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Communication

▸Is the heart of all distributed systems

▸End points are reside in physically different systems

▸Need to create messages in a predefined formats to collaborate
▸There is no shared memory!

▸Mostly rely on computer networks (socket API) to exchange 
messages
▸These facilities are too primitive to build complex DS systems
▸We need middleware services to perform more complex 

communications
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Layered Architecture

▸How endpoints can talk?
▸A set of protocols that determine the 

meaning of the bits

▸Layered Architecture
▸An approach to break a complex system 

into sub-systems
▸Each layer get service from underlying 

layer and give service to the upper layer.
▸In network it is known as: Protocol 

Stack
▸OSI Reference Model 
▸Replaced with Internet Model
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Layered Architecture
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Layered Architecture

▸Why Layering
▸Separation of concerns
▸Ease of developing
▸Ease of maintenance

▸Debug
▸Update
▸Test

▸Disadvantages
▸Proper dividing of sub-systems

▸Cross layer design
▸Duplicate functions

▸Error Checking in all layers
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Layered Architecture

▸Middleware is logically resides in Application layer
▸DNS
▸Distributed Locking
▸Distributed Commit
▸RPC (Remote Procedural Call)
▸Authentication
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Layered Architecture

▸Layered architecture in higher layer
▸Communication stack is embedded in 

OS
▸Middleware is like session & 

presentation layer in OSI model
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Types of Communication
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Persistent vs. Transient

▸Persistent
▸The receiver need not be alive when the message is submitted.
▸A middleware takes the message from sender and does the job
▸Needs a middleware to store messages until delivery
▸Example: Mail System

▸Sender sends email, where Receiver may not running at that time

▸Transient
▸Sender and receiver must be alive; otherwise message will be discarded
▸Example: all transport level communications are transient
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Synchronous vs. Asynchronous

▸Asynchronous
▸Sender continues to the next task after sending with no waiting
▸When reply is received, a callback routine is called
▸No assumptions about process execution speeds or message delivery 

times are made (unbounded)

▸Synchronous
▸Sender blocks after sending until one of the following conditions:

▸A middleware takes the message 
▸The message is sent and delivered to the intended recipient
▸The response is received from recipient

▸We assume execution speed and message-delivery time is bounded
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Synchronous vs. Asynchronous

▸Partial-Synchronous
▸We estimate a bound for process execution speed and message 

delivery
▸We use time-outs to conclude the other side has been crashed, but it 

can be false 
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Synchronous vs. Asynchronous

▸Synchronous Model

▸Print(“Before”);
▸String reply = send_msg(msg)
▸Print(“Receiver said:” + 
reply);

▸Print(“After”)

▸Asynchronous Model

▸Print(“Before”);
▸send_msgAsync(msg, reply_rcvd)
▸Print(“After”)

▸void reply_rcvd(String reply){
▸Print(“Receiver said:” + reply);

▸}
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▸Types of Communication

Call Back 
function

Before
Receiver said: salam!
After

Before
After
Receiver said: salam!

Code blocks here

12/28/22



Synchronous vs. Asynchronous

▸Isochronous: 
▸Communication has maximum and minimum end-to-end delays 
▸jitter is bounded (streaming audio, video, sensor data)

▸Stream-Oriented Communication
▸A (continuous) data stream is a connection-oriented communication 

facility that supports isochronous data transmission
▸Stream types

▸Simple: consists of a single flow of data (e.g., audio or video)
▸Complex: multiple data flows (e.g., stereo audio or combination audio/video)
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Combinations

▸Persistent + Synchronous
▸Email
▸Message Queuing systems

▸Transient + Synchronous
▸RPC
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Remote Procedural Call (RPC)
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RPC

▸Hiding Complexity 
▸IP hides complexities in routing
▸TCP hides complexities in reliable communication

▸RPC Scenario
▸Process A calls a function C from service on machine B
▸Process A is blocked until completion of the procedure and return of response
▸Function C is executed on machine B

▸RPC hides complexities of explicit message exchange 
▸RPC transparency, make it looks like a local procedure call
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Remote Call - Client
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When a local call is done Linker loads the library file Finds the function offset and executes it

1. A Library called client stub is linked
2. Client stub has the same interface as the intended function but has no 

implementation
3. Client stub packs (marshals) variables into a message
4. Sends it to a RPC server on other machine

