
Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

h.khanmirza@kntu.ac.ir

Coordination

Slide set 3
Distributed Systems

mailto:h.khanmirza@kntu.ac.ir


Coordination

▸Distributed processes need for coordination
▸Locking file, exclusive access to a resource, who must get the lock
▸Ordering events: Which process should send or receive messages in 

what order?

▸Coordination
▸Goal is to manage the interactions and dependencies between activities
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Coordination

▸Synchronization
▸Process synchronization: one process waits for another to complete its 

operation
▸Data synchronization: ensure that two sets of data are the same

▸From this perspective, one could state that coordination
encapsulates synchronization.
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Time & Clock Synchronization
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Global Timing

▸Consider a distributed build system with Make
▸Make checks times of *.c files and their corresponding *.o (object) files
▸If timestamp of *.o file is earlier than *.c make do recompile
▸Otherwise do nothing 

▸time(input.c) > time(input.o) à recompile
▸time(input.c) <= time(input.o) à do nothing

▸ If clock of developer systems are different it leads to mixture of object files 
from old and new sources!!

▸Other scenarios
▸Financial Applications
▸Security Auditing
▸Collaborative Sensing

▸Time & Clock Synchronization
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Physical Clocks

▸Found in every computer
▸“Timer” is better word 

▸It is a precisely machined quartz crystal oscillates in an electric 
field

▸Associated with each crystal are two registers:
▸Counter and a holding register. 
▸Each oscillation of crystal decrements the counter by one. 
▸When counter à 0, an interrupt is generated and counter reloaded 

from holding register. 
▸Each interrupt is called one clock tick.
▸It is possible to program a timer to generate an interrupt 60 times a 

second, or at any other desired frequency

▸Time & Clock Synchronization
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Physical Clocks

▸In a multi-CPU system, each CPU has its own clock
▸Crystals are chosen very accurately, but there is always a very small 

difference in their running frequency

▸Clock Skew
▸A system with 𝑛 computers, all 𝑛 crystals run at slightly different rates
▸This causes OS clocks gradually to get out of sync 

▸Facts
▸Having multiple clocks is desirable for efficiency and redundancy
▸In some real-time application the actual clock time is important, which 

needs to external clock sources

▸Time & Clock Synchronization
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Measuring Time

▸Mean solar seconds
▸TAI
▸UTC

▸Time & Clock Synchronization
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Mean Solar Seconds

▸Sun at its highest apparent point is called the transit of the sun. 

▸The interval between two consecutive transits is the solar day. 

▸Since there are 24 hours in a day, each containing 3600 seconds, 
the solar second is defined as exactly 1/86400th of a solar day. 

▸Time & Clock Synchronization ▸Measuring Time
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Mean Solar Seconds

▸In 1940s, it was established the period of the earth’s rotation is 
not constant, Days may become longer or shorter!!

▸Average of several days divided by 86,400, is called the mean 
solar second.

▸Time & Clock Synchronization ▸Measuring Time
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TAI

▸International Atomic Time
▸The second is the time for the cesium 133 atom to make exactly 

9,192,631,770 transitions.

▸Several Labs have such a clock

▸Periodically they report how many times their clock has ticked

▸Average no. of ticks is TAI which is the mean number of ticks 
since midnight on Jan. 1, 1958

▸Time & Clock Synchronization ▸Measuring Time
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UTC

▸TAI is highly stable, but 86,400 TAI seconds is now about 3 msec 
less than a mean solar day
▸Over the years, noon time will be earlier and earlier

▸Whenever the discrepancy between TAI and solar time grows to 
800 msec, a leap second is added to TAI, This time system is 
known as UTC (Universal Coordinated Time)

▸UTC is the basis of all modern civil timekeeping
▸It is distributed with ground stations pulsing to each other at the start 

of each second (acc.±40𝑚𝑠)
▸With (commercial) satellites provide time with accuracy of 0.5ms

▸Time & Clock Synchronization ▸Measuring Time
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Clock Synchronization Algorithms

▸Synchronization goals

▸Having a UTC receiver, keep all the machines synchronized to it

▸Having no UTC receivers, each machine keeps track of its own time, and 
the goal is to keep all the machines together as well as possible

▸Time & Clock Synchronization
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Clock Synchronization Algorithms

▸Suppose
▸𝐶! 𝑡 : The value of software clock on machine 𝑝
▸𝑡: UTC time

▸Clock Synchronization algorithm with Precision 𝜋 means
▸∀𝑡, ∀𝑝, 𝑞 𝐶! 𝑡 − 𝐶"(𝑡) < 𝜋

▸Having an external reference point, like UTC, accuracy is 
bounded
▸∀𝑡, ∀𝑝, 𝑞 𝐶! 𝑡 − 𝑡 < 𝛼

▸Set of clocks that are accurate within bound 𝛼, will be precise 
within bound 𝜋 = 2𝛼

▸Time & Clock Synchronization
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Clock Synchronization Algorithms

▸Clock Drift
▸Hardware clocks are subject to various conditions like temperature
▸Frequency over the time is changed and they start showing different 

values for time

▸Clock Drift Rate: 
▸The difference per unit of time from a perfect reference clock
▸Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6

secs/sec).
▸High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

▸Time & Clock Synchronization
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Clock Synchronization Algorithms

