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Consistency

▸In distributed systems we need replication (= repeat) of data for 
▸Reliability

▸We discuss later
▸Performance

▸Is important for scaling in size or geographical span
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Consistency

▸Consistency
▸Keeping the same content in all replicas

▸When a replica is updated we must ensure this update is propagated to 
other replicas

▸A read operation performed at any copy will always return the same 
data

▸When and how determines the price of consistency problem
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Consistency Problem Example

▸User needs a web page from a far remote site 
▸Far means: delay ~ multi-seconds
▸How access time can be improved?

▸Approach 1:
▸Browser can keep a copy of that page in cache (client-side replication)
▸What if the content of the page is modified

▸Browser can always talk with server and prefetches the latest content à
If read_count << modification_count the browser wastes the bandwidth!

▸Cache has a invalidation time, If read_period > validation_period
caching is useless
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Consistency Problem Example

▸Approach 2: 
▸Remote server keeps the track of caches and updates cache contents 

when they modified

▸Implies server processing load & state maintenance

▸Server bandwidth
▸If read_count << modification_count it is a clear waste of the bandwidth!
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Consistency Problem

▸Replication solves scalability problems 
▸Keeping all replicas tightly-consistent needs global synchronization 
▸Another costly scalability problem!

▸Consistency problems cannot be solved efficiently
▸There is no best solution to replicating data
▸We have to relax the atomic operation condition to avoid global 

synchronization and find an efficient solution

▸There are also no general rules for relaxing
▸Exactly what can be tolerated is highly dependent on applications

▸We should define the access and update patterns of the 
replicated data
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Consistency Problem

▸Tight Consistency
▸Informally, the update should be propagated to all copies before a 

subsequent operation takes place
▸Note that this is an imprecise definition

▸The key idea is that an update is performed at all copies as a single 
atomic operation, or a transaction.
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Consistency Model
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▸System Model
▸Data is physically distributed and replicated across multiple processes

▸Assume any shared data like shared memory, shared database, shared file system, …
▸Each process has a local copy of data

▸Write Op: Every action on data that modifies it 
▸Write operations are propagated to other copies

▸Read Op: Non-write operation

▸Consistency



Consistency Model
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▸A contract between processes and the data store that says that if 
processes agree to obey certain rules, the store promises to work 
correctly



Data-Centric Consistency Models

▸An important class of models comes from the field of parallel 
programming

▸In parallel and distributed computing multiple processes will 
need to share resources and access these resources 
simultaneously

▸In such conditions, there is need for consistent ordering of 
operations

▸All replicas first need to reach agreement on when exactly an update is 
to be performed locally
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Strict Serializability Consistency

▸A write to a variable by any process needs to be seen 
instantaneously by all other processes

▸Instantaneously: implies having a global time and only one 
update operation is executed in a predefined time period
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Serializability Consistency

▸Is a transactional model where each operation takes place 
atomically

▸Transactions have total order

▸Mostly discussed in database field
▸Database guarantees that transactions have the same effect as if 

they ran serially 

▸Read Committed, Read Uncommitted, Repeatable Reads
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Linearizable Consistency

▸Also known as Strong Consistency, Atomic Consistency, 
Immediate Consistency

▸Make a system appear as if there were only one copy of the data, 
and all operations are atomic 

▸This is recency guarantee and has not notion of transactions
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Linearizable Consistency
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Linearizable Consistency
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▸Consistency ▸Data-Centric Consistency Models

▸There must be some point in time (between the start and end of 
the write operation) at which the value of x atomically flips from 
old to new. 
▸After that point all clients must see the new value, reading from 

any data store



Sequential Consistency

▸Defined by Lamport in the context of shared memory for multi-
processor systems

▸A data store is sequentially consistent if

▸When processes run concurrently on (possibly) different machines, any 
valid interleaving of read and write operations is acceptable behavior

▸However, all processes must see the same interleaving (order) of 
operations
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Sequential Consistency

▸The following notation is used to demonstrate behavior of two 
processes operating on a shared data item 

▸The horizontal axis is time which increases from left to right

▸Process P1 Writes value a to variable x

▸Process P2 Reads NIL from x first and then a
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Sequential Consistency

▸P1 writes a to variable x

▸P2 reads data but value a is not propagated to the second 
replica (process)

▸P2 after some time reads the written data

▸According to sequential consistency this behavior is acceptable
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Sequential Consistency
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▸Consistency ▸Data-Centric Consistency Models

(b) A data store that is not sequentially 
consistent.

(a) A sequentially consistent data 
store. 



Sequential Consistency

▸Example: Three concurrently-executing processes.

