
Graduate Level

K. N. Toosi Institute of Technology
Dr. H. Khanmirza

h.khanmirza@kntu.ac.ir

Replication & Consistency

Slide set 5
Distributed Systems

12/28/22 Distributed Systems, KNTU 1

mailto:h.khanmirza@kntu.ac.ir


Consistency

▸In distributed systems we need replication (= repeat) of data for 
▸Reliability

▸We discuss later
▸Performance

▸Is important for scaling in size or geographical span

Distributed Systems, KNTU 212/28/22



Consistency

▸Consistency
▸Keeping the same content in all replicas

▸When a replica is updated we must ensure this update is propagated to 
other replicas

▸A read operation performed at any copy will always return the same 
data

▸When and how determines the price of consistency problem

Distributed Systems, KNTU 312/28/22



Consistency Problem Example

▸User needs a web page from a far remote site 
▸Far means: delay ~ multi-seconds
▸How access time can be improved?

▸Approach 1:
▸Browser can keep a copy of that page in cache (client-side replication)
▸What if the content of the page is modified

▸Browser can always talk with server and prefetches the latest content à
If read_count << modification_count the browser wastes the bandwidth!

▸Cache has a invalidation time, If read_period > validation_period
caching is useless

Distributed Systems, KNTU 4

▸Consistency

12/28/22



Consistency Problem Example

▸Approach 2: 
▸Remote server keeps the track of caches and updates cache contents 

when they modified

▸Implies server processing load & state maintenance

▸Server bandwidth
▸If read_count << modification_count it is a clear waste of the bandwidth!

Distributed Systems, KNTU 5

▸Consistency

12/28/22



Consistency Problem

▸Replication solves scalability problems 
▸Keeping all replicas tightly-consistent needs global synchronization 
▸Another costly scalability problem!

▸Consistency problems cannot be solved efficiently
▸There is no best solution to replicating data
▸We have to relax the atomic operation condition to avoid global 

synchronization and find an efficient solution

▸There are also no general rules for relaxing
▸Exactly what can be tolerated is highly dependent on applications

▸We should define the access and update patterns of the 
replicated data

Distributed Systems, KNTU 612/28/22



Consistency Problem

▸Tight Consistency
▸Informally, the update should be propagated to all copies before a 

subsequent operation takes place
▸Note that this is an imprecise definition

▸The key idea is that an update is performed at all copies as a single 
atomic operation, or a transaction.

Distributed Systems, KNTU 7

▸Consistency

12/28/22



Consistency Model

12/28/22 Distributed Systems, KNTU 8

▸System Model
▸Data is physically distributed and replicated across multiple processes

▸Assume any shared data like shared memory, shared database, shared file system, …
▸Each process has a local copy of data

▸Write Op: Every action on data that modifies it 
▸Write operations are propagated to other copies

▸Read Op: Non-write operation

▸Consistency



Consistency Model

Distributed Systems, KNTU 9

▸Consistency

12/28/22

▸A contract between processes and the data store that says that if 
processes agree to obey certain rules, the store promises to work 
correctly



Data-Centric Consistency Models

▸An important class of models comes from the field of parallel 
programming

▸In parallel and distributed computing multiple processes will 
need to share resources and access these resources 
simultaneously

▸In such conditions, there is need for consistent ordering of 
operations

▸All replicas first need to reach agreement on when exactly an update is 
to be performed locally

12/28/22 Distributed Systems, KNTU 10

▸Consistency



Sy
nc

hr
on

iz
ed

 M
od

el
s

Strict 
Serializability

Serializable Linearizable

Sequential

Processor

Weak Order

Release

Entry

Causal Eventual

Hierarchy of Consistency Models

12/28/22 Distributed Systems, KNTU 11



Strict Serializability Consistency

▸A write to a variable by any process needs to be seen 
instantaneously by all other processes

▸Instantaneously: implies having a global time and only one 
update operation is executed in a predefined time period

12/28/22 Distributed Systems, KNTU 12

▸Consistency ▸Data-Centric Consistency Models



Serializability Consistency

▸Is a transactional model where each operation takes place 
atomically

▸Transactions have total order

▸Mostly discussed in database field
▸Database guarantees that transactions have the same effect as if 

they ran serially 

▸Read Committed, Read Uncommitted, Repeatable Reads

12/28/22 Distributed Systems, KNTU 13

▸Consistency ▸Data-Centric Consistency Models



Linearizable Consistency

▸Also known as Strong Consistency, Atomic Consistency, 
Immediate Consistency

▸Make a system appear as if there were only one copy of the data, 
and all operations are atomic 