▸Suppose
▸𝜌: max clock drift rate
▸𝐹: ideal constant oscillator frequency
▸𝐹(𝑡): oscillator frequency at time t

▸Then: 1 − 𝜌 < ! "
! < 1 + 𝜌

▸We’d like ideal clock to be the same current clock: 𝐹 𝑡 = 𝐹

▸Time & Clock Synchronization

12/28/22 Distributed Systems, KNTU 16



Clock Synchronization Algorithms

▸Software clock is the mean of 𝐹(𝑡)
▸𝐶! 𝑡 = #

$ ∫%
& 𝐹 𝑡 ⇒ '(! &

'& = $ &
$ ⇒ 1− 𝜌 < '(! &

'& < 1+ 𝜌

▸Two clocks may differ at time Δ𝑡 as much as Δ𝑡. 2𝜌
▸ "#!" $

"$
− "#!# $

"$
< 2𝜌

▸To have precision of 𝜋 → Δ𝑡 = )
*+

▸To have clocks with no more than 𝜋 seconds difference, they must be 
synchronized at least every %&' seconds 

▸Time & Clock Synchronization
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Network Time Protocol (NTP)

▸A common approach in many 
protocols is to let clients contact a time 
server.
▸Time server reports 

▸T2:time of receiving reference message)
▸T3: time of send the reply

▸Client calculates
▸𝛿 = ,(-,) . ,*-,+

*
▸T3 plus the average propagation delays 

should be equal to T4 but it is not, then 
their subtract gives the offset

▸𝜃 = 𝑇/ + 𝛿 − 𝑇0 =
,(-,) . ,+-,*

*

▸Time & Clock Synchronization ▸Clock Synchronization Algorithms
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Network Time Protocol

▸What means if 𝜃 < 0
▸Means A’s clock is faster!
▸Should A set its clock backward?

▸It is considered harmful

▸In general changes to time is done gradually
▸If every hardware interrupt adds 10 ms to the time
▸For setting backward, system can add 9ms
▸For setting forward system can add 11 ms

▸NTP
▸A and B probe each other
▸Minimum 𝛿 is used for calculating 𝜃

▸Time & Clock Synchronization ▸Clock Synchronization Algorithms
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Network Time Protocol

▸What if A is more accurate than B. Pairwise synchronizing is 
foolish!
▸NTP divides machines into strata levels

▸Machine with reference clock is in the level (stratum-1)
▸Lower stratum levels have better accuracy

▸When A contacts B, A adjusts time if is in the higher stratum
▸𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝐴 > 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝐵 ⇒ 𝑠𝑦𝑐ℎ𝑛𝑟𝑜𝑛𝑖𝑧𝑒

▸After synchronization, 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝐴 > 𝑠𝑡𝑟𝑎𝑡𝑢𝑚 𝐵 + 1

▸Time & Clock Synchronization ▸Clock Synchronization Algorithms
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The Berkeley Algorithm

▸Time Server (leader) is selected 
▸Server polls time of followers periodically 

▸Time server is active
▸Server observes RTT and estimates each followers’ time
▸Server computes an average time 

▸Ignoring outliers
▸Server sends followers to how much adjust their clock

▸Avoiding RTT negative effect

▸This method is suitable for a system in which no machine has a 
UTC receiver. Time is manually set by an operator on time server
▸System doesn’t need an exact time, only needs agreement
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The Berkeley Algorithm

12/28/22 Distributed Systems, KNTU 22

▸Time & Clock Synchronization ▸Clock Synchronization Algorithms



Google TrueTime Service

▸Several Time Master machines

▸Use different source of measuring time (atomic, UTC receiver, …)

▸Several time master per data center

▸Time slave queries multiple time masters and get a collection of 
time sources with a high degree of mutual independence
▸With some algorithms outliers are removed

▸Result is guaranteed time accuracy of 6ms!

▸Time & Clock Synchronization ▸Clock Synchronization Algorithms
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Time Synchronization in WSNs

▸Nodes are resource constrained
▸Energy efficiency of protocols is important
▸Limited processing power
▸Multi-hop routing is expensive in WSN

▸Sensors often placed in harsh environments
▸Fluctuations in temperature, pressure, humidity!

▸Wireless medium
▸Higher error rates, radio interference, ...

▸Mobility
▸Topology change, density changes

▸Node failures

▸Clock Synchronization Algorithms ▸Clock Synchronization Algorithms

12/28/22 Distributed Systems, KNTU 24



Reference Broadcast Synchronization (RBS)

▸Sender-Receiver Synchronization

▸Design principles
▸In WSNs propagation time to other nodes is roughly constant

▸Time is measured from the moment a message leaves NIC, variable
times are omitted: 
▸Time spent to build a message
▸Time spent to access the network (at MAC layer)

▸Clock Synchronization Algorithms ▸Time Synchronization in WSNs
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Reference Broadcast Synchronization (RBS)

▸A sender p broadcasts a reference message (m) with its 
timestamp 
▸Neighbor nodes record their local receive time Tp,m of m, 𝑝
∈ 𝑁(𝑝)
▸Two nodes p and q exchange M messages and estimate their 

offset

▸𝑂𝑓𝑓𝑠𝑒𝑡 𝑝, 𝑞 = ∑!"#
$ (*%,!+*',!)