▸RPC
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Remote Call - Server
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1. In Server, server stub receives the message
2. Server stub unpacks (unmarshall) the message, 
3. Loads and links the library then calls the intended function
4. Packs the result in a message
5. Sends back the result to client stub
6. Client stub returns the result to the caller which is blocked up-to-now

▸RPC
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Simple Sample in Python 
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▸RPC

void main () {
….
client.append(“item”, prevList)
…

Client Stub Server Stub

Same Interface
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Simple Sample in Python 
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▸RPC

void main () {
….
client.append(“item”, prevList)
…

Client Stub Server Stub

Some Languages generate stub code automatically
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RPC

▸RPC Problems
▸Parameter passing (pointers, objects)

▸Processes run on different address space
▸Failure

Distributed Systems, KNTU 2312/28/22



Parameter Passing

▸Un/Marshaling
▸Un/Packing parameters in a message

▸What happens if client and server machines has different 
platforms
▸Big Endian / Little endian format battle
▸Use machine- and network-independent format (normally Big-Endian!)
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Parameter Passing: Big Endian vs Little Endian
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Parameter Passing

▸How about sending pointers and references?
▸A pointer is meaningful only within the address space of the process in 

which it is being used.

▸Common local parameter passing models
▸Copy-By-Value                          func(int x) { x = 10;}
▸Copy-By-Reference                   func(int *x) { *x = 10}

▸In case of RPC we may use the following strategy
▸Copy-By-Value/Restore

▸What is difference with Copy-By-Refrence?
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Parameter Passing

▸Solutions
▸Forbid pointers and references

▸Pointers and references must be used only for 
▸Fixed-Size data structures
▸Dynamic-sized data structures if their size can be computed easily in run-time 

▸Like String/dynamic arrays
▸Just do Copy-By-Value/Restore instead of Copy-By-Ref

▸It is good enough
▸What if the pointer points to a file, net socket, …?
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Remote Method Invocation (RMI)

▸The first Object-Oriented RPC

▸Calls methods of an object from another Java Virtual Machine 
(JVM)

▸Language Support
▸Un/Packing is simpler just make objects implement Serializable 

Interface
▸Distributed Garbage Collection

▸Automatic collection of remote objects when no client using them
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RMI Sample

public interface RemoteServerInterface extends Remote{    
double computeOnDoubles(List<Double> numbers) throws RemoteException;    
int computeOnIntegers(List<Integer> numbers) throws RemoteException;

}
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RMI Sample (server impl.)

public class RemoteServerInterfaceImpl extends UnicastRemoteObject implements 
RemoteServerInterface
{    

protected RemoteServerInterfaceImpl() throws RemoteException {super(0);} 
public double computeOnDoubles(List<Double> numbers) {        

double sum = 0.0;        
for (Double number : numbers) {sum += number;}        
return sum;    

}  
public int computeOnIntegers(List<Integer> numbers) {        

int sum = 0;        
for (Integer number : numbers) {sum += number; }       
return sum;   

}}
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RMI Sample (starting server)

public static void main(String[] args) {    
System.out.println("RMI server started");    
try {

LocateRegistry.createRegistry(1099);        
System.out.println("java RMI registry created.");    

} catch (RemoteException e) {
System.out.println("java RMI registry already exists."); }    

try {        
RemoteServerInterfaceImpl obj = new RemoteServerInterfaceImpl();        
// Bind this object instance to the name "RmiServer“
Naming.rebind("//localhost/RmiServer", obj);        

System.out.println("PeerServer bound in registry");    
} catch (RemoteException e) {        e.printStackTrace();    } 
catch (MalformedURLException e) {        e.printStackTrace();    }}
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RMI Sample (client impl.)

public class RemoteServerClient {    
public static void main(String[] args) {        

try {            
RemoteServernIterface remoteServer = 

(RemoteServerInterface) Naming.lookup("//localhost/RmiServer");

List<Double> list = new ArrayList<Double>(Arrays.asList(1.0, 2.3));

double result = remoteServer.computeOnDoubles(list);

System.out.println("result = " + result);        