▸This is recency guarantee and has not notion of transactions

12/28/22 Distributed Systems, KNTU 20

▸Consistency ▸Data-Centric Consistency Models



Linearizable Consistency

12/28/22 Distributed Systems, KNTU 21

▸Consistency ▸Data-Centric Consistency Models



Linearizable Consistency

12/28/22 Distributed Systems, KNTU 23

▸Consistency ▸Data-Centric Consistency Models

▸There must be some point in time (between the start and end of 
the write operation) at which the value of x atomically flips from 
old to new. 
▸After that point all clients must see the new value, reading from 

any data store



Sequential Consistency

▸Defined by Lamport in the context of shared memory for multi-
processor systems

▸A data store is sequentially consistent if

▸When processes run concurrently on (possibly) different machines, any 
valid interleaving of read and write operations is acceptable behavior

▸However, all processes must see the same interleaving (order) of 
operations

12/28/22 Distributed Systems, KNTU 24

▸Consistency ▸Data-Centric Consistency Models



Sequential Consistency

▸The following notation is used to demonstrate behavior of two 
processes operating on a shared data item 

▸The horizontal axis is time which increases from left to right

▸Process P1 Writes value a to variable x

▸Process P2 Reads NIL from x first and then a

12/28/22 Distributed Systems, KNTU 25

▸Consistency ▸Data-Centric Consistency Models



Sequential Consistency

▸P1 writes a to variable x

▸P2 reads data but value a is not propagated to the second 
replica (process)

▸P2 after some time reads the written data

▸According to sequential consistency this behavior is acceptable

12/28/22 Distributed Systems, KNTU 26

▸Consistency ▸Data-Centric Consistency Models



Sequential Consistency

12/28/22 Distributed Systems, KNTU 27

▸Consistency ▸Data-Centric Consistency Models

(b) A data store that is not sequentially 
consistent.

(a) A sequentially consistent data 
store. 



Sequential Consistency

▸Example: Three concurrently-executing processes.

▸Assuming each line is indivisible, statements can be executed in 
720 (= 6!) different orderings
▸Some of them are not correct: print(y,z) can not be executed before x 
ß 1

▸Totally 90 correct mutations exists 

12/28/22 Distributed Systems, KNTU 28

▸Consistency ▸Data-Centric Consistency Models



Sequential Consistency

▸Example 
▸The vertical axis is time à 64 unique answers is produced and based on 

the consistency model all of them are correct. 

12/28/22 Distributed Systems, KNTU 29

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency

▸Makes a distinction between events that are potentially causally 
related and those that are not

▸If event b is caused or influenced by an earlier event a, causality 
requires that everyone else first see a, then see b.

▸Operations not causally related are concurrent

12/28/22 Distributed Systems, KNTU 30

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency

▸Casually related writes must be seen by all processes in the same 
order

▸Concurrent writes, may be seen in a different order on different 
machines

12/28/22 Distributed Systems, KNTU 31

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency

12/28/22 Distributed Systems, KNTU 32

▸W2(x)b ß R2(x)a ß W1(x)a : causal dependency à all processes must see 
them in the same order.

▸𝑊 𝑥 𝑐 𝑎𝑛𝑑 𝑊 𝑥 𝑏 are concurrent, it is not required that all processes see 
them in the same order

▸Consistency ▸Data-Centric Consistency Models

Concurrent 
Writes Processes may see 

writes in different order



Causal Consistency

12/28/22 Distributed Systems, KNTU 33

▸Writing b depends on reading value of a, then they are casually dependent

▸Violation has been occurred P3 and P4 must see equal value for X

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency

12/28/22 Distributed Systems, KNTU 34

▸Store is causally consistent, because W(x)a and W(x)b are concurrent

▸Note that the store is not sequentially consistent

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency

12/28/22 Distributed Systems, KNTU 35

▸R3(x)? 
▸W(x)a happened before W(y)b (W(x)a à R(x)a à W(y)b) è R3(x)a

▸R4(y)?
▸Trivially R4(y)b is correct
▸But R4(y)NIL is also correct!