-

▸Average offset cannot solve clock drift problem
▸Use linear regression 𝑂𝑓𝑓𝑠𝑒𝑡 𝑝, 𝑞 𝑡 = 𝛼𝑡 + 𝛽
▸Coefficients are computed from the pairs (Tp,k , Tq,k)

▸Clock Synchronization Algorithms ▸Time Synchronization in WSNs
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Receiver-Receiver Time Synchronization

▸Uses constant delivery time principle

▸Clock Synchronization Algorithms ▸Time Synchronization in WSNs
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Time-synch Protocol (Tree-based protocols)

▸Two phases
▸Level Discovery phase

▸One node starts a LEVEL_DISCOVERY message and announces itself as level 0
▸Receiver knows its level as message level + 1 and re-sends it to its neighbors
▸Receivers discard other messages
▸When root dies, leader election process starts
▸A hierarchical tree is built

▸Synchronization phase
▸Each node in level (i) synchronizes with level (i-1) (uses the approach introduced 

for NTP)
▸Nodes in level (i + 1) overhear level (i) synchronization, then after a random 

time they start synchronization with level (i)

▸Error is propagated throughout the tree hierarchy

▸Clock Synchronization Algorithms ▸Time Synchronization in WSNs
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Logical Clocks
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Logical Time and Logical Clocks

▸Lamport stated that
▸In a distributed system, it is enough, processes agree on the order of 

events occur
▸It is not necessary all processes agree on exactly what time it is

▸Lamport defines happened before relation as “𝑎 → 𝑏“

▸Rules
1. If two events occurred at the same process 𝑝(, then they occurred in the 

order observed by 𝑝(, that is the definition of: “® i” (“happened before” i)

2. A message, m is sent between two processes, send(m) happens before 
receive(m)

3. The “happened before” relation is transitive 𝑎 → 𝑏, 𝑏 → 𝑐 ⇒ 𝑎 → 𝑐

▸Logical Clocks
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Logical Time and Logical Clocks

32

▸a ® b (at p1) c ®d (at p2)
▸b ® c because of m1

▸d ® f because of m2

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time
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Logical Time and Logical Clocks

33

▸Not all events are related by → relation
▸Consider a and e (no chain of messages to relate them)

▸They are not related by ®

▸They are said to be concurrent written as 𝑎 ∥ 𝑒

▸This means nothing can be said about when the events happened or 
which event happened first.

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time
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Logical Time and Logical Clocks

▸A logical clock is a local monotonically 
increasing software counter
▸No need for any relation with physical 

clock

▸Example
▸Assume three processes P1, P2, P3
▸Their clock is incremented by 6, 8, 10 units (due to 

drift or anything)
▸M1 is sent at 6 and received at 16 “→” is held
▸M2 is sent at 24 and received at 40 “→” is held
▸M3 is sent at 60 and received at 56 “→” is not held
▸M4 is sent at 64 and received at 54 “→” is not held
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Lamport Logical Clock

▸Example (cont.)
▸M3 is sent at 60 and received at 56 “→” is not 

held
▸P2 adjusts its clock to 60 + 1 à 61
▸Also for M4

▸To break ties in distributed environment, 
process id is also sent in messages in 
addition to the logical clock
▸If a process receives 60 𝑖 , 60 𝑗
▸𝑖𝑓 𝑖 < 𝑗 → 60 𝑖 < 60 𝑗

▸It can be proved that
▸𝑖𝑓 𝑎 → 𝑏 ⇒ 𝐶 𝑎 < 𝐶 𝑏 , Ci(a):clock of event 

at process i
▸The reverse is not true!!
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Lamport Logical Clock

▸Lamport Logical Clock Algorithm
1. Before each event at process p: Cp = Cp + 1
2. Send message m, with local time 𝑚 = (𝑚 , 𝑃/0, 𝐶1)
3. On receiving (m,P23, 𝐶4),  process q computes 

𝐶" = max 𝐶" , 𝐶1 + 1
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Lamport Logical Clock

a

b

P1 P2 P3

c

d

e

f

g

h

i

j

k

l

1 1
12

3
23

4
4

5

6

3

• Between a and b: a ® b 
• Between b and f: b ® f
• Between e and k: concurrent
• Between c and h: concurrent 
• Between k and h: k ® h

Assume that 
each process’s 
logical clock is 
set to 0x
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Totally Ordered Systems

▸Lamport logical clock system results in Totally Ordered systems

▸All events in a distributed system are totally ordered if event a
happened before event b, then a will also be positioned in that 
ordering before b: C(a) < C(b).

▸Lamport Logical Clock
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Totally Ordered Multicast

▸Sometimes events must occur in order.
▸Scenario: 

▸Data is saved in multiple data bases.
▸Upon update of one copy, refresh data in all other copies.