▸Assuming each line is indivisible, statements can be executed in 
720 (= 6!) different orderings
▸Some of them are not correct: print(y,z) can not be executed before x 
ß 1

▸Totally 90 correct mutations exists 
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Sequential Consistency

▸Example 
▸The vertical axis is time à 64 unique answers is produced and based on 

the consistency model all of them are correct. 

12/28/22 Distributed Systems, KNTU 29

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency

▸Makes a distinction between events that are potentially causally 
related and those that are not

▸If event b is caused or influenced by an earlier event a, causality 
requires that everyone else first see a, then see b.

▸Operations not causally related are concurrent
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Causal Consistency

▸Casually related writes must be seen by all processes in the same 
order

▸Concurrent writes, may be seen in a different order on different 
machines
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Causal Consistency
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▸W2(x)b ß R2(x)a ß W1(x)a : causal dependency à all processes must see 
them in the same order.

▸𝑊 𝑥 𝑐 𝑎𝑛𝑑 𝑊 𝑥 𝑏 are concurrent, it is not required that all processes see 
them in the same order

▸Consistency ▸Data-Centric Consistency Models

Concurrent 
Writes Processes may see 

writes in different order



Causal Consistency
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▸Writing b depends on reading value of a, then they are casually dependent

▸Violation has been occurred P3 and P4 must see equal value for X

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency
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▸Store is causally consistent, because W(x)a and W(x)b are concurrent

▸Note that the store is not sequentially consistent

▸Consistency ▸Data-Centric Consistency Models



Causal Consistency
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▸R3(x)? 
▸W(x)a happened before W(y)b (W(x)a à R(x)a à W(y)b) è R3(x)a

▸R4(y)?
▸Trivially R4(y)b is correct
▸But R4(y)NIL is also correct!

▸Consistency ▸Data-Centric Consistency Models
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Processor Consistency

▸All writes to the same memory location must be seen in the 
same sequential order by all other processes.
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Weak Order Consistency

▸Write operations before critical section must be globally 
performed

▸All operations in all processors need to be visible before critical 
section

▸Write operations inside the critical section performed only after
the critical section completes

▸All other operations can be reordered
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Release Consistency

▸During the entry to a critical section, all operations with respect 
to the local memory variables need to be completed.
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Entry Consistency

▸Every shared variable is assigned a synchronization variable 
specific to it. 
▸Before critical section all operations related to x need to be 

completed with respect to that process
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Entry Consistency
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▸It is associated with lock/unlock operations
▸𝐿 𝑥 → 𝐿𝑜𝑐𝑘 𝑥
▸𝑈 𝑥 → 𝑈𝑛𝑙𝑜𝑐𝑘(𝑥)
▸Each process has its own copy of variables
▸When they read variables as usual, they may read their own copy
▸Acquiring locks means, underlying distributed system must 

synchronize the copies of the variable

▸Consistency ▸Data-Centric Consistency Models



Eventual Consistency

▸Observed in practice
▸Only few processes do update operation
▸Chance of write-write conflict is very rare
▸Most of the operations is read

▸Examples
▸DNS record: only the authority updates, write-write conflict never 

occurs!
▸Web pages: only the admin updates a page, write-write conflict never 

occurs!

▸An important issue in these scenarios is when (how fast) the 
update is propagated into other replicas or local caches
▸When browser caches, or local DNS servers get the updated content
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Eventual Consistency

▸There are large-scale distributed and replicated systems that 
tolerate a relatively high degree of inconsistency

▸Reading stale data for a period of time is acceptable, updates 
can be lazily propagated

▸If no updates take place for a long time, all replicas will gradually
become consistent, sometime in future 

▸Eventual consistency essentially requires only updates are 
guaranteed to propagate to all replicas
▸Eventual consistency relaxes the consistency, with in write-write 

conflicts
▸It is used in iPhone sync, Dropbox, git, Amazon Dynamo, Cassandra, 

ONOS, ..
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Client-Centric Consistency

▸Special class of distributed data stores
▸Mostly read, updated by one admin
▸No shared data

▸Provides guarantees for a single client concerning the 
consistency of accesses to a data store by that client
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Client-Centric Consistency
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Client-Centric Consistency

▸Eventual consistency works fine as long as user accesses one 
replica

▸If a user is mobile and accesses several replicas in a short time, 
eventual consistency is no longer held

▸Consider a mobile user that modifies data in an store then 
disconnects and moves, after a while connects to another store 
and modifies some data, which creates write-write conflict!
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Client Centric Consistency
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PRAM Consistency

▸Pipelined Random Access Memory
▸Also known as FIFO consistency

▸Writes executed by a single process are observed by other 
processes in the order the process executed them as if they were
in the pipeline.