} 
catch (Exception e) {e.printStackTrace();} 

}
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RMI Sample

▸Then you compile it with rmic.exe (RMI compiler)
▸It generates RemoteServerInterfaceImpl_Stub class
▸In newer versions, there is no need to skeleton (server stub) class
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RMI Sample 
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Generated Client Stub
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RMI

▸RMI generates all the code in the next slides
▸You had to write yourself
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RMI

Distributed Systems, KNTU 37

▸RPC

12/28/22



RMI
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RMI

▸RMI mechanism works only in Java Virtual Machine

▸Platform-Independent Mechanisms
▸CORBA

▸Is language independent RPC system based on objects
▸It defines IIOP, a protocol to exchange binary data between end points

▸RMI also supports IIOP
▸In CORBA you should define procedures using an IDL
▸It was very heavy weight and had vendor lock-in problem

▸Web Services
▸CORBA is killed by emergence of XML and Web Services
▸Objects can be serialized to XML, text-based readable format
▸IDL in Web Services is WSDL (Web Service Definition Language)
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RPC Variations

▸Asynchronous RPC
▸Client send request and waits for the server to accept the request, but 

does not wait for the result

▸Multicast RPC for fault-tolerant communication
▸Sending to several servers
▸Just keep first reply, ignore subsequent replies
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RPC Semantics in Failures
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RPC Semantics in failures

1- Client is unable to locate the server
▸Loss of transparency in case of reporting error!
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RPC Semantics in failures

2- Request message from the client to the server is lost. 
▸Use timeout mechanism to re-send the request

▸After several re-sends and getting no response, we are back to the 1st

error
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RPC Semantics in failures

3- Server crashes after receiving a request
▸Just do the timeout trick 
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Exactly-Once Execution

▸In some scenarios we want to execute a process exactly-once.
▸Why this is important? 

▸Idempotent requests vs. non-idempotent
▸Solving an equation
▸Depositing from a bank account

▸It Is not clear for client when the failure has been occurred, both 
of them appears as a timeout
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Exactly-Once Execution

▸Suppose server crashes after receiving a request, could we 
provide a guarantee that a request will execute exactly once?

▸To guarantee we do some extra actions in server
▸Server sends ACK after receiving request as a message delivery ack
▸Possible sever strategies

▸Send completion message before processing (M à P)
▸Send completion message after processing  (P à M)

▸Possible time-out client strategies
▸Resend request
▸Give-up and report failure 
▸Resend request when receive ack message
▸Resend request when not receive any ack message
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Exactly-Once Execution
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▸RPC ▸RPC Semantics in failures

Server Strategies

Client 
Strategies

12/28/22



Exactly-Once Execution
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Exactly-Once Execution
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RPC Semantics in failures

4- Reply message from the server to the client is lost
▸Client just sees timeout!

▸Client can set a SeqNo for each message and set a retry flag for 
subsequent requests

▸Server must maintain state for each client , to remember recent SeqNo
and send a response to client
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RPC Semantics in failures

5- Client crashes after sending a request.
▸Orphan computation (no parent waiting for the result!)

▸Orphan Extermination: 
▸Keep log for each RPC in client stubs, in restart kill orphans!

▸Large log files
▸Orphans may start several other RPCs

▸Reincarnation
▸Divide time to numbered epochs, on reboot broadcast new epoch to all servers, 

they kill orphans
▸No write in disk
▸Unreachable servers when report back the result, their result will have obsolete epoch
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RPC Semantics in failures

5- The client crashes after sending a request (cont.)

▸Expiration
▸Consider a Time T, for completion of each request. If job not finished client must 

explicitly request for further time.
▸When client crash and time T is passed, all computations are killed
▸Choosing right T can be tricky

▸All solutions have problems
▸If orphan acquired lock of resources?
▸If orphan already updated some DB records?
▸If orphan started new computations on other servers, they may not be trackable
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Message-Oriented 
Communication
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Message-Oriented Communication

▸Transport-level sockets
▸It is still very low-level
▸You need to code for any extra features beyond UDP and TCP
▸You may easily do mistakes

▸RPC 
▸Transient message-oriented communication
▸Good abstraction, but it is still low-level, we need higher abstractions
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Message-Oriented Communication

▸Message Queuing
▸Persistent message-oriented communication
▸Provides new common communication patterns

▸Famous products
▸ZeroMQ
▸RabbitMQ
▸Apache ActiveMQ
▸.....