▸Example Application: 
▸An account has 1000$
▸Actions are: X=Add 100$ Y=compute 1% interest
▸If in one   copy X is done before Y à balance = 1111$
▸If in other copy X is done after Y à balance = 1110$

▸Result:
▸Update messages MUST be considered in order

▸Lamport Logical Clock
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Totally Ordered Multicast

▸Deliver multicast operations to receiver apps, in the same order

▸Sender

▸Put local logical clock in each message (timestamp)

▸Send message to all group members (also yourself)
▸Assumptions: No loss, no out-of-order
▸Assumption: Send is done through multicast mechanisms, thus sending a 

message to all group members increments logical clock by 1
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Totally Ordered Multicast

▸Receiver 
▸Puts messages in a local queue ordered by their timestamp

▸Each receive increments logical clock by 1

▸Multicasts an ACK to all other processes

▸Deliver message to application if 
▸If it is at the head of the queue 
▸It is ack’ed by all members
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Totally Ordered Multicast
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▸Lamport Logical Clock
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Totally Ordered Multicast
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▸Lamport Logical Clock
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Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
• m1 à ACK1,ACK2
• m2 à ACK1,ACK2

P1
m1 à ACK2,ACK3

Process P1 needs (à) ACK from 
P2 and P3means



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
• m1 à ACK1,ACK2
• m2 à ACK1,ACK2

P1 
has all ACKs for m2, 
but cannot consume



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1 
has all ACKs for m2, 
but cannot consume

P2 can consume m1

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
• m1 à ACK1,ACK2
• m2 à ACK1,ACK2



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
m1 à ACK1,ACK2
m2 à ACK1,ACK2

P1 
has all ACKs for m2, 
but cannot consume

P2 consumed m1



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1 
has all ACKs for m2, 
but cannot consume

P2 consumed m1
P2 can consume m2

P3 
has all ACKs for m2, 
but cannot consume

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
m1 à ACK1,ACK2
m2 à ACK1,ACK2



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1 consumed m1
P1 can consume m2

P2 consumed m1
P2 consumed m2

P3 consumed m1
P3 can consume m2

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
m1 à ACK1,ACK2
m2 à ACK1,ACK2



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1 consumed m1
P1 can consume m2

P2 consumed m1
P2 consumed m2

P3 consumed m1
P3 can consume m2

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
m1 à ACK1,ACK2
m2 à ACK1,ACK2



Totally Ordered Multicast
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▸Lamport Logical Clock

12/28/22

P1 consumed m1
P1 consumed m2

P2 consumed m1
P2 consumed m2

P3 consumed m1
P3 consumed m2

P1
• m1 à ACK2,ACK3
• m2 à ACK2,ACK3

P2
• m1 à ACK1,ACK3
• m2 à ACK1,ACK3

P3
m1 à ACK1,ACK2
m2 à ACK1,ACK2



Vector Clock

▸With Lamport’s logical clock 
▸𝑎 → 𝑏 ⟹ 𝐶 𝑎 < 𝐶 𝑏

▸𝐶 𝑎 < 𝐶 𝑏 ⇏ 𝑎 → 𝑏
▸If we have C(a) < C(b), we cannot conclude aà b

▸Lamport model do not capture Causality.
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Vector Clock

▸We can track causalities by keeping history of causes
▸Assume node P had two events then history 𝐻 𝑝* = {𝑝#, 𝑝*}

▸Node Q had only one event 𝐻 𝑞# = {𝑞#}

▸P sends a msg 𝑝/to Q with the most recent history: 𝐻 𝑝/ = {𝑝#, 𝑝*, 𝑝/}

▸Q records 𝑝/ with event 𝑞* then 𝐻 𝑞* = {𝑞#, 𝑝#, 𝑝*, 𝑝/, 𝑞*}

▸Checking whether an event 𝑝/ causally precedes an event q can be 

checked by 𝐻 𝑝 ⊂ 𝐻 𝑞

▸Good but very inefficient
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Vector Clock

▸No need to keep all the history, just keep the number of events 
happened in a node
▸Implementation

▸𝑃/ keeps a 𝑉𝐶/[𝑛5, … , 𝑛6] where 
▸𝑛2 number of events happened in 𝑃2
▸𝑛3 number of events happened in 𝑃3(= logical clock of node i)

▸𝑉𝐶/ 𝑗 = 𝑘 means 𝑃/ knows about 𝑃7
▸Logical clock
▸At least k events have occurred in that node
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Vector Clock

▸Algorithm

1. With each event, nodes increment their clock 𝑉𝐶3 𝑖 += 1

2. With each message, 𝑃3 piggybacks 𝑉𝐶3 (its whole clock vector)

3. Upon receiving a message 𝑉𝐶2 𝑘 = max 𝑉𝐶2 𝑘 , 𝑡𝑠 𝑚 𝑘 ∀𝑘 ∈
[𝑛#, 𝑛4]
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Vector Clock

▸If an event 𝑎 has timestamp 𝑡𝑠(𝑎), then 𝑡𝑠 𝑎 𝑖 − 1 denotes the 
number of events processed at 𝑃/ that causally precede 𝑎.

▸When 𝑃7 receives a 𝑚 from 𝑃/ with timestamp 𝑡𝑠(𝑚), it knows 
about the number of events that have occurred at 𝑃/ that causally 
preceded the sending of 𝑚. 

▸𝑃7 is also told how many events at other processes have taken 
place, known to 𝑃/, before sending 𝑚. 