▸Writes from different processes may be seen in a different order
by different processes

▸PRAM is a combination of the next three consistencies
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PRAM Consistency

▸Implementation:

▸Force a process always write to one particular data store

▸or 

▸Before each write ensure the previous write is propagated to all 
other stores
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Client-Centric Consistency Notations

▸Notations
▸X: data item

▸Xi: ith version of x

▸𝑊𝑆 𝑥! : A series of writes has leaded to 𝑥! (ith version of x)

▸𝑊𝑆(𝑥!; 𝑥"): By appending series of writes on 𝑥!, version 𝑥" is obtained

▸𝑊𝑆(𝑥!|𝑥"): We don’t know if 𝑥" follows from 𝑥!

▸𝑊# 𝑥# 𝑎: process P1 wrote value a to x and produces version 1 of x

▸R1(x2) simply means that P1 reads version x2

▸𝐿!: ith data store
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Monotonic-Read Consistency

▸If a process reads the value of a data item x, any successive read 
operation on x by that process will always return that same value 
or a more recent value

▸This guarantees once a process has seen a value of x, it will never 
see an older version of x
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Monotonic-Read Consistency
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▸Consistency ▸Client-Centric Consistency
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Monotonic-Read Consistency
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▸You open the mailbox you see some unread emails

▸From then you should always see at least the same unread messages from 
every where

▸You may see newer emails or not

▸Consistency ▸Client-Centric Consistency



Monotonic-Read Consistency
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▸You’ve registered in a multi-branch sport club
▸First you enroll for swimming
▸Later you decide to enroll for body-building in an another branch
▸In that branch, they say you’ve not enrolled for swimming! 

▸The process (you) reads the most recent data, does it implies monotonic 
read?

▸Consistency ▸Client-Centric Consistency



Monotonic-Read Consistency
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▸Remember monotonic read is descended from Causal 

▸Reading a recent value must include all of the writes led to this 
value

▸Consistency ▸Client-Centric Consistency



Monotonic-Write Consistency

▸A write operation by a process on a data item x is completed 
before any successive write operation on x by the same process

▸Write operation on a copy of item x is performed only if that 
copy has been brought up to date. 

▸if a process performs write w1, then w2, then all processes 
observe w1 before w2.

▸FIFO ordering of writes
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Monotonic-Write Consistency
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Monotonic-Write Consistency
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Read Your Write Consistency

▸Also read-my-writes

▸The effect of a write operation by a process on data item x will 
always be seen by a successive read operation on x by the same 
process

▸A write operation is always completed before a successive read 
operation by the same process, no matter where that read 
operation takes place

12/28/22 Distributed Systems, KNTU 61

▸Consistency ▸Client-Centric Consistency



Read Your Write Consistency
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Read Your Write Consistency
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▸Consistency ▸Client-Centric Consistency

▸Example

▸You update your personal web-page

▸You refresh the page but the most recent version is not shown

▸Previous page is cached in browser 

▸With this consistency, all cached versions must be invalidated



Read Your Write Consistency

12/28/22 Distributed Systems, KNTU 64

▸Consistency ▸Client-Centric Consistency



Writes Follow Reads Consistency

▸Also known as session causality

▸If a process reads a value v, caused by write w1, and later 
performs write w2

▸then w2 must be visible after w1. 
▸Once you’ve read something, you can’t change that read’s past.
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Writes Follow Reads Consistency

▸Example

▸Assume a user first reads an article A. 

▸Then, reacts by posting a response B. 

▸By requiring writes-follow-reads consistency, B will be written to 
any copy of the newsgroup only after A has been written as well

▸Guarantees users of a group see a posting of a reaction to an 
article only after they have seen the original article
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Writes Follow Reads Consistency
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Writes Follow Reads Consistency
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Writes Follow Reads Consistency

▸Causal Consistency only for one process and W-R-W sequence

▸Re-ordering of actions of other processes is possible
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Replica Server Location

▸With the advent of the many large-scale data centers located 
across the Internet and constant improvement of connectivity, 
precisely locating servers is less critical.