▸Consistency ▸Data-Centric Consistency Models



Sy
nc

hr
on

iz
ed

 M
od

el
s

Strict 
Serializability

Serializable Linearizable

Sequential

Processor

Weak Order

Release

Entry

Casual Eventual

Hierarchy of Consistency Models

12/28/22 Distributed Systems, KNTU 36



Processor Consistency

▸All writes to the same memory location must be seen in the 
same sequential order by all other processes.

12/28/22 Distributed Systems, KNTU 37

▸Consistency ▸Data-Centric Consistency Models



Weak Order Consistency

▸Write operations before critical section must be globally 
performed

▸All operations in all processors need to be visible before critical 
section

▸Write operations inside the critical section performed only after
the critical section completes

▸All other operations can be reordered

12/28/22 Distributed Systems, KNTU 39

▸Consistency ▸Data-Centric Consistency Models



Release Consistency

▸During the entry to a critical section, all operations with respect 
to the local memory variables need to be completed.

12/28/22 Distributed Systems, KNTU 40

▸Consistency ▸Data-Centric Consistency Models



Entry Consistency

▸Every shared variable is assigned a synchronization variable 
specific to it. 
▸Before critical section all operations related to x need to be 

completed with respect to that process

12/28/22 Distributed Systems, KNTU 41

▸Consistency ▸Data-Centric Consistency Models



Entry Consistency

12/28/22 Distributed Systems, KNTU 42

▸It is associated with lock/unlock operations
▸𝐿 𝑥 → 𝐿𝑜𝑐𝑘 𝑥
▸𝑈 𝑥 → 𝑈𝑛𝑙𝑜𝑐𝑘(𝑥)
▸Each process has its own copy of variables
▸When they read variables as usual, they may read their own copy
▸Acquiring locks means, underlying distributed system must 

synchronize the copies of the variable

▸Consistency ▸Data-Centric Consistency Models



Eventual Consistency

▸Observed in practice
▸Only few processes do update operation
▸Chance of write-write conflict is very rare
▸Most of the operations is read

▸Examples
▸DNS record: only the authority updates, write-write conflict never 

occurs!
▸Web pages: only the admin updates a page, write-write conflict never 

occurs!

▸An important issue in these scenarios is when (how fast) the 
update is propagated into other replicas or local caches
▸When browser caches, or local DNS servers get the updated content

12/28/22 Distributed Systems, KNTU 43

▸Consistency ▸Data-Centric Consistency Models



Eventual Consistency

▸There are large-scale distributed and replicated systems that 
tolerate a relatively high degree of inconsistency

▸Reading stale data for a period of time is acceptable, updates 
can be lazily propagated

▸If no updates take place for a long time, all replicas will gradually
become consistent, sometime in future 

▸Eventual consistency essentially requires only updates are 
guaranteed to propagate to all replicas
▸Eventual consistency relaxes the consistency, with in write-write 

conflicts
▸It is used in iPhone sync, Dropbox, git, Amazon Dynamo, Cassandra, 

ONOS, ..

12/28/22 Distributed Systems, KNTU 44

▸Consistency ▸Data-Centric Consistency Models



Client-Centric Consistency

▸Special class of distributed data stores
▸Mostly read, updated by one admin
▸No shared data

▸Provides guarantees for a single client concerning the 
consistency of accesses to a data store by that client

12/28/22 Distributed Systems, KNTU 45

▸Consistency



Client-Centric Consistency

12/28/22 Distributed Systems, KNTU 46

▸Consistency



Client-Centric Consistency

▸Eventual consistency works fine as long as user accesses one 
replica

▸If a user is mobile and accesses several replicas in a short time, 
eventual consistency is no longer held

▸Consider a mobile user that modifies data in an store then 
disconnects and moves, after a while connects to another store 
and modifies some data, which creates write-write conflict!

12/28/22 Distributed Systems, KNTU 47

▸Consistency



Client Centric Consistency

Sequential

Eventual Processor

Weak Order

Release

Entry

Causal

Pipelined Random Access Memory

(PRAM)

Monotonic 
Read

Monotonic 
Write

Read Your 
Write

Write Follow 
Reads

Hierarchy of Consistency Models

12/28/22 Distributed Systems, KNTU 48



PRAM Consistency

▸Pipelined Random Access Memory
▸Also known as FIFO consistency

▸Writes executed by a single process are observed by other 
processes in the order the process executed them as if they were
in the pipeline.