12/28/22 Distributed Systems, KNTU 57



Vector Clock

▸P2 sends a message m1 with VC2 = (0, 1, 0) to 
P1 ts(m1) = (0, 1, 0)

▸P1 receives m1 
▸Adjusts logical time to VC1 (1, 1, 0) and delivers it. 
▸ Increments its own clock as it is received a message

▸Message m2 is sent by P1 to P3 with ts(m2) = 
(2,1,0)

▸Before P1 sends another message, m3, an 
event happens at P1,

▸P1 sends m3 with ts(m3)=(4, 1, 0). 
▸After receiving m3, process P2 sends message 

m4 to P3, with ts(m4) = (4, 3, 0)

▸ts(m2)=(2,1,0) ≤ ts(m4)=(4,3,0)
▸m2 causally precedes m4
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Vector Clock

▸M3 is sent before m2
▸ts(m2)=(4,1,0)

▸ts(m4)=(2,3,0)

▸ts(m2) ≮ ts(m4)!
▸m2 and m4 may have conflict, we 

cannot say anything about their 
causalities
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Causal-Ordered Multicast

▸A message is delivered only if all messages that may have 
causally precede it have been received as well

▸If two messages are not related to each other, we do not care in 
which order they are delivered to applications

▸Vector Clock
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Causal-Ordered Multicast

▸Principles
▸Clock is incremented when sending a message
▸No increment for receiving

▸Clock is adjusted to max 𝑡𝑠 𝑚 𝑘 , 𝑉𝐶3 𝑘 when delivering message to 
the application (not upon receiving)

▸Message from 𝑃/ received by 𝑃7 is delivered if
▸𝑡𝑠 𝑚 𝑖 = 𝑉𝐶2 𝑖 + 1

▸Message m is the next message that 𝑃, was expecting from process 𝑃-

▸𝑡𝑠 𝑚 𝑘 ≤ 𝑉𝐶2 𝑘 ∀𝑘 ≠ 𝑖
▸𝑃, has delivered all the messages that have been delivered by 𝑃- when it sent 

message m. 

▸Vector Clock
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Causal-Ordered Multicast
▸Vector Clock
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Causal-Ordered Multicast

P1

P2

P3

M1(1,0,0)

M2(0,1,0)

P4

▸Vector Clock

M1,M2

M2,M1

M2,M1

M1, M2
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coordination
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Mutual Exclusion

Perform local operations      
Acquire(lock)      
Execute critical section      
Release(lock)

▸Must ensure that only one instance of code is in critical section
▸Multithreaded systems use shared memory. In a distributed 

system processes can only coordinate via message passing
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▸Distributed Mutual Exclusion

12/28/22



Mutual Exclusion

▸Desired Properties of Mutual Exclusion 
▸Mutual Exclusion (Correctness): single process in CS at a time

▸Progress (Efficiency): Processes don’t wait for available resources

▸Bounded Waiting (Fairness): No process waits forever for a resource, i.e. 
a notion of fairness 

Distributed Systems, KNTU 66

▸Distributed Mutual Exclusion
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Mutual Exclusion

Distributed Mutual Exclusion Other Requirements
1. Low message overhead   
2. No bottlenecks   
3. Tolerate out-of-order messages   
4. Allow processes to join protocol or to drop out   
5. Tolerate failed processes   
6. Tolerate dropped messages
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▸Distributed Mutual Exclusion
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Centralized Algorithm
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▸Distributed Mutual Exclusion

@ Server:
while true:      

m = Receive()      
If m == (Request, i):

If Available():
Send (Grant) to i

@ Client à Acquire: 
Send (Request, i) to coordinator 
Wait for reply
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Centralized Algorithm
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▸Distributed Mutual Exclusion

@ Server:
while true:      

m = Receive()      

If m == (Request, i): 

If Available():

Send (Grant) to i

else:

Add i to Q
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Centralized Algorithm
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▸Distributed Mutual Exclusion

@ Server:
while true:      

m = Receive()      
If m == (Request, i):

If Available():

Send (Grant) to i
else:

Add i to Q
If m == (Release)&&!empty(Q):

Remove ID j from Q
Send (Grant) to j

@ Client à Release: 
Send (Release) to 
coordinator 
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Centralized Algorithm

▸Correctness:
▸Clearly safe
▸Process gets the resource if available
▸No starvation, of course strongly depends on queuing policy.  

▸E.g., if always gave priority to lowest process ID, then processes 1 & 2 lock out 3

▸Performance
▸One lock needs 3 messages per cycle (1 request, 1 grant, 1 release) 

▸Cycle is a complete round of the protocol with one process i entering its critical 
section and then exiting

▸Server may become a bottleneck
▸Issues

▸What happens when coordinator crashes? (Single-point-of-failure)
▸What happens when it reboots? (Requests are lost? Clients are waiting!)
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▸Distributed Mutual Exclusion

12/28/22



Lamport’s Distributed ME

▸Uses Lamport’s logical clock solution
▸Algorithm:

▸Each process maintains a request queue and a logical clock

▸To enter a critical section
▸Call to requestToEnter()

▸Inserting an ENTER message with timestamp (clock,procID) into the local queue 
▸Sending that message to all other processes

▸The operation cleanup() essentially sorts the queue.
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▸Distributed Mutual Exclusion
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Lamport’s Distributed ME

Distributed Systems, KNTU 73

▸Distributed Mutual Exclusion
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Lamport’s Distributed ME
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▸Distributed Mutual Exclusion
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Lamport’s Distributed ME
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▸Distributed Mutual Exclusion

Conditions to enter critical section
Executed with each msg arrival
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Lamport’s Distributed ME
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▸Note that this release method is executed locally
▸Use Lamport’s algorithm, but break ties using the process ID

▸𝐶 𝑒 = 𝑀×𝐶- 𝑒 + 𝑖
▸M = maximum number of processes
▸ i = process ID

▸Distributed Mutual Exclusion
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Lamport’s Distributed ME