Distributed Systems, KNTU 5512/28/22



ZeroMQ

▸A wrapper on Socket API
▸Supports several underlying protocols

▸inproc: inter-thread shared memory
▸IPC: between processes
▸TCP
▸Pgm, and epgm: for multicast

▸ZeroMQ higher level sockets support one-to-many and many-to-one 
communication

▸Setting up, and maintaining connections, protocol issues, … all is 
kept mostly under the hood
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ZeroMQ

▸ZeroMQ uses special paired higher level socket types
▸Each pair of socket types corresponds to a communication pattern

▸Request-Reply
▸Publish-Subscribe
▸Pipeline
▸Router-Dealer
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ZeroMQ

▸Request-Reply pattern
▸Client uses REQ socket type
▸Server uses REP socket type
▸And nothing!
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ZeroMQ

▸Request-Reply pattern
▸Client uses REQ socket type
▸Server uses REP socket type
▸And nothing!
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ZeroMQ
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ZeroMQ

▸Publish-subscribe pattern
▸An architectural style
▸Very useful to implement opennes
▸Clients subscribe to specific messages 

that are published by servers
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ZeroMQ
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ZeroMQ

▸Pipeline pattern
▸A process wants to push out its results, 

assuming that there are other processes that 
want to pull in those results
▸Pushing process has no care about which other 

process pulls in the results
▸One of the workers pulls the last result and 

do the computation task
▸Suitable for 

▸Computation applied on a set of data
▸Parallel computation
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ZeroMQ
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ZeroMQ

▸Router-Dealer Sockets
▸Proxy pattern
▸Broker Pattern

▸Advantage
▸No need for explicit connection 

of pairing sockets
▸Dynamic connection

▸Easy to add/remove nodes
▸Load Balancing
▸Routing Capabilities (general 

pub/sub pattern)
▸Non-blocking

▸Disadvantage
▸An intermediate point needs 

higher memory and adds delay
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Advanced Message Queuing Protocol

▸AMQP
▸Open application-layer standard for exchanging messages
▸Defines binary wire-level protocol (No standard API)

▸Description of the format of the data that is sent across the network as a stream 
of bytes

▸Products can be compliant to this standard
▸Apache ActiveMQ
▸RabbitMQ
▸Azur ServiceBus
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Higher Abstractions…
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Message Passing Interface (MPI) 

▸A higher level than sockets 
with minimal overhead
▸Sum, Reduce, …
▸Runs on IP with a fast efficient 

protocol for server clusters
▸Assumes serious failures such as 

process crashes or network 
partitions are fatal and do not 
require automatic recovery
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MPI: Message Passing Interface 

▸Why so many different forms of communication 
▸It gives users of MPI systems enough possibilities for optimizing 

performance
▸MPI v3 has 440 operations!

Distributed Systems, KNTU 69

▸Higher Abstractions

12/28/22



MPI Sample
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▸Higher Abstractions

float *rand_nums = NULL; 
rand_nums = create_rand_nums(num_elements_per_proc); 
// Sum the numbers locally 
float local_sum = 0; int i; 
for (i = 0; i < num_elements_per_proc; i++) { 

local_sum += rand_nums[i]; 
} 
// Print the random numbers on each process 
printf("Local sum for process %d - %f, avg = %f\n", 

world_rank, local_sum, local_sum / num_elements_per_proc); 

// Reduce all of the local sums into the global sum 
float global_sum; 
MPI_Reduce(&local_sum, &global_sum, 1, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD); 

if (world_rank == 0) {  //if this is the root process
printf("Total sum = %f, avg = %f\n", global_sum, 
global_sum / (world_size * num_elements_per_proc)); 

} 
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Distributed Shared Memory (DSM)
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▸Highest possible abstraction!
▸DSM provides the illusion of shared memory on a distributed system
▸DSM Purpose

▸Programmer writes parallel program: threads, shared variables, locks
▸DSM system farms out threads to a cluster of machines

▸Higher Abstractions
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DSM

▸Why we need DSM
▸No change need for existing codes and libraries (= transparency)
▸ Familiar model for developers
▸General purpose (vs. MapReduce, Spark)