▸Writes from different processes may be seen in a different order
by different processes

▸PRAM is a combination of the next three consistencies

12/28/22 Distributed Systems, KNTU 49

▸Consistency ▸Client-Centric Consistency



PRAM Consistency

▸Implementation:

▸Force a process always write to one particular data store

▸or 

▸Before each write ensure the previous write is propagated to all 
other stores

12/28/22 Distributed Systems, KNTU 50

▸Consistency ▸Client-Centric Consistency



Client-Centric Consistency Notations

▸Notations
▸X: data item

▸Xi: ith version of x

▸𝑊𝑆 𝑥! : A series of writes has leaded to 𝑥! (ith version of x)

▸𝑊𝑆(𝑥!; 𝑥"): By appending series of writes on 𝑥!, version 𝑥" is obtained

▸𝑊𝑆(𝑥!|𝑥"): We don’t know if 𝑥" follows from 𝑥!

▸𝑊# 𝑥# 𝑎: process P1 wrote value a to x and produces version 1 of x

▸R1(x2) simply means that P1 reads version x2

▸𝐿!: ith data store

12/28/22 Distributed Systems, KNTU 51

▸Consistency ▸Client-Centric Consistency



Monotonic-Read Consistency

▸If a process reads the value of a data item x, any successive read 
operation on x by that process will always return that same value 
or a more recent value

▸This guarantees once a process has seen a value of x, it will never 
see an older version of x

12/28/22 Distributed Systems, KNTU 52

▸Consistency ▸Client-Centric Consistency



Monotonic-Read Consistency

12/28/22 Distributed Systems, KNTU 53

▸Consistency ▸Client-Centric Consistency

[4]



Monotonic-Read Consistency

12/28/22 Distributed Systems, KNTU 54

▸You open the mailbox you see some unread emails

▸From then you should always see at least the same unread messages from 
every where

▸You may see newer emails or not

▸Consistency ▸Client-Centric Consistency



Monotonic-Read Consistency

12/28/22 Distributed Systems, KNTU 55

▸You’ve registered in a multi-branch sport club
▸First you enroll for swimming
▸Later you decide to enroll for body-building in an another branch
▸In that branch, they say you’ve not enrolled for swimming! 

▸The process (you) reads the most recent data, does it implies monotonic 
read?

▸Consistency ▸Client-Centric Consistency



Monotonic-Read Consistency

12/28/22 Distributed Systems, KNTU 56

▸Remember monotonic read is descended from Causal 

▸Reading a recent value must include all of the writes led to this 
value

▸Consistency ▸Client-Centric Consistency



Monotonic-Write Consistency

▸A write operation by a process on a data item x is completed 
before any successive write operation on x by the same process

▸Write operation on a copy of item x is performed only if that 
copy has been brought up to date. 

▸if a process performs write w1, then w2, then all processes 
observe w1 before w2.

▸FIFO ordering of writes

12/28/22 Distributed Systems, KNTU 57

▸Consistency ▸Client-Centric Consistency



Monotonic-Write Consistency

12/28/22 Distributed Systems, KNTU 58

▸Consistency ▸Client-Centric Consistency



Monotonic-Write Consistency

12/28/22 Distributed Systems, KNTU 59

▸Consistency ▸Client-Centric Consistency



Read Your Write Consistency

▸Also read-my-writes

▸The effect of a write operation by a process on data item x will 
always be seen by a successive read operation on x by the same 
process

▸A write operation is always completed before a successive read 
operation by the same process, no matter where that read 
operation takes place

12/28/22 Distributed Systems, KNTU 61

▸Consistency ▸Client-Centric Consistency



Read Your Write Consistency

12/28/22 Distributed Systems, KNTU 62

▸Consistency ▸Client-Centric Consistency



Read Your Write Consistency

12/28/22 Distributed Systems, KNTU 63

▸Consistency ▸Client-Centric Consistency

▸Example

▸You update your personal web-page

▸You refresh the page but the most recent version is not shown

▸Previous page is cached in browser 

▸With this consistency, all cached versions must be invalidated



Read Your Write Consistency

12/28/22 Distributed Systems, KNTU 64

▸Consistency ▸Client-Centric Consistency



Writes Follow Reads Consistency

▸Also known as session causality

▸If a process reads a value v, caused by write w1, and later 
performs write w2

▸then w2 must be visible after w1. 
▸Once you’ve read something, you can’t change that read’s past.