P Clk=3 Queue Q Clk=10 Queue
à(4,P,ENT) 3+1=4 (4,P,ENT) à(11,Q,ENT) 10+1=11 (11,Q,ENT)
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▸Distributed Mutual Exclusion
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Lamport’s Distributed ME

P Clk=3 Queue Q Clk=10 Queue
à(4,P,ENT) 3+1=4 (4,P,ENT) à(11,Q,ENT) 10+1=11 (11,Q,ENT)
ß(11,Q,ENT) Max(4,11)+1=12 (11,Q,ENT)

Qà(13,P,ALW) 12+1=13
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▸Distributed Mutual Exclusion
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Lamport’s Distributed ME

P Clk=3 Queue Q Clk=10 Queue
à(4,P,ENT) 3+1=4 (4,P,ENT) à(11,Q,ENT) 10+1=11 (4,P,ENT)
ß(11,Q,ENT) Max(4,11)+1=12 (11,Q,ENT) ß(4,P,ENT) Max(4,11)+1=12 (11,Q,ENT)
Qà(13,P,ALW) 12+1=13 Pà(13,Q,ALW) 12+1=13
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▸Distributed Mutual Exclusion
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Lamport’s Distributed ME

P Clk=3 Queue Q Clk=10 Queue
à(4,P,ENT) 3+1=4 (4,P,ENT) à(11,Q,ENT) 10+1=11 (4,P,ENT)
ß(11,Q,ENT) Max(4,11)+1=12 (11,Q,ENT) ß(4,P,ENT) Max(4,11)+1=12 (11,Q,ENT)
Qà(13,P,ALW) 12+1=13 Pà(13,Q,ALW) 12+1=13
ß(13,Q,ALW) 13+1=14 (13,Q,ALW) ß(13,P,ALW) 13+1=14 (13,P,ALW)
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▸Distributed Mutual Exclusion

• AllowedToEnter is executed in P 
• its own request is at head
• it has received all ALLOW messages, then enters CS
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Lamport’s Distributed ME

P Clk=3 Queue Q Clk=10 Queue
à(4,P,ENT) 3+1=4 (11,Q,ENT) à(11,Q,ENT) 10+1=11 (11,Q,ENT)
ß(11,Q,ENT) Max(4,11)+1=12 ß(4,P,ENT) Max(4,11)+1=12 (14,P,ALWD)
à(13,Q,ALW) 12+1=13 à(13,P,ALW) 12+1=13
ß(13,Q,ALWD) 13+1=14 ß(13,P,ALWD) 13+1=14
à(15,Q,RLS) 14+1=15 ß(15,P,RLS) 15+1=16
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▸Distributed Mutual Exclusion

• After doing critical operation, removes its own request from the top
• Cleanup() procedure will remove all ALLOW messages from queue
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Lamport’s Distributed Mutual Exclusion

▸Issues

▸Lamport’s approach needs 3(𝑁 − 1) message for each lock
▸𝑃- sends 𝑛 − 1 request messages
▸𝑃- receives 𝑛 − 1 reply messages
▸𝑃- sends 𝑛 − 1 release messages

▸Lamport’s approach has N point of failure!
▸What if one of nodes fail and doesn’t send response?
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▸Distributed Mutual Exclusion
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Token Ring Method

▸Form a logical ring-shaped network 
among processes

▸Each process knows only its next process

▸A token is given to the first process

▸Token circulates around the ring

▸Assuming there are N processes, the 
token is passed from process Pk to process 
P(k+1) mod N
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▸Distributed Mutual Exclusion
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Token Ring Method

▸Upon receiving the token by a process

▸If needs the resource, keep the token

▸When done, pass token to the next 
process over ring

▸It is not permitted to immediately enter 
the resource again using the same token.

▸If the process is not interested in the 
resource, it just passes the token along.
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▸Distributed Mutual Exclusion
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Token Ring Method

▸Correctness
▸Only one process has the token at a time
▸Token is circulated among processes, no process is starved
▸If a process wants the resource, at worst it will have to wait for the 

token
▸Issues

▸High Latency
▸Token can be lost due to network or process failure

▸Detecting loss is not easy, since it maybe used in some process
▸A process may crash

▸Solutions
▸When a process holds the token, sends ACK message to all others, 

Neighbor can detect process crash but may need the whole network re-
configuration to repair the ring
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▸Distributed Mutual Exclusion
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Decentralized Algorithm

▸Assume that there are n coordinators

▸Access requires a majority vote from 𝑚 > 6
C coordinators. 