▸DSM high level scenario
▸DSM runtime sends updates in messages between computers
▸Each computer has a local copy of recently accessed data items stored in DSM, 

for speed of access (cache)
▸DSM hides complexity of writing and dealing with message passing
▸Main problem is managing replicated data (efficient consistency)
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▸Higher Abstractions
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DSM

▸Very similar to NUMA architecture
▸However, DSM usually is implemented in LAN

▸In multi-processor system, processors have very high speed connection to 
remote memories

▸DSM is working over network, has to read from/write to another system
▸We need messaging for accessing remote memories

▸It is very hard to implement an efficient real DSM!
▸We skip implementation models!
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DSM
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▸Higher Abstractions

NUMA Architecture

12/28/22



DSM vs. Messaging

▸DSM
▸Variables are accessed directly

▸Some implementations use built-in virtual 
memory and page fault mechanisms 

▸Some implementations access variables 
with name

▸Needs other mechanisms like distributed 
locks, ..

▸Processes can have persistent
communication

▸Measuring efficiency is very difficult
▸DSM is implicit and greatly depends on 

patterns of data sharing and data access

▸Messaging
▸Marshaling/Unmarshaling
▸Persistent communications needs an extra 

entity
▸Efficiency can be measured explicitly in 

message-passing
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Tuple Spaces

▸A form of DSM or content-based publish-subscribe system
▸Processes communicate indirectly by placing tuples in a tuple 

space
▸Several processes can read or remove tuples. 
▸Tuples do not have an address but are accessed by pattern 

matching on content
▸Tuples spaces model has created Linda programming model

▸Vs. message passing, MapReduce, Spark, …
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Tuple Spaces

▸Terminology
▸Tuple: consists of a sequence of one or more typed data fields: 

▸Tuple space: a shared collection of tuples
▸Processes share data by accessing the same tuple space

▸Operations
▸Write: put tuple into a tuple space
▸Read: reads tuple
▸Take: removes the tuple from tuple space and keeps a local copy
▸Notify: when a tuple updated, inform listeners

Distributed Systems, KNTU 77

▸Higher Abstractions ▸DSM
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Tuple Spaces
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Tuple Spaces

▸Modification cannot be done in-place
▸Take the tuple
▸Write modified tuple
▸Example

▸Processes can register to receive notification when a particular 
tuple is updated
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▸Higher Abstractions ▸DSM
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Tuple Spaces

▸Variations
▸Having multiple Tuple Spaces (like variable scoping in {})
▸Replicate tuple space in several machines (consistency problem)
▸Put each tuple space in just one machine

▸How to find the intended tuple?
▸P2P models

▸Implementations
▸JavaSpaces (high-throughput, low-delay, no fault-tolerant)
▸GigaSpaces: clustered & fault tolerant
▸Linda in a Mobile Environment (LIME): for mobile environments, needs 

no server
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Tuple Spaces

▸Java Spaces adds notify + transaction 
features
▸Easily build a chat server
▸Easily build a computation server
▸Easily build a distributed coordination 

service
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▸Higher Abstractions ▸DSM
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Multicast Communication

one-to-many communications

Distributed Systems, KNTU 8212/28/22



Multicast Communication

▸Sending one data to several receivers
▸At first, it was considered at lower-layer protocols, (Layers 2, 3, 4)

▸How to set-up minimum data distribution tree to deliver data
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Multicast Tree 

▸Hosts cooperatively construct 
a tree
▸Efficient trees are Minimum 

Spanning Tree (MST) or a 
structure containing MST

▸It needs support of 
intermediate devices (routers, 
switches)

▸Huge management efforts
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Multicast Communication

▸With emergence of peer-to-peer applications, these protocols 
mostly implemented in application layer, as overlay networks
▸Implementation is easy in application layer
▸No need to interfere with network core
▸But, it may not be efficient
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▸Multicast Comm.
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Broadcast

▸Broadcast is a special case of Multicast
▸A key design factor: 

▸Minimize the use of intermediate nodes for which the message is not 
intended. 
▸In multi-level trees, only the leaf nodes are the recipient of the message, others 

are mostly forwarders!

▸Build a tree for each multicast group
▸Nodes belonging to several groups are in trouble!

