
▸Has several variations
▸Main theme is periodically send update data to random targets

Distributed Systems, KNTU 89

▸Multicast Comm.

12/28/22

Gossiping

▸Terminology
▸A node with the data à infected
▸A node has not seen the data à susceptible
▸A node has data, but can not or will not spread the data à removed

Distributed Systems, KNTU 90

▸Multicast Comm.

12/28/22

Gossiping

▸Anti-entropy propagation model:
▸P choose a neighbor Q at random and exchanges data with
▸At the next round, Q do the same with its neighbor

Distributed Systems, KNTU 91

▸Multicast Comm.

12/28/22

Gossiping

▸Anti-entropy propagation model (cont.)
▸Data exchange models

▸P pushes new updates to Q
▸Push-only models may not work correctly,

▸ if many nodes are infected, the probability of selecting a susceptible node is small
▸Send multiple messages?

▸P pulls new updates from Q
▸Updates are triggered by susceptible nodes
▸Examine random subset of nodes to get possible updates
▸Having only 1 infected node, all nodes get infected

▸P and Q send updates to each other (push-pull)

Distributed Systems, KNTU 92

▸Multicast Comm.

12/28/22

Gossiping

▸Gossiping Advantages
▸lightweight in large groups
▸Spreads a multicast message very quickly
▸Highly fault-tolerant

Distributed Systems, KNTU 93

▸Multicast Comm.

12/28/22

Gossiping

▸If 𝑝(is the probability that node P have not received the update
in the 𝑖)* round then
▸In pull-only model

▸𝑝%&' = 𝑝%×𝑝% = 𝑝%(
▸For P to remain susceptible in 𝑖 + 1 +, period, it must not receive in ith round

and in (i+1)th round
▸If 𝑝 is small, then it converges rapidly to 0

Distributed Systems, KNTU 94

▸Multicast Comm.

12/28/22

Gossiping

▸If 𝑝(is the probability that node P have not received the update
in the 𝑖)* round then
▸In push-only model

▸Average (expected) no. of updated nodes in 𝑖)* round: 𝑛(1 − 𝑝%)
▸Probability of sending update to P by any of nodes: '

+,'
à not sending:

1 − '
+,'

▸Then 𝑝%&' = 𝑝% 1 − '
+,'

+ ',--

▸For small 𝑝 ≪ 𝑛 ⇒ 𝑝%&' = 𝑝%𝑒,'
▸With this probability one node may not receive data at (i+1)th round

Distributed Systems, KNTU 95

▸Multicast Comm.

12/28/22

Gossiping

▸Pull model is faster
▸Push-pull model is faster à just

combine both methods

▸Figure shows how quickly the
probability of not yet being updated
drops as a function of the number of
rounds.
▸Assuming nodes are up and running all

the time, anti-entropy is an extremely
effective dissemination protocol

Distributed Systems, KNTU 96

▸Multicast Comm.

The probability of not yet having
been updated as a function of
the number of dissemination
rounds.

12/28/22

Rumor Spreading

▸A variant of Gossiping
▸Node P has just been updated for data item x
▸It contacts other node Q, randomly and pushes the update to Q
▸If Q was already updated by another node, in that case, P may lose

interest in spreading the update any further, with probability pstop.
▸Fast, but cannot guarantee that all nodes get the update.

Distributed Systems, KNTU 97

▸Multicast Comm.

12/28/22

Gossiping

▸Gossiping is scalable
▸No need for synchronization

▸Considering topology yields better results
▸Send update to nodes having less neighbors in common à directional

gossiping
▸In practice, a node may not know all members

Distributed Systems, KNTU 99

▸Multicast Comm.

12/28/22

The End!

Distributed Systems, KNTU 10312/28/22