▸A coordinator always responds immediately to a request with 
GRANT or DENY

▸A coordinator denies if it has granted access to another process

▸In case of unsuccessful attempt, back-off and retry later
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▸Distributed Mutual Exclusion
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Decentralized Algorithm

▸Issues

▸If large number of nodes request for access, the utilization 
rapidly drops
▸May none of nodes get enough votes, leads to wasting resources and 

large delays

▸Coordinators may forget vote on reboot
▸If number of coordinators had reset recently exceeds 4

*
then a violation 

occurs
▸Probability of violating correctness is very low and can be ignored
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▸Distributed Mutual Exclusion
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Comparison
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▸Distributed Mutual Exclusion

m: number of coordinators
k: number of retries for acquiring lock
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Distributed Leader Election

coordination
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Leader Election

▸Many distributed algorithms require one process to act as 
coordinator, initiator, or perform some special role
▸Master-slave scenarios, root selection in Spanning Tree Protocol

▸Election algorithm ensures election process concludes with all 
processes agreeing on who is the new coordinator
▸We assume nodes at least have unique identifiers
▸Goal is finding the lowest/highest ID owner efficiently

▸Id can be anything like battery capacity, load, …
▸All processes have complete knowledge of others IDs
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▸Distributed Leader Election
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Bully Algorithm

▸Election Algorithm
▸Consider N processes {𝑃%, 𝑃#, … , 𝑃5} and 𝑖𝑑 𝑃5 = 𝑘
▸If a process notices that no coordinator exists sends ELECTION message 

to all higher identifiers
▸If no one replies, the process becomes coordinator
▸If a process reply, it just become silent and waits!!
▸Always the process with higher identifier wins!

▸ If the previous coordinator with highest id restart and become live, it sends ELECTION 
message and take over the coordinator job

▸Winner process sends COORDINATOR message to all others

▸Needs 𝑂(𝑁C) messages
▸If the process with lowest identifier detects the failure at first
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▸Distributed Leader Election
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Bully Algorithm
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▸Distributed Leader Election
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Bully Algorithm

Distributed Systems, KNTU 96

▸Distributed Leader Election
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Bully Algorithm
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▸Distributed Leader Election
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Ring Algorithm

▸Each process only knows its successor
▸In case of failure, it may know the next process, too!

▸When a process notices the absence of the coordinator, sends an 
ELECTION message
▸This message contains the sender identifier

▸Each process receives this message, appends its own id to the 
end of id list
▸When the message is return back to the sender, it circulates a 

COORDINATOR message with the highest id in the ELECTION 
message
▸Duplicate ELECTION and COORDINATOR messages is possible 

but not harmful
▸Needs 2(𝑁 − 1) messages
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▸Distributed Leader Election
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Ring Algorithm
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▸Distributed Leader Election
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Election in Wireless Networks

▸In wireless environment
▸Message delivery is not reliable
▸Network topology may change

▸Vasudevan Method proposed in 2004
▸Elects the best candidate
▸Assumes no topology change
▸Basically, the method builds a broadcast tree

Distributed Systems, KNTU 100

▸Distributed Leader Election
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Vasudevan Method

▸A node sends an ELECTION message to its immediate neighbors
▸All nodes in transmission range

▸Neighbors receive ELECTION message for the first time, select 
sender as parent.
▸If a node has parent and receive another ELECTION message it just 

acknowledges
▸In ACK message, nodes send their battery information, too

▸Parent node compares the information of its down-stream nodes 
and elects the best and reports back the result to its own parent
▸When the source nodes receives the results, elects the best and 

broadcasts the result to all nodes
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▸Distributed Leader Election ▸Election in Wireless Networks
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Vasudevan Method
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▸Distributed Leader Election ▸Election in Wireless Networks
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Vasudevan Method
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▸Distributed Leader Election ▸Election in Wireless Networks
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Vasudevan Method
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▸Distributed Leader Election ▸Election in Wireless Networks
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Vasudevan Method
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▸Distributed Leader Election ▸Election in Wireless Networks

12/28/22



Vasudevan Method
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▸Distributed Leader Election ▸Election in Wireless Networks
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Vasudevan Method
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▸Distributed Leader Election ▸Election in Wireless Networks

12/28/22



Vasudevan Method

▸When multiple elections are initiated, 
▸Each node will decide to join only one election

▸Each source tags its ELECTION message with a unique identifier

▸Nodes will participate only in the election with the highest identifier, 
stopping any running participation in other elections
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▸Distributed Leader Election ▸Election in Wireless Networks
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Global States 
and

Snapshots
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Snapshot

▸A set of local states

▸Local state is the outcome of a recording event that follows a 
send, or a receive, or an internal action. 
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Snapshot

▸Why Snapshots?

▸Checkpointing
▸Garbage Collection
▸Deadlock Detection
▸Debugging
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Cut

▸A set of events 
▸Contains at least one event per process. 

▸Consistent Cut

▸For each event that it contains, it also includes all events causally 
ordered before it. 

▸Let a, b be two events in a distributed system. Then 
▸𝑎 ∈ 𝐶 ∧ 𝑎 ≺ 𝑏 ⇒ 𝑏 ∈ 𝐶

▸If recv(m) is in C, then send(m) must belong to C

▸A consistent cut induces a consistent snapshot
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Cut
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▸Global States and Snapshots

{a,b,c,m,k} {a,b,c,d,g,m,e,k,i}



Cut

▸C1, C2 consistent cuts
▸S1, S2 consistent snapshots induced by C1, C2

▸If 𝐶5 ⊂ 𝐶C , C2 is more recent than C1

▸Also, S2 is more recent than S1

▸The set of local states following the most recent events of a cut 
defines a snapshot 
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Run

▸A computation or a run is specified as a total order among the 
events of a distributed system 

▸A run is consistent when it satisfies the condition 
▸∀𝑎, 𝑏: 𝑎 ≺ 𝑏 ⇒ 𝑎 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 𝑏

▸A consistent run reflects one of the feasible schedules of a 
central scheduler. 