12/28/22 Distributed Systems, KNTU 66

▸Consistency ▸Client-Centric Consistency



Writes Follow Reads Consistency

▸Example

▸Assume a user first reads an article A. 

▸Then, reacts by posting a response B. 

▸By requiring writes-follow-reads consistency, B will be written to 
any copy of the newsgroup only after A has been written as well

▸Guarantees users of a group see a posting of a reaction to an 
article only after they have seen the original article

12/28/22 Distributed Systems, KNTU 67

▸Consistency ▸Client-Centric Consistency



Writes Follow Reads Consistency

12/28/22 Distributed Systems, KNTU 68

▸Consistency ▸Client-Centric Consistency



Writes Follow Reads Consistency

12/28/22 Distributed Systems, KNTU 69

▸Consistency ▸Client-Centric Consistency



Writes Follow Reads Consistency

▸Causal Consistency only for one process and W-R-W sequence

▸Re-ordering of actions of other processes is possible

12/28/22 Distributed Systems, KNTU 70

▸Consistency ▸Client-Centric Consistency



Replica Server Location

▸With the advent of the many large-scale data centers located 
across the Internet and constant improvement of connectivity, 
precisely locating servers is less critical.

▸It is more of a management and commercial issue than a 
scientific problem

▸This issue maybe a real concern in Wireless or Sensor Networks
▸The problem become similar to choosing cluster head problems

12/28/22 Distributed Systems, KNTU 71

▸Consistency ▸Replica Management



Content Replication & Placement

▸Permanent Replicas
▸Several servers in one location (cluster)
▸Several servers in different locations (Site Mirroring )

12/28/22 Distributed Systems, KNTU 72

▸Consistency ▸Replica Management



Content Replication & Placement

▸Server-initiated Replicas
▸Server-initiated replicas are copies of a data store that exist to enhance 

performance, and created at the initiative of the owner of the data store

12/28/22 Distributed Systems, KNTU 73

▸Consistency ▸Replica Management



Content Replication & Placement

▸Client-initiated Replicas
▸Local caches in client
▸Local caches for a site (cache servers in a LAN)
▸Best for mostly-read, static data
▸Because of network connectivity improvements, nowadays, is less 

attractive

12/28/22 Distributed Systems, KNTU 74

▸Consistency ▸Replica Management



Content Distribution

▸When an update is performed by a client? what should be 
propagated? 
▸State vs. operation
▸Propagate only a notification of an update 

▸Known as invalidation protocols
▸Just notify some part of data is updated
▸Use little bandwidth
▸Useful when write_count >> read_count
▸Otherwise, large updates are replicated throughout the network 

without being read

12/28/22 Distributed Systems, KNTU 75

▸Consistency ▸Replica Management



Content Distribution

▸Transfer data from one copy to another
▸Transfer the new data to other replicas
▸Useful when write_count << read_count
▸It is possible to send logs of changes instead of the data itself, 

▸increases chance of aggregating logs of several updates into one packet

▸Propagate the update operation to other copies
▸Send parameter values and the operation other replicas must do

12/28/22 Distributed Systems, KNTU 76

▸Consistency



Content Distribution

▸Push or Pull updates?
▸Push-based (server-based protocols) 

▸Updates are propagated to other replicas without their asking
▸Used between permanent and server-initiated replicas
▸Need for strong consistency
▸Efficient for high read-to-write ratio

▸Pull-based (client-based protocols): 
▸A server or client requests another server to send it all updates up to now
▸Mostly, used for client caches
▸Efficient for low read-to-update conditions

▸Hybrid protocols: Lease-based model
▸Server pushes updates for a specific period of time
▸When lease expires, client must poll the server

12/28/22 Distributed Systems, KNTU 77

▸Consistency



Consistency Protocols

▸A consistency protocol describes an implementation of a specific 
consistency model

▸Based on experience, simpler methods succeed even if the 
complex methods have better performance

▸Categories
▸Primary-based Protocols
▸Replicated-Write Protocols

12/28/22 Distributed Systems, KNTU 78

▸Consistency



Primary-based Protocols

▸Each data item in the data store has an associated primary, which 
is responsible for coordinating write operations

12/28/22 Distributed Systems, KNTU 79

▸Consistency ▸Consistency Protocols



Primary-based Protocols

▸Remote-Write or Primary-Backup Protocol
▸Updates forwarded to one server which is responsible for that data item

▸When update is performed, it forwards the update to all backups
▸Then, backups acknowledge the server, their reception

▸All reads are done locally

▸A straightforward implementation of sequential consistency
▸As the primary can order all incoming writes in a globally unique time order.