▸Keep several list
▸Managing higher traffic
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Broadcast

▸Just flood a message in a multicast group in overlay network!
▸Very inefficient
▸Consider graph G(N,M), flooding means sending ≈ M messages

▸In tree, M = N -1 messages, the most efficient structure
▸In complete graph à !

" = #
"𝑁(𝑁 − 1) messages

▸For other graphs we can have a estimate with Random Graphs or
Erdös-Rényi graph.
▸Probability of having a link between two nodes is 𝑝$%&$.
▸No of links ~ No of messages ~ #

"
𝑝$%&$𝑁(𝑁 − 1)
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Broadcast

▸How to reduce flooding load?
▸ Each node forward the message with 𝑝!"##$

▸The total no. of messages drops linearly with this probability
▸If 𝑝'())% is small, some nodes may not receive the message
▸The probability of not receiving for a node with n neighbors is 1 − 𝑝'())%

*

▸Enhancement
▸Instead of an static probability use degree-dependent one
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Gossiping

▸Also known as Epidemic Behavior
▸Theory of epidemics studies the spreading of infectious diseases.

▸While health organizations use this theory to prevent spreading
infection, distributed system designers use the theory “infect” all 
nodes with new information as fast as possible.
▸Has several variations
▸Main theme is periodically send update data to random targets

Distributed Systems, KNTU 89

▸Multicast Comm.

12/28/22



Gossiping

▸Terminology
▸A node with the data à infected
▸A node has not seen the data à susceptible
▸A node has data, but can not or will not spread the data à removed
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Gossiping

▸Anti-entropy propagation model: 
▸P choose a neighbor Q at random and exchanges data with
▸At the next round, Q do the same with its neighbor
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Gossiping

▸Anti-entropy propagation model (cont.)
▸Data exchange models

▸P pushes new updates to Q
▸Push-only models may not work correctly, 

▸ if many nodes are infected, the probability of selecting a susceptible node is small
▸Send multiple messages? 

▸P pulls new updates from Q
▸Updates are triggered by susceptible nodes
▸Examine random subset of nodes to get possible updates
▸Having only 1 infected node, all nodes get infected

▸P and Q send updates to each other (push-pull)
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Gossiping

▸Gossiping Advantages
▸lightweight in large groups
▸Spreads a multicast message very quickly
▸Highly fault-tolerant
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Gossiping

▸If 𝑝( is the probability that node P have not received the update 
in the 𝑖)* round then
▸In pull-only model

▸𝑝%&' = 𝑝%×𝑝% = 𝑝%(
▸For P to remain susceptible in 𝑖 + 1 +, period, it must not receive in ith round 

and in (i+1)th round 
▸If 𝑝 is small, then it converges rapidly to 0

Distributed Systems, KNTU 94

▸Multicast Comm.

12/28/22



Gossiping

▸If 𝑝( is the probability that node P have not received the update 
in the 𝑖)* round then
▸In push-only model

▸Average (expected) no. of updated nodes in 𝑖)* round: 𝑛(1 − 𝑝%)
▸Probability of sending update to P by any of nodes: '

+,'
à not sending: 

1 − '
+,'

▸Then 𝑝%&' = 𝑝% 1 − '
+,'

+ ',--

▸For small 𝑝 ≪ 𝑛 ⇒ 𝑝%&' = 𝑝%𝑒,'
▸With this probability one node may not receive data at (i+1)th round
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Gossiping

▸Pull model is faster
▸Push-pull model is faster à just 

combine both methods

▸Figure shows how quickly the 
probability of not yet being updated
drops as a function of the number of 
rounds. 
▸Assuming nodes are up and running all 

the time, anti-entropy is an extremely 
effective dissemination protocol
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Rumor Spreading

▸A variant of Gossiping
▸Node P has just been updated for data item x
▸It contacts other node Q, randomly and pushes the update to Q
▸If Q was already updated by another node, in that case, P may lose 

interest in spreading the update any further, with probability pstop. 
▸Fast, but cannot guarantee that all nodes get the update.
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Gossiping

▸Gossiping is scalable
▸No need for synchronization

▸Considering topology yields better results
▸Send update to nodes having less neighbors in common à directional 

gossiping
▸In practice, a node may not know all members
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The End!
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