▸𝑐||𝑑 two concurrent events
▸{c,d} induces a consistent run U
▸{d,c} induces a consistent run V
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Chandy-Lamport Consistent Snapshot

▸Suppose a distributed system as a strongly connected graph
▸Processes are nodes
▸Connected by FIFO channels
▸All messages sent on channels arrive intact, unduplicated, in 

order
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Chandy-Lamport Consistent Snapshot

▸Global state consists of 
▸Local states of the processes
▸State of the channels
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Chandy-Lamport Consistent Snapshot

▸P1 tells P2 to change a variable value
▸This is another global state

▸Why channel state should be recorded?
▸Missing states!
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Chandy-Lamport Consistent Snapshot

▸P2 receives the message
▸This is another global state
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Chandy-Lamport Consistent Snapshot

▸P2 change the variable value
▸This is another global state!
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Chandy-Lamport Consistent Snapshot

▸The global state changes whenever an event happens
▸Process sends message 
▸Process receives message 
▸Process takes a step 

▸Moving from state to state obeys causality
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Chandy-Lamport Consistent Snapshot

▸When snapshot should be taken?

▸Suppose P do snapshot before send and Q after receive
▸Duplicate state!
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P Q
R

G
B

Y

O

P

P = { G, Y }

Y Y

Q = { Y, R, P, B, O }



Chandy-Lamport Consistent Snapshot

▸INITIATOR node 
▸Records its own state
▸Sends a special marker (▲) message in all channels
▸Any node can be initiator
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▸Global States and Snapshots

P Q
R

G
B

Y

O

P

snap: P = { G, Y }

▲Y



Chandy-Lamport Consistent Snapshot

▸Receiver when receives a marker and not-snapshotted
▸Record the local state
▸Set receiving channel as Empty
▸Send marker in all outgoing channels
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P Q
R

G
B

O

P

P = { G, Y }

▲Y

O

▲

Q = { R, P, B }

channel(P,Q) = { }



Chandy-Lamport Consistent Snapshot

▸Receiver when receives a marker and snapshotted
▸Record the channel state
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▸Global States and Snapshots

P Q
R

G
B

P

P = { G, Y }

Y

O

Q = { R, P, B }

▲

O ▲

channel(P,Q) = { }

channel(Q,P) = { O }



Chandy-Lamport Consistent Snapshot

▸Termination:
▸All processes have received a marker on all the N-1 incoming 

channels (and recorded their states)

▸A central server can gather the partial states to build a global 
snapshot 

▸Note: recording of local state MUST be done atomically
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Chandy-Lamport Consistent Snapshot

▸Every cut corresponds to a global state and each global state can 
be represented by a cut

▸A consistent global state corresponds to a cut in which every 
message received in the PAST of the cut has been sent in the 
PAST of that cut. 

▸All the messages that cross the cut from the PAST to the FUTURE 
are captured in the corresponding channel state. 
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Distributed Debugging
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Distributed Debugging

▸Our aim is to find if a condition has held during a run of a 
distributed system

▸Possibly(𝜙)
▸There is a consistent run, 𝜙 𝑆 = 𝑇𝑟𝑢𝑒 in a global state S

▸Definitely(𝜙)
▸For every consistent run, there exists a global state of it in which 

predicate 𝜙 𝑆 = 𝑇𝑟𝑢𝑒
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Distributed Debugging

▸Stable Predicates
▸Termination
▸Deadlock

▸Unstable Predicates
▸Some properties may hold intermittently
▸Like: if |𝑥# − 𝑥*| < 100

▸We should search in all snapshots to see if this predicate holds!
▸Several runs of a distributed system may pass through different global 

paths
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Distributed Debugging

▸A central Monitor receives state of processes Pi {i=1,..,N} through 
separate queue

▸Processes send the state of the relevant variables
▸Processes send if the state of the relevant variables is changed
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Distributed Debugging

▸Measurements must be done on consistent global states
▸Cut C1 is not consistent and x2-x1=99>50
▸Cut C2 is consistent and x2-x1=105-90<50
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Distributed Debugging

▸Monitor should distinguish consistency of global states

▸Processes send their Vector Clock with their local state

▸𝑆 = 𝑠5, 𝑠C, … , 𝑠D , global state gathered from state messages

▸𝑉 𝑠/ : vector clock of process 𝑝/

▸S is consistent global state if 𝑉 𝑠/ 𝑖 ≥ 𝑉 𝑠7 𝑖 , 𝑖, 𝑗 = 1,2, … ,𝑁

▸The sender of the state message has recorded more events
▸Others have not seen more events than the process itself! when 

sending their own local state
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Distributed Debugging

▸All consistent runs can be shown on a lattice
▸The lattice shows us all the linearizations corresponding to a 

history 

▸S01 is not consistent, it does not appear in lattice
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Distributed Debugging

▸In each step of a run level is increased by 1
▸Sij is in the level of (i+j)

▸S22 is reachable from S20

▸S22 is not reachable from S30
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Distributed Debugging

▸Possibly(𝜙)
▸Monitor starts at the initial state and steps through all consistent 

states and stops when 𝜙 𝑆 = 𝑇𝑟𝑢𝑒

▸Definitely(𝜙)
▸Find states that all linearizations must pass 
▸At those states 𝜙 𝑆 = 𝑇𝑟𝑢𝑒
▸like 𝜙 𝑆CE = 𝑇𝑟𝑢𝑒
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The End!
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