▸If update is implemented as blocking, processes will see the effects of 
the most recent write. 

12/28/22 Distributed Systems, KNTU 80

▸Consistency ▸Consistency Protocols



Primary-based Protocols

▸Local-Write Protocols

12/28/22 Distributed Systems, KNTU 81

▸Consistency ▸Consistency Protocols



Primary-based Protocols

▸Local-Write Protocols 

▸When a process wants to update a data item, it locates the primary 
copy of data, and moves it to its own location

▸Advantage: multiple, successive write operations can be carried out 
locally, while reading processes can still access their local copy

▸It can be used for disconnected operations like mobile clients
▸Before disconnecting a mobile system become primary
▸Others can only read the data store
▸After connecting, the system updates other backups

12/28/22 Distributed Systems, KNTU 82

▸Consistency ▸Consistency Protocols



Primary-based Protocols

▸Primary-backup protocols have poor response time

▸Why we don’t write updates to several copies? à Replicated 
write protocols

12/28/22 Distributed Systems, KNTU 83

▸Consistency ▸Consistency Protocols



Replicated-write Protocols

▸Active Replication

▸Write operation is sent to all replicas (not the updates)

▸This scheme needs global ordering
▸Totally-ordered multicast
▸Practical implementations

▸Updates are sent to a central sequencer, which assigns order and sends update to all 
replicas

▸For scalability, we can use several sequencers using Lamport’s total-ordering mechanism, a 
group of processes work with a sequencer

12/28/22 Distributed Systems, KNTU 84

▸Consistency ▸Consistency Protocols



Replicated-write Protocols

▸Quorum-based protocols

▸Replicated writes with voting!

▸Clients must send their request and acquire the permission of multiple 
servers before reading or writing a replicated data item

▸To write a data, agreement of at least  $
%
+ 1 replicas should be 

achieved
▸After update a new version number is assigned with the data

▸To read a data, client contacts at least  $
%
+ 1 replicas and asks for the 

version number
▸If all the version numbers are the same, this must be the most recent version

12/28/22 Distributed Systems, KNTU 85

▸Consistency ▸Consistency Protocols



Replicated-write Protocols

▸General Quorum-based protocols 

▸For reading, a client must assemble a collection of 𝑁& replicas: read 
quorum

▸For writing, a client must assemble a collection of 𝑁' replicas: write 
quorum

▸The following conditions must be satisfied:
▸𝑁! +𝑁" > 𝑁 è prevents read-write conflicts
▸𝑁" > #

$
è prevents write-write conflicts

12/28/22 Distributed Systems, KNTU 86

▸Consistency ▸Consistency Protocols



Replicated-write Protocols

12/28/22 Distributed Systems, KNTU 88

▸Quorum-based protocols

▸Consistency ▸Consistency Protocols



Coherence

▸Consistency is concerned with a set of data items

▸The copies of a data item are coherent when the various copies 
conform to the rules as defined by its associated consistency 
model

▸Deals with only a single data item
▸Mostly studied in caches of shared memory multi-processor/chip-multi-

processors context
▸They have hardware support

12/28/22 Distributed Systems, KNTU 89

▸Consistency



Other References

1. https://jepsen.io/consistency
2. https://en.wikipedia.org/wiki/Consistency_model
3. Viotti, Paolo, and Marko Vukolić. "Consistency in non-

transactional distributed storage systems." ACM Computing 
Surveys (CSUR) 49.1 (2016): 1-34.

4. Kleppmann, Martin. Designing data-intensive applications: The 
big ideas behind reliable, scalable, and maintainable systems. " 
O'Reilly Media, Inc.", 2017.

5. https://vkontech.com/causal-consistency-guarantees-case-
studies/

12/28/22 Distributed Systems, KNTU 92

https://jepsen.io/consistency
https://en.wikipedia.org/wiki/Consistency_model


The End!

Distributed Systems, KNTU 9312/28/22