▸It is more of a management and commercial issue than a 
scientific problem

▸This issue maybe a real concern in Wireless or Sensor Networks
▸The problem become similar to choosing cluster head problems
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Content Replication & Placement

▸Permanent Replicas
▸Several servers in one location (cluster)
▸Several servers in different locations (Site Mirroring )
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Content Replication & Placement

▸Server-initiated Replicas
▸Server-initiated replicas are copies of a data store that exist to enhance 

performance, and created at the initiative of the owner of the data store
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Content Replication & Placement

▸Client-initiated Replicas
▸Local caches in client
▸Local caches for a site (cache servers in a LAN)
▸Best for mostly-read, static data
▸Because of network connectivity improvements, nowadays, is less 

attractive
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Content Distribution

▸When an update is performed by a client? what should be 
propagated? 
▸State vs. operation
▸Propagate only a notification of an update 

▸Known as invalidation protocols
▸Just notify some part of data is updated
▸Use little bandwidth
▸Useful when write_count >> read_count
▸Otherwise, large updates are replicated throughout the network 

without being read
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Content Distribution

▸Transfer data from one copy to another
▸Transfer the new data to other replicas
▸Useful when write_count << read_count
▸It is possible to send logs of changes instead of the data itself, 

▸increases chance of aggregating logs of several updates into one packet

▸Propagate the update operation to other copies
▸Send parameter values and the operation other replicas must do
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Content Distribution

▸Push or Pull updates?
▸Push-based (server-based protocols) 

▸Updates are propagated to other replicas without their asking
▸Used between permanent and server-initiated replicas
▸Need for strong consistency
▸Efficient for high read-to-write ratio

▸Pull-based (client-based protocols): 
▸A server or client requests another server to send it all updates up to now
▸Mostly, used for client caches
▸Efficient for low read-to-update conditions

▸Hybrid protocols: Lease-based model
▸Server pushes updates for a specific period of time
▸When lease expires, client must poll the server
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Consistency Protocols

▸A consistency protocol describes an implementation of a specific 
consistency model

▸Based on experience, simpler methods succeed even if the 
complex methods have better performance

▸Categories
▸Primary-based Protocols
▸Replicated-Write Protocols
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Primary-based Protocols

▸Each data item in the data store has an associated primary, which 
is responsible for coordinating write operations
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Primary-based Protocols

▸Remote-Write or Primary-Backup Protocol
▸Updates forwarded to one server which is responsible for that data item

▸When update is performed, it forwards the update to all backups
▸Then, backups acknowledge the server, their reception

▸All reads are done locally

▸A straightforward implementation of sequential consistency
▸As the primary can order all incoming writes in a globally unique time order.

▸If update is implemented as blocking, processes will see the effects of 
the most recent write. 
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Primary-based Protocols

▸Local-Write Protocols
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Primary-based Protocols

▸Local-Write Protocols 

▸When a process wants to update a data item, it locates the primary 
copy of data, and moves it to its own location

▸Advantage: multiple, successive write operations can be carried out 
locally, while reading processes can still access their local copy

▸It can be used for disconnected operations like mobile clients
▸Before disconnecting a mobile system become primary
▸Others can only read the data store
▸After connecting, the system updates other backups
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Primary-based Protocols

▸Primary-backup protocols have poor response time

▸Why we don’t write updates to several copies? à Replicated 
write protocols
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Replicated-write Protocols

▸Active Replication

▸Write operation is sent to all replicas (not the updates)

▸This scheme needs global ordering
▸Totally-ordered multicast
▸Practical implementations

▸Updates are sent to a central sequencer, which assigns order and sends update to all 
replicas

▸For scalability, we can use several sequencers using Lamport’s total-ordering mechanism, a 
group of processes work with a sequencer
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Replicated-write Protocols

▸Quorum-based protocols

▸Replicated writes with voting!

▸Clients must send their request and acquire the permission of multiple 
servers before reading or writing a replicated data item

▸To write a data, agreement of at least  $
%
+ 1 replicas should be 

achieved
▸After update a new version number is assigned with the data

▸To read a data, client contacts at least  $
%
+ 1 replicas and asks for the 

version number
▸If all the version numbers are the same, this must be the most recent version
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Replicated-write Protocols

▸General Quorum-based protocols 

▸For reading, a client must assemble a collection of 𝑁& replicas: read 
quorum

▸For writing, a client must assemble a collection of 𝑁' replicas: write 
quorum

▸The following conditions must be satisfied:
▸𝑁! +𝑁" > 𝑁 è prevents read-write conflicts
▸𝑁" > #

$
è prevents write-write conflicts

12/28/22 Distributed Systems, KNTU 86

▸Consistency ▸Consistency Protocols



Replicated-write Protocols
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Coherence

▸Consistency is concerned with a set of data items

▸The copies of a data item are coherent when the various copies 
conform to the rules as defined by its associated consistency 
model

▸Deals with only a single data item
▸Mostly studied in caches of shared memory multi-processor/chip-multi-

processors context
▸They have hardware support
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The End!